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Outline

- Bands and quantum geometry
- Quantum geometric nesting in flat bands
- Doing semiclassics correctly in dispersive bands with quantum geometry

- A quick advertisement for recent work on topological superconductivity



Banads

e, (k) =

Energetics

v,(k)

Qn,aﬁ(k) Berry curvature

v

Geometry

gn,aﬁ(k) Quantum metric



Quantum geometry

Phase of Bloch state varies with k

Berry phase around a loop is given by the
Berry curvature.

Q,, o5(K)




Quantum geometry

Wavefunction of Bloch state varies with k

ow fast they vary is described by quantum
metric

‘<¢nk‘wnk+q>‘2 ~ 1 — gw/(k)quV




Quantum geometry

Wavefunction of Bloch state varies with k

ow fast they vary is described by quantum
metric

‘<¢nk|wnk+q>‘2 ~ 1 — gw/(k)quV




Quantum geometry

-xample: Haldane model

Wavefunction of Bloch state varies with k

ow Tast they vary is described by quantum
metric

‘<wnk‘¢nk+q>‘2 ~ 1 — g,ul/(k)qul/

Ellipses show constant “distance”




Quantum geometric nesting




Banads

e, (k) =

Energetics

v,(k)

Qn,aﬁ(k) Berry curvature

v

Geometry

gn,aﬁ(k) Quantum metric
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lat bands

L
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K

v

Geometry

In the flat band limit, there is only geometry

Qn,aﬁ(k) Berry curvature

gn,aﬁ(k) Quantum metric



Y

lat bands

In the flat band limit, there is only geometry

Interaction U < A

How does geometry determine the instabilities?

Qn,aﬁ(k) Berry curvature

gn,aﬁ(k) Quantum metric



Y

lat bands

Generally a result of interference in electron motion, which can be induced by

frustration or by magnetic flux.
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Frustrated hopping

Kagome lattice structure

Flat band
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Correlation pnysics
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erent oraers

SO many di

- Ferromagnetism

. Antiferromagnetism

. Intervalley coherence

- Fractional guantum Hall effect
- Stripes

- Charge density wave

- Loop currents

.« Superconductivity (s-wave, p-wave, d-wave, FFLO...)



Nesting

Within a dispersive band, Fermi surface structure controls instabilities

&

Quasi-1d Square lattice Hubbard

“2ke” CDW/SDW (7, m) antiferromagnet



susceptibility

Restricts to near Fermi surface

Q / (Q a)) Z nF(€k+Q) — nF(Gk)

Fnhanced susceptibility
when this vanishes for
extended range of k

What happens when the band is flat?? No Fermi surface!



Quantum geometric nesting

/. Han et al 2024

For flat band (or bands) at the Fermi energy,
susceptibility is rendered finite only by thermal
fluctuations. But there is still structure.

217 P(k+Q)O(k)P (k)] .
Order parameter Projector



Quantum geometric nesting

Bloch vector representation

e.g. 2-band P(k)= 5+ ;bk) o




Quantum geometric nesting

Bloch vector representation

N bands, N| flat P(k) = -+ + 5b(k) - A



Quantum geometric nesting

O 2
(@) = Y HOURIO) (NL - Lbo(k+ Q) b(k)|)

Relates guantum /

geometry at k and k+Q /v

QGN condition:

bo(k+ Q) =bk+ Q) — N[o(k) x blk+ Q) x o(k)]

bo(k+Q) | b(k), vk € BZ
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JS Hofmann et al, 2022,2023
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JS Hofmann et al, 2022,2023
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QMC Simu.

Include Hubbard interaction H = H

ation

Q = (7, 7)

(a) n.

UZ(n

10

2
1,A

Use dQMC for 8x8 lattice



QMC Simulation

Include Hubbard interaction # = Hj UZ <”Z%A ”fza)

Use dQMC for 8x8 lattice
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Superconductivity

With attractive interactions in the flat band, can get exotic superconductivity

D 1 4 1
XQ = 7 arex zk: 05 (k) (Nn2 + §bR(k + Q) - b(—k))

anh|v|

Similar nesting conditions




Superconducting QGN

(a) Ne-=0.75 (b) 1-=0.75+0.20
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QMC




Ssummary

- We developed an algebraic approach to guantum geometric nesting
. |t allows intuitive study of ordering instabilities of flat bands
- QMC validates the approach for a simple model system

- We also obtain relations between a “high temperature stiffness” and a generalized quantum
metric (for both particle/hole and superconducting orders at any Q)

. 77 |s there a way to include non-symmetry breaking “orders” like FQAHE?



Kinetic theory

Takamori Park Xiooyang Huan
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Banads

v, (k) O ~ \VVp

e, (k) =

Energetics

Qn,aﬁ(k) Berry curvature Oy ™~ <Q>

V)

Geometry

gn,aﬁ(k) Quantum metric Souza, Wilkens, Martin 2000
Various suggestions

Role in interacting systems?



1near response

A host of “conventional” (but still complex) transport coefficients

j =LY + L'}=VT),

» 4 21 22 e v i
j'=L78 + L(=VT), Ashcroft+Mermin

And some originating from Berry curvature

ddk
ah
Anomalous Hall effect = ¢” Z/ (k) (k) x E
Karplus+Luttinger, 1954

GME _ TWTE | |
Gyromagnetic effect Yij T Z / dk|(O [ Ockn)Vkn,ikn.;

Ma+Pesin 2015; Song et al 2016

Chiral anomaly...



Non-linear response

Non-linear Hall effect Jo = Xabc€pErs T2 = XancEpEes

Yobe = —eadCZ - /fo 0,Q,) Sodemann+Fu, 2015

Q. Ma et al, 2019 (WTe2)

[ (nA)



Non-linear response

Quantum metric effects

3

e < ~ . “Band-resolved quantum
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K. Das et al 2023
D. Kaplan et al, 2024
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Quadrupole response

. Q@ [ dPK
Jgeom.(r) - _E (271,)1)

M. Lapa + T. Hughes, 2019

e 8 E Q m metric di
T uantu etric dipole
uw

E,, = JE /ox,




Semiclassical approach

Two approximations, done separately c.f. Great talk from
Jenny Coulter

Band structure Single particle

il P1 P12 h O
Lx, k] = ih (le ,02) =~ (O f)



What we did

Systematic exact (order by order in spatial gradients) derivation of kinetics
from the density matrix alone.

Just a hint of the (rather technical) method:

-

Movyal
diagonalization

Matrix in both band and Wigner
position/momentum space transform




Kinetic equation

Otfrn + 0aTa =0 Just continuity equation for density in a banad

c.f. simple convection Ja = [nVa —} Boltzmann equation

Incompressible flow

Here to second order:

_ r h2 4
ja —Caf tr f <85h -+ h(gg)\ﬁghﬂ)\g — Qw) <1 — §QMV) | 9 eg,\ewé’guhﬁﬁgy,\>

h2
24

1

i ) i
+ hPeapeanOy tr | f <§5M,,8Mh(’9ygg>\ — 537:95)\ + 5W/6ﬁﬁh91/)\>

5a550>\5wﬁgu tr [f@g/\yh]



Kinetic equation

Otfrn + 0aTa =0 Just continuity equation for density in a banad

c.f. simple convection Ja = [nVa —} Boltzmann equation

Incompressible flow

Here to second order:

_ r h2 4
ja —Caf tr f <85h -+ h(gg)\ﬁghﬂ)\g — Qw) <1 — §QMV) | 9 80)\Euyaguhaﬁg,/)\>

h2
24

1

i ) i
+ hPeapeanOy tr | f <§5M,,8Mh(’9yg5>\ — 537:95)\ + 5W/6ﬁﬁh91/)\>

5a550>\5wﬁgu tr [f@g/\yh]

1 . 1
guantum metric  gag = §d1ag (AaAg +Agh,) — AgAg = 5 tr(0n 0 Prp)



Kinetic equation

_ . o _
Ta =Eqp tr f (%h an h(é‘g)\aahfb\g = Qw) (1 — §Q/W> | 5 €JA8MV5’§MhaggVA>

(1 1 1 A?
—+ h26a550>\&, tr f (5%,,8“}13,/95)\ — 581595)\ + 5@1/835@%)\) 24504550)\5,u1/8(27,u tr [fag)\z/h}

- General and exact up to second order in semiclassical expansion
- Explicitly contains real space and momentum space, and capable of describing

iNnhomogeneous systems. Magnetic field can be included by moditying €ap

- Quantum geometry of bands appears explicitly, takes local band Hamiltonian as input

- Only band-intrinsic quantities appear: but these are bands renormalized by
guantum corrections.

- Ready to attack all sorts of problems!




Example: separable proplem

H(z,p) = Ho(p) — eV (x)ln

Band form  Diagonal potential

Kinetic equation (relaxation time approx)

2

— 1 B
Oif =—0p, | f (Uz - th@ V + eTw@2 V + % (aijil — —&cisz) Op,; VO,V + % (hvj il — (9k ggl) aﬁjle>

e 1
— —akfﬁ V + 2_h8£ g;l(fak gzla V) _ _ak 348 7 (fg]l X ; :clv) | NG :1; :L‘Ja:lfak k; kl

Ty = Z (Op,, Un|Um ) (Um|Op, un) + (1 <> ¥) "band-normalized quantum metric”
n;uy —

m#£n En ™ Em (not a purely geometric quantity)



Results

- Reproduced

. Non-linear Hall effect

- Non-linear band-resolved quantum metric dipole contributions General form agrees
with literature but we
- Quadrupole response found errors

- New results in collision less regime

‘ ' ' = . § fe1(g, k,w) / [ WPt - 4 (1 — gii(k)gig;)
c.9. pO‘CH’lZCIthI  function C'*)Nw, q) = —ie h/k 57 (4.0 i k ekt a/2) + etk —q/2) + hnpti;(k)qiq;

_—



summary

h h? |
ja —Eap tr f (5’5h + h(ea,\&,hﬂ,\ﬁ — Qtﬁ) (1 — §QMV> | 80)\€Iuyagluh@59,/)\>

2

h2
24

sagsg,\sw/(?gﬂ tr [f@g/\yh]

- ) i
— hQSOz@sJ,\é’a tr | f (§5u,,8“hé’ygg>\ — 5(%95,\ + 6W5’35h9u>\>

- We found a procedure to obtain semiclassical electron dynamics organized by spatial
gradients

- We found a general result for the phase space current to second order in gradients, capable
of handling inhomogeneous systems and magnetic fields

. Prior results for linear and non-linear response are recovered, and in some cases corrected
- New results for collision less regime

. Still needed: a scattering/interactions theory with the same validity



3rief update: anyon superconauctivity?

Chiral Spin Liquid and Quantum Phase Transition in the Triangular Lattice
Hofstadter-Hubbard Model

Stefan Divic,»? Tomohiro Soejima,® Valentin Crépel,? Michael P. Zaletel,’4 and Andrew Millis? °

Anyon Superconductivity from Topological Criticality in a Hofstadter-Hubbard Model

Stefan Divic,! Valentin Crépel,? Tomohiro Soejima (85 % X),> Xue-Yang
Song,* Andrew J. Millis,® Michael P. Zaletel,'»¢ and Ashvin Vishwanath?

Charge gap must vanish at this QCP, but 1-e gap does not.

Strong indication that paired state arises on doping.
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Topology: spin pumping
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DQMC

Sign problem, but manageable
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BCo or not”

All in the superconducting phase, but we can see the evolution

(a1) S(K),U=2  (a2) S(K),U=4  (a3) S(K),U=8 (ad) S(K),U = 14

1

Spin S(k) <o

(b2) n(K),U =4 (b3) n(K),U = 8 (b4) n(K),U =14  (b5) n(K),U = 24

Occupation number n(k)
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