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Outline

« Bands and quantum geometry

- Quantum geometric nesting in flat bands

- Doing semiclassics correctly in dispersive bands with quantum geometry




Bands
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Quantum geometry

Phase of Bloch state varies with k
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Quantum geometry

Wavefunction of Bloch state varies with k
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Quantum geometry

\ X Wavefunction of Bloch state varies with k

\ How fast they vary is described by quantum
/ metric
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Quantum geometry

Example: Haldane model

Wavefunction of Bloch state varies with k

How fast they vary is described by quantum
metric
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Ellipses show constant “distance”




Quantum geometric nesting
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Flat bands

= /-"\ In the flat band limit, there is only geometry




Flat bands

= /f\ In the flat band limit, there is only geometry

Interaction U <« A

How does geometry determine the instabilities?
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Flat bands

Generally a result of interference in electron motion, which can be induced by

frustration or by magnetic flux.

Landau levels
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lat bands
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Correlation physics
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SO many different orders

« Ferromagnetism
« Antiferromagnetism

- Intervalley coherence

- Fractional quantum Hall effect

« Stripes



Nesting

Within a dispersive band, Fermi surface structure controls instabilities
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Susceptibility

Restricts to near Fermi surface
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Enhanced susceptibility

when this vanishes for
extended range of k

What happens when the band is flat?? No Fermi surface!



Quantum geometric nesting

/. Han et al, 2024

For flat band (or bands) at the Fermi energy,
susceptibility is rendered finite only by thermal
fluctuations. But there is still structure.
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Quantum geometric nesting

Bloch vector representation

1 1

e.g. 2-band P(k) =5+ ;b(k)-o




Quantum geometric nesting

Bloch vector representation

N 1
Nbands, N flat — P(k) = = + 5b(k) - A
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Quantum geometric nesting
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Hxample

JS Hofmann et al, 2022,2023
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Hxample
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Hxample

JS Hofmann et al, 2022,2023
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QMC Simulation

Include Hubbard interaction H = Hy+ UZ (”fA + ”fB)
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Use dQMC for 8x8 lattice



QMC Simulation

Include Hubbard interaction H=Hy+U ), (”fA + ”fB) Use dQMC for 8x8 lattice
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Superconductivity

With attractive interactions in the flat band, can get exotic superconductivity
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Superconducting QGN
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QMC
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oummary

- We developed an algebraic approach to quantum geometric nesting
- It allows intuitive study of ordering instabilities of flat bands
- QMC validates the approach for a simple model system

- We also obtain relations between a “high temperature stiffness” and a generalized quantum
metric (for both particle/hole and superconducting orders at any Q)

- ??Is there a way to include non-symmetry breaking “orders” like FQAHE?



Kinetic theory




Bands
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Various suggestions

Role in interacting systems?



[ Inear response

A host of “conventional” (but still complex) transport coefficients

j=L""8 + L'*}(-VTD),

J'=LY8 + L*(=VT),  aghcroft+Mermin

And some originating from Berry curvature
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Chiral anomaly...



Non-linear response

Non-linear Hall effect 70 = xanc€p€is 2 = YarclpEos

Yabe = —Eade —————— 2(1+lm) / Fo(0,94) Sodemann+Fu, 2015




Non-linear response

Quantum metric effects
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Quadrupole response
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Sermiclassical approach

Two approximations, done separately
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What we did

Systematic exact (order by order in spatial gradients) derivation of kinetics
from the density matrix alone.

Just a hint of the (rather technical) method:

-

Matrix in both band and Wigner
position/momentum space transform

-

Moyal
diagonalization




Kinetic equation

Otfrn + 00T =0 Just continuity equation for density in a band

c.f. simple convection Ja = fnva —} Boltzmann equation

Incompressible flow

Here, to second order:
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Kinetic equation

Otfrn + 00T =0 Just continuity equation for density in a band

c.f. simple convection Ja = fnva —} Boltzmann equation

Incompressible flow

Here, to second order:

h h?
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Kinetic equation

h h?
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- General and exact up to second order in semiclassical expansion
- Explicitly contains real space and momentum space, and capable of describing
inhomogeneous systems. Magnetic field can be included by modifying €afp

- Quantum geometry of bands appears explicitly, takes local band Hamiltonian as input

- Only band-intrinsic quantities appear: but these are bands renormalized by
guantum corrections.

- Ready to attack all sorts of problems!



Example: separable problem

H(z,p) = Ho(p) — eV (z)In

Band form  Diagonal potential

Kinetic equation (relaxation time approx)

62

h

1 1
8tf = — 8% lf (’Ui + %Q”@x]V 4 eTijafmjV + <8kijil — 58;%le> 8xj V&BZV + % (hUjTil = Eakigjl> aijle)l

e e e 1
@&

T Z (Op,, Un |tm ) {tm|Op, un) + (1 <> V) "band-normalized quantum metric”
n;py —

. €n — €m (not a purely geometric quantity)



Results

- Reproduced

- Non-linear Hall effect

- Non-linear band-resolved quantum metric dipole contributions General form agrees
with literature but we
- Quadrupole response found errors

- New results in collision less regime

e 2.q. larization function A(2) I /Mz_/[ W2 - 4 (1 — gi;(k)aig)) (B
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oummary

h K2
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- We found a procedure to obtain semiclassical electron dynamics organized by spatial
gradients

- We found a general result for the phase space current to second order in gradients, capable
of handling inhomogeneous systems and magnetic fields

- Prior results for linear and non-linear response are recovered, and in some cases corrected
- New results for collision less regime

- Still needed: a scattering/interactions theory with the same validity
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