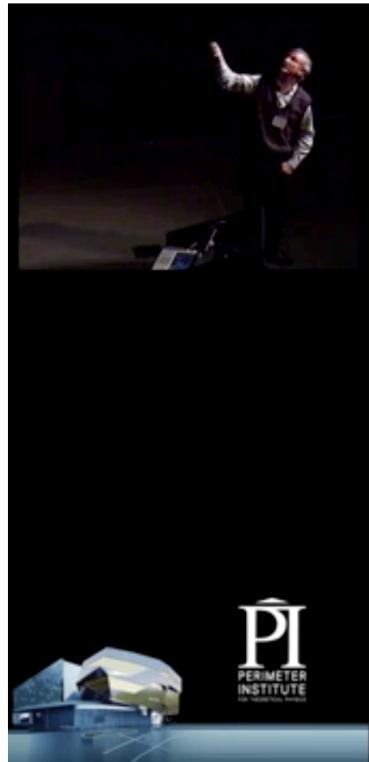


Leon Balents, "Spins and other liquids", Hamilton, Ontario, May 2025



Signatures of an emergent  
gauge field in two dimensions



**Cubic Pyrochlores:**

- Spins on a network of corner-sharing tetrahedra
- $A_2Ti_2O_7$
- A site is  $RE^{3+}$  (many magnetic possibilities)

*Ising moments*

*XY moments*

4-corners condensed matter symposium, PI, April 2010

Bruce teaches Leon about rare earth pyrochlores

## Phase Transitions in Planar Pyrochlores

 Bruce Gaulin Canadian Association of Physicists

April 22, 2010

Talk number: PIRSA:10040083

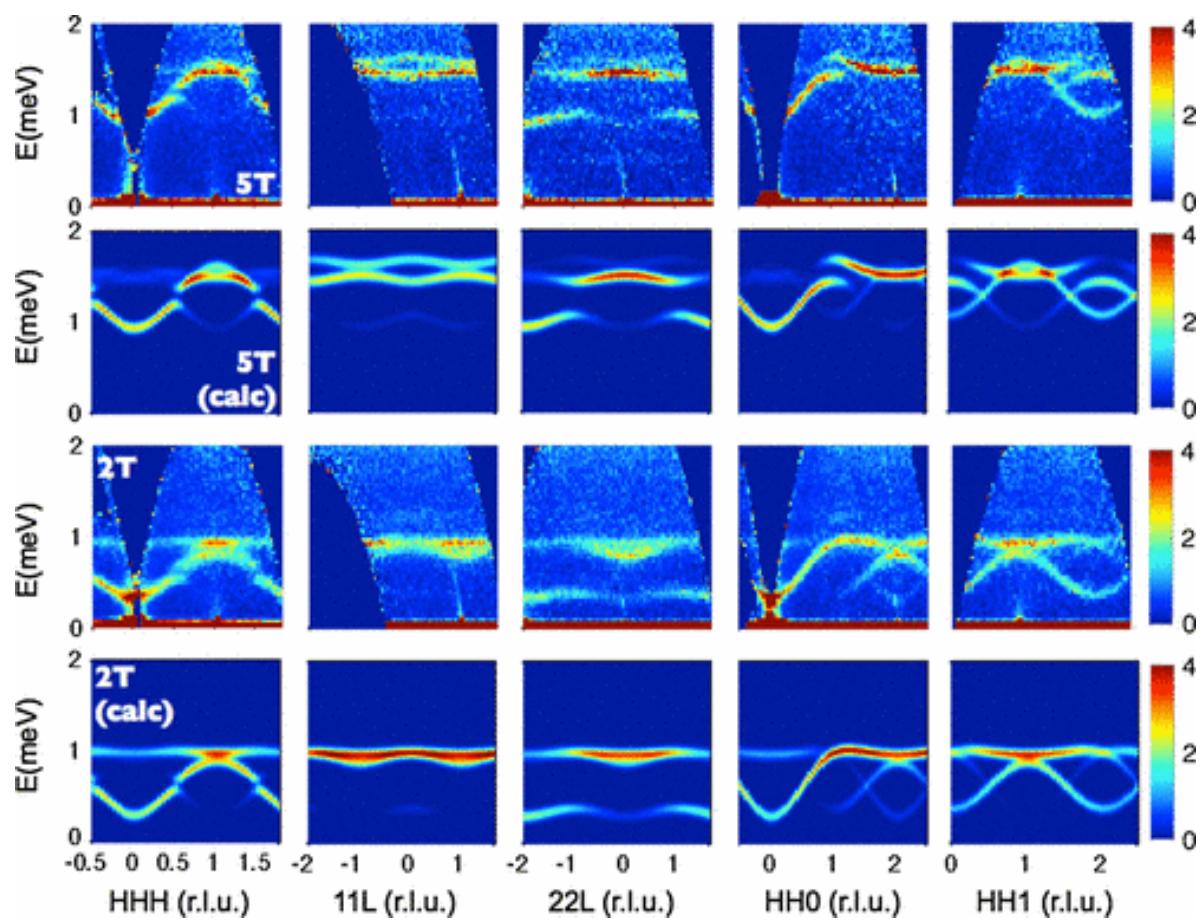
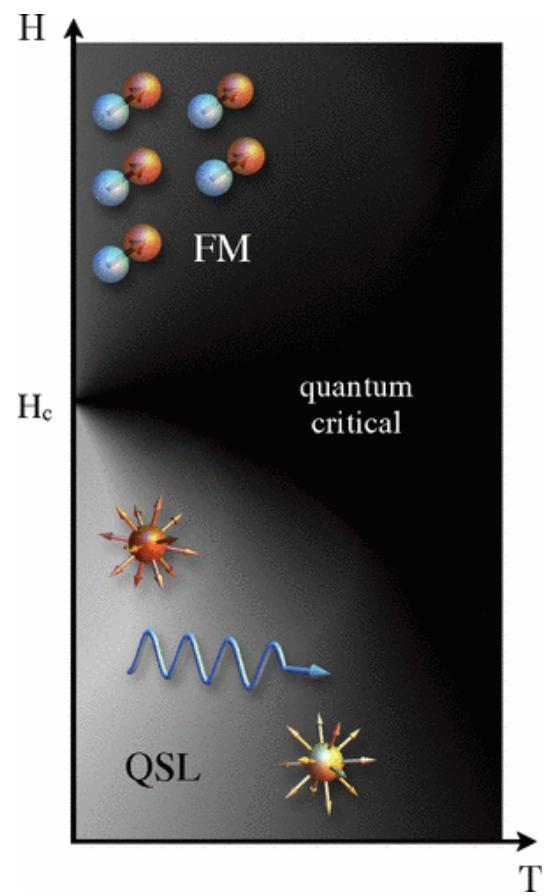
DOI: [10.48660/10040083](https://doi.org/10.48660/10040083)

Collection: [4-Corner Southwest Ontario Condensed Matter Symposium 2010](#)

 Cite  Share

Talk Type: Conference







## Quantum Excitations in Quantum Spin Ice

Kate A. Ross,<sup>1</sup> Lucile Savary,<sup>2</sup> Bruce D. Gaulin,<sup>1,3,4</sup> and Leon Balents<sup>5,\*</sup><sup>1</sup>Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada<sup>2</sup>Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France<sup>3</sup>Canadian Institute for Advanced Research, 180 Dundas St. W, Toronto, Ontario, M5G 1Z8, Canada<sup>4</sup>Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1, Canada<sup>5</sup>Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106-4030, USA

(Received 22 July 2011; published 3 October 2011)

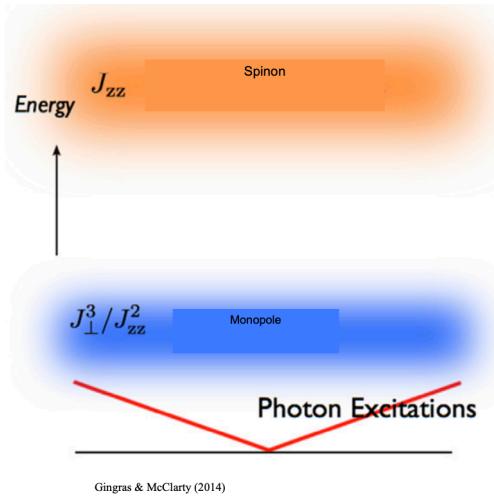
Order by Quantum Disorder in  $\text{Er}_2\text{Ti}_2\text{O}_7$ Lucile Savary,<sup>1</sup> Kate A. Ross,<sup>2</sup> Bruce D. Gaulin,<sup>2,3,4</sup> Jacob P. C. Ruff,<sup>2,5</sup> and Leon Balents<sup>6</sup><sup>1</sup>Department of Physics, University of California, Santa Barbara, California 93106-9530, USA<sup>2</sup>Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada<sup>3</sup>Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada<sup>4</sup>Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada<sup>5</sup>The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA<sup>6</sup>Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA

(Received 5 April 2012; published 15 October 2012)

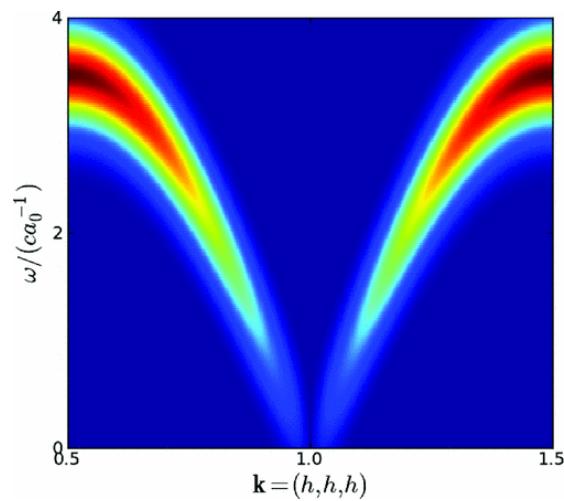
## Coulombic Quantum Liquids in Spin-1/2 Pyrochlores

Lucile Savary<sup>1,2</sup> and Leon Balents<sup>3</sup><sup>1</sup>Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France<sup>2</sup>Department of Physics, University of California, Santa Barbara, California 93106-9530, USA<sup>3</sup>Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106-4030, USA

(Received 10 October 2011; published 19 January 2012)



M. Hermele *et al*, 2004



O. Benton *et al*, 2012

Holy grail for quantum spin ice: the emergent photon



*Annual Review of Condensed Matter Physics*

# Experimental Insights into Quantum Spin Ice Physics in Dipole–Octupole Pyrochlore Magnets

Evan M. Smith,<sup>1</sup> Elsa Lhotel,<sup>2</sup> Sylvain Petit,<sup>3</sup>  
and Bruce D. Gaulin<sup>1,4,5</sup>

<sup>1</sup>Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada;  
email: evansmithphysics@gmail.com, gaulin@mcmaster.ca

<sup>2</sup>Institut Néel, CNRS, Université Grenoble Alpes, Grenoble, France;  
email: elsa.lhotel@neel.cnrs.fr

<sup>3</sup>LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France;  
email: sylvain.petit@cea.fr

<sup>4</sup>Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada

<sup>5</sup>Canadian Institute for Advanced Research, Toronto, Ontario, Canada

ANNUAL  
REVIEWS **CONNECT**

[www.annualreviews.org](http://www.annualreviews.org)

- Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Annu. Rev. Condens. Matter Phys. 2025. 16:387–415

First published as a Review in Advance on  
December 3, 2024

## Keywords

geometric frustration, pyrochlores, dipole–octupole pseudospins, quantum spin liquid, spin ice, neutron scattering





# Collaborators



Urban Seifert  
U. Köln



Oleg Starykh  
U. Utah

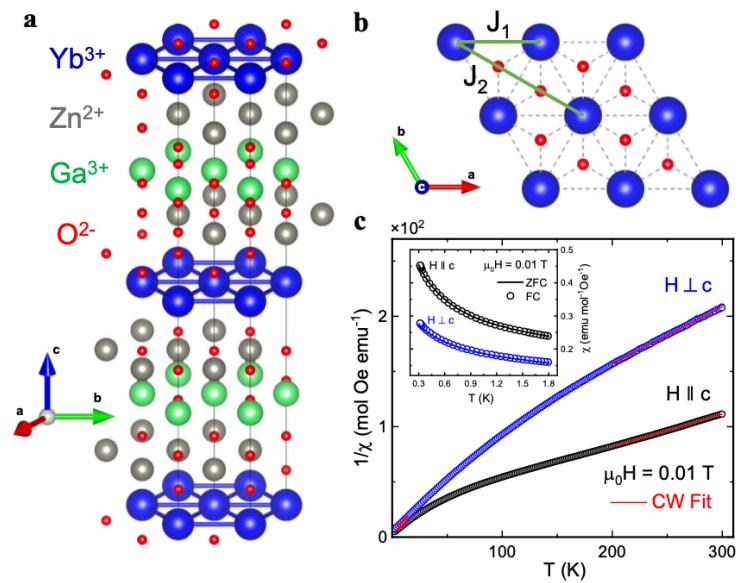


Ziyang Meng  
U. Hong Kong

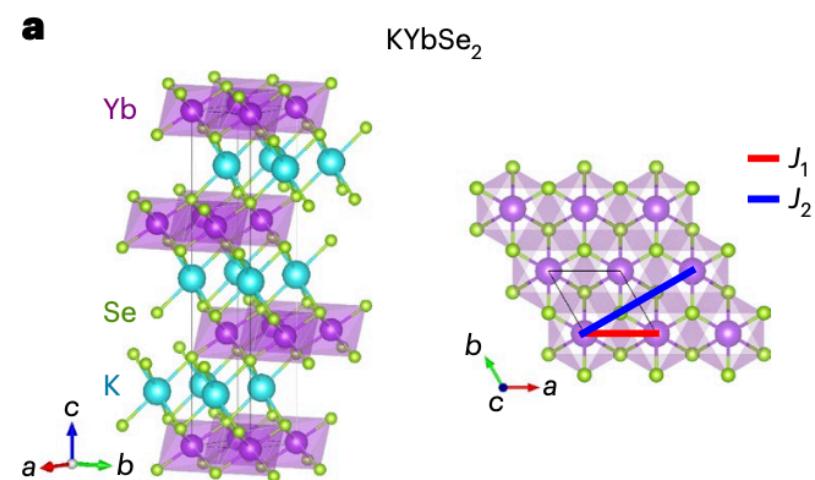


Wen Wang  
KITP

# Triangular lattice spin liquid



$\text{YbZn}_2\text{GaO}_5$   
Haravifard group

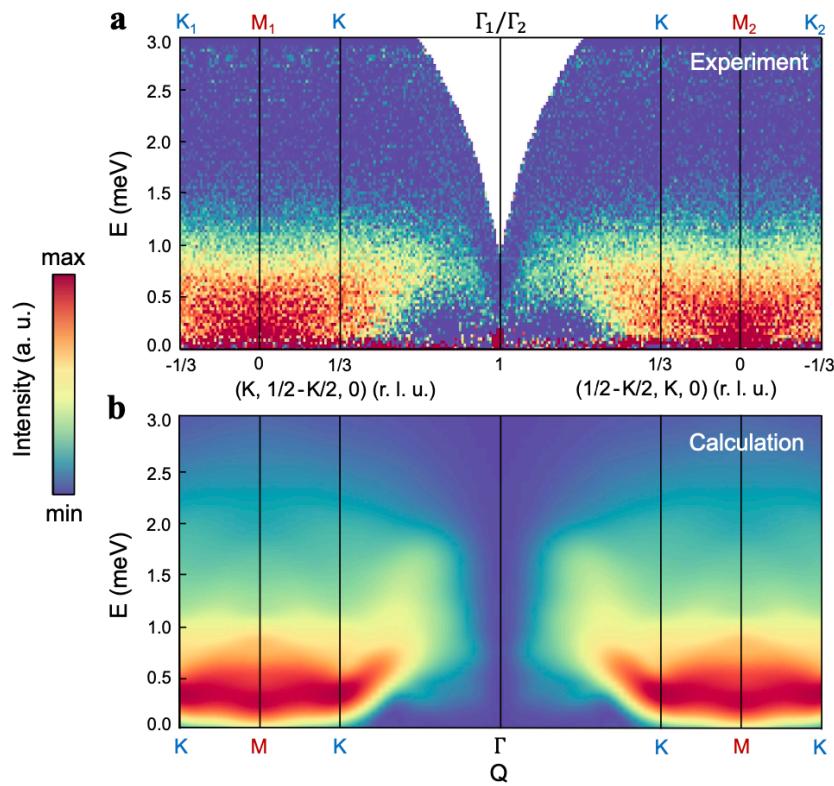


$\text{KYbSe}_2$   
Tennant group

# Triangular lattice spin liquid

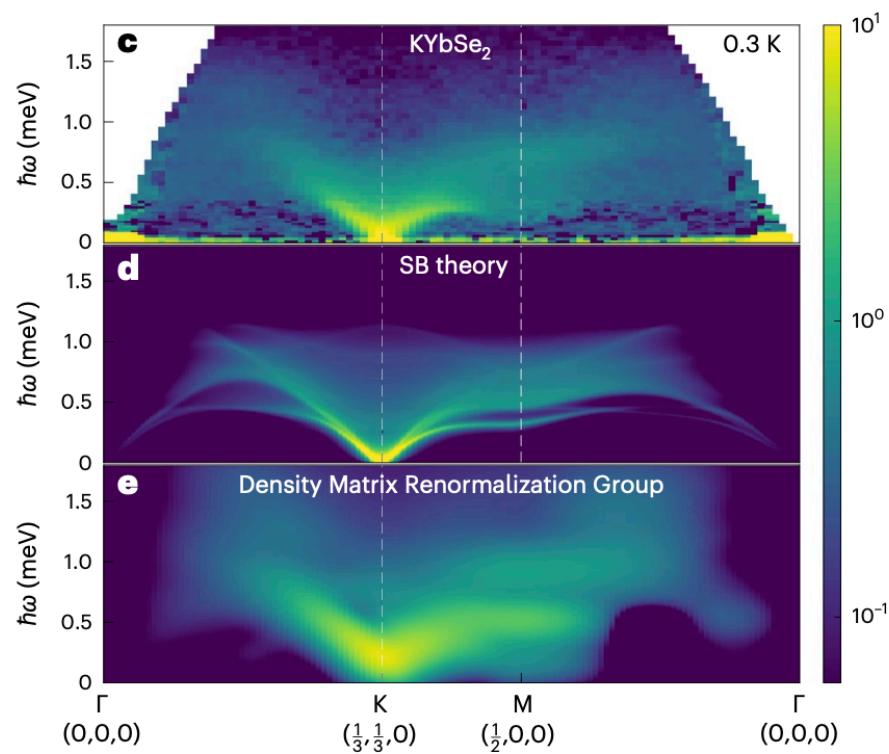
YbZn<sub>2</sub>GaO<sub>5</sub>

Haravifard group     $J_2/J_1=0.12$

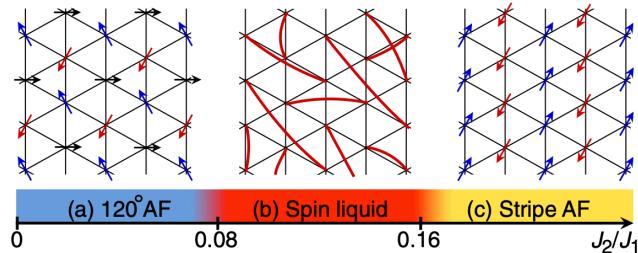


KYbSe<sub>2</sub>

Tennant group     $J_2/J_1=0.05$



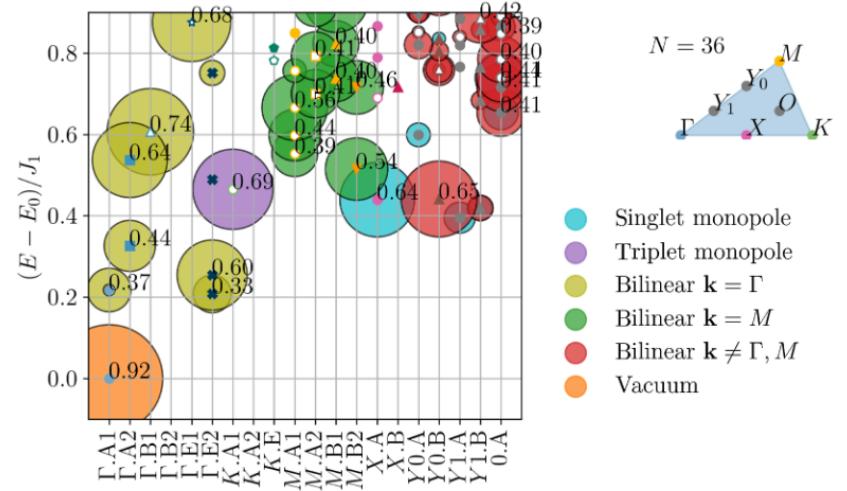
# Triangular lattice spin liquid



$$\mathcal{L} = \bar{\psi} \gamma^\mu (\partial_\mu - i a_\mu) \psi + \dots$$

Considerable support for U(1) Dirac spin liquid

- Y. Iqbal *et al*, VMC 2016
- S. Hu *et al*, DMRG 2019
- A. Wietek *et al*, ED **2024**



Matching of low-lying eigenstates with QED3 ones

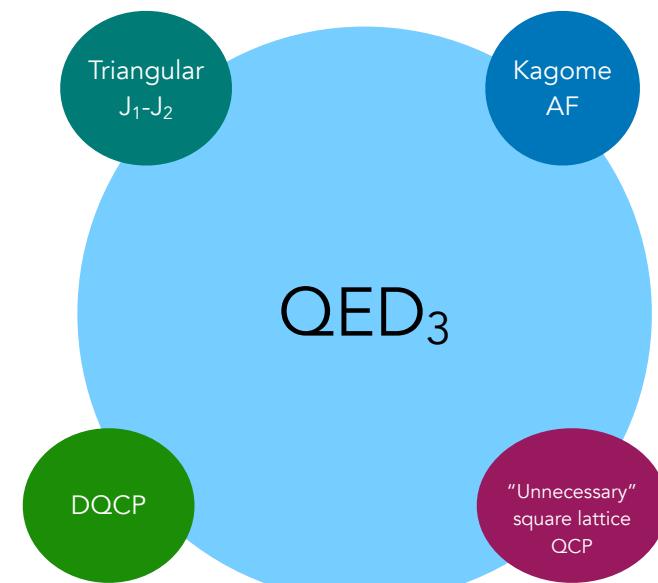
# Spins and QED<sub>3</sub>

$$\mathcal{L} = \bar{\psi} \gamma^\mu (\partial_\mu - i a_\mu) \psi + \dots$$

Each system has its own:

- Microscopic (exact) symmetries
- Operator dictionary
- Perturbations to CFT

X.-Y. Song et al, 2019

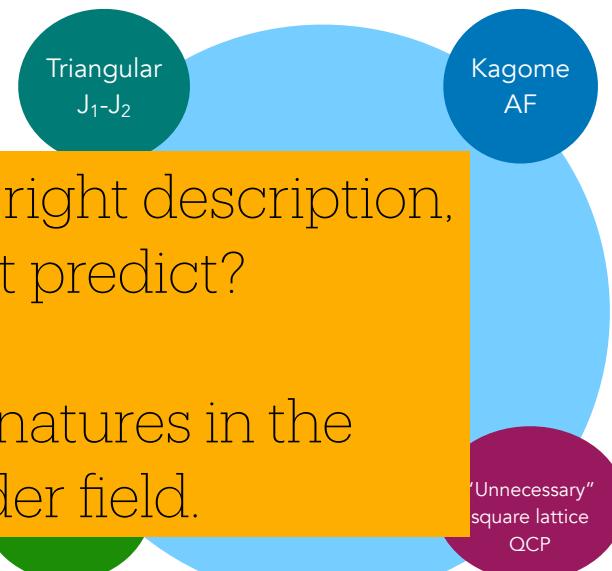


# Spins and QED<sub>3</sub>

$$\mathcal{L} = \bar{\psi} \gamma^\mu (\partial_\mu - i a_\mu) \psi + \dots$$

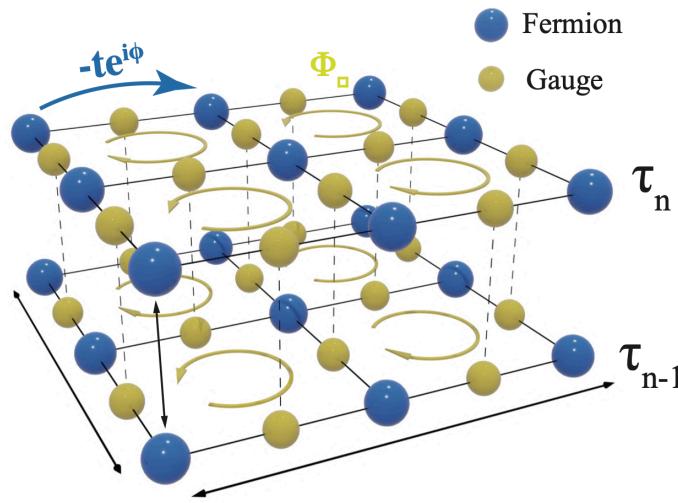
Each system has its own:

- Microscopic theory  
If we believe this is the right description,  
symmetries, what else can it predict?
- Operators
- Perturbative theory  
We will look for signatures in the  
behavior under field.



# A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

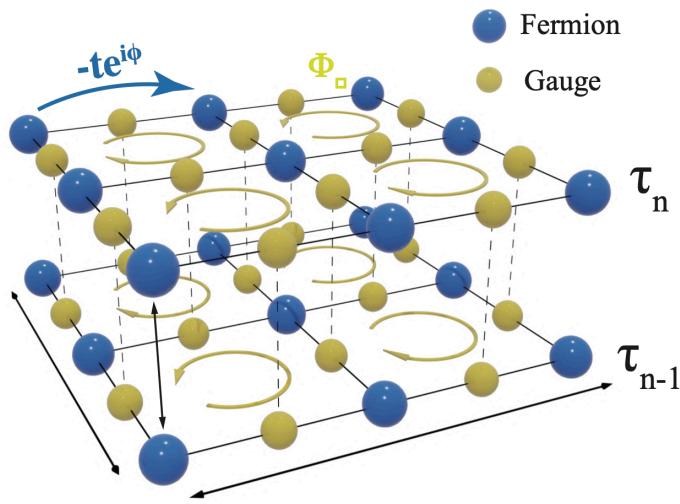


$$\begin{aligned} S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\ & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \end{aligned} \quad (1)$$

n.b. square lattice -  
avoids sign problem.

# A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

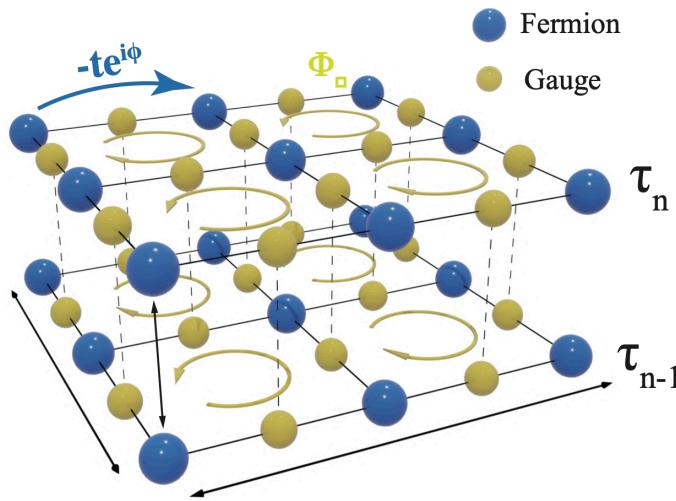


time-derivative

$$\begin{aligned} S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\ & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \end{aligned} \quad (1)$$

# A model and quantum Monte Carlo

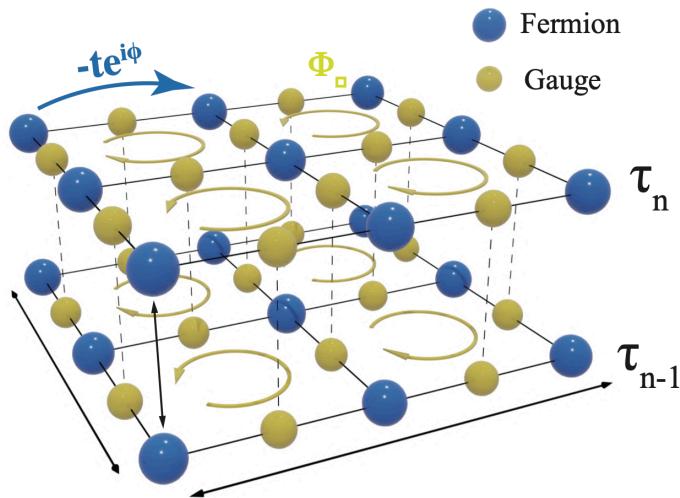
A lattice gauge theory — without a sign problem



$$\begin{aligned} S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \quad \text{Hopping} \\ & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \end{aligned} \quad (1)$$

# A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

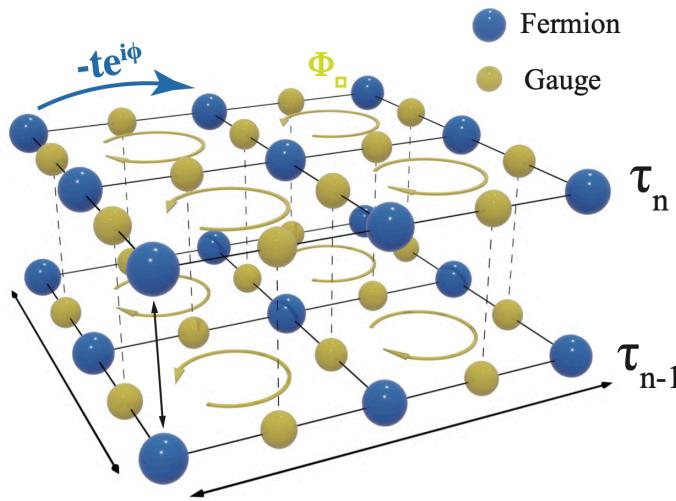


$$\begin{aligned} S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\ & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \end{aligned} \quad (1)$$

“Maxwell” term: controls  
gauge fluctuations

# A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

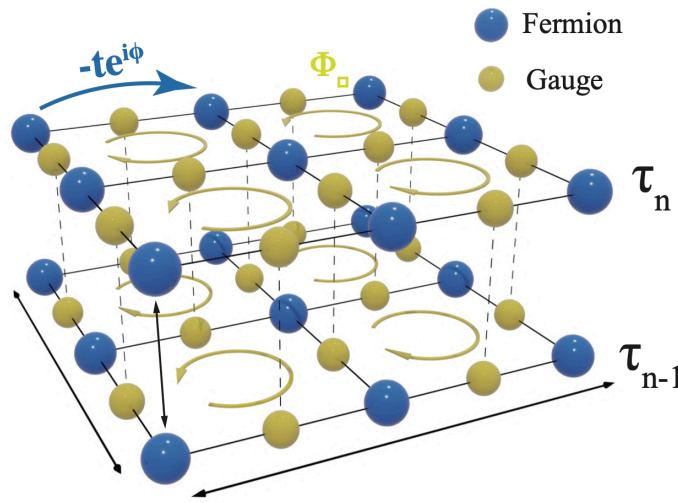


Zeeman field

$$S = \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\ + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \quad (1)$$

# A model and quantum Monte Carlo

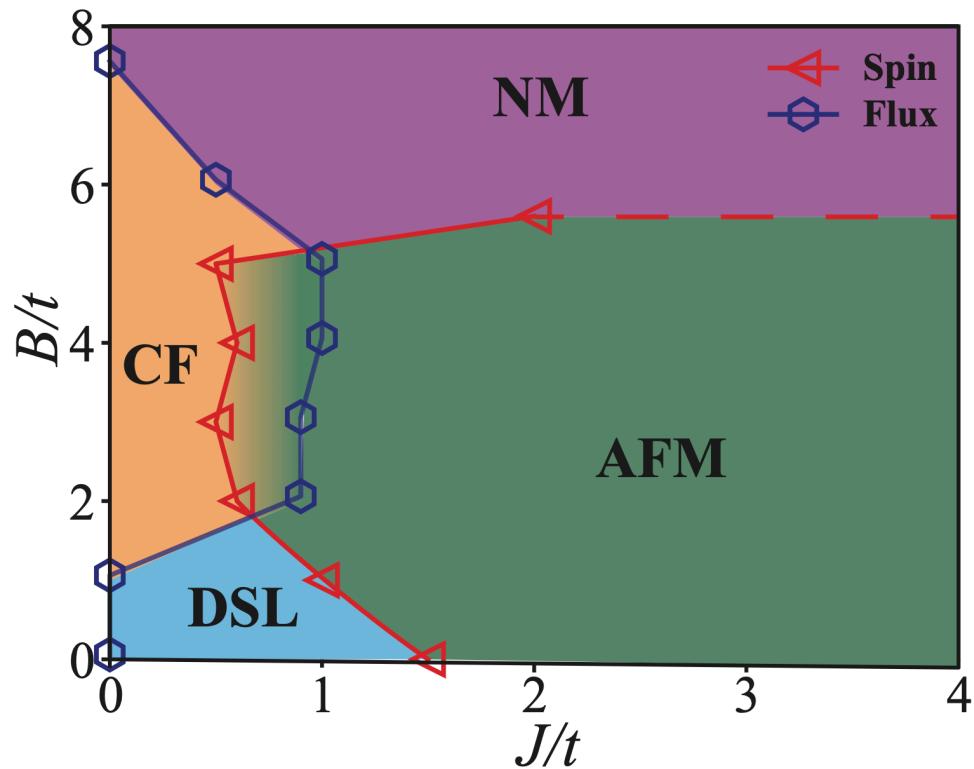
A lattice gauge theory — without a sign problem



$$\begin{aligned} S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\ & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\ & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2 \end{aligned} \quad (1)$$

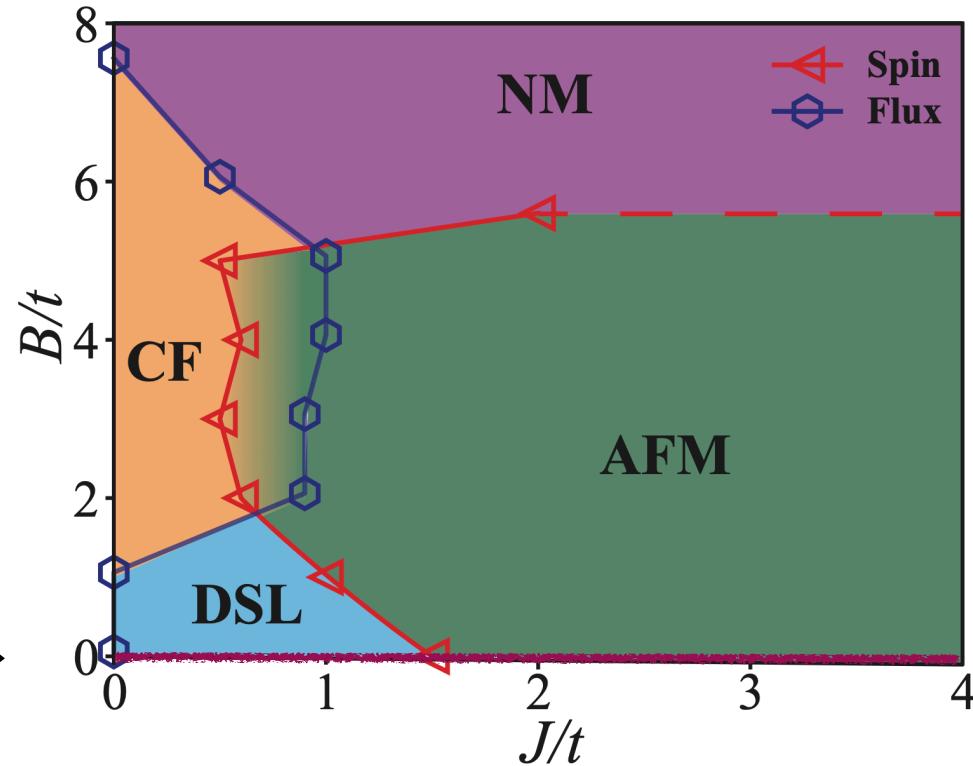
$J \rightarrow 0, B=0$ : Lieb theorem guarantees  $\pi$  flux state, and hence Dirac fermions

# Phase diagram

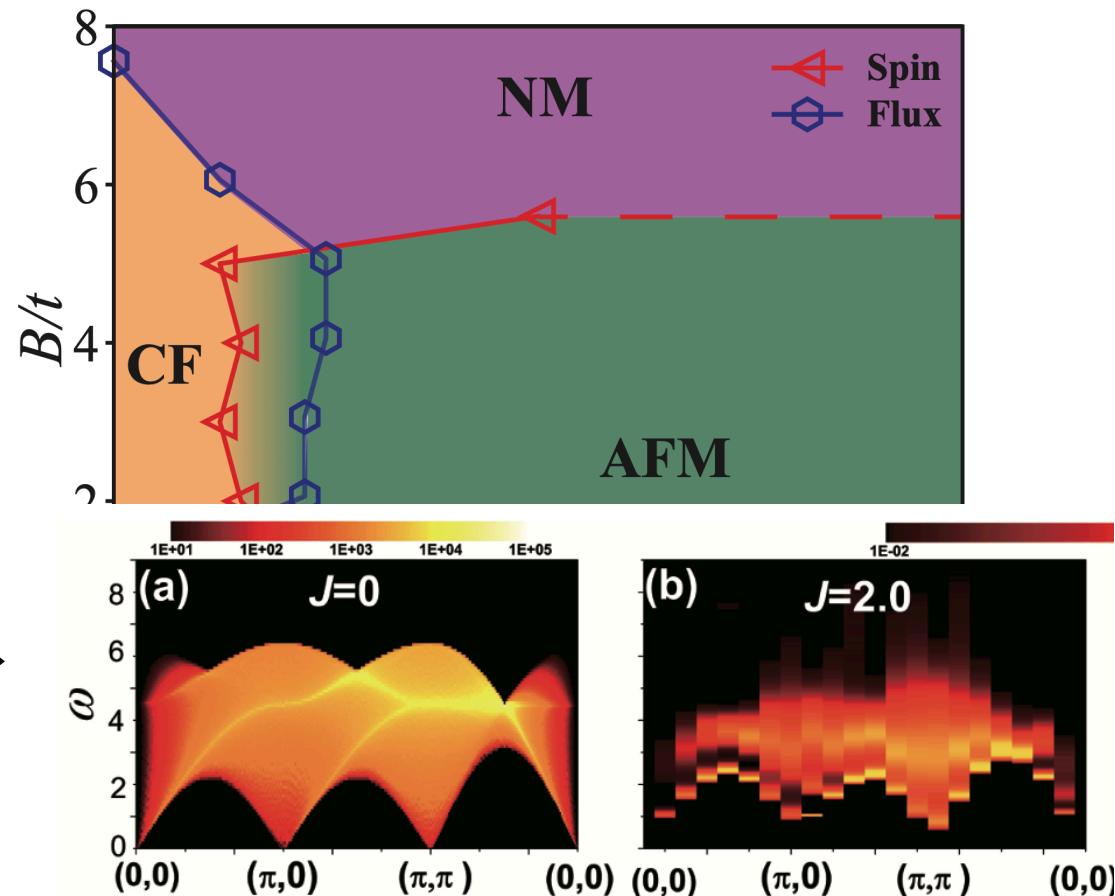


# Phase diagram

Studied earlier  
X.-Y. Xu et al, 2019

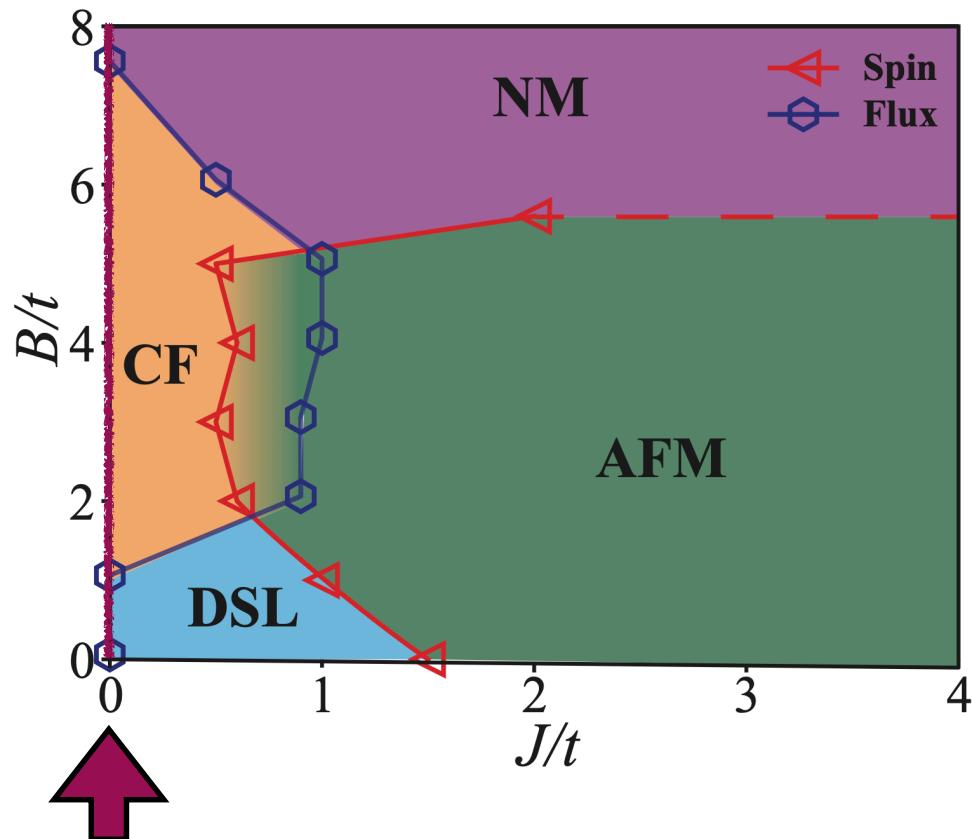


# Phase diagram



W. Wang et al, 2019

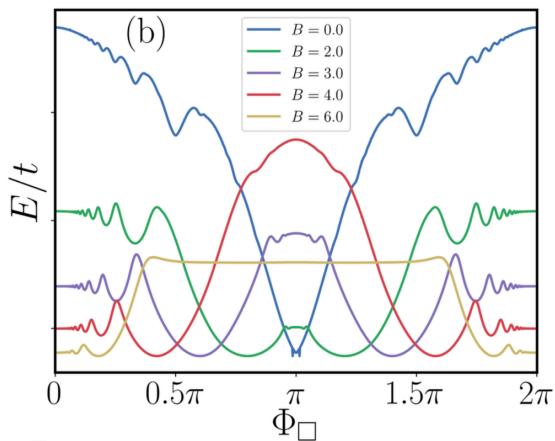
# Phase diagram



Line of no gauge fluctuations: but there is an average gauge field

# Energetics

- At  $J=0$ , the problem is equivalent to free fermions with a magnetic flux chosen to minimize the total energy

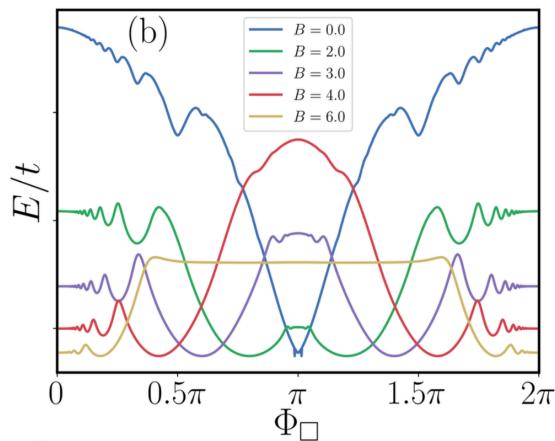


Optimal flux deviates  
from  $\pi$  when  $B > 0$

Double minimum: spontaneous chirality

# Energetics

- The chiral flux persists for small  $J$

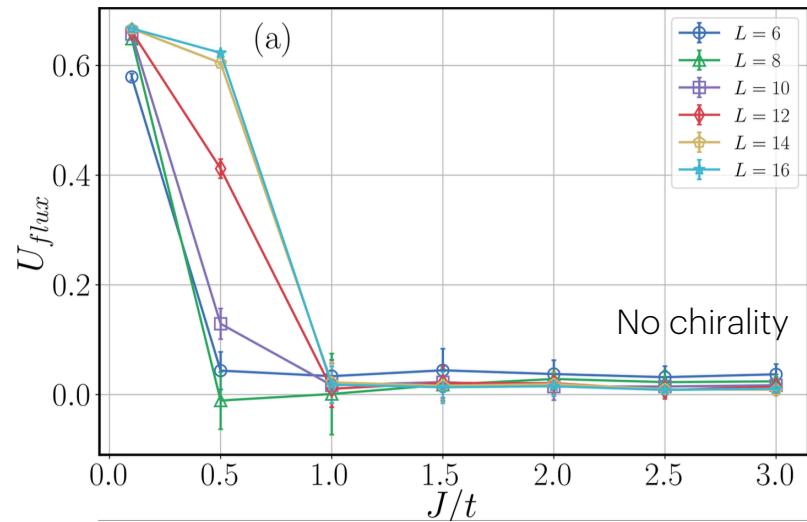


Optimal flux deviates  
from  $\pi$  when  $B > 0$

Double minimum: spontaneous chirality

$J > 0$   
→

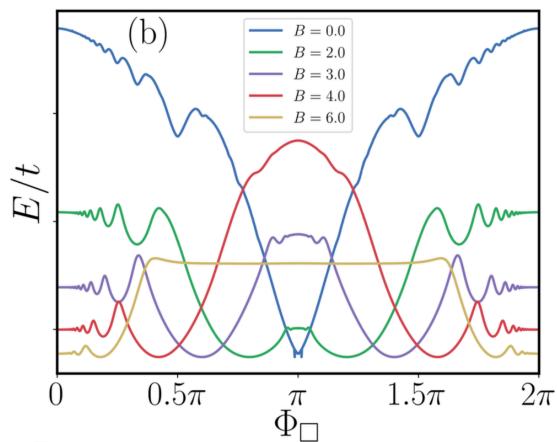
Spontaneous chirality



Binder cumulant

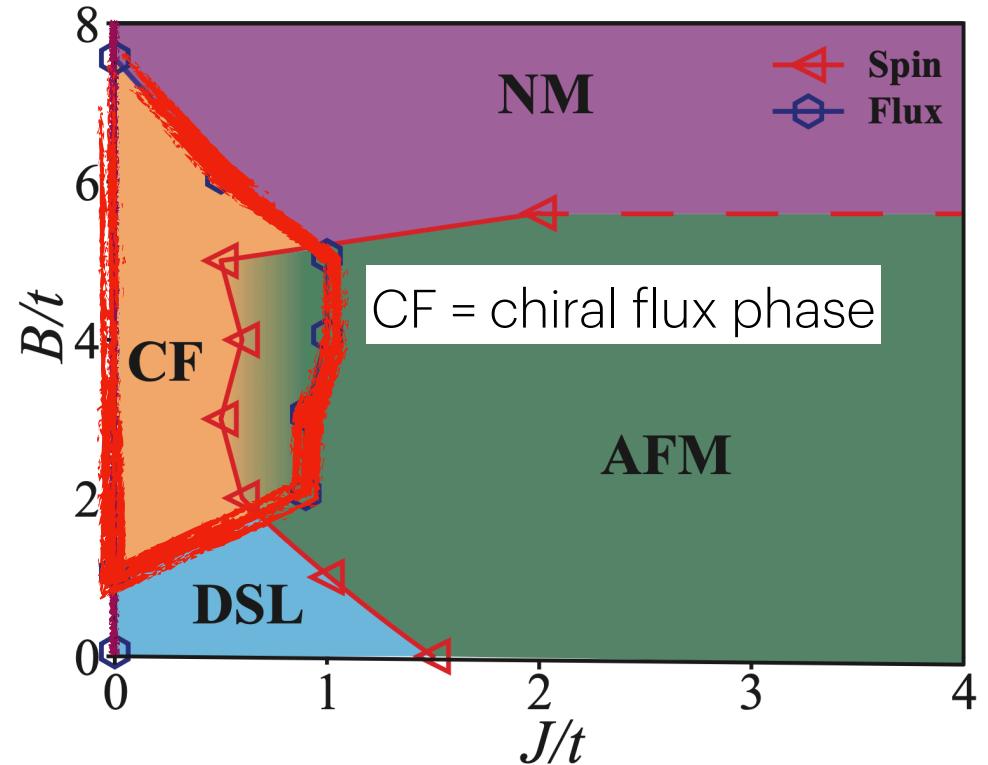
# Energetics

- The chiral flux persists for small  $J$



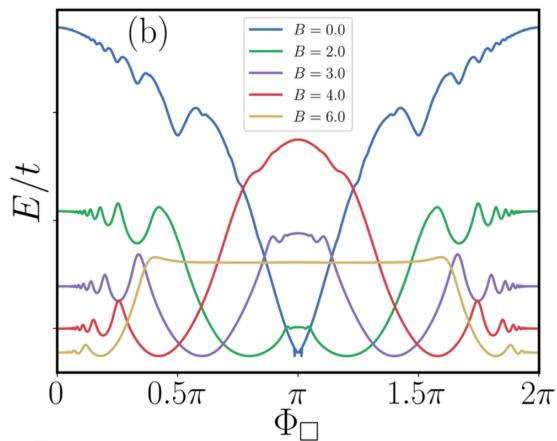
Optimal flux deviates  
from  $\pi$  when  $B > 0$

Double minimum: spontaneous chirality



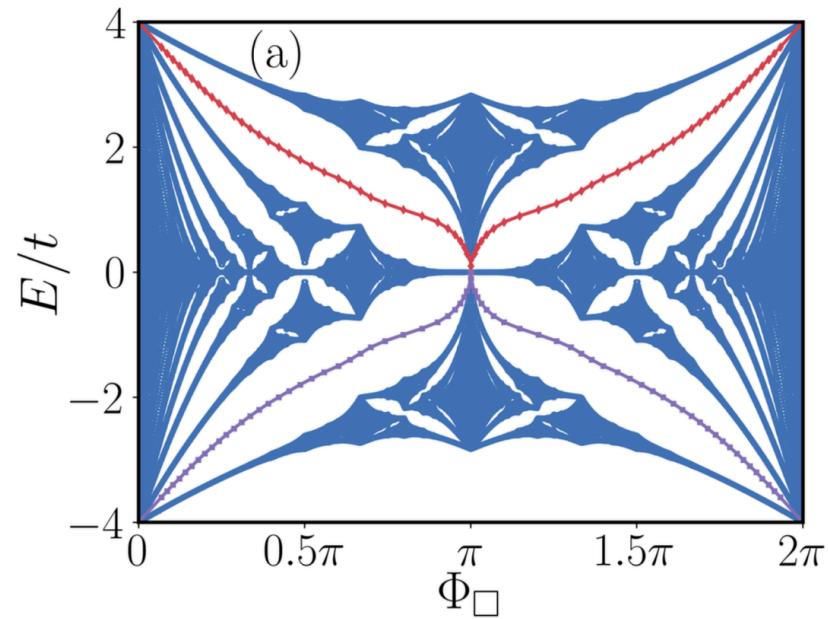
# Fermion states

- The chiral flux induces a complex set of Hofstadter bands, similar to Landau levels



Optimal flux deviates  
from  $\pi$  when  $B > 0$

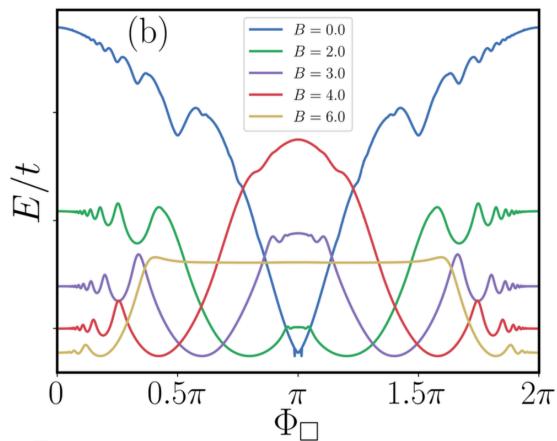
Double minimum: spontaneous chirality



Hofstadter butterfly

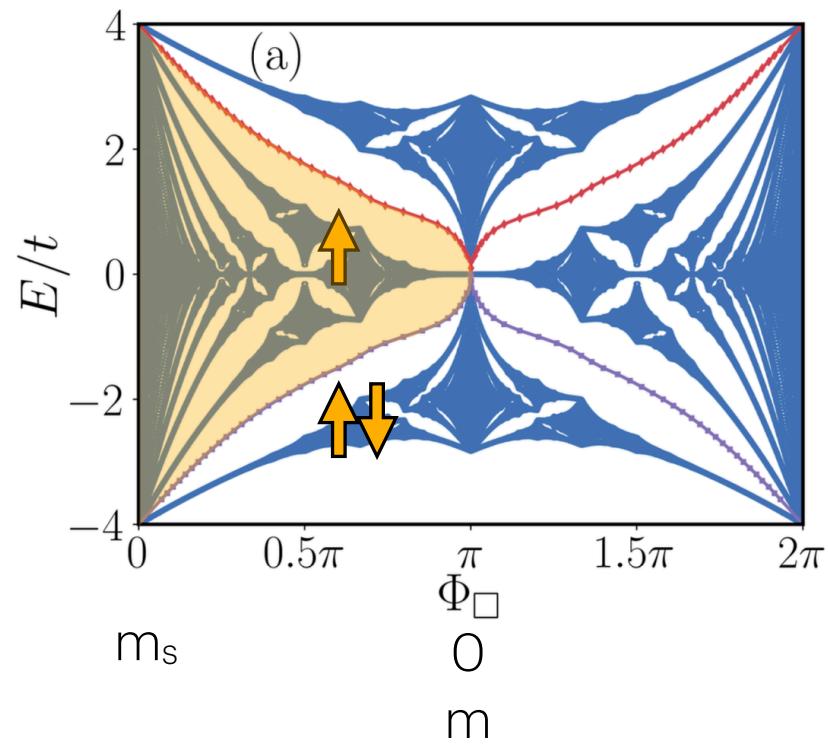
# Fermion states

- The chiral flux induces a complex set of Hofstadter bands, similar to Landau levels



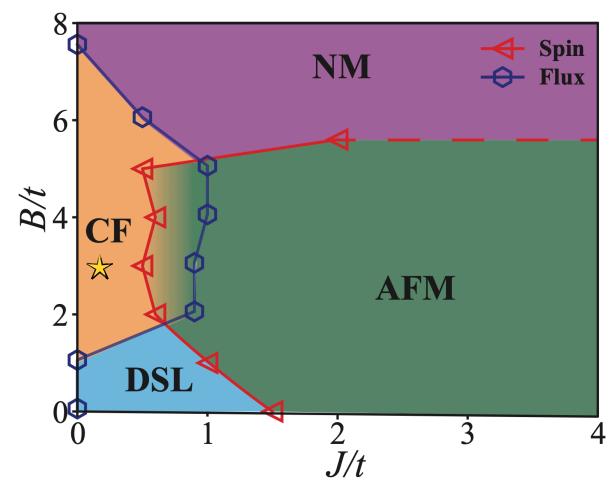
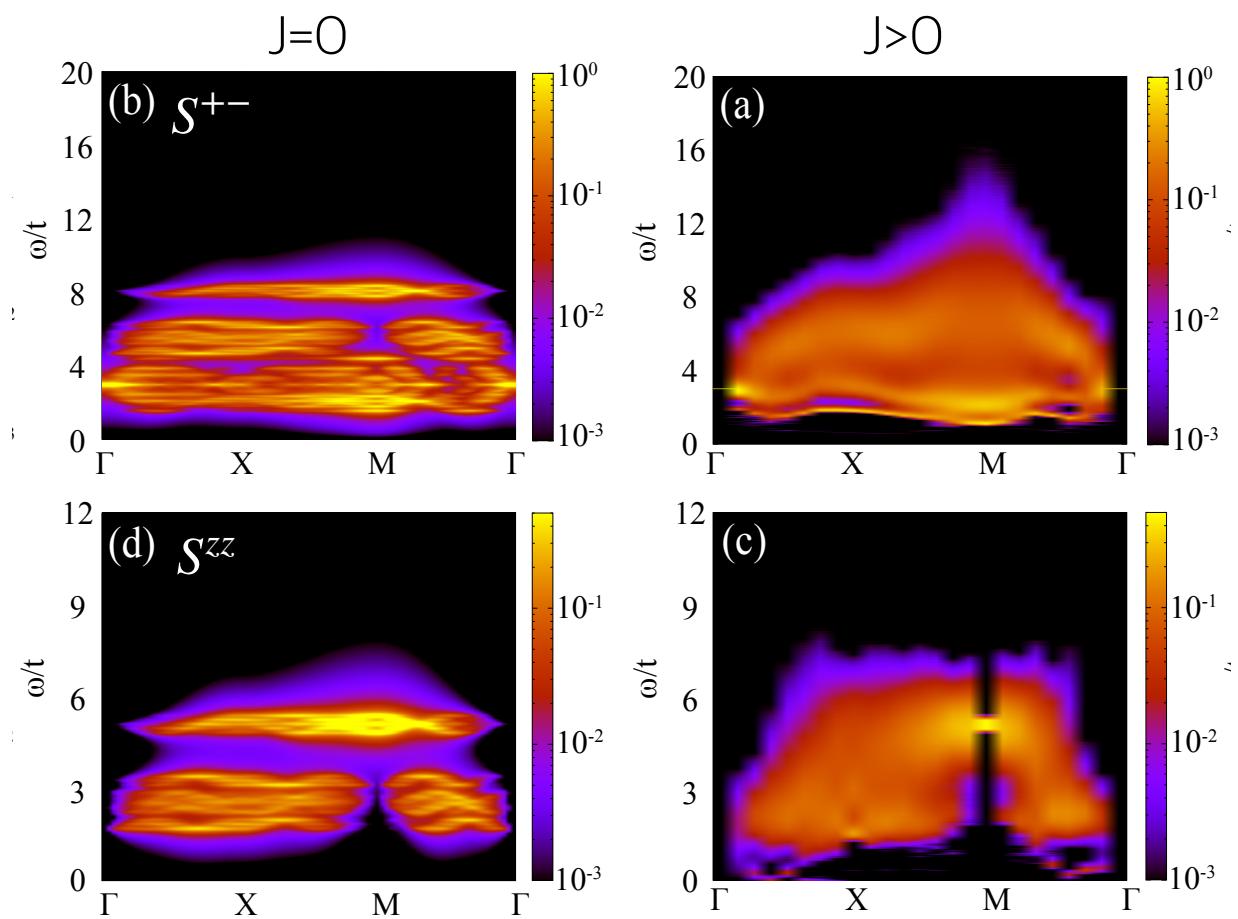
Optimal flux deviates from  $\pi$  when  $B > 0$

Double minimum: spontaneous chirality

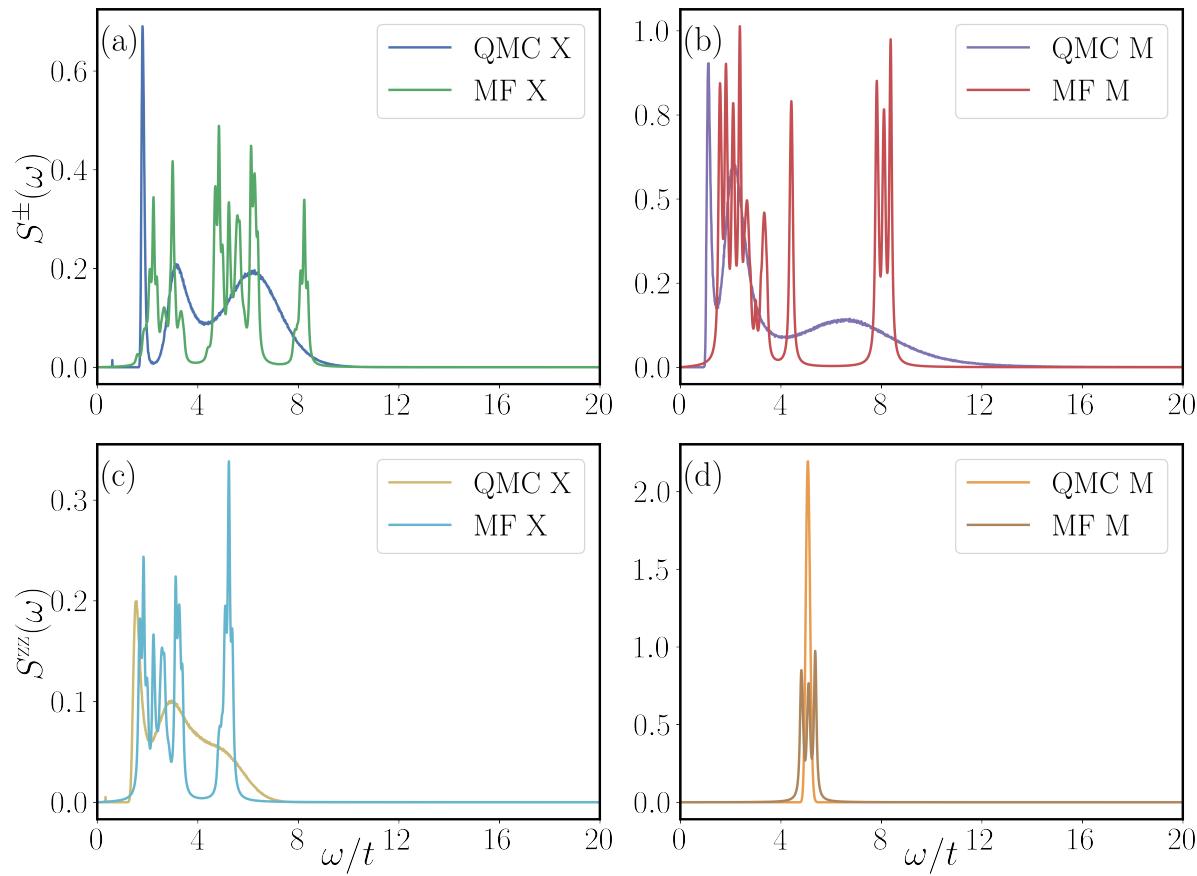


# Dynamical correlations

“Landau level”-like features



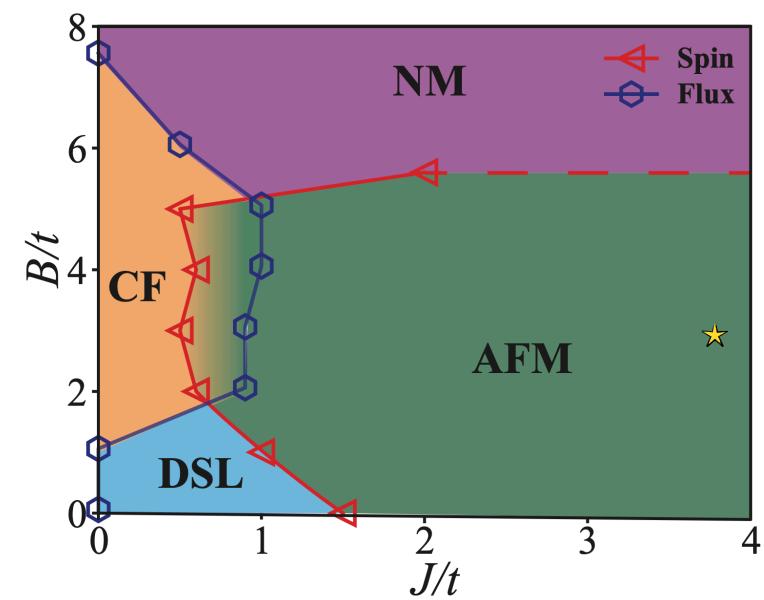
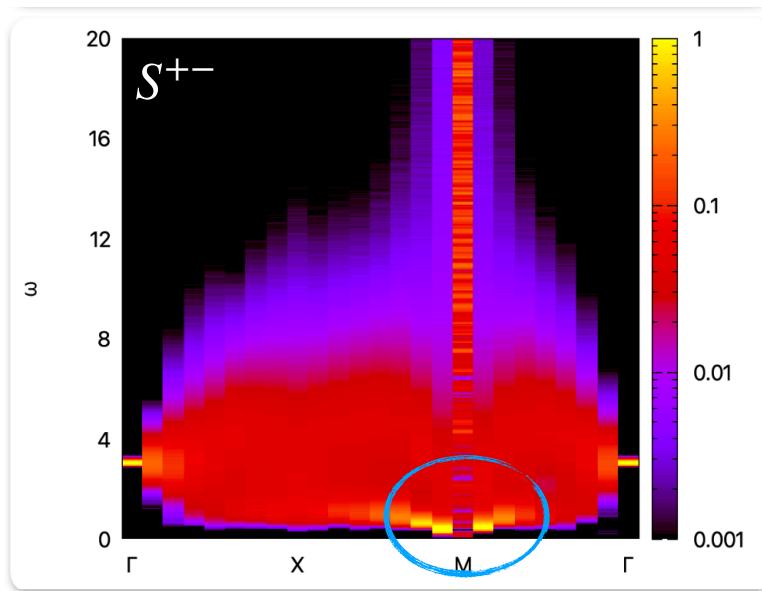
# Dynamical correlations



Peaks do not correspond to simple “spin wave” or “triplon” mode counting.

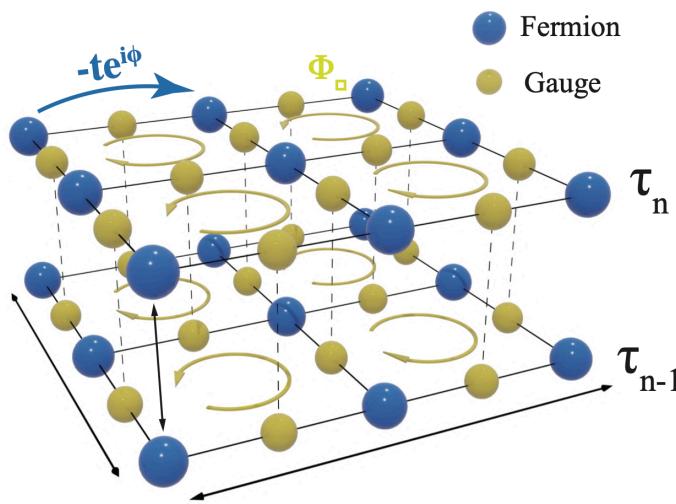
Hofstadter bands give a good guide to intensity even with gauge fluctuations

# Comparison with AF phase



Emergent spin wave

# Compact versus non-compact



$$\begin{aligned}
 S = & \sum_{i,n} \left[ \bar{\psi}_i(\tau_n)(\psi_i(\tau_n) - \psi_i(\tau_{n-1})) - \frac{1}{2} B \bar{\psi}_i(\tau_n) \sigma^z \psi_i(\tau_n) \right] \\
 & - t \sum_{\langle ij \rangle, n} \left[ e^{ia_{ij}(\tau_n)} \bar{\psi}_i(\tau_n) \psi_j(\tau_n) + \text{h.c.} \right] \\
 & + \frac{1}{J} \sum_{\langle ij \rangle, n} [a_{ij}(\tau_n) - a_{ij}(\tau_{n-1})]^2
 \end{aligned} \tag{1}$$

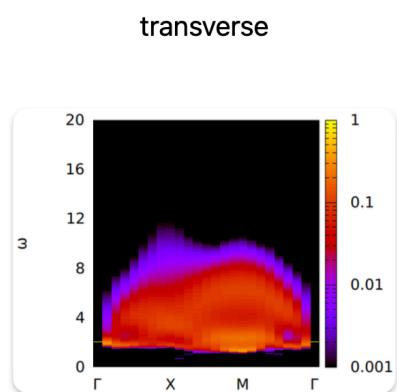
“Non-compact” gauge field: prohibits “monopoles” in the simulation

Proper model is “compact”: what are the corrections?

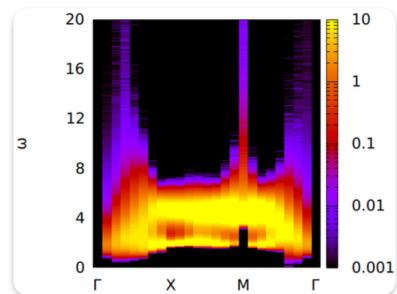
# Compact versus non-compact

Difficult to see  
difference visually

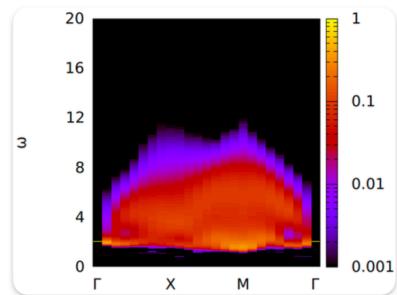
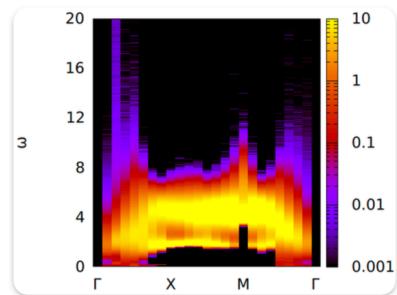
compact



longitudinal



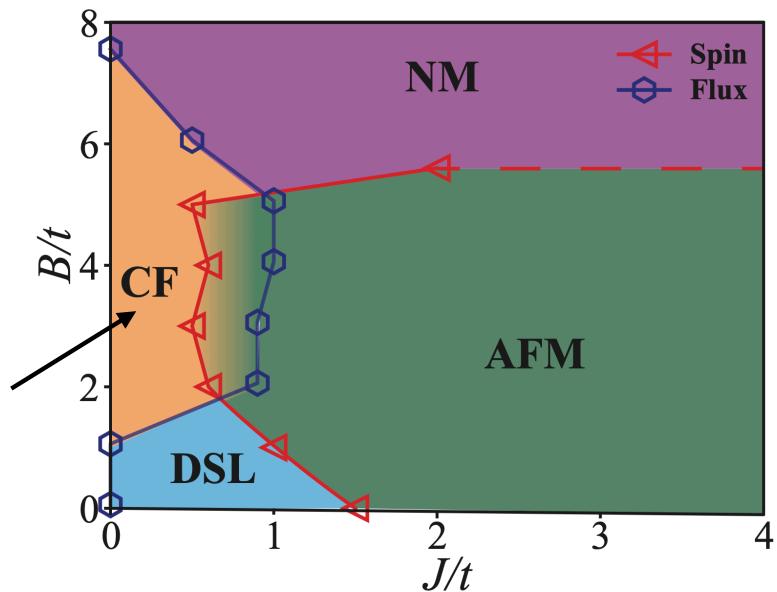
non-compact



# Compact versus non-compact

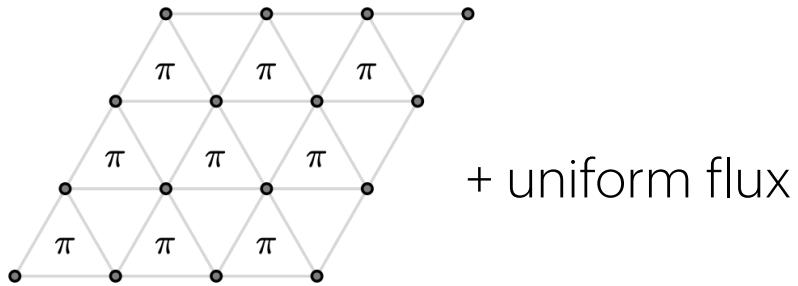
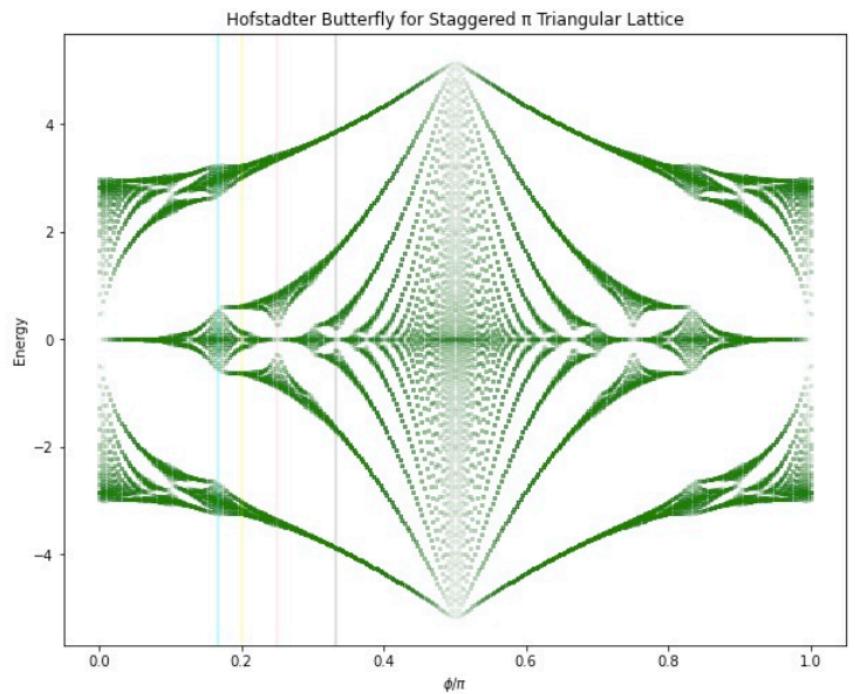
Theoretical arguments:

This region should be weakly magnetically ordered



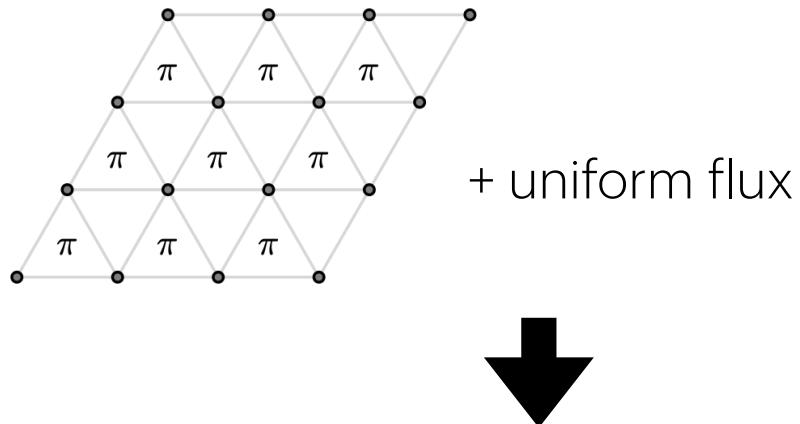
# Wavefunction study

Not restricted by sign problem  
triangular lattice



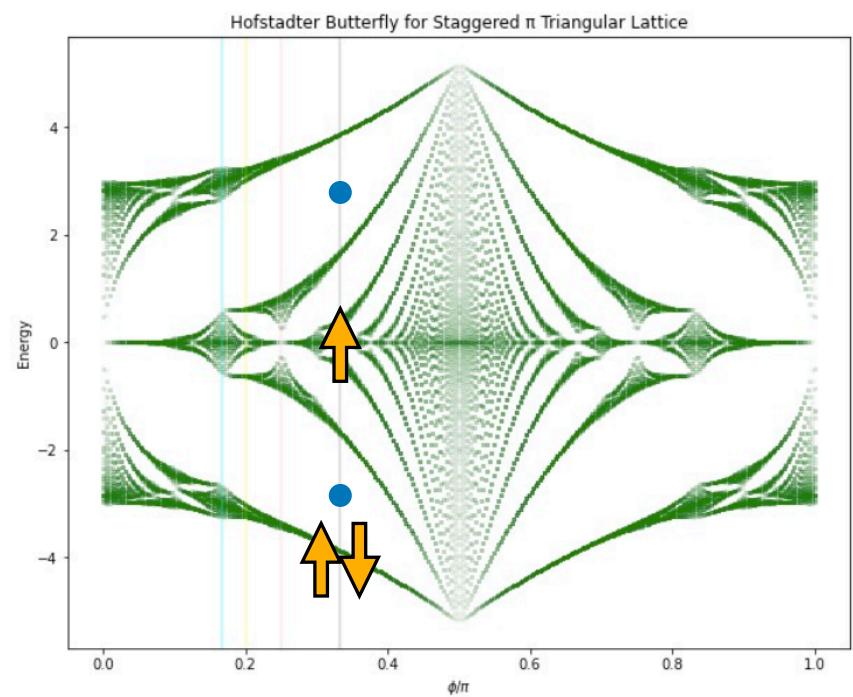
# Wavefunction study

triangular lattice

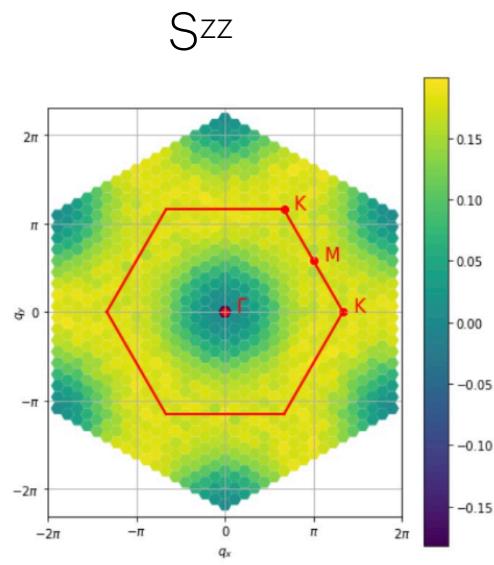
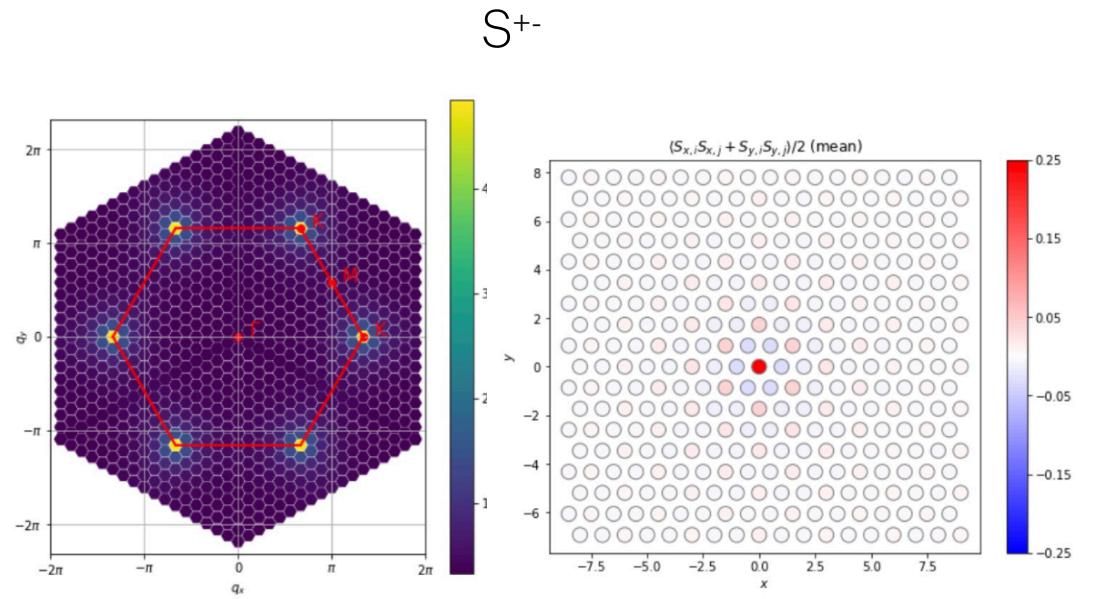


Gutzwiller projection

$M=2/3 M_s$



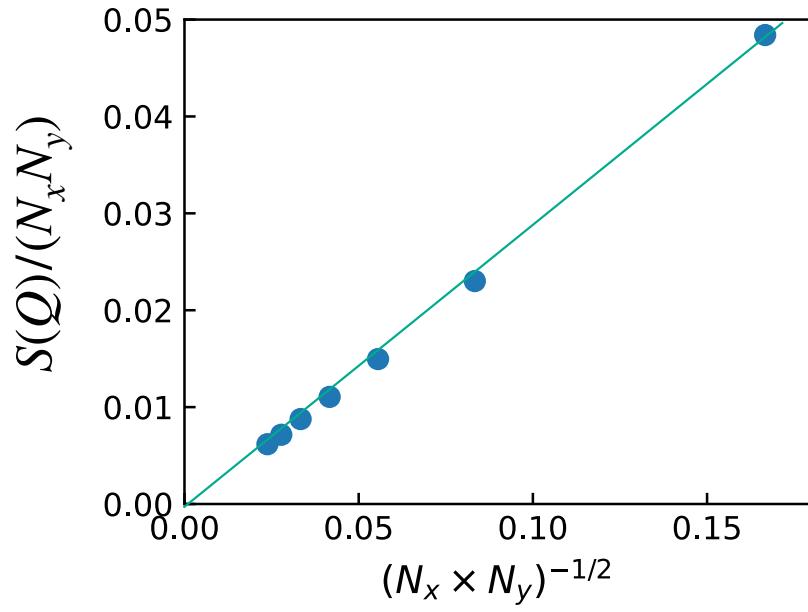
# Wavefunction study



Ordered?

# Wavefunction study

Néel order parameter



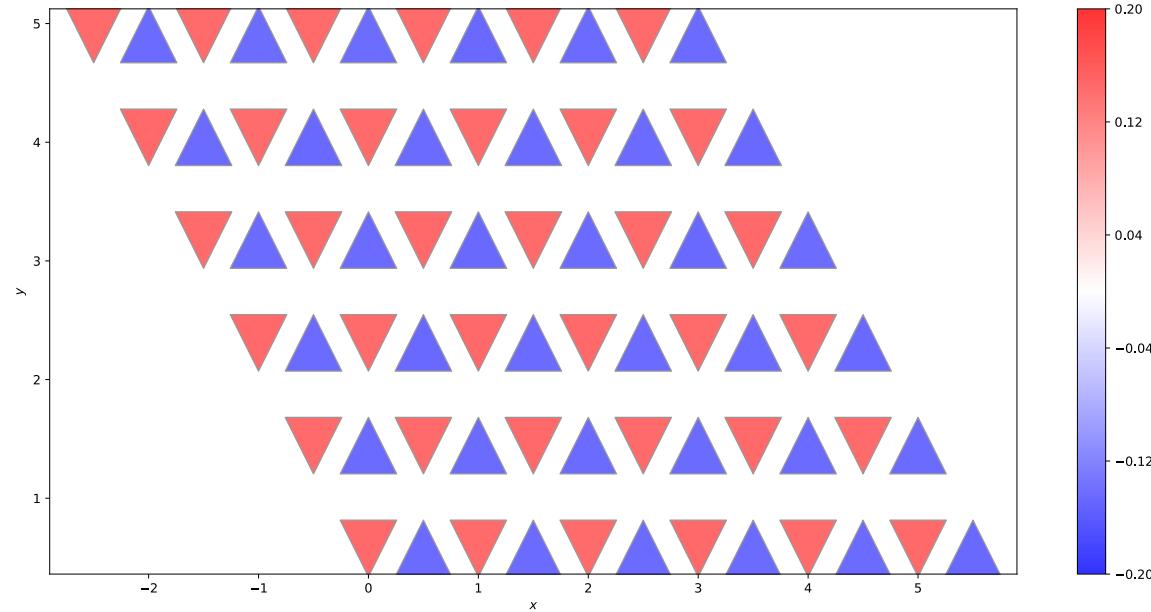
$$\langle S_i^+ S_j^- \rangle \sim \frac{e^{i\mathbf{K} \cdot (x_i - x_j)}}{|x_i - x_j|}$$

Power-law order

Stay tuned!

# Wavefunction study

$$\langle S_i \cdot S_j \times S_k \rangle$$



Long-range chiral order

# Thanks for letting me celebrate with you

