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Holy grail for guantum spin ice: the emergent photon
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Triangular lattice spin liquid
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Triangular lattice spin liquid
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Triangular lattice spin liquid
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Matching of low-lying eigenstates with QED3 ones



Spins and QED3
Z =yy"0, — ia,)y + -

Each system has its own:

Triangular
Ji-Jz

- Microscopic (exact)
symmetries

- Operator dictionary

. Perturbations to CFT

XY Song et al 2019







A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
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n.b. square lattice -
avoids sign problem.



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
@ Fermion
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A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
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A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
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A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
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A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
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J = 0, B=0: Lieb theorem guarantees x flux state, and hence Dirac fermions



Phase diagram




Phase diagram

Studied earlier
X.-Y. Xu et al, 2019




Phase diagram
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Phase diagram

Line of no gauge fluctuations: but there is an average gauge field



Energetics

« At J=0, the problem is equivalent to free fermions with a magnetic
flux chosen to minimize the total energy

E/t

_ Optimal flux deviates
from & when B>0O

Double minimum: spontaneous chirality



Energetics

 The chiral flux persists for small J

Spontaneous chirality
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Energetics

 The chiral flux persists for small J

E/t
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Optimal flux deviates
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Double minimum: spontaneous chirality 0 1



Fermion states

« The chiral flux induces a complex set of Hofstadter bands, similar to
Landau levels

E/t

_ Optimal flux deviates
from  when B>0O

Double minimum: spontaneous chirality Hofstadter butterﬂy



Fermion states

« The chiral flux induces a complex set of Hofstadter bands, similar to
Landau levels

E/t

_ Optimal flux deviates pa
from & when B>0O %D
m

Double minimum: spontaneous chirality



Dynamical correlations

“Landau level”-like features

10° 10°

10! 10!
ts .

10'2 10-2

103 1073

10! 10!
3

102 102

107 107




Dynamical correlations
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Peaks do not
correspond to simple
“spin wave” or “triplon”
mode counting.

Hofstadter bands give a
good guide to intensity
even with gauge
fluctuations



Comparison with AF phase
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Compact versus non-compact

@ Fermion
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“Non-compact” gauge field: prohibits “monopoles” in the simulation

Proper model is “‘compact”: what are the corrections?



Compact versus non-compact

Difficult to see
difference visually

compact

non-compact

transverse

longitudinal




Compact versus non-compact

Theoretical arguments:

This region should be weakly
magnetically ordered




Wavelunction study

Not restricted by sign problem

triangular lattice

+ uniform flux




Wavelunction study

triangular lattice

+ uniform flux

\ 4

Gutzwiller projection




Wavelunction study
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Wavelunction study

Néel order
parameter
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Power-law order

Stay tuned!



Wavelunction study

(S;+ S X S;)

VAVAVAVAVAVA
1 VAVAVAVAVAVA
VAVAVAVAVAVA
VAVAVAVAVAVA
VAVAVAVAVAVA
VAVAVAVAVAVA

Long-range chiral order
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