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Holy grail for quantum spin ice: the emergent photon 

O. Benton et al, 2012M. Hermele et al, 2004
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Triangular lattice spin liquid

Considerable support for U(1) Dirac spin liquid

• Y. Iqbal et al, VMC 2016 

• S. Hu et al, DMRG 2019 

• A. Wietek et al, ED 2024

Matching of low-lying eigenstates with QED3 ones

ℒ = ψ̄γμ(∂μ − iaμ)ψ + ⋯



Spins and QED3
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• Microscopic (exact) 
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• Operator dictionary 
• Perturbations to CFT

Each system has its own:

X.-Y. Song et al, 2019
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Spins and QED3

Kagome 
AF

QED3

Triangular 
J1-J2

DQCP
“Unnecessary” 
square lattice 

QCP

• Microscopic (exact) 
symmetries 

• Operator dictionary 
• Perturbations to CFT

Each system has its own:

If we believe this is the right description, 
what else can it predict? 

We will look for signatures in the 
behavior under field.

ℒ = ψ̄γμ(∂μ − iaμ)ψ + ⋯



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

n.b. square lattice - 
avoids sign problem.



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

time-derivative



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

Hopping



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

“Maxwell” term: controls 
gauge fluctuations



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

Zeeman field



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

J  0, B=0: Lieb theorem guarantees  flux state, and hence Dirac fermions→ π



Phase diagram



Phase diagram

Studied earlier
X.-Y. Xu et al, 2019



Phase diagram

W. Wang et al, 2019



Phase diagram

Line of no gauge fluctuations: but there is an average gauge field



Energetics

Optimal flux deviates 
from  when B>0π

• At J=0, the problem is equivalent to free fermions with a magnetic 
flux chosen to minimize the total energy

Double minimum: spontaneous chirality



Energetics

Optimal flux deviates 
from  when B>0π

• The chiral flux persists for small J

Double minimum: spontaneous chirality

J>0

Binder cumulant

Spontaneous chirality

No chirality



Energetics

Optimal flux deviates 
from  when B>0π

• The chiral flux persists for small J

Double minimum: spontaneous chirality

CF = chiral flux phase



Fermion states

Optimal flux deviates 
from  when B>0π

• The chiral flux induces a complex set of Hofstadter bands, similar to 
Landau levels

Double minimum: spontaneous chirality Hofstadter butterfly



Fermion states

Optimal flux deviates 
from  when B>0π

• The chiral flux induces a complex set of Hofstadter bands, similar to 
Landau levels

Double minimum: spontaneous chirality m
0ms



Dynamical correlations
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Dynamical correlations

Hofstadter bands give a 
good guide to intensity 
even with gauge 
fluctuations 

Peaks do not 
correspond to simple 
“spin wave” or “triplon” 
mode counting.



Comparison with AF phase

Emergent spin wave

S+−



Compact versus non-compact

“Non-compact” gauge field: prohibits “monopoles” in the simulation

Proper model is “compact”: what are the corrections?



Compact versus non-compact

Difficult to see 
difference visually



Compact versus non-compact

Theoretical arguments: 

This region should be weakly 
magnetically ordered



Wavefunction study

triangular lattice

+ uniform flux

Not restricted by sign problem



Wavefunction study

triangular lattice

+ uniform flux

Gutzwiller projection

M=2/3 Ms



Wavefunction study

Szz S+-

Ordered?



Wavefunction study

Néel order 
parameter ⟨S+

i S−
j ⟩ ∼

eiK⋅(xi−xj)

|xi − xj |

Power-law order

Stay tuned!
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Wavefunction study

⟨Si ⋅ Sj × Sk⟩

Long-range chiral order



Thanks for letting me celebrate with you


