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Gutzwiller Construction

• Construct QSL state from free fermi gas with spin, with 1 fermion per site 
(S=0)

c1 +c2 +c3 + · · ·

| 0i =
Y

k2FS

c†k"c
†
k#|0i

=

“partons”
“spinons”



Gutzwiller Construction

• Project out any components with empty or doubly occupied sites

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



Gutzwiller Construction

• Can build many QSL states by choosing different free fermion states

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



Dirac spin liquid
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2019 DMRG 
w/ twist

(1988) Affleck+Marston flux phase
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ED matched to 
projected 
wavefunctions



Dirac spin liquid

• Proposal: low energy effective field theory of 2+1-d Dirac fermions coupled to 
U(1) gauge field describes certain quantum antiferromagnets


• This field theory is 3 dimensional quantum electrodynamics: QED3


• What is QED3 and how does it apply to physical systems?



QED3

ℒ =
N

∑
a=1

ψ̄aγμ(∂μ − iaμ)ψa +
N

4e2
f2
μν

• Lagrangian: N 2-component massless Dirac fermions w/ U(1) gauge field.

• Symmetries:

SU(N)f flavor : ψa → Uab ψb

U(1)m magnetic/flux: Q = ∫ d2x fij ( jμ = ϵμνλ fνλ )



QED3

0 1 2 3 4 5 6 7 8

• Conformal window: believed a CFT for N>Nc

• Analytical approach: 1/N expansion

• Gauge invariant/physical operators:

• Conserved currents: Jμ
ab = ψ̄aγμψb

• Fermion bilinear (“masses”): Mab = ψ̄aψb

• Monopole operators: ℳ ??

(SU(N)f scalar and adjoint)



Monopole operators

2002

Q = ∫ d2x fij Consider operators that are charged under U(1)m

ℳ+ Qℳ+ = ℳ+(Q + 1)
After action of monopole, 
fermions experience one 
additional flux quantum 
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Monopole operators

2002

Q = ∫ d2x fij Consider operators that are charged under U(1)m

E

0 N*q zero modes

Spectrum on the sphere

These modes must be half-filled 
to preserve gauge invariance

( Nq
Nq/2) Distinct states

q=1, N=4 ℳ+
ab = − ℳ+

ba
Anti-symmetric tensor



N=4 QED3
• Gauge invariant/physical operators:

• Conserved (flavor) currents: Jμ
ab = ψ̄aγμψb

• Scalar mass Ms = ψ̄aψa

• Monopole operators: ℳ±
A =

ℳ±
12

ℳ±
13

⋮
∈ SO(6)v

Δ = 2

• Adjoint mass Madj = ψ̄a𝖳i
ab ψb

Δ ≈ 2.3

Δ ≈ 1.4

Δ ≈ 1
Large N:  
0.265 N−0.0383 + O(1/N)



Monopole operators

What are they good for?

• As probes (way to measure magnetic symmetry) 

• As physical perturbations for condensed matter systems

Flux conservation is not a microscopic symmetry, so operators 
violating it are generally present in the Lagrangian

Monopoles

ℒ′￼ = λ(ℳ+)q + h.c. λ

Or



Monopole operators

What are they good for?

• As probes (way to measure magnetic symmetry) 

• As physical perturbations for condensed matter systems

Flux conservation is not a microscopic symmetry, so operators 
violating it are generally present in the Lagrangian

Monopoles

ℒ′￼ = λ(ℳ+)q + h.c. λ

Or Triangular 
DSL?
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Triangular lattice spin liquid
YbZn2GaO5

Haravifard group
KYbSe2

Tennant groupJ2/J1=0.12 J2/J1=0.05



Spins and QED3

Kagome 
AF

QED3

Triangular 
J1-J2

DQCP
“Unnecessary” 
square lattice 

QCP

• Microscopic (exact) 
symmetries 

• Operator dictionary 
• Perturbations to CFT

Each system has its own:

X.-Y. Song et al, 2019
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Spins and QED3

Kagome 
AF

QED3

Triangular 
J1-J2

DQCP
“Unnecessary” 
square lattice 

QCP

• Microscopic (exact) 
symmetries 

• Operator dictionary 
• Perturbations to CFT

Each system has its own:

If we believe this is the right description, 
what else can it predict? 

We will look for signatures in the 
behavior under field.

ℒ =
N

∑
a=1

ψ̄aγμ(∂μ − iaμ)ψa +
N

4e2
f2
μν



Applied field

• SU(4)f broken to SU(2)v x U(1)s 

• Field couples to conserved U(1)s charge  

• Conformal QED3 also has emergent U(1)m flux conservation 
symmetry 

M = Sz = ∫d2x sz

Φ = Qm

States labeled by M and  Φ

ℒ′￼ = − Bsz = − Bψ̄γ0σzψψa = ψvα

valley
spin

E = E0(M, Φ) − BM



Applied field

• Key question: what value of  minimizes E?Φ

vs

[Y. Ran et al, 2009]: Φ = ± ϕ0M n.b. sign breaks TRS: 
Spontaneous chiral order

(At N=  can show the LL wins)∞

E = E0(M, Φ) − BM

“Up” spins occupy n=0 LL



Applied field

• Key question: what value of  minimizes E?Φ

vs

[Y. Ran et al, 2009]: Φ = ± ϕ0M n.b. sign breaks TRS: 
Spontaneous chiral order

(At N=  can show the LL wins)∞

E = E0(M, Φ) − BM

“Up” spins occupy n=0 LL

Appealing for observations because the 
effect is driven by the emergent flux



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

n.b. square lattice - 
avoids sign problem.



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

time-derivative



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

Hopping



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

“Maxwell” term: controls 
gauge fluctuations

*not* periodic: “non-compact” theory. 
Flux is exactly conserved



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

Zeeman field



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

J  0, B=0: Lieb theorem guarantees  flux state, and hence Dirac fermions→ π

NCFT = 2 Nlattice



B=0

0 4J/t

J=1.0

DSL AFM
c.f X.-Y. Xu et al, 2019

~1.6



Phase diagram



Phase diagram

Line of no gauge fluctuations: but there is an average gauge field



Energetics

Optimal flux deviates 
from  when B>0π

• At J=0, the problem is equivalent to free fermions with a magnetic 
flux chosen to minimize the total energy

Double minimum: spontaneous chirality



Energetics

Optimal flux deviates 
from  when B>0π

• The chiral flux persists for small J

Double minimum: spontaneous chirality

J>0

Binder cumulant (B/t=2)

Spontaneous 
chirality

No chirality



Energetics

Optimal flux deviates 
from  when B>0π

• The chiral flux persists for small J

Double minimum: spontaneous chirality

CF = chiral flux phase



Fermion states

Optimal flux deviates 
from  when B>0π

• The chiral flux induces a complex set of Hofstadter bands, similar to 
Landau levels

Double minimum: spontaneous chirality Hofstadter butterfly



Fermion states

Optimal flux deviates 
from  when B>0π

• The chiral flux induces a complex set of Hofstadter bands, similar to 
Landau levels

Double minimum: spontaneous chirality m
0ms



Dynamical correlations

J=0

“Landau level”-like features

S+−

Szz

J>0

Transverse Longitudinal



Dynamical correlations

Hofstadter bands give a 
good guide to intensity 
even with gauge 
fluctuations 

Peaks do not 
correspond to simple 
“spin wave” or “triplon” 
mode counting.



Low energy?

Low energy weight induced by 
gauge fluctuations!

J=0

J>0

⟨SzSz⟩



Effective field theory

ℒ = (dA)2 + ℒ↑(A + As, ϵF > 0) + ℒ↓(A − As, ϵF < 0)

• Include “probe” gauge field As coupled to spin:
Dirac LLs

• Integrate out fermions

ℒeff = (dA)2 +
1

4π
(A + As) ∧ d(A + As) −

1
4π

(A − As) ∧ d(A − As)

2-fold degenerate

= (dA)2 +
1
π

A ∧ dAs

• Mixed Chern-Simons term.



Mixed CS term ℒeff = (dA)2 +
1
π

As ∧ dA

• If we set the probe to zero, we see that the gauge field remains gapless

• Consider time component  — source to generate Sz correlationsA0
s

Sz ∼
1
π

ϵij∂iAj ⟨SzSz⟩ ∼ qδ(ω − vq)

Low energy weight = photon



Mixed CS term ℒeff = (dA)2 +
1
π

As ∧ dA

• Mixed Chern-Simons term: insertion of flux creates spin.

• Further integration of A:

ℒeff = (dAs)2 ? Spin symmetry is broken ?



Flux insertion

σxy = 1 σxy = − 1

Adiabatic insertion of one 
flux creates one up fermion 
and removes one down 
fermion.

The new ground state has 
therefore ΔSz = + 1



Monopole

• Polyakov: for free U(1) gauge theory, monopole has finite action. 

• Here: monopole creation must be accompanied by change of spin. 

• Hence: true condensate mixes these two 

ℒeff = (dA)2 +
1
π

As ∧ dA

ℳord = ℳ+S+

⟨ℳord⟩ ≠ 0

Both U(1)m and U(1)s broken

Residual U(1)m-s preserved

nGM = dim
U(1) × U(1)

U(1)
= 1 ⟨S+⟩ = ⟨ℳ⟩ = 0



Low energy

J=0

J>0

⟨SzSz⟩⟨S+S− + S−S+⟩

Gap 

⟨S+⟩ = 0



Comparison with AF phase

S+−
S±(q) =

1
N ∑

ij

⟨S+
i S−

j + h . c.⟩ e−iq⋅rij

rAFM = 1 −
S±(q + δq)

S±(q) Correlation ratio

B/t=2

⟨S+
i ⟩ = N(−1)i



Fermions and spins

Emergent spin wave

S+−

• AFM order creates a mass for the fermions 
• Polyakov argument implies monopoles are condensed 
• Here U(1)s and U(1)m separately broken: 2 Goldstone modes.

⟨S+S− + S−S+⟩



Compact versus non-compact

“Non-compact” gauge field: prohibits “monopoles” in the simulation

Proper model is “compact”: what are the corrections?



Compact versus non-compact

• Lagrangian should be supplemented by “monopole fugacity” terms

ℒ′￼ = λℳ+eiQ⋅x + h.c. + ⋯

• This mixes original condensate into pure spin

⟨S+⟩ = λ⟨S+ℳ+⟩0eiQ⋅x = λ⟨ℳ+
ord⟩eiQ⋅x

CF phase becomes weakly ordered.  
Precise order depends on how 
monopoles are added to the model.

WAF



Compact versus non-compact

In our current 
simulation, it is 
difficult to see the 
difference visually.  
We are working to 
improve numerics 
of compact model.



Wavefunction study

triangular lattice

+ uniform flux

Not restricted by sign problem



Wavefunction study

triangular lattice

+ uniform flux

Gutzwiller projection

M=2/3 Ms



Wavefunction study

Szz S+-

Ordered?



Wavefunction study

Néel order 
parameter ⟨S+

i S−
j ⟩ ∼

eiK⋅(xi−xj)

|xi − xj |

Power-law order

If you have a 
general argument 
for this I would be 
interested.

S(
Q

)/
(N

xN
y)



Wavefunction study

⟨Si ⋅ Sj × Sk⟩

Long-range chiral order



Ամենակարճաձույն շնորհակալությամբ 
Спасибо

Charles Aznavour (Shahnur Vaghinak Aznavourian)
Musée Grevin, Paris


