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Quantum spin liquids

1941(1)
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>

fractional excitations

H = Z J;S: S, _ non-ordered state with
i<j

THE THERMAL CONDUCTIVITY OF THE PARAMAGNETIC DIELECTRICS AT
LOW TEMPERATURES

By I. POMERANCHUK
( Recetved October 25, 1940)

- ——

In the following we shall need the dis-
tribution function of the magnetic levels
over the energies. When 7' » 6; the spec-
trum is not degenerated and we can use
the classical statistics (the Gibbs distri-
bution) and expand the statistical sum 1n
a power series of 1/T (cf. § 5). For T' K Bx
it is necessary to know the statistics of
the magnons. The experimental facts avai-
lable suggest that the magnons are sub-

mitted to the Fermi statistics; namely,
when 7 € 6, the susceptibility tends to
a constant limit, which is of the order of
const/Bx (}) [for T'> 8, y=-const/(T 40,)].
Evidently we have here to deal with the
Pauli paramagnetism which can be directly
obtained from the Fermi distribution. The-
refore, we shall assume the Fermi statis-
sics for the magnons*. Due to the Fermi



Quantum spin liquids
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H = Z J;S: S, _ non-ordered state with
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RESONATING VALENCE BONDS: A NEW KIND OF INSULATOR ?* / _ — / / \ \ /
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Next excitations: In two dimensions, it is not at all clear that the two
spins in a singlet necessarily ever separate by any appreciable distance, in
which case there may be an energy gap to the lowest triplet excitation, so that

the state need be only weakly paramagnetic if at all. But especially if it is a



uantum spin lquids

Fermions and gauge fields
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Quantum spin liquids
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Quantum spin liquids

TQFT
* Topological QSL
« U(1) QSL . 4d Maxwell
* Dirac QSLs OED3
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Gutzwiller Construction

e Construct QSL state from free fermi gas with spin, with 1 fermion per site
(S=0)

“partons”
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Gutzwiller Construction

* Project out any components with empty or doubly occupied sites

“partons”

) = Pg|Wo) "o "
spinons

- | | | |
- |~ |—|—|>>

- ||| |>
« ||| |«
« ||| |>




Gutzwiller Construction

e Can build many QSL states by choosing different free fermion states

“partons”

T) = Pe|Wo) "
spinons

- | | | |
- |~ |—|—|>>

- ||| |>
« ||| |«
« ||| |>




2007/

2016

2019

2024

Dirac spin liquid
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Spin liquid nature in the Heisenberg J;-J, triangular antiferromagnet
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Dirac Spin Liquid on the Spin-1/2 Triangular Heisenberg Antiferromagnet
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Quantum Electrodynamics in 2+ 1 Dimensions as the Organizing Principle
of a Triangular Lattice Antiferromagnet

Alexander Wietek®,*" Sylvain Capponi®,’ and Andreas M. Lauchli*’

Affleck+Marston flux phase
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Dirac spin liquid

* Proposal: low energy effective field theory of 2+1-d Dirac fermions coupled to
U(1) gauge field describes certain quantum antiferromagnets

* This field theory is 3 dimensional quantum electrodynamics: QED3

 What is QED3 and how does it apply to physical systems?
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L 1]

D3

- Lagrangian: N 2-component massless Dirac fermions w/ U(1) gauge field.

i N
— T ‘ I 2
g — Z l/jaylu(a,u T lalu)l//a ' 462 J22%
a=1
- SYMmmetries:
SU(N)flavor : v, — Uab W,

U(Dm magﬂetiC/ﬂUX: Q — d2X ij (.]Iu — 'uyﬂ][y/l)
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- Analytical approach: 1/N expansion

« Conformal window: believed a CFT for N>N¢

00— 0— 00— 00—

O 1 2 3 4 5 o6 / 38

- Gauge invariant/physical operators:

° . M —_— 7. //l
Conserved currents: Jab =y y"y,

- Fermion bilinear (‘masses”): A b = YW
a

a

- Monopole operators: M 7

(SU(N)f scalar and adjoint)



Topological disorder operators in three-dimensional

Monopole operators conformal fidd thoory
Vadim Borokhov, Anton Kapustin and Xinkai Wu QOO 2
Q= d*x ij  Consider operators that are charged under U(T)m

M QU™ = MT(Q+ 1)

After action of monopole,
fermions experience one
additional flux guantum



Topological disorder operators in three-dimensional
Monopole operators conformal fidd thoory
Vadim Borokhov, Anton Kapustin and Xinkai Wu ZOO 2
0 = d*x ij Consider operators that are charged under U(1)m
E
M

» O N*g zero modes

1

Spectrum on the sphere



Topological disorder operators in three-dimensional
Monopole operators conformal fidd thoory
Vadim Borokhov, Anton Kapustin and Xinkai Wu ZOO 2
2 .
Q= |dx ij Consider operators that are charged under U(1)m
E

These modes must be half-filled
to preserve gauge invariance

X Ng
O —— N*gzero modes * Distinct states
Nq/?2
1
_ _ %-I_ — — ﬂ_l_
S ab ba

Anti- tric t
Spectrum on the sphere nti-symmetric tensor



N=4 QED3

- Gauge invariant/physical operators:

L L]

« Conserved (flavor) currents: Jc/;b — l/_ja]/'uwb A =2

- Scalar mass M. =y y, Ax?2.3

- Adjoint mass M, = W, T v, A~14
M7y

- Monopole operators: %;X’ = ﬂi_rs = SO(6)V Lai:ﬁ |

0.265 N-0.0383 + O(1/N)



Monopole operators

What are they good for?
- As probes (way to measure magnetic symmetry)

- As physical perturbations for condensed matter systems

Flux conservation is not a microscopic symmetry, so operators
violating it are generally present in the Lagrangian

L= MMHT+N.C

Monopoles




Monopole operators

What are they good for?

- As probes (way to measure magnetic symmetry)

- As physical perturbations for condensed matter systems

Flux conservation is not a microscopic symmetry, so operators
violating it are generally present in the Lagrangian

L= MMHT+N.C

Monopoles

Or

Triangular
DSL?



Triangular lattice spin liquid
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Haravifard group Tennant group



Triangular lattice spin liquid

Haravifard group  J2/J1=0.12

Tennant group J2/J1=0.05
a 3 0 K1 M1 K rl/rz K M2 K2
A ot b b — 10’
25
= 2.0 %E:
iE), 15 3
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— 0.5 SB theory
=
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> "
(0] ' —
E 2 |
L é \
|
S ' ; 107
K M K r K M K
Q (0,0,0) (3.3.0) (3,0,0) (0,0,0)



D3

g—ﬁ:- "0, — i)y, + — f2
_ al J7; la,uWa
a=1

Kagome
AF

L 1]

Spins and Q.

4e2" M

Each system has its own: ‘
Triangular
Ji-Jd2

- Microscopic (exact)
symmetries

. Operator dictionary

. Perturbations to CFT

X.-Y. Song et al, 2019

QEDs3




1Dk

Spins and Q.

T

c N
L = Z l/_/a}/’u(aﬂ — id’u)l//a + 4_62 /%y

a=1

Each system has its own:

Triangular
J1-J2



Applied field
Va = Yha 4

S
@%

— BSZ — Bl/_/}/ogzl//

@\\

» SU(4)s broken to SU((2)y x U(1)s
_ Field couples to conserved U(1)s charge M = §* = [dzx §<

- Contormal QED3 also has emergent U(1)y, flux conservation
symmetry @ = 0,

» States labeled by M and @
E = E,(M, ®) — BM



Applied field

E = E(M,®) — BM

.- Key question: what value of @ minimizes E7?

[Y. Ranetal 2@@9] O = + ¢OM nb. sign breaks TRS:

Spontaneous chiral order

"Up” spins occupy Nn=0 LL

(At N=oco can show the LL wins)



Applied field

E = E(M,®) — BM

.- Key question: what value of @ minimizes E7?

'Y Ranetal 2009]: O = + ¢OM nb. sign breaks TRS:

Spontaneous chiral order

{ .
| “Up” spins occupy n=0 LL

(At N=co can show the LL wins)



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

@ Fermion

Gauge

5= Z[wz ) (W(7) — Vi) — 5 BUi(r)o ™ (7s)

—t Z [ (T“)gbz (Tn) (1) —I—hc]
<z.7>

+ — Z azg Tn az_y Tn— 1)]2 (1)
<w>

N.D. square lattice -
avoids sign problem.



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem
@ Fermion

' Gauge time'derivative
)T,  S- Z[zm () — 1)) — 5 BIs(r)ovi(r2)

| —t Y [0 u(r)y(7a) + b
p 1 <w>

n-1
J Z a5 (Tn) — @ij (Tn— 1)] (1)
(27),m



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

@ Fermion

- Gauge

ytT S- Z[zﬁz ) (i) = Bi(racn)) — 5 Bbi(ra)o ()

. —t ) [ 1455 () oy (1) (i) +h0] Hopping
p 1 <w>

n-1
J Z a3 (Tn) — @iz (Tn— 1)] (1)
(25),m



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

@ Fermion

Gauge

S = 3 [Bir)6i(r) — () - 5 Bl

— 1 Z [eia”(“)gﬁi(m)wj (Tn) + h.c.]

(ig),n

1
+5 > laij(tn) — aij (1))’ (1)
(i5),m
“Maxwell” term: controls

gauge fluctuations

*not™ periodic: “non-compact” theory.
Flux is exactly conserved



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

@ Fermion .
- Gauge Zeemaﬂ fle|C

) © s—z[zﬁz ) Ws() — u(ra)) — 3 BUlr)ov(r)

. £ 3 [y () + e
p 1 <w>

n-1
J Z a3 (Tn) — @iz (Tn— 1)] (1)
(25),m



A model and quantum Monte Carlo

A lattice gauge theory — without a sign problem

@ Fermion

- Gauge

=% i) (s(1) — (1)) = 5 BB ()0 i(r2)
— ¢ Z [ ia; J(Tn)’(’b Tn ¢](Tn) + h. C]
» T | <w>

J Z @ij(Tn) — @ij(Tn— 1)] (1)
(23),m

J — 0O, B=0: Lieb theorem guarantees x flux state, and hence Dirac fermions

Ncrr = 2 Niattice



B=0

cf X.-Y. Xuetal 2019

00 (m0) (mm)  (0,0)

J/t
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0 A 20
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Phase diagram




Phase diagram

2
J/t

Line of no gauge fluctuations: but there is an average gauge field



Energetics

« At J=0, the problem is equivalent to free fermions with a magnetic
flux chosen to minimize the total energy

_ Optimal flux deviates
from & when B>0

Double minimum: spontaneous chirality



Energetics

« The chiral flux persists for small J

Spontaneous
chirality
f —$— L=6
- + L S
0.6 , & 110
—4— L=12
L=14
0.4 ==
0.2 -
No chirality
— = ———
0.0 LI
0.0 0.5 1.0 1.5 2.0 2.5 3.0

_ Optimal flux deviates

from £ when B>0 Binder cumulant (B/t=2)

Double minimum: spontaneous chirality



Energetics

« The chiral flux persists for small J

CF = chiral flux phase

1.57 2T

0 0.57

) o
Optimal flux deviates
from z when B>0

Double minimum: spontaneous chirality



Fermion states

« The chiral flux induces a complex set of Hofstadter bands, similar to
Landau levels

_ Optimal flux deviates
from z when B>0

Double minimum: spontaneous chirality Hofstadter butterfly



Fermion states

« The chiral flux induces a complex set of Hofstadter bands, similar to
Landau levels

_ Optimal flux deviates
from z when B>0

Double minimum: spontaneous chirality



Dynamical correlations

Landau level”-like features Transverse Longitudinal

HIO“

{1102

HIO'3

L 10-1

- 110°
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Dynamical correlations
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4 8 w/t12 16

20

1.0

0.8

0.5

0.21

0.01
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1.01
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0.0
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|
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(d) QMC M
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0 20

8 w/t12 16

Peaks do not
correspond to simple
“spin wave” or “triplon”
mode counting.

Hofstadter bands give a
good guide to intensity
even with gauge
fluctuations



L.ow energy?

Low energy weight induced by
gauge fluctuations!



Effective field theory

- Include “probe” gauge field As coupled to spin:
l l Dirac LLs

L =AY+ L (A+A,ep>0)+ LA — A, € < 0) 2-fold degenerate

- Integrate out fermions

1 1
L= (dA)* + 4—(A +A)AdA +A) - 4—(A —A)AdA—-A)
T /A

1
= (dA)* + —A A dA,
T

« Mixed Chern-Simons term.



: 1
Mixed CS term Lo = (dAP? +—A, A dA

T
- |f we set the probe to zero, we see that the gauge field remains gapless

- Consider time componentASO — source to generate Sz correlations

>

1

(8°8%) ~ gé(w — vq)

Low energy weight = photon



: 1
Mixed CS term Loy = (dA? +—A, A dA

T

- Mixed Chern-Simons term: insertion of flux creates spin.

- Further integration of A:

Loy = (dAY* ? Spin symmetry is broken ?



Flux insertion

\ / \ / Adiabatic insertion ofone

flux creates one up fermion
and removes one down

/ \ / \ fermion.

The new ground state has
therefore AS* =+ 1




Monopole Lo = (dAP +—A, A dA

T

- Polyakov: for free U(1) gauge theory, monopole has finite action.
- Here: monopole creation must be accompanied by change of spin.

« Hence: true condensate mixes these two

Mg = MTST  Both U(l)mand U(1)s broken

(M .q) F 0 Residual U(T)m-s preserved
or

U x Ut _

Ny = Aim T

(§7) =(M) =0



[L.ow energy




Comparison with AF phase

+ 1 — —id°T .
S—(q)=N;(SZ.+S]- +h.c) e

]
SE(q + 6

r =1- St} Correlation ratio
0.8 )

0.6

g(u - ., B/t:2

0.2 /’ %;

0ol? ——

.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
J/t



Fermions and spins

- AFM order creates a mass for the fermions
- Polyakov argument implies monopoles are condensed
- Here U(1)s and U(1)m separately broken: 2 Goldstone modes.

(STS™ + S~ST)

0.1

0.01

Emergent spin wave



Compact versus non-comipact

S = 3 [Bir)6i(r) — () - 5 Bl

— 1 Z [eia”(“)gﬁi(m)wj (Tn) + h.c.]

(ig),n

+% > laij(1a) — aij(Ta-1)]’ (1)

(ig),n

“Non-compact” gauge field: prohibits “monopoles” in the simulation

Proper model is “compact”: what are the corrections?



Compact versus non-comipact

- Lagrangian should be supplemented by “monopole fugacity” terms

L= M+ £ ho. + -

- This mixes original condensate into pure spin

(57) = USTM*)oe " = ML)

CF phase becomes weakly ordered.
Precise order depends on how
monopoles are added to the model.




Compact versus non-comipact

INn our current
simulation, it is
difficult to see the
difference visually.
We are working to
IMprove NUMerics
of compact model.

compact

non-compact

transverse

0.01

0.001

0.01

0.001

longitudinal

0.01

0.001

0.01

0.001



Waveltunction study

Not restricted by sign problem

Hofstadter Butterfly for Staggered n Triangular Lattice

triangular lattice

T Tr T
o e e s +uniform flux
T T T N

¢/



Waveltunction study

M :2 / 3 M S
t rl a n g u | a r | a tt | Ce Hofstadter Butterfly for Staggered n Triangular Lattice

o o s & +uniform flux

Gutzwiller projection



Wavetunction study

Szz

015
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0.00

-0.05

(Sx.iSx.j + Sy.iSy.)/2 (mean)

0.25

0.15
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--0.05

0 n 2n

Ordered?

-0.15



Wavelunction study

Neéel order
parameter

S(Q)/(N,N,)

0.05

0.04

0.03

0.02

0.01

%96 00

0.05 0.10
(Nx % Ny)—1/2

0.15

(SFS7) ~
! | x; — A |

Power-law order

It you have a
general argument
for this | would be
interested.



Wavelunction study

(S; - 8 X S
| VAVAVAVAVAVA
' VAVAVAVAVAVA
VAVAVAVAVAVA

VAVAVAVAVAVA

VAVAVAVAVAVA
VAVAVAVAYAYA

Long-range chiral order
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