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Outline

- Linear and non-linear response as a probe of band geometry and topology

- Semiclassical description: why | like it and you should too

- How to *correctly* use semiclassics beyond leading order




Bands

/\E/ /f\ e, (k) = v,k
\/ 7\/ Energetics

k

Q k) Berry curvature
| ll/nk) » n,aﬁ( )
Geometry gn,aﬁ(k) Quantum metric



Bands

e, (k) = v,k G~ (VI

K
)

Energetics
Ly ) » Qn,aﬁ(k) Berry curvature Oy ~ (Q)
Geometry gn,aﬂ(k) Quantum metric Souza, Wilkens, Martin 2000

Various suggestions

Role in interacting systems?



[ Inear response

A host of “conventional” (but still complex) transport coefficients

j=L""8 + L'*}(-VTD),

J'=LY8 + L*(=VT),  aghcroft+Mermin

And some originating from Berry curvature

> dk
Anomalous Hall effect gt = e Z/(zﬂ.)d nr(wn (k)2 (k) X E
" Karplus+Luttinger, 1954

CME wrTe

: aSME — dk|(Of /| Ockn )Vkn.iMEkn, i

Gyromagnetic effect iJ 1— iwr ;/[ 187 /Bern v immten.
Ma+Pesin 2015; Song et al 2016

Chiral anomaly...



Non-linear response

Non-linear Hall effect 70 = xanc€p€is 2 = YarclpEos

Yabe = —Eade —————— 2(1+lm) / Fo(0,94) Sodemann+Fu, 2015




Non-linear response

Quantum metric effects

e’ - . . “ i
O,;S;‘ECPD - Z /[dk]fm[aag’l:;) + abg;z; + 3cg,‘,1,l;,]- Bond I’QSO|V?d qgquantum
: m,p.k metric dipole

K. Das et al,2023
D. Kaplan et al, 2024

MnBi2Tes
d AFM-II
I A B

0.06 10, T T T 10
s s o4l ¥ Experiment //\ Theory
£ £ 5 5
§x §x 0.02 /\

o] =:

024 (MA/V?)
o

&
024 (MAIV?)
o

'
[¢)]

V2o (mv)
Vo (mv)
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12 -2 12 -2
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N. Wang et al, 2023 A. Gao et al, 2023
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Response to field gradient

2 dPK 9 M(K) ' .
‘g_r, 2n)P fO(K)Ev(g)—gaKﬂ , Quantum metric dipole

Jgeom. (¥) =

M. Lapa + T. Hughes, 2019

E,, = 0E,/ox,




['heoretical approaches

« Quantum response theory (~Kubo)
« Usually regarded as most rigorous method
- Formal. Simple results often obtained by very technical route.

« Does not show dis-equilibrium

« Semi-classics

rom equilibrium



Semiclassics

- Boltzmann equation

dx, Of,  dk, 0f»
dt 9z, ' dt Ok,

Incompressible flow of states in phase space

- One particle equations of motion

da . dk

E = Un Vkenk:_E Xﬂnka
k d
Cfl—t—Fn——eE—ed—mxB



['he power of semiclassics

« Anomalous Hall effect

Jah = / fr€Van = _e/ fn% « Q, = 2E x /fnﬂn Immediately gives AHE
k k k

- Thermal conductivity

fn =nr(eT(z)) + gn

n =TNpOn - —mp—— n.b. essential to include T(x).

. 0,T y -
ji = /k(en — WVhgn = =5 T/kn%(e — p)’vhol, “Standard” thermal conductivity




['he power of semiclassics

« Anomalous Hall effect

Jah = / fr€Van = _e/ fn% « Q, = 2E x /fnﬂn Immediately gives AHE
k k k

- Thermal conductivit . -
Y These and many other results agree with Kubo exactly. This is

because the semiclassical approximation is exact to first order in
fn=nr(eT(x)) spatial gradients.

_ / (6 B :LL)VT . .
gn = TNFUn 5 —— n.b. essential to include T(x).

. o, T y -
ji = /(en — WVhgn = =5 T/kn%(e — p)’vhol, “Standard” thermal conductivity




Semiclassics

- Boltzmann equation

dx, Of,  dk, Of,

O+ Oz,  dt Ok,

= C[/f]
Incompressible flow of states in phase space

- One particle equations of motion

dx dk

>, — Un — ~n e Qna
dt v Vkek, dtx k
dk dx
 —F,= —¢E—e— x B.
dt ST

Q. Niu ++

Just written down!

Wavepacket
approximation

1ho,p

1ho,x

= |H.p]

= [H,x]



Semiclassics

- Boltzmann equation

dz, Ofy
o OBy,

dk,, Of,

Ot)n + dt Ok,

= Clf]

Incompressible flow of states in phase space

Just written down!

Two semiclassical approximations at the

- One particle equations of motion same time
dx - dk
@ Viénk — PTIRS Qnk, Wavepacket
&k _p_ g .2, approximation
dt d
Q. Niu ++

1ho,p

1ho,x

|H. p|

|H, X]



Kinetics

Liouville-von Neumann equation iha,p = [H, p]

Systematic derivation of Boltzmann-like equations

Intuitively Julk) ~ (n,k|pl|n,k)

Two issues:
ck spatial dependence
nal terms in density m



Wigner transtormation

F(k,X) = /dm eFUF(X + f,X — f)

2 2
X
X+=
(x+3

X X
o

Wigner-Weyl quantization

C = AB )  C(k,X) = Ak, X) * Bk, X)

Operators Functions on phase space



Moyal/star product

T Symplectic form  [¢a, gs) = ihe®”

" s . /\
* = exp (Z—eaﬁaaaﬁ> =14 Z—eaﬁﬁaﬁg + - Jo\ ‘

Slow spatial variation

Systematic procedure to carry out gradient expansion while working in both
position and momentum.



Star diagonalization

Even with phase space formalism, H, F, etc are still matrices
To pass to a semi-classical kinetic equation, we want to eliminate off-diagonal terms.

Diagonalization is compatible with star product

_ 5 Formal diagonalization carried
H=Uxh+xU' F= U*f*UJr out order by order in gradient

\ / expansion.

Almost the desired diagonal Hamiltonian and distribution

BUT we need to ensure gauge invariance.



auge Invariance

Quantum mechanics allows an arbitrary phase for each eigenfunction. Within a band this is
the usual origin of Berry gauge field.

Transforms non-trivially

i0(x,k) fF s B0 & s B9
U—->UxE f i because of star product

Gauge invariant form fo=tr {U*pnf* UT}

\ Projector on nthband

1 o
Energy density Py = 5 U xpu(hx f+ fxh) « U]



auge Invariance

We worked these out to second order in gradients:

3 _ 72 _
fn = fa + Reapla(fulnp) + ?gaﬁgaka?xa(fn(AﬂAA)nn)

- - ~ 1
hn = hn + hgaﬂaahn (Anﬂ + hga)\An)\aaAnﬁ) - hzeaﬂgakﬁighn <Z {Aﬁa A)\}nn - An,BAnA)

Ay = —iUT % 0,U
A, =diag (A,) Berry gauge field

Now Simply N = / Z fn fn is electron density in a band
x,p n
E = Z frnhn fnhn is energy density in a band



Kinetic equation

Otfrn + 00T =0 Just continuity equation for density in a band

c.f. simple convection Ja = fnva —} Boltzmann equation

Incompressible flow

Here, to second order:

h h?
Jo =€qp tr l:f (8Bh + h(EJ)\ﬁghQ)\B — Qtﬁ) (1 — EQHV> + 76(;)\6””83“}1859,/)\)]

1 2

1 h
+ h28a560)\aa tr [f (§6wjauhaygg)\ = 5(%95,\ + awaiﬁhg,,,\” — —EQBSGAsuyagM tr [fagwh}

24



Kinetic equation

Otfrn + 00T =0 Just continuity equation for density in a band

c.f. simple convection Ja = fnva —} Boltzmann equation

Incompressible flow

Here, to second order:

h h?
N/ =€qap tr l:f (8Bh + h(EJ)\ﬁghQ)\B — Qtﬁ) (1 — EQHV> + 76(;)\6””83“}18591/)\)]
2 1 1 2 h2 2 3
+ h é‘agé‘a)\aa tr | f §€w/aﬂhayglp\ — §atgg>\ + S‘u,/auﬁhg,/)\ — ﬂsagaa,\awﬁw tr [famyh}

1 . 1
gquantum metric = gag = idlag (AaAp +Aphy) — AnAg = 5 t1(00 Prn0s Pp)



Kinetic equation

h h?
To, =€ag tr [f <8ﬁh + h(éaAﬁahQ)\ﬁ — Qtﬁ) (1 — §Q’uy) h 750A5W8§Mh85gm)]
h2

— ﬂsaﬂgo')\sul/ag,u tI' I:fagkyh}

1 1

+ h25a550)\80 tr [f (geuva,uhaugﬁk - §8tgﬂ>\ + 5uy82ﬁhgu)\)]

- General and exact up to second order in semiclassical expansion

- Explicitly contains real space and momentum space, and capable of describing
inhomogeneous systems. Magnetic field can be included by modifying €ap

- Quantum geometry of bands appears explicitly, takes local band Hamiltonian as input

- Only band-intrinsic quantities appear: but these are bands renormalized by quantum
corrections.

- Ready to attack all sorts of problems!



Example: separable problem

H(z,p) = Ho(p) — eV (z)In

Band form  Diagonal potential

Kinetic equation (relaxation time approx)

e

ouf = —a%f(va +2

2

2
0, fed, V + g B e lf— )

24 LTalBI~ PaPpP~

T Z (Op,, Un |tm ) {Um|Op, un) + (1 <> V) "band-normalized quantum metric”
n;uy —

e €n — €m (not a purely geometric quantity)

QapOs,V + [ — fapa e GOl G VA S G [ ey — %apa Tl a%va%v>



Solution

Linear conductivity

e? e? e%iq
Uu;a(%“’) == R2(iw + 1) Z/fqlzvn,uvna + & Z/an,ua + 73 (i _l_;y.—1)2 /kffrlzvnuvnavn’y

e? zq7

/fn ak(“gn yar) + Vp, {,uTn 'ya}] +O( )

+
Quadratic conductivity Lapa+Hughes

3

3
I € 2 : / € (0)
oY Wi (g, — 5 ; n o - . na Q
Oap (@i 4, ) R (iw + 1) (i’ + 771) & /kf R T Zn /kf boCup

3
e—h Z/kfn (Ok, Tap — Ok, Tug — Ok, Tpa) + O(q).

Band-normalized quantum metric dipole

Sodemann+Fu




oummary

h K2
To. =€ap tr [f ((%h + h(&‘a)\ﬁahﬂ)\ﬁ — Qt,B) (1 — 59#]/) T EsgAsﬂyaguhﬁggM)]

1 1 2
+ K2 050200 tr [f (iawﬁuh@yg/g,\ — 5(%95,\ + swafbﬁhgm)] 245a650>\5uv au [faﬁ/\,, h]

- We found a procedure to obtain semiclassical electron dynamics organized by spatial
gradients

- We found a general result for the phase space current to second order in gradients, capable
of handling inhomogeneous systems and magnetic fields

- Prior results for linear and non-linear response are recovered, and in some cases corrected

- Still needed: a scattering/interactions theory with the same validity
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