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Bose Mott transition
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Bose Mott transition

Quantum simulation of the superfluid-to-Mott insulator transition

Superfluid Mott insulator
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Quantum phase transition
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Quantum phase transition
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@T=0: no entropy
No normal fluid



Excitons

A “composite” boson in electronic systems
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Unlike an atom an exciton is not stable and is only an excitation.



TMD excitons
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For certain “type IlI” band
alignments, inter-layer excitons
have lowest energy

These have long lifetimes and
are more sensitive to layer
alignment/moiré



Interlayer moir

Experimental results
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Inferred conclusions

State Energy Oscillator Total Hole valley Electron valley Spin Valley Moiré Moiré
(eV) strength QAM and spin and spin QAM QAM QAM position

» 1 143 Weak +1=-2 K1 Kl = +1 -2 B

2 146 Strong =1 K1 K1 0 +1 -2 B

3 Not observed 0 K1 Kl =1 +1 0 A

4 1.51 Strong +1 K1 K1 0 +1 0 A
» 5 143 Weak —1=+2 Kl Kt 1 -1 +2 B

6 146 Strong +1 K"l K"l 0 =1 +2 B

7 Not observed 0 K" K"t 1 -1 0 A

8 1.51 Strong = Ky Ky 0 -1 0 A

C. Jin et al,
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Excitation

Emission

= Higher excitons >
Lowest (bright) exciton

UoISSIW]

No excitons

NOT to scalel

Scattering, layer transfer,
phonon emission...



Moiré potential

Excitons localize in
minima of local band gap

Aqg(ro)(mev) 1

-55 55

F. Wu et al, 2018 (plot is for WS,-Moy)

Experimentalists can populate excitons in these wells.



Exciton Mott insulator
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Exciton Mott insulator

A a
~ o . .
WSez“" Pump intensity lg
oy WS Probe
&
a o @ Al cos wt
| —"T Gé (8 Hz)
e ] -« |
e -
o A
-~ .
D 16 PL Intensity WSez‘TV"SZ
~1.2 =
Eo. S
2 o E» v
é & | o | v
i Hth G
S
T

2nd exciton’s energy
increased by Uex-ex

0
1.40 1.45 1.50
Photon Energy (eV)

R. Xiong et al, 2023



|lssues

* Excitons are far from equilibrium
- under constant illumination
- not conserved

¢ s there a Mott transition under these
conditions? What is its nature?

PL Intensity

Jump in emission line seems

abrupt but...
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Simple modadel

* Minimalist excitons: ignore spin, valley
Hy = “an + Z %nz(nz — 1) — th’,jb;rbja
i @ ©,J
* Take non-equilibrium seriously: Lindblad equation

p=—i[H,p| + Y YL(Lk, L})[p]

|

L(A, B)[p(t)] = Ap(t)B — 3{BA, p(t)}

"Jump operators” encode transitions
generated by excitation and decay



Jump operators

* Microscopically, these arise from coupling to

photons (+...) B
H=Hy+H; H; =R (zb’f) +RT (Zl;{

Electromagnetic field has long wavelength >> moiré period
For simplicity we use just this bath coupling.

® Standard derivation (H.P. Breuer and F. Petruccione, 2002)

gives that jump operators determined by

1B, Ho] = waB,

- Decomposition of B into eigen-operators of Hg B— Z B,
A

- Spectral correlator of R



Lindblad construction

* Eigen-operators
In general finding these is hard!
By, Hyo] = wxB) J J

Similar to diagonalizing Ho

Bath generates transitions that conserve
total energy of bath and system.

* Lindbladian in interaction picture:
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Eigen-operators

e Finding these is hard!  [Bx, Ho] = waBx
* A prior we cannot restrict to low energy
* What we do: all-all hopping model

Hy :uZni+%Zni(ni —1) — %szbj
i i 1,]

In equilibrium, this affords a mean-field approximation as N — infinity

But we can work for any N using permutation symmetry

b; — bP(i)



Eigen-operators

* \We can restrict to states with full permutation

symmetry
C 7y = N N, no empty sites, n1 singly occupied sites,
BaSIS 7) ags:N o|(no,m1, .., nar)) n2 doubly occupied sites...
There are relatively few states. Can diagonalize Hp in this basis.
Result: Hyla, Ng) = Eo ngla, Ng)  Numerically except special cases

=) Eigenoperators:
Ba,B,NB — <a7NB_HB‘57NB>‘O%NB_]-><57NB‘

wCV?BaNB — EﬁaNB - EaaNB_l



Lindblaad

e Using these states, we find the density matrix
takes the form

p = Z Pn., o ‘Oz, n> <Oz, n\ Diagonal in this basis.

n,o

* Then the Lindblad equation becomes

pan =D IBA>(I(wr)Pan—1 = Y(Wr)pan)

A=(a,a,n)

+ Z |B,\|2 (Y(wa)ps,nt1 — I(wr)Pan)
A=(a,B,n+1)

This is just a fancy rate equation for a mixed state.
But we can evaluate it all using just u, U, t and the functions y(w), I(w)

n.b. we assume no coherent pumping (typical for inter-layer excitons)



Results

® \Ve studied several cases:
® Zero hopping: exactly soluble
® Hard-core bosons: exactly soluble
® n=0,1,2 (nmax=2) numerical solution

® |n all cases, the solution is a non-thermal mixed state. There
are, however, clearly phases.



(n.) should be quantized to an integer in a Mott insulator
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Density

(n;) should be quantized to an integer in a Mott insulator
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Condensation

We examine

— AT2 <bjbj> —
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Condensation
We examine

C=- Z <BTB>

(BiB) /N}(N — o)
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lobes are visible

505

+

=04
0.3
0.2

0.1

0.0

0.75 1.00 125 150 175 200 225
I/



Entropy

The entropy per particle is a sensitive estimator of the
transitions

S/N(N — o0)
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Entropy

The entropy per particle is a sensitive estimator of the

transitions
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\on-zero entropy

arifies this is *not*

e usual Bose-Mott
transition



Critical properties

Correlation at phase boundary 1
p=150,t=1.7, U=28.3

— N=600
N=500
— N=400

5 I o i ;
N3 (I -1,

Mean-like exponents appear in finite-size scaling.



Back to experiments
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Compare this with :

Naively PL| ~ N1, PL|| ~ N2



Back to experiments

D 16 PL Intensity F PL Intensity Sa.u.)
: (a.u.) 400
~12 8 &
' 300
Eos 11 . §2
— 200
204 S ©
2 E 300 "; 100
e 42 D 0
£ S & 1
= <
2 P
S 2
o 2
0 - 0 u
1.40 1.45 1.50

Photon Energy (eV) 1.4F?hoton Ener‘c;)./Ar(ZV)

(=150, t=3.3, U=26.7

Compare this with -

0.5 1.0 15 2.0 2.5
1/~

n.b. Pump intensity is probably a different variable than

N a |Ve |y P I—| ~N 1 P I_” ~ n2 our lp, which is the exciton creation rate in our effective
!

model. Can perhaps compare better versus density.



Back to experiments

What does this theory really
show us for these
experiments?
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e Establishes that stable Bose Mott state can exist under

illumination

* Any more detailed connection needs either more
experiments or more developed theory

* To be honest, these experiments give no direct evidence for

any exciton hopping tb;bj whatsoever



Interesting issues

® Roles of local versus global dissipation, tunneling
® Gating/doping with free electrons/holes.

® \alley degree of freedom of excitons



Valley physics

R. Xiong et al, 2024,
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Polarized experiments detect response that is very
sensitive to exciton density.



Valley Ferromagnetism?

R. Xiong et al, 2024,

Excitons in two-dimensional (2D) semiconductors have offered an attractive

platform for optoelectronic and valleytronic devices. Further realizations of

correlated phases of excitons promise device concepts not possible in the H= Z —tbz oD the+ Z U(ny —1 /2)2 + Z Vn;n;,

single particle picture. Here we report tunable exciton “spin” orders in WSe,/ <ij>a ia i

WS, moiré superlattices. We find evidence of an in-plane (xy) order of exciton

“spin”—here, valley pseudospin—around exciton filling ve, =1, which strongly f v

suppresses the out-of-plane “spin” polarization. Upon increasing ve, or ' s

applying a small magnetic field of ~10 mT, it transitions into an out-of-plane

ferromagnetic (FM-2) spin order that spontaneously enhances the “spin”

polarization, i.e., the circular helicity of emission light is higher than the

excitation. The phase diagram is qualitatively captured by a spin-1/2

Bose-Hubbard model and is distinct from the fermion case. Our study paves

the way for engineering exotic phases of matter from correlated spinor

bosons, opening the door to a host of unconventional quantum devices. gy 1.40
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