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TMD

From wikipedia

MX2

M=transition metal, 
W, Mo, Nb etc.

X=chalcogenide 
S,Se,Te

Typical band structure of TMD

F. Wu et al, 2018
• Quadratic dispersion: non-

relativistic Schrödinger equation 
• Spin-valley locking
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From wikipedia

MX2

M=transition metal, 
W, Mo, Nb etc.

X=chalcogenide 
S,Se,Te

Typical band structure of bilayer REVIEW ARTICLENATURE NANOTECHNOLOGY

(homobilayer)29–31 or stacking two different monolayers with a lat-
tice mismatch δ (heterobilayer)32–37. A hexagonal superlattice struc-
ture is formed with aM ≈ a/θ for the former and a
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latter (Fig. 1d). The typical moiré period is aM ≈ 10 nm ≫ a ≈ 1 Å. 
Owing to the three-fold rotation symmetry in TMD monolayers, 
there are two different stacking structures: 0° stacking and 180° 
stacking, in which the two layers are aligned near twist angles of 0° 
and 180°, respectively. They are also commonly referred to in the 
literature as AA stacking and AB stacking, respectively (not to be 
confused with the AA and AB stacking regions in twisted bilayer 
graphene). We will use this terminology from here on. For AA 
stacking, there are three high-symmetry sites in the superlattice 
(Fig. 1a): the MX site, in which the transition metal atom M (Mo 
or W) lays directly on top of the chalcogen atoms X (S, Se or Te); 
the XM site, the inverse of the MX site; and the MM (or XX) site 
with M (X) in one layer directly on top of M (X) in the other. The 
high-symmetry sites in AB stacking are different (Fig. 1b). These 
include the MX site (the stacking structure of natural bilayer TMDs) 
and the MM and XX sites.

The fabrications of homobilayer and heterobilayer moiré struc-
tures are quite different. The tear-and-stack technique, commonly 
used in making twisted bilayer graphene, is employed for homo-
bilayers38–40. A single TMD monolayer obtained from mechanical 
exfoliation is torn into two halves, which are then re-stacked on 
top of each other with a controllable twist angle θ. In contrast, two 
different TMD monolayers obtained from separate exfoliations are 
involved in the fabrication of heterobilayers. Predetermination of the  
crystal axis for each monolayer is required to create angle-aligned 

heterobilayers. This is often achieved by polarization- and angle- 
resolved optical second-harmonic-generation spectroscopy32–34. 
The typical angle-alignment accuracy is about ±0.5°, which is less 
accurate compared with the tear-and-stack method. However, this 
hardly matters because aM ≈ a/δ for heterobilayers is dominated by 
the lattice mismatch δ ≫ θ (Fig. 1d). The insensitivity of the moiré 
lattice to the twist angle (and therefore twist-angle disorders) is a 
major advantage of heterobilayers.

The superlattice structure of TMD moiré materials has been 
characterized by transmission electron microscopy34,41, STM30,42, 
piezoresponse force microscopy43 and density functional theory 
(DFT) calculations6,42,44. The structure is far from the idealized rigid 
structure without lattice distortion in the constituent monolayers. 
First, there is lattice reconstruction within each monolayer to maxi-
mize the area of the most stable stacking structure in each moiré unit 
cell. This creates a spatially periodic strain modulation within each 
monolayer, which modulates the TMD band edges and contributes 
to the total periodic moiré potential42. Second, there is unintentional 
relative strain between the constituent monolayers from fabrica-
tions; it distorts the perfect hexagonal superlattice structure. The 
unintentional strain can vary randomly over the sample and acts 
as a disorder potential. Third, unintentional twist-angle variations 
randomly distributed over the sample creates random variations in 
the moiré period over a length scale that is smooth compared with 
aM and acts as another source of disorder potential. This effect is 
particularly important in homobilayers43, in which aM is sensitive 
to θ. Finally, large-scale reconstructions into random patches of the 
stable stacking structure and/or stripy patterns can occur in sam-
ples with a large moiré period, such as homobilayers with a small 
twist angle43. The entire moiré superlattice structure can be lost in 
extreme cases.

Semiconductor moiré flat bands
A good starting point to understand the electronic band structure 
of TMD and other semiconductor moiré materials is the continuum 
model5,19,20. In the limit aM ≫ a, the high-energy physics set by the 
atomic scale is well separated from the low-energy physics set by 
the moiré length scale. To a good approximation, electrons in TMD 
moiré materials can be treated as particles with an effective band 
mass m of the constituent monolayers moving in a smooth periodic 
moiré potential VM (Fig. 1b), giving rise to a moiré Hamiltonian 
H

M

=
p

2

2m

+ V

M

 and a series of flat bands in the mini-Brillouin zone 
(Fig. 1c). Here p is the quasi-momentum operator and VM can be 
approximated by a Fourier expansion of harmonics associated with 
different moiré reciprocal lattice vectors5,19,20.

AA stacking

MX 

XM 

MM 

AB stacking

XX 

MM 

MX 

MM MX XM MX XX MM 

a

b 

c 

d 

– – –

t

–

U

Moiré
potential 
depth 

aM

mBZ

Energy 

Layer 1 Layer 2 

Eg1
Eg2 

1,000

100

10

0 1 2 3 4 5

Twist angle (°)

Homobilayer
Heterobilayer

6

a M
/a

Fig. 1 | TMD semiconductor moiré materials. a, Moiré lattice structure 
for AA-stacked and AB-stacked TMD semiconductors (top). The 
high-symmetry sites for each case are labelled; their cross-section views 
are shown (bottom). The large and small dots label the transition metal 
atom (where M is Mo and W) and the chalcogen atom (where X is S, Se 
and Te), respectively. b, Schematic illustration of an array of moiré atoms 
that trap electrons, which can tunnel between neighbouring sites with 
amplitude t and experience on-site Coulomb repulsion U. c, Schematic 
layer-resolved moiré band structure for semiconductor moiré materials 
with type-II band alignment. mBZ stands for mini-Brillouin zone, and Eg1 
and Eg2 are the bandgap of the first and second TMD layers, respectively. 
d, Twist-angle dependence of the normalized moiré period aM/a for both 
homobilayers and heterobilayers (in the small-angle limit and δ!=!7%). 
aM/a is much more sensitive to twist-angle variations in homobilayers.

Table 1 | Comparison between twisted bilayer graphene and 
TMD semiconductor moiré materials

Parameter Twisted bilayer 
graphene

TMD semiconductor moiré 
materials

Sensitivity to 
twist angle

Magic angle(s) for 
flat bands
Sensitive to 
twist-angle variations

No magic angle in general
Homobilayer (heterobilayer): 
sensitive (insensitive) to 
twist-angle variations

Local 
tight-binding 
description of 
low-energy 
physics

Not a good 
approximation

Good approximation

Electronic degrees 
of freedom

Spin and valley 
degenerate

Spin–valley locked
Spin or valley degenerate

Typical energy 
scales

W ≈ 10–100!meV
U ≈ 20–40!meV

W ≈ 1–100!meV
U ≈ 100–200!meV
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Large semiconducting gap

moiré bands localized around 
band edge momenta
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for AA-stacked and AB-stacked TMD semiconductors (top). The 
high-symmetry sites for each case are labelled; their cross-section views 
are shown (bottom). The large and small dots label the transition metal 
atom (where M is Mo and W) and the chalcogen atom (where X is S, Se 
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that trap electrons, which can tunnel between neighbouring sites with 
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with type-II band alignment. mBZ stands for mini-Brillouin zone, and Eg1 
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d, Twist-angle dependence of the normalized moiré period aM/a for both 
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Hubbard simulator

moiré (extended) Hubbard model

complex hopping Longer-range interactions

Caution: does not apply if active band is topologically non-trivial



The Hubbard model is hard

D. Arovas et al, 
ARCMP, 2022 c.f.

~60 years!



Moiré Hubbard simulator

Y. Xu et al, 2020

X. Huang et al, 2021

WS2/WSe2 bilayers

Fractional filling insulators: charge order



Emergent lattices

Triangular/honeycomb

Triangular/kagomé

The Wigner crystallization is essentially classical

What are the spins doing?



Emergent lattices

Triangular/kagomé

The Wigner crystallization is essentially classical

What are the spins doing?

H. Li et al, 2022
Electron and hole excitations 
in twisted WS2 imaged via 
graphene capping layer



Hartree-Fock studies

H. Pan + S. Das Sarma, 2022J. Zang et al, 2021

+ many more

These studies are incapable of finding spin liquids

(Much fewer studies with other techniques, not global)
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Due to the constraint, density-density interactions can be cast 
entirely into the boson sector 
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Due to the constraint, density-density interactions can be cast 
entirely into the boson sector 
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Slave rotor
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Due to the constraint, density-density interactions can be cast 
entirely into the boson sector 
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Physics: 
Phases become 
U(1) gauge fields
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Secondary MF
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Boson rotor model still non-trivial: a canonical 
model for Bose Mott and Bose crystal transitions

For a tractable calculation we carry out a secondary 
MF for the boson problem, and work to quadratic 
order in the fluctuations around it.  This is sufficient to 
obtain all necessary expectation values, and 
becomes exact in the large U limit.



Mean Field results
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All the phases

SONG, SEIFERT, LUO, AND BALENTS PHYSICAL REVIEW B 108, 155109 (2023)

FIG. 3. Mean-field phase diagrams in the µ-U plane, for nearest-neighbor repulsion V = U/4, and two representative values of next-
nearest-neighbor repulsion V ′, (a) V ′ = 0 and (b) V ′ = V/

√
3. Average particle number n̄ is a commensurate fractional number for insulating

phases, and n̄ = 1. x denotes incommensurate filling for metallic states conducting on different sublattices. (c)–(f) Schematic depiction of
various charge orders (corresponding to generalized Wigner crystals) found for correlated insulating states at fractional filling. Filled and
empty circles correspond to half-filled and doubly occupied sites. On solid lines spinons may have nonzero hopping, whereas bonds denoted
by dashed lines do not contribute to the connectivity of the lattice. (i)–(l) Schematic depiction of metallic states, with charges dispersing
on different sublattices of the parent moiré triangular lattice. Orange shading indicates bonds on which charges disperse, and empty circles
correspond to doubly occupied sites.

calculated at T = 0.01t to reflect the energetic competition
of states at zero temperature.

The mean-field phase diagrams in the plane of U and
µ (in units of t) for short-range repulsion V ′ = 0 is shown
in Fig. 3(a), and for longer-ranged repulsion V ′ = 1√

3
V in

Fig. 3(b). Various charge crystal states are illustrated in
Figs. 3(c)–3(h), and metallic states with charge dispersion on
distinct sublattices in Figs. 3(i)–3(l).

Depending on V ′, we find distinct charge-ordering pat-
terns: For V ′ = 0, there are emergent honeycomb Wigner
crystals at 4

3 and 5
3 filling [Figs. 3(e) and 3(g)] as well as half-

filling [Fig. 3(c)]. These Mott-insulating states are separated
by metallic states conducting on an emergent honeycomb
sublattice [Fig. 3(j)] or parent triangular lattice [Fig. 3(i)]. On
the other hand, for V ′ = 1√

3
V , charge orders of kagome type

at 5
4 and 7

4 filling [Figs. 3(d) and 3(h)] and stripe type at 3
2

filling [Fig. 3(f)] are more favored than order with
√

3 ×
√

3

periodicity. These states are accompanied by metallic states
dispersing on respective sublattices [Figs. 3(k) and 3(l)].

States of commensurate fractional fillings in the phase dia-
grams are all insulators with

√
Zi = 0, and the compressibility

∂n/∂µ = 0 because the charge per site ni is quantized in a
range of chemical potential µ. In these parameter regimes,
we use perturbation theory in K/U in order to obtain finite
(short-ranged) spin correlations determined by ⟨ei(θi−θ j )⟩ as in-
troduced in Sec. III C 2, with details discussed in the following
subsections.

When some of the ⟨eiθi⟩ ̸= 0, there is a finite quasiparticle
weight and the system is in a compressible metallic state
[corresponding to incommensurate particle numbers in the
phase diagram Figs. 3(a) and 3(b)]. In addition to the metallic
state corresponding to particles dispersing on the triangular
lattice (with uniform ⟨eiθi⟩ ̸= 0), we also find states where
particles disperse on a honeycomb sublattice formed by two
of the three sites in the

√
3 ×

√
3 unit cell, and kagome or

155109-8

?? Can we find spin liquids in any of these states?



VBS states
At mean field level, dimer (VBS) states always have the lowest energy

n = 1 n = 5/4

n = 4/3 BUT…
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Honeycomb

U(1) Dirac spin liquid

Unstable to monopole proliferation
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Beyond MF
• Small energy differences in MF results: we need to be 

more precise! 

• Turn to Density Matrix Renormalization Group 

• Recent advances make it possible to directly study 
substantially large Hubbard (not Heisenberg or t-J) 
models, despite larger Hilbert space 

• We are completely reliant upon the expertise of 
Hongchen Jiang (SLAC)!



Honeycomb CDW

Not a spin liquid.  Zig-zag spin order.



Inverse honeycomb CDW

Might be a spin liquid.   
No visible moments in bulk.



Weak n=5/4 CDW

Without NNN interaction, we see small charge 
order, consistent with a collinear SDW and induced 

secondary CDW order.



Kagome CDW

Consistent with a spin liquid.  Not clear what type.  



?
??



?
??



Dirac QSL
• A realization of QED3 in a spin system 
• Very often found to be energetically 

best amongst trial wave functions.

YbZn2GaO5

Xu et al, 2024

ℒ = ψ̄γμ(∂μ − iaμ)ψ + ⋯

A. Wietek et al, 2024

X.-Y. Song et al, 2019

Y. Iqbal et al, 2013



Spins and QED3

Kagome 
AF

QED3

Triangular 
J1-J2

DQCP
“Unnecessary” 
square lattice 

QCP

• Microscopic (exact) 
symmetries 

• Operator dictionary 
• Perturbations to CFT

Each system has its own:

We seek some qualitative and quantitative signatures

X.-Y. Song et al, 2019



Applied field
• Essential tuning knob available in experiment

M. Jaime et al, 2006

BaCuSi2O6

T. Suzuki et al, 2013

• Field couples via Zeeman term  
• Non-zero dM/dH usually indicates symmetry breaking

−HSz



Proof of principle

h⊥

h∥

FM PM
Ising 
CFT

R. Coldea et al, 2010



Applied field

• Field couples to conserved SU(2) charge  
• SU(2)spin is a subgroup of SU(N) symmetry of 

QED3 
• Conformal QED3 also has emergent U(1)flux 

conservation symmetry

M = Sz

<latexit sha1_base64="QpykEBjRMdAIjGn6gku23sm7ZLM="></latexit>

H = HQED3 � h 
†
�
z
 

States labeled by M and  Φ
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E = E0(M,�)� hM



Applied field
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E = E0(M,�)� hM

• Key question: what value of  minimizes E?Φ

vs

[Y. Ran et al, 2009]: Φ = ± 2ϕ0

W-H. Ko thesis

n.b. sign 
breaks TRS



LL state
• Ran et al: LL state is a magnetically ordered state!

- It breaks TRS 
- It has a fermion gap, so monopole-monopole 

correlations are long-ranged 

- Response to probe gauge field  shows that 

U(1)spin symmetry is spontaneously broken

Aμ
spin

T

h



LL state
• Ran et al: LL state is a magnetically ordered state!

- It breaks TRS 
- It has a fermion gap, so monopole-monopole 

correlations are long-ranged 

- Response to probe gauge field  shows that 

U(1)spin symmetry is spontaneously broken

Aμ
spin

T

h Can we still see signs 
of QED3 in the 
ordered phase?



Spectroscopy
• Ran et al analysis of ordered phase is entirely 

based on energies  
• QED3 theory should be valid for any small 

energy, including multiples of   
• Project: seek signs of QED3 structure on 

these scales in observables.

≪ ℏωc

ℏωc



Dynamical spin correlations

LL transitions: 
“magneto-excitons”

“Excitonic” corrections will give 
dispersion, broadening



A fully worked example

J2/J10 .241 0.5

Gapless phase Dimerized

g>0 g<0

H =
X

i

h
J1

~Si · ~Si+1 + J2
~Si · ~Si+2 �BS

z
i

i

<latexit sha1_base64="7truH2szidyYgEaV18FUvePXAtk="></latexit>

2

change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by

H =
X

i

J1

⇣
~Si · ~Si+1

⌘

�
+ J2

⇣
~Si · ~Si+2

⌘

�
� BS

z

i
, (1)

where ~Si is a spin-1/2 operator on site i. We allow for

anisotropic interactions and denote
⇣
~Si · ~Sj

⌘

�
⌘ S

x

i
S

x

j
+

S
y

i
S

y

j
+�S

z

i
S

z

j
. In the isotropic case, � = 1, and for B =

0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.

We study the transverse component �(k,!) =
S

+�(k,!) of the dynamical correlations at zero temper-
ature, namely

�(k,!) =

Z 1

�1
dte

i!t

1X

j=�1
e
�ikj

⌦
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+
j

(t) · S�
0 (0)
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k
|0i

��2 �(! � Em), (2)

where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
2 

†
R
~� 

R
, where  R

denotes two-component spinor  R = ( R", R#)T (and
similarly for  L). The low energy Hamiltonian is given
by H = H0 + V , where H0 corresponds to the non-
interacting part

H0 = v

Z
dx

⇣
 
†
R
(�i@x) 

R
+  

†
L
(i@x) 

L

⌘
(3)

(here v is the Fermi velocity), and V is the backscattering
interaction

V = �g

Z
dx ~JR· ~JL = �g

Z
dx

⇥
J

z

R
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z

L
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2J
+
R

J
�
L

+ 1
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J
+
L

⇤
.

(4)
The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents

HB = �B

Z
dxM, M = J

z

R
+ J

z

L
. (5)

In the renormalization group framework, a non-zero B

or M provides a length scale (/ 1/M) which cuts o↵
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• Bosonization and refermionization:

~Si ⇠ ~JR(xi) + ~JL(xi) + (�1)i ~N(xi)

<latexit sha1_base64="F/Q8Fdk+3aFtzRJjvxiP/NQUWLw="></latexit>

~JR/L = 1
2 

†
R/L~�  R/L

<latexit sha1_base64="DScIm7xX9KwfM10GAW6bxKATZ5o="></latexit>

Small k spin correlations ~ fermion bilinear

A. Keselman et al (2020)
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MPS methods: DMRG+TEBD

well-approximated by free 
fermion spin correlations (at 
small k)

Excitonic corrections evident 
due to interaction g (at small k)
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The QED3 case

kℓ

ω/h

Will be interesting to see 
how this structure is affected 
by excitonic corrections  



Issues

• Full treatment of gauge fluctuations: lattice gauge 
simulation? (No sign problem!) 

• Some spin correlations are represented by monopole 
operators: how to calculate these contributions? 

• Role of perturbations to the CFT Hamiltonian



Thank you


