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1 basic notions and the stability of matter

Lecture 1 (1h 15mins)
26th September 2022This is the first quarter of a course on condensed matter physics. This quarter

covers what is traditionally called solid state physics, focusing on the ele-
mentary description of crystalline solids. We will cover the mathematical
description of periodic structures, the band theory of solids, transport, and
lattice dynamics. Along the way, we will discuss aspects of topology in band
theory, quantum Hall effects, and a variety of experimental tools and the
theory behind them.

One can think of condensed matter physics in several ways. On the one
hand, it is about the physics of materials. It addresses the question of why a
given material has the properties it does, e.g. why is gold shiny and conducting
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1. basic notions and the stability of matter

and malleable, why is ceramic brittle, why is iron magnetic while aluminum
is not, why does La2−xSrxCuO4 become a high temperature superconductor,
why is mercury liquid at room temperature? We can ask for the phase diagram
of collection of molecules versus temperature a pressure. One can envision an
infinity of such questions, or varying degrees of importance.

Another goal of condensed matter physics is to learn to manipulate matter.
Semiconducting devices, which are the “brains” of all modern computing and
electrics, are the outcome of decades of study of condensed matter physics.
Today researchers are using condensed matter physics to try to develop quan-
tum devices for quantum computing. Under the umbrella of this goal is the
invention of new tools, such as scanning tunneling microscopes, atomic force
microscopes, nuclear magnetic resonance, photoemission spectroscopy, etc.
These tools use condensed matter physics but also serve to help us interro-
gate condensed matter further, and are useful both for new insights and for
applications.

Yet a third view is that condensed matter physics is about the fundamen-
tal problem of emergence. It aims to understand the mechanisms by which
large scale – macroscopic or “mesoscopic” – behaviors result from the micro-
scopic laws governing many constituents (e.g. particles) and how to describe
these large scale behaviors. Emergence includes ordering – the development
of magnetic, superconducting, electric dipole, etc. order in a system – the
phenomena of spontaneous symmetry breaking and associated universal low
energy excitations. It also includes topological phenomena, which emerge
in many condensed matter contexts. The apparently classical nature of the
macroscopic world is something that emerges, and how it does is a problem
that fits, at least in part, into condensed matter physics.

1.1 Why condensed matter is condensed

The field of “condensed matter” is ultimately about the matter around us. In
this class, we will describe matter as the combination of positively charged
nuclei and negatively charged electrons. We don’t need to concern ourselves
with the forces that hold the nucleus together (the strong force), or that govern
its decay (the weak force). Particles apart from these two types play basically
no role in condensed matter, though neutrons and other particles are often
used as probes to study it, and sometimes photons can be trapped long enough
to interact strongly with matter. Gravity is so weak that it is irrelevant (at
least in terrestrial settings) to the structure and properties of matter. What is
left is electromagnetism, which is really the sole force that we will care about,
microscopically. The other important ingredient is quantum mechanics.

I would like to start by discussing the defining property of condensed
matter, which is that it holds itself together. From the above discussion, it is
clear that what holds matter together is the electrostatic Coulomb force. Let’s
see if we can understand a bit better how this occurs.
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1.1. why condensed matter is condensed

1.1.1 The fundamental Hamiltonian

The problem is very concrete. Indeed, we can write one single Hamiltonian
which describes the vast majority of physics of condensed matter.

H =
Nn∑
i=1

P2
i

2Mi
+

Ne∑
i=1

p2
i

2me
−

Nn∑
i=1

Ne∑
j=1

Zie
2

|Xi − xj |
+

Nn∑
i<j=1

ZiZje
2

|Xi − Xj |
+

Ne∑
i<j=1

e2

|xi − xj |
.

(1)

Here lower case and capital letters refer to coordinates/momenta of electrons
and nuclei, respectively. Mi ∼ 2Zimn is the mass of the ith nucleus, Zi is its
atomic number, mn is of order the proton or neutron mass, and me is the
electron mass. This is to be treated using quantum mechanics, e.g. eigenstates
are found via

H({pi , xi , Pi , Xi})Ψ (x1, · · · xNe
; X1, · · ·XNn

) = EΨ (x1, · · · xNe
; X1, · · ·XNn

), (2)

where Pi = −i~∇Xi
, pi = −i~∇xi in the coordinate representation. I have

suppressed spin indices, but in general Ψ should also be a function of each
electron and nuclear spin (without spin-orbit coupling, this only imposes some
degeneracies and symmetry constraints on the orbital part of the wavefunction,
since spin does not explicitly enter Eq. (2)). This is a complete description
except in the presence of external and time-dependent electromagnetic fields,
and neglecting relativistic effects, i.e. spin-orbit coupling. These are not major
modifications, and Eq. (1) contains most of what will be important in this
course, though spin-orbit coupling will play a role. Eq. (1) defines the generic
many-body problem for condensed matter. It describes atoms, molecules,
solids, and liquids.

1.1.2 Born-Oppenheimer approximation

A critical fact about this Hamiltonian is that the nuclear mass is much larger
than the electronic one: the ratio of the electron to proton mass is about
1/1800. This is the only generic small parameter in the description of ordinary
matter. It is a very important one. It implies that motions of the nuclei are
much slower than those of the electrons. This justifies the Born-Oppenheimer
approximation, which says that the quantum description of the electrons can
be separated from that of the nuclei, and that, to lowest order, it consists of
neglecting the dynamics of the nuclei completely. Indeed, taking Mi →∞ in
Eq. (1), we obtain a Hamiltonian in which the Xi are classical variables, and
constants of the motion:

HBO({pi , xi ; Xi}) =
Ne∑
i=1

p2
i

2me
−

Nn∑
i=1

Ne∑
j=1

Zie
2

|Xi − xj |
+

Ne∑
i<j=1

e2

|xi − xj |
+

Nn∑
i<j=1

ZiZje
2

|Xi − Xj |
,

(3)
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1. basic notions and the stability of matter

where the last term is simply constant for fixed atomic positions. We can view
the nuclear coordinates as defining a family of quantum Hamiltonians for the
electrons. Each such Hamiltonian can be solved separately, for example to
compute the eigenstates and energy eigenvalues, which are then functions of
the classical nuclear coordinates. This is obviously a huge simplification.

Born-Oppenheimer approximation: Due to the large nuclear mass, it
is an excellent approximation to treat the atomic coordinates as fixed
classical numbers, and solve the quantum mechanical problem for
fixed atomic positions. At zero temperature this consists of finding the
ground state energy E0({Xi}) of Eq. (3). The structure is determined by
the lowest minima over these coordinates of E0({Xi}).

1.2 One atom

With this understanding, let us return to the question of cohesion of matter.
First let us recall the situation of a single atom, where Eq. (1) reduces to

H =
Z∑
i=1

(
p2
i

2mr
− Ze2

|xi |

)
+

Z∑
i<j=1

e2

|xi − xj |
, (4)

where we separated and eliminated the center of mass coordinate, and mr ≈ me

is the reduced mass (in the Born-Oppenheimer approximation, mr = me,
which is seen to be very accurate).

1.2.1 Hydrogen atom: length and energy scales

Everyone has solved the problem for Z = 1, the hydrogen atom. You may
have forgotten that there is anything surprising about this problem, but it
is good to remember that, classically, even the hydrogen atom with Z = 1 is
unstable, because an electron can spiral closer and closer to the nucleus and
continually lower its energy. The collapse of an atom is halted by quantum
uncertainty: approaching the nucleus very closely requires reduction of the
electron’s positional uncertainty, and consequently an increase in the quantum
fluctuations of its momentum. When the latter becomes too large, the kinetic
energy increases and this increase exceeds the energy gain due to the Coulomb
potential, halting the inward motion of the electron. The Bohr radius of the
hydrogen atom is determined by this balance of the kinetic energy determined
through the uncertainty relation, p2/2me ∼ ~2/mea

2, where a is the radius of
localization, which should be balanced against the Coulomb energy ∼ e2/a.
This gives a = a0 = 1/mee

2 (in cgs units), which is just the Bohr radius, equal to
about half an angstrom. This sets the basic length scale for atoms in condensed
matter. Typical inter-atomic distances are a few angstroms. The basic quantum
level spacing in the atomic problem is also familiar. The binding energy of
the hydrogen atom defines the Rydberg constant, R∞ = e2/2a0 = mee

4/2~2 in
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1.2. one atom

cgs units or R∞ = mee
4/(2(4πε0)2~2) in SI units, and it is useful to remember

R∞ ≈ 13eV. One should remember that typical energy scales for electronic
motion in solids are electron volts. It is a good idea to also remember the
conversion between eV and K: 1eV = 1.4×104K.

Scales in condensed matter: The fundamental length and energy scales
in solids are set by the competition of Coulomb potential and electronic
kinetic energy, and consequently are of the same order as the Bohr ra-
dius and binding energy (Rydberg) of the hydrogen atom. Thus typical
length scales (electron wavelengths, atomic spacings) in solids are of
order an angstrom, and typical energy scales are of order electron volts.
Since 1eV ≈ 1.4×104K, even room temperature is “low” for electrons, i.e.
the electrons are close to their ground state even at room temperature.

Hence typical electronic energy scales in condensed matter are of order
10,000K. This is significantly larger than room temperature (300K), i.e. R∞ �
kBT, where kB is Boltzmann’s constant and T ≤ 300K. Hence in most of the
matter around us, electrons can be expected to be close to their ground state.

1.2.2 Atomic collapse for fictitious bosonic electrons

The next step is the many-electron atom. This raises a new fundamental
question: how does the size of matter change as you increase the number of
charges? We are familiar with conventional matter, which is extensive: the
volume of material is proportional to the number of electrons and protons in
it, i.e. to its mass. How does this end up being the case? If one proton attracts
one electron, more protons will attract more electrons more strongly, so why
would matter not decrease in size as we add more electrons and protons? What
prevents such a many-particle collapse of matter?

In the context of a multi-electron atom, the question becomes: how does
the atomic radius depend upon the atomic number Z? In fact, it is easy to
show that avoiding many-particle collapse relies not only on uncertainty but
also on Fermi-Dirac statistics and the Pauli exclusion principle. If electrons
were bosons, then actually collapse would indeed occur! We can see this by
constructing a bosonic variational wavefunction for Eq. (4) which puts every
electron in the same, spherically symmetric, state: Ψ =

∏
i
ψ(ri), where ri = |xi |.

9



1. basic notions and the stability of matter

Then we can evaluate the variational energy

〈Ψ |H|Ψ 〉 =
4πZ
2mr

∞∫
0

drr2
(
dψ

dr

)2

− 4πZ2e2

∞∫
0

drr |ψ(r)|2

+ 8π2e2 Z(Z − 1)
2

∞∫
0

dr1dr2r
2
1 r

2
2 |ψ(r1)|2|ψ(r2)|2

1∫
−1

d cos θ√
r2
1 + r2

2 − 2r1r2 cos θ

=
4πZ
2mr

∞∫
0

drr2
(
dψ

dr

)2

− 4πZ2e2

∞∫
0

drr |ψ(r)|2

+ 16π2e2 Z(Z − 1)
2

∞∫
0

dr1dr2
r2
1 r

2
2

max(r1, r2)
|ψ(r1)|2|ψ(r2)|2. (5)

Now we choose a specific form, which is just that of the ground state of the
hydrogen atom:

ψ(r) =
1
√
πa3

e−
r
a , (6)

where a will determine the “size” of the atom and is a variational parameter.

This is a normalized wavefunction so that
∫
d3x|ψ(|x|)|2 = 4π

∞∫
0
drr2|ψ(r)|2 = 1.

We obtain then

〈Ψ |H|Ψ 〉 =
Z

2mra2 −
Z2e2

a
+

5Z(Z − 1)e2

16a
. (7)

Here the first term is the kinetic energy, the second term is the attraction of the
electrons to the nuclei, and the third is the electron-electron repulsion. The
crucial fact is that for large Z� 1, the Coulomb terms become dominant and
scale as Z2, and moreover the coefficient of the Z2 term from the attraction, −1,
is larger in magnitude than the coefficient of the Z2 term from the repulsion,
5/16 < 1, so that attraction dominates (in fact the net Coulomb effect is
attractive for all Z ≥ 1). Optimizing the energy over a, we find the atomic
radius

a =
16

11Z + 5
a0 ∼Z�1

16
11Z

a0, (8)

where a0 = 1/me2 is the Bohr radius. We see that the size of the atom decreases
linearly with the atomic number. Real atoms do not do this!!!! In real atoms, the
atomic radius actually has a complicated evolution and is much larger than
Eq. (8) for large Z.
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1.2. one atom

1.2.3 Fermi statistics to the rescue: Thomas-Fermi theory of the atom
In this discussion, we in-
troduce some basic concepts
of the electron gas, which
are important well beyond
Thomas-Fermi theory.

The difference from Eq. (8) is of course due to Fermi statistics. We cannot solve
a large atom exactly, but in fact there is a theoretical description that applies
asymptotically for large Z. This is Thomas-Fermi theory. The Thomas-Fermi
approximation is a semi-classical one, basically relying upon a large electron
density. The idea is that when the density is large (as it is in most of space
when we have a large atom), we can break up space into many small regions,
such that the electron density is approximately constant in each region. If the
density itself is large, then the number of electrons in each region is large
(� 1), and the law of large numbers applies. The density of electrons in each
region, i.e. the local density, becomes a classical variable n(x). This has two
implications. First, the kinetic energy in this region can be approximated by
the kinetic energy of a gas of uniform density (equal to the average in this
region) multiplied by the volume of the region. Second, the potential energy –
i.e. the Coulomb interaction of the electrons with the nucleus and amongst
one other – can be approximated by the corresponding electrostatic energy of
a continuous charge density.

Let us formulate the Thomas-Fermi theory of the atom now explicitly.
First we need an expression for the kinetic energy as a function of density. To
obtain this, consider a cubic box of linear size L containing N electrons, with
periodic boundary conditions – the result is actually independent of the shape
and boundary conditions of the box. The assumption is that the electrostatic
potential is approximately constant over the box, so the electrons behave as
free particles, and the potential does not play any role in the kinetic energy.
The electron wavefunctions are just plane waves,

ψk(x) =
1

L3/2 e
ik·x, k =

2π
L

(m1x̂ + m2ŷ + m3ẑ) , (9)

where mµ are integers. Taking into account the two spin states of each electron,
the many-electron ground state is obtained consistent with the Pauli principle
by putting two electrons sequentially in states beginning with k = 0 and then
into those with increasing magnitude of momentum, up to some maximum
which is known as the Fermi momentum kF. We are interested in the limit
N → ∞, L → ∞, with n = N/L3 fixed. Then the filled states form a “Fermi
sphere” with radius kF, whose volume is 4πk3

F/3. The number of discrete
momenta contained in this sphere is this volume, divided by the phase space
volume (2π/L)3. The number of electrons is twice this, hence we see that
N = 2 × 4πk3

F/3 × (L/2π)3 so that

n =
k3

F

3π2 , kF =
(
3π2n

)1/3
. (10)

The kinetic energy density T(n) = 1/L3 ∑
i
k2
i /2m is obtained by adding k2/(2m)

11



1. basic notions and the stability of matter

up for every electron, which gives

T(n) = 2

kF∫
0

dkk24π
(2π)3

k2

2m
=

2k5
F

20π2m
=

3
10

(
3π2

)2/3 n5/3

m
. (11)

The Thomas-Fermi expression for the total kinetic energy is just the integral
of this,

TTF[n(x)] =
∫

d3x
3(3π2)2/3

10m
[n(x)]5/3. (12)

This is a classical functional of the density. Note that if density is increased,
the kinetic energy density increases as a power of the density larger than one,
hence it is “expensive” to accumulate many fermions in one place. This is
a reflection of Fermi statistics and the Pauli principle: fermions cannot get
too close together. Keep in mind this is a purely statistical repulsion, not an
electrostatic one, since the result was obtained without using any Coulomb
energy. This result is enough to understand intuitively how collapse is avoided
(see the box).

Interpretation of the Thomas-Fermi result and why it avoids collapse:
The Thomas-Fermi result has a simple interpretation in terms of the
energy per particle. To get this, we simply divide the energy density
(integrand of Eq. (12)) by the density, which scales as the density to
the 2/3 power. Now if the typical spacing between electrons is `, the
density is `−3, to the Thomas-Fermi result can be re-phrased to say
that the kinetic energy per particle of a collection of fermions is at least as
large as a constant times 1/(m`2) (it is a lower bound because it came
from an estimate of the ground state energy of the electron gas). In this
form it can be anticipated by dimensional analysis because (~ = 1) the
kinetic energy operator in quantum mechanics is − 1

2m∇
2. This requires

Fermi rather than Bose statistics because only for fermions does the
Pauli principle force the typical wavenumber to be comparable to the
inverse inter-particle spacing: for bosons it can be much smaller and
the kinetic energy need not rise as ` decreases.
To understand why fermions evade collapse, you can compare this en-
ergy cost as ` decreases with the possible gain from Coulomb attraction
of electrons and nuclei. Because of Coulomb’s law, we expect that the
most the energy can be lowered by attraction is an amount proportional
to −e2/` per electron. Collapse would mean ` → 0, but in this limit, the
Thomas-Fermi kinetic energy per particle increase will overwhelm the
Coulomb gain because 1/(m`2)� e2/` when ` is sufficiently small.

Now let’s add the kinetic and potential energy to produce the Thomas-
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1.2. one atom

Fermi (TF) energy functional for an atom,

ETF[n] = TTF[n] − Ze2
∫

d3x
1
|x|

n(x) +
e2

2

∫
d3xd3x′

n(x)n(x)
|x − x′ |

. (13)

This should be minimized subject to the constraints n(x) ≥ 0 and
∫
d3x n(x) =

Ne = Z (actually we could study ionized atoms Ne , Z but we seek the neutral
case here). the total charge density via a Lagrange multiplier, we write

L[n] = ETF[n] − µ
(∫

d3x n(x) − Z
)
, (14)

and the variational equation becomes

δL
δn(x)

= C [n(x)]2/3 − Ze2

|x|
+

∫
d3x′

e2

|x − x′ |
n(x′) − µ = 0, (15)

where C = (3π2)2/3/2m. It is convenient to rewrite Eq. (15) as

C [n(x)]2/3 =
Ze2

|x|
−
∫

d3x′
e2

|x − x′ |
n(x′) + µ ≡ φ(x), (16)

where φ(x) is an effective potential. Using ∇2 1
|x| = −4πδ(x) as you learned in

electromagnetism, we can simplify Eq. (16) by taking the Laplacian of the last
two expressions:

∇2φ(x) = 4πe2 (n(x) − Zδ(x)) . (17)

Now using the equality between the first and third terms in Eq. (17), we can
express this equation entirely in terms of φ:

∇2φ(x) = 4πe2

(φ(x)
C

)3/2

− Zδ(x)

 . (18)

This is known as the Thomas-Fermi equation, and it is simple electrostatics:
just Poisson’s equation using the Thomas-Fermi relation φ = Cn2/3. We can
use spherical symmetry to write n(x) = n(r), and obtain

1
r
d2

dr2 (rφ) = 4πe2
(
φ(r)

C

)3/2

, r > 0. (19)

The condition that the total number of electrons is Z implies charge neu-
trality, which means that at infinity the potential decays faster than 1/r, i.e.
limr→∞ rφ(r) = 0. Near the origin, the bare nuclear charge dominates and
limr→0 rφ(r) = Ze2. Hence let us define ψ(r) = rφ(r)/(Ze2). It obeys

13



1. basic notions and the stability of matter

d2ψ

dr2 =
4πZ1/2e3
√
r

(
ψ(r)

C

)3/2

, (20)

and limr→∞ ψ(r) = 0, limr→0 ψ(r) = 1. Inspection of Eq. (20) shows that the
dependence on Z, e, and C can be made explicit by taking ψ(r) = ψ̃(r/R), with

1/R3/2 =
Z1/2e3

C3/2 ⇒ R = (
Z1/2e3

C3/2 )−2/3 =
C

Z1/3e2 , (21)

and
d2ψ̃

dr̃2 =
4π
√
r̃

(
ψ̃(r̃)

)3/2
, (22)

where r̃ = r/R. We can go back to express the density as

n(r) = (φ/C)3/2 = (Ze2ψ/(Cr))3/2 =
Z2e6

C2

(
ψ̃(r/R)
r/R

)2/3

. (23)

Eq. (23) shows that the size of the atom (R) decreases as 1/Z1/3 in Thomas-
Fermi theory, much more slowly than 1/Z as it would for bosons. Note however
that the density is still large for Z� 1 so the Thomas-Fermi approximation is
justified. Eq. (22) is still non-trivial to solve and Thomas-Fermi theory of the
atom has many more interesting aspects, but they would take us too far afield
and we will not explore the solution further. I would like to comment that
while the Thomas-Fermi approximation is crude, and has many deficiencies,
it is a useful concept in many ways. It is the inspiration for density functional
theory, which is the basis for modern calculations of electronic structure and
the vast majority of computational studies of materials (and widely used in
chemistry as well). It forms the basis for the theory of screening, which is very
important for understanding properties of metals. Finally, the Thomas-Fermi
approximation can actually be shown, with small modifications, to provide a
rigorous lower bound on the energy[2].

1.3 Cohesion and structure of macroscopic matter

The Thomas-Fermi treatment shows how Fermi statistics prevents collapse at
the atomic scale. It is a separate but related problem to prove that the same
mechanism leads to stability of macroscopic matter, i.e. that in a system with
N atoms, the volume grows proportionally to N when N is large, so that a
material has an intrinsic density. It is equivalent to say that the ground state
energy E of the system of Nn nuclei is proportional to Nn when Nn →∞. The
basic idea is again to show that collapse is avoided, i.e. that atoms do not
bind increasingly tightly as more of them are put together. The many-body
Hamiltonian itself contains terms which are not bounded below, and it is

14



1.3. cohesion and structure of macroscopic matter

conceivable that the energy could be made increasingly negative by pulling
electrons increasingly close to increasingly many nuclei at large Nn. This Because there is no binding

in Thomas-Fermi theory,
cohesion of solids nec-
essarily goes beyond it!
Thomas-Fermi theory is
good for the dense “cores”
of atoms, but all the
binding occurs in the outer
“halos” of atoms where
electrons are not so dense
and Thomas-Fermi theory
does not apply. Modern
density functional theory
follows in the spirit of the
Thomas-Fermi approxima-
tion but is able to capture
binding, and is the standard
way to find E0.

is exactly the regime in which Thomas-Fermi theory can be applied to the
problem, since if this occurs, the electron density becomes large. We will not
discuss this in detail, but just state some results. For a general ionic potential
V(x), the TF energy functional is

ETF[n, V] = TTF[n] +
∫

d3x V(x)n(x) +
e2

2

∫
d3xd3x′

n(x)n(x)
|x − x′ |

. (24)

For a general set of nuclei, we have from Eq. (1)

V(x) = −
Nn∑
i=1

Zie
2

|Xi − x|
. (25)

This energy functional provides a good approximation to the energy if the
electron density is large, so it can be used to describe the possibility of collapse.
More specifically, it provides a proof by contradiction that such collapse does
not occur. To summarize the logic: if collapse occurs (i.e. the atoms minimize
their energy by coming very close together as their number increases), then
Thomas-Fermi theory is a good approximation to the energy. However, Edward
Teller proved in 1962 that there is no binding within Thomas-Fermi theory. In
fact, the Thomas-Fermi energy of any assembly of atoms is always minimized
by bringing the atoms infinitely far from one another. Thus collapse does not
occur. This and other interesting things are described (and rigorously proven)
in the beautiful paper by Lieb[2].

Let us consider the consequences of these deep statements for more practi-
cal things. How are the density and in more detail the structure of a material
determined? We return to the many-body problem of Eq. (1) in the Born-
Oppenheimer approximation. For a given set of atomic (nuclear) coordinates
{Xi}, we may approximately consider the electrons in their ground state, which
defines some function E0(X1, · · · , XNn

).

In general E0(X1, · · · , XNn
) is a very complicated function, which can at

best be approximately computed numerically for specific values of the Xi . The
proof by Lieb shows that it is bounded below, as an energy should be, so that
some absolute minima exist. However, even simple functions can have many
local minima, and generally this is expected to be the case for the true energy
functions. A physicist’s or chemist’s intuition might come from considering
some limits. For example, when the nuclei are well separated, the low energy
electronic states become close to those of isolated atoms. The dependence
of the energy upon the separation results from perturbations around this
limit due to induced multipoles and their interactions. This is the famous
van der Waals interaction, and generally leads to a weak attraction between
atoms at long distances, i.e. the energy reduces as atoms are brought together
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1. basic notions and the stability of matter

from infinity. Conversely, if two nuclei approach one another very closely,
the energy will grow due to the repulsion between their positive charges.
Putting these two tendencies together, we can deduce that the minimum
energy configurations generally have some finite and non-zero separation
between nuclei. It is natural to try to encapsulate these two tendencies by
postulating that the energy is a sum of two-body interactions. However, in
general this is not the case, and a priori the minimum energy structures occur
precisely at intermediate distances between nuclei where there are no simple
approximations. Fortunately, for most purposes, we do not really need to
know how to express the full energy function, but only that it exists and so do
local minima. Such local minima comprise locally stable atomic structures.

The focus on the minima of the energy function presumes that the thermal
energy is small compared to the depth of the minima. This is generally true
due to the considerations of energy scales we discussed earlier. In particular,
we expect that varying a nuclear coordinate Xi by an amount of order a Bohr
radius will change the energy E0 by an amount of order R∞. This is a large
energy compared to kBT, hence we can expect that in equilibrium, the nuclei
will be predominantly found in configurations in which E0 is close to its
minimum. Therefore it is natural to focus on the structural ground states,
determined in principle by minimizing this function E0. There are certainly
instances where this is insufficient, for example in considering the motions of
small molecules, or for very light atoms. More generally in the consideration
of liquids, atoms are constantly in motion and occupying at least a large
manifold of low-energy states.

In this class, we will be concerned with solids, and in the thermodynamic
limit, when Ne, Nn →∞, in which case we expect to find structures that have
finite density. The simplest examples of finite density structures are periodic
crystals, which can be locally stable and may be the global minimum energy
solutions in the thermodynamic limit. In this class we will concentrate on such
structures. We will soon discuss the description of periodic solids in some
detail. For now we simply summarize these as arrangements of nuclei which
are repeated to tile space, in such a way that when the solid is displaced by
multiples of certain displacements, which define the periodicity, the structure
is unchanged. Periodic solids are spatially uniform on large scales. Their na-
ture means that local properties do not depend upon where they are measured,
at least from one repeating unit to another. They comprise materials, whose
intrinsic properties are well defined and do not depend upon the boundary,
etc. Periodicity means that only a very small amount of data is needed to
specify the locations of all the nuclei in a system of arbitrary size, and we
can indeed take a sensible thermodynamic limit in which the volume of the
system goes to infinity.

Once one assumes periodicity, modern theory is actually rather good at
predicting the structure of many solids, using computational techniques.
However, most of condensed matter physics really starts once the structure
is determined, either by theory or by experiment. Then one has reduced the
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infinite family of many body problems for the electrons to a single one, given
by Eq. (1) (at Mi = ∞) and the now-determined values of the nuclear coor-
dinates Xi . This is still a very formidable quantum problem, with extremely
rich physics. It will comprise most of this class.

2 periodic structures

Lecture 2 (1h 15mins)
28th September 20222.1 Crystal lattices

We now turn to the mathematical description of periodic structures and
crystals in particular. A periodic solid, also called a crystal, is an infinite
arrangement of nuclei which is generated by first taking a finite set of nuclei
in fixed positions, and then translating this set by all linear combinations of d
linearly independent vectors in d dimensions (bulk materials have d = 3, but
we will encounter d = 1, 2 here). The finite set of atoms is called a basis, and
the translation vectors are called Bravais lattice vectors. To specify a crystal
structure, one needs to give the Bravais lattice vectors, a1, · · · , ad , and the
locations of the atoms in the basis d1, · · · , dnb

, if nb atoms are in the basis.
Here we should label by Zi the atomic number of the atomic at site i in the
basis. Then the nuclei are located at positions given by

xi;n1,··· ,nd
=

d∑
µ=1

nµaµ + di , (26)

where n1 · · · nd ∈ Z and i = 1 · · · nb. This data is not necessarily unique:
different sets of Bravais lattice vectors and basis vectors may describe the same
solid. The set of aµ are known as primitive lattice vectors if they describe the
structure with the smallest set of basis vectors possible, i.e. with the minimal
possible nd .

The simplest crystals are those with only one atom in the basis. Then we
may by choice of origin take d1 = 0 and every atom is specified by a set of d
integers. The set of these points comprises what is called a Bravais lattice. In a
Bravais lattice all points are equivalent and connected by a lattice translation.
The more general solid may be referred to as a Bravais lattice with a basis. For
any crystal structure, we can associate a Bravais lattice in this way; i.e. it is
the lattice defined by the aµ only. One may regard a Bravais lattice also more
abstractly as defining the set of translations which leave the crystal invariant,
and this is the same association of a Bravais lattice with the crystal structure.
If the atoms are at the positions defined by Eq. (26), then a translation by a
vector in the Bravais lattice, i.e. an integer linear comination of the aµ, leaves
the set of atomic positions invariant, because it can be compensated by a
re-labeling of the integers nµ.

The unit cell is a useful concept. Thinking of the Bravais lattice as a set
of translations that leave a crystal invariant, one can define a unit cell as a
compact connected volume (in 3d) or area (in 2d) which, when translated by

17



2. periodic structures

(i)

(ii)

a1

a2

(ii) (i)

a1

a2

a3

(a) square (b) hexagonal/triangular

a1

a2

(i)
(ii)

a1

a2

(c) oblique (d) rectangular

a1a2

(e) centered rectangular

Figure 1: The five two dimensional Bravais lattices. In (b) any two of a1, a2, a3
may serve as primitive lattice vectors. In several panels, two unit cells are shaded
and labeled as (i) and (ii).

all vectors in the Bravais lattice, covers all of space, without any overlaps or
gaps (except possibly for the boundaries of the cell). A unit cell is not unique,
but there are often conventional ones. One simple way to define a unit cell is to
introduce coordinates yµ along the primitive lattice vectors: x =

∑
µ
yµaµ. One

unit cell for this Bravais lattice is defined by the volume with 0 ≤ yµ < 1. The
shape of this unit cell is a parallelogram in two dimensions or a parallelepiped
in three dimensions (marked (i) in Fig. 1). In a similar way, one may associate
the atoms in crystal structure with a basis with “fractional coordinates”, i.e.
one can rewrite Eq. (26) in the form
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2.2. bragg scattering and reciprocal space

xi;n1,··· ,nd
=

d∑
µ=1

(
nµ + xi,µ

)
aµ, (27)

where xi,µ are fractional coordinates for atom i in the basis, and we can take
0 ≤ xi,µ < 1 which we can think of as specifying each atom within one unit
cell in this form. This is typically how crystal structures are represented in
crystallographic databases and in journal papers. From the formula for the
volume of a parallelepiped, one can obtain the volume of the unit cell as

Vu.c. = |det (a1| · · · |ad)| . (28)

Another popular choice of unit cell is the Wigner-Seitz cell. This is defined
as the set of points which are closer to the origin than to any other point in
the Bravais lattice. Except at boundaries, every point in space is closest to
one Bravais lattice site, so clearly translating the Wigner-Seitz cell reproduces
all of space, and there are no overlaps between these cells. The Wigner-Seitz
cell can be constructed geometrically by drawing lines (2d) or planes (3d)
which perpendicularly bisect segments connecting the origin to all other
Bravais lattice sites (in practice, only a finite number of sites near the origin
need be considered), and assigning every which can be accessed from the
origin without crossing one of these lines/planes to the Wigner-Seitz cell. The
Wigner-Seitz cell is useful because it shows more explicitly the symmetries of
the Bravais lattice. For the hexagonal lattice, it is a hexagon, as indicated by
(ii) in Fig. 1(b).

A primitive unit cell is a unit cell with the smallest possible volume, making
it a minimal one to describe a periodic solid. Here are a few facts about primi-
tive unit cells. A primitive unit cell is generated from the above procedures if
the aµ are primitive lattice vectors. Translation of any point within a primitive
unit cell by a Bravais lattice vector generates a point which is outside the
primitive unit cell. A primitive unit cell contains exactly one exemplar for
each atom in the basis.

It is often conventional to describe crystals by non-primitive unit cells.
The most common examples are for the face-centered cubic (fcc) and body-
centered cubic (bcc) Bravais lattices. As Bravais lattices, the primitive unit cell
for each of these structures contains just one site. However, it is conventional
to describe these by cubic unit cells, which contain 4 and 2 sites, for the fcc
and bcc cases, respectively.

2.2 Bragg scattering and reciprocal space

2.2.1 Bragg scattering

How do we know that materials actually have periodic crystal structures? The
best evidence comes from x-ray scattering. The periodic structure of a crystal
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2. periodic structures

lattice diffracts electromagnetic radiation at x-ray wavelengths similarly to
the way a grating diffracts visible light. The phenomena was discovered by
William Henry Bragg and his son Lawrence Bragg in 1913. They won the
Nobel prize in physics for the discovery in 1915, and are the only father son
team to do so. We now know that any wave-like object can undergo Bragg scat-
tering from a periodic solid, but x-rays predominate because they are readily
available and their wavelength is the same order as the inter-atomic distances
in solids. The Braggs discussed their finding by interpreting a solid as exhibit-
ing sets of parallel planes upon which x-rays reflect and different reflections
interfere with one another constructively for certain angles of reflection. A
periodic crystal has in fact an infinite variety of such “Bragg planes”, and it is
easier and more modern to describe the phenomena mathematically using the
concept of reciprocal space, which we will develop below. This formulation of
scattering is due to Laue.

The basic idea is as follows, and applies to any type of wave which weakly
scatters from the atoms. A plane wave is incident on the sample with a
wavevector k0, with amplitude

ψincident(x) = A0e
ik0·x (29)

at position x. It scatters elastically, i.e. conserving its energy, off at atom
at position xi to produce an outgoing spherical wave, which is detected far
way at position y. At long distances the scattered component from this atom
behaves as

ψscattered from xi (y) = As,ai e
ik0·xi eik|y−xi |, (30)

where k = |k0| because the scattering is elastic (we do not write a power-
law prefactor which does not affect the result). Here the first exponential
represents the amplitude of the incident wave at the location of the scatterer,
and the second is the outgoing spherical wave. The scattered wave has an
amplitude As,ai which is the same for all atoms of the same type (indicated by
ai) in the crystal. It is convenient to define the outgoing wavevector measured
at the detector position by defining the direction k̂f = (y − xi)/ |y − xi |. When
the detector is far away from the sample, this direction k̂f is approximately
the same for all atoms. Then we have

ψscattered from xi (y) = As,ai e
ik0·xi eikf ·(y−xi ), (31)

where kf = kk̂f . Now we can add up the contributions from all the atoms to
the scattered wave

ψscattered(y) =

∑
i

As,ai e
i(k0−kf )·xi

 eikf ·y . (32)
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2.2. bragg scattering and reciprocal space

The sum in the parenthesis reflects wave interference, and should be taken
over all atoms in the crystal. We can define it as the scattering amplitude

A(k) =
∑
i

As,ai e
ik·xi , (33)

where the wavevector k = k0 − kf is called the scattering wavevector (the
final exponential in Eq. (32) outside the parenthesis is an overall phase that
does not depend upon the atomic positions and will become trivial in the
intensity). The scattering amplitude in Eq. (445) is a general expression for an
arbitrary arrangement of scatterers, e.g. in liquids as well as solids, or for non-
periodic solids. One can study the resulting scattered intensity using statistical
mechanics to average over thermal and quantum fluctuations according to

I(k) ∝
〈
|A(k)|2

〉
=

∑
i,j

As,ai A
∗
s,aj

〈
eik·(xi−xj )

〉
. (34)

Here the angular brackets denote thermal/quantum averages. This is the
equal time structure factor for scattering, and expressions like this appear in
many contexts.

For now we specialize to ordered atomic arrangements, so the atomic
positions may be regarded as fixed and classical, and we do not need to do any
averaging. In that case we just consider As directly. For each atom in the basis,
there is a macroscopic sum of terms involving copies of that atom generated
by translation to all other unit cells, which generates interference. Writing for
atom of type a that xi =

∑
µ
nµaµ + da, we have

A =
nb∑
i=1

As,a(i)

∑
nµ∈Z

e
ik·(

∑
µ

nµaµ)+di )
=

 nb∑
i=1

As,a(i)e
ik·di


∑
nµ∈Z

e
ik·(

∑
µ

nµaµ)
 . (35)

Apologies for the notation: in this equation i just denotes a finite sum of the
different atoms in the basis (as opposed to in e.g. Eq. (445) where it sums
over all atoms in the crystal). Note that the amplitude factors into the finite
sum, which is a smooth function of wavevector, and a sum which is infinite
in the thermodynamic limit. The latter leads to the Bragg/Laue condition on
scattering and very sharp (singular in the thermodynamic limit) dependence
of the scattering on wavevector. Specifically, this latter sum contains a huge
number of oscillating terms that will destructing interfere unless k · (

∑
µ
nµaµ) is

an integer multiple of 2π. Since the nµ are arbitrary integers, this is equivalent
to the condition that

k · aµ ∈ 2πZ, (36)

for each µ. Eq. (36) is called the Laue condition. It can be shown to be
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2. periodic structures

equivalent to Bragg’s condition. Quantum mechanically, ~k represents the
momentum transferred from the light to the sample. The Laue condition
represents in three dimensions three linear equations for three unknown com-
ponents of k, for a given choice of integers on the right hand side. So for each
choice of integers the solution is just a single point in wavevector/momentum
space (taking ~ = 1, we do not distinguish these), often called reciprocal space.
Repeating for all the integers, one obtains an infinite set of points. They form
a lattice in momentum space known as the reciprocal lattice (below we will
show it forms a Bravais lattice). When the scattering wavevector coincides
with a point of the reciprocal lattice, strong scattering is possible, and one
may see a peak in scattered intensity of a detector oriented to collect such
scattered x-rays.

However, one should note that we have not actually used any information
on the crystal structure beyond the Bravais lattice in obtaining Eq. (36). This
is because it came entirely from the second factor in Eq. (35). Hence, the Laue
condition only tells us when the scattering from each atom in the basis adds
constructively. It is still possible for contributions from different atoms in the
unit cell to interfere with one another destructively, so that sometimes the
intensity of scattered waves at a reciprocal lattice point vanishes. This is called
an “extinction”. This arises mathematically from the first factor in Eq. (35):

Ageom
k =

nb∑
i=1

As,a(i)e
ik·di , (37)

which is called the “geometrical structure factor”. For a non-Bravais lattice
this smooth function may vanish at some reciprocal lattice vectors. In general,
the intensity of a Bragg peak is determined by the absolute value squared of
this factor.

To summarize: scattered waves appear only at reciprocal lattice vectors,
and the relative intensity of different Bragg peaks, i.e. different reciprocal
lattice vectors, is calculated through a finite sum of atomic amplitudes. This
intensity may vanish for some reciprocal lattice vectors.

2.2.2 Reciprocal lattice

A full set of solutions of the Laue conditions can be obtained as follows. Define
a set of d linearly independent basis vectors bµ in reciprocal space such that

bµ · aν = 2πδµν. (38)

The factor of 2π is one common convention. This completely determines the
bµ from the aµ. Indeed one can solve this equation explicitly to obtain, in
three dimensions:

b1 = 2π
a2 × a3

a1 · a2 × a3
, + cyclic permutations. (39)
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2.3. symmetries of crystals

Now consider a scattering wavevector which is an integer linear combination
of the new vectors,

k =
∑
µ

mµbµ, mµ ∈ Z. (40)

Then one sees that

k · aν =
∑
µ

mµbµ · aν = 2πmν, (41)

which satisfies the Laue condition for every choice of mµ. Hence every
wavevector of the form of Eq. (40) exhibits strong constructive scattering.
Evidently the scattering wavevectors form a Bravais lattce in momentum space,
known as the reciprocal lattice. Every point in the reciprocal lattice defines a
momentum which can be transferred to or from a wave scattering elastically
from the crystal lattice. While we have discussed x-rays, this is also true for
neutrons, and even electrons. The idea of Bragg scattering of electrons will
lead us soon to band theory.

What do you need to know about the reciprocal lattice?

• The reciprocal lattice is a Bravais lattice, so we can apply all the concepts
we developed above to it.

• The scale of reciprocal and real Bravais lattices are reversed: if the real
space unit cell gets larger, the unit cell of the reciprocal lattice gets
smaller. Specifically, using Eq. (444) and the expression in Eq. (28), the
volume of the unit cell of the reciprocal lattice times the volume of the
(primitive) unit cell of the Bravais lattice is (2π)3 (it generalizes to (2π)d

in d dimensions):
VBZVp.u.c. = (2π)d . (42)

• The reciprocal lattice has the same symmetries as the Bravais lattice. We
can just as well identify point symmetry groups, i.e. Wyckoff positions,
with locations within the unit cell of the reciprocal lattice. These points
are conventionally indicated by capital letters (including Greek ones).
Unlike in real space (there is no natural origin in real space because we
can always just translate the whole crystal), there is a natural origin in
reciprocal space: the point k = 0, or zero momentum, has the highest
symmetry, and is often called the Γ point.

• The Wigner-Seitz unit cell of the reciprocal lattice, centered on the Γ
point, is known as the Brillouin zone, or sometimes the first Brillouin
zone. It will play a central role in the discussion of electron states.

2.3 Symmetries of crystals
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2. periodic structures

2.3.1 Symmetry operations and their composition

Bravais lattices, and crystal structures in general, can be categorized using
the powerful theoretical apparatus of symmetry. This is the subject of crys-
tallography. Symmetry considerations are very useful in solids because they
can also be applied to the electrons and to dynamical excitations of the lattice.
Recall the basic structure of symmetries in physics. A symmetry g is one
which leaves the system invariant. For a crystal structure, it consists of a space
group operation, which is a linear coordinate transformation which keeps the
metric invariant and preserves the configurations of the atoms. One way to
view this is that one starts with the full set of symmetries of free space, which
are Euclidean transformations, and selects the subset which leave the crystal
invariant. The most general space group operation g is the combination of a
translation and an O(d) orthogonal transformation, i.e. a map

g : x→ Ogx + tg , (43)

where t is a translation vector, and O is a d×d orthogonal matrix, OTO = 1d

in d dimensions. The orthogonal matrix can describe a rigid rotation, or a
reflection, or an inversion. Any operation of the form of Eq. (43) is a symmetry
of free space, and some subset of these, i.e. choices of O, t, are symmetries of a
given crystal. An operation g with Og , tg is a symmetry of a crystal if it maps
the entire set of atomic positions of a given atomic number back to itself.

Symmetries have a group structure. Two operations may be composed,
and we write symbolically g = g2g1 to represent the operation g obtained by
first performing g1 and then g2. We see that under g:

g : x→g1
Og1

x + tg1
→g2

Og2

(
Og1

x + tg1

)
+ tg2

= Og2
Og1

x + Og2
t1 + t2, (44)

which has the same form as Eq. (44), showing that a group structure exists,
and one can then read off the specific way in which the elements compose:

Og = Og2
Og1

, tg = Og2
t1 + t2. (45)

For a periodic lattice, by definition an infinite set of pure translations, i.e. g
with Og = 1d , are symmetries, where the translation vectors tg are integer
linear combinations of the three primitive vectors aµ in Eq. (26). There are
generically also pure “point group” operations in which tg = 0. Finally there
are operations in which both Og and tg are non-trivial. These can exist because
of the group composition law, i.e. one can simply apply a translation and a
point group operation in sequence, if both separately are symmetries. There
are also sometimes operations which cannot be built in that way, i.e. for which
the Og and tg are not symmetries when applied separately as pure point or
translation operations. Examples are “screw axes” and “glide planes”.
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a1

a2 a3
a1

a2

a3
a1a2

a3

(a) cubic (b) body-centered cubic (c) face-centered cubic

Figure 2: The three dimensional Bravais lattices in the cubic family

2.3.2 Classification of Bravais lattices

One can use symmetries to categorize many objects in crystallography. Perhaps
the simplest is to discuss Bravais lattices. A general Bravais lattice in d dimen-
sions is just parametrized by a set of d linearly independent d-component
vectors aµ, which is equivalent to a d-dimensional matrix with non-vanishing
determinant, and moreover we can take this determinant to be always posi-
tive by taking n1 → −n1 if necessary. Obviously this forms a continuous and
completely connected set, so in this sense all Bravais lattices are deformable
to one another. However, we can break them into symmetry classes, by declar-
ing two Bravais lattices equivalent if and only if they can be deformed into
one another smoothly without changing their symmetry. With this standard
definition, it turns out that there are 5 Bravais lattices in two dimensions:
oblique, rectangular, centered-rectangular, hexagonal, and square. A useful
(but partial) understanding of the symmetries of the Bravais lattices is through
their point symmetry: the set of all orthogonal coordinate transformations
that leave a site, e.g. the origin, invariant, forms the point group of the Bravais
lattice. Point groups can be defined more generally for any point in space
within a crystal. All such crystallographic point groups are finite groups,
and there are finitely many of them. For the 5 Bravais lattices listed above,
the corresponding point groups are C2, D2, D2, D6, and D4, respectively, in
so-called Schönflies notation. The group Cn is the group of all n-fold in-plane
rotations, i.e. rotations by 2π/n radians. The group Dn contains these rotations
and n two-fold rotations about axis in the plane (within the plane these appear
like mirror reflections across lines). Notice that the rectangular and centered
rectangular Bravais lattices share the same point group, but they are distinct
structures and cannot be transformed into one another without modifying the
symmetry. The centered rectangular lattice also contains some non-point sym-
metries like glide planes which are not present in the rectangular structure,
so point symmetry is not the full story. Sometimes people talk about “crystal
classes” or “crystal families”, in which several Bravais lattices are unified; I
do not quite understand the nomenclature, but according to wikipedia there
are 4 cystal families in 2d, because the rectangular and centered-rectangular
Bravais lattices are placed in the same “orthorhombic” family, presumably
because they share the same point group D2.
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2. periodic structures

The hexagonal and square lattices have the highest symmetries, but they
are distinct; for example, the hexagonal lattice has a C6 symmetry, while the
square lattice has a C4 symmetry. Stretching the hexagonal lattice along one
direction converts it to centered rectangular, which has lowered symmetry
compared to the hexagonal lattice, for example, the centered rectangular
lattice has only a C2 axis. One can also deform the square lattice into a
centered rectangular one by shearing it, but during the process of shearing
the symmetry will fall generally into the oblique case.

In three dimensions, there are 14 Bravais lattices, and 7 lattice systems, i.e.
7 different point groups that arise. I will not list them all but you can find a
list on wikipedia. For example, there are three Bravais lattices in the cubic
family/crystal system, which are illustrated in Fig. 2. They are the simple
cubic, the face-centered cubic (fcc) and body-centered cubic (bcc) lattices. The
fcc lattice is actually a quite common structure for pure elemental solids.

2.3.3 Space groups

Most materials have structures with a basis, which have symmetries that are
different from the Bravais lattices. A complete description of their symme-
tries is the space group. This is the full group of transformations in Eq. (43)
discussed above. Because the set of allowed translations is infinite, a space
group necessarily has an infinite number of group elements. It is however a
countably infinite and discrete group. Intuitively, it is good to abstract these
symmetry groups a bit from the explicit formulation in terms of Og and tg pa-
rameters. This is because the latter are not independent of trivial factors such
as the choice of coordinate origin or axes, or of trivial rescaling like a change
of the overall lattice constant. Such changes do indeed not change the group
multiplication relations, so do not affect the space group as an abstract group.
Hence, we should regard two different parametrizations obtained by different
such choices as defining the same space group. With this convention (please
see original references like the international tables of crystallography for a
more precise definition) all the crystallographic space groups have been found
and their properties tabulated. There are 17 two dimensional space groups,
also known as wallpaper groups, and 230 space groups in three dimensions.
There are many useful online resources for space group data. The traditional
reference are the International Tables for Crystallography, which may be found
online. Another very useful reference is the Bilbao Crystallographic Server.
Wikipedia also has articles on space groups etc.

One could spend forever on space groups. What is actually useful to know?
For a given material, one can usually find an experimentally or computation-
ally determined crystal structure, which identifies the space group by its
number, gives the lattice constant(s), and the locations of all the atoms in the
unit cell. For each space group, there are conventional choices of the Bravais
lattice vectors, and conventional definitions of the lattice constants that define
the length scale(s). Then the atomic locations are defined by “atomic posi-
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2.3. symmetries of crystals

tions”, which are given by fractional coordinates, i.e. the xi,µ in Eq. (27). When
the atomic positions are given, atoms which are present in multiple places
within a unit cell which are related by symmetries are specified only once.
This is done in a standardized way, and you can find all this data tabulated
in papers reporting crystal structures. There is also a standard file format
known as a “.cif” file (crystallographic information file) which can be read
by various software programs to display or otherwise use crystal structures.
I recommend the free software vesta, which is useful for visualizing crystal
structures.

1a

2b

3c
6d

6e
12f

Figure 3: A Kaleidoscope of Wyckoff positions for wallpaper group 17, P6mm,
which is the symmetry group of the triangular/hexagonal lattice. Some of the
Bravais lattice points of the latter are shown as gray filled circles. There are 6
sets of equivalent Wyckoff positions 1a,2b,3c,6d,6e, and 12f, which are shown
within the Wigner-Seitz cell indicated by the dashed hexagon. Note that the 6d
and 6e positions are free to move radially, and the 12f position has full freedom
of movement, so long as it does not become one of the other positions. Each set of
equivalent positions is found by taking one single point and acting on it with C6
rotations about the origin, and reflections across lines passing through the origin at
angles that are multiples of 30 degrees from the x axis.

To understand the way atomic positions are presented in such tables or
.cif files, as well as for many symmetry analyses, it is useful to introduce the
concept of a Wyckoff position. This works as follows. Pick a point inside the
unit cell. Under each symmetry operation of the crystal, this point may either
remain fixed, or transform to another point, which by suitable translation
can be brought back into the original unit cell. For any given starting point,
a finite number of points within the unit cell are generated; the number of
such points generated is called the degeneracy of the point. These points
are equivalent positions, and if there is an atom at one such position we
know the same atom must be present at all of them, hence we need specify
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only one. Furthermore, all points within the unit cell may be separated into
different families according to the set of symmetry operations which leave
that point invariant. This is a subgroup of the space group and for a given
point is called the site symmetry group of that point. All points within the
unit cell can be divided into classes, within which each point has the same
site symmetry group and the same degeneracy, and every set of points within
each class can be smoothly transformed into every other set. Each class is
known as a Wyckoff position. There are a finite set of such Wyckoff positions
for each space group, and you can find them tabulated as well in the resources
listed above. They have standardized names generally specified by a letter.
Those with the highest symmetry have the lowest degeneracy, and they may
be fixed at isolated locations in the unit cell. Positions with lower symmetry
have higher degeneracy, and these points can “slide” within the unit cell
with changing their Wyckoff class. The most general position has no special
symmetry, i.e. a trivial point group, and has the largest degeneracy. Please
see Figure 3 for an example. We will use the concept of special symmetry
positions later in the class.

3 phonons

We understand from the previous section that in the Born-Oppenheimer
approximation, the (free) energy of a solid is in principle expressed as a
function of the coordinates of all the atoms, and that the minimum (global,
or at least a deep local one) of this function is often a periodic crystal. To a
first approximation, we can regard the atoms as fixed at this minimum energy
configuration. But what happens beyond this? The atoms can of course move
away from these positions, and this can and does occur for many reasons. It
occurs in equilibrium via thermal fluctuations. It occurs even at absolute zero
temperature due to quantum zero point motion. Excitation of the electrons
away from their ground state will generally affect the atomic positions. The
solid may also be distorted as a response to external or internal stresses.

In this section, we will content ourselves with small deviations of the atoms
from their minimum energy positions. Such deviations in a periodic crystal
give rise to quantized modes of lattice vibrations called phonons.

3.1 A one dimensional chain

As a warm up, let us consider a one dimensional chain of atoms. We assume
the atoms are all identical and occupy some equilibrium positions Xn = na,
with integer n, and their actual position xn can be slightly displaced from this
by an amount un:

xn = Xn + un. (46)

Now we imagine the atoms are connected by springs with equilibrium length
a so the Hamiltonian becomes
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3.1. a one dimensional chain

H =
N∑
n=0

[
p2
n

2M
+

K
2

(un+1 − un)2
]
. (47)

Here because un differs from xn just by a constant shift, we have [un, pn′ ] =
iδn,n′ . The spring potential energy depends only on the difference of the two
neighboring displacements, because of course a uniform shift of all the atoms
does not change the energy. For simplicity we can put our atoms on a ring,
and apply periodic boundary conditions, uN = u0, pN = p0. To diagonalize
Eq. (47) we first make make a Fourier transformation,

un =
1
√

N

∑
k

eikXn ũk ,

pn =
1
√

N

∑
k

eikXn p̃k , (48)

where here we sum over k = 0, 2π
L , · · · , 2π

L (N − 1), with L = Na. The inverse
Fourier transform is

ũk =
1
√

N

∑
n

e−ikXnun,

p̃k =
1
√

N

∑
n

e−ikXnpn, (49)

from which one deduces the commutation relations

[ũk , p̃k′ ] = iδk,−k′ , (50)

where the delta-function is to be understood as periodic in k → k + 2π/a. The
Hamiltonian becomes

H =
∑
k

[ p̃k p̃−k
2M

+ K (1 − cos ka) ũk ũ−k
]
. (51)

Now we have decoupled the system into pairs of k,−k which remain coupled.
This is true except for k = 0 where the potential vanishes and we just have a
free mode H0 = p̃2

0/(2M), which describes the motion of the center of mass
(note p̃0 = 1√

N

∑
n
pn = ptot/

√
N). This is close enough to a simple harmonic

oscillator we can guess how to finish diagonalizing it, defining (for k , 0)

ak =
1
√

2

(
f (k)ũk +

i
f (k)

p̃k

)
, (52)

where f (k) = (2MK(1 − cos ka))1/4. This is canonical, so that using Eq. (50)
we obtain
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[
ak , a

†
k′

]
= δk,k′ . (53)

Using ũ†k = ũ−k and p̃†k = p̃−k , one can invert this to obtain

ũk =
ak + a†−k√

2f (k)
, p̃k = f (k)

ak − a
†
−k√

2i
. (54)

Then inserting into the Hamiltonian and collecting terms, we obtain

H =
p̃2

0
2M

+
∑
k,0

ω(k)
(
a†kak +

1
2

)
, (55)

where

ω(k) =

√
2K(1 − cos ka)

M
. (56)

We see that there are N − 1 normal modes for the N atoms, plus the center of
mass degree of freedom (which is very heavy and can be usually neglected).
The modes have the same dispersion as a classical chain. There are a few fea-
tures to note. The maximum frequency ωmax = 2

√
K/M. For small wavevector,

ka � 1, the dispersion becomes linear, ω(k) ≈ v|k|, with v =
√

K/Ma. This
represents a “sound” wave of compression along the chain, and because the
dispersion ω(k) approaches zero in this way for small k it is called an “acoustic”
mode.

In this example, we obtained a single branch of phonon modes because
we had just one degree of freedom, the displacement of the one atom along
the chain, per unit cell. In systems with more atoms per unit cell, each atom
can move independently in each dimension, so in general there are nb × d
branches of modes. We will see that in general d of them are acoustic, and
the remainder have frequencies which remain non-zero as k → 0. Those are
called “optical” modes.

3.2 Energy scales for phonons

It’s good to have an idea of the quantitative scales that appear for typical
phonons. To understand that, we need estimates for K, M and a. The mass M
is easy, just the mass of an atom, which of course varies but would be estimated
as M ≈ 2Zmp, where mp is the proton mass and Z is the atomic number. The
length scale a is typically of order an Ångstrom for most solids. The spring
constant K is the trickier one. It should be though to arise from the potential
energy of the solid, which in turn is just the Born-Oppenheimer energy of the
electronic problem, E0({Xi}). In that problem, the typical energy scales are
those of the hydrogen atom, i.e. Rydbergs, and the typical length scales are of
order the Bohr radius a0. So we can expect crudely on dimensional grounds
that K ∼ R∞/a

2
0. Hence we can estimate the maximum phonon energy as
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ωmax ∼
√

K
M
∼

√
R∞

2Zmpa
2
0

∼
√

me

2Zmp
R∞, (57)

using the fact that R∞ ∼ 1/(mea
2
0). Now the proton is about 2000 times heavier

than the electron, and for typical solids we can take Z ∼ 20 or so. Then the

factor
√

me
2Zmp

∼ 1/300 or so. This will give a value ωmax ∼ 600K. The estimate

of a Rydberg is a bit high: more often the basic scale is just a few eV rather than
13eV (probably this is due to screening). Then a typical frequency is a bit lower
than our estimate, in the range of 200K or so. Clearly the estimates are crude,
and one can envision that a more careful and complete treatment will lead to
a range of numbers that depend upon the details of the structure. Regardless,
this sort of number is a good rule of thumb: the typical range of energies of
phonons corresponds to temperatures comparable to room temperature. This
is much smaller than the typical energies of electronic excitations, which are
as we already indicated in the eV range. Usually this characteristic phonon
scale is referred to as the Debye temperature (or Debye frequency, Debye energy,
depending upon the units we choose). See the discussion in Sec. 3.7 about
phonons and thermodynamics.

Using this estimate for the Debye frequency, one can estimate a typical
acoustic velocity v ∼ aωmax ∼ 1Å × (200K × kB

~ ) ∼ 2600m/s. This is actually in
the correct range for sound speed in solids (look it up!). It is much faster than
in air.

3.3 Atomic displacements

Now we’ll present the general treatment. Let us assume the minimum of the
configurational energy is realized with a periodic structure consisting of nb
atoms per primitive unit cell. We consider a small displacement of each atom
in an arbitrary direction, modifying Eq. (26) to

xi;n1,··· ,nd
=

d∑
µ=1

nµaµ + di + ui,n1,··· ,nd
, (58)

where ui,n1,··· ,nd
is the vector displacement of the ith atom in the unit cell

indexed by n1, · · · , nd . It is convenient to trade all these unit cell indices for

just the location of the center R =
d∑
µ=1

nµaµ of each unit cell. Then we have

xi(R) = R + di + ui(R). (59)

A correct count of the number of atoms and their displacements is obtained
by including each distinct periodic Bravais lattice position R once, and again
i = 1, . . . , nb. Note that the total number of degrees of freedom (i.e. real
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3. phonons

variables needed to specify the position of all the atoms) is the dimensionality
d times the number of atoms in the basis nb times the number of unit cells.

3.4 Expansion of the energy

In the Born-Oppenheimer approximation, the energy is a function of all
the atomic coordinates, and by assumption it is minimized when ui(R) = 0.
Assuming further that it is analytic around this minimum (a generally correct
assumption), a Taylor expansion of the BO energy begins at quadratic order,

EBO[{ui(R)}] ≡ EBO[{R + di + ui(R)}] − EBO[{R + di}]

=
1
2

∑
ij

∑
R,R′

∑
µν

Vij;µν(R, R′)uµi (R)uνj (R′) + Vah[{ui(R)}], (60)

where Vah[{ui(R)}] contains anharmonic terms beginning at third order.
For many purposes the quadratic term in the BO energy suffices. It is

parametrized by the tensor Vij;µν(R, R′), which in general takes d2n2
bN2

u.c.
values (including all values of i, j, µ, ν, R, R′). We can simplify this for the case
of crystals by using the translational invariance of the solid. In particular,
if all atoms in the crystal are shifted over to the neigboring unit cell, the
energy must be unchanged. This means that one can translate the labels
R→ R + a, R′ → R′ + a, where a is an arbitrary Bravais lattice vector. In turn
it means that Vij;µν(R, R′) = Vij;µν(R − R′) is a function of R − R′ only. This
reduces the number of parameters in the quadratic energy function by a factor
of Nu.c.. Hence

EBO[{ui(R)}] =
1
2

∑
ij

∑
R,R′

∑
µν

Vij;µν(R − R′)uµi (R)uνj (R′) + Vah[{ui(R)}]. (61)

The starting point for the treatment of lattice vibrations is to truncate
Eq. (61) to quadratic order and include the kinetic energy of the atoms,

Hlatt = T̂atoms + E(2)
BO[{ui(R)}]

=
∑
i

∑
R

P2
i (R)

2Mi
+

1
2

∑
ij

∑
R,R′

∑
µν

Vij;µν(R − R′)uµi (R)uνj (R′). (62)

Notice that since we label the atoms by the discrete index i and the unit cell
label R, the momenta also have the same labels.

There is an important constraint on the couplings Vij;µν(R) due to transla-
tional invariance. This might seem strange: didn’t we already use translational
symmetry to conclude V was a function of R − R′? It’s a bit subtle, but what
we used so far was invariance under discrete translations of R. This does not
actually translate the solid, but rather permutes atoms. Instead we can make
a continuous translation of the solid by letting u

µ

i (R)→ u
µ

i (R) + δµ, where δ is
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3.5. normal modes

the translation vector. Note that for a rigid translation of the solid, the vector
δ is the same for all atoms. For such an atomic motion, there is no restoring
force. Therefore we expect that there must be a mode that has zero oscillation
frequency. We will indeed find this is the case.

Mathematically, for the energy to be invariant under a translation by an
arbitrary δ, we need to have∑

R

∑
j

Vij;µν(R) = 0. (63)

The energy should also be invariant under a rigid rotation of the solid. An
infinitesimal rotation by angle θ around the α axis takes xµ → xµ + θεαµνxν.
Applying this to the solid corresponds to taking u

µ

i (R)→ u
µ

i (R) + θεαµν(Rν +
di,ν). Independence of the energy for arbitrary small θ implies that∑

R

∑
j

Vij;µν(R)εανγ(djγ − Rγ) = 0. (64)

This must hold for arbitrary α, µ, ν and i. The conditions in Eqs. (63,64) will
be important.

3.5 Normal modes

The Hamiltonian in Eq. (62) is quadratic, so it must be equivalent to a set of
harmonic oscillators. A relatively quick way to get the frequencies of these
oscillators is to look at the classical equations of motion. These equations are
valid also in the quantum case by Ehrenfest’s theorem. Hamilton’s equations,
recalling that ui(R) and Pi(R) are conjugate variables, are

∂tu
µ

i (R) =
∂H

∂Pµi (R)
=

1
Mi

Pµi (R), (65)

∂tP
µ

i (R) = − ∂H

∂u
µ

i (R)
= −

∑
j,ν

∑
R′

Vij;µν(R − R′)uνj (R′). (66)

Taking another time derivative of the first equation and multiplying by Mi ,
one can insert the second equation to obtain

Mi∂
2
t u

µ

i (R) = −
∑
j,ν

∑
R′

Vij;µν(R − R′)uνj (R′). (67)

Now we can seek solutions of the plane wave form

u
µ

i (R, t) = ũ
µ

i e
ik·R−iωt , (68)
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which is a solution provided

Miω
2ũ

µ

i =
∑
j,ν

Ṽij;µν(k)ũνj , (69)

with

Ṽij;µν(k) =
∑

R

Vij;µν(R)e−ik·R. (70)

Eq. (69) defines a system of nb × d homogeneous linear equations (for each k)
which only have solutions for special values of the frequencies, the normal
mode frequencies ωn(k), with n = 1 . . . dnb. The number of branches of normal
modes corresponds to the number of translational degrees of freedom in a
unit cell.

If we want to get detailed, Eq. (69) doesn’t quite look like a usual eigen-
value problem because of the Mi factors. To bring it to standard form, let
ũ
µ

i = εiµ/
√

Mi . Then one obtains∑
j,ν

V̂ij;µν(k)ε(n)
jν = ω2

nε
(n)
iµ , (71)

where

V̂ij;µν(k) =
1
√

Mi

Ṽij;µν(k)
1
√

Mj

. (72)

We included in Eq. (71) the index n = 1 . . . dnb.

Note that from Eq. (62) the potential can be chosen symmetric, Vij;µν(R) =

Vji;νµ(−R) which leads to Ṽij;µν(k) =
[
Ṽji;νµ(k)

]∗
and also V̂ij;µν(k) =

[
V̂ji;νµ(k)

]∗
.

The latter means that, regarded as matrices, Ṽ(k) and V̂(k) are Hermitian. This
means the eigenvalue problem in Eq. (71) has real eigenvalues ω2

n, and that
the eigenvectors can be taken orthonormal,∑

iµ

ε̄
(m)
iµ (k)ε(n)

iµ (k) = δmn, (73)

where ε̄(m)
iµ (k) =

(
ε

(n)
iµ (k)

)∗
. They also obey the completeness relation (resolution

of the identity), ∑
n

ε̄
(n)
jν (k)ε(n)

iµ (k) = δijδµν. (74)

The positivity of the eigenvalues of V̂ is actually a stability requirement,
i.e. all the eigenvalues of V̂ should be positive semi-definite (greater than or
equal to zero) if the undeformed lattice is a local minimum.

What can we say about these modes? One important constraint comes from
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3.6. quantization

Eq. (63). Comparing to Eq. (70), we can see that implies that
∑
j

Ṽij;µν(k = 0) = 0.

One can see then that

ũ
µ

i = vµ, ↔ εiµ =
1
√

Mi
vµ, (75)

solves the eigenvalue problem at k = 0 with zero frequency, ω = 0, for any
vector vµ. There are d linearly independent components of vµ, which implies
that there are d branches of modes whose frequency vanishes as the wavevector
vanishes. Generally for these modes the frequency tends to zero linearly
in |k| (though it can depend upon direction), i.e. ωn ∼ v(k̂)|k|, so these are
called acoustic modes, by analogy with the dispersion relation of sound. The
remaining (nb − 1)d modes have frequencies which are non-zero at k = 0, and
these are known as optical modes. This is because it is these phonons that are
most easily observed by optical spectroscopy, as we’ll explain later.

3.6 Quantization

We can expect that each normal mode at each wavevector k describes a har-
monic oscillator, and should be promoted to a quantum harmonic oscillator,
i.e. corresponds to a set of equally spaced levels with energy spacing ~ωn(k).
Seeing how this happens is a standard exercise in quantum mechanics. Here
we’ll jump to the answer and the reader is welcome to check that it works.

In the quantum theory, we implement canonical commutation relations[
u
µ

i (R), Pνj (R′)
]

= iδijδµνδR,R′ . (76)

We then define the Fourier mode expansions

u
µ

i (R) =
1
√

Mi

1
√

2N

∑
n,k

1√
ωn(k)

(
anke

ik·Rε
(n)
iµ (k) + a†nke

−ik·R ε̄
(n)
iµ (k)

)
,

Pµi (R) = −i
√

Mi
1
√

2N

∑
n,k

√
ωn(k)

(
anke

ik·Rε
(n)
iµ (k) − a†nke

−ik·R ε̄
(n)
iµ (k)

)
, (77)

where N is the number of unit cells.

3.6.1 Periodic boundary conditions and state counting

Strictly speaking the plane wave form holds for periodic boundary conditions
(PBCs), and to understand the sum we should look slightly more carefully. We
define the PBCs by

R ≡ R + Li , (78)

where L1, L2, L3 are three linearly independent directions defining a paral-
lelpiped shape for the system. Since the R are Bravais lattice vectors, so must
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3. phonons

be the Li . Imposing that Eqs. (77) are independent of these translations implies
that k · Li ∈ 2πZ. This condition looks an awful lot like the one which defines
the reciprocal lattice, Eq. (36), but with the primitive vectors ai replaced by
the Li . Consequently, PBCs implies that the wavevectors in our phonon sum
should be taken from the reciprocal lattice defined by the Li . That is, we can
define

Bi · Lj = 2πδij , (79)

and the Bi are the basis vectors of this new reciprocal lattice, i.e. the allowed
wavevectors are

k =
d∑
i=1

niBi . (80)

Different choices of the integers ni give different wavevectors. Naı̈vely there is
an infinite choice of the d integers, and so an infinite set of these wavevectors.
This would seem bizarre since for our finite crystal there are a finite number of
unit cells and so a finite number of modes. The problem is resolved by realizing
that any two wavevectors whose difference is a reciprocal lattice vector of the
microscopic lattice, i.e. with k − k′ = Q with Q · R ∈ 2πZ, describe the same
mode. This is because the plane wave factors in Eq. (77) are identical for two
such wavevectors. The equivalence of wavevectors differing by a reciprocal
lattice vectors is something we will run into over and over again. It arises
generally for waves moving in a periodic system. At a more mathematical
level, the wavevector itself is not uniquely defined, so we might call it a “quasi-
wavevector”. In the quantum theory, wavevectors and momenta are identified,
so this same notion will apply to momentum, becoming “quasi-momentum”
inside the crystal. We will return to this in Sec. 5.1 in more depth when we
discuss electronic wavefunctions.

Here, the equivalence means that if we include the infinite set of ni in
Eq. (80), we will count every physical mode an infinite number of times! So to
do this properly, we should count each inequivalent mode only once. That is,
when we sum over k, or equivalently integers ni in Eq. (80), we should pick
a set of these wavevectors so that translating any wavevector by a reciprocal
lattice vector Q is always outside the set. There are a priori an infinite number
of different ways to do this. Any particular choice is just a convention. A
common choice is to choose our k to be those points which are closer to the
origin than to any other reciprocal lattice vector. This defines a set which is
actually the Wigner-Seitz cell of the reciprocal lattice, that we discussed in
Sec. 2.2.2, and is called the 1st Brillouin zone.

So we conclude that a good definition of the momentum sums in Eqs. (77)
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is, more explicitly ∑
k

=
∑
k∈BZ

k·L∈2πZ

=
∑
n1···nd

|
∑
i
niBi |<|

∑
i
niBi−Q|∀Q,0

. (81)

This is obviously a bit nasty to write which is why we usually do not do it
explicitly.

If one wants something more explicit and also simple, we can consider a
special case. For example, suppose we take Li = Niai with integers Ni , where
ai are the primitive lattice vectors. Then we have just Bi = bi/Ni . A unique
set of inequivalent wavevectors is then found by taking 0 ≤ ni < Ni , or, for
Ni odd, more symmetrically, −Ni/2 < ni < Ni/2 (for Ni even we should use
instead −Ni/2 ≤ ni < Ni/2).

Regardless of the choice of wavevectors, the number of terms in the wavevec-
tor sum should be fixed, and equal to the number of unit cells in the solid.
This correctly counts the number of degrees of freedom in the crystal. One
can check the above logic by recalling that the volume of wavevector space
corresponding to a unit cell in reciprocal space is just (2π)d/vu.c., where vu.c. is
the volume of the real space unit cell. The volume per allowed wavevector de-
fined via Eq. (80) is the volume of the parallelpiped defined by B1 · · · Bd . This
is just the volume of the fictitious reciprocal space defined by the Li , and so in
turn the volume per allowed wavevector is (2π)d/V, where V is the volume of
the crystal defined by the Li . Dividing the volume of the reciprocal space unit
cell by the latter volume gives the number of inequivalent wavevectors, which
is just V/vu.c. = N, the number of unit cells.

I want to emphasize that most of the time we are interested in large
samples containing many unit cells, and so only in those properties which are
associated with the bulk, and not sensitive to details of the crystal shape. If
one takes the dimensions Li large, the details of the shape drop out and one
achieves the thermodynamic limit as they become infinite. In fact, for a real
finite crystal, we of course do not have periodic boundary conditions! Please
take it as a matter of faith that bulk properties are not affected by the choice
of boundary conditions. Apologies for the apparent detour into numerology,
but it’s useful to know this stuff, and it will come up again when we talk about
electron bands.

3.6.2 Back to physics

Eq. (77) generalizes the undergraduate expression for the position and momen-
tum operators in terms of ladder operators in the simple harmonic oscillator.
One can check that with these definitions, the a, a† operators are canonical,
i.e. hermitian conjugates of one another, and satisfy[

ank, a
†
n′k′

]
= δnn′δkk′ ,

[
ank, an′k′

]
=

[
a†nk, a

†
n′k′

]
= 0. (82)
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One can now insert Eqs. (77) into Eq. (62) and carry out the sums over R and
i, j, µ, ν. One finds eventually the standard result

Hlatt =
∑
nk

~ωn(k)
(
a†nkank +

1
2

)
. (83)

Here we restored the factor ~ = 1 for appearance’s sake.

A word of interpretation: in the theory of the quantum harmonic oscillator,
the operator Nnk ≡ a†nkank is found to have non-negative integer eigenvalues
Nnk = 0, 1, 2, . . .. Consequently it can be considered a “number” operator. Each
term in Eq. (83) is just the zero point energy of that mode plus the energy
~ωn(k) times the number operator for that mode.

This energy has a natural particle interpretation. We can think of the total
energy as that of a system of Nnk particles of type n and wavevector k (plus a
zero point contribution which is the energy in the absence of any particles).
The ground state |0〉 is the eigenstate with Nnk = 0 for all n, k, and is called
the vacuum. In the particle picture it is the state with no particles. Acting on
the vacuum with raising operators a†nk “creates” particles. For example,

|ψ〉 = a†nka
†
n′k′ |0〉, (84)

is a state with two particles, with discrete quantum numbers n, n′ and wavevec-
tors/momenta k, k′. These particles are quantum mechanically identical, be-
cause there is a just a single quantum state with Nnk = k particles when k > 1,
for example when n′ = n, k′ = k above this is a unique state. Moreover, these
particles are bosons, because the creation operators commute, which means
that (1) permuting their order does not matter and (2) one can have an arbi-
trarily large number of particles in each state. This is nothing but the “second
quantized” Hamiltonian for identical bosons. We call these quantum particles
associated with lattice vibrations phonons.

3.6.3 Continuum elasticity

It is useful to keep in mind a particular case of a deformed crystal, in which
the displacements are not only small but also slowly varying in space. These cor-
respond to strains, and describe the way in which a solid responds to relatively
small forces exerted over long distances. For example, if pressure is applied to
the top and bottom surfaces of a cube of solid, it will typically compress in the
vertical direction and expand horizontally. Such slowly varying deformations
are the subject of continuum elasticity.

In this case, one can regard ui(R) as a continuum function of position R,
which is a smooth interpolation of the discrete values at which it is really
defined. Moreover for such smooth deformations all the atoms in the unit
cell move together, so we can take ui(R) = u(R + di), with a single function
u(r) rather than a separate one for each atom in the unit cell. In turn one can
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3.6. quantization

define derivatives of this smooth displacement function,

uνj (R′) ≈uν(R′ + dj ) ≈ uν(R) + (R′γ − Rγ + d
γ

j )∂γu
ν(R)

+
1
2

(R′γ − Rγ + d
γ

j )(R′λ − Rλ + dλj )∂γ∂λu
ν(R) + O(∂3u), (85)

when |R′ − R| is not large.

Now we can insert this into the expression for the lattice potential energy

E(2)
BO[{ui(R)}] =

1
2

∑
ij

∑
R,R′

∑
µν

Vij;µν(R − R′)uµ(R)
[
uν(R) + (R′γ − Rγ + d

γ

j )∂γuν(R)

+
1
2

(R′γ − Rγ + d
γ

j )(R′λ − Rλ + dλj )∂γ∂λuν(R)
]
. (86)

Now change summation variables R′ → R − R′. One obtains

E(2)
BO[{ui(R)}] =

1
2

∑
µν

∑
R

[ ∑
ij

∑
R′

Vij;µν(R′)

 uµ(R)uν(R)

+
∑
γ

∑
ij

∑
R′

Vij;µν(R′)
(
d
γ

j − R′γ
) uµ(R)∂γuν(R)

+
1
2

∑
γλ

∑
ij

∑
R′

Vij;µν(R′)
(
d
γ

j − R′γ
) (
dλj − R′λ

) uµ(R)∂γ∂λuν(R)
]
. (87)

The first line above vanishes due to the condition of translational invariance,
Eq. (63). In the remaining terms, since the displacement fields are presumed
slowly varying, we can reply the summation over R by an integral,

E(2)
BO[{ui(R)}] ≈ 1

2vu.c.

∫
ddR

[∑
µνγ

vµνγuµ∂γuν +
∑
µνγλ

vµνγλuµ∂γ∂λuν

]
, (88)

where

vµνγ =
∑
ij

∑
R′

Vij;µν(R′)
(
d
γ

j − R′γ
)

=
∑
ij

(
d
γ

j − i
∂
∂kγ

)
Ṽij;µν(k)

∣∣∣
k=0

,

vµνγλ =
1
2

∑
ij

(
d
γ

j − i
∂
∂kγ

) (
dλj − i

∂
∂kλ

)
Ṽij;µν(k)

∣∣∣
k=0

, (89)

These two terms can be simplified by using the invariance of the crystal energy
under rigid rotations of the solid, Eq. (64). I invite the student to verify that
this implies first that the term proportional to vµνγ vanishes. By integration
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by parts, the last term in Eq. (88) can be written in terms of gradients only,

E(2)
BO[{ui(R)}] ≈ −

∑
µνγλ

1
2vu.c.

∫
ddR vµνγλ∂γuµ∂λuν

=
∑
µνγλ

1
2

∫
ddR cµνγλuγµuλν, (90)

where

uµν =
1
2

(
∂µuν + ∂νuµ

)
(91)

is the symmetric strain tensor. The passage from the first to the second line
requires imposing rotational invariance. Indeed, invariance under rotations
forces the energy to depend on displacements only through the strain tensor
in the elastic limit. This is a well-known result from classical elasticity. It is
easily understood, by realizing that an infinitesimal rotation corresponds to a
configuration

u
rigidrot
µ = θεγµνxν, (92)

for a rotation by angle θ� 1 around the γ axis. The symmetrized strain tensor
is invariant under stuch rotations. We do not give a formula for the elastic
tensor cµνγλ.

The final form in Eq. (90) gives the elastic potential energy as a quadratic
form in the strain tensor. Because each strain tensor is linear in derivatives,
the elastic energy in Fourier space is quadratic in wavevector. This evinces
explicitly the linear in wavevector behavior of the acoustic mode frequencies
(recall that for a SHO the spring constant of the quadratic potential = Mω2).
The elastic description captures the acoustic modes but not the optical ones.

The general elastic tensor cµνγλ is a material property which is constrained
by crystal symmetries: the lower the symmetry of the crystal, the larger the
number of independent values of the these coefficients, called elastic moduli.
Details can be easily figured out or found in books. It is probably noteworthy
that the elastic form of the potential energy holds even for non-crystalline
solids, i.e. amorphous solids, rubber, glasses, etc., in which the atoms do not
occupy a regular periodic array. Perhaps surprisingly, an amorphous solid
actually has less independent elastic moduli – only two are needed to describe
a completely amorphous solid. This is because typical non-crystalline solids
are statistically isotropic: because of their irregularity, there are no preferred
directions in space if one considers a large volume of the solid. We won’t
explore this further here.
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3.7. thermodynamics

3.7 Thermodynamics

Phonons make an important contribution to the heat capacity of solids. The
heat capacity is a thermodynamic quantity, derived from the free energy, or
partition function, so it depends only upon the energies of the levels and
not on any other quantum numbers like wavenumber/momentum. Hence it
is convenient to introduce the density of states (DOS) G(ε), which counts the
density of phonon levels in an infinitesimal interval around the energy ε:

G(ε) =
∑
n

∑
k

δ(ε − ~ωn(k)). (93)

The integral
ε2∫
ε1

G(ε)dε gives the total number of states with energy between

ε1 and ε2. In the large volume limit, the discrete wavevectors become very
tightly spaced, and the sum above can be converted to an integral

G(ε)→ Vg(ε), (94)

g(ε) =
∑
n

∫
BZ

ddk

(2π)d
δ(ε − ~ωn(k)), (95)

using the fact, obtained in Sec. 3.6.1, that the volume per allowed wavevector
is (2π)d/V. The quantity g(ε) gives the density of states per unit volume, and
is an intrinsic quantity.

What does g(ε) look like? We know that it is by definition positive semi-
definite. It is zero for ε < 0, and also when ε > εmax = maxnk εn(k), i.e. above
the maximum of the phonon bands. When the energy is small but not zero,
ε� εmax, the contributions to the density of states come only from the acoustic
phonons, which are the ones which persist to low energy. In this range, for the
d acoustic modes, we can substitute ωn(k) = vn(k̂)|k|, which gives

g(ε) ∼
d∑

n=1

∫
BZ

ddk

(2π)d
δ(ε − ~vn(k̂)|k|)

∼
d∑

n=1

∞∫
0

dkkd−1
∫
dΩ

(2π)d
δ(ε − ~vn(Ω)k) =

d∑
n=1

εd−1

(2π)d

∫
dΩ

(~vn(Ω))d
. (96)

In the second line we changed to spherical coordinates and collapsed the delta
function. We see that the result is proportional to εd−1, so the density of states
vanishes as a power law on approaching zero energy (in d > 1). In a simple
model with mode-independent and angle-independent velocity, vn(k) = v,
one has

gDebye(ε) =
dSd

(2π~v)d
εd−1, (97)
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where Sd is the surface area of the d-dimensional sphere. A crude approxi-
mation to the full DOS is to simply keep the power law form of Eq. (97) up
to some maximum frequency, and then set g(ε) = 0 above that. This model is
called the “Debye” model, and the maximum frequency the Debye frequency,
ωD. More generally, one loosely speaks of a Debye frequency as giving the
scale for the width of the phonon energy spectrum.

One should also note that the total integral of the density of states is
fixed, because the total number of phonon states is just the total number of
translational degrees of freedom, i.e.

∫
dεG(ε) = Nu.c.dnb, where Nu.c. is the

number of unit cells in the solid. This means that∫
dεg(ε) =

dnb
vu.c.

, (98)

where vu.c. is the volume of a primitive unit cell.

The above properties of the phonon DOS are general. Specific crystals will
have other notable features such as peaks and edges in g(ε).

Armed with the DOS, we can readily obtain the internal energy U and
internal energy density u of the phonon system using Bose-Einstein statistics:

u =
U
V

=
〈H〉
V

=
∫

dε g(ε)εnB(ε), (99)

where

nB(ε) =
1

eβε − 1
(100)

is the Bose distribution function, with β = 1/(kBT). Note that because there
is no reason to impose conservation of the number of phonons, there is no
chemical potential for phonons.

Taking the temperature derivative, we obtain

cv =
∂u
∂T

=
∫

dε g(ε)
ε2

4kBT2 sinh2 βε

2

. (101)

At low temperatures, When kBT � ~ωD, we can approximate g(ε) ≈ Aεd−1,
with A from Eq. (96) or Eq. (97). Then we can change variables to x = βε to
obtain

cv ∼
A
4
kd+1

B Td

∞∫
0

dx
xd+1

sinh2 x
2

. (102)

The integral is just a number, so we see that the low temperature specific
heat is proportional to Td . For the Debye model in three dimensions, one has
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A = 3
2π2

1
(~v)3 and

∞∫
0
dx x4

sinh2 x
2

= 16π4/15, so we find

cv ∼
2π2

5~3v3 k
4
BT3. (103)

The T3 behavior of the phonon heat capacity is a robust property of crystalline
solids at temperatures below the Debye scale.

3.8 Other phenomena involving phonons

Phonons are involved in many other physical effects in solids. Some are obvi-
ous, because they explicitly require the lattice to move:

• Thermal expansion: As temperature varies, a solid expands or contracts:
in most cases solids grow in volume with increasing temperature, but
not always. This is a consequence of anharmonic (i.e. cubic and higher)
terms in the energy of lattice deformations, and the competition of
energy versus entropy.

• Elasticity: We already saw in Sec. 3.6.3 that the long wavelength acoustic
modes are just the elastic degrees of freedom.

• Ferroelectricity: Sometimes a crystal undergoes, as a function of tem-
perature, a phase transition in which the crystal structure changes. If in
this transition an electronic dipole moment develops, it is called ferro-
electricity. Ferroelectricity often occurs by a particular mode of lattice
distortion becoming on average non-zero.

Another important role of phonons is closely related to their thermodynamics:

• Thermal conductivity: A propagating phonon is a particle that moves
at some velocity and carries some energy, so it contributes to energy
currents. Indeed, usually phonons dominate the thermal conductivity,
which is defined as the coefficient of proportionality between a heat
current and (minus) an imposed temperature gradient. Specifically jQ
the thermal current density is given as jQ = −κ∇T, which actually
defines a matrix of thermal conductivities κ.

Phonons can be measured by various techniques. Traditionally, scattering
measurements determine their dispersion relations:

• Infra-red absorption: Infrared radiation has an energy comparable to
typical phonons, but such light has very long wavelength. Thus en-
ergy and momentum conservation require that an infrared photon can
be (sometimes) absorbed to create an optical phonon (not an acoustic
phonon, which has zero energy in the long-wavelength limit). This is
why optical phonons are called optical. Only infrared active phonons
couple efficiently to light in this way, which places some symmetry
constraints.
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• Light scattering: Electromagnetic radiation with frequencies in the
optical range are too high energy to be absorbed by creating a single
phonon, but they can scatter off a solid and exchange some energy with
phonons. This is called Brillouin and Raman scattering.

• Neutron scattering: Neutrons are readily available with energies and
momenta that match phonons reasonably well. So a neutron scattering
off a solid can exchange momentum and energy with it and create or
absorb a phonon, which allows one to deduce the phonon dispersion
relation if you track carefully the changes of energy of the neutron.

Phonons also play an important role sometimes in electronic physics. They
can interact with electrons, which is an important source of electronic scat-
tering (see Sec. 7.2.2), and can induce new physics such as superconductivity
and charge density waves.

4 from many electrons to one

Now that we’ve discussed the structure of crystals, we are ready to come back
to understand the electrons within them. If the nucleii are in a fixed periodic
arrangement, then the quantum problem for the electrons from Eq. (3) reduces
to

He =
Ne∑
i=1

[
|pi |2

2m
+ V(xi)

]
+

∑
i<j

U(xi − xj ), (104)

where U(x) = e2/ |x| is the repulsive electron-electron interaction, and V(x) is
the (attractive) one-electron potential due to all all the ions,

V(x) =
Nn∑
j=1

−
Zje

2

|x − Xj |
. (105)

It will be helpful at times to define the three terms in the Hamiltonian as
operators, i.e. to write Eq. (104) as

Ĥ = T̂ + V̂ + Û, (106)
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where

T̂ =
∑
i

|pi |2

2m
, (107)

V̂ =
∑
i

V(xi), (108)

Û =
∑
i<j

U(xi − xj ). (109)

It is particularly useful to note that the 1-electron potential term can be
expressed in terms of the density operator,

V̂ =
∫

d3x V(x)n̂(x), (110)

where

n̂(x) =
∑
i

δ(x − xi). (111)

The one-electron potential has the important property that it shares the
periodicity of the crystal, to wit

V(x + R) = V(x), R ∈ B.L., (112)

where R is any vector in the Bravais lattice. This is equivalent to the three
linearly independent conditions

V(x + aµ) = V(x). (113)

The full Hamiltonian in Eq. (104) shares this periodicity, because the electron-
electron interaction is invariant under any translation.

In this section, we will motivate the replacement of the full Hamiltonian
in Eq. (104) by an approximate one with the same form, but without inter-
actions between electrons, i.e. with U(x) = 0, and with some “renormalized”
V(x), which is not simply the sum of pure atomic 1/r Coulomb attractions.
Indeed, the astute among you probably realized that for an infinite crystal,
the sum in Eq. (105), which involves all negative terms, diverges, because
the 1/r potential does not decay rapidly enough at long distances. The full
Hamiltonian, including electron-electron repulsion, is well-behaved because
the negatively charged electrons screen the positive nuclear charges, and aver-
aged over a volume larger than the unit cell, the full system is approximately
neutral. Hence to capture this physics, and restore the finite nature of the
local electrostatic potential, we must include the potential due to the electrons
themselves.

The challenge of doing this is that the electrons in our treatment are
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fully quantum-mechanical, and so their potential is not fixed, because their
positions are not fixed. Hence the full electrostatic potential is not a classical
variable, and has quantum fluctuations and quantum uncertainty. To deal
with this, we must make some approximations. The premise, on which much
of solid state physics is based, is that in some sense replacing this fluctuating
potential by its average is a good starting point. This is an example of a “mean
field theory”, in which a fluctuating field is replaced by its average (a word
of caution: the term “mean field theory” is used in many different ways in
physics, and I am using it loosely here). I’d like to outline here two mean field
approaches.

4.1 Hartree-Fock theory

This subsection is optional.
Hartree-Fock is a very com-
mon theoretical method, but
not essential to understand-
ing the flow of the course.

The Hartree-Fock theory dates back to very early days of quantum mechanics.
Normally the Hartree-Fock approximation is formulated as a variational
one for the ground state. One takes as a variational wavefunction a Slater
determinant of single-particle states ψa(χ), where a labels the single-electron
states, and we defined a combined space/spin coordinate χ = (x, σ), with
σ = ±1

2 =↑ / ↓ is a spin-1/2 index:

Ψ (χ1, · · · ,χN) =
1
√

N!
det


ψ1(χ1) ψ1(χ2) · · · ψ1(χN)
ψ2(χ1) ψ2(χ2) · · · ψ2(χN)

...
...

ψN(χ1) ψN(χ2) · · · ψN(χN)


=

1
√

N!

∑
a1···aN

εa1···aN
ψa1

(χ1) · · ·ψaN
(χN), (114)

where here ε is the fully antisymmetric Levi-Civita symbol. The wavefunctions
ψa(χ), which should form an orthonormal set (for Ψ to be normalized) can
be considered variational parameters. Alternatively, we can regard Ψ as the
ground state of an at this point arbitrary single-electron Hamiltonian, and it
is this single-electron Hamiltonian which is to be varied, i.e. we seek the best
possible single-electron Hamiltonian which approximates the full one. The
two views can be seen to be equivalent as follows. Consider the variational
Lagrangian for the ground state energy,

L = 〈Ψ |He|Ψ 〉 −
∑
a

εa(〈ψa|ψa〉 − 1), (115)
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4.1. hartree-fock theory

with Lagrange multipliers εa introduced to enforce normalization of the states.
First we can evaluate the one-electron terms in the variational energy as

〈Ψ |
∑
i

[
|pi |2

2m
+ V(xi)

]
|Ψ 〉 = N〈Ψ |

[
|p1|2

2m
+ V(x1)

]
|Ψ 〉

=
∑
a

〈ψa|
|p|2

2m
+ V(x)|ψa〉. (116)

In the first line, we use the antisymmetry of the bra and ket (which means
the full expression is symmetric in permutations) to note that every term
in the i sum gives an equal contribution. Then the equality in the second
line follows by inserting Eq. (114) for both the bra and ket in Eq. (116), and
noting that the only non-vanishing terms are those in which the permutation
of indices of ψa for the bra and ket match, because otherwise the orthogonality
of the single-particle states gives zero. There are N! such terms, which can be
divided into (N − 1)! terms in which the first particle (with argument χ1) is
in state 1, another (N − 1)! terms in which the first particle is in state 2, etc.
This gives each of the terms in the sum on the second line, with coefficient
N × (N − 1)!/N! = 1 for each term.

For the interaction term, we have

UHF ≡ 〈Ψ |
∑
i<j

U(xi − xj )|Ψ 〉 =
N(N − 1)

2
〈Ψ |U(x1 − x2)|Ψ 〉 (117)

=
∑
a<b

[〈ψaψb|U(x1 − x2)|ψaψb〉 − 〈ψaψb|U(x1 − x2)|ψbψa〉]

=
1
2

∑
a,b

[〈ψaψb|U(x1 − x2)|ψaψb〉 − 〈ψaψb|U(x1 − x2)|ψbψa〉] .

Here we applied the same line of argument as before, except that when
including the expansion of the two Slater determinants, only those single-
particle states for coördinates 3 · · ·N need to match between the bra and ket.
This means that the two first states can be the same in the bra and ket, or
they may be exchanged, and in the latter case there is a relative minus sign.
In going from the second to the third line we use the fact that the expression
inside the sum is symmetric and vanishes if a = b. The notation with two
|ψaψb〉means that the first state in the ket (here a) has argument χ1 and the
second state in the ket (here b) has argument χ2. So explicitly

〈ψaψb|U(x1 − x2)|ψcψd〉 (118)

=
∑
σ,σ′

∫
d3x1d

3x2 ψ
∗
a(x1, σ)ψ∗b(x2, σ

′)U(x1 − x2)ψc(x1, σ)ψd(x2, σ
′).

The presence of the two terms in Eq. (117) is a signature of Fermi-Dirac
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4. from many electrons to one

statistics, with a tell-tale minus sign. These terms are important enough that
they have names: the first, positive, term is called the Hartree, or direct term,
while the second, negative, term is called the Fock term, or exchange term.

Putting all the terms together, we get the Langrangian

L =
∑
a

〈ψa|
|p|2

2m
+ V(x)|ψa〉 +

1
2

∑
a,b

〈ψaψb|U(x1 − x2) (|ψaψb〉 − |ψbψa〉)

−
∑
a

εa(〈ψa|ψa〉 − 1). (119)

Now we can (functionally) differentiate this with respect to 〈ψa| to obtain(
|p|2

2m
+ V(x) − εa

)
|ψa〉 +

∑
b

〈ψb(2)|U(1 − 2) (|ψaψb〉 − |ψbψa〉) = 0. (120)

The final terms may be a bit abstract, since the overlap integrals define the
matrix element there is not written. Let us write out the form more explicitly:( |p|2

2m
+ V(x) − εa

)
|ψa(x, σ)〉

+
∑
b

∑
σ′

∫
ddx′ ψ∗b(x′ , σ′)U(x − x′) (ψa(x, σ)ψb(x′ , σ′) − ψb(x, σ)ψa(x′ , σ′)) = 0.

(121)

It helps to separate the direct and exchange terms. One can do this by defining
the direct and exchange potentials:

Ud(x, σ) =
∑
b

∑
σ′

∫
ddx′ U(x − x′)|ψb(x′ , σ′)|2, (122)

Uex(x′ , x, σ′ , σ) = −
∑
b

U(x − x′)ψ∗b(x′ , σ′)ψb(x, σ). (123)

Then Eq. (121) becomes(
− ∇

2

2m
+ V(x) + Ud(x, σ)

)
ψa(x, σ) +

∑
σ′

∫
ddx′ Uex(x′ , x, σ′ , σ)ψa(x′ , σ′) = εaψa(x, σ).

(124)

You can see this appears like a single-particle Schrödinger equation for the
states ψa, in which the interaction induces the additional direct and exchange
“potentials”. The Lagrange multipliers have taken on the role analogous to
single-particle energies. The direct/Hartree potential has a rather simple
interpretation: it is the electrostatic potential that would be induced on an
electron by the electronic charge density, regarding that latter as a cloud with
(number) density n(x) =

∑
b,σ′
|ψb(x′ , σ′)|2. So the Hartree term realizes the first
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4.2. density functional theory

goal of including the electronic contribution to the electrostatic potential.
The Fock/exchange potential goes beyond this. It can be of the opposite

sign to the direct potential, and has the complication of being non-local.
Both the direct and exchange potentials are implicitly dependent (through
Eqs. (122)) on the full set of Hartree-Fock states. So generally, if they are to be
solved, the Hartree-Fock equations are usually solved iteratively. One guesses a
set of wavefunctions, computes the direct and exchange potentials, then solves
Eq. (124) to obtain a new set of wavefunctions, and repeats until convergence
is achieved. In principle, one should try this with different starting points, as
the Hartree-Fock equations have multiple solutions, and one wants to find the
one with the lowest total energy. We can find a simple expression for the total
energy:

EHF = 〈Ψ |H|Ψ 〉 =
∑
a

εa −
1
2

∑
a,b

〈ψaψb|U(x1 − x2) (|ψaψb〉 − |ψbψa〉) . (125)

The first term in the total energy is what it would be if the system was really
non-interacting, and the parameters εa were true single-particle energies.
There is however a correction due to interactions, which is, a little surprisingly,
of opposite sign to the original term in Eq. (117) (basically this is because we
have already over-counted the interaction energy in the single-particle levels).
I leave the derivation as an exercise to the reader.

At this point, instead of pursuing Hartree-Fock theory further, let us as-
sume we have solved the equations, so that the direct and exchange potentials
are known. Importantly, if the crystal is periodic, then we expect that a likely
outcome is that the many-body wavefunction has the same periodicity, and
in particular so does the charge density. Then we expect that the direct and
exchange potentials we find are also periodic. This means that Eq. (124) de-
fines an effective quantum mechanics problem of a particle in a (non-local)
periodic potential. That is the problem we will turn to soon.

4.2 Density functional theory

By far the most common approach to actually deal with the interacting elec-
tron problem in materials is density functional theory. It is based on an idea
of Hohenberg and Kohn, which we now explain. In a way it is a very formal
result, but it led to the development of practical algorithms for computing
properties of realistic materials. These methods have their limitations, but
definitely are useful.

4.2.1 Hohenberg-Kohn theorems

The first idea of Hohenberg and Kohn is to try to work in terms of the electron
density, which is easier to think about physically. If we look at Eq. (104), we
can see that the differences between different types of matter, e.g. different
materials, as well as different molecules, are all determined by specifying the
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4. from many electrons to one

potential V(x). For example, the difference between lead and gold, for example,
is just the choice of potential. Given a potential, one can in principle solve for
the ground state wavefunction |Ψ 〉, which of course very complicated, but it
is determined by V. Once one has this wavefunction, one can then calculate
the density, i.e. the expectation value n(x) = 〈Ψ |

∑
i
δ(x − xi)|Ψ 〉. Hence n(x)

is determined from V(x). What Hohenberg and Kohn showed, first of all, is
that this relation is true in the other direction: that a given density profile
determines the potential V(x). Since the potential determines the ground
state wavefunction, we conclude that the density determines the ground state
wavefunction. This can be shown via proof by contradiction. Suppose there
are two different potentials, V1 and V2 (not trivially different by a constant),
which have therefore two distinct ground states, but which give the same
density n(x). Call the ground state wavefunction in the two cases |Ψ1〉, |Ψ2〉,
and the Hamiltonians H1 and H2. By the variational principle,

E1 < 〈Ψ2|H1|Ψ2〉

= 〈Ψ2|H2|Ψ2〉 + 〈Ψ2|H1 − H2|Ψ2〉

= E2 +
∫

d3x(V1(x) − V2(x))n(x). (126)

where E1 and E2 are the two ground state energies. The last line holds because
the two states have the same density. This is a strict inequality because by
assumption the two states are different, and we assume that the ground states
of the two Hamiltonians are non-degenerate. Reversing the roles of states 1
and 2 gives

E2 < E1 −
∫

d3x(V1(x) − V2(x))n(x). (127)

Adding the two equations gives E1 + E2 < E1 + E2, which is obviously false.
This completes the proof.

Now that we know that the density determines the potential and hence
the ground state, we can think of the expressing the energy as a function of
the density. The reason this might be useful is that the expectation value of
the potential term in any state is just the integral of the potential times the
density of that state. It is the rest of the Hamiltonian that is more complicated.
Therefore we separate out the potential and define

F̂ =
Ne∑
i=1

 |pi |2

2m
+

∑
i<j

U(xi − xj )

 = T̂ + Û, (128)

so that for a given potential, H = F̂ + V̂. We would like to assign an energy to
just F̂, which is just determined by the density. One way to do it is to define

F[n] = min|Ψ 〉 s.t. 〈Ψ |n̂|Ψ 〉=n〈Ψ |F̂|Ψ 〉, (129)
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4.2. density functional theory

i.e. F[n] is given by searching all states which have the density n(x) and
finding the minimum of the expectation value of F̂ amongst those states.
Note that in this definition, we do not require that these states are ground
states corresponding to any potential V. This makes F[n] defined for nearly all
densities, as long as they are not too non-analytic (for example they cannot be
discontinuous). Now we define a variational energy by just adding the energy
of the potential,

EV[n] = F[n] +
∫

d3x V(x)n(x). (130)

Because F[n] itself is the expectation value of F̂ in some state |Ψn〉 which
minimizes the latter and has the density n, we see that

EV[n] = 〈Ψn|F̂ + V̂|Ψn〉 ≥ E0, (131)

where E0 is the ground state energy with the potential V. It is also clear
that if we take n(x) = n0(x), where n0 is the density in the actual ground
state with potential V, then EV[n0] = E0. So we have established that EV[n]
obeys a variational principle, and moreover, the non-trivial part of it, F[n], is
“universal”, i.e. independent of the potential and the same for all materials.
This is the second part of the “deep” theory of density function theory.

4.2.2 Kohn-Sham formulation

The problem with density functional theory is that of course we do not know
the exact F[n]. Functionals are extremely complex objects, and an explicit rep-
resentation of it is rather far-fetched to imagine. We can hope to approximate
it, but even that, i.e. an approximation which works well for all choices of n, is
very challenging. One can view the Thomas-Fermi energy funtional (removing
the V term) in Eq. (24) as an approximation to it, but it is not a good enough
one (as we saw it does not even predict stable molecules or solids!).

Kohn and Sham proposed an approximate functional which is practical in
the sense that it can be calculated relatively quickly, and which is physically
intuitive. They proposed to write the functional as

F[n] = Tf [n] +
e2

2

∫
d3xd3x′

n(x)n(x)
|x − x′ |

+ Vxc[n], (132)

where Tf [n] is defined to be the kinetic energy of a free electron gas with
the density n, i.e. with a potential VKS(x) chosen to give the electron density
n(x). That is, Tf [n] = 〈ΨKS|T̂|ΨKS〉, where |ΨKS〉 is the ground state of the
non-interacting “Kohn-Sham” Hamiltonian,

HKS = T̂ + V̂KS = T̂ +
∫

d3x VKS(x)n̂(x), (133)
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and VKS(x) determined by the condition

〈ΨKS|n̂(x)|ΨKS〉 = n(x). (134)

By the first Hohenberg-Kohn theorem (uniqueness), this completely deter-
mines VKS and hence Tf [n] is completely specified. We can see that Eq. (132)
therefore just trades the unknown functional F[n] for a new unknown one
Vxc[n]. This object is called the “exchange-correlation functional”. The idea is
that this functional should correct for two types of errors. First, the kinetic
energy in an interacting state is not the same as the kinetic energy of a free
gas. Second, the interaction energy is not just the classical interaction energy
– comparing to the Hartree-Fock approach we can see that the classical in-
teraction energy is missing the exchange term. So Vxc[n] is meant to account
for these mistakes. The hope is that these corrections are relatively small.
The Hohenberg-Kohn theorems tell us that such a functional exists at least.
In practical DFT, some simple approximations to the exchange-correlation
energy are made.

Although we argued that T̂f [n] is completely specified, it may not be so
clear how to calculate it or to use this functional. It turns out to be simplest
to look directly for minima of the Kohn-Sham functional. We wish to mini-
mize EV[n] in Eq. (130) for a fixed number of electrons, and so consider the
Lagrange functional

L[n] = F[n] +
∫

d3xV(x)n(x) − µ
(∫

d3xn(x) − N
)
. (135)

We apply the condition δL/δn(x) = 0, which is a functional derivative. This
gives

δTf
δn(x)

+ V(x) + e2
∫

d3x′
n(x′)
|x − x′ |

+
δVxc

δn(x)
− µ = 0. (136)

This involves two terms which need clarification: the functional derivative of
the kinetic energy, and the derivative of the exchange-correlation energy. The
latter will depend upon the approximation for this unknown functional. The
former we can simplify. Note that from the definition, we can write

Tf [n] = EKS
0 − 〈ΨKS|V̂KS|ΨKS〉 = EKS

0 −
∫

d3x′VKS(x′)n(x′), (137)

where EKS
0 is the ground state energy of HKS. So we have

δTf
δn(x)

=
δEKS

0
δn(x)

−
∫

d3x′
δVKS(x′)
δn(x)

n(x′) − VKS(x). (138)

To proceed, we need to make the first term more explicit. To do so, remember
that the way in which we actually vary n(x) is by varying VKS(x). So we can
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write

δEKS
0

δn(x)
=

∫
d3x′

δEKS
0

δVKS(x′)
δVKS(x′)
δn(x)

. (139)

The variation of the energy EKS
0 with the potential VKS is just the standard

problem of perturbation theory of the ground state energy: for a small change
in the Hamiltonian, the ground state energy shifts by the expectation value of
that change. In particular, from Eq. (133), we see that

δEKS
0

δVKS(x′)
= n(x′). (140)

Therefore Eq. (139) becomes

δEKS
0

δn(x)
=

∫
d3x′n(x′)

δVKS(x′)
δn(x)

. (141)

Using Eq. (141) in Eq. (138), we see that the first and second terms actually
cancel, and we find simply that

δTf
δn(x)

= −VKS(x). (142)

This simple result can be viewed as a form of the Legendre transform: the func-
tional Tf [n] is the Legendre transform (via Eq. (137)) of the functional E0[VKS].
In any case, Eq. (142) means that the stationarity condition of Eq. (136) implies
just that

VKS(x) = V(x) + e2
∫

d3x′
n(x′)
|x − x′ |

+
δVxc

δn(x)
− µ. (143)

This is the simple and useful final result. The Kohn-Sham potential is explicitly
determined from the nuclear potential plus an explicit functional of the
density. The latter terms can be thought of as giving a “screened” potential
which describes self-consistently the total potential the electrons feel from
both the nucleii and the other electrons.

The practical algorithm is then iterative. One starts with some initial guess
at the density, and then calculates VKS. This defines the non-interacting HKS,
which one can then solve, since it is just a free particle Hamiltonian, i.e. we
find the one-particle eigenstates φn(x), which satisfy(

|p|2

2m
+ VKS(x)

)
φn(x) = εnφn(x), (144)

and then we can recompute the density by summing over the occupied states:

n(x) = 2
∑

n|εn<εF

|φn(x)|2. (145)
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From the new density, we repeat the same procedure with the new Kohn-Sham
potential, and continue iterating in this way until convergence is achieved.

We should probably say a word about the exchange-correlation functional.
There are different approximations in use. The original work by Kohn and
Sham suggested the “local density approximation” (LDA), in which

VLDA
xc [n] =

∫
d3x εxc(n(x)), (146)

where εxc(n) is just a function of n (typically it is written as εxc(n) = εxc(n)n).
It is taken so that one obtains the correct energy versus density for the case
of “Jellium”, in which the density is constant in space. This is the simplest
model of interacting electrons, in which the nuclei are replaced by a uniform
positive charged background whose only role is to make the system electrically
neutral. This model has been extensively studied using advanced many body
techniques (much more computationally and conceptually sophisticated than
DFT) and its ground state energy is very well known, so that the exchange-
correlation energy may be extracted. It is of course a major approximation
to assume that the only dependence of Vxc on variations of the density is in
the local form of Eq. (146). However, the LDA seems to work surprisingly
well. More modern calculations tend to use improved functionals beyond
the LDA, in which the integrand in Eq. (146) is replaced by something which
depends not only on the local density but on its gradients, e.g. the “generalized
gradient approximation”, or GGA. Regardless of the choice, the exchange-
correlation part of the Kohn-Sham potential in Eq. (143) is just determined by
a calculation from the density, so it is relatively simple.

These steps are incorporated into a large number of free and commer-
cially available density functional software applications. To carry out such
calculations one does not need to really understand the formalism, or even
to write any numerical code, but just provide some inputs to one of these
programs. Such “ab initio” programs have become extremely widespread in
condensed matter physics, chemistry, and engineering. In the former context,
which is the subject of this class, one will often see “band structures” that are
produced from these codes (we will soon discover what these “bands” are in
much more detail), which are representations of the Kohn-Sham eigenvalues
εn in Eq. (144) using the converged Kohn-Sham potential. It is probably good
to know what it is these software packages really calculate.

It is interesting to compare the Kohn-Sham potential to the potential
which appears in Hartree-Fock theory, i.e. in Eqs. (121-124). One can see
that the direct potential, i.e. the Hartree term, Ud , is identical to the classical
electrostatic energy in the Kohn-Sham potential. The difference between
the two is that the non-local exchange/Fock term in Hartree-Fock theory is
replaced by the exchange-correlation potential in the Kohn-Sham formulation.
The latter is much simpler since it involves only the classical density.
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4.3 A cautionary note

Density functional theory is pervasive and by far the dominant method used
in practice to do “realistic” calculations on solids, but it has limitations. There
is the obvious one: we do not have an exact exchange-correlation functional.
But beyond the obvious is a more general concern. DFT is formulated as a
theory in which the density determines the ground state energy, and hence, to
the extent that it achieves these goals, it is “reliable” for the density profile
and the ground state energy. Even for these quantities it is not exact, and it
is not really obvious how to improve it. But more seriously, DFT is routinely
used to calculate not only the total ground state energy but the energy and
wavefunctions of Kohn-Sham states. The former are usually plotted as the
“band structure” calculated from DFT codes (we will discuss bands in the next
section). However, there is nothing in the fundamental theory that relates the
eigenvalues of the Kohn-Sham Hamiltonian to physical energies. Generally
speaking, DFT is not designed to calculated excited states. It is a loose, and
sometimes deceptive, interpretation to view the Kohn-Sham eigenvalues and
wavefunctions as representative of real excitations. There are many ways to
improve on this, but they go beyond the subject of this course. What you
should remember is that DFT is far from a complete solution of the physics of
electrons in solids, and sometimes it can fail dramatically.

Nevertheless, for now, we will adopt the above naı̈ve and loose interpreta-
tion, and assume there is some effective one-particle potential that describes a
solid. This situation is still remarkably rich and we can learn a lot from it.

5 the one particle problem

5.1 Bloch’s theorem and bands

Now we are going to take seriously the idea motivated in the previous section,
that we can approximately describe a solid by a one-electron Hamiltonian,
which we take (for now) to be

H =
p2

2m
+ V(x). (147)

We will not take V(x) in the form of Eq. (105), as it should include at least the
direct/Hartree contribution, and this is not easily known (indeed it requires a
solution of the charge density). So we will regard it as an unknown potential
except for the property of periodicity given in Eqs.112,113. We can get sur-
prisingly far just with this picture in mind. For more specificity, we can try to
just think physically about V(x): close to a nucleus it predominantly reflects
the nuclear attraction, but as we move outward it gets progressively screened,
and once we move to distances “halfway” between atoms it will be smooth
and far from atomic.

For the moment, let us just discuss the general case. The Bloch Hamiltonian
is periodic, and periodicity is a symmetry under discrete translations. Like
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any symmetry in quantum mechanics, it is associated with a unitary operator
that enacts the symmetry transformation on states. In quantum class, you also
learned that translations are generated by momentum. So indeed we can write
the translation operator

T̂R = eip·R. (148)

Acting on a function of position, we have

T̂Rf (x) = f (x + R). (149)

The translation operator is unitary T̂†R = T̂−1
R = T̂−R and two translations

compose
T̂RT̂R′ = T̂R+R′ . (150)

This in turn implies translations commute with one another. They also obvi-
ously commute with momentum. So we have

T̂†RHT̂R = H, R ∈ BL. (151)

This is equivalent to [
H, T̂R

]
= 0, R ∈ BL. (152)

As you learned in quantum mechanics, you can simultaneously diagonalize
any set of commuting observables. We see that H and all the translation
operators constitute such a set. That is, the energy eigenstates can be chosen as
eigenstates of discrete translations. From Eq. (150), the translation operators
are not independent; essentially, we need only consider translation operators
by linearly independent translations, e.g. by the primitive vectors aµ. So we
can take our states to be eigenstates of T̂µ = T̂aµ . Since these are unitary
operators, their eigenvalues are complex numbers with absolute value one, i.e.
we have states

T̂µ|θ1 · · · θd〉 = eiθµ |θ1 · · · θd〉, (153)

where θµ are phases defined modulo 2π. For a general Bravais lattice vector,

R =
∑
µ

nµaµ, (154)

we have

T̂R|θ1 · · · θd〉 = e
i
∑
µ

nµθµ
||θ1 · · · θd〉. (155)

Now we can use the inner product of the bµ vectors from Eq. (38) to obtain the
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5.1. bloch’s theorem and bands

integers nµ from Eq. (154) as nµ = bµ · R/(2π). This then gives the expression

T̂R|θ1 · · · θd〉 = e
i
∑
µ

θµ

2πbµ·R
|θ1 · · · θd〉, (156)

which we can write as
T̂R|k〉 = eik·R|k〉, (157)

with

k =
∑
µ

θµ

2π
bµ. (158)

Here k appears like a momentum, but because θµ are phases, it is defined
only up to the addition of an integer linear combination of the bµ vectors,
i.e. k is defined up to a reciprocal lattice vector. For this reason we call it
the quasi-momentum or crystal momentum. Let’s apply Eq. (157) to the wave
function. It states that

ψ(x + R) = eik·Rψ(x). (159)

We can arrive at a standard form by writing defining u(x) = ψ(x)e−ik·x, or

ψ(x) = eik·xu(x). (160)

Then Eq. (159) implies that

u(x + R) = u(x), (161)

which simply states that u has the periodicity of the Bravais lattice. In turn,
then Eq. (160) means that the eigenstates of quasi-momentum are of the
form of a plane wave multiplied by a periodic function. This is a remarkable
result: the energy eigenstates of Eq. (147) are generically plane waves with
an amplitude that is modulated just within the unit cell. This might be a
surprising result: all these electron eigenstates are extended, despite the fact
that they may feel strong potentials from the ions, which might be expected to
form bound states. This fact is crucial to the existence of metals: the extended
nature of the states means that electrons can propagate over long distances,
and hence carry current.

It is customary to label the eigenstates explicitly by their quasi-momentum,
i.e. to write Eq. (160) as

ψnk(x) = eik·xunk(x), (162)

where we introduce an additional index n to represent any other quantum
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5. the one particle problem

numbers, i.e. to label multiple states with the same quasi-momentum. We
will soon see these indeed exist. Eq. (162) is known as the Bloch form, and
that this is true is called Bloch’s theorem. It can be important that Eq. (162)
has some ambiguity. First, it has the usual phase arbitrariness, which can be
chosen separately for every eigenstate, i.e. for every k and n. There is a further
ambiguity, however, due to the fact that k is defined only modulo a RLV. The
plane wave factor in Eq. (162), however, is not independent of a shift of the k
by a RLV. Rather, such a shift can be absorbed in a redefinition of unk(x), that
is, ψnk(x) is unchanged under

k→ k + Q, unk(x)→ e−iQ·xunk(x), (163)

valid for any RLV Q.

There are many ways to understand the Bloch form. A simple way follows
from Fourier analysis: any periodic function can be written as a Fourier series
in harmonics. For a function with the periodicity of the Bravais lattice, these
harmonics are just the set of reciprocal lattice vectors. Hence one can write

unk(x) =
∑

Q∈RL

ũnk;QeiQ·x, (164)

where ũnk;Q are Fourier coefficients. Inserting this into Eq. (162) we have

ψnk(x) =
∑

Q∈RL

ũnk;Qei(k+Q)·x. (165)

Such a plane wave expansion can be a useful way to solve the Schrödinger
equation. Conceptually, Eq. (172) has a simple interpretation in terms of
scattering. We can imagine injecting an electron into the solid with momentum
k. Since in quantum mechanics, an electron behaves as a wave, the Bragg
scattering theory applies to it. According to Sec. 2.2.1, there is an amplitude for
the electron to scatter from the crystal lattice with any scattering wavevector
in the reciprocal lattice. The term ũnk;Q is just the amplitude for this wave
to scatter by momentum Q. Since eventually all the RLVs are present in the
wavefunction, one can view n as specifying the “initial” momentum out of all
this set.

One can insert the Bloch form into the Schrödinger equation,(
p2

2m
+ V(x)

)
ψnk(x) = εnkψnk(x)⇒

Hkunk ≡
(

(p + k)2

2m
+ V(x)

)
unk(x) = εnkunk(x). (166)

Eq. (166), in combination with periodic boundary conditions on unk(x) due
to Eq. (161), defines a quantum mechanics problem for a finite system, i.e.
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5.2. nearly free electron bands

entirely within a unit cell, like a particle in a box with periodic boundary
conditions. The associated operatorHk is called the Bloch Hamiltonian. In this
problem, the quasimomentum appears just as a parameter. Consequently, the
energy levels defined by Eq. (166) for fixed k form a discrete but infinite series
– hence the n index. The solutions must be periodic – up to the ambiguities
already mentioned – in k with the periodicity of the reciprocal lattice. We can
choose to define n so that the states are consecutive in energy, i.e. ε1k ≤ ε2k · · · .

The solutions are called bands. The name comes from the fact that the
energy εnk, for fixed n, is a continuous function of k and periodic, and hence
extends just over some range of energy which is bounded both below and
above – a “band” of energy. We will return to think more carefully about the
parametric dependence of eigenstates and eigenvalues on k soon.

There are many ways to represent bands. The most compact is to eliminate
the ambiguity in the quasimomentum by choosing a unit cell in momentum
space. Generally one chooses the (1st) Brillouin zone. This choice is known as
the reduced zone scheme. Recall that any momentum can be translated back
into the Brillouin zone by shifting by a RLV. This means that while we can
label states by any k, if we count states with quasimomentum k and k + Q
separately (with Q a RLV), then we are counting the same state twice. By
choosing the reduced zone scheme, we count every state exactly once.

5.2 Nearly free electron bands

Nothing we have done excludes the trivial case in which the periodic potential
vanishes, V(x) = 0, i.e. free electrons. Then obviously the states with momen-
tum k have energy ε(k) = k2/2m. This describes the eigenstates in terms of
true momentum, not quasimomentum, and there is one state (per spin) for
each value of the momentum. We are, however, allowed to follow the Bloch
conventions and view the spectrum in terms of quasi-momentum. This is
useful because the latter description becomes necessary when the potential
is not zero. Then we can adopt the reduced zone scheme. For any given true
momentum, we can find the unique quasi-momentum to which it corresponds
by translating it back by a RLV into the Brillouin zone. This is called “folding”
the bands. In this picture, one might imagine tiling all of momentum space
with translated Brillouin zones, and every one of these copies gives rise to a
band in the reduced zone scheme. Obviously there are an infinite number of
such bands. We illustrate this for free electrons in one dimension in the left
panel of Fig. 4.

Note that for free electrons, there are many places in which bands cross.
These crossings occur because there are momenta with the same single particle
energy (i.e. same magnitude of the momenta) which differ by a reciprocal
lattice vector. The free electron states at these different momenta cannot mix
because momentum is a good quantum number for free electrons. However,
in quantum mechanics, generally levels that do not have different quantum
numbers avoid being degenerate: this is the phenomena of level repulsion. If we
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5. the one particle problem

turn on the periodic potential, typically these pairs of degenerate levels, which
differ in momentum but not in quasi-momentum, will be able to mix and
the levels will repel. Consequently such crossings typically become “avoided
crossings” when the periodic potential is included. This means that instead
of two bands crossing, these bands become separated by an energy gap. This
occurs unless there is some other symmetry (besides momentum conservation)
which can protect the crossing of these levels. Nearly free electron bands in
one dimension are shown in the right panel of Fig. 4.

One thing to take from this simple analysis is that if the periodic potential
is weak, the bands are quite close to their free electron forms except near
the band crossings. This is true in all dimensions. Consequently there are
circumstances, e.g. for the alkali metals in particular and to some extend for
the noble metals like gold, that just a free electron gas without any periodic
potential is a reasonable approximation, at least for the bands which lie at the
Fermi energy.
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Figure 4: Left: one dimensional free electron bands in the reduced zone scheme,
for a lattice constant a. Right: nearly free electron bands for the same structure,
showing gaps due to level repulsion at Bragg planes.

5.3 Tight binding bands

When the periodic potential is strong rather than weak, the situation is op-
posite to the previous subsection. This limit is described by what is called
a tight-binding model. Instead of starting from plane waves, we start from
localized atomic orbitals.

The idea is to project the full Hamiltonian into the basis of some set of
localized orbitals at different atomic sites. These may be thought of obtained
by expanding around the minima of the potential V(x). In the general tight
binding model, we introduce some basis of localized states |i〉, where i may
labels sites and orbitals. Then we write the Hamiltonian as

H =
∑
ij

hij |i〉〈j |, (167)
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5.3. tight binding bands

which is simply a matrix in this space. When the two indices coincide, hii
represents the energy of the orbital i. When i , j, the term hij , for i , j,
describes hopping of an electron from an orbital j to another orbital i. In
time-reversal symmetric systems without spin-orbit coupling, hij is real and
is most often negative, which reflects the fact that electrons lower their kinetic
energy by delocalizing. Note however that the sign (and indeed phase) of hij
depends upon a sign/phase convention for the orbitals. The tight-binding
description is useful when the overlap between different orbitals is negligible
when the orbitals are far apart. This is typically true for atomic wavefunctions
due to their exponential decay, and in many cases we can be content with only
a few orbitals per unit cell and only overlaps hij between those localized on
very nearby atoms.

We will illustrate the tight-binding model using the by now very popular
and standard description of graphene. One includes just a single π (pz) orbital
on each site of a honeycomb lattice. You can find this discussed in many many
places, for example this Reviews of Modern Physics article.

A
B

A
B

A

B

B

A A

A

B B

e3

e2e1

A1 A2

Figure 5: A hexagon of the honeycomb lattice, including all nearest-neighbors of
the sites on the hexagon. Representative second neighbor bonds are shown with
dashed lines. Two linearly independent Bravais lattice (translation) vectors A1, A2
are shown, as are the three nearest-neighbor vectors e1, e2, e3. A unit cell consists
of a pair of A and B sites, one of which is enclosed by an ellipse.

The geometry is shown in Fig. 5. The lattice sites are divided into A and
B sublattices, connected by nearest-neighbor bonds shown as solid lines. We
define a unit cell containing two sites on a vertical bond, for example the pair
in the ellipse drawn in the figure. A site is indexed by the coordinate of its
unit cell, which we take to be the coordinate of the A site within that cell,
and the sublattice s = 1,2 = A, B. The A sites are then located at the sites of
the triangular Bravais lattice, for which we may take A1 and A2 shown in the
figure as primitive lattice vectors. We define also the three nearest-neighbor
vectors ei , i = 1,2,3 as shown. One can see that A1 = e3 − e1 = −2e1 − e2
and A2 = e3 − e2 = −2e2 − e1. The basis vectors B1 and B2 of the reciprocal
lattice are defined by Bi · Aj = 2πδij as usual. If we define vectors bi such
that bi · ej = 2πδij for i, j = 1,2, then we can find that B1 = (−2b1 + b2)/3,
and B2 = (−2b2 + b1)/3. The resulting Brillouin zone with characteristic
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wavevectors labeled is shown in Fig. 6.

K

K − Q1

K − Q2

K′
0

Q1

Q2

Figure 6: Graphene Brillouin zone and some other useful wavevectors. The wavevec-
tors Q1 and Q2 are basis vectors for the reciprocal lattice. The K point is the
centroid of the triangle formed by the origin, Q1 and Q2. The two other Brillouin
zone corners K − Q1 and K − Q2 are equivalent to K as quasimomenta, and are
obtained from the latter by C3 rotations.

With all these definitions, it is straightforward to write down the Bloch
Hamiltonian for the nearest-neighbor model. In real space, we define kets
|X, A〉 and |X, B〉 labeling states at the A,B sites, respectively, within the unit
cell labeled by the Bravais lattice vector X. The tight binding Hamiltonian is

H = −t
∑

X∈BL

 (|X, B〉 + |X − A1, B〉 + |X − A2, B〉) 〈X, A|

+ (|X, A〉 + |X + A1, A〉 + |X + A2, A〉) 〈X, B|
. (168)

Now we obtain the Bloch Hamiltonian by applying the Bloch ansatz,

|ψnk〉 =
∑

X

eik·X (uAk|X, A〉 + uBk|X, B〉) . (169)

Then we obtain the Schrödinger equation

Hk

(
uAk

uBk

)
= ε

(
uAk

uBk

)
, (170)

with the Bloch Hamiltonian

Hk = −t
(

0 1 + e−ik·A2 + e−ik·A1

1 + eik·A2 + eik·A1 0

)
=

(
0 f (k)

f ∗(k) 0

)
, (171)

with
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5.4. density of states

f (k) = −t
(
1 + e−ik·A2 + e−ik·A1

)
. (172)

We see that Hk is indeed periodic and smooth, as expected. The energy
eigenvalues are simply

ε±,k = ±|f (k)|. (173)

Band touching occurs when f (k) vanishes identically, i.e. both real and imagi-
nary parts. This occurs at the two inequivalent corners of the Brillouin zone,
denoted K and K′ (see Fig. 6). If we take the length of the nearest-neighbor
bond to be unity, then A1 = (

√
3/2,3/2), A2 = (−

√
3/2,3/2), and it is easily

verified that f vanishes at the points K = (4π/(3
√

3),0), K′ = −K. Taylor
expanding, we have

f (±K + k) ∼ 3
2
t(±kx − iky). (174)

This implies from Eq. (173) that the bands cross linearly in the vicinity of the
touching points ±K,

ε±,k ∼ ±v|k|, (175)

with v = 3t/2. This form of dispersion is called a “Dirac cone”, due to the
similarity with the behavior of a massless relativistic particle described by the
Dirac equation. The speed of light is replaced by the “Dirac velocity” v (which
in graphene is about 100 times slower).

5.4 Density of states

The simplest view of energy bands is to consider only their energies, and
ignore the momentum structure. One can define the density of states of a
band by summing over all momentum:

Dn(ε) = 2
∫

ddk

(2π)d
δ(ε − εnk). (176)

Here we include a factor of 2 for spin degeneracy. In other circumstances, in
which there is no spin degeneracy, one would not include this factor. This is
defined in such a way that Dn(ε)dε gives the number of states per unit volume
in real space in band n, including spin degeneracy, with energy between ε and
ε + dε. The full density of states is the sum of the density of states from each
band,

D(ε) =
∑
n

Dn(ε). (177)

In general, because the energy of each band is bounded on both sides,
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5. the one particle problem

εn,min ≤ εnk ≤ εn,max, (178)

the density of states for a single band has finite support:

Dn(ε) = 0, ε > εn,max or ε < εn,min. (179)

So the support of Dn(ε) is over some finite band of energy. This means only
a small number of bands contribute to D(ε) at any given energy. The total
weight in Dn, i.e. its integral, has a very nice property. Integrating Eq. (441)
over energy, one obtains∫

dεDn(ε) = 2
∫

ddk

(2π)d
=

2
(2π)d

VBZ. (180)

Using Eq. (42), we find ∫
dεDn(ε) =

2
Vp.u.c.

. (181)

This is important: the number of electrons which fill a single band is 2 (or
more generally, the degeneracy of the band) per unit cell.

The importance of this simple counting result becomes clear if one consider
the zero temperature limit. In this case, the many body ground state is found
by filling the Bloch states from lowest energy on up, until we account for all
the electrons. The energy half-way between the highest energy filled state
and the lowest energy empty one is called the Fermi energy. There are two
possibilities. In the first case, the two aforementioned energies are different,
and the Fermi energies lies in a gap, i.e. a region with zero density of states.
This condition defines an insulator in band theory. We will explore why this is
the case below, but intuitively, such a system is resistant to changing its state,
because to do so an electron must aquire a non-zero energy to change its state,
which can only occur by moving from below to above the gap. This means that
a system with the Fermi level in a band gap is unresponsive to weak applied
forces, e.g. electric fields, and hence does not conduct.

In the second case, the two energies coincide, and the Fermi energy lies
within one or more bands, and/or it lies precisely at the boundary or two or
more bands, at least one of which has the Fermi energy as its maximum and
another as its minimum. If the Fermi energy lies within at least one band, the
system is a metal according to band theory. If it lies precisely at min/max of
two or more bands, it is a “zero gap semiconductor” or “semimetal” (both
words are used without uniformly accepted definitions so take care).

The counting result in Eq. (181) has strong implications for insulators. For
an ideal material, the number of electrons per unit cell is simply equal to the
total atomic number of all the atoms in that unit cell. This is necessarily an
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integer, but it may be even or odd. Typically it is a large integer, so the first
few bands will be completely full. The top-most bands containing electrons
may be either full or partly full. There will be infinitely many empty bands.
The above result says that every full band contributes an even integer to
total number of electrons. In a band insulator, all bands are either full or
empty, so the total number of electrons per (primitive) unit cell in a band
insulator must be even. Indeed, the same counting applies to the zero gap
semi-conductor or semimetal situation above: these too must have an even
number of electrons per unit cell. As a result, any crystal with an odd number
of electrons per (primitive) unit cell must be a metal, according to band theory.
This is a remarkable result, and explains the metallicity of many materials,
and the commonality of metals. It should be said that the result is not entirely
reliable, most importantly because since it assumes band theory, which is itself
approximate. It also assumes spin degeneracy, but we will see later that even
with spin-orbit coupling, there is often enough degeneracy that the statement
still holds. Nevertheless, it is correct enough that it is quite hard to find
exceptions. When you think about it, when this criterion predicts a material
is a metal, it is doing so entirely due to the spin-1/2 nature of the electron,
and due to the Pauli exclusion principle. It is striking that these seemingly
exotic properties of electrons (spin arises ultimately from the relativistic Dirac
equation, and the Pauli principle from the quantum indistinguishability of
identical particles) contribute to something so mundane as a metal.

I would also like to be clear that the above argument does not mean that
a material with an even number of electrons per unit cell must be a band
insulator or semi-metal. It only means that it can be, within band theory. There
are many metals that have an even number of electrons per unit cell. This is
totally compatible with band theory. There are also insulators with an odd
number of electrons per unit cell. These are usually called Mott insulators, and
they are not compatible with band theory. This is because they are insulating
precisely due to the electron-electron correlations which are neglected in band
theory.

6 physics from bands

6.1 Thermodynamics

6.1.1 Specific heat and Sommerfeld law

Let us return now to band theory and explore some of its implications in more
detail. First consider thermodynamics, which are determined entirely by the
density of states (in the independent electron approximation). For example,
the chemical potential µ is fixed by the electron density,

n =
Ne

V
=

∫
dεD(ε)nF(ε − µ), (182)
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where nF(ε − µ) is the Fermi function

nF(ε − µ) =
1

eβ(ε−µ) + 1
, (183)

with β = 1/(kBT), kB is Boltzmann’s constant. The zero temperature limit of
the chemical potential is the Fermi energy, εF = limT→0 µ(T).

We now want to obtain the specific heat, which is the derivative of the
internal energy density with respect to temperature. We can in turn obtain the
internal energy by differentiating the free energy, and so a nice way to calculate
the specific heat is to calculate the free energy and take two derivatives. There
is a small subtlety related to the temperature dependence of the chemical
potential. A reader not interested in details may skip to Eq. (190).

It is convenient to define the grand potential ΦG = −kBT ln Tr[exp(−β(H −
µN))], i.e. the potential obtained from the grand canonical partition func-
tion. The corresponding density is φG = ΦG/V. By expressing the energy
(eigenvalues of H) in terms of fermion number, one obtains the expression

φG = −kBT
∫

dεD(ε) ln
(
1 + e−β(ε−µ)

)
. (184)

In principle, we are more interested in the Helmholtz free energy, which is ob-
tained from the canonical ensemble at fixed electron number, F = −kBT ln TrN(exp(−βH)),
and corresponding density f = F/V. This is because due to charge neutrality,
the density of electrons in the material cannot change. Unfortunately, φG is
much easier to work with than f . However, it turns out that they give the
same specific heat at low temperature. To see this, we need to use some ther-
modynamics. First, we note that F and ΦG are related by Legendre transforms:

F(N, T) = ΦG(µ(N, T), T) + µ(N, T)N, (185)

and importantly that
∂ΦG

∂µ
= −N. (186)

It follows that
∂F
∂T

=
∂ΦG

∂T
(187)

Taking a derivative of this equation and dividing by volume gives

∂2f

∂T2 =
∂2φG

∂T2 +
∂2φG

∂T∂µ
∂µ

∂T

∣∣∣∣∣
n

=
∂2φG

∂T2 −
∂n
∂T

∣∣∣∣∣
µ

∂µ

∂T

∣∣∣∣∣
n
, (188)

where n = N/V. Now from the definition of the canonical partition function,
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the specific heat at constant N, V is

cv = −T
∂2f

∂T2 = −T
∂2φG

∂T2 − T
∂n
∂T

∣∣∣∣∣
µ

∂µ

∂T

∣∣∣∣∣
n
. (189)

One can show that the second term on the right hand side of Eq. (189) is
proportional to T3 in the limit of small temperature. This makes it negligible,
as we will see that the first term is linear in temperature. Therefore, to obtain
the leading low temperature behavior, we can approximate

cv ∼ −T
∂2φG

∂T2 =
1

4kBT2

∫
dεD(ε)

(ε − µ)2

cosh2( ε−µ2kBT )
. (190)

One can see that at low temperature, the integrand decays exponentially
except in the region where ε ≈ µ, because the cosh in the denominator grows
exponentially at large argument. This leads to an exponentially small elec-
tronic specific heat in insulators, for which the Fermi energy is in a gap where
D(ε) = 0, and one can see that cv ∼ e−Eg /(2kBT), where Eg is the energy dif-
ference between the lowest unoccupied state and the highest occupied one,
since |ε− µ| = Eg /2 at low T. Generally speaking all thermodynamic quantities
display such exponential in 1/T behavior, called an activated or Arrhenius
law, in band insulators.

In a metal, the density of states is non-zero for ε = εF. We can then usefully
change variables to to x = (ε − µ)/(kBT) and obtain

cv =
k2

BT
4

∫
dx D(µ + kBTx)

x2

cosh2(x/2)

∼
k2

BT
4

D(εF)
∫

dx
x2

cosh2(x/2)
=
π2

3
D(εF)k2

BT, (191)

where in the second line we assumed kBT is much smaller than the scale of
energy variation of D(ε), and replaced µ(T) ≈ µ(0) = εF, and then evaluated
the integral. The result is known as the Sommerfeld law of the heat capacity
of a metal. The metal has a low temperature specific heat which is linear in
temperature, and proportional to the density of states at the Fermi energy.
This behavior is often written as

cv ∼ γT, (192)

where γ = π2

3 k2
BD(εF) is called the Sommerfeld coefficient.

It is useful to put this in perspective. The specific heat generally is related
to the entropy S:
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S(T) =

T∫
0

dT′
Cv(T′)

T′
, (193)

using thermodynamics. We see that the Sommerfeld law implies that in a
metal, the entropy is linear in temperature at low T (S/V ∼ γT). The third law
of thermodynamics requires that the entropy must vanish as T → 0, and a
power-law behavior with temperature generally is indicative of the presence
of gapless excitations immediately above the ground state. The smaller the
power law, the more low energy excitations there are. In fact, the first power
of temperature actually represents one of the smallest exponents for entropy
that occur in nature in the zero temperature limit, i.e. the largest possible
number of low energy excitations in any quantum system. In this sense, the
Sommerfeld heat capacity is large.

The linear temperature dependence of the heat capacity has a simple
explanation, which elucidates the low energy excitations responsible for it.
For a free Fermi system, each Bloch state is occupied with a probability
determined by the Fermi function. The Fermi function at low temperature is
very close to a step function, so the occupation of states is changed only in a
narrow window of energy of width kBT around the Fermi energy. Within this
window, electrons are transferred from below to above the Fermi energy. Each
electron transferred in this way increases the energy by of order kBT, and the
total number of electrons transferred is the number of states in the narrow
energy window proportional to D(εF)kBT, so the total energy increase relative
to the ground state is δE/V ∼ D(ε)(kBT)2. Differentiating this gives the same
behavior as Eq. (191).

This argument suggests that in a different sense than the power law, the
Sommerfeld heat capacity is small. This is in the sense of the prefactor. Know-
ing that the density of states at the Fermi energy comes from a small number
of bands that overlap that energy, we can estimate that D(εF) is of the order of
the density of states of a single band. This can be estimated by the counting
result of Eq. (181). For a band of width W in energy, the typical magnitude
of the density of states should be 1/W times the right hand side of Eq. (181),
hence we expect

|Dn(ε)| ∼ 2
WVp.u.c.

. (194)

For a typical metal, the band-width W of bands near the Fermi energy is of
order a few eV. We see that

cvVp.u.c. ∼
2π2

3
kB

kBT
W

. (195)

The left hand side is the heat capacity per formula unit. It is proportional
to the dimensionless ratio of kBT to W. This can be understood from the
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argument above as representing the fraction of the electrons which can be
excited at this low temperature. Since W is so large, this ratio is always small,
even at room temperature.

How can the electronic specific heat of a metal be both large and small?
The answer is that at most temperatures, the electronic specific heat is small
because the entropy of the electrons is released very gradually with tem-
perature over a very wide range of energies set by W, which is of order eV.
There is a second smallness because even over this temperature range, only
the topmost “valence” electrons release their entropy. This is typically just
a few electrons per unit cell. The core electrons, i.e. the lower bands, are
more strongly bound, and release their entropy only at temperatures sufficient
to ionize the core levels of the atoms, i.e. never! There is another source of
entropy in solids, which is associated to the positions of the nuclei. This turns
out to be much larger in most cases, for most temperatures, because both the
aforementioned effects are more favorable for them. We will return to this
later. The electronic specific heat however becomes dominant at low enough
temperature, because it vanishes more slowly as T→ 0 than does the lattice
contribution. Ultimately this difference is due to Bose statistics of the lattice
excitations, called phonons.

6.1.2 Pauli spin susceptibility

Another thermodynamic property of metals is the Pauli spin susceptibility.
In general, an applied magnetic field couples to electrons both through the
Zeeman and the orbital interactions. The latter is more complicated, and we
defer it for now. The former is relatively simple. We add to the Hamiltonian
the term

HZ = −gµBB
∑
i

Sz
i , (196)

taking the field along the z axis. This splits the spin-degenerate bands from
εnk → εnkσ, with

εnkσ = εnk −
1
2
gµBBσ, (197)

with σ = ±1. Consequently the density of states must be split into different
spin components,

Dn(ε)→ 1
2

∑
σ

Dnσ(ε), (198)

where the factor of 1/2 is to remove the spin degeneracy, which is now counted
explicitly.

Dnσ(ε) =
∫

ddk

(2π)d
δ(ε − εnkσ) =

1
2

Dn(ε +
1
2
gµBBσ), (199)
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whence
Dσ(ε) =

∑
n

Dnσ(ε) =
1
2

D(ε +
1
2
gµBBσ). (200)

From this, we obtain the free energy in a Zeeman field

f (B) = −kBT
∑
σ

∫
dεDσ(ε) ln

(
1 + e−β(ε−µ)

)
= −1

2
kBT

∑
σ

∫
dεD(ε +

1
2
gµBBσ) ln

(
1 + e−β(ε−µ)

)
= −1

2
kBT

∑
σ

∫
dεD(ε) ln

(
1 + e−β(ε−

1
2 gµBBσ−µ)

)
. (201)

The spin magnetization is the first derivative M = −∂F/∂B, and the spin
susceptibility (per unit volume) is

χ =
1
V

∂M
∂B

∣∣∣∣∣
B=0

= −
∂2f

∂B2

∣∣∣∣∣∣
B=0

=
(gµB)2

16kBT

∫
dε

D(ε)

cosh2( ε−µ2kBT )
. (202)

Following the same reasoning as above, the low temperature limit of this
expression is

χ(T→ 0) ∼
(gµB)2

4
D(εF) = (g/2)2µ0µ

2
BD(εF), (203)

where the latter equality is the transformation to SI units. We see that the spin
susceptibility is a constant in the zero temperature limit, and proportional to
the density of states. This is simply understood from the fact that the Zeeman
interaction shifts opposite spin levels oppositely, which at zero temperature
transfers electrons from just below to just above the Fermi energy and vice
versa for the two opposite spin polarizations, within a shell of energy of width
the Zeeman energy. The number density of electrons transferred in that way
is proportional to D(εF) multiplied by the Zeeman energy. This makes the
magnetization linear in the field at zero temperature, and results in the above
form. This is known as the Pauli spin susceptibility, and is another characteristic
of metals. In a band insulator, the spin susceptibility will be exponentially
small, obeying an Arrhenius law.

6.1.3 Narrow bands and effective mass

Both the Pauli susceptibility and the Sommerfeld coefficient are proportional
to the density of states, D(εF), which is typically “small” in the sense of the
estimate in Eq. (194). There are, however, exceptions, in which the density
of states is anomalously large. This is often phrased in terms of an “effective
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mass”. The idea is to consider the density of states that would result from a
free-electron dispersion with a modified mass,

ε(k) =
k2

2m∗
. (204)

In three dimensions, this leads to the density of states

D(ε) =
m∗
√

2m∗ε
π2 . (205)

If we evaluate this at the Fermi energy, we can use the standard definition
of the Fermi momentum (see Sec. 1.2.3, e.g. Eq. (10) which gives the Fermi
energy

εF =
k2

F
2m∗

. (206)

One can then obtain

D(εF) =
m∗kF

π2 . (207)

Since kF is fixed by the electron density, m∗ can be used a proxy for the density
of states. Of course, the dispersion in real bands is generally not given by
Eq. (204), but it is still common to use Eq. (207) to represent the Sommerfeld
coefficient in terms of a “thermal effective mass”, i.e. a large Sommerfeld
coefficient corresponds to a large effective mass. The most dramatic examples
occur in the so-called heavy fermion materials, in which m∗ may be several
hundred times the bare electron mass.

The most common reason for an enhanced density of states is that the
bandwidth W is small for some reason. For this reason one often associates
narrow bands with “heavy” electrons. In the heavy fermions, narrow bands
arise out of nearly localized f-electron states (we will talk about how bands
arise from localized orbitals shortly). An enhanced density of states may
also arise without narrow bands from special aspects of the band dispersion.
Indeed, while Eq. (181) constrains the typical value of Dn(ε) to be of order the
inverse bandwidth, larger values may occur for some energies within the band.
The density of states may even diverge at isolated energies within the band,
so long as this divergence is integrable. Such a divergence can arise when the
topology of the constant energy surfaces of the band changes at a particular
energy, for example if the energy passes through a saddle point of εnk. More
generally when such a topology change occurs, the Dn(ε) is not analytic at
this energy. Such a divergence is known as a van Hove singularity. Van Hove
singularities occur at band edges and at some special energies within bands.
They are of limited relevance unless they occur close to the Fermi energy.
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6. physics from bands

6.2 Spectroscopy

There are various experimental techniques that measure energy levels in a
solid. The set of energy levels of a quantum system is called its spectrum, and
so this is called spectroscopy.

6.2.1 Tunneling

A simple type of spectroscopy involves measuring just the energies of a sys-
tem, without any reference to the wavefunctions associated to each energy
eigenstate. For free fermions this is just the DOS. We have seen that the density
of states at the Fermi energy enters thermodynamic quantities. How can one
measure the density of states at other energies? There are several techniques
that measure this in some ways. One such method, which can be applied
to metals, is tunneling spectroscopy. The basic idea is to inject an electron
from a known metal into a metal one wants to probe, and by keeping track
of the energy of the electron we inject, we learn about the DOS of the probe
metal. This works by passing current from one metal to another, across an
insulator. The insulator acts as a barrier, almost separating the two metals.
Hence it dominates the resistance, and the voltage drops across the barrier.
Being separated, we treat each metal as approximately in equilibrium, and we
can assign each metal i an electrostatic potential φi and chemical potential
µi . Note that in true equilibrium, i.e. without any applied voltage, µi = µ

should be the same in both metals. In general there may be an electrostatic
potential difference between the two metals in equilibrium, due to charges
in the interface region. The electrostatic potential enters the energies in each
metal as a constant, so that, so that Di(ε,φi) = Di(ε + eφi − eφ

eq
i ), where Di(ε)

is the DOS in metal i in zero applied voltage, when φi = φ
eq
i . The chemical

potential only enters the distribution. Then the electron density in metal i is

ni =
∫

Di(ε + eφi − eφ
eq
i )nF(ε − µi) =

∫
Di(ε)nF(ε − eφi + eφ

eq
i − µi). (208)

The electron density in each metal must remain the same as it is for zero
applied voltage, i.e. when φi = φ

eq
i by definition and both sides have the same

chemical potential equal which defines the Fermi energy µi = εF, so that it
equals the ionic density and the metal remains charge neutral (some surface
charge can accumulate but not bulk charge). Hence we have

eφi + µi − eφ
eq
i = εF (209)

This means that the chemical potential shifts in step with the electrostatic
potential as the voltage is varied. Consequently

Di(ε,φi) = DI(ε − ∆µi), (210)
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where ∆µi = µi − εF. We see that each DOS shifts according to its chemical
potential. The voltage is defined by the difference eV = µ1 − µ2. When it is
non-zero, the two DOS are shifted relative to one another. The occupation of
states on each side is determined by nF(ε − µi), so the occupation also shifts.

The key observation is that the set of levels with min(µ1, µ2) < ε < max(µ1, µ2)
are empty in one metal and full in the other. The insulating barrier should
possess no states in this region. In this case, electrons can move from occupied
states on one side of the barrier to empty states on the other by tunneling. This
occurs only in one direction at T = 0, determined by the sign of the voltage,
and hence leads to a net current. As the voltage is increased, the number of
states that can tunneling increases, and hence so does the current. We can
write the net current as

I = −e
∫

dε T(ε)D1(ε−∆µ1)D2(ε−∆µ2) [nF(ε − µ1)(1 − nF(ε − µ2)) − (1 − nF(ε − µ1))nF(ε − µ2)] ,

(211)

where T(ε) is a rate determined from tunneling physics, generally weakly
dependent on energy. The terms in the brackets represent the rate to take an
electron from side 1 to side 2, from an occupied state (with probability nF) to
an unoccupied one (with probability 1 − nF) and vice-versa. This simplifies to

I = −e
∫

dε T(ε)D1(ε − ∆µ1)D2(ε − ∆µ2) [nF(ε − µ1) − nF(ε − µ2)]

= −e
∫

dε T(ε)D1(ε − ∆µ1)D2(ε − ∆µ2) [nF(ε − εF − ∆µ1) − nF(ε − εF − ∆µ2)]

(212)

At this point, let us assume that the rate T(ε) ≈ T is constant over the energy
window, and we also choose metal 1 to be a “good” metal with approximately
constant DOS, so D1(ε) = D constnat. Then we can shift ε→ ε+∆µ2 to obtain

I ≈ −eTD1

∫
dεD2(ε) [nF(ε − εF − eV) − nF(ε − εF)] . (213)

Differentiating with respect to V gives the differential conductance

dI
dV
≈ e2TD1

∫
dεD2(ε)n′F(ε − εF − eV) ≈ e2TD1D2(εF + eV), (214)

where we approximate the derivative of the Fermi function by a delta function
at low temperature. We see that the differential conductance is proportional
to the DOS of metal 2, and thereby the DOS can be measured.

The treatment above of the rate T was not very rigorous. In general, this
depends upon the nature of the tunnel junction. An important case is a point
contact, where metal 1 is an scanning tunneling microscope (STM) tip, and
the insulator is vacuum. For such a point contact, the tunneling measures the
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“local density of states” and T contains information on the Bloch wavefunctions
close to the location of the tip. One can also consider planar junctions, and
the result depends upon the nature of the interfaces. For very clean interfaces,
momentum may be conserved parallel to the interface, leading to highly non-
trivial energy dependence of T(ε) and more careful considerations are needed
explicitly tracking the momentum.

6.2.2 Angle resolved photoemission

In tunneling, an electron is either added or removed from the metal being
probed – both are possible because electrons can be added or removed from
the reference metal on the other side of the barrier. In angle resolved photo-
emission spectroscopy, an electron is removed from a metal but instead of into
another metal it is ejected into free space and then collected at a detector. This
is accomplished by directing energetic photons at the sample. The phenomena
of electrons being ejected from a solid by incident radiation is the photoelectric
effect, the subject of Einstein’s nobel prize. Over the past decades the technique
has been refined so that it has become a powerful tool for condensed matter
physics. A photon is absorbed by the material, causing an electron to transition
from a bound state in the material to an unbound one which then propagates
to the detector, which registers the energy of the ejected “photo-electron” and
its momentum (by identifying the direction of propagation). The result is
analyzed by energy and momentum conservation.

Ideally, the surface of the solid is perfectly flat and crystalline. In that
case, there is (discrete) translational symmetry in the two directions parallel
to the surface. This implies conservation of quasi-momentum in these two
directions. One can think of the photoemission as a process in which the
initial state consists of a photon and an electron in solid, and the final state is
just the photo-electron. Therefore, if we know the momentum of the incident
photon kph and the momentum of the photo-electron kf (this is called “angle
resolved photo-emission” because we must detect the direction of the photo-
electron to deduce its momentum), we can deduce the planar components of
the quasi-momentum of the initial electron,

k‖ = kf ,‖ − kph,‖. (215)

Furthermore, by energy conservation, the energy of the initial electron is the
energy of the photo-electron minus the photon energy,

ε = εf − εph = εf − ~c|k|ph. (216)

By collecting photo-electrons and binning the data with respect to momentum
and enerby, one arrives at a histogram which approximates the intensity
function I(k‖, ε). The technique is known as Angle Resolved Photo-Emission
Spectroscopy (ARPES). A peak in this intensity reflects the existence of a state
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with energy ε and planar momentum k‖. Note that the zero of energy must be
chosen globally for this to make sense. If we measure the kinetic energy of the
electron in the vacuum, then the energy here includes the binding energy of
electrons in the solid, the so-called “work function”.

In the independent electron picture, the states that must satisfy the mo-
mentum and energy conditions of Eq. (215)- (438) are just band states. Hence
the photoemission intensity has the form

I(k‖, ε) =
∑
n

∫
dk⊥
2π

nF(εn,k,kz ) M(k, ε)
γ/π

(ω − εn,k,kz )2 + γ2 , (217)

where M is an amplitude which comes from more detailed calculations, and
γ is a phenomenological linewidth or decay rate (more generally this might
depend on energy and momentum, and one might also put a width in momen-
tum). A more sophisticated theory relates the ARPES intensity to a somewhat
subtle quantity in many-body theory, the one-electron spectral function, which
is very useful for diagnosing the effect of correlations/interactions between
electrons. However, Eq. (440) is not so far off, and therefore one can often
directly visualize the bands of occupied states by determining the peaks in
the intensity. The technique works best in quasi-two dimensional materials in
which the band dispersions are almost independent of kz , as this dependence
is not really resolved.

It is notable that ARPES measures only the occupied electronic states. To
measure the unoccupied bands requires another technique. For example, one
may attempt to do “time resolved ARPES”, using a “pump” laser to excite
electrons into the normally unoccupied bands, and carrying out the photo-
emission measurement before they relax back.

6.2.3 Friedel oscillations

Friedel oscillations are oscillations in the charge density induced by an ap-
plied potential or more often a defect in a metal. They occur because of the
sharp jump in the occupation of (quasi-)momentum states inside and outside
the Fermi energy. This singular distribution in momentum space leads to
oscillations in real space. Characteristically, the scale of the oscillations is of
the order of the Fermi wavelength, and the Fourier components of the oscilla-
tions are compromised of momenta which can be formed as the difference of
two points on the Fermi surface. Friedel oscillations occur as a ground state
phenomena (in the presence of defects), so perhaps they should not really be
in this spectroscopy section. However, they are often measured via STM, so I
grouped it here.
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7 transport

Transport refers to experiments which study currents of conserved quantities
like charge, heat, or sometimes spin (which is only approximately conserved
at best) induced by applied forces (e.g. electric fields) or other means of
forcing a system out of equilibrium (e.g. contact to two reservoirs at different
temperatures). This could very well be another topic under the previous
section but it is so important and connected to very deep ideas that it merits
its own section.

7.1 Semi-classical dynamics

As we have repeatedly emphasized, the basic energy and length scales for
bands in solids are not too dissimilar from those of atoms. Most forces that
we can actually apply to electrons (e.g. external electric fields) are weak in
comparison, and are also applied over much longer length scales. We consider
the one electron Hamiltonian

H =
|p + eA(x)|2

2m
+ V(x) − eφ(x), (218)

where A(x) and φ(x) are vector and scalar potentials associated with slowly
varying and weak electromagnetic field. The electric field is weak if it is small
compared to atomic fields, and the magnetic field is weak if the magnetic flux
per area of a unit cell, in any direction, is much less than the flux quantum
h/e. They are slowly varying in space if they change vary little over the length
of a unit cell. They are slowly varying in time if they vary little over the time
which is the inverse of the bandwidth. All these conditions are easily satisfied
by nearly all electromagnetic fields applied to solids.

With this requirement, one can apply semi-classical dynamics. Why semi-
classical? If we assume that all perturbations to the system are slowly-varying
in space and time, then over a large local region the problem “looks” like an
ideal and almost regular Schrödinger equation in a periodic potential. Even
the potentials (not just the fields) can be regarded as almost constant, since the
fields themselves are assumed weak. Of course Bloch states are plane waves
and so infinite, so do not quite work for even such a slowly-varying problem.
However, from Bloch states we can build a wave packet, which is localized in
space,

ψn,q,y(x) =
∫
BZ

ddk

(2π)d
φ(k, q)eik·yψnk(x), (219)

where φ(k, q) is some amplitude function peaked at k = q. The resulting
wave-function is peaked near x = y. It has indefinite position and momentum,
limited by the uncertainty principle. For a situation in which the perturbations
to the Bloch problem are slowly varying, then we can increase the “sharpness”

76



7.1. semi-classical dynamics

of φ until the width in real space becomes comparable to the size of variation
of the perturbations. Generally we can make the uncertainty in momentum
small compared to the size of the Brillouin zone, while at the same time
keeping the uncertainty in position smaller than the scale of variation of the
applied potentials.

For such a wave packet, we can study the evolution of the packet’s center
q in momentum and y in real space as a function of time. The derivation is
rather technical and it will not be fully given here (you might still find what
is written here technical enough!). Instead, we will quote the results and refer
the reader to careful treatment in the literature – see Refs.[5, 4]. The result is

dx
dt

= vn = ∇kε̃nk −
dk
dt
×Ωnk, (220)

dk
dt

= Fn = −eE − e dx
dt
× B. (221)

Here most of the terms are recognizable from the free electron limit. Indeed,
the second equation, for the momentum, is unchanged from that case. The
first equation looks a little different. The first term in the first equation, ∇kε̃nk,
is understandable from the quantum relation ω = ε (here ~ = 1), and then
recalling from elementary physics the formula for the group velocity of a wave
packet. So this term is the natural group velocity of a wave in a dispersive
medium. There is only one subtlety in that term: the band energy εnk has been
replaced by ε̃nk, which indicates the slight modification:

ε̃nk = εn(k) − B ·mnk. (222)

Here mnk is a quantity associated with the Bloch states, and can be interpreted
as an orbital magnetic moment. It is due to rotational motion of charge inside
the spatial extent of a wavepacket. It has a slightly complicated form but can
be calculated if the Bloch functions are known,

mµ(k) =
−ie
2
εµνλ

〈
∂unk
∂kν
|(Hk − εnk)|∂unk

∂kλ

〉
. (223)

In this expression, Hk is the Bloch Hamiltonian from Eq. (166), and we used
the notation that

〈un′k′ |O|unk〉 ≡
∫

p.u.c.

u∗n′k′ (x)Ounk(x). (224)

Note the integral is just over a single primitive unit cell, and we use the
normalization convention
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〈unk|unk〉 =
∫

p.u.c.

|unk(x)|2 = 1. (225)

These definitions are implied any time we write a bra-ket expression with a
unk inside the bras and kets. Eq. (223) looks a little involved but we will at
least get a bit more insight into it shortly.

7.1.1 Berry curvature and anomalous velocity

The second term in the first line of Eq. (220) is novel, and is called the anoma-
lous velocity. It has a striking similarity to the Lorentz force term in the second
line, but it is “dual”: momentum and position have exchanged their roles in
the anomalous velocity. The quantity which plays the role of the magnetic
field is called the Berry curvature,

Ω
µ

nk = iεµνλ

〈
∂unk
∂kν
|∂unk
∂kλ

〉
. (226)

The Berry curvature is a fundamental quantity not only in band structure
but in any quantum mechanics problem which depends upon at least two
parameters. We will illustrate how it arises through the specific example of the
Bloch hamiltonian Hk, which depends upon k as a parameter. The eigenstates
are just the periodic parts of the Bloch functions, and we will use bra-ket
notations as in the previous two equations,

Hk|unk〉 = εnk|unk〉. (227)

As in any quantum mechanics problem, the states are defined only up to a
phase. This phase can be chosen independently for every eigenstate, here for
every n and k. So two phase conventions differ by a “gauge transformation”

|unk〉 → eiϕnk |unk〉. (228)

The choice of phase convention is up to the person solving the Schrödinger
equation, Eq. (227). So we should be careful to express physical properties in
terms that do not depend upon the phase convention (or to specify it, but this
is less elegant). This line of thinking leads to the introduction of the Berry
curvature.

To get there, we first ask what information we might like to understand
about the wavefunctions |unk〉? A natural question is to try to understand how
they change as k is varied. To do so, we may try to look at the overlap of two
Bloch states with slightly different momenta,

〈unk+q|unk〉 ≈ 1 + q · 〈∇kunk|unk〉 + O(k2). (229)

78



7.1. semi-classical dynamics

We see that the overlap of nearby states is determined by a single object. This
object can be shown to be purely imaginary. To see this, we use the fact that
the states are normalized and take a gradient,

〈unk|unk〉 = 1 ⇒ 〈∇kunk|unk〉 + 〈unk|∇kunk〉 = 0. (230)

Note that by the definition of hermitian conjugacy,

〈unk|∇kunk〉 = (〈∇kunk|unk〉)∗ , (231)

which by Eq. (230) implies Re 〈∇kunk|unk〉 = 0, i.e. this quantity is a pure
phase. The math is the same as varying a vector of fixed length, e.g. on a sphere
or a circle. As it rotates, the infinitesimal change of the vector is tangent to the
sphere, i.e. normal to the instantaneous direction of the vector. Hence we can
define a real quantity by multiplying by i,

Ank = i〈unk|∇k|unk〉, (232)

which is known as the Berry gauge field or Berry vector potential. The overlap
becomes

〈unk+q|unk〉 ≈ 1 + iq ·Ank. (233)

You can see that the Berry gauge field describes a sort of evolution of the
eigenstates of the Bloch Hamiltonian as the parameter k is varied. A famous
result from quantum mechanics – the quantum adiabatic theorem – is that if
we consider an actual time dependent Hamiltonian with some parameters that
vary slowly in time, an initial state which is an eigenstate of the Hamiltonian
with the initial parameters remains to a good approximation an instantaneous
eigenstate of the Hamiltonian as those parameters change. Here we are apply-
ing this result to the situation in which the parameter is the Bloch momentum,
which can be a function of time t due to applied forces. Hence Hk(t) defines a
time-dependent Hamiltonian. What Michael Berry showed is that the phase
of the time-dependent state obeying the adiabatic theorem has a geometrical
component. Let’s make this explicit with some math. The time-dependent
Schrödinger equation with a time-dependent (quasi-)momentum is

i∂t |ψ〉 = Hk(t)|ψ〉. (234)

We take the initial state to be an eigenstate,

|ψ(t = 0)〉 = |unk(0))〉, (235)

with some initial momentum k(0), and in some band n. What Berry showed
is that under the adiabatic evolution, the state at time t is
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|ψ(t)〉 ≈ eiγd eiγn |unk(t)〉. (236)

Here γd =
t∫

0
dt′ εnk(t′) a trivial dynamical phase. The second contribution γn

is geometrical phase:

γn(C) =

k(t)∫
k(0)

dk ·Ank, (237)

which depends upon the path C taken in momentum space. This is geometrical
in that the actual way in which the quasi-momentum varies in time does not
enter: only the curve in k-space matters, not how fast or slow it is traversed.
I will not derive the correspondence between this integral and the adiabatic
geometrical phase, but you can find it in many textbooks and reviews, e.g.
Ref. [5].

The Berry gauge field is dependent upon the phase convention for the Bloch
states. Under the gauge transformation in Eq. (228), it transforms according
to

Ank → Ank − ∇kϕnk. (238)

This transformation is identical to the transformation of a physical vector
potential under a spatial gauge transformation, except it is now in momentum
space. One can see that in general the geometric phase is not invariant under
such changes, but it becomes invariant if the path is taken to form a closed
loop, with k(tf ) = k(0). The phase is then dependent only on the path and
independent of the gauge choice.

From the analogy with electromagnetism, it is clear how to define a local
gauge invariant quantity, which is just the flux associated with this gauge field.
This is in fact just the Berry curvature:

∇k ×Ank = Ωnk. (239)

So this is an exceedingly natural quantity to appear in physical expressions.
Why in particular does it enter the wave packet velocity in Eq. (220)?

One way to approach this question is to view the equation of motion for the
position as arising from taking the expectation value of the operator equation
of motion for the position operator (in the Heisenberg representation). Since
we are discussing motion within a band, we want to consider the position
operator projected into a single band.

7.1.2 Less technically-minded readers may want to skip this

We are now going to derive the form of this projected position operator. It is a
bit technical and long. Feel free to skip ahead to the result if you do not care.
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Projecting the electron operator into a band means understanding how
the operator acts on a general electron state within a band. Such a state is an
arbitrary superposition of Bloch states, i.e.

|ψ〉 =
∫
BZ

ddk

(2π)d
ψ(k)|ψnk〉. (240)

Here ψ(k) is the amplitude of the Bloch state with quasimomentum k. It can
be viewed as the electron wavefunction in the quasimomentum representation.
Note there is no sum on n here because we deal with one band. In terms of
wavefunctions, this is

ψ(x) =
∫
BZ

ddk

(2π)d
ψ(k)eik·xunk(x). (241)

We will choose to normalize the periodic parts of the Bloch states such that

〈unk|unk〉 =
∫

p.u.c.

ddx |unk(x)|2 = 1. (242)

Please take note of the notation: when evaluating a bra-ket product of the
periodic parts of Bloch functions, the spatial integral is taken over a single
unit cell. When evaluating the bra-ket product of full Bloch states, such as
those in Eq. (240), we are to integrate over the full space. Now since the Bloch
states are eigenstates of the Hamiltonian with distinct energy and momenta,
we expect them to be orthogonal for different quasimomenta. Let us check
this. We have

〈ψnk′ |ψnk〉 =
∫

ddx ei(k−k
′)·xu∗nk′ (x)unk(x). (243)

Here the integral is over all space. We can divide the integral into a sum over
unit cells, and an integration within each cell. Let x → X + x, where X are
Bravais lattice vectors and now x is integrated over a unit cell,

〈ψnk′ |ψnk〉 =
∑

X

∫
p.u.c.

ddx ei(k−k
′)·(X+x)u∗nk′ (x)unk(x). (244)

We see that only the exponential depends upon X, so the sum over lattice
sites can be carried out explicitly. One has the identity∑

X

eiq·X =
(2π)d

Vp.u.c.

∑
Q

δ(d)(q − Q), (245)
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where the sum Q is over reciprocal lattice vectors. Applied to Eq. (244), and
assuming we use the reduced zone scheme, then the delta function can be
satisfied only when k = k′ and we obtain

〈ψnk′ |ψnk〉 =
∫

p.u.c.

ddx
(2π)d

Vp.u.c.
δ(d)(k − k′)u∗nk′ (x)unk(x)

=
(2π)d

Vp.u.c.
δ(d)(k − k′). (246)

So Bloch states with distinct quasimomenta are indeed orthogonal and we
have determined the normalization. Note we need to take care with delta
functions since we work extended states. Eq. (246) now can be applied to
Eq. (240) to invert the relation and obtain ψ(k). Take the overlap of both sides
with 〈ψnk|, one obtains

ψ(k) = Vp.u.c.〈ψnk|ψ〉 = Vp.u.c.

∫
ddx e−ik·xu∗nk(x)ψ(x). (247)

This allows us to obtain the quasimomentum representation wavefunction
from any real space one. It must be understood as a projection, because the
basis of Bloch states of a single band is not complete in the full Hilbert space.
That is, if we apply Eq. (247) to an arbitrary real space wavefunction, obtain
ψ(k) from it, and then go back to use Eq. (240) or Eq. (241) to obtain a new real
space wavefunction, this new wavefunction is the projection of the original
one into band n. This is what we are after anyway!

Now we are ready to consider the position operator. Acting on an arbitrary
real space wavefunction, we have of course that

x̂ψ(x) = ψ′(x) = xψ(x), (248)

where here I indicate on the left hand side by a hat that we mean the position
operator, and on the far right hand side, the absence of a hat means it is
simply the coordinate. We want to obtain the projection of ψ′(x) into the Bloch
band, i.e. the corresponding momentum wavefunction ψ′(k). Since position
is a linear operator, we will define the projected position operator x̂n in the
momentum representation by

ψ′(k) = x̂nψ(k). (249)
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We need to find ψ′(k). According to Eq. (247), it is

ψ′(k) = Vp.u.c.

∫
ddx e−ik·xu∗nk(x)xψ(x)

= Vp.u.c.

∫
ddx i∇k

(
e−ik·x

)
u∗nk(x)ψ(x)

= i∇kψ(k) − Vp.u.c.

∫
ddx e−ik·x

(
i∇ku∗nk(x)

)
ψ(x). (250)

Now we can use Eq. (241) to express the final integral back in terms of ψ(k):

ψ′(k) = i∇kψ(k) − Vp.u.c.

∫
ddx e−ik·x

(
i∇ku∗nk(x)

) ∫
BZ

ddk′

(2π)d
ψ(k′)eik

′ ·xunk′ (x).

(251)

The double integral can be done by reversing the order of integration and
following similar manipulations to those we used to evaluate the overlap of
two Bloch states above. Skipping details, one obtains

ψ′(k) = i∇kψ(k) − i〈∇kunk|unk〉ψ(k)

= (i∇k +Ank)ψ(k). (252)

From this we can immediately read off the form of the projected position
operator in the momentum representation by comparing to Eq. (249).

7.1.3 The projected position operator and derivation of the anomalous
velocity

The result of the previous manipulations is that position operator in the the
quasi-momentum representation (i.e. acting on a wavefunction ψ(k) which
gives the amplitude to find the electron in band b at quasimomentum k) is

xn = i∇k +Ank = i (∇k − iAnk) . (253)

This is a beautiful equation, which should be compared to Eq. (465) for free
electrons. We see that in addition to the momentum gradient, the Berry gauge
field appears. In the form of the final equality it is clear why this gauge field
must appear mathematically: it is just the same minimal coupling form in
which the ordinary electromagnetic vector potential appears in combination
with a derivative, which is there to ensure gauge invariance. Similarly, this
form here ensures invariance under different choices of phase conventions for
the Bloch states, i.e. xn is invariant under

ψ(k)→ eiϕ(k)ψ(k), Ank → Ank + ∇ϕ(k). (254)

This gives a mathematical reason for the appearance of the Berry gauge field.
We will return to the physics shortly. First let us use the result in Eq. (253) to
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derive the anomalous velocity. For this purpose, we can consider zero magnetic
field and non-zero electric field, for which the semi-classical equations become

dx
dt

= ∇kεnk −
dk
dt
×Ωnk, (255)

dk
dt

= −eE. (256)

We can insert the second equation into the first to obtain

dx
dt

= ∇kεnk + eE ×Ωnk. (257)

The goal is to derive this. We do so by calculating the operator equation
of motion for the position, in the projected band Hamiltonian. We take the
Hamiltonian in Eq. (218) for A = 0 and φ(x) = −E · x, and project it into a
single band. This gives

Hn ≡ PnHPn = εnk + eE · xn. (258)

To compute the equation of motion for the position operator, we need to com-
pute the fundamental position and momentum commutators using Eq. (253).
By simple algebra one obtains[

x
µ
n, k

ν
]

= iδµν,
[
x
µ
n, x

ν
n

]
= iεµνλΩλ. (259)

The “canonical” commutation of position and momentum remains as it is
in normal quantum mechanics, but the commutator of position with itself is
modified and now contains the Berry curvature! From this, we can calculate
the equation of motion for position,

dx
µ
n

dt
= −i[xµn, H] = i

[
x
µ
n, εnk

]
+ i

[
x
µ
n, eEνx

ν
n

]
=

∂εnk
∂kµ

+ eEνεµνλΩλ. (260)

This is an operator equation of motion, and the wave packet dynamics corre-
sponds to taking the expectation value of this in a wave packet initial state (in
the Heisenberg picture the states are time independent). This agrees exactly
with Eq. (257). Hence we have derived the anomalous velocity (at least for the
case B = 0). We have actually used the same method as in the original Karplus
and Luttinger paper when this was first derived[1].

7.1.4 Physical meaning of anomalous velocity

Let us now discuss the physical meaning of the anomalous velocity. This is
of course encoded in the mathematics. We can see that it arises from the
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Berry gauge field Ank. This is nothing but the expectation value of i∇k in
the periodic part of the Block state. Since this is just a position operator, we
can understand this term as representing the “center of mass” of the Bloch
state within a unit cell. So roughly, the projected position operator has a
contribution due to the envelope of the wave packet, which is the first term
in Eq. (253), and a second contribution which is due to the position of the
electronic state within a unit cell. I emphasize this is a rough understanding,
because actually the first and second terms in Eq. (253) are not really separable:
they are not gauge invariant on their own and so the division of each term
into a envelope and unit cell contribution is gauge dependent. However, there
are indeed two contributions to the spatial motion of the wave packet, and
this is why there are two terms.

When we take the time derivative of the position, there are therefore two
contributions to the velocity: one arising from the motion of the envelope, and
another arising from the motion of the center of mass in the unit cell. It is
the latter which should be identified with the anomalous velocity term in the
equation of motion in Eq. (220),

vanom
n = −dk

dt
×Ωnk. (261)

This arises because when the quasimomentum depends on time, the mean
position of the electron within the unit cell evolves with it. The anomalous
velocity is just the time derivative of this position.

7.1.5 Example: uniform electric field

As a simple example of semi-classical dynamics, consider the effect of a
uniform electric field, in zero magnetic field. The semi-classical equation for
the quasimomentum becomes

dk
dt

= Fn = −eE. (262)

This indicates that the quasimomentum simply evolves linearly in time:

k(t) = k(0) − eEt. (263)

This is familiar as just acceleration in a constant field in Newtonian mechanics.
However, there is an important difference in the Bloch case: the quasimomen-
tum is itself only defined up to a reciprocal lattice vector, so that in this sense,
the quasimomentum does not grow without bound. Indeed, if we adopt the
reduced zone scheme, the linear growth of k(t) is mapped repeatedly back
into the Brillouin zone. The way the trajectory depends somewhat on the
orientation of the electric field. If it is oriented parallel to some reciprocal
lattice vector Q, then k(t) will be periodic as once −eEt = Q, the quasimo-
mentum has returned to its initial value. If you remember that the Brillouin
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zone can be viewed as a torus, this corresponds to a trajectory which winds
around the torus some finite number of times before returning to its original
position [sketch?]. If the electric field is not parallel to any reciprocal lattice
vector, then the trajectory will wind indefinitely and never exactly return to
its original quasi-momentum.

Once k(t) is known, we can examine the position using the other semi-
classical equation:

dx
dt

= vn = ∇kε̃nk(0)−eEt + eE ×Ωnk(0)−eEt . (264)

For short times, the result may look a lot like the acceleration of electrons
in free space. For example, near the minimum of a band, ε̃ is quadratic in
momentum, and hence its gradient is linear, and inserting this into the first
term above will give a velocity which increases linearly in time. However, at
fixed electric field this does not reflect the long time behavior.

To see this, recall that all physical quantities are periodic with respect
to quasi-momentum. Hence both εnk and Ωnk can be expanded in a Fourier
series (where the coefficients are associated to Bravais lattice vectors X):

εnk =
∑

X

εnXe
ik·X, Ωnk =

∑
X

ΩnXe
ik·X. (265)

This implies

dx
dt

= vn =
∑

X

(XεnX + eE ×ΩX) ei(k(0)−eEt)·X. (266)

We can see that for long times, any Fourier component X which is not or-
thogonal to E will lead to an oscillatory contribution which averages to zero.
For a “generic” direction of electric field, this is all X except X = 0. For this
component the first term above vanishes. For such a generic orientation, one
has therefore at long times

dx
dt

= vn ∼ eE ×ΩX=0. (267)

Only the zeroth Fourier component of the Berry curvature, i.e. its average over
the Brillouin zone, contributes – this quantity will arise again soon and we
will return tio it! The average velocity remains bounded and proportional to
the electric field.

In the standard textbooks where the Berry curvature is neglected, the
average velocity therefore simply vanishes. This is fairly astounding from a
free electron point of view: instead of accelerating to infinite velocity, the
electron does not more on average at all! In fact, it executes in this case
oscillatory motion (due to all the X , 0 terms). This motion is known as Bloch
oscillations.

One way to understand Bloch oscillations is as follows. The fundamental
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ingredient is that the quasimomentum is periodic: an electron whose quasi-
momentum exits the Brillouin zone on one side re-enters it on the other.
This corresponds to relabeling the quasimomentum by a reciprocal lattice
vector. It can be thought of as a Bragg reflection: recall that in the nearly free
electron model the Brillouin zone boundaries are Bragg planes, where two
bare momentum states become degenerate. So we can think of the electron
crossing the zone boundary as Bragg reflected. Correspondingly, the electron
reverses its direction in real space. Over long times, this happens repeatedly
and the electron does not achieve any net motion.

In reality, Bloch oscillations are difficult to observe because the time needed
for an electron’s quasimomentum to travel across the Brillouin zone is very
long. In this time, the electron’s trajectory is typically interrupted by scattering
off of impurities or other electrons, which is not included in the semi-classical
equations.

7.1.6 Example: uniform magnetic field

Now consider the case of a uniform magnetic field and zero electric field. The
semi-classical equations become

dx
dt

= ∇kε̃nk −
dk
dt
×Ωnk, (268)

dk
dt

= −e dx
dt
× B. (269)

We can use the first equation to eliminate position in the second equation and
obtain

dk
dt

= −e
(
∇kε̃nk −

dk
dt
×Ωnk

)
× B

= −eṽnk × B− eΩnk · B
dk
dt

. (270)

Here ṽnk = ∇ε̃nk. We can solve this equation for dk/dt:

dk
dt

= − eṽnk × B
1 + eB ·Ωnk

. (271)

From this one can notice that the momentum parallel to B and the energy are
constants of the motion:

∂t (k · B) = ∂t ε̃nk = 0. (272)

This implies that the quasimomentum evolves on a constant energy contour
in a plane perpendicular to B. This is generically a periodic curve – an “orbit”
– which either closes within the Brillouin zone or wraps non-trivially around
the periodic directions of the zone, which has the topology of a torus since
quasimomentum is periodic. This is the generalization of a cyclotron orbit for
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free electrons in a magnetic field.

In the usual textbooks, you will not find the denominator in Eq. (271). It
has only relatively recently been understood as one of the effects of non-trivial
Berry curvature in solids. For the moment, however, let us consider the case
in which Berry phase effects vanish, Ωnk = mnk = 0, and take just

dk
dt

= −evnk × B. (273)

This tells us the rate at which the quasi-momentum moves along its curve of
constant energy and fixed k · B.

The constant energy curves can be open or closed. A closed curve is one
which is periodic in momentum in the extended zone scheme. If drawn in the
extended zone scheme as a continuous curve, the curve encloses an area in the
plane of motion. An open curve is periodic only in the reduced zone scheme:
it consists of a trajectory that wraps around the torus on the Brillouin zone. In
the extended zone scheme it is unbounded and drawn on the plane does not
close at all but rather forms a “snaking” path extended to infinity. Since bands
are typically quadratic near their maxima and minima, in these regions the
constant energy curves are closed, and approximate ellipses. Near the middle
of a band, the orbits may be open.

From the quasi-momentum solution we can obtain the real space one.
Taking the cross product of Eq. (273) with magnetic field we find

B̂× dk
dt

= −eB
(
vnk − B̂(B̂ · vnk)

)
≡ −eBvnk,⊥, (274)

where vnk,⊥ is the projection of the velocity to the plane normal to the field.
Then the coordinates in real space in the same plane are obtained from

dx⊥
dt

= vnk,⊥ = − 1
eB

B̂× dk
dt

. (275)

Integrating this over time we see that

x⊥(t) − x⊥(0) = − 1
eB

B̂× (k(t) − k(0)) . (276)

Now we see that for closed orbits, for which k(t) is periodic, the motion in real
space is also periodic. For open orbits, this is not the case, and the real space
motion is unbounded. In the case of closed orbits, the motion is fully periodic
in phase space because an electron repeatedly revisits the same region in
phase space, there is a possibility for quantum interference. This leads to the
phenomena of quantum oscillations. The basic mechanism is that if the phase
accumulated by an electron over one period of the orbit is a multiple of 2π,
then there is constructive interference and a discrete state results. The phase
accumulated has a dynamical component which is the energy times the period
T of the orbit (divided by ~ = 1). So we should expect that in a quantum
theory there are discrete energy levels with energy spacing ∆ε = ~ωc, where
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ωc = 2π/T is the cyclotron frequency.
To determine this level spacing, and the cyclotron frequency, we need to

figure out the period of the orbit. For this we can use Eq. (273), which we can
invert to obtain

dt =
|dk|

e|vnk,⊥|B
, (277)

The period is the total time for this cyclotron orbit, hence

Tc =

t∫
0

dt′ =
1
eB

∮ |dk‖|
|vnk,⊥|

. (278)

Here dk‖ is the change of k along the orbit, which is of course tangent to it.
By definition, the velocity in the denominator is the in-plane component of
the gradient of the energy, vnk,⊥ = lim∆ε→0 ∆εn/∆k⊥, so one can write

Tc =

t∫
0

dt′ =
1
eB

∮ |dk‖∆k⊥|
|∆εn|

. (279)

One can simplify this by taking ∆ε fixed, and pulling it out of the integral.
Then the integral gives the area of a ribbon or ring bounded by two the
constant energy orbits of energy ε and ε + ∆ε. Hence

Tc =
1
eB

lim
∆ε→0

An(ε + ∆ε) − An(ε)
∆ε

=
1
eB

∂An(ε)
∂ε

. (280)

This is a general and compact result for the period of the generalized “cy-
clotron orbit”. It is obvious that this applies only to closed orbits as the open
orbits do not enclose an area!

The above analysis applies the semi-classical model purely classically.1

We can consider quantum interference effects via the Bohr-Sommerfeld type
quasi-classical quantization.

The standard Bohr-Sommerfeld condition is:

Lz =
∮

(k⊥ − eA) · dx⊥ =
−1
eB

∮
k⊥ · B̂× dk − eΦ =

1
eB

∮
(kxdky − kydkx) − eBAreal space,

(281)

where Φ is the flux through the orbit in real space. For a uniform field, this

1Sorry for the confusing language. The semi-classical equations are semi-classical in the
sense that they use input from the full quantum solution of the Bloch problem of an ideal
crystal, e.g. εnk, Ωnk, etc. The equations themselves are however classical equations in that
x and k in these equations are just numbers, and there is wavefunction implemented, and
no uncertainty principle in these equations. So we can talk about the classical semi-classical
equations!—
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equals B times the area of the orbit in real space. Here we Eq. (275) to express
dx in terms of dk. Now the final integral is twice the area in momentum space.
Morevoer, from Eq. (276), the area of the orbit in real space is 1/(eB)2 times
the area in momentum space. Taking both into account, we find that

Lz =
A(ε, kz)

eB
= h(n + ν) = 2π(n + ν), (282)

in our units with ~ = 1. Here ν is some offset due to geometrical phase
contributions beyond the dynamical phase due to just angular momentum.

Strictly speaking, we should be careful in literally interpreting the semi-
classical Bohr-Sommerfeld result as true quantization of energy levels; for
the latter we should apply a fully quantum approach. The Bohr-Sommerfeld
results rather describe the onset of quantum interference effects. One may have
in mind that because of scattering, electrons cannot traverse their periodic
orbits an infinite number of times before a collision. If the typical time between
collisions is τ, then the number of times an orbit can be encircled is ωcτ.
When ωcτ is finite, the collapse of allowed energies into discrete levels is
incomplete and one should instead regard Eq. (282) as defining energies
where constructive interference leads to a maximum in the density of states
(actually the partial DOS at fixed kx).

These oscillations in the density of states manifest in many physical quan-
tities. They appear as oscillations of the magnetization in a field, a phenomena
known as the de Haas van Alphen effect. They induce oscillations in the
resistivity with field, which are known as Shubnikov de Haas oscillations.

In many experiments, the electron density and hence the Fermi level is
held fixed, while the magnetic field is varied. In this case, Eq. (282) implies
that maxima of the DOS occur at the Fermi energy when B = Bn such that
this condition holds. This defines a set of discrete magnetic fields. One can
see that this condition is linear in n for 1/B, hence inverse magnetic fields are
evenly spaced:

∆

(1
B

)
=

2πe
A(εF, kz)

. (283)

Hence by extracting the maxima in DOS versus 1/B, one can obtain informa-
tion on the areas of sections of the Fermi surface.

Our discussion does not clarify which values of kz , i.e. which sections,
contribute for a three-dimensional Fermi surface. It turns out that the DOS
oscillations are dominated by extremal orbits, i.e. the cuts in which the areas
are maximal or minimal. The reason is that the full DOS is an integral over
the contributions for each kz , and dominant contributions to this integral
arise from the regions in which the oscillations versus 1/B vary least with kz :
these are the extremal orbits. This is a powerful tool because one can rotate
the sample or field to choose different kz , thereby probing different cuts and
different extremal areas.
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An alternative use of Eq. (282) is to inquire about the oscillations of the
DOS versus energy at fixed magnetic field. This is hard to probe in conven-
tional bulk measurements but can be studied using spectroscopic probes and
in two dimensional materials. When the magnetic field is small, the energy
level spacing must also be small, so we have

∆

(
A(ε, kz)

eB

)
≈ ∂A/∂ε

eB
∆ε = 2π. (284)

Hence the energy level spacing is

∆ε =
2πeB
∂A/∂ε

. (285)

We see that this spacing corresponds to the cyclotron frequency

∆ε = ωc =
2π
Tc

=
2πeB
∂A/∂ε

. (286)

Note that unlike Eq. (283), this result is only true for the difference of nearby
energy levels, because we Taylor expanded the area (and consequently ωc

depends on energy through the energy dependence of the derivative of the
area).

7.2 Boltzmann equation

The semi-classical equations, Eq. (220), describe the motion of individual elec-
trons, or more properly single electron wave functions. When we deal with
many electrons, we need to account for the simultaneous motion of multiple
states. This is often conveniently done using Boltzmann’s equation. The Boltz-
mann equation is derived for a classical ensemble of particles obeying some
classical equation of motion. The basic object of the Boltzmann description
is the phase space density, fn(x, k, t), which describes the number of electrons
with position x, momentum k, in a given band, and at time t. More precisely,

fn(x, k, t) ddx
ddk

(2π)d
=

occupation of electron wave packet states in
a volume ddx around position x in a range
ddk around quasi-momentum k in band n of
a single spin polarization.

(287)

This clearly requires at least a semiclassical limit to make sense because both
quasi-momentum and position are specified, and we should have in mind the
wave packet picture. The normalization was chosen (and in particular the
factors of 2π) so that, in equilibrium, the distribution function becomes the
Fermi-Dirac distribution,

fn(x, k)|equilibrium = nF(εnk). (288)
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From this distribution function, one can obtain various physical quantities,
for example the density of electrons as a function of position is

n(x, t) = 2
∑
n

∫
BZ

ddkDn(k)fn(x, k, t). (289)

Here Dn(k) is the density of levels per unit volume in momentum space and
volume in real space. For conventional plane waves, and for Bloch states in
zero magnetic field, we have the usual form

Dn(k)|B=0 =
1

(2π)d
. (290)

This might seem inviolate, but we will see that in fact Eq. (290) must be
modified in the combined presence of both magnetic field and Berry curvature.

The Boltzmann equation describes the time evolution of the distribution
function. The basic assumption of the Boltzmann equation is that particles
undergo two types of motion. They evolve smoothly according to the semi-
classical equations, punctuated by abrupt “collisions” which interrupt the
smooth evolution and can be regarded as instantaneous compared to the
smooth evolution. Collisions are generally scattering events in which electrons
may scatter individually off of impurities, or collectively off of one another,
with phonons, etc. They are treated probabilistically. To derive the Boltzmann
equation, we consider how the distribution changes in an infinitesimal time
dt. For a very short time, the changes in position and momentum of particles
due to the smooth evolution are order dt and the number of collisions that
occur is also of order dt. Thus for the colliding electrons, we can ignore the
smooth evolution for infinitestimal dt, because this would involve order dt2

changes in the distribution. In other words, we can consider the effect of the
two types of evolution independently. Their effects will influence one another
as one adds up changes for many infinitesimal time intervals.

7.2.1 Evolution between scattering events

First consider the smooth evolution. Because electrons are not created or
destroyed, and move smoothly, a small phase space volume just transforms to
a slightly new phase space volume over the time dt. The electrons just move
from one volume to another. So we can equate the initial occupation of a single
particle wave packet state specified by x(t), k(t) in band n at time t with the
final occupation at x(t + dt), k(t + dt) in the same band n at time t + dt. Here,

k(t + dt) = k(t) + Fndt, x(t + dt) = x(t) + vndt, (291)

where
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Fn =
dkn
dt

, vn =
dxn
dt

. (292)

Hence we have

fn(x + vndt, k + Fndt, t + dt) = fn(x, k, t). (293)

Taylor expand this to order dt and one obtains

(∂t + vn · ∇x + Fn · ∇k) fn = 0. (294)

This holds in the absence of collisions. With collisions, we write

(∂t + vn · ∇x + Fn · ∇k) fn =
∂fn(x, k, t)

∂t

∣∣∣∣∣
collisions

. (295)

We will return to the collision term shortly.

In general one should solve the semi-classical equations to obtain vn, Fn in
terms of x, k. To do so, first we take the dot product of the position equation
with Ωnk and of the momentum equation with B to obtain

dx
dt
·Ωnk = Ωnk · ∇kε̃nk,

dk
dt
· B = −eE · B. (296)

Now we insert the expression for dk/dt into the position equation to obtain a
closed equation for the latter,

dx
dt

= ∇kε̃nk + e

(
E +

dx
dt
× B

)
×Ωnk

= ∇kε̃nk + eE ×Ωnk + e

(
dx
dt
·Ωnk

)
B− eB ·Ωnk

dx
dt

. (297)

Now using Eq. (296) and solving for the velocity, we obtain

vn =
dx
dt

=
∇kε̃nk + eE ×Ωnk + e(Ωnk · ∇kε̃nk)B

1 + eB ·Ωnk
. (298)

Performing parallel manipulation for the rate of change of quasi-momentum,
one finds

Fn =
dk
dt

=
−eE − e∇kε̃nk × B− e2 (E · B)Ωnk

1 + eB ·Ωnk
. (299)

Eqs. (298,299) give explicit forms for Fn and vn to be used in the Boltzmann
equation.

If you compare to standard literature and all the textbooks I am aware of,
you will not see the denominators in these equations, and most likely some or
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all of the Berry curvature terms will be missing. This is because these were
not recognized until relatively recently, and a complete theory consistently
including all of them is less than a decade old. In fact, when the denominator
is not equal to the identity, i.e. when B ·Ωnk , 0, there is a remarkable physical
consequence: the phase space density of states, Eq. (290) must be modified to

Dn(k) =
1 + eB ·Ωnk

(2π)d
. (300)

This is required because the volume element in phase space, ddxddk is not
invariant under the semi-classical dynamics when B ·Ωnk , 0, that is, these
equations no longer obey Liouville’s theorem. To see this explicitly, consider
a volume element in momentum space. The volume element ddk transforms
after evolution by a time dt to a volume element ddk′, where k′ = k + Fndt.
Using the standard Jacobean for transforming a measure, we have

ddk′ = ddk
∣∣∣∣∣det

∂k′

∂k

∣∣∣∣∣
= ddk det

(
δµν +

∂Fµ
∂kν

dt

)
= ddk

(
1 +

∂Fµ
∂kµ

dt

)
. (301)

Now we can evaluate the divergence of the force from Eq. (299). The diver-
gence of the numerator in Eq. (299) is zero, but there is a contribution from
the denominator

∂Fµ
∂kµ

= −Fµ
eB · ∂µΩnk

1 + eB ·Ωnk

= −Fµ
∂(1 + eB ·Ωnk)/∂kµ

1 + eB ·Ωnk
= −

dkµ
dt

∂(1 + eB ·Ωnk)/∂kµ
1 + eB ·Ωnk

= −d(1 + eB ·Ωnk)/dt
1 + eB ·Ωnk

. (302)

This is clearly non-zero so the volume element in momentum space changes
under the time evolution. We can find out how it changes by inserting this
into Eq. (301). One obtains

ddk′ = ddk

(
1 − d(1 + eB ·Ωnk)

1 + eB ·Ωnk

)
. (303)

Now multiply this equation by Dn(k′) on both sides:

ddk′ Dn(k′) = ddk

(
Dn(k′) − dDn(k)

Dn(k)
Dn(k′)

)
= ddk (Dn(k′) − dDn(k)) = ddk Dn(k). (304)
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In the second line we used that in the second term of the first line Dn(k′) can
be taken equal to Dn(k) to first order in the infinitesimal since it multiplies
an infinitesimal. So we see that the measure modified by Dn(k) is invariant
under the evolution.

Consequently, the “stretching” of volumes in phase space under time
evolution means that the when we count the number of electrons in a volume,
we must take into account of the change in the local density of states. One can
check that using the proper phase space density of states in Eq. (300) ensures
proper conservation laws, e.g. that the particle density in Eq. (289) obeys
a continuity equation (Try multiplying Eq. (466) by Dn(k) and integrating
over position and space, and show that the spatial integral of the density, i.e.
the electron number, is time independent). The modified density of states
must be used when integrating over quasi-momentum to obtain any other
physical quantity from its value in a single wave packet, for example the
electric current is

je(x, t) = 2
∑
n

∫
ddk Dn(k)(−evn(k, x))fn(x, k, t). (305)

7.2.2 Collisions

Now we turn to the collisions. In general, we treat the effects of scattering sta-
tistically in terms of rates. The collision term gives the rate at which electrons
are scattered into the quasi-classical state with the given set of phase space
quantum numbers (band index, quasi-momentum, position), minus the rate at
which electrons are scattered out from this quasi-classical state into all other
states. In general both the “incoming” and “outgoing” rates depend upon the
occupation of one or more states.

Example: elastic single-particle scattering It is helpful to consider an
example. The simplest and canonical case is elastic scattering due to impu-
rities/defects in the solid. An electron in band n and quasi-momentum k
is scattered at a rate Γn′k′nk to band n′ and quasi-momentum k′ (we will ig-
nore spatial dependence, i.e. assume the scattering is local, and suppress the
explicit position label). In this case the collision term is

∂fn(x, k, t)
∂t

∣∣∣∣∣∣
collisions

=
∑
n′

∫
ddk′

(2π)d
[
Γnkn′k′ (1 − fn(k))fn′ (k

′) − Γn′k′nk(1 − fn′ (k′))fn(k)
]
.

(306)
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Here the first term represents scattering into the state n, k, and is hence
positive, and carries a factor of fn′ (k

′) which counts the number of electrons
in the initial state, and a factor 1 − fn(k) which ensures that the process is not
Pauli blocked. The second term represents scattering out of the state n, k: it is
negative, proportional to the occupation fn(k) of the initial state, and has the
1 − fn′ (k′) to account for Pauli blocking.

It is often but not necessarily the case that the rate is symmetric, i.e.
Γnkn′k′ = Γn′k′nk

2. This is the case for example for elastic scattering in the first
Born approximation, within which

Γn′k′nk|1st Born, elastic = 2π
∣∣∣〈ψn′k′ |Ĥimpurity|ψnk〉

∣∣∣2 δ(εnk − εnk). (307)

When the rate is symmetric, the terms quadratic in the occupation cancel and
one has simply

∂fn(k, t)
∂t

∣∣∣∣∣
collisions

=
∑
n′

∫
ddk′

(2π)d
Γnkn′k′

[
fn′ (k

′) − fn(k)
]
. (308)

Inspecting Eq. (306) or the simplification Eq. (308), you can observe that
the collision term takes the form of an integral transform of the distribu-
tion function. For more complex types of scattering, e.g. electron-electron
interactions, it takes the form of a non-linear integral operator acting on the
distribution. The collision term is therefore often call the “collision integral”.
The full equation, putting the collision term back into Eq. (295), is a non-linear
integro-differential equation.

Please note that in writing down Eq. (306) we have treated the transitions
between states entirely classically, and added the probabilities (i.e. rates) for
transitions from different states. At one level, this is a fundamental assumption
of the Boltzmann equation, and we cannot depart too far from the classical
treatment and still use the semi-classical dynamics. However, there can be
some deviations from classical behavior, e.g. during the scattering events, or
as small corrections in multiple scattering. Consequently one may in some
circumstances need to amend or modify the description.

7.2.3 Relaxation time approximation

The collision integral can contain many complexities which are not always
central. To uncover some general features and to enable simpler calculations, it
is useful to introduce a phenomenological form of the collision term known as
the relaxation time approximation. The idea is by design to make the collision
term local, i.e. a multiplication operator instead of an integral one. The most
general such form is

2This is definitely the case if one has time reversal and inversion symmetry, and the scatter-
ing is elastic. I am not sure if one needs all these conditions.

96



7.3. zero field conductivity in the relaxation time approximation

∂fn(k, t)
∂t

∣∣∣∣∣
collisions

= − 1
τnk

[
fn(k) − f (0)

n (k)
]
, (309)

where τnk is called a relaxation time. The constant distribution function
f

(0)
n (k) is determined by the requirement that in the absence of applied forces,

Fn = 0 the distribution relaxes to the (spatially uniform) equilibrium distribu-
tion. Therefore

f
(0)
n (k) = nF(εnk). (310)

(I waffle about whether to include µ in the definition of nF or not...)
The relaxation time approximation is a crude approximation, and fails

to account for numerous features, but it does allow a rough understanding
of the interplay of scattering and forces on electrons. In the relaxation time
approximation, the full Boltzmann equation is

(∂t + vn · ∇x + Fn · ∇k) fn = − 1
τnk

[
fn(k) − f (0)

n (k)
]
. (311)

7.3 Zero field conductivity in the relaxation time approximation

Let’s take a break from developing formalism to actually calculate a conduc-
tivity. The simplest case we can take is a uniform applied electric field E which
is constant in space and time, and assume zero magnetic field B = 0, and we
use the relaxation time approximation. Then we can assume the distribution
function is independent of x, and we seek a steady-state solution ∂f fn = 0.
Then we have Fn = −eE, and so

−eE · ∇kfn(k) = − 1
τnk

[
fn(k) − f (0)

n (k)
]
. (312)

This equation is simple enough to be solvable exactly. But it is not really so
useful to do so. Let us instead assume a weak electric field, and compute the
linear response of the system to that field. Then we can expand the distribution
function in a perturbation series in the field strength

fn(k) = f
(0)
n (k) + δfn(k) + · · · , (313)

where δfn is O(E). Inserting this into Eq. (312) and collecting terms of O(E),
one obtains

−eE · ∇kf
(0)
n (k) = − 1

τnk
δfn(k), (314)

so using f
(0)
n (k) = nF(εnk) we directly obtain the solution
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δfn(k) = eτnkn
′
F(εnk)vnk · E, (315)

where vnk = ∇kεnk is the band group velocity. Note that factor of the deriva-
tive of the Fermi function means that the modifications to the distribution
function occur only very near the Fermi energy. Now we can compute the
current using Eq. (305), which in this case simplifies to

je = −2e
∑
n

∫
ddk

(2π)d
(vnk + eE ×Ωnk) (nF(εnk) + eτnkn

′
F(εnk)vnk · E) . (316)

Here we can consistently keep terms only to linear order in the electric field.
Multiplying out the product above, the zeroth order term in the electric field
vanishes under integration (it is a total derivative), which ensures that the
current density is zero in equilibrium. We can drop the O(E2) term. We are
left with two contributions:

je =2e2
∑
n

∫
ddk

(2π)d
vnk (vnk · E) τnk[−n′F(εnk)]

+ 2e2
∑
n

∫
ddk

(2π)d
nF(εnk)Ωnk × E. (317)

This can be written as a conductivity tensor

j
µ
e = σµνEν, (318)

where σµν = σsµν + σaµν and

σsµν =2e2
∑
n

∫
ddk

(2π)d
v
µ

nkv
ν
nkτnk[−n′F(εnk)], (319)

and

σaµν = − 2e2

∑
n

∫
ddk

(2π)d
nF(εnk)Ωλ

nk

 ελµν. (320)

We will discuss these two contributions one by one.

7.3.1 Symmetric/dissipative conductivity:

The contribution σsµν first term is symmetric and corresponds to the “longitu-
dinal” conductivity. In many textbooks this is the only contribution you will
find. For an isotropic system, or for high enough crystalline (e.g. cubic) sym-
metry, it is diagonal and proportional to the identity matrix. More generally,
this term is dissipative, in that it contributes to ohmic heating, since the rate
of power dissipation, from elementary electromagnetism, is j · E = σµνEµEν.
One might worry about this: if energy is being constantly pumped into the

98



7.3. zero field conductivity in the relaxation time approximation

system, it should heat up. That is indeed true, and in reality there needs to
be some heat sink to balance the joule heating: this role is typically played
by coupling to the lattice, which we have not included. However, because the
joule heating is quadratic in the electric field, this physics does not modify
the linear response result.

Note that σs contains the derivative of the Fermi function. Therefore it is
dominated by the region near the Fermi energy, i.e. the Fermi surface. Indeed,
at low temperature, it can be approximated as

σsµν =e2
∑
n

Dn(εF)
〈
v
µ

nkv
ν
nkτnk

〉
FS,n

, (321)

where the angular brackets here denote an average over the Fermi surface in
band n.

Drude conductivity: For a simple understanding, consider the case of a
free electron band in three dimensions, with ε = k2/(2m∗), and momentum-
independent relaxation time τ. Then we can use Eq. (207) to write D(εF) =
m∗kF/π

2, and

σsµν =e2 m
∗kF

π2
〈
vµvν

〉
FS τ = e2 m

∗kF

π2

v2
F

3
δµντ

= e2 m
∗kF

π2

k2
F

3(m∗)2 τδµν =
k3

F

3π2 e
2 τ

m∗
δµν =

ne2τ

m∗
δµν. (322)

The final result is the well-known form from the simple Drude-Sommerfeld
theory. It can be obtained by writing the equation of motion for the average
velocity of the electrons, vd = 1

N
∑
i
vi , known as the drift velocity,

m∗
(
dvd
dt

+
vd
τ

)
= −eE. (323)

One can obtain this from the Boltzmann equation in the relaxation time
approximation by assuming the quadratic dispersion, and defining the drift
velocity as the average of k/m∗ over the momentum distribution. Solving this
equation in the steady state gives vd = −(eτ/m∗)E and one can readily obtain
the conductivity from je = −nevd .

Temperature dependence of resistivity in metals: From both Eq. (321)
and Eq. (322) we see that the resistivity (e.g. ρ = m/(ne2τ) in the Drude
approximation) becomes temperature-independent at low temperature, and
is limited by the zero temperature scattering rate 1/τ(T = 0). In general,
this zero temperature scattering is due to elastic scattering by impurities, so
the zero temperature resistivity, known as the residual resistivity is entirely
dependent upon the purity of the material. A typical value for a “good” bulk
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three dimensional metal at low temperature is in the µΩ-cm range.
The temperature dependence of resistivity in metals arises mainly from

other sources of scattering.3 In addition to elastic impurity scattering, elec-
trons may scatter with one another, with phonon excitations of the lattice, or
with any other excitations that might be present. The relaxation time should
include the total rate of scattering, which generally one may write as

1
τ

=
1
τimp

+
1

τinelastic
. (324)

The additivity of scattering rates is known as Matthiessen’s rule. An important
property of the inelastic scattering rate, which includes both electron-electron
and electron-lattice scattering, is that it vanishes as T→ 0, usually as a power
law. To see this, we need to clarify what is meany by “inelastic” scattering. This
is a scattering process which is due to interaction terms in the Hamiltonian.
As such, it of course still conserves the total energy in the system. It is inelastic
only in the sense that it does not conserve the energy of individual electrons.
For example, an inelastic electron-electron scattering process would involve
two electrons with energy ε1 and ε2 scattering to states with energy ε3 and ε4,
with the sum conserved but none of the four energies equal to one another.
For such a process to be possible, we need that there are electrons present
in states 1 and 2, and not present in states 3 and 4. At zero temperature,
this is not possible, because if states 1 and 2 are occupied they are below
the Fermi energy, and thereby at least one of state 3 and 4 must be below
the Fermi energy by energy conservation. The process becomes possible for
T > 0 because the occupation of the states below the Fermi energy is not unity.
Hence generally at low temperature

1
τinelastic

∼
∑
i

ciT
ai , (325)

a sum of terms corresponding to different types of scattering processes,
where the coefficients ci > 0 and ai are some exponents determined by phase
space arguments. Standard arguments give a = 2 for electron-electron interac-
tions, a = 5 for low temperature scattering off of acoustic phonons. At higher
temperature, e.g. comparable to characteristic phonon energies, there is less
justification for power-law behavior, but a = 1 is sometimes seen and can be
argued for. Fractional powers can also arise, e.g. a = 3/2 in ferromagnets.

Putting this together, the typical resistivity in a metal starts at the residual
resistivity at low temperature, and rises continuously up to high temperature,
roughly as

3One might also think of temperature dependence arising from the Fermi function in
Eq. (319). In bulk metals, this temperature dependence is very weak, because temperature is
much smaller than the Fermi energy even at room temperature. The temperature dependence of
scattering rates is much stronger and dominates the temperature dependence of the resistivity.
This may no longer be true in low density electron systems.
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0
0

T

ρ

ρ0

Figure 7: Schematic form of resistivity in a metal

ρ(T) = ρ0 +
∑
i

AiT
ai , (326)

where ρ0 is the residual resistivity. A typical measure of quality is to compare
the room temperature resistivity to the low temperature one, which is known
as the Residual Resistivity Ratio, or RRR,

RRR =
ρ(Troom)
ρ(T = 0)

'
ρ(273K)
ρ(4.2K)

. (327)

The idea here is that the room temperature resistivity is nominally intrinsic,
controlled by the inelastic scattering rates which do not depend on impurities,
while the residual resistivity is determined by impurities. A larger RRR means
a better quality material.

Einstein relation: Eq. (321) connects directly to a very general identity
which connects the conductivity to the density of states and diffusion con-
stant, which is known as the Einstein relation. The Einstein relation says the
conductivity is given by

σ = e2∂n
∂µ

D, (328)

where ∂n/∂µ is the electronic compressibility, and D is the diffusion constant.
This is typically derived for an isotropic medium, but one can generalize to
the anisotropic case by

σsµν = e2∂n
∂µ

Dµν. (329)
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In general the diffusion constant is a symmetric tensor. To obtain the Einstein
relation, we first must define the diffusion constant. It is defined by consid-
ering the particle current driven by a particle density gradient. In reality a
gradient of electron density inevitably induces an electric field, so there will
always be some current driven by electric field as well in this situation. How-
ever, we presume that the net current in general is the sum of a contribution
driven by a density gradient and one driven by an electric field. We focus first
on the former, called a diffusion current,

j
µ

n,diff = −Dµν∂νn. (330)

This relation is called “Fick’s law”. The subscript n indicates that this is a
particle current density. Now by the continuity equation,

∂tn = −∇ · jn,diff = Dµν∂µ∂νn. (331)

This is the (anisotropic) diffusion equation, and this defines the diffusion
constant (tensor). Taking Dµν from this equation only defines a symmetric
tensor, since ∂µ∂ν is symmetric. So the diffusion tensor is symmetric and the
Einstein relation defines only the symmetric part of the conductivity (any
anti-symmetric term in the relation of current to density gradient will vanish
when the divergence is taken in the continuity equation).

If you are not familiar with the diffusion equation, Eq. (331) describes the
spread of a initial non-uniform density profile in the absence of any applied
forces. It applies for example to molecules in a gas, or to heat in a solid,
and in many other situations. Microscopically diffusion arises out of random
walks. In the simplest case, one may consider an ensemble of particles, each
of which propagates ballistically with some velocity v in a random direction,
and scatters every time τrw, emerging from the scattering in a new random
direction. Because of the randomness in direction, the typical distance traveled
after a time t much longer than τrw is much less than vt. Specifically, the final
coordinate after a time t = nτrw is

x(t) − x(0) =
n∑
i=1

vv̂iτrw, (332)

where v̂i is the random direction for scattering i. The variance of the displace-
ment defines a matrix

(
xµ(t) − xµ(0)

)
((xν(t) − xν(0)) = v2τ2

rw

n∑
i,j=1

v̂
µ

i v̂
ν
j = n`2

rwv
µ

i v
ν
i

= n
`2
rw

d
δµν =

`2
rw

dτrw
tδµν. (333)
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in d dimensions for an isotropic medium, since each component of v2
µ has the

same average over the sphere, and they must sum to unity. We introduced the
mean free path `rw = vτrw, which is the distance traveled between scattering
events, i.e. the length of the “steps” in the random walk. The square of the
displacement grows linearly in time. This is a famous result for random walks.

Now we can compare this with the diffusion equation. Consider an initial
density in Eq. (331) n(x, t = 0) = δ(d)(x), corresponding to placing a particle at
the origin. The solution for scalar D is

n(x, t) =
1

(2πDt)d/2
e−
|x|2
4Dt . (334)

The density can be viewed as a probability distribution for the particle. So we
can calculate the variance at time t as

xµ(t)xν(t) =
∫

ddx n(x, t) xµxν = 2Dtδµν. (335)

We see that this indeed gives the same linear growth of the variance of the
position. Comparing to Eq. (333) one finds D = `2

rw/(2dτrw) = v2
Fτrw/(2d).

Clearly τrw and τ in the Boltzmann equation play similar roles, but they are
not quite identical: in the relaxation time approximation, we treat collisions
as occuring at random times, with a probability per unit time of 1/τ. In the
random walk, we took collisions to occur regularly at time intervals of τrw.
Both models reproduce diffusion, and it turns out that they give the same
diffusion constant if we take τrw = 2τ. Hence we should expect, in the isotropic
case D = `2/(dτ) = v2

Fτ/d, and the mean free path ` = vFτ.
OK now back to the Einstein relation. To obtain it, consider a closed system

with an applied electrostatic potential at two ends, i.e. an “open circuit”, in
the steady state. Upon initially applying the voltage, charges will flow until
they pile up near the contacts and in the bulk their resulting electric field will
cancel the initial applied one any the flow will stop. In this situation there can
be no net electron current anywhere (or at least the divergence must be zero
everywhere). However, there must be electric fields somewhere within the
sample. In a metal these occur within some thin layer near the two contacts.
At a generic point in the sample, there will be some combination of density
gradient and electric field. Each of these drives some current, but they must
cancel:

Je = −eJn,diff + σE = 0. (336)

We have
eD∇n + σE = 0. (337)

Now to obtain the Einstein relation we need to relate the density gradient to
the electric field. We write
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∇n = ∇
(
∂n
∂µ
µec

)
=

∂n
∂µ
∇µec. (338)

Here we introduced the “electrochemical potential”. The idea is that in general
we treat the electrons as in local equilibrium at some chemical potential µ
which might depend on position, and with an energy that is shifted by the
local electrostatic potential φ according to ∆ε = −eφ. Then the density is
obtained by the Fermi-Dirac distribution

nF(ε, µ,φ) =
1

exp [−β(ε − eφ− µ)] + 1
. (339)

We see that the density is determined by the combined effect of the electro-
static potential and the chemical potential, whence we define

µec = µ + eφ. (340)

Using Eq. (339) in Eq. (337) we obtain

eD
∂n
∂µ
∇µec + σE = 0. (341)

In the open circuit configuration, after it reaches a steady state, the entire
system is in thermal equilibrium, and the true chemical potential is con-
stant. Hence the gradient of the electrochemical potential is just due to the
electrostatic potential gradient, which is just (minus) the electric field. This
gives

−e2D
∂n
∂µ

E + σE = 0. (342)

The Einstein relation, Eq. (328), follows.

Now we can compare Eq. (328) to the Boltzmann equation result in
Eq. (321). One can see that it matches perfectly. The Einstein relation con-
tains the thermodynamic compressibility, which in the independent electron
theory is just the DOS. The angular average gives the diffusion constant
Dµν = 〈vµFv

ν
Fτ〉.

It is worth thinking about how the combination of diffusion and electric
field driven currents works out in our Boltzmann calculation. There we solved
the Boltzmann equation for a spatially uniform distribution, and found a
non-zero current in the presence of an electric field. Therefore in this calcu-
lation there is zero density gradient, and the diffusion current is zero. This
means that the electrochemical potential must be constant. Since the electric
field is non-zero, there is an electrostatic potential gradient ∇φ = −E and
consequently there must be a chemical potential gradient, ∇µ = eE. This is
consistent in several ways. First, the system is truly out of equilibrium when
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the current is flowing, so it is natural that the chemical potential is not con-
stant. Furthermore, by maintaining a constant electro-chemical potential, the
electron density remains uniform. This is the only way to maintain charge
neutrality in the thermodynamic limit.

Warning: the terminology of chemical potential and electro-chemical
potential is not uniform. You will sometimes (often?) find the terms used with
exactly the opposite meaning. I like the meaning used here because in this
way the chemical potential µ has purely statistical meaning: it appears only in
the distribution function, and it is constant when the system is in equilibrium,
as it should be in the grand canonical ensemble where it is defined as a single
number for a closed system.

7.3.2 Anti-symmetric Hall conductivity:

The second term in Eq. (467) is anti-symmetric and is non-dissipative. It
corresponds to a “Hall conductivity”: the current generated by an electric
field is normal to the applied field.

The appearance of a Hall effect is quite odd and striking here, since we
assumed zero magnetic field. Consequently, the Hall effect appearing here is
not the conventional Hall effect (which I hope you heard about and is due to
bending of electron trajectories by the orbital effect of a magnetic field), but
what is called an anomalous Hall effect. The anomalous Hall effect is a common
one in ferromagnetic metals, and is identified experimentally as a distinct
contribution to the Hall conductivity unrelated to the applied magnetic field.

The expression we found for the anomalous Hall conductivity was discov-
ered by Karplus and Luttinger in 1954[1], and contains the seeds of much
of topological band theory. For decades it was however believed by much of
the community that these results were irrelevant, and that the anomalous
Hall effect in experiment was caused by other effects related not to topology
but to scattering. We now know that this belief was largely unfounded, and
Karplus+Luttinger’s theory is now the basis of most theory of anomalous Hall
effects.

At this point, we will hold off on discussing the topological implications
of Eq. (467) a bit longer, and just comment on the symmetry aspects of the
anomalous Hall conductivity. In particular, the important properties are the
transformations under time-reversal and inversion symmetries. They are
determined from the Berry curvature. We can calculate the transformations
of the Berry curvature from its definition, but a quick and dirty method is to
deduce them from the relation to the position operator, Eq. (253). We see that
the Berry vector potential Amust have the same transformation properties as
the position operator.

First consider time-reversal symmetry. The position operator is invariant
under this, but momentum changes sign. Hence we deduce that under time-
reversal,Ank → An−k. Since the Berry curvature is Ωnk = ∇k ×Ank, the extra
derivative implies that
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time-reversal T : Ωnk → −Ωn−k. (343)

Now consider inversion. Under inversion, which we also call parity (P), the
position and momentum operators both change sign. So there is an additional
minus sign in the transformation of Berry gauge field, and hence the Berry
curvature:

parity P : Ωnk → Ωn−k. (344)

If either symmetry is present, the arrow in the corresponding equation,
Eq. (343) and/or Eq. (344), becomes an equality. Moreover, the energy, being
time-reversal invariant, is guaranteed to be an even function of momentum
when either symmetry is present.

This allows us to draw some simple conclusions. First, we see that when
time-reversal is present, the Berry curvature must be an odd function of quasi-
momentum. Since the energy is then an even function of momentum, the
integral of the product of the Fermi function and the Berry curvature van-
ishes. Thus the anomalous Hall conductivity vanishes in the presence of
time-reversal symmetry. This should not be surprising because even the classi-
cal Hall effect is odd under time-reversal. The presence of an anomalous Hall
in ferromagnetic metals means that ferromagnetism imprints time-reversal
symmetry breaking on the electrons in some fashion that results in a non-zero
net Berry curvature. How this happens in detail is an interesting subject.

Inversion symmetry does not force a vanishing Hall conductivity. However,
it does require that the Berry curvature be an even function of momentum. The
interesting consequence is that if both inversion and time-reversal symmetries
are present, the Berry curvature must be identically zero, Ωnk = 0.

7.4 Filled bands and holes

7.4.1 Filled bands are inert

One of the basic results of standard band theory is that filled bands are “inert”.
This is true in the following sense: if we ignore collisions, it is generally true
that if fn(k, x) = 1 for all k, x, then

(∂t + Fn · ∇k + vn · ∇x) fn = 0. (345)

This implies that, provided the filled band is also preserved by the collision
term, it is maintained by the full Boltzmann equation. This is generally ex-
pected to be true at T = 0 for bands which are entirely below the Fermi energy,
since the collision term must vanish for the equilibrium distribution.

In textbooks, you will also find the statement that filled bands are also inert
in the sense that they do not carry any current. This is true in conventional
band theory but not strictly true when the effects of Berry curvature are taken
into account. Take the contribution from a single band from Eq. (305),

106



7.4. filled bands and holes

je,n = 2
∫

ddk Dn(k)(−evn(k, x))fn(k). (346)

For a filled band, we can take fn(k) = 1 and use the expressions for Dn(k) in
Eq. (300) and the velocity vn in Eq. (298). We get

jfilled
e,n = −2e

∫
BZ

ddk

(2π)d
(ṽnk + eE ×Ωnk + e (Ωnk · ṽnk) B) . (347)

Here we wrote the group velocity ṽnk ≡ ∇kε̃nk. Because the Brillouin zone
is periodic and the group velocity is a total derivative, the integral of the
first term is zero. The integral of the last term is also zero, because since the
Berry curvature is a curl, it is divergenceless, which means that (Ωnk · ṽnk) B =
∂
∂kν

(
Ων

nkε̃nkB
)
. We find that

jfilled
e,n = 2eE ×

∫
BZ

ddk

(2π)d
Ωnk. (348)

In the presence of an electric field, this current is not necessarily zero. It
is, however, always a dissipationless Hall current since it is normal to the
electric field. So the correct statement is that filled bands carry no longitudinal
(dissipative) current, but may carry dissipationless transverse (Hall) currents. This
is a puzzling fact, and we see shortly that this is related to the quantum
Hall effect and band topology. We continue to postpone this a bit, but we
can say from what we already know also that in the presence of time-reversal
symmetry, filled bands carry no current, since the Berry curvature is odd in
quasi-momentum under those conditions.

7.4.2 Almost filled bands and holes

In the previous (subsub-)section, we showed that when the Fermi energy
lies near the bottom of a band, and the dispersion can be approximated as
quadratic around the minimum, the conductivity of that band reproduces
the simple Drude result in the relaxation time approximation. The electrons
near the band bottom behave almost like electrons in free space, albeit with
an effective mass rather than the bare electron mass. The conductivity from
these electrons is proportional to their density, and hence vanishes when the
band empties. It is of course natural that an empty band carries no current,
and hence that the almost empty band can be described in terms of dilute
electrons.

We just learned that a full band carries no (dissipative) current, or no
current at all in the presence of time-reversal symmetry. So what about a
nearly full band? The natural description of such a nearly full band is in terms
of the states that are not full, since these are dilute. Such a missing electron is
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(a) (b)

Figure 8: Electron (panel a) and hole (panel b) excitations, respectively.

called a “hole”, and naturally enough acts like a positively charged particle.
To prove this mathematically, it is convenient to examine the Boltzmann
equation in this limit. By definition, fn(k) gives the occupation of an electron
state with quasi-momentum k, i.e. fn(k) = 1 if there is an electron in this
state. An missing electron with quasi-momentum k is described by fn(k) = 0,
or equivalently 1 − fn(k) = 1. When an electron with quasi-momentum k is
removed from the system, the net quasi-momentum left behind is −k. So it is
natural to define the occupation factor for holes as

f̆n(k, x, t) = 1 − fn(−k, x, t), ⇒ fn(k, x, t) = 1 − f̆n(−k, x, t). (349)

Inserting this into the Boltzmann equation (let us take the relaxation time
approximation) gives

(∂t + Fn · ∇k + vn · ∇x) (1 − f̆n(−k, x, t)) = − 1
τnk

(
1 − f̆n(−k) − f (0)

n (k)
)

⇒− (∂t + Fn(k, x) · ∇k + vn(k, x) · ∇x) f̆n(−k) =
1
τnk

(
f̆n(−k) − f̆ (0)

n (−k)
)
,

(350)

where we defined f̆
(0)
n (k) = 1 − f (0)

n (−k). Multiply this equation by an overall
minus sign, and change variables from k→ −k. One obtains

(∂t − Fn(−k, x) · ∇k + vn(−k, x) · ∇x) f̆n(k) = − 1
τnk

(
f̆n(k) − f̆ (0)

n (k)
)
. (351)

We can rewrite this exactly like the original Boltzmann equation(
∂t + F̆n · ∇k + v̆n · ∇x

)
f̆n = − 1

τnk

(
f̆n − f̆

(0)
n

)
, (352)

where

F̆n(k, x) = −Fn(−k, x), v̆n(k, x) = vn(−k, x). (353)

Eq. (352) and Eqs. (353) define a general “particle-hole transformation” for a
single band. Going any further requires specifying some details of the band
structure. Let us now focus on states near the top of the band, so that the
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energy can be expanded as εnk = εn,max − k2/(2m∗) (for simplicity we take the
band maximum at k = 0 but this does not matter much). We also assume that
the Berry curvature vanishes or is negligible here (this is common). Then we
have

Fn(k, x) = −eE + e
k
m∗
× B, vn(k, x) = − k

m∗
. (354)

Hence using Eqs. (353),

F̆n(k, x) = eE + e
k
m∗
× B, v̆n(k, x) =

k
m∗

. (355)

We see that these are just the forces and velocity expected for a free particle
with mass m∗ and positive charge +e.

We can also consider the current in the band, generalizing Eq. (346) to a
partially filled band and using Eq. (349),

je,n = −2e
∫

ddk Dn(k)vn(k)(1 − f̆n(−k))

= 2eE ×
∫
BZ

ddk

(2π)d
Ωnk + 2e

∫
ddk D̆n(k)v̆n(k)f̆n(k), (356)

with D̆n(k) = Dn(−k). We see that the current in a nearly filled band can be
written as the anomalous current in the band due to Berry curvature, plus a
contribution which appears identical to the original electron one but due to
positively charged holes. If we make the same assumptions for the top of the
band as led to Eq. (355), we find

je,n = 2e
∫

ddk

(2π)d
k
m∗

f̆n(k), (357)

showing that in this case the current is precisely that expected due to positively
charged “free” holes.

7.5 What lies beyond

We will conclude this section with a discussion of a few aspects of conduction
beyond the steady state relaxation time approximation.

7.5.1 Equilibrium and detailed balance

First, let us comment on the treatment of collisions beyond the relaxation
time approximation. More generally, scattering should induce relaxation to
the equilibrium distribution in a manner consistent with conservation laws.
Whatever the form of the collision integral, it should therefore satisfy several
constraints:

• Number conservation: (assuming) scattering does not remove electrons
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from the system, the number N = 2
∑
n

∫
ddxddk Dn(k)fn(x, k) should be

conserved. This requires that the integral of the collision term multiplied
by Dn(k) should vanish.

• Equilibrium condition: the collision term should vanish when the distri-
bution function is the equilibrium one. Since it is in general the integral
of some function, one can achieve this by a more strict condition which
is often satisfied, called detailed balance. The detailed balance condition
is that for every scattering process between a pair of states i, j (here i, j
can refer for example to band and quasi-momentum quantum numbers
of individual electrons, or more general processes involving more elec-
trons), the ratio of the rate of scattering from state i to state j to the rate
of the inverse process is equal to the ratio of occupation in equibrium of
state j to state i, so that the two processes exactly balance in equilibrium.
Specifically for one-electron scattering, this implies that

Γnkn′k′

Γn′k′nk
= e−β(εnk−εn′k′ ). (358)

In the first Born approximation this holds because the scattering is elas-
tic, and the ratio is equal to unity. It is true however with considerably
more generality.

7.5.2 Angle dependent scattering and the transport scattering rate

An important example of collision physics beyond the relaxation time occurs
when impurities scatter very differently at small and large angles. This can
happen for example if the impurity potential is very slowly varying, such
as occurs in “modulation doped” two dimensional electron gases in semi-
conductors, where the defects are separated relatively far away in the third
dimension from the plane of the electrons. Any time the impurity potential
varies slowly compared to the Fermi wavelength, its Fourier transform is
confined to momenta small compared to the Fermi wavevector, which means
that scattering occurs mainly between states nearby on the Fermi surface, and
rarely across it. The former is small angle scattering, i.e. the angle between the
initial and final momenta is small. Small angle scattering is relatively poor at
relaxing the current, since it only slightly changes the electron velocity, which
varies continuously along the Fermi surface. This leads to a reduction of the
scattering rate that enters the conductivity, called the transport scattering time,
as compared to the total rate of scattering events.

This is captured by treating the collision integral more correctly. Let us see
how it works out for a simple case in which we assume spherical symmetry and
a single band, i.e. we take εnk = ε(k). Moreover, we assume elastic scattering
in the first Born approximation, in which case we can write the scattering rate
as
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Γk′k = Γ (ε(k), k · k′)δ(ε(k) − ε(k′))
D(ε)

., (359)

which expresses the isotropy and energy conservation. We included a factor
of the DOS in the denominator so that Γ (ε, x) has dimensions of a relaxation
time. Now let us examine the Boltzmann equation, Eq. (308) with Eq. (295),
for the case of zero magnetic field and spatially uniform electric field, in the
steady state. This gives instead of Eq. (312),

−eE · ∇kf (k) =
∫

ddk′

(2π)d
Γ (ε(k), k · k′)δ(ε(k) − ε(k′))

D(ε)
[
f (k′) − f (k)

]
. (360)

We again linearize this equation around the equilibrium solution, and note
that right hand side vanishes at zeroth order because of energy conservation.
Therefore we have

−evk ·En′F(ε(k)) =
∫

ddk′

(2π)d
Γ (ε(k), k ·k′)δ(ε(k) − ε(k′))

D(ε)
[
δf (k′) − δf (k)

]
. (361)

We can express δf as a function of energy and direction of momentum. We
have in these variables vk = vFk̂ and

−evFk̂ · En′F(ε) =
∫

dk′(k′)d−1dk̂
′

(2π)d
Γ (ε, k̂ · k̂′)δ(ε − ε(k

′))
D(ε)

[
δf (ε, k̂

′
) − δf (ε, k̂)

]
.

(362)

Collapsing the energy delta function gives

−evFk̂ · En′F(ε) =
kd−1

F

(2π)dvFD(ε)

∫
dk̂
′
Γ (ε, k̂ · k̂′)

[
δf (ε, k̂

′
) − δf (ε, k̂)

]
. (363)

We can again use spherical symmetry to proceed. The left hand side trans-
forms as a vector under rotations of k̂, so clearly so must the right hand side.
The only consistent way to achieve this is to take

δf (ε, k̂) = k̂ · Eδf (ε). (364)

Inserting this into Eq. (363) gives

−evFk̂ · En′F(ε) =
kd−1

F

(2π)dvFD(ε)

∫
dk̂
′
Γ (ε, k̂ · k̂′)

(
E · k̂′ − E · k̂

)
δf (ε). (365)

In the integral of the E · k̂′ term, only the component of k̂
′

parallel to k̂
can contribute (since the rest of the integrand is indepdent of rotations of k̂

′

around the k̂ axis and reflections through planes containing this axis). Hence
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we can replace in the integrand E · k̂′ → E · k̂(k̂ · k̂′). We therefore obtain

−evFk̂ · En′F(ε) = k̂ · Eδf (ε)
kd−1

F Sd

(2π)dvFD(ε)

∫
dk̂
′

Sd
Γ (ε, k̂ · k̂′)

(
k̂ · k̂′ − 1

)
. (366)

Here we also multiplied and divided by the area of the sphere Sd , so that the
integral becomes an angular average. We also recognize that

D(εF) =
2kd−1

F Sd

(2π)d
. (367)

So we can now solve the equation to obtain

δf (ε) =
evFn

′
F(ε)

Γ̄
, (368)

where

Γ̄ =
〈
Γ (ε, k̂ · k̂′)1 − k̂ · k̂′

2

〉
k̂
′
. (369)

Here the angular brackets indicate the angular average. Note that Γ̄ is inde-
pendent of k̂ and is just a number. Now we can evaluate the current

j
µ
e = −2e

∫
ddk

(2π)d
v
µ

kδf (ε, k̂)

= −e
∫

dεD(ε)
〈
vFk̂

µk̂νEν
evFn

′
F(ε)

Γ̄

〉
k̂
. (370)

Only the k̂µk̂ν factor depends on k̂, and gives the angular average
〈
k̂µk̂ν

〉
=

δµν/d. Putting it all together, taking againg T � εF, we obtain the conductivity

σµν = e2D(εF)
v2

Fτtr

d
, (371)

where we defined the transport relaxation time

1
τtr

= Γ̄ =
〈
Γ (ε, k̂ · k̂′)1 − k̂ · k̂′

2

〉
k̂
′
. (372)

This result can be compared to the earlier ones in the relaxation time and
Drude approximations. The only distinction (apart from the specialization
to spherical symmetry) is the weighting in the angular average defining the

transport scattering time/rate. We note that the factor 1−k̂·k̂′
2 is equal to unity

when k̂
′

= −k̂, which corresponds to 180 degree scattering which reverses
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the direction of propagation of the electron. This backscattering is the most
effective in relaxing the current, and receives the largest weight in the angular
average. By contrast, the angular factor vanishes if k̂

′
= k̂, reflecting the fact

that small-angle scattering does not slow down the electron. So in general the
transport scattering rate 1/τtr is smaller than the total scattering rate 1/τ, i.e.

τ

τtr
=

∫
dd k̂

′
Γ (ε, k̂ · k̂′)1−k̂·k̂′

2∫
dd k̂

′
Γ (ε, k̂ · k̂′)

< 1. (373)

7.5.3 Optical conductivity

Another interesting problem to consider is the response of metals to ac elec-
tromagnetic fields. Here the semi-classical approach is a bit more suspect, and
in particular the assumption of no inter-band transitions is definitely wrong
if the frequency of the light becomes comparable to the energy difference
between bands. However, we will for the moment just examine the intra-band
contribution to the ac conductivity, which limits the description to low fre-
quencies, e.g. typically less than a few 100 meVs in metals. Working in the
relaxation time approximation and assuming a uniform but time-dependent
electric field and zero magnetic field, we have(

∂t − eRe
[
Ee−iωt

]
· ∇k

)
fn = − 1

τnk

[
fn(k) − f (0)

n (k)
]
. (374)

Note that in reality the electric field will not be uniform at non-zero frequency,
nor will the magnetic field be zero: an electromagnetic wave has a definite
dispersion relation and a magnetic field transverse to the electric one. However,
because of the large speed of light, the wavelength is very long compared to
atomic scales so we can treat it as approximately infinite, and the magnetic
field is smaller by a factor of one over the speed of light, so it has little effect.
Now we linearize the equation by writing

fn(k) = nF(εnk) + Re
[
e−iωtδfn(k)

]
, (375)

which gives

−iωδfn(k) − evnk · En′F(εnk) = −
δfn(k)
τnk

, (376)

whence
δfn(k) =

evnk · E
1/τnk − iω

n′F(εnk). (377)

This leads to the ac conductivity
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σµν(ω) = e2
∑
n

Dn(εF)
〈

v
µ

nkv
ν
nk

1/τnk − iω

〉
FS,n

. (378)

This can be compared to Eq. (321). If we assume a constant relaxation time
(independent of n and k) then we can write this simply as

σ(ω) =
σdc

1 − iωτ
, (379)

where σdc is the DC conductivity. This last is the Drude result. If you examine
the real part of the conductivity, you see that it has a Lorentzian structure
peaked at zero frequency:

Re [σ(ω)] =
σdc

1 + ω2τ2 . (380)

This is the Drude peak. Its width is of the order of 1/τ, which is very narrow if
we have a metal in the semi-classical approximation, which requires 1/τ� εF
for consistency. Note that the integral of the conductivity is

∞∫
0

dωRe [σ(ω)] =
πσdc

2τ
=
πe2

2

∑
n

Dn(εF)
〈
v
µ

nkv
ν
nk

〉
FS,n
→free

πne2

2m
. (381)

This weight is independent of the relaxation time if the relaxation time is
constant, and is basically a measure of the electron’s kinetic energy. This can
be understood from general “sum rules” which we will not discuss here.

The ac conductivity can be used to understand the propagation of elec-
tromagnetic waves inside the metal. The easiest way to do this is to view the
currents described by the conductivity as “bound” currents, described by a
time-dependent polarization. By definition, the bound currents and charges
are

Jb = ∇ ×M +
∂P
∂t

, ρb = −∇ · P. (382)

So if we equation Jb = σE, we obtain

P =
iσ
ω

E. (383)

Then by definition the displacement field is

D = ε0E + P =
(
ε0 +

iσ
ω

)
E. (384)

Then by definition D = εE so we obtain the dielectric constant
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ε(ω) = ε0 +
iσ(ω)
ω

. (385)

The dielectric constant here is in general complex. This implies that electro-
magnetic waves are not fully propagating but in general decay in the medium.
This sounds a little strange but just means that electric fields in the material
induce currents, which in turn generate back fields and screen the fields of
the incoming wave. Let us use the Boltzmann form for the conductivity in
Eq. (385). This gives

ε(ω) = ε0 +
iσdc

ω(1 − iωτ)
. (386)

This becomes simple if ωτ � 1, i.e. outside the Drude peak. Then we can
approximate

ε(ω) = ε0 −
σdc/τ

ω2

(
1 − i

ωτ
+ O

(
1

(ωτ)2

))
. (387)

Noting that σdc/τ is independent of the relaxation time, we define

ω2
p =

σdc

ε0τ
, (388)

The quantity ωp is called the plasma frequency. This gives

ε(ω) = ε0

1 −
ω2
p

ω2

(
1 − i

ωτ
+ · · ·

) , ωτ� 1. (389)

The dielectric constant is predominantly real outside the Drude peak, but is
negative for ω < ωp and positive for ω > ωp. A negative dielectric constant
implies non-propagating waves in the solid, so incoming light is reflected for
ω < ωp. We know it is reflected rather than absorbed because the dielectric
constant is still real. This explains the shine of metals. Above the plasma
frequency light can propagate. In either case, we see that there is a small
imaginary part so there is still some absorption but relatively little. The small
absorption makes sense outside the Drude peak because the real part of the
conductivity is very small there, and the power dissipated is due to the real
part of the conductivity.

The plasma frequency is an intrinsic quantity independent of relaxation
time. In our Boltzmann calculation, it is given by

ω2
p =

e2

dε0

∑
n

Dn(εF)〈|vnk|2〉FS,n, (390)

where we assumed isotropy. In the Drude approximation it is simple

ω2
p =

ne2

ε0m
. (391)
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One should take this analysis, at least on the scale of the plasma frequency,
with a grain of salt, because if you actually put in numbers, for typical metals
the plasma frequency is huge - multiple eV, e.g. about 15eV in aluminum.
Clearly inter-band transitions are also possible in this energy range. The
present treatment completely ignores inter-band transitions. We can imagine
that the full response to an electromagnetic wave is a combination of the
intra-band response, which can be approximated in this Drude-like fashion,
and additional inter-band transitions.

7.5.4 Quantum interference effects

The Boltzmann treatment completely neglects quantum interference effects.
We already discussed one such effect, the quantum oscillations in the density
of states induced by magnetic fields. This is really an equilibrium effect, which
can be measured without transport, for example by the de Haas van Alphen
effect. There are, however, also effects of quantum interference on transport,
and these are present in zero magnetic field as well.

The classical limit applies when the quantum uncertainty in the particle
position is small compared to the distances between scattering events. The
wave packet size is limited by the electron wavelength λ, so this means that
the mean free path ` � λ. In momentum space, λ ∼ 1/kF, where kF should be
interpreted as describing the linear size of the Fermi surface in momentum
space. For a metal it is typically of the order of the Brillouin zone since,
or the inverse lattice spacing. In low density electron systems, kF may be
smaller. The criteria for classical behavior is them kF` � 1. We should expect
that quantum corrections arise as powers of the small parameter 1

kF`
. Note

that increasing mean free path means both smaller quantum corrections and
smaller resistivity. So stronger quantum effects are generally expected to be
associated with higher resistivity.

Let us see how this looks slightly more quantitatively. Using the Einstein
relation, we can estimate the conductivity in general dimensions by the dif-
fusion constant and density of states. Up to order one factors, the density of
states can be estimated as

D(εF) ∼ AFS

vF
∼

kd−1
F
vF

, (392)

which follows by collapsing volume integral over momentum to a surface one
using the energy delta function. We further estimate the diffusion constant by
D ∼ v2

Fτ = vF` (we will neglect the order one 1/d). Putting this together, we
obtain

σ ∼ e2vF`
kd−1

F
vF
∼ e2

h
kd−1

F `. (393)

Here in the last line we restored the factor of Planck’s constant required for
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dimensions. In terms of resistivity,

ρ ∼ h

e2
1

kd−1
F `

. (394)

The prefactor e2/h in Eq. (394) is a simple combination of fundamental
constants, and has the dimensions of resistance. Its value is

h

e2 ≈ 25kΩ. (395)

This is known as the resistance quantum. From Eq. (394), we see that in
two dimensions, the resistivity is just this resistance quantum multiplied
by the dimensionless small parameter for quantum effects 1/(kF`). Hence in
two dimensions, there is a very simple criteria for the semi-classical limit:
quantum effects are small when the resistivity is small compared to h/e2.

In three dimensions, the resistivity no longer has the dimensions of resis-
tance, and so the criterion that kF` � 1 no longer corresponds to a definite
resistivity, rather one should have that ρ � h

kFe2 . This sets an upper limit
on resistivity, which however depends upon the Fermi momentum, which,
for a typical solid, would be of order the inverse lattice spacing. This upper
limit is called the Ioffe-Regel limit. Metals whose resistivity approaches the
Ioffe-Regel limit are sometimes called “bad metals”. It is not always clear the-
oretically how such metals should behave, since manifestly the semi-classical
model does not apply.

It is worthwhile to consider the simplest situation of non-interacting elec-
trons with static impurities, and ask in this context what occurs as kF` is
decreased from large values. When 0 < 1

kF`
� 1, one can ask about perturba-

tive quantum effects on the resistivity. As we saw, the classical effect of the
impurities on the motion of electrons is to turn their ballistic propagation into
diffusion. We are then interested in quantum interference corrections to this
classical diffusion.

Unfortunately due to an extreme lack of time, we cannot really go through
a careful exposition of how this worksm but here is the idea. The basic phe-
nomena is known as weak localization: this means that quantum interference
effects tend to reduce the conductivity and make the electrons less mobile. A
very crude idea of how this works is as follows. The classical random walk
can be understood as a “diagonal” approximation. Consider the probability
P(x, t) for an electron to propagate from the origin to position x in time t. In
quantum mechanics, this probability is the square of the amplitude Ψ (x, t)
for this process. The amplitude is the sum of amplitudes for all the different
paths with these boundary conditions,

Ψ (x, t) =
∑

paths Γ

ψΓ (x, t). (396)

117



7. transport

The probability is the square of this amplitude. Each of these individual ampli-
tudes ψΓ has a phase which is complicated and almost effectively random when
the time is long and it contains many scattering events. Consequently, one
may approximate the square of the total amplitude as the sum of the squares
of each individual amplitude, assuming the cross-terms average to zero. This
diagonal approximation reproduces the classical sum of probabilities.

However, in the presence of time-reversal symmetry, there is a special
case, in particular when x is very close to the origin, for which the phases
are not entirely random. In particular, if the system is time-reversal invariant
(as generically true in zero magnetic fields and without magnetism), when a
path is traversed in reverse, i.e. backward, the phase is exactly the same. This
means that when x is very close to zero, the probability is enhanced because
instead of summing the squares for two contributions (forward and backward
for each path), we get twice the amplitude squared for each such path, which
gives a factor of 4 instead of 2. Thus there is an enhancement of the return
probability to the origin. The electron is thus less mobile, which leads to a
reduction of the conductivity.

Going beyond this rather hand-waving argument will take us too far afield.
Let me instead just summarize the main conclusions. The aforementioned
quantum interference effect gives a reduction of the conductance G (not con-
ductivity!) of the order of e2/h, the conductance quantum,

G = Gclassical − c
e2

h
. (397)

This might be expected by dimensional analysis, since G has dimensions
of e2/h. Since in d dimensions, the conductivity (for an isotropic sample) is
classically equal to σ = GL2−d , where L is the sample dimensions. In general,
the length L should be replaced by a dephasing length Lϕ which sets the dis-
tance beyond which quantum interference is destroyed, and behavior becomes
classical. Generally Lϕ grows as temperature is reduced, diverging as some
power law as T→ 0. This gives

σ = σclassical − c
e2

h
L2−d
ϕ

=
e2

h

(
kd−1

F ` − cL2−d
ϕ

)
. (398)

Notably the corrections become small when Lϕ is large in 3 dimensions, so
quantum corrections are typically not very important in three dimensions,
provided at least the classical conductivity is not too small. In two dimensions,
the quantum correction is roughly independent of the dephasing length, and
the order one reduction should be compared to kF`. So when kF` is large, the
correction is small, and we can talk of “weak” localization. When kF` becomes
smaller, then the interference effects become stronger. In one dimension, we
see that the quantum correction grows with increasing dephasing length, and
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becomes large as soon as the dephasing length becomes comparable to the
mean free path. In the low temperature limit, it is clear that this is always the
case.

It turns out that this means that quantum corrections always induce local-
ization in one dimension. The classical picture is really qualitatively incorrect,
and electrons do not in the end diffuse at low temperature. They instead
occupy localized bound-state-like single particle states that have a finite size.
In two dimensions, the situation is the most subtle, and it is believed that ulti-
mately localization still occurs, due to effects beyond the simplistic Eq. (398).
This localization is however extremely weak, and only occurs when Lϕ ex-
ceeds a length which is exponentially long in kF`, i.e. the localization length
ξloc ∼ `ekF`. When kF` � 1, it is difficult to actually see localization, but a
logarithmic increase of resistivity with decreasing temperature is observed.
Because this weak localization is due to the constructive addition of time-
reversal paths, the introduction of a magnetic field destroys this constructive
interference and increases the conductivity. A rapid drop in resistivity with
very small magnetic fields is a characteristic feature of weak localization.

I would also like to comment on strong localization. If kF` . 1, then we
cannot trust the semi-classical approximation at all. This corresponds to very
strong disorder. In that case, localization occurs in all cases, even in three
dimensions.

I apologize for the very brief treatment here but we need to move on!!

8 topological insulators

8.1 Basic ideas of topology

Until the mid-2000s, band theory had been regarded as an “old and crusty”
subject by most researchers in condensed matter physics: a necessary but
tedious part of the fundamentals of the physics of solids. “Real theorists”
would not touch the stuff, and regarded the band structure problem as a
(conceptually) trivial one: just the solution of a one-particle Schrödinger
equation.

The viewpoint has changed drastically since then, as work of Charlie Kane,
Gene Mele, Shoucheng Zhang, and others uncovered surprising connections
between band structure and arguably the most interesting single electron
problem in solid state physics: Landau levels and the corresponding integer
quantum Hall effect. Now we understand that there are a broad range of
topological aspects of bands, which lead to a variety of physical phenonena.

First let us introduce some simple ideas from topology. Topology is a sub-
field of mathematics. This is not a math course, and I am not a mathematician,
so you will get a rough and non-rigorous summary. The basic problem of topol-
ogy is to answer the question: given a set of objects, which can be “smoothly”
deformed into another, and which cannot? In any given problem, we will need
to define what we mean by the set of objects, and what we mean by smooth-
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8. topological insulators

ness. Once we have done that, we can group the objects into subsets, such
that every object within one subset can be deformed into another in the same
subset. These discrete subsets can be called topological classes. There might
be a finite number of these, or an infinite number. We can assign a discrete
label to these classes, for example an integer. In principle, any given object
belongs to just one class, and hence can be asssigned the specific discrete label
of that class. Thus the discrete label is a function of the object, such that for
every object in the same class, the label is the same, i.e. the function does
not change under smooth deformations. This function is called a topological
invariant or a topological index. Often we can at least partly determine the
topological classes by first discovering a topological invariant, i.e. an explicit
function of the objects, which gives a discrete output, which is unchanged by
smooth deformations.

Let’s just go through a very simple toy example, before trying to use these
ideas in band theory. We’ll take our objects to be continuous closed oriented
curves in a plane which avoid the origin. Mathematically, we describe such
an oriented curve by a continuous vector function x(s) = (x(s), y(s)), where s
parametrizes the coordinate along the curve, and we can take 0 ≤ s < 1. Since
the curve is closed, we have the periodic boundary condition x(0) = x(1). Since
we specify that the curves avoid the origin, we have x(s) , (0, 0). In this case, a
smooth deformation is any continuous deformation of the function x(s) that
preserves the periodic boundary conditions, and avoids the origin.

Consider the following integral:

W =
1

2π

1∫
0

ds
x dy
ds − y

dx
ds

x2 + y2 . (399)

This is well-defined because of the requirement that the origin is excluded.
Now write this in radial coordinates, x = r cosφ, y = r sinφ. One gets

W =
1

2π

1∫
0

ds
r2(cos2 φ+ sin2 φ) dφds

r2 =
1

2π

1∫
0

ds
dφ

ds
=
φ(1) − φ(0)

2π
. (400)

Because of periodic boundary conditions, φ(1)−φ(0) ∈ 2πZ must be an integer
multiple of 2π, hence we find that W must be an integer. Because it is discrete,
i.e. quantized, W cannot vary when the curve is smoothly deformed (just
because an integer cannot change smoothly). Hence it is a topological invariant.
It is called the winding number of the curve. Physically, it just counts how
many times the curve encircles the origin in the counter-clockwise direction,
as we traverse the curve in the increasing s sense. A curve cannot “smoothly”
be deformed from one winding number to another because we imposed the
condition that the origin is avoided in our definition of smoothness.

This is just one simple example of a topological index and topological
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classes, for this simple set of objects. Here the objects were particular types of
functions. Band structure is rich with similar objects: the Bloch wave-functions
of all the bands at all the quasi-momenta in the Brillouin zone. This allows a
lot of different uses of the idea of topology.

8.2 How to apply topology to insulators

We define insulators in band theory as electronic systems in which all bands
are either empty or full, and the Fermi level lies in a gap separating the highest
occupied states (a filled “valence” band) from the lowest unoccupied states (an
empty “conduction” band). In conventional band theory, this is a boring situa-
tion, since the presence of a band gap makes the system unresponsive to weak
fields, and any thermodynamic contributions of electrons are exponentially
weak at low temperatures.

Since these properties are really independent of any details of the filled
and empty bands, it is natural to ask the question: are all band insulators
are alike? Surprisingly, the answer is no. It turns out that there are distinct
classes of insulators, which are fundamentally different from one another. The
distinctions between them are topological.

To apply the ideas of topology, we need to decide what sort of objects
we are comparing. Since in an insulator, all bands are either empty or full,
it seems most natural to compare entire bands. We will take our objects
then to be the set of Bloch wavefunctions comprising a band. We should
also specify the dimensionality, so we know what sort of functions these are.
Next, we need to decide what it means to smoothly deform a band. Since
bands are the solution of the Schrödinger equation for periodic function
unk(x), we can think of deformations corresponding to continuous changes
of the Bloch Hamiltonian, for example changes in the periodic potential. By
construction when we speak of bands, we assume periodicity, so we do assume
that periodicity remains fixed when we deform the bands, i.e. the deformations
preserve the translational symmetry of the solid. We should then also specify
if the deformations should preserve any other symmetries.

8.3 Chern insulators

8.3.1 Quantization of the Chern number:

Let us consider the assume for the moment there are no other symmetries
imposed. Then in two dimensions there is a topological invariant which is
rather closely analogous to the winding number, and moreover, we have
already encountered it! It is the so-called “Chern number”

Cn =
1

2π

∫
BZ

d2kΩn(k). (401)
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This is an integral of the Berry curvature over the Brillouin zone. We saw in
Sec. 7.3.2 that the Berry curvature is an odd function of momentum unless
time-reversal symmetry is broken, so consequently Cn = 0 if time-reversal
symmetry is preserved. Hence we will have non-trivial physics only with
broken time-reversal. In two dimensions, there is just a single component of
the Berry curvature, which we thereby wrote as a scalar,

Ωn(k) =
∂Ay

∂kx
− ∂Ax

∂ky
. (402)

To see that this is a topological invariant, we can show that it is quantized. The
quantization is not too hard to guess, when the Berry curvature is written in
the form of Eq. (402). Since it is a curl, we can apply Stokes’ theorem to write
the area integral in Eq. (401) as a line integral of the Berry gauge field around
the boundary. If you are not careful, you conclude from this argument that not
only is the Chern number quantized, it is just zero! (zero is quantized!). That
is because the Brillouin zone is periodic and does not really have a boundary.
Indeed ifA is well-defined and fully periodic, then this argument is true and
the Chern number must vanish.

However, there is no guarantee thatA is well-defined and periodic. Recall
that in fact the Berry gauge field is not itself gauge-invariant: it depends upon
our choice of convention for the phases of the Bloch functions. The formula in
Eq. (401) is well-defined because it involves only the curl of the gauge field,
which is gauge invariant. Employing Stokes’ theorem is suspect. We need to
be a bit more careful.

Let us think about what is safe to assume about the gauge field. Ultimately,
it is obtained from a solution of the Schrödinger equation defined by the
Bloch Hamiltonian Hk, which is a function of quasi-momentum. We can solve
this equation for a given momentum k, and choose some arbitrary phase for
the Bloch function. Now by applying perturbation theory, we can obtain the
solution for a nearby quasi-momentum, k + dk, where dk is an infinitesimal
displacement in some particular direction in momentum space. We assume
that the band n is not degenerate with any other bands – this is part of the
smoothness requirement: perturbation theory in quasi-momentum is well-
defined under these conditions, which guarantees that the bands are “smooth”.
Through perturbation theory we will naturally choose a phase such that the
Bloch function at k + dk is smoothly connected to that at k. By continuing in
this direction, we can find a one-dimensional set of solutions for the Bloch
functions along some line in momentum space.

For convenience, let’s establish coordinates k1, k2 along reciprocal lattice
vectors, k = k1b1 + k2b2, where b1,2 are basis vectors for the reciprocal lattice
(notice that the Chern number is dimensionless, and is in fact invariant under
any linear coordinate transformation). Then the BZ can be considered the
space with 0 ≤ k1 < 1, 0 ≤ k2 < 1. Now let us choose dk along the k1 direction.
By perturbation theory, we can find a one-dimensional set of solutions for
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fixed k2, starting from (0, k2) and ending at (1, k2). There is no guarantee
that when we perturbatively work our way from k1 = 0 to k1 = 1, that we
return to the same Bloch wavefunction, but if, as assumed, the bands are
non-degenerate, then we must return to the same state up to a phase (it is not
the periodic part but the full state |ψnk〉 which must be periodic up to a phase).
That is, we will find |ψn(1, k2)〉 = eiφ(k2)|ψn(0, k2)〉. We can easily now make
these states fully periodic in k1 by letting |ψn(k1, k2)〉 → e−iφ(k2)k1 |ψn(k1, k2)〉,
which is just another gauge transformation. In this way, we are guaranteed
to be able to form states which are smooth and periodic in the k1 direction.
Having made such a periodic loop, we can define a Berry phase for that loop:

θ(k2) =

1∫
0

dk1A1(k1, k2). (403)

This is a pure phase and is gauge invariant and hence physical, in the sense
of a phase. It is called the “Zak phase”. It has the usual phase ambiguity in
that we could multiply our Bloch states by a phase that winds by an integer
multiple of 2π in the k1 direction, which would cause θ to change by an integer
multiple of 2π.

Now we can use the above procedure to obtain θ(k2) at k2 = 0, and then
use perturbation theory to smoothly extend this to k2 = dk2, with dk2 � 1.
We get a new set of Bloch functions which are again periodic in k1, at now
k2 = dk2. We can repeat this process to slowly obtain a smooth function θ(k2).
When we reach k2 = 1, we have obtained a new set of Bloch functions, which
must be same as those for k2 = 0, up to a phase. Consequently, we must find
θ(1) − θ(0) ∈ 2πZ. That is, the Zak phase must wind by an integer multiple of
2π on going from k2 = 0 to k2 = 1.

The winding number of the Zak phase is in fact just the Chern number. To
see this, we can write Eq. (401) as a series of small integrals over rectangles
that extend over the full k1 direction and have width dk2 = ε:

Cn =
1

2π
lim
ε→0

1−ε∑
k2=0,ε,···

1∫
0

dk1 (∂1A2(k1, k2) − ∂2A1(k1, k2)) ε

= − 1
2π

lim
ε→0

1−ε∑
k2=0,ε,···

1∫
0

dk1 (A1(k1, k2 + ε) − A1(k1, k2))

= − 1
2π

lim
ε→0

1−ε∑
k2=0,ε,···

(θ(k2 + ε) − θ(k2)) = − 1
2π

(θ(1) − θ(0)) . (404)

In going from the first line to the second, we dropped the first term in the
parenthesis because it vanishes due to periodic boundary conditions in the k1
direction. We see that the Chern number is indeed the winding number of the
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Zak phase, and hence must be an integer.
The conclusion is that the Chern number is an integer for any smooth

band. The set of all bands will divide into different topological classes charac-
terized by the Chern number as a topological invariant.

8.3.2 Physical meaning of the Zak phase in one dimension

To better understand the previous argument, it is very helpful to develop a
physical understanding of the Zak phase. It turns out that it is proportional
to what is called the “Wannier center”, which is something like the center of
mass of the Bloch state within the unit cell.

To get there, we need to understand a little better how to relate Bloch states,
which are delocalized like plane waves, to localized atomic-like orbitals. The
latter are best described by Wannier states. A Wannier state is a superposition
of Bloch states that best approximates an atomic state. It is a kind of inverse
Fourier transform. We consider the one dimensional case, and focus on a
single band whose Bloch states are

|kx〉 = ψkx(x) = eikxxukx(x) ≡ eikxx|ukx〉. (405)

These are normalized so that

〈ukx |ukx〉 =

a∫
0

dx |ukx(x)|2 = 1, (406)

where a is the lattice constant. Now we construct Wannier states as

|X = na〉 = φX(x) =
a

2π

2π/a∫
0

dkxe
ikx(x−X)ukx (x). (407)

The Wannier state can be regarded as a Fourier transform of ψkx (x), regarded
as a function of kx. Note that from the definition in Eq. (407), using the
periodicity according to Bloch theorem, we can write ukx(x) = ukx(x − X).
Therefore, we see from inspection that φX(x) depends upon X only through
the combination x − X. That is, φX(x) = φx(x − X) ≡ φ(x − X), where

φ(x) =
a

2π

2π/a∫
0

dkxe
ikxxukx(x). (408)

Generally, such Fourier integrals exhibit exponential decay in the Fourier
transform variable (here x − X), provided the function being Fourier trans-
formed is smooth and analytic. The arguments of the previous section establish
that for a one-dimensional band, it is always possible to choose the Bloch states
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to be periodic in kx, and they are therefore analytic and smooth provided the
band remains non-degenerate for all kx. So we expect that the wavefunction
φX(x) is exponentially localized.

We can compute the overlap

〈X′ |X〉 =

∞∫
−∞

dx φ∗X′ (x)φX(x) =

∞∫
−∞

dx
( a

2π

)2
2π/a∫
0

dk′xdkx e
i(kx−k′x)xeik

′
xX′−ikxXu∗k′x (x)ukx(x)

=
( a

2π

)2
2π/a∫
0

dk′xdkx
∑
n

a∫
0

dx ei(kx−k
′
x)(x+na)eik

′
xX′−ikxXu∗k′x (x)ukx (x)

=
( a

2π

)2
2π/a∫
0

dk′xdkx
2π
a

∑
m

δ(kx − k′x −
2πm
a

)

a∫
0

dx ei(kx−k
′
x)xeik

′
xX′−ikxXu∗k′x(x)ukx(x)

=
a

2π

2π/a∫
0

dkx e
−ikx(X−X′)

a∫
0

dx u∗kx(x)ukx(x)

=
a

2π

2π/a∫
0

dkx e
−ikx(X−X′) = δX,X′ . (409)

In the second line we interchanged the order of spatial and momentum inte-
gration, and decomposed the infinite integral over x into a discrete sum of
finite intervals of size a. In the third line we used

∑
n
eiqna = 2π

a

∑
m
δ(q − 2πm

a ).

In the fourth and final line we collapsed the delta function and then used the
normalization condition on the periodic part of the Bloch states, and finally
recognized the Fourier representation of the Kronecker delta (using the fact
that X, X′ are integer multiples of a).

This establishes that the Wanner states form an orthonormal basis. They
can be viewed as an alternative basis to the Bloch states, but which, like the
Bloch states, span the band. Indeed, in a finite system with periodic boundary
conditions containing N unit cells, there are N Wannier states, just as there
are N distinct values of kx labeling Bloch states. In a situation, i.e. a metal,
in which a band is partially occupied, the Bloch states are a preferred basis,
because they are energy eigenstates, and occupation is decided by this energy.
In the case of an entirely filled band, however, the two become equivalent’:
the many body state with all Bloch states occupied is equivalent to the many
body state of all Wanner states occupied.

In this way, Wannier states are a sort of natural description for band
insulators, in which all electrons reside in filled bands. They give an intuitive
understanding of why insulators are insulating: in the Wannier basis, all the
occupied states are localized!
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Now let us consider the “Wannier center”, i.e. the center of mass of a
Wanner state. Since a Wannier state decays exponentially with distance, it is
well-defined to write

x̄ ≡ 〈X|(x̂ − X)|X〉 =

∞∫
−∞

dx |φX(x)|2(x − X). (410)

To evaluate this, we insert the explicit form of the Wannier state and then use
a small trick:

x̄ =

∞∫
−∞

dx
( a

2π

)2
2π/a∫
0

dk′xdkx e
i(kx−k′x)xe−i(kx−k

′
x)Xu∗k′x(x)ukx (x)(x − X)

=

∞∫
−∞

dx
( a

2π

)2
2π/a∫
0

dk′xdkx

(
−i ∂

∂kx
ei(kx−k

′
x)(x−X)

)
u∗k′x (x)ukx(x)

=

∞∫
−∞

dx
( a

2π

)2
2π/a∫
0

dk′xdkx e
i(kx−k′x)(x−X)u∗k′x(x)i

∂
∂kx

ukx(x). (411)

The derivative in the second line generates the x − X factor needed for the
Wannier center. To go from the second line to the third, we integrate by parts
in kx. It is crucial in this step that the Bloch function is chosen periodic in
kx (otherwise there will be boundary terms). From here, we can proceed very
similarly to how we did with the overlap of Wannier states:

x̄ =
( a

2π

)2
2π/a∫
0

dk′xdkx
∑
n

a∫
0

dx ei(kx−k
′
x)(x−X+na)u∗k′x(x)i

∂
∂kx

ukx (x)

=
( a

2π

)2
2π/a∫
0

dk′xdkx
2π
a

∑
m

δ(kx − k′x −
2πm
a

)

a∫
0

dx ei(kx−k
′
x)(x−X)u∗k′x(x)i

∂
∂kx

ukx(x)

=
a

2π

2π/a∫
0

dkx

a∫
0

dx u∗kx(x)i
∂
∂kx

ukx(x) =
a

2π

2π/a∫
0

dkx Ax(kx). (412)

We see that the result is just proportional to the Zak phase, i.e.

x̄ =
a

2π
θ. (413)

This is a beautiful result. The Zak phase just gives the location of the Wannier
center. We can now understand that the 2π phase ambiguity of the Zak phase
just corresponds to a relabeling of Wannier states, X↔ X + a. What is really
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physical, i.e. gauge invariant, is the full set of Wannier centers.

8.3.3 Chern number in terms of hybrid Wannier functions

In one dimension, we can always find a smooth periodic gauge for the Bloch
states of a band, and hence can always find exponentially localized Wannier
states. The existence of bands with non-zero Chern number in two dimensions
means this is not always possible in d ≥ 2 (there is general recipe to form
Wannier functions in any dimension, but they are not guaranteed to be expo-
nentially localized). Instead, we understood the Chern number in Sec. 8.3.1 as
a winding number of the Zak phase. We can now reinterpret this in terms of
Wannier centers.

0

1

k2

x̄11
(a)

0

1

k2

x̄11
(b)

Figure 9: Motion of Wannier centers x̄1 (in dimensionless units with lattice spacing
1) as a function of the orthogonal momentum k2. In case (a), the Wannier centers
return to their original locations upon varying k2 from 0 to 1, i.e. across the k2
direction of the Brillouin zone. This corresponds to the case of zero Chern number.
In case (b), each Wannier center moves to the position of the next center upon the
same variation of k2. This corresponds to Chern number C = +1.

To do so, we should construct what are called hybrid Wannier states, which
are localized in one dimension and delocalized in the other. They are just
Fourier transforms in one coordinate but not the other, e.g. kx but not ky . To
do this in some generality, we can adopt lattice coordinates, as in Sec. 8.3.1:

k = k1b1 + k2b2, x = x1a1 + x2a2. (414)

Here xi are the fractional coordinates; in these units the lattice spacing is
unity. Now we will Fourier transform in k1 but not k2, to define the hybrid
Wannier state:

|X1, k2〉 = ψX1,k2
(x1, x2) =

1∫
0

dk1 e
2πik1(x1−X1)+2πik2x2uk1,k2

(x1, x2), (415)

where X1 is an integer. For a fixed k2, we can think of these as a set of Wannier
states for an effective one-dimensional system. In this way, we can define the
1d Wannier center of this 1d band as a function of k2
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x̄1(k2) = 〈X1, k2|(x̂1 − X1)|X1, k2〉 =
θ1(k2)

2π
. (416)

Then following through the manipulations we just illustrated in one dimen-
sion gives

θ1(k2) =

1∫
0

dk1A1(k1, k2). (417)

The definition coincides with θ(k2) in Sec. 8.3.1, and we can therefore see that
the Chern number corresponds to the winding number of θ1(k2), and hence to
a “winding” of the Wannier center x̄1(k2). The behavior of the Wannier centers
on varying k2 for the cases C = 0 and C = 1 is shown in Fig. 9.

8.3.4 Quantum Hall effect:

Now that we recognize that the integral of the Berry curvature of a band over
the entire Brillouin zone is a topological invariant, we can connect this to
our discussion of transport in the previous section. In particular, we showed
that the linear response conductivity generally contains the anti-symmetric
Hall term in Eq. (467). Here we rewrite this for the case of a band insulator at
T = 0, where the Fermi function is 1 for every state in an occupied band, and
0 for every state in an empty band. Furthermore, instead of including a factor
of 2 for spin degeneracy, we allow for spin states to be non-degenerate, and
more generally for spin not even to be a good quantum number. Then there is
no degeneracy factor and we have, in two dimensions, the Hall conductivity

σH(T = 0) =
σyx − σxy

2
= e2

∑
n occ.

∫
d2k

(2π)2Ωn(k) =
e2

2π

∑
n occ.

Cn =
e2

h

∑
n occ.

Cn.

(418)

In the final equality we restored the factor of ~ to get physical units. This
relationship between the Hall conductivity and the Chern number is known
as the Thouless-Kohmoto-Nightingale-de Nijs (TKNN) formula. Note that
the prior formula for spin degenerate states is restored by simply counting
each degenerate band as two non-degenerate ones with equal Chern num-
bers. The above formula is more general, and indeed appropriate since the
Chern number is non-zero only when time-reversal symmetry is broken, and
generally this also implies breaking of spin degeneracy. We see that the Hall
conductivity is equal to the quantum of conductance, e2/h times the sum of
the Chern numbers of the occupied bands. This implies quantization of the
Hall conductivity! This is the celebrated Integer Quantum Hall Effect (IQHE).
The IQHE above can be considered an “anomalous” IQHE because no where
do we invoke an orbital magnetic field. An insulator for which the total Chern
number of the occupied bands is non-zero is known as a Chern insulator or
IQHE state. When the total Chern number is zero, is may be called a trivial or
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non-topological insulator.

Please note the connection to the discussion in Sec. 7.4.1, where we saw
that the current carried by a filled band is not necessarily zero. If you check
Eq. (348), you will see that the current of a filled band is exactly proportional
to its Chern number. The exception to the standard rule that filled bands carry
no current is nothing but the topological contribution to the current. (Please
note also from this section where we allowed non-zero magnetic field that
quantization remains in the presence of an orbital magnetic field).

One can directly understand the quantum Hall effect from the motion of
the Wannier centers discussed in Sec. 8.3.3 and illustrated in Figure 9. Con-
sider an applied electric field E = Eb̂2 (b̂2 = b2/ |b2|) , which is perpendicular
to a1. Take the dot product of the Hamiltonian equation for the momentum
with a2, which gives

2π
dk2

dt
= −eEa2 · b̂2 = −eE

|a1 × a2|
|a1|

. (419)

The second equality follows by a little algebra. Averaged over all the different
values of k2, the winding of the Wannier centers implies that

dx̄1

dt
= C

dk2

dt
= −eEC

|a1 × a2|
2π|a1|

. (420)

Now the current density perpendiculat to the applied field is

j = −nedx
dt
· â1 = −ne|a1|

dx̄1

dt
. (421)

Using Eq. (420) we see that the Hall conductivity is

σH = ne2|a1 × a2|
C

2π
=

e2

h
C, (422)

using the fact that for a filled band in two dimensions, the density times the
volume of the unit cell is unity, and |a1 × a2| is that volume, and inserting the
needed factor of ~ to restore units.

8.3.5 Quantum Hall effect due to Landau levels

We have discussed the integer quantum Hall effect as due to Chern number of
a Bloch band. But the integer quantum Hall effect was actually discovered in
the much simpler context of an electron gas in a magnetic field,

H = − 1
2m

(∇ − ieA)2 . (423)
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In that, more common, situation, the IQHE arises due to the formation of
Landau levels. It is well-known that the a state with one filled Landau level
has a unit quantized Hall conductance, σH = e2/h. Where does this come from,
and does this mean that a Landau level has Chern number C = 1?

It is not obvious that we can define a Chern number of a Landau level
in the same way as we did for a Bloch band. This is because, in the Landau
level problem, any vector potential satisfying ∇×A = B , 0 necessarily breaks
translational symmetry, and so the Hamiltonian is not periodic. We will see
that this issue can be overcome, and that we can eventually form Bloch-like
states regardless.

First, though, what we can do easily is to make the Hamiltonian periodic in
one direction, by choosing the Landau gauge Ay = Bx. Then the Hamiltonian
Eq. (423) is periodic in y, and the standard solution for the Landau levels is

ψn,ky (x, y) = eikyyφn(x − ky`2), (424)

where n is the Landau level index, ` =
√
~/eB is the magnetic length, and

φn(x) is a simple harmonic oscillator wavefunction, i.e. Gaussian multiplied
by a Hermite polynomial. The function ψ has a striking similarity to a hybrid
Wannier function! It is periodic in y but localized in x. The difference from the
Bloch case is that ky is a true momentum in this case, and a quasi-momentum
for the hybrid Wannier state.

An important feature the Landau gauge state Eq. (424) shared with the
hybrid Wannier state is that its center, x̄(ky) = ky`

2 shifts with the momentum
ky . Thus we can repeat the arguments beginning with Eq. (419) to relate this
connection of x position and y momentum to the Hall conductivity. We have

dx̄
dt

= `2 dky
dt

= −e`2Ey . (425)

Note a direct comparison with Eq. (419) is a little misleading because there
we used dimensionless units while here we retain standard units of length
and momentum. Writing the current

jx = −nedx̄
dt

= e2n`2Ey . (426)

To obtain quantization, we need to insist that the Landau level is full. This
corresponds to the density n = 1/(2π`2), which then gives the desired IQHE.

Note that in this argument we only use the slope of x̄ versus ky , which is a
linear relation for a Landau level. In a general Chern band, the Wannier center
does not vary linearly with the quasimomentum, but it is the average slope
that governs the Hall conductivity (since we sum over all the occupied states).

We can try to sharpen the connection to the Chern band by construct-
ing linear combinations of the states in Eq. (424). These are still eigenstates
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since the Landau level is degenerate (but from the topological perspective
we do not really care if these are eigenstates, only that we find a new basis
which still spans the full space of the Landau level). Specifically, consider the
superposition

ψ̃kx ,ky (x, y) =
∑
m

ei2πkx`mψn,ky+ 2πm
`

(x, y) = eikyy
∑

m

ei2πkx`mei
2πmy

` φn(x − ky`2 − 2πm`)

 .
(427)

Because we superimposed states with different ky , this is no longer a momen-
tum eigenstate in the y direction. However, we carefully chose the factors so
that it retains the notion of quasi-momentum. Indeed, the function ψ̃ has the
standard Bloch properties that

ψ̃kx ,ky (x + a, y) = eikxaψ̃kx ,ky (x, y), ψ̃kx ,ky (x, y + b) = eikybψ̃kx ,ky (x, y), (428)

if we take the “lattice constants” equal to

a = 2π`, b = `. (429)

Consequently in this new form we can regard the Landau levels as forming a
band with this unit cell. Actually we could freely define other unit cells with
different dimensions so long as they satisfied ab = 2π`2, which is the area
which encloses a single flux quantum.

We can also calculate the Berry curvature with these Bloch functions we
defined. Let us extract the plane wave part to define the periodic part of the
Bloch function,

ψ̃kx ,ky (x, y) = eikxx+ikyyunk(x, y), (430)

with

unk(x, y) =
∑
m

e−ikx(x−2π`m)ei
2πmy

` φn(x − ky`2 − 2πm`). (431)

Standard normalization for the periodic part of a Bloch function is that

a∫
0

dx

b∫
0

dy |unk(x, y)|2 = 1,

=
∑
m

2π`∫
0

dx

∫̀
0

dy |φn(x − ky`2 − 2πm`)|2 = 1,

= `

∞∫
−∞

dx |φn(x − ky`2)|2 = `

∞∫
−∞

dx |φn(x)|2 = 1. (432)
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For the n = 0 lowest Landau level, the explicit function is

φ0(x) =
1

(2π)1/4`
e−

x2

4`2 . (433)

We need some derivatives to evaluate the Berry curvature:

∂kyunk = −`2
∑
m

e−ikx(x−2π`m)ei
2πmy

` φ′n(x − ky`2 − 2πm`),

∂kxunk = −i
∑
m

e−ikx(x−2π`m)ei
2πmy

` (x − 2π`m)φn(x − ky`2 − 2πm`). (434)

Then the Berry curvature is

Ωnk = 2Im〈∂kxu|∂kyu〉

= 2

a∫
0

dx

b∫
0

dy Im
[
∂kxu

∗
nk∂kyunk

]

= −2`2
∑
m

2π`∫
0

dx

∫̀
0

dy (x − 2π`m)φ∗n(x − ky`2 − 2πm`)φ′n(x − ky`2 − 2πm`).

(435)

Here we used the orthonormality of the plane waves in the y direction to
collapse a double sum from the two Bloch functions. Now we can carry out
the y integral and also change variables to x′ = x − 2πm`. The integral then is
over −2πm` < x′ < 2π`(1 − m). Summing over m converts this to an infinite
integral. So we have

Ωnk = −2`3

∞∫
−∞

dx φ∗n(x − ky`2)xφ′n(x − ky`2) = −2`3

∞∫
−∞

dx φ∗n(x)xφ′n(x)

= `2 (436)

The last equality on the first line is obtained by shifting x → x + ky`
2, and

shows that the Berry curvature is constant (i.e. independent of k). On the
second line we evaluated it in the lowest Landau level using Eq. (433) (pre-
sumably the answer is the same for all Landau levels).

We can now integrate this over the Brillouin zone corresponding to the
real space unit cell in Eq. (429), i.e. 0 < kx < 1/` and 0 < ky < 2π/`. We see
that

Cn =
1

2π

∫
d2kΩnk =

1
2π
× 2π

`2 × `
2 = 1. (437)

So following the same definitions as for Bloch bands, we indeed recover unit
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Chern number for a Landau level!

8.3.6 Laughlin argument

The quantization of the IQHE is more general and robust than the above
derivation may suggest. For example, while the above discussion assumed
that there are no crossings between bands, it is actually allowed for bands
below the Fermi energy to cross. In this case, the individual Chern numbers
Cn may not be well-defined or quantized, but their sum remains quantized.
Moreover, while the derivation of Eq. (467) was based on the semi-classical
model, the relation in Eq. (418) can be shown fully quantum mechanically
based on the linear response formalism, and is correct so long as there is a gap
at the Fermi level. Furthermore, quantization of the Hall conductivity can be
shown to be true in insulators even beyond the non-interacting electron model,
and remains also in the presence of disorder (and in fact the quantization is
enhanced in many cases by disorder).

Some of the robustness can be understood by thinking in detail about the
spectrum and states of a large finite system, and in particular about what
occurs at the boundary of the material with the vacuum (or more generally
with an interface to a material with a different Chern number). Indeed, there
is a very general argument that the boundary of an insulator with a non-
zero (quantized) Hall conductivity and another insulator with a different
(quantized, and possibly zero) Hall conductivity must have gapless states
localized to it. These are called “edge states”.

The argument is due to Robert Laughlin, and not only requires edge states
but explains the quantization itself. Laughlin’s argument neglects interactions
between electrons, but not disorder. It goes something like this. We consider a
two dimensional system at zero temperature, and assume that it has a well-
defined local conductivity tensor σµν. We further assume that there are no
extended states at the Fermi energy. In a clean system, this implies that the
system is a band insulator, but we can also allow for disorder, which may
induce states at the Fermi energy, provided that in the bulk – i.e. away from
any boundaries – those states are localized. In condensed matter physics we
say a state is localized if its wavefunction decays exponentially in space away
from some region specific to that state. One can think roughly of localized
states as states bound to some impurities. We may talk about localization in
more detail later. The assumption is basically that the system has no mobile
states at the Fermi energy with which to dissipate energy.

This implies that the symmetric parts of the conductivity tensor vanish, be-
cause the power dissipated in an electric field Eµ is σµνEµEν which vanishes by
assumption. This implies the conductivity tensor in 2d has just two elements
σH = σxy = −σyx, the Hall conductivity. Now Laughlin’s argument further con-
strains the magnitude of the Hall conductivity under these assumptions. We
can use the conductivity tensor to compute linear response in any geometry,
and so choose what is sometimes called the Corbino geometry, which consists
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Φ

E
j

Figure 10: Corbino geometry: the sample is an annulus, with a flux Φ inserted
inside the inner hole. No magnetic field penetrates the sample. The time-dependence
of the flux during the insertion creates a circumferential electric field E. Due to the
Hall conductivity a radial current j is produced.

of a ring-shaped sample or annulus (one can also formulate the argument
using a cylinder). Imagine slowly turning on a magnetic field inside the inner
hole of the ring, so that no field at all penetrates the sample itself, but a net
flux Φ(t) passes through the hole. The flux is increased from zero to the flux
quantum Φ = h/e very slowly, so that the response of the system is adiabatic.

Let us first analyze the effect of the flux using linear transport. A time
dependent flux is accompanied according to Faraday’s law by an electric
field, in the azimuthal direction. The electric field is Eφ = −∂tΦ/(2πr), at a
radius r from the center of the hole. Accordingly, this creates a radial current
I = 2πrσHEφ = −σH∂tΦ. Integrating the current over time, we obtain a total
transfer of charge from the outer to inner radius of

Q = −σH(Φ(tf ) − Φ(0)) = −h
e
σH. (438)

Note that the above argument is just linear in the flux: if we double the flux,
we double the charge transferred.

Now we use special properties of the situation in which the flux is equal
to the flux quantum. We will see that the edge must be gapless, and moreover
that the transferred charge must be an integer multiple of the elementary
charge e. To see this we use quantum mechanics. The flux is included in quan-
tum mechanics by a vector potential Aφ(r) = Φ(t)/(2πr) along the tangential
direction at radius r, which is included via minimal coupling as usual. After
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the flux is increased to h/e, the Hamiltonian reaches a form which is equivalent
up to a gauge transformation, ψ → eiφψ, where φ is the azimuthal angle in
the plane, to the one with zero flux. At the single-particle level, we may write
that

H(Φ =
h
e

) = e−iφH(Φ = 0)eiφ, (439)

whereH is the single-particle Hamiltonian, and φ is the operator representing
the azimuthal angle. This is a unitary transformation, which implies that the
energy levels and single particle states (up to phases) are the same before and
after the flux insertion. However, in the middle of the insertion process, the
energies and states can have evolved. Since the process is assumed adiabatic,
we can follow these individual levels through the flux evolution, and they
must evolve in such a way that each eigenstate at zero flux evolves into another
eigenstate at one flux quantum, i.e. the levels may permute. Note that this
argument works for the full finite system, edges included. Now the assumption

r

ε

εF

Figure 11: Sketch of spectral flow of single particle levels in the flux insertion pro-
cess. Initially empty and full states are shown as open and filled circles, respectively.
The horizontal axis is the radial distance, with circles showing the centroid of
the corresponding levels. States which are extended around the annulus undergo
spectral flow near the Fermi energy at the boundaries of the sample. Levels that are
localized do not undergo spectral flow, and are indicated as circles without arrows.
Some extended states must persist in the bulk, indicated by the dashed line. The
spectral flow of levels across the Fermi level determines the number of electrons
transferred, n.

that any states at the Fermi level in the bulk are localized comes into play. The
Aharonov-Bohm effect is only operative for states which are extended fully
around the circumference of the disk, so that an electron in this state is able to
sense the phase. For any localized state, the energy and wavefunction must be,
up to a phase factor, completely independent of the flux. This implies there is
no spectral flow for the levels at the Fermi energy in the bulk.

Knowing this, we therefore understand that any spectral flow at the Fermi
level comes entirely from levels at the two edges. Moreover, this spectral flow
requires states arbitrarily close to the Fermi level. The conclusion is there
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must be gapless states localized at the edges of the sample. These are the edge
states. In the next section, we study edge states explicitly.

Laughlin’s argument goes further and dictates the quantization of the Hall
conductivity, by relating it to the charge transfer. The net result of spectral
flow can only be a change of population of electrons by some integer n at either
edge, and by charge conservation the change must be equal and opposite, so
that n electrons are transferred from one edge to another. Equating the charge
Q transferred in Eq. (438) to −ne we obtain finally the Hall quantization
condition

σH = n
e2

h
. (440)

The Laughlin argument is powerful because it includes the effects of
disorder. It helps to understand the global structure of the extended states,
and makes a connection between the IQHE and pumping.

8.4 Graphene and Haldane model

It is instructive to see some of the above features in action. This is most
easily done in a simple model, for which we will take the modified model of
graphene due to Haldane. Haldane’s model starts with the graphene model
used in Sec. 5.3 but include spin-orbit coupling.

Recall the features of Sec. 5.3. The Bloch Hamiltonian appears as a 2×2
matrix whose index we denote a, b etc. and which lies in the sublattice space.
To include spin, we would also require a spin-1/2 index σ =↑, ↓.

We will adopt a low energy description, which linearizes the dispersion
around the Dirac points, there is an additional “valley” index A = 1, 2, which
labels the two Brillouin zone corners. Then continuum fields are defined
simply by separating the momentum components which are in a small neigh-
borhood of the Dirac points:

uaα,K+k = ψ1aα,k, for |k| � 1, (441)

uaα,K′+k = ψ2aα,k, for |k| � 1. (442)

Putting this all together, we can write a low-energy continuum Hamilto-
nian which acts on the 8-component spinor ψAaα,

H̃kψ = εψ, (443)

The fermions are described by a spinor ψ = ψAaα, where τ Pauli matrices
act on the sublattice a space, µ act on the valley space (you can see Eq. (444)
is diagonal in the valley space because it only involves µz), and σ act on the
spin space (these matrices aare not present in the Hamiltonian because spin-
orbit coupling is weak and can be neglected). We keep the indices implicit for
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compactness as much as possible. In this notation, the continuum Hamiltonian
is

H̃ = v(µzτxkx + τyky). (444)

The Hamiltonian in Eq. (444) is easy to diagonalize. It is already diagonal
in the valley and spin subspaces, so we can treat µz in the Hamiltonian as a
constant = ±1 (its eigenvalues). We are left with a 2×2 matrix in the τ space.
The eigenvalues of this matrix are easy to find by for example rotating it by an
SU(2) rotation to the τz direction. One has

ε± = ±v
√
k2
x + k2

y = ±v|k|. (445)

We see the dispersion is just a relativistic “light-cone” of conduction and
valence bands intersecting at k = 0.

8.4.1 Stability of the Dirac point

A key question is whether this behavior is generic. That is, we may have made
a small mistake in our Hamiltonian by neglecting some term, and would
correcting this lead to the removal of this intersection point and fundamental
modification of the spectrum? This certainly appears possible, since the 2d
Dirac equation allows a mass term. Even if we “freeze” the valley and spin
degrees of freedom, i.e. just consider the two component Dirac equation for
fixed spin and valley quantum numbers, one can add a term of the form mτz

to the Hamiltonian above which is known as a Dirac mass, and will indeed
remove the intersection point. Maybe some principle (symmetry?) prohibits
adding this term? Perhaps there are other allowed perturbations?

Perturbative argument Let us start with the simple-minded answer, which
is just based on the Dirac Hamiltonian, Eq. (444) and symmetries. We ask what
might prevent adding a term proportional to Mτz to the Hamiltonian? Here M
could be a matrix in the spin and valley spaces. So long as this anti-commutes
with the two matrices inside Eq. (444), it will serve as a mass. First, it is natural
to assume spin rotation symmetry, SU(2)σ, because spin-orbit coupling is weak
in graphene so this is a good approximation microscopically. This requires M
to not contain any of the spin Pauli matrices. Second, we impose translational
symmetry, which means that quasi-momentum is conserved up to a reciprocal
lattice vector, and so there is no scattering between valleys. This requires
M to not contain µx or µy . These two constraints allow matrices of the form
M ∼ 1, µz , i.e. mass terms τz and µzτz . Now consider time-reversal symmetry.
This changes the sign of momentum, and hence interchanges the two Dirac
points, which means µz → −µz . The matrix τz simply labels the sublattices,
so it is time-reversal invariant. Thus of the two remaining options, only the
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M ∼ 1 or pure τz mass is time-reversal invariant. If we assume time-reversal
symmetry, we still need one more symmetry to prevent the addition of τz .
For this, we need to require some symmetry which interchanges the two
sublattices, for example inversion around the center of a bond. Under this
operation, τz → −τz , and so inversion symmetry removes the finally remaining
mass term. We conclude that the Dirac points remain intact if we maintain
four conditions: 1. spin rotation symmetry SU(2)σ, 2. inversion symmetry,
3. the translation symmetry of the honeycomb lattice, and 4. time-reversal
symmetry.

Topological argument It turns out that the stability of the Dirac point
can be understood more deeply in topological terms. We need to introduce a
different topological argument, since the system is not gapped, and there is
also no Chern number since with time-reversal and inversion symmetry there
is zero Berry curvature.

However, we can consider a loop encircling a Dirac point,

Θ =
∮
K

dk ·An(k), (446)

where the subscript K indicates the line integral is taken around the Dirac
point at (say) the K point of the Brillouin zone. This is a Berry phase: it gives
the phase evolved under adiabatic evolution of a wavefunction through this
loop. The quantity is invariant under single-valued gauge transformations,
because it is the integral of a gradient, but changes under large but smooth
gauge transformations, e.g. χ(k) = pθ(k), where θ(k) is the angle of the k point
measured from the location of the Dirac point, and p is an integer so that the
gauge transformation is single valued. This means that Θ is defined modulo
2π. It turns out that for a Dirac electron, the value of theta is actually

Θ = π(mod 2π). (447)

This is easily worked out from the eigenfunction of the Dirac Hamiltonian, or
microscopically from the Bloch Hamiltonian of the graphene model.

The non-trivial value of π for the Berry phase implies the stability of the
band touching, as can be argued as a proof by contradition. Suppose the band
touching were to be removed by a small perturbation. Then we would require
Eq. (120) to hold everywhere, including at the former Dirac point. Then we
could use Stokes’ theorem to express Θ in Eq. (121) as the area integral of
Bn inside the loop, which would immediately have to vanish. However, a
small perturbation can make only small changes in the Bloch states far from a
degeneracy point, and so the loop integral cannot change discontinuously. We
conclude that the band touching cannot be lifted by any small perturbation
preserving time-reversal and inversion symmetry. What can in fact happen,
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if symmetry allows it, is for the Dirac point to move in k space under the
effect of perturbations (this is allowed if we break the 3-fold lattice rotation
symmetry). Then the two Dirac points can drift and annihilate.

By similar arguments, we can obtain the quantization of Θ, which must
be a multiple of π (including 0) around any loop, modulo 2π, and also the
“fermion doubling” result that there must be an even number of such Dirac
points. I leave these as exercises to the reader.

8.4.2 Two Dirac masses

Now we are ready to return to build a model of a topological insulator. We
take the graphene Hamiltonian and add some perturbations that turn the
Dirac semimetal into an insulator. For the moment, we will consider spinless
Dirac electrons, governed by Eq. (444). We saw that, for spin-independent
interactions, there are two possible “mass” terms which could be added that
maintain the translational symmetry of the lattice. Consider the Hamiltonian
with both these terms added:

H̃k = v(µzτxkx + τyky) + m1τ
z + m2µ

zτz (448)

Here the mass m1 is time-reversal invariant, and could be realized by adding
a staggered potential of opposite sign on the A and B sublattices. Such a
potential would induce a corresponding modulated charge density, so this
can be called a “charge density wave” state. The mass m2 is odd under time-
reversal, and can be realized by adding a second neighbor hopping (dashed
lines in Fig. 5) which is pure imaginary and has a positive (negative) sign for
second neighbors reached by “turning” right (left) when walking two steps on
the lattice. The honeycomb model with imaginary second neighbor hopping is
known as the Haldane model, after Haldane introduced it for reasons to become
clear below. Since µz commutes with the one-particle terms in Eq. (448), it is
a constant of the motion and can be treated as equal to ±1. Then the energy
dispersion is easily calculated as a function of µz to be

ε±,k(m1, m2) = ±
√
v2k2 + (m1 + µzm2)2. (449)

We see that either m1 or m2 alone introduces a gap; however, the gap vanishes
if |m1| = |m2|, by taking µz = −sign(m1/m2). If one plots a “phase diagram”
in the m1 − m2 plane, there are four gapped regions separated by “phase
boundaries”. At least in this model, it is not possible to pass from the “charge
density wave” insulator with m1 , 0, m2 = 0 to the “time-reversal broken”
insulator with m1 = 0, m2 , 0, without passing through a model in which the
gap vanishes. When the gap does vanish, on the |m1| = |m2| lines, it does so for
just one of the two Dirac points.

What is the physical meaning of this? It turns out that the two separated
gapped insulators are indeed physically distinct phases. The “charge density
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Figure 12: “Phase diagram” showing effects of masses on 2d Dirac fermions. The
labels “CDW-A” and “CDW-B” indicate charge density wave regions in which the
electrons are localized preferentially on the A or B sublattice sites, respectively.

wave” insulator is a simple band insulator, while the “time-reversal broken”
insulator is the Chern insulator or quantum Hall state. The simplicity of the
charge-density wave insulator can be seen by simply going back to the lattice
model and increasing the staggered potential until it is very large. This process
is smooth and no phase transitions occur: the gap increases monotonically
as the potential is increased. When the potential is very strong, the insulator
itself becomes atomic in nature: one electron resides each site of one of the
sublattices (the one with much lower energy), while the other sublattice is
empty. There is virtually no motion of the electrons.

8.5 Edge state

The Chern insulator, by contrast, does not have a simple atomic limit. This
leads to interesting phenomena at an interface between the two. Let us con-
sider modeling such an interface by the Dirac Hamiltonian but with masss
m1(y), m2(y) that are functions of y, with the interface located at y = 0. For
y → ∞, we have the charge density wave, and m1 > 0, m2 = 0, while for
y → ∞, we have the Chern insulator, and m1 = 0, m2 > 0. We assume the
masses vary smoothly between the two regions, and write the Dirac equation
in the position representation in the y direction:

H̃kx = vkxµ
zτx − ivτy∂y + (m1(y) + m2(y)µz)τz . (450)

The single-particle eigenfunctions that diagonalize the Hamiltonian obey[
vkxµτ

x − ivτy∂y + (m1(y) + m2(y)µ)τz
]
φkx(y) = εkxφkx (y). (451)
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Here we replaced µz → µ = ±1 to indicate that we can treat the two eigenval-
ues of µz independently, as constants. Let us seek a solution in which φ is an
eigenstate of τx, i.e. τxφ = τφ, with τ = ±1. We can rewrite iτy = τzτx = τzτ

when acting on φ. Hence we have[
τµvkx + τz

(
−τv∂y + (m1(y) + µm2(y))

)]
φkx(y) = εkxφkx (y). (452)

This is consistent under the conditions:

εkx = τµvkx, (453)(
−τv∂y + (m1(y) + µm2(y))

)
φkx(y) = 0. (454)

The second equation has a formal solution:

φkx(y) = Ae

y∫
0
dy′ m1(y′ )+µm2(y′ )

τv
. (455)

This solution is formal because this function is only normalizable if the ex-
ponential becomes large and negative at both y → +∞ and y → −∞. This
requires (m1 + µm2)/τ < 0 as y → +∞ and (m1 + µm2)/τ > 0 as y → −∞. In
turn this implies that the sign of m1 + µm2 is opposite at y = ±∞. The interface
between the Chern and band insulator satisfies this condition. Specifically,
in the band insulator at y = +∞, m1 > 0 and m2 = 0, so the sign m1 + µm2
is positive, while in the Chern insulator, m1 = 0 and m2 > 0, so the sign of
m1 + µm2 is the sign of µ. Hence for µ = −1, the sign is different, and we obtain
convergence for τ = −1. So we obtain a single branch of modes (those with
µ = τ = −1 which have such a special eigenstate, for which the dispersion
relation is

εkx = vkx. (456)

This is a one-dimensional branch of states, whose wavefunction is exponen-
tially localized at the interface between the Chern and band insulator. The
mode resides inside the band gap, which is required for exponential localiza-
tion, and which means that its low energy states reside at the Fermi energy
even when the bulk of both insulators exhibit a gap. Importantly, the mode is
chiral, in that the group velocity in the x direction, parallel to the interface, is
positive. This is called a chiral edge state, and is characteristic of the integer
quantum Hall effect.

The chirality of the edge state gives it a great deal of robustness. Pertur-
bations at the edge, including disorder, cannot make a low energy electron
turn around, because all the available states propagate in the same direction.
We say that there is no backscattering possible. This means that the edge state
cannot become localized by disorder, and in fact has an infinite conductivity
(but not infinite conductance - we will come back to this).
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8.6 Chern number

We are now in a position to bring the discussion full circle. We argued that in
general, a Chern insulator has a quantized Hall effect, and through Laughlin’s
argument must have gapless excitations at its edge. We have seen that there is
such a gapless edge state at the boundary of one of the phases of the gapped
Dirac model. Can we actually see that in this phase there is a non-zero Chern
number?

Recall that each massless Dirac point has a π Berry phase associated with
loops encircling it. This is almost like having large Berry curvature within the
loop: if it were permissible to use Stokes’ theorem, then we could conclude
that the Berry curvature within integrates to π. This is not correct, but it
becomes correct when a small mass term is added. With a mass, it becomes
possible to define the Berry curvature everywhere, and we can take its integral
in a large area containing the Dirac point. By Stokes’ theorem, this must be
equal to Θ. The latter cannot change by some large amount for a loop far from
the Dirac point, when a very small mass is introduced. Therefore a small mass
makes the integrated Berry curvature “jump” to ±π.

One may wonder what resolves the sign ambiguity? It is straightforward
to just add a mass to the Dirac Hamiltonian and calculate the Berry curvature.
For H̃ = vµzτxkx + vτyky + mτz , one obtains for the valence band

Ω = µz
mv2

2(v2k2 + m2)3/2 , (457)

The sign is opposite for the conduction band. For a given band, the sign of
the Berry curvature is determined by the sign of µz and the sign of the mass:∫

d2kΩ(k) = πµz sgn(m). (458)

Note the appearance of µz . This appears because the valley determines the
sense of winding of the Dirac point, or chirality. For a given sign of mass,
opposite chirality gives opposite Berry curvature. The integrand is strongly
peaked in a region of width m/v in momentum space around the Dirac point.
So when the Fermi level lies in the gap formed by the mass, we can say, using
the general formula of Eq. (401)), that each Dirac point contributes plus or
minus half an integer to the Chern number. This must be added for every
distinct Dirac point, i.e. for each spin and valley. Therefore there is a general
formula for the Chern number for a set of massive Dirac points with the Fermi
level in the gap:

C =
∑
i

1
2

sgn(miµ
z
i ). (459)

Here the sum is over all Dirac points, i.e. for our model of graphene it includes
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four such points, for spin and valley. One might be worried about Eq. (459),
because it looks like it can give a half-integer quantum Hall effect. However,
for any physical two dimensional system, there is a famous theorem that there
must always be an even number of Dirac points. This guarantees an integer
result for an insulator.

Let’s apply the formula to the two states we discussed. For the CDW, we
had the mass m1, which is the same for both valleys.

CCDW = 2spin ×
(1

2
sgn(m1) − 1

2
sgn(m1)

)
= 0. (460)

The CDW has zero Hall conductivity because the contributions from the two
valleys have opposite sign, as expected since it is time-reversal invariant.

Next consider the QAHE phase. Now we have mass m2 which is opposite
for the two valleys. We obtain

CQAHE = 2spin ×
(1

2
sgn(m2) +

1
2

sgn(m2)
)

= 2sgn(m2). (461)

Indeed the QAHE state has a non-zero Chern number, which is consistent
with the edge state as expected.

8.7 Chern insulators: summary and bulk-boundary correspondence

In the prior parts of this section we have come to understand that there are
classes of insulators in two dimensions, called Chern insulators, that are
non-trivial and cannot be deformed into trivial ones. We described them in a
number of ways:

• An example of a Chern insulator occurs in the Haldane model of a
honeycomb lattice, which realizes time-reversal breaking opposite mass
terms for the two Dirac fermions at the K and K′ points.

• The Chern insulator in this example has a chiral edge state.

• The Hall conductivity is quantized and equal to e2/h times an integer C
known as the Chern number. The Chern number may be expressed in
various ways, for non-interacting and interacting electrons.

• Laughlin’s argument shows that this quantization can be understood as a
consequence of spectral periodicity under insertion of a pure flux equal
to the flux quantum, and that C describes a spectral flow at the edges of
the sample. Equivalently, C gives the number of electrons pumped across
the sample when a flux quantum is inserted. A non-zero C requires that
there are extended states at the boundaries of the sample.

• The quantization of the Hall conductivity is robust to both disorder and
interactions, but occurs only in the limit of zero temperature.
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One point we did not comment on explicitly is the bulk-boundary corre-
spondence, which is implied in some way by Laughlin’s argument. We saw that
the Chern insulator in graphene has a single chiral fermion edge state at the
boundary to a trivial insulator. It is not too hard to show that it also has a unit
Chern number C = ±1. In fact, this correspondence is general, and there is an
identity relating the Chern number to the number of left and right moving
modes, NR and NL, respectively, at a boundary:

C = NR − NL. (462)

(This equation requires some definition of what “right” and “left” mean but
let us not belabor it).

One way to argue for Eq. (462) is to use the fact that the Hall conductivity
is given by e2/h × C, and then to calculate the Hall voltage directly from the
low energy model of edge states, and compare the two results. The latter
calculation is quite simple. Consider a Hall bar which is infinite in the x
direction and boundary by y = 0, L in the vertical direction. Suppose a voltage
Vy applied between the top and bottom edges. This induces a shift in the
chemical potential for the top modes from equilibrium of µL and those at the
bottom of µ0, with µL − µ0 = eVy . Now for each mode, the shifted chemical
potential induces a change in the density of electrons. This occurs because
when the chemical potential is shited by µ, the states between k = 0 and
k = −µ/~|v| change their occupation (v is the velocity of the mode). The change
in the electron density for mode a is

na = −
µa

2π~|va|
. (463)

Note that electrons are always added with negative µa, irrespective of the
direction of the velocity of the mode. This is why there is an absolute value
here. Now the current induced in this mode is given by Ia = −naeva, which
implies

Ia =
e
h
va
|va|

µa (464)

Then the total current on a single edge is

IL/0 =
e
h
µL/0

∑
a

va
|va|

. (465)

Now we can get the full current in the x direction by taking Ix = IL − I0,

Ix =
e
h

(µL − µ0)
∑
a

va
|va|

=
e2

h
Vy

∑
a

va
|va|

. (466)
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The final sum is exactly the difference in the number of right and left moving
modes, so we see that Ix = GxyVy with

Gxy =
e2

h
(NR − NL). (467)

The quantity Gxy is the Hall conductance rather than the Hall conductivity, i.e.
it is the ratio of the current to the voltage, rather than the ratio of the current
density to electric field. However, one can easily show that these are equal in
two dimensions. Thus σxy = Gxy in this case, and by comparing to the formula
Eq. (233) of the Hall conductivity in terms of Chern number, we prove the
bulk-boundary correspondence, Eq. (462).

8.8 Time-Reversal Symmetric Z2 TI

Having understood the Chern insulator from many angles, we will now discuss
the case of time-reversal symmetry. As shown in Sec. 7.3.2 that the Berry
curvature is an odd function of momentum when time-reversal is present, this
is enough to force zero Chern number. So any topological physics is something
different. Following seminar work of Kane and others, we know since around
2005 that there is a Z2 topological distinct amongst time-reversal symmetric
insulators in two and three dimensions.

A complication is that, with time-reversal symmetry, we actually generally
need to consider a pair of bands, because Kramer’s theorem implies that
“spin reversed” bands cannot be separated from one another. Consider a
Bloch state |ψnk. Kramer’s theorem generates a new state |ψ′n,−k〉 which is
guaranteed orthogonal to the original one and with the same energy (this
is the content of Kramer’s theorem). For certain special quasi-momenta, the
reversed momentum −k is equivalent to the original one by a reciprocal lattice
vector, i.e. k = Q − k, where Q is a reciprocal lattice vector. In dimensionless
coordinates, Eq. (414), these are when ki = 0, 1

2 for all i. At these “time reversal
invariant momenta” (TRIM), there must be two degenerate orthogonal states,
so two bands must pass through these momenta at the same energy. One
either has a pair of entirely degenerate bands (which occurs if in addition to
time-reversal one also has inversion symmetry), or one has a pair of bands
which cross at these TRIM points (which occurs otherwise). In the following,
we will successively make two assumptions: (1) two dimensionality, and (2)
no inversion symmetry. The former is important mainly for simplicity, and we
will comment on the extension to three dimensions later. The latter condition
is actually unnecessary, but relaxing it requires discussion which is overly
technical.

Let us now specialize to the case of two dimensions. While the full Brillouin
zone is spanned by 0 < ki < 1, it is enough to consider half the zone because
time-reversal symmetry fully determines the states at −k from those at k. For
convenience, we will therefore take 0 ≤ k2 ≤ 1/2. For fixed k2 , 0,1/2, time-
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reversal symmetry does not constrain the bands as a function of k1. Now we
assume no inversion symmetry. In this case, for k2 , 0, 1/2, there are two 1d
non-degenerate bands (regarded as functions of k1) whose states and energies
are unique (up to the usual phase ambiguity) at each k1. This allows us to
form the Wannier centers of Sec. 8.3.3, which are localized in x1. In this way,
we obtain a pair of Wannier centers, x̄1,±(k2), where ± indexes the two centers
arising from the two bands. We note in passing that this may also be achieved
in the case where the bands are degenerate, but requires constructing either
maximally localized Wannier functions, or calculating a non-abelian Berry
phase (see e.g. Ref.[3]).

Now as k2 → 0 or k2 → 1/2, we should recover time-reversal symme-
try. Technically, we group the states in such a way that for k2 = 0,1/2, the
two bands (as functions of k1) are time-reversed copies of one another, e.g.
ε+(k1, k2) = ε−(−k1, k2). Then the Wannier centers from each band must coin-
cide:

x̄1+(0) = x̄1−(0), x̄1+(1
2 ) = x̄1−(

1
2 ). (468)

As k2 evolves from 0 to 1/2, the paired Wannier centers split apart, move in
some fashion, and then recombine into identical pairs. It turns out that there
are two inequivalents ways in which this evolution can occur.

8.9 From Chern to Time-Reversal Symmetric Topological Insulators

We can use the bulk-boundary correspondence in different ways. One way is
to regard the boundary property, i.e. the difference NR − NL, as the definition
of the topological invariant. If we can argue independently of the bulk that
this quantity is itself indeed topologically invariant, i.e. it is unchanged by
smooth deformations of the Hamiltonian which do not cause a bulk phase
transition, then we may not need the bulk definition. This turns out to be
possible, and when we generalize beyond the Chern insulators, may be much
easier than the bulk approach. This will lead us to the Z2 topological insulator
with time-reversal symmetry in two dimensions.

8.9.1 Chern insulator and chirality of the edge

To do so, we first think through how we can argue for the edge invariant in the
case of the Chern insulator, in a non-interacting picture. This is the “chirality”
NR − NL. Consider a semi-infinite sample in the upper half-plane y > 0, with
axes chosen so that translational symmetry is maintained along the x direction.
Then we can still label states by quasimomentum kx. The spectrum at a fixed
kx will consist of bulk states, which are extended (scattering) wavefunctions
that are not bound to the wall, and bound states. The bulk states can have
variable energy even at fixed kx because the momentum transverse to the wall
can change, so these appear as continuous regions in the kx–ε plane (ε is the
single-particle energy). Since we consider an insulator, the bulk states are
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separated at all kx by a non-zero gap. The bound states appear as discrete states
at fixed kx, which then form dispersing curves εn(kx). They must lie within
the gap, or they would mix with the continuum states and lose their identity.
Since we are interested in topological features, we can imagine deforming

trivial

−Q
2

Q
2

non-trivial

−Q
2

Q
2

Figure 13: Schematic spectra of semi-infinite 2d insulators without time-reversal
symmetry, where the horizontal axis is the momentum parallel to the edge, and the
vertical axis is energy. For simplicity the conduction and valence band edges have
been flattened. The trivial insulator is characterized by C = NR − NL = 0 for all
energies within the gap. The non-trivial insulator shown has C = NR − NL = 1.
The blue bound state dispersion near the conduction edge can be deformed away,
and does not change C.

the Hamiltonian so that the conduction and valence bands become horizontal
at their edges – this does not close the gap so it is allowed. Then a given set
of edge modes consists of a set of curves, the bound state dispersions, lying
within the gap. These curves must obey certain rules:

1. A curve cannot end except by passing into the continuum.

2. The total number of discrete bound states at fixed kx changes only when
the end of a curve tied to the continuum passes through this kx. This
just means that discrete states do not appear or disappear at energies
away from the continuum.

3. Curves must be smooth except when they intersect (this is just the
smoothness of non-degenerate eigenvalues we have already discussed
several times).

4. Subject to these rules, the curves may be smoothly deformed, and new
curves may be added by smoothly drawing them out of a continuum
(the latter corresponds to formation of a bound state).
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We may start by considering a “trivial” insulator, by which we mean one which
can be deformed to the case with no bound states at all. From this we may pull
edge state branches out of the conduction or valence bands. Now we study
the numbers NR and NL of edge states crossing a particular energy insider
the gap. As a new branch is created and pulled across this energy, NR and
NL change but always do so together, so that NR − NL is unchanged. One can
convince one’s self that this remains true for all deformations allowed by the
above rules.

In a similar way, we can consider starting with a situation with one right-
moving edge state crossing the gap, so that NR−NL = 1. Once again, deforming
this mode or adding new modes may give rise to additional pairs of right and
left moving states at some energies, but the chirality NR − NL remains fixed.
At least at the level of pictures, we can convince ourselves that NR − NL is a
topological invariant.

8.9.2 Time-reversal invariant TIs and Z2 invariant

For a time-reversal invariant system, the Chern number must be zero. One can
readily see that time-reversal symmetry (TRS) implies B(k) = −B(−k), which
forces C = 0. Similarly, under TRS, a right-moving edge mode becomes a left-
moving edge mode and so NR −NL = 0 (so the bulk-boundary correspondence
in Eq. (462) is still valid but trivial). However, it turns out that there is a still
a topological invariant that survives in the presence of TRS. This is easiest to
understand in terms of edge modes. Consider again the semi-infinite sample
with translational symmetry and momentum kx a good quantum number. The
presence of the boundary does not spoil TRS, which takes kx → −kx. Thus
edge modes must come in degenerate pairs at kx and −kx. In general there are
two values of kx which are time-reversal invariant: kx = 0 and kx = Q/2 where
Q is the smallest reciprocal lattice vector of the boundary Brillouin zone. At
these time-reversal invariant wavevectors, a two-fold Kramer’s degeneracy
is required. Apart from these conditions we require the same ones as for the
prior case without TRS.

Since the spectrum at kx is identical to that at −kx, it is sufficient to plot
the spectrum for 0 ≤ kx ≤ Q/2. At both ends of this interval, any bound state
modes must occur in pairs. Out of the energies within the gap at kx = 0 and
kx = Q/2, two edge modes must emanate. Additional modes may emerge
from the conductance and/or valence bands. Consider a fixed energy within
the band gap and count the number of modes crossing the horizontal line at
that energy. Now imagine varying that energy, which sweeps that line up or
down. The number of modes crossing may change as that line crosses the local
maxima or minima of edge modes, or by crossing the endpoints at kx = 0, Q/2.
However, when it does so, the number always changes by a multiple of 2. Thus
the parity of the number of modes crossing the line is independent of the
energy within the gap. Similarly, we may vary the edge modes rather than the
energy at which we count, and the parity conservation holds. Thus we have
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trivial

0 Q
2

non-trivial

0 Q
2

Figure 14: Schematic spectra of semi-infinite 2d time-reversal symmetric insulators,
where the horizontal axis is the momentum parallel to the edge, and the vertical axis
is energy. Only half the edge Brillouin zone is shown, between two time-reversal
invariant momenta. For simplicity the conduction and valence band edges have
been flattened. The trivial insulator is characterized by an even number of crossings
of bound states at a fixed energy within the gap. The non-trivial insulator has an
odd number of such crossings.

identified a Z2 topological invariant, which is just the parity of the number of
modes crossing a constant energy line over half the surface Brillouin zone.

This argument leaves many things unresolved. It is not immediately obvi-
ous that the invariant defined this way is independent of the choice of surface
(it is – though the generalization to three dimensions is not). What is the bulk
definition of the invariant, and a bulk-boundary correspondence? Most im-
portantly, what are the physical consequences of a non-trivial Z2 topological
invariant?

8.10 Z2 Topological insulator in graphene

We now go back to our graphene model and show that we can realize the Z2
topological insulator there. We consider the possible mass terms that could
result if we drop our assumption of spin-rotational symmetry. Choosing a
spin quantization axis along z, there are two obvious terms:

H′ = m3σ
zτz + m4σ

zµzτz . (469)

Here the Pauli matrix σz acts on electron spin. These masses are obviously
not spin-rotationally invariant. How about under time-reversal and inver-
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sion? Under inversion or C2, we know that τz → −τz and µz → −µz , as this
exchanges sublattices and valleys. Inversion does nothing to spin, since it is a
pseudovector. Equivalently, a rotation around the z axis does not change σz .
This means that m3 is odd under I/C2 while m4 is invariant under I/C2.

Next consider time-reversal. Sublattices are not interchanged but valleys
are, so τz is invariant under TR while µz changes sign under it. Spin is of
course odd under TR, so σz change sign. We see that m3 is odd under TR while
m4 is invariant under it. All this may be a little confusing so you may want to
check Table 1 to see how each Pauli matrix transforms. Also shown in the last
three columns of the table are the transformations of the three mass terms
m2, m3, m4.

Symmetry τz µz σz µzτz (m2) σzτz (m3) µzσzτz (m4)
I/C2 -1 -1 1 1 -1 1
TR 1 -1 -1 -1 -1 1
SF 1 1 -1 1 -1 -1

Table 1: Transformation of the different diagonal Pauli matrices under
inversion/two-fold rotation (I/C2), time-reversal (TR), and spin-flip (SF). Here τz

denotes sublattice, µz denotes valley, and σz denotes spin. A 1 indicates the Pauli
matrix is invariant under this operation, while a −1 indicates that it is odd under
it.

Based on this table, we can discuss the nature of the new states created by
m3 and m4. We see that m3 breaks time-reversal symmetry, spin symmetry, and
inversion symmetry. These are the properties of an antiferromagnet. Indeed we
could have guessed this because it is just the same as making a CDW (mass m1)
for up spins and a CDW of opposite sign for down spins. Thus it corresponds
to spins up on the A sublattice and down on the B sublattice, or vice-versa,
depending upon the sign of m3.

From the table, we see that m4 breaks only the spin-flip symmetry. Actually
spin-flip symmetry is not a symmetry of nature. It is just a consequence of
neglecting spin-orbit coupling. In fact, the mass m4 is completely allowed for
graphene. This fact was recognized by Kane and Mele who included it and saw
that it generated what they called the quantum spin Hall effect. This actually
realizes precisely the situation of the previous subsection – a time-reversal
invariant topological insulator. We can see that this is the case because the
m4 mass has just the same form as in the Haldane model, if we look only at
one spin polarization. Together, it corresponds to two copies of a spin-less
Haldane model with opposite masses. So each spin corresponds to a Chern
number ±1, and this leads to one edge state for each spin, but with opposite
chirality for up and down spins. This is exactly the picture we envisioned
above.

This was the first (theoretical) discovery of a time-reversal invariant topo-
logical insulator. For graphene, however, it turns out that spin-orbit coupling
is extremely weak (it is estimated that m4 is of order micro-eV), so for all
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practical purposes the quantum spin Hall effect does not occur there. Still, we
now know it occurs in many other materials. It is detectable by the formation
of helical edge states, but we will not get into that here.
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