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Quantum Ising chain

H = ∑
i

− Jz Sz
i Sz

i+1 − hy Sy
i

Solitons = the simplest example 
of non-local excitations

Sz=1 excitations are soliton pairs and form a continuum



CoNb2O6

R. Coldea et al, Science 327, 117 (2010)
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CoNb2O6

R. Coldea et al, Science 327, 117 (2010)

Continuum splits into tower of 
weakly bound states, due to 
weak longitudinal field from 

neighboring chains

C. Morris et al, 2014



CoNb2O6

R. Coldea et al, Science 327, 117 (2010)

~5.5T

T. Liang et al, 2015



CoNb2O6

~5.5T

Surprising complex behavior in between!

L. Woodland et al, arXiv:2306.01948



A refined model

XY
Staggered anisotropy

M. Fava et al, 2020; L. Woodland et al, arXiv 2308.07699



A refined model

(These are fit from 
different experiments)

M. Fava et al, 2020; L. Woodland et al, arXiv 2308.07699

Smallness of perturbations implies we should be able to understand this!



The model works

I think this speaks 
for itself



The model works

I think this speaks 
for itself

But let’s try to 
understand it



One soliton
Start with one soliton:

Htf = −
h
2 ∑

j
(S+

j + S−
j )

Hopping amplitude h/2



One soliton
Start with one soliton:

Hyz =
Jλyz

2 ∑
j

(−1) j(S+
j + S−

j ) (Sz
j+1 − Sz

j−1)

Hopping amplitude J /2± λyz



One soliton
Start with one soliton:

Hxy =
JλS

2 ∑
j

(S+
j S−

j+1 + S−
j S+

j+1)

3 soliton state: high energy
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Hopping picture

h ± λyzJ
2

h ∓ λyzJ
2

Net effect

: localized solitons!h = λyzJ

Another view of a localized soliton



Back to experiment

This is around the 
flat band condition 

h = λyzJ



Two solitons
We expect that flat band solitons 

interact strongly when nearby.

Obeys a 2-particle Schrödinger equation



Two solitons

Exactly 
flat

Small XY 
coupling

Experimental 
XY coupling

Tuning away 
(approx)

Tuning away 
(full)

3 bound state modes 2 symmetric

1 antisymmetric

Band inversion



Full comparison

• 2 soliton states highly 
accurate


• Localized soliton 
approximation 
quantitative near 2.5T 
as expected


• Visible features of band 
inversion
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Quantum science
• $$:


• Microsoft Quantum: probably > $300M per year.


• Many others!



Quantum science
• People: 


• Compare arXiv “new” listings: 


• 172 CM vs 131 Quantum


• Experimentalists going to private sector


• Theorists mass movement to QI:


• Let’s look at UCSB faculty



Not QI



What is it good for?
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Application to quantum 
materials?

• Try to apply quantum algorithms to actual quantum 
problems


• For example: how would we obtain S(k, ) on a quantum 
computer?

ω

R. Dally et al, PRL (2020).



Possible approaches
• Direct time evolution? Q: Isn’t that what a quantum computer 

is good at?


• A: Maybe a special purpose simulator, but a digital 
quantum computer like google machines can’t.  They apply 
controlled 1 and 2 qubit gates


• You can Trotterize but this introduces substantial errors that 
can only be improved by scaling to many gates.


• Instead we will try to use a variational approach to obtain 
eigenstates.



VQE
• Variational quantum eigensolver:

Peruzzo et al, 2014

|Ψ({θi})⟩ = U({θi}) |Ψ0⟩

Evar = ⟨Ψ |H |Ψ⟩ ≥ E0

quantum 
circuit

measure

Ground state





SS VQE
• Subspace Search VQE: for excited states

|Ψn({θi})⟩ = U({θi}) |Ψn,0⟩
Choose N 
orthogonal 
initial states

⟨Ψn′￼|Ψn⟩ = ⟨Ψn′￼,0 |Ψn,0⟩

Evar = ∑
n

wn⟨Ψn |H |Ψn⟩ wn > 0

Just repeat the VQE with the same circuit on N initial 
orthogonal states and minimize (weighted) energy sum.

K. Nakanishi et al, 2019



Elementary excitations
• Transverse field Ising chain


• Excitations at J<<h:
| −i ⟩ = | + + ⋯ −i + ⋯ + ⟩

|k⟩ =
1

N ∑
i

eikxi | −i ⟩ Momentum eigenstates

ϵk = 2 h2 + J2 − 2hJ cos kExact energy

? Can we get this from (SS) VQE?



VQE for Ising chain
• Natural circuit: preserve translational symmetry

H1 H2

Example 
circuit



VQE for Ising chain



VQE for excited states?
| −i ⟩ = | + + ⋯ −i + ⋯ + ⟩

|k⟩ =
1

N ∑
i

eikxi | −i ⟩

ϵk = 2 h2 + J2 − 2hJ cos k

For J/h << 1

Issue: translation operator T cannot be generated with a 
finite depth circuit (depth proportional to L). 

c.f D. Gross et al, 2012
Amount of translation is a “topological index” for 1d 
quantum cellular automata



VQE Attempt 1
• Let’s not worry about it and just initialize a momentum state.


• Generate 


• Momentum conservation helps: k is conserved as is P = ⊗i Xi

|ψ0(k)⟩ =
1

N ∑
i

eikxi | −i ⟩

|ψ(k)⟩ = U({βi}) |ψ0(k)⟩



VQE Attempt 1
Simulations with QISkit

Works!



VQE attempt 2
• Make the system generate k state


• Trick 1: Parity conservation .P = ⊗i Xi

Ground state P=+1, k=0 |GS⟩ = U+ | + + ⋯ + ⟩

Excited state P=(-1)N, k=0 |k = 0⟩ = U− | − − ⋯ − ⟩
Generates quasiparticle state if N odd!

• In general this U depends on J/h (and is non-trivial 
even for J/h=0).



VQE attempt 2
• It works! |GS⟩ = U+ | + + ⋯ + ⟩

|k = 0⟩ = U− | − − ⋯ − ⟩

2.0

0.2

Δ



VQE attempt 2
• Generate other k values?


• Trick 2: for ideal single spin-flip state, can change k via 
local unitary 

|k⟩0 = Uk |k = 0⟩0 |k = 0⟩0 =
1

N ∑
i

| −i ⟩

• So we have a protocol

|k⟩ = Uint |k⟩0 = Uint Uk U0
− | − − ⋯ − ⟩



VQE attempt 2

This also works!



VQE attempt 3
• Can we work in real space instead of k space?

• What if we initialize to a localized excitation?

|x = 0⟩0 = | + + ⋯ −x=0 + ⋯ + ⟩ = Z0∏
i

| + ⟩i

• Evolved state

|x = 0⟩ =
1

N ∑
k

U |k⟩0 =
1

N ∑
k

|k⟩

• Since U is translationally invariant and parity 
conserving, we have 

|x = 0⟩ = U[{βi}] |x = 0⟩0



VQE attempt 3

• Variational energy
⟨x = 0 |H |x = 0⟩ =

1
N ∑

k,k′￼

⟨k′￼|H |k⟩ =
1
N ∑

k

⟨k |H |k⟩

★ Minimum is reached only if it is reached for each k state 
individually!

• Quantum parallelism!  Just running VQE on this 
single state encodes the entire band of excited 
states!



VQE attempt 3
• Variational energy of this state gives the mean 

energy of the band

With some work we can extract the entire band, but 
we’re still trying to make it efficient 

• Physically, we are generating 
the interacting analog of a 
Wannier state.

Ex=0 − EGS =
1
N ∑

k

ϵk

2.75

• We can also look at the state itself

⟨x
=

4|
X

| x
=

4⟩

2.0

Δ/h

“The quasiparticle”



Is a QC useful for us?

But maybe this.

I’m still not 
sure about 

this

$$


