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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 
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Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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values of ~10 Ω −1 cm−1 at 400 K, which is the highest temperature of 
our measurements. On the other hand, σxy obtained after the FC pro-
cedure in BFC || [0001] with I || [0110] is zero within our experimental 
accuracy at T >  50 K. In the low temperature phase below 50 K, |σxy| 
increases on cooling and reaches 140 Ω −1 cm−1 at 5 K, the lowest tem-
perature of our measurements. In the three FC procedures described 
above, the temperature dependence of the longitudinal resistivity 
ρ(B =  0) was also concomitantly obtained (Fig. 4a, inset). Both in-plane 
and out-of-plane components show saturation at T >  300 K, indicating 
the presence of strong inelastic scattering at high temperatures.

Conventionally, the Hall resistivity is described as ρH =  R0B +  Rsμ0M. 
Here, R0 and Rs are the ordinary and anomalous Hall coefficients, and 
μ0 is the permeability. To further examine the field and magnetization 
dependence of the AHE, we estimated the ordinary Hall contribution 
R0B by using the temperature dependent ρH and M/B for B || c 
(Extended Data Fig. 2, Methods). The obtained R0 =  3.0 ×  10−4 cm3 
C−1 indicates that R0B is negligibly small compared to the observed 
ρH. Plotting ρH versus M in Fig. 2e, we note that ρH for B || c has a 
normal M-linear AHE. Likewise, ρH for B || a–b also shows an M-linear 
AHE in field, Δ ρH =  Rsμ0M (broken lines). Clearly, however, the large 
hysteresis with a sharp sign change in ρH cannot be described by the 
simple linear term, indicating that there is another dominant contri-
bution to the AHE. If we label this additional term as ρH

AF, the Hall 
resistivity in Mn3Sn can be described by

= + + ( )ρ R B R μ M ρ 1H 0 s 0 H
AF

By subtracting R0B and Rsμ0M from ρH, we find that ρH
AF is nearly inde-

pendent of B or M, unlike what is found in FMs (Fig. 2f, Extended Data 
Fig. 3). With the reversal of a small applied field, ρH

AF changes sign,  
corresponding to the rotation of the staggered moments of the non- 
collinear spin structure10,12. Thus, the large AHE, ρH

AF, must have a dis-
tinct origin driven by the antiferromagnetic order.

In a magnetic conductor with relatively high resistivity, the AHE  
is dominated by contributions ∝ ρ2. Thus, it is useful to compare 
SH =  μ0Rs/ρ2 for Mn3Sn with those for various magnets (Extended  
Data Table 1, Methods)3. Normally for FMs such as Fe, Ni and MnSi, 
SH is known to be field-independent, and takes values of the order of 
0.01–0.1 V−1 (refs 3, 18, 19). Indeed, the field-induced M-linear con-
tribution of the AHE has a field-independent SH, which has the posi-
tive sign and the same order of magnitude as in FMs. On the other 
hand, one can also define SH for the spontaneous component at zero 
field as SH

0  =   ρH(B =   0)/[ρ2(B =   0)M(B =   0)] =   ρH
AF(B =   0)/

[ρ2(B =  0)M(B =  0)] +  SH. We find significantly large |SH
0 | ! |SH|, 

reaching 14 V−1 at 100 K and with a different sign from SH (Fig. 4b, 
Extended Data Table 1). This indicates that ρH

AF, which is the dominant 
part of the spontaneous component, has a different origin from the 
conventional AHE (Methods).

A large AHE in a non-collinear AFM was first theoretically predicted 
for Mn3Ir, which has a stacked kagome lattice of Mn atoms, similarly to 
Mn3Sn (ref. 7). Chen et al.7 considered that an AHE may be induced by 
breaking a symmetry of a single layer kagome lattice that has a triangular 
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FIG. 2. Magnetic torque measurements: (a) The home-made experimental setup and its photograph (top) with a capacitive
torque magnetometer, rotating the field in the xy-plane of the Mn3Sn sample. (b) The angle dependent torque responses for
magnetic fields up to 6 T. (c) The angle dependent torque responses for magnetic fields larger than 6 T. H k x corresponds
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(F (3,6) / H3cos6✓). A consistency check can be done
by comparing the magnitude of K6, the angle deriva-
tive and M2,6, the field derivative. At 13 T, K6 is 4700-
5600 Jm�3, implying F (3,6) ⇡ 0.34 ± 4 µeV/f.u. and
M2,6 is 0.8 mµB per f.u. corresponding to F (3,6) ⇡
0.20 µeV/f.u.. The di↵erence may result from the low-
order (< H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments are
given in Table I.

Let us now show that theory provides a satisfactory
account of the existence and the amplitude of K6 term as
well as the emergence and rapid growth of the secondary
K12 term with increasing magnetic field.

Following Liu and Balents [19], the energy per mag-
netic unit cell (six spins) consists of the sum of four terms
(See Fig.3b) [32], written in terms of spin vectors Si on
the three sublattices i = 1, 2, 3 (with 4 $ 1 identified).
These are Heisenberg: 4J

P
i Si · Si+1; Dzyaloshinskii-

Moriya (DM): 4D
P

i ẑ ·Si⇥Si+1; Single-ion-anisotropy
(SIA) : �2K

P
i(Si · êi)2; and Zeeman: �2µ

P
i H · Si.

For D > 0 and in absence of SIA and Zeeman terms, the
ground state is an anti-chiral state with in-plane spins.
A finite magnetic field will distort the spin triangles (See
Fig.3a) by some small amounts ⌘i from the ideal 120�

state. The distortion angles ⌘i are small, because in our

window of investigation (H < 14T), one has K ⌧ J
and µH ⌧ J . In the supplement[32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion
for the free energy and angles in the small parameters
K/J, µH/J ⌧ 1, which are indeed small in our experi-
mental window (H < 14T). This leads to an expression
for the free energy per unit cell (See the supplement[32]).

The first term is linear in magnetic field :

F (1,ab) =
KµH

J +
p
3D

(3)

The quadratic term [32] has slightly di↵erent expressions
for in-plane and out-of-plane orientations of magnetic
field is:

F (2,ab) =
(µH)2

2J
(1�

p
3D

J
)

F (2,c) =
(µH)2

2J
(1� Dp

3J
)

(4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic
field, in agreement with what is seen experimentally (See
Table I). For in-plane configuration, the first correction
to the quadratic term has a cos6✓ angle dependence. Its
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The magnetic free energy is usually quadratic in magnetic field and depends on the mutual ori-
entation of the magnetic field and the crystalline axes. Tiny in magnitude, this magnetocrystalline
anisotropy energy (MAE) is nevertheless indispensable for the existence of permanent magnets.
Here, we show that in Mn3Sn, a non-collinear antiferromagnet attracting much attention following
the discovery of its large anomalous Hall e↵ect, the free energy of spins has superquadratic compo-
nents, which drive the MAE. We experimentally demonstrate that the thermodynamic free energy
includes terms odd in magnetic field (F (H3)+F (H5)) and generating sixfold and twelve-fold angu-
lar oscillations in the torque response. We show that they are quantitatively explained by theory,
which can be used to quantify relevant energy scales (Heisenberg, Dzyaloshinskii-Moriya, Zeeman
and single-ion anisotropy) of the system. Based on the theory, we conclude that, in contrast with
common magnets, what drives the MAE in Mn3Sn is the field-induced deformation of the spin
texture.

Aligned spins located on two adjacent atoms are af-
fected by the anisotropic electrostatic forces connecting
their orbital angular momenta [1]. This magnetocrys-
talline anisotropy energy (MAE), a consequence of the
spin-orbit coupling, is remarkably small (⇠ 60µ eV/atom
in Co and ⇠ 1µ eV/atom in Fe and Ni). Since it is the
outcome of the competition between energies many or-
ders of magnitude larger, it is hard to calculate from first
principles [2, 3].

Mn3Sn, a noncollinear antiferromagnet with an inverse
triangle spin structure located on a breathing kagome
lattice [4] has attracted much attention following the
observation of a large anomalous Hall e↵ect(AHE) [5]
with a sizeable net Berry curvature near the Fermi
level [6]. The discovery was followed by the observation
of various counterparts of AHE, including the anoma-
lous Nernst [7, 8] and the anomalous thermal Hall ef-
fects [8–10], as well as the anomalous magneto-optical
Kerr e↵ect [11, 12]. These are room-temperature e↵ects
requiring a small magnetic field. Therefore, Mn3Sn is
potentially attractive in the field of antiferromagnetic
spintronics [13–16] or as a Nernst thermopile [7, 17].
The peculiar spin texture of Mn3Sn has been subject
of several studies [18–23]. The magnetic Hamiltonian
includes Heisenberg and Dzyloshinskii-Moriya spin-spin
interaction terms dominating by far the small single-ion
anisotropy term [19]. A study of torque magnetome-
try [24] quantified the latter. Previous experiments have
documented that magnetic domain walls are chiral [25]
and host a topological Hall e↵ect associated with a finite
skyrmionic number [26].

In this letter, combining experimental and theoretical
study of angular magnetization and torque magnetom-
etry, we have resolved di↵erent components (up to the
fifth order) of magnetic free energy in a kagome anti-
ferromagnet Mn3Sn, including two rare odd terms with

superquadratic field dependence and presenting sixfold
and twelvefold oscillations. Moreover, the quantitative
agreement between theory and torque magnetometry ex-
periments permit us to quantify all relevant energy scales
of spin interactions such as Heisenberg, Dzyaloshinskii-
Moriya, Zeeman and single-ion anisotropy.

Fig. 1 shows in-plane, Mab, and out-of-plane, Mc, mag-
netization. As shown in Fig. 1b-e. After subtracting the
linear background, we find an additional term quadratic
in magnetic field. We conclude that the magnetization
consists of at least three terms:

Mtotal = M0 +M1 +M2 +O(H3) ⇡ m0 + �H + CH2

(1)
The first two terms are the zero-field spontaneous weak
ferromagnetism and the linear paramagnetism respec-
tively resolved in previous studies [5]. The third term,
M2, was not detected in previous studies and repre-
sents a second-order correction to the magnetization re-
sponse [27–30]. Since the magnetization is the partial
derivative of the magnetic free energy with respect to
the magnetic field (M = @FM/@H), a finite M2 implies
an additional term for the magnetic free energy:

FM =
X

i

m0,iHi+
1

2

X

i,j

�i,jHiHj+
1

3

X

i,j,k

Ci,j,kHiHjHk.

(2)
Here, Ci,j,k is a 3 ⇥ 3 ⇥ 3 tensor, which represents

the second odd term in the field dependence of the free
energy.

The angular variation of these three terms was inves-
tigated by measuring magnetization at di↵erent angles,
using the set-up shown in Fig. 1f. Rotation was achieved
by changing the sharp angle of a quartz wedge held be-
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Here � gives the order parameter angle, and ⌘1, ⌘2 are small distortions of the triangle.
To be systematic, we introduce a small parameter r ⌧ 1, and let K ! Kr and H ! Hr, and then expand ⌘1,2

in a formal series in r and minimize the energy order by order in r. This is e↵ectively an expansion in K/J and
µH/J , which may safely be considered small parameters. There is a priori no need to assume D ⌧ J as a second
small parameter but since in reality it is small, it is sometimes convenient to simplify very cumbersome algebraic
expressions, and we will occasionally use it.
This procedure can be carried out at fixed �.
So assuming this condition, we can systematically write
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and expand the full energy order by order in r. We successively minimize terms beginning at O(r2) in the energy
over ⌘i,n which appear in these expressions. This determines the small distortions of the triangle at each order and
results in a fully determined expansion of the energy:
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These expressions are a bit complicated and rather ugly at higher orders. Higher order terms are negligible for the
e↵ects we discuss here.
The energy should now be minimized over the order parameter angle �. One can see that the third and second order

terms have di↵erent angular dependence, hence there is a competition between the two in determining this angle.
To proceed, we will assume that the second order term is dominant, being lower order. This is true unlessH becomes

very small, because the second order term’s angular dependence vanishes for H = 0. Comparing the coe�cient of
cos(� + ✓) from the second order term and the coe�cient of cos(6�) from the third order term, we see this implies
the condition

µH � K2/J. (S12)

When this is true, (and recall we assumed µH,K ⌧ J) the second order term is parametrically larger, so � must be
close (but not equal!) to the minimum of this term. Hence we can write � = �✓+ , and we expect  ⌧ 1. Therefore
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u.c. to second order in  (it is quadratic around its minimum) and E(3)

u.c. to first order in  , and minimize
over  . This leads to the final expression for the energy
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Component F (1,ab) F (1,c) F (2,ab) F (2,c) F (3,0) F (3,6) F (5,12) F (1.5,2)

Experimental responses Mab
0 Mc

0 Mab
1 Mc

1 Mab
2,0 Mab

2,6/K6 K12 K2

Experimental amplitude 1.7 0.11 21.4 27.9 0.37 0.067/0.115 0.018 0.028

TABLE I. Components of the magnetic free energy in Mn3Sn identified by measurements of magnetization (M0, M1 and M2)
and torque (K2, K6 and K12). Experimental amplitudes refer to what was measured at 13 T, expressed in units of µ eV/Mn.
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FIG. 3. Magneto-crystalline anisotropy driven by field-induced twist of non-aligned spins: (a) The magnetic field
distorts the spin triangle (in white), which is no more isomorphic to the lattice triangle (in gray). The deformation angles ⌘i
quantify the distortion. (b) Interaction between one spin and its immediate neighbors favor clockwise and anticlockwise twists.
The Zeeman e↵ect favors alignment of all spins with magnetic field. Single-ion anisotropy causes in-equivalency between the
two perpendicular orientations of the spin triangle with respect to the lattice triangle. (c) The lag angle  between the rotated
magnetic field and the total magnetization. (d) The experimental K6 and K12 (symbols) compared to theoretical expectation
(solid line) using µ = 3µB , J = 20.1meV , D/J = 0.18, K/J = 0.0065. (e) The deformation angles ⌘i and lag angle  at 3 T,
8 T and 13 T predicted by theory [32].

amplitude is equal to:

F (3,6) =
(K + µH)2((3J + 7

p
3D)K + 4

p
3DµH)

36(J +
p
3D)3

(5)

The term with highest exponent is H3. As one can see in
Fig. 3d, this expression provides an excellent account of
the field and angular dependence of the experimentally
observed K6. The next component has a sin2(6✓) angle
dependence and is equal to:

F (5,12) =
(K + µH)2

72(J +
p
3D)5µHK

((3J + 7
p
3D)K2+

2(J + 4
p
3D)µHK + 2

p
3D(µH)2)2

(6)

Here, the highest-order term is H5 and it accounts for
the emergence of K12 in the torque data and its field
dependence. (See Fig. 3d). The model also yields the
evolution of the deformation angles ⌘i and the lag angle  
with rotating magnetic field. They are plotted in Fig.3e.

The agreement between theory and experiment allows
us to extract the energy scales of the system. Taking

the magnetic moment of each Mn atom to be µ = 3 µB ,
as reported by neutron di↵raction studies [33, 34], we
extracted J , D, and K by fitting the torque data with
the angle derivative F (3,6) and F (5,12), as seen in Fig.3d.
The results are summarized in table II. Alternatively, one
can use the magnetization data and the field derivative
F (1,ab), F (2,ab) and F (2,c), the results are given in the sec-
ond row of table II. As seen in the table II, J = 20.1 meV,
which is somewhat larger than what is yielded by mag-
netization. There are several plausible sources for this.
One is the presence of additional ferromagnetic couplings
between spins of the same sublattice [21], which enhance
the magnetization but do not contribute to torque. A
second is field-induced out-of-plane spin canting [26] ne-
glected in the present model. A third possible source is
a finite orbital contribution [35–39] to the in-plane mag-
netization (See the supplement for details [32]). We note
that our result for J is fairly close to the what has been
reported by a study of magnon dispersion by inelastic
neutron scattering (18 meV) [21]. Finally, our study pins
down the values for K and D.

In summary, the magnetic free energy in Mn3Sn, in-
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We discuss the orientation of triangle-based antiferromagnets in an applied field.

The elementary unit of a triangle of spins is often
considered the building block of frustrated magnetism.
Three spins on such a triangle with antiferromagnetic
Heisenberg interactions enjoy, in the classical limit, an
O(3) rotational degeneracy of ground states in which the
spins lie in a plane at 120 degree angles to one another.
When a field is applied, the degeneracy enlarges from
this symmetry-mandated one to an accidental degeneracy
which includes both coplanar and non-coplanar states.
When such triangles are assembled into the canonical
triangular lattice, thermal and quantum fluctuations are
known to break this degeneracy in favor of the copla-
nar ones, a phenomena known as “order by disorder”.
Larger degeneracies are found when the triangles are
more weakly connected, as in the famous kagomé lat-
tice. There the Heisenberg degeneracy becomes exten-
sive, and ordering is strongly suppressed. Commonly
in real materials, weak symmetry breaking e↵ects such
as Dzyaloshinskii-Moriya (DM) coupling and single-ion
anisotropy (SIA) provide another degeneracy breaking
mechanism leading to a selection of three-sublattice or-
dered states.

In this Letter?, we study a very common situation
of three-sublattice order based on triangles in which the
Heisenberg O(3) symmetry of the Hamiltonian is weakly
broken by DM and SIA in favor of coplanar order in
zero applied field. We adopt a symmetry-based approach
based on order parameters, which is more universal than
microscopic models of specific exchange interactions, but
which incorporates a hierarchy of coupling strengths. In
particular, we assume that Heisenberg exchange J is the
largest scale, followed by DM with strength D and SIA
of strength K, i.e. J � D � K. This is inspired by the
breathing kagomé lattice materials Mn3Sn and Mn3Ge,
but is very typical for third row transition metal magnets.
We focus on the anti-chiral state (selected for D > 0, see
Eq. (5)), in which, proceeding clockwise around the tri-
angle, spins rotate counter-clockwise. Spins in the anti-
chiral state are nearly free to rotate globally (see below).

From this perspective, we consider the evolution of the
spin configurations in an applied field, and in particu-
lar how the spins rotate when the field is rotated within
the XY plane favored by DM coupling. We show that
there is an emergent low magnetic field scale H⇤ sepa-
rating two distinct behaviors. When the field is much
smaller than H⇤, the angle of a single spin within the
plane rotates in the opposite sense as the field, i.e. if
the field is oriented at an angle ✓ in this plane, each spin

rotates with angle �n = �(0)
n � ✓, where �(0)

n is an o↵-

set for each sublattice n. Conversely, when the field is
much larger than H⇤, the spins rotate in sync with the

field, i.e. �n = �(0)
n + ✓. These competing tendencies

result in abrupt and discontinuous changes in the spin
configurations, which form lines of first order transitions
in the plane of the magnetic field, terminating at second
order Ising critical points. We argue that features re-
cently observed in sensitive measurements of the angular
dependence of magnetization and torque in Mn3Sn are
precursors of these transitions, and that the transitions
should be observable in higher magnetic fields.
Symmetry and order parameters: We begin by present-

ing a derivation of the free energy as a function of spin
angle based on symmetry and the hierarchy of energy
scales. We assume at the outset that we have a mag-
netic system whose ordered structure is fully specified by
giving the orientation of a set of three spins on an ele-
mentary triangle. We further assume that the dominant
interactions between these three spins are antiferromag-
netic and isotropic,

H0 = J (S0 · S1 + S1 · S2 + S2 · S0) , (1)

with J > 0. This favors an ordered state in which the
three spins sum to zero, and have equal magnitudes of
their expectation values. Such states can be written as

hSni = Re
h
d e

2⇡in
3

i
, (2)

where d is a complex vector satisfying

d · d = 0. (3)

The last relation is required for the magnitude |hSni| to
be independent of n = 0, 1, 2. This is not a requirement,
but would be expected at low temperature classically.
In general, the order parameter can also be written in
terms of two orthogonal real vectors of equal magnitude,
d = u+ iv, where Eq. (3) implies |u|2 = |v|2, u · v = 0.
These two vectors u,v define a plane in which the spins
lie. From this one can define a third vector normal to the
plane, w = u⇥ v = 1

2 Im (d⇤ ⇥ d).
In the following, we use the assumption that perturba-

tions from the Heisenberg limit, i.e. DM, SIA, and ap-
plied field, are all small compared to J . Then deviations
from the above form are small and more importantly they
can be considered to be induced by the perturbations. In
the e↵ective field theory (or Landau) sense such devia-
tions correspond to massive modes or subdominant order
parameters, and can be integrated out order by order in
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Sn ! SP (n)

SO(3)

S3

2

the perturbations. This allows one to work with an e↵ec-
tive free energy which is a function of d only (satisfying
Eq. (3)), but in which the strength of perturbations may
enter non-linearly.

We construct this free energy based on symmetry and
the hierarchy of interactions. First, consider the sym-
metries in the isotropic limit where D = K = 0, i.e.
with the Hamiltonian in Eq. (1). There is in this case
a global SO(3) symmetry under Sn ! OSn, where O

is an arbitrary SO(3) matrix. From Eq. (2), this takes
d ! Od. Second, Eq. (1) has full S3 symmetry under ar-
bitrary permutations of the three spins. It is convenient
to regard the permutation symmetry as generated by a
Z3 cyclic permutation which takes Sn ! Sn+1 and a
Z2 permutation which exchanges S1 $ S2. Under these
two operations, respectively, we have d ! e2⇡i/3d and
d ! d⇤.

In zero magnetic field, the only non-zero invariant (us-
ing Eq. (3)) under all these symmetries is d⇤ · d, so the
zero field free energy in the isotropic limit is a function of
this quantity alone. This dependence can be regarded as
simply fixing the overall magnitude of the order parame-
ter, d⇤ · d = 2n2

0, where n0 is the size of a local moment.
While this may shift slightly as anisotropy and field are
turned on, the e↵ects can be absorbed in other terms,
and we can treat it, following the Landau logic, as fixed.

With this understanding, we now introduce the mag-
netic field h on the isotropic spins. It transforms in the
same was d under global SO(3) rotations, and is invari-
ant under all the permutations. Consequently, we find
that the purely field-induced terms in the free energy are
of the form

F iso
h = c1|h · d|2 + c2Re

h
(h · d)3

i
+O(h4). (4)

As is typical for an antiferromagnet, there is no linear
coupling of the field to the order parameter, but in this
case both quadratic and cubic terms occur.

The physical meaning of these terms is as follows. The
leading quadratic term selects configurations in which the
spins lie in a plane either normal to or containing the
field, for c1 > 0 and c1 < 0, respectively. Note that the
form in Eq. (2) only defines the antiferromagnetic compo-
nents of the spins (the primary order parameter), and not
the field-induced uniform moment. For the semi-classical
Heisenberg antiferromagnet on the triangular lattice, the
two types of orderings are classically degenerate (i.e. at
1/S = T = 0), but it is known that the coplanar config-
urations are favored by both thermal and quantum fluc-
tuations, which selects c1 < 0 (c1 ⇠ �1/(JS) at T = 0)1.
The cubic term selects an orientation of the spins within
this plane: when the sign of c2 is positive (negative),
one of the three spins lies anti-parallel (parallel) to the
field. According to Ref.1, for the triangular lattice the
preferred configuration of the former type, and c2 > 0
(c2 ⇠ 1/(J2S) in at T = 0). The same signs are found
for the classical kagomé lattice at non-zero temperature
due to thermal fluctuations (though the estimates dif-

fer quantitatively due to the higher degeneracy of the
kagomé case)2.
Now consider the e↵ects of DM and SIA, of the micro-

scopic form

H 0 =
X

n

h
Dẑ · Sn ⇥ Sn+1 �K (ên · Sn)

2
i
, (5)

where ên = (cos( 2⇡n3 ), sin( 2⇡n3 ), 0). These additional
terms lower the symmetry as follows. The DM interac-
tion D maintains a global SO(2)/U(1) subgroup of SO(3)
under rotations about the ẑ axis, under the Z3 cyclic per-
mutation of the spins, and under the spin-orbit coupled
C2 symmetry in which the Z2 spin permutation discussed
earlier is combined with the corresponding rotation in
spin space:

C2 : S0 ! O2S0 S1/2 ! O2S2/1, (6)

where O2 = diag(1,�1,�1). With the SIA term K, the
symmetry is further reduced, so that the global SO(2)
and Z3 operations are collapsed to a single C3 combined
rotation

C3 : Sn ! O3Sn+1, (7)

where O3 is the appropriate rotation matrix.3

To incorporate the symmetry-lowering e↵ects, it is con-
venient to adopt a new basis

d± =
1

2
(dx ± idy), (8)

and trade d for d+, d� and dz. Note that because d is
complex, d+ is not the conjugate of d� and is an inde-
pendent complex field. The symmetry operations in the
new basis become

SO(2) : d+ ! ei#d+, d� ! e�i#d�, dz ! dz,

Z3 : d+ ! e2⇡i/3d+, d� ! e2⇡i/3d�, dz ! e2⇡i/3dz,

Z2 : d+ ! d⇤�, d� ! d⇤+, dz ! d⇤z,

C3 : d+ ! e4⇡i/3d+, d� ! d�, dz ! e2⇡i/3dz,

C2 : d+ ! d⇤+, d� ! d⇤�, dz ! �d⇤z,

T : d+ ! �d+, d� ! �d�, dz ! �dz.
(9)

To summarize, the DM term is invariant under SO(2),
Z3, C2 and T . The K term is invariant under C3,C2 and
T . It is also useful to note that under Z2, D ! �D (but
Z2 does not act simply upon K).
Using the above symmetries, and using the constraint

Eq. (3) and the condition that d⇤ · d = 2n2
0, the most

general, non-constant free energy terms at zero field and
quadratic in d are

F2 =s1
�
d⇤+d+ � d⇤�d�

�

+ s2
�
d⇤zdz � 2d⇤+d+ � 2d⇤�d�

�
+ s3Re

�
d2�

�
. (10)

Selects plane
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d = u+ iv

Selects angle in plane
<latexit sha1_base64="ORDMuF32tAPOM8JxMwRw4ZQFjv0=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxInfGoIUF0cYSEw9I4EL2lj3YsLt32d0zIRf8C7ba2xlb/4utv8QFrhDwJZO8vDeTmXlhwpk2rvvtFNbWNza3itulnd29/YPy4VFTx6ki1Ccxj1U7xJpyJqlvmOG0nSiKRchpKxzdTf3WE1WaxfLRjBMaCDyQLGIEGyv5pOfduL1yxa26M6BV4uWkAjkavfJPtx+TVFBpCMdadzw3MUGGlWGE00mpm2qaYDLCA9qxVGJBdZDNjp2gM6v0URQrW9Kgmfp3IsNC67EIbafAZqiXvan4n9dJTXQdZEwmqaGSzBdFKUcmRtPPUZ8pSgwfW4KJYvZWRIZYYWJsPgtbQjEp2VC85QhWSfOi6tWq3sNlpX6bx1OEEziFc/DgCupwDw3wgQCDF3iFN+fZeXc+nM95a8HJZ45hAc7XLxpZlLc=</latexit>

c1 < 0
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Anti-chiral state

counter-clockwise rigid rotation = clockwise spin rotation

Favored by D>0
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A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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How do the jumps onset?

3

A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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isotropic system, which is dictated by the cubic coupling
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There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
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general result for the angle-dependent free energy of the
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Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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of the discontinuities for x > xc. Some algebra gives

g̃( , �) = g( � ⇡
6 � �, ✓) (21)

= � cos + x cos 6� cos 3 + x sin 6� sin 3 .

We see that at � = 0, g̃( , 0) is an even function of  . In
fact, the even-ness of this function reflects a symmetry
� ! ⇡/3 � �, which is a C2 symmetry of the Hamilto-
nian when the field angle ✓ = ⇡/6. Hence g̃( , �) can be
regarded as a Landau function, with a minima at  = 0
for x < xc = 1/9, which bifurcates for x > xc into two
degenerate minima at  = ± 0. This is an Ising phase
transition. The deviation � of the field angle plays the
role of a symmetry-breaking field on the Ising order pa-
rameter, and the discontinuities in ✓ are analogous to
the first order transition that occurs within the ordered
phase of the Ising model on changing the sign of the field.

This analysis determines a critical field hc = 1
3

p
u
v .

Following the analogy with the Ising model, one observes
within this mean field picture that at the critical field,
the angle  ⇠ �|!|1/3sign(!) for small variations of the
field angle near ⇡/6. This is analogous to the non-linear
susceptibility of the Ising ferromagnet at criticality. A
priori thermal fluctuations will renormalize this exponent
to that of the 3d Ising model – there we have  ⇠ |!|1/�
and the true value is approximately � ⇡ 4.8.

Clearly for small x, the minima must be close to � =
�✓, so define  = �+ ✓. Then

g̃( , ✓) = g( � ✓, ✓) = cos + x cos(3 � 6✓). (22)

This form clarifies the six-fold periodicity of the problem
with respect to the angle of the field ✓. It is instructive
to consider two special values of ✓. First, for ✓ = 0, we
have

g̃( , 0) = cos + x cos 3 . (23)

This is obviously maximized uniquely at  = 0. So we
know that  (0, x) = 0. Next consider ✓ = ⇡/6. Then
obviously

g̃( , ⇡
6 ) = cos � x cos 3 . (24)

Here it is clear that while the minimum is at  = 0
for small x, there is a bifurcation at the point where
the curvature at  = 0 changes sign, i.e. for x > 1/9,
there are two degenerate minima with equal and opposite
 = ± 0.
The two special angles ✓ = 0, ✓ = ⇡/6 correspond to

di↵erent in-plane C2 axes, I think. By doing a rotation,
we obtain an equivalent axis with ✓ = ⇡/2, which may be
easier to visualize. This is an axis which is perpendicular
to the easy axis of a single spin I believe. For a field
along this direction, the Hamiltonian in a field retains
this C2 symmetry, but it is spontaneously broken for x >
1/9. When ✓ is varied through e.g. ⇡/6, away from the
special value the C2 symmetry is explicitly broken by
the field, and the two equivalent minima are biased, so
that one has lower energy. The lower energy minimum
“switches” as ✓ passes through ⇡/6. Consequently,  
jumps from � 0 to + 0 discontinuously. This is a first
order transition, analogous to changing the sign of the
field in an Ising ferromagnet when the system is below
the critical temperature. Here ✓ � ⇡/6 plays the role
of the field, while 1/9 � x plays the role of T � Tc in
the Ising model. This analysis determines a critical field
hc =

1
3

p
u
v .

We can see slightly more analytical structure by writ-
ing ✓ = ⇡/6 + !, which gives

g̃( , ⇡
6 + !) = cos � x (cos 6! cos 3 + sin 6! sin 3 ) .

(25)
From here we can see that the energy has the property
that it is invariant under simultaneous change of sign of
! and  . Consequently, the curve  (✓) is odd under re-
flection around ✓ = ⇡/6. Following the analogy with the
Ising model, one observes within this mean field picture
that at the critical field, the angle  ⇠ �|!|1/3sign(!)
for small variations of the field angle near ⇡/6. This is
analogous to the non-linear susceptibility of the Ising fer-
romagnet at criticality. A priori thermal fluctuations will
renormalize this exponent to that of the 3d Ising model
– there we have  ⇠ |!|1/� and the true value is approx-
imately � ⇡ 4.8. To observe the transition graphically,
we plot the dependence  (✓) (or plot �(✓)?) for di↵erent
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Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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Ising transition 

at x=1/9
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� acts as symmetry breaking field
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What symmetry is broken along the lines?



Mn3Sn structure
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FIG. 2. Magnetic torque measurements: (a) The home-made experimental setup and its photograph (top) with a capacitive
torque magnetometer, rotating the field in the xy-plane of the Mn3Sn sample. (b) The angle dependent torque responses for
magnetic fields up to 6 T. (c) The angle dependent torque responses for magnetic fields larger than 6 T. H k x corresponds
to 0�. (d) Fit to the 13 T data with an expression, which has only a two-fold and a six-fold term (⌧ = K2 · sin(2 · (� +
�2)) +K6 · sin(6 · (�+ �6))). The mismatch is obvious. (e) The residual torque component after subtracting the data and the
previous fit. It shows a clear twelve-fold symmetry. (f) A fit which includes an additional twelve-fold symmetry component
(K12 · sin(12 · (�+ �12))). (g) Fitting parameters K2(H), K6(H) and K12(H) as a function of magnetic field.

(F (3,6) / H3cos6✓). A consistency check can be done
by comparing the magnitude of K6, the angle deriva-
tive and M2,6, the field derivative. At 13 T, K6 is 4700-
5600 Jm�3, implying F (3,6) ⇡ 0.34 ± 4 µeV/f.u. and
M2,6 is 0.8 mµB per f.u. corresponding to F (3,6) ⇡
0.20 µeV/f.u.. The di↵erence may result from the low-
order (< H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments are
given in Table I.

Let us now show that theory provides a satisfactory
account of the existence and the amplitude of K6 term as
well as the emergence and rapid growth of the secondary
K12 term with increasing magnetic field.

Following Liu and Balents [19], the energy per mag-
netic unit cell (six spins) consists of the sum of four terms
(See Fig.3b) [32], written in terms of spin vectors Si on
the three sublattices i = 1, 2, 3 (with 4 $ 1 identified).
These are Heisenberg: 4J

P
i Si · Si+1; Dzyaloshinskii-

Moriya (DM): 4D
P

i ẑ ·Si⇥Si+1; Single-ion-anisotropy
(SIA) : �2K

P
i(Si · êi)2; and Zeeman: �2µ

P
i H · Si.

For D > 0 and in absence of SIA and Zeeman terms, the
ground state is an anti-chiral state with in-plane spins.
A finite magnetic field will distort the spin triangles (See
Fig.3a) by some small amounts ⌘i from the ideal 120�

state. The distortion angles ⌘i are small, because in our

window of investigation (H < 14T), one has K ⌧ J
and µH ⌧ J . In the supplement[32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion
for the free energy and angles in the small parameters
K/J, µH/J ⌧ 1, which are indeed small in our experi-
mental window (H < 14T). This leads to an expression
for the free energy per unit cell (See the supplement[32]).

The first term is linear in magnetic field :

F (1,ab) =
KµH

J +
p
3D

(3)

The quadratic term [32] has slightly di↵erent expressions
for in-plane and out-of-plane orientations of magnetic
field is:

F (2,ab) =
(µH)2

2J
(1�

p
3D

J
)

F (2,c) =
(µH)2

2J
(1� Dp

3J
)

(4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic
field, in agreement with what is seen experimentally (See
Table I). For in-plane configuration, the first correction
to the quadratic term has a cos6✓ angle dependence. Its
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⌧ =
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Discontinuities for h>hc

θ

τ



Estimate
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(a)  (b) ⌧

FIG. 1: Variation of angle  and torque ⌧ versus field angle for di↵erent values of x. Here the di↵erent curves
correspond to x = 0.5, 0.6, · · · , 1.5.

(a)  (b) ⌧

FIG. 2: Variation of angle  and torque ⌧ versus field angle for the critical value x = 1/9.

values of x over a single period 0 < ✓ < ⇡/3. Knowing  ,
we can of course obtain also the torque ⌧ = df/d✓. Here
the derivative should be taken at the minimum with re-
spect to �. Because df/� = 0 at the minimum, one finds
⌧ = �uh @

@✓ g̃( (✓), ✓) = 6uh sin(3 (✓) � 6✓). This is
plotted in column (b) of the figures. The shape of ⌧(✓)
is visually extremely similar to that of  (✓).

The transition should be detectable in various ways.
The free energy is determined from the minimum of f+
over �, which for h > hc has a slope discontinuity at
✓ = ⇡/6. Consequently the torque, which is the deriva-
tive of the free energy with respect to theta, has a discon-
tinuity. In practice, the first order nature of the transi-
tion with respect to angle means that in a narrow angular
range around this value, coexistence of two states can oc-
cur, manifesting as the appearance of domains, hystere-
sis, etc. It may also be disrupted by strains, which break
rotational symmetry and might a↵ect the transition. It
is interesting to point out that a very similar phenomena
has already been observed in CeAlGe, in which the spon-
taneous formation of domains was argued to give rise to

a sharp peak in the resistance versus angle, dubbed sin-
gular angular magneto-resistance. It would be very inter-
esting to study the angular dependence of the resistance
in Mn3Sn in an appropriate range.
From the calculations in the Supplemental Material

of our paper, we can compare directly to Eq. (18), and
extract the parameters of the symmetry based theory in
terms of microscopics. In the classical zero temperature
model, one obtains thereby

u =
K

J +
p
3D

, v =
D

3
p
3(J +

p
3D)3

. (26)

This leads to the critical field, restoring units

Hc =
J +

p
3D

gµB

r
K

D
. (27)

Taking D = 0.2J , K = .006J , J = 20meV and g = 3
yields Hc ⇡ 20T . This is of course to be renormalized by
thermal and quantum fluctuations, but gives an idea of
the order of magnitude. It strongly suggests the transi-
tion should be within range of current experiments.

1 A. Chubukov and D. Golosov, Journal of Physics: Con-
densed Matter 3, 69 (1991).

2 M. Gvozdikova, P. Melchy, and M. Zhitomirsky, Journal of
Physics: Condensed Matter 23, 164209 (2011).

3 Explicitly O3 =

0

@
cos 2⇡

3 sin 2⇡
3 0

� sin 2⇡
3 cos 2⇡

3 0
0 0 1

1

A.

Classical, T=0
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Would be interesting to search for 
transport signatures in Mn3Sn



Thermal Hall effect
• Motivation: a probe of exotic phases.  In 

insulators, “must” come from electrons

T1

T2
H =

⇡ck2
B
T

6~
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a universal prediction for chiral 
“Ising anyon” phase: agnostic to 

microscopic spin interactions

Ix = H�Ty
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Phonons
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Two types of effects

• Phonons are good quasiparticles


• Non-dissipative effects: 
modifications of intrinsic dynamics 
of individual quasiparticles, e.g. 
Berry phase effects, etc.


• Dissipative effects: modifications 
of scattering of quasiparticles
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Dtp = �[p]

Convective derivative.  Dynamics.

Collision term

Phonon Boltzmann 
equation



Dissipative effects
• Basically, this is “skew scattering” of phonons


• We ask how this arises through coupling to electronic degrees 
of freedom


• Transition matrix in full many-body space of phonons+electrons:
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We study the coupling of phonons to any general degree of freedom and its consequences on the
thermal conductivity of phonons.

I. INTRODUCTION

Introduction.—Two-point correlation functions are
ubiquitous in the study of condensed matter systems.
They are often the building blocks of response functions
in scattering and other experiments and appear in Feyn-
man diagrams, as well as Monte Carlo simulations. They
are the central elements of linear response theory, as is
evident from Kubo’s formula [1, 2]. They are often inde-
pendent of the arbitrary phase choice of the wave func-
tion.

Higher order correlation functions have witnessed re-
newed interest recently due to their relevance to the the-
ory of measurement of chaos. A particular type of four-
point correlation function, the “out-of-time-ordered” cor-
relator, has been shown to be related to the Lyapunov
exponent, which measures the rate at which the re-
sult of a measurement diverges after a weak initial
perturbation[3]. From a statistical point of view, higher
order correlation functions measure the non-Gaussianity
of the distribution of an observable. The more strongly
correlated a state is, i.e. the more it deviates from a
free-particle description, the more significant the non-
Gaussianity. Hence multi-point functions are essential
harbingers of strong correlations.

Such correlation functions may appear in the experi-
mental context, for example in Born approximations, be-
yond linear order. When the first order Born contribu-
tion vanishes or is subdominant in a response measure-
ment, the latter provides a relatively rare window into a
complex quantity. This is the case for example in scat-
tering measurements at resonance, such as RIXS [4, 5],
but also when symmetries enforce a vanishing first order
contribution. This occurs in the theory of the thermal
Hall conductivity of phonons [6], a fact which is a central
thread in this paper.

Here we study the thermal conductivity due to
phonons coupled to another degree of freedom, for exam-
ple an electronic or magnetic one. We make no assump-
tions about the nature of the electronic or magnetic state,
and express our results in terms of the correlations of the
local observable – e.g. an order parameter – coupled to
the phonons. As discussed above, when the electronic
or magnetic system is strongly correlated, it does not
admit a quasiparticle description, and non-Gaussianity
is significant. Our treatment rests upon the fact that

the phonons, by contrast, are always good quasiparti-
cles, and hence can be treated by a Boltzmann equation.
We develop the Boltzmann description here using Fermi’s
golden rule and the first and second Born approximations
for the transition probabilities between initial and final
states of the joint observable-and-phonon system. These
resulting collision terms can be expressed through multi-
point correlation functions of the observable. By solving
the Boltzmann equation, we find that the longitudinal
conductivity due to phonons coupled to an external or-
der parameter involves two-point correlation functions,
while the Hall conductivity involves a minimum of four.
In light of several experimental and theoretical stud-

ies [7–10] which highlight the major role of phonons in
the thermal transport in magnetic systems, we apply our
results to two spin Hamiltonians. The first is meant to
describe the physics of the magnetically ordered system,
La2CuO4, while in the second example we apply our for-
malism to a spinon Fermi surface quantum spin liquid
[11].

II. SETUP

Setup.— The quasiparticle nature of phonons justifies
treating their dynamics within the Boltzmann equation,

@tNnk + vnk ·rrNnk = Cnk[{Nn0k0}], (1)

where Nnk(ip) = hip|a†nkank|ipi is the number of (n,k)
phonons (k is the phonon momentum and n an extra
phonon label) in the |ipi state and Nnk =

P
ip
Nnk(ip) is

the average population, and vnk = rk!nk, with !nk the
dispersion of phonons, is the group velocity of phonons.
C is the “collision integral,” which captures in particu-
lar the scattering of phonons with other degrees of free-
dom. Here, the interactions we consider will come from
an interaction Hamiltonian H 0, considered to be a per-
turbation to both the phonon Hamiltonian and that of
the degree of freedom, call it O, coupled to them. In
turn, using Born’s approximation, we have the following
perturbative expansion of the scattering matrix:

Ti!f = Tfi = hf|H 0|ii+
X

n

hf|H 0|nihn|H 0|ii
Ei � En + i⌘

+· · · , (2)

where the |i, f, ni states are product states in the O (in-
dex s) and phonon (index p) Hilbert space, |gi = |gsi|gpiImportant point: 1st order term is Hermitian, so 1st 

order T-matrix is effectively time-reversal invariant 


∎ No Hall effect at leading order.



From T-matrix to collision term

• Coupling Hamiltonian


• Full transition rate


• Phonon transition rate


• Master equation 

In this way we can construct Cnk for any “spin” subsystem
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We study the coupling of phonons to any general degree of freedom and its consequences on the
thermal conductivity of phonons.

I. INTRODUCTION

Introduction.—Two-point correlation functions are
ubiquitous in the study of condensed matter systems.
They are often the building blocks of response functions
in scattering and other experiments and appear in Feyn-
man diagrams, as well as Monte Carlo simulations. They
are the central elements of linear response theory, as is
evident from Kubo’s formula [1, 2]. They are often inde-
pendent of the arbitrary phase choice of the wave func-
tion.

Higher order correlation functions have witnessed re-
newed interest recently. They arise theoretically in the
measurement of chaos. A particular type of four-point
correlation function, the “out-of-time-ordered” correla-
tor, has been shown to be related to the Lyapunov
exponent, which measures the rate at which the re-
sult of a measurement diverges after a weak initial
perturbation[3]. Multi-point correlations also naturally
describe non-linear response, e.g. in non-linear optics
such as second harmonic generation, and in “multi-
dimensional spectroscopy”[4] [more refs] . They may
also arise in scattering measurements at resonance, such
as RIXS [5, 6]. From a statistical point of view, higher
order correlation functions measure the non-Gaussianity
of the distribution of an observable. The more strongly
correlated a state is, i.e. the more it deviates from a
free-particle description, the more significant the non-
Gaussianity. Hence multi-point functions are essential
harbingers of strong correlations.

Here we study the thermal conductivity due to

phonons coupled to another degree of freedom, for exam-
ple an electronic or magnetic one, and express our results
in terms of the correlations of the local observable – e.g.
an order parameter Q– coupled to the phonons, e.g.

H 0 =
X

nk

⇣
a†
nkQ

†
nk + a

nkQnk

⌘
, (1)

for the simplest case of linear coupling to phonons. Then
we find that the leading diagonal scattering rate is

Dnk = �1

~

Z
dte�i!nkt

D
[Qnk(t), Q

†
nk(0)]

E

�

+D0
nk, (2)

where D0 includes both higher order terms and contri-
butions from other mechanisms such as scattering from
impurities. [Note: I would like to redefine the sign of
Dnk so that it is positive!] This controls the symmetric
(dissipative) part of the thermal conductivity, which to
the same leading order is

µ⌫

L
=

~2
kBT 2

1

V

X

nk

!2

nk

4Dnk sinh
2(�!nk/2)

vµ
nkv

⌫

nk. (3)

By contrast, the thermal Hall conductivity is antisym-
metric, and hence completely controlled by o↵-diagonal
scattering, and of fourth order. All second order contri-
butions necessarily give a vanishing contribution due to
detailed balance(Ref. [7], and see Sec. ??). We define two
four-time correlation functions,

WH,++

nkn0k0(t, t1, t2) = sign(t1)
D
[Qn0k0(t� t1), Qnk(t+ t1)]{Q†

n0k0(�t2), Q
†
nk(t2)}

E
,

WH,+�
nkn0k0(t, t1, t2) = sign(t1)

D
[Q†

n0k0(t� t1), Qnk(t+ t1)]{Qn0k0(�t2), Q
†
nk(t2)}

E
, (4)

reflecting particle-particle and particle-hole type processes. Note the combination of commutator [, ] and anti-
commutator {, } in Eq. (4), which imposes the subtle structure that extracts the part of the correlations responsible
for a Hall e↵ect. Proper Fourier transformation converts these into rates

WH,++

nkn0k0 = 2Re
h
fWH,++

nkn0k0(!nk + !n0k0 ,!nk � !n0k0 ,�!nk + !n0k0)
i
,

WH,+�
nkn0k0 = 2Re

h
fWH,+�

nkn0k0(!nk � !n0k0 ,!nk + !n0k0 ,�!nk � !n0k0)
i
. (5)

“S
pi

n”

Can be anything non-
phononic, e.g. electronic



Scattering rates

O(Q2)

O(Q4)

commutator anti-commutator

Anti-detailed balance



Thermal Hall effect
Anti-symmetric part 



Thermal Hall effect
Anti-symmetric part 

Basic idea
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Thermal Hall effect
Conductivity versus resistivity

Sensitive to all ordinary 
scattering mechanisms.  

Very non-universal

Only sensitive to skew 
scattering.  A better 

quantity to study.

Indeed follows from our formulae
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Many-body skew scattering

What good is it?
• In principle, this can be applied for any Q, 

could be e.g. quantum critical field etc.

• Can be used to analyze symmetries, ala 

Onsager

• That said, it is very hard to calculate such real-

time correlation functions…maybe with a 
quantum simulator?



Application to an 
antiferromagnet

For concreteness, 
2d, layered 

Spin waves

Collective field



Application to an 
antiferromagnet

For concreteness, 
2d, layered 

Spin waves

Collective field

Negligible phase space



Application to an 
antiferromagnet

For concreteness, 
2d, layered 

Spin waves

Collective field

Negligible phase space Structure hidden here



General result
• Diagonal scattering rate:

• Skew scattering rate:

Could be applied to any magnet



Continuum magnons
H

Hamiltonian

Spin-lattice coupling
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Hs�l =

Solve NLSM constraints, expand around canted state
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Hs�l



Continuum magnons
H

Hamiltonian

Spin-lattice coupling

<latexit sha1_base64="adZFnOOIbZqWdh5N9TandV/9vRM=">AAACEXicbVDLSsNAFJ34rPUVdSO4GSyCG0siom6EopsuK9gHNCFMppN26MwkzEyEEuJP+Atude9O3PoFbv0SJ20XtvXAhcM593LvPWHCqNKO820tLa+srq2XNsqbW9s7u/befkvFqcSkiWMWy06IFGFUkKammpFOIgniISPtcHhX+O1HIhWNxYMeJcTnqC9oRDHSRgrsQ48jPcCIZfU8yDzJoTpjObyBgV1xqs4YcJG4U1IBUzQC+8frxTjlRGjMkFJd10m0nyGpKWYkL3upIgnCQ9QnXUMF4kT52fiDHJ4YpQejWJoSGo7VvxMZ4kqNeGg6i3vVvFeI/3ndVEfXfkZFkmoi8GRRlDKoY1jEAXtUEqzZyBCEJTW3QjxAEmFtQpvZEvK8bEJx5yNYJK3zqntZde8vKrXbaTwlcASOwSlwwRWogTpogCbA4Am8gFfwZj1b79aH9TlpXbKmMwdgBtbXL0z7nPg=</latexit>

Hs�l =

Solve NLSM constraints, expand around canted state

<latexit sha1_base64="ZMGBY6vpmCYZjJDHvc9Gyh9PET8=">AAACDnicbVDLSsNAFJ34rPUVFVduBovgxpKIqMuimy4r2Ac0IUymk3bozCTMTIQS8g/+glvduxO3/oJbv8RJm4VtPXDhcM693MMJE0aVdpxva2V1bX1js7JV3d7Z3du3Dw47Kk4lJm0cs1j2QqQIo4K0NdWM9BJJEA8Z6Ybj+8LvPhGpaCwe9SQhPkdDQSOKkTZSYB97HOkRRixr5kHmSQ7VBcsDu+bUnSngMnFLUgMlWoH94w1inHIiNGZIqb7rJNrPkNQUM5JXvVSRBOExGpK+oQJxovxsGj+HZ0YZwCiWZoSGU/XvRYa4UhMems0irFr0CvE/r5/q6NbPqEhSTQSePYpSBnUMiy7ggEqCNZsYgrCkJivEIyQR1qaxuS8hz6umFHexgmXSuay713X34arWuCvrqYATcArOgQtuQAM0QQu0AQYZeAGv4M16tt6tD+tztrpilTdHYA7W1y/+yZxd</latexit>

Hs�l n.b.
m m
n n
m n

Effective TRS breaking



Scaling
• B coefficients: 

<latexit sha1_base64="QHEOay3y96yUTb29FDsvK+Jt54c=">AAACJ3icbZDLSsNAFIYnXmu9RV26GSyCq5KIqMtSN+6s0Bs0IUym03bITBJmJoUS8ha+hK/gVvfuRJf6JE7SLGzrDwMf/zmHc+b3Y0alsqwvY219Y3Nru7JT3d3bPzg0j467MkoEJh0csUj0fSQJoyHpKKoY6ceCIO4z0vODu7zemxIhaRS21SwmLkfjkI4oRkpbnll3HjgZI0dSDp0oR1jw1EsdwWE8yWAwdwKvCdueWbPqViG4CnYJNVCq5Zk/zjDCCSehwgxJObCtWLkpEopiRrKqk0gSIxygMRloDBEn0k2Lf2XwXDtDOIqEfqGChft3IkVcyhn3dSdHaiKXa7n5X22QqNGtm9IwThQJ8XzRKGFQRTAPCQ6pIFixmQaEBdW3QjxBAmGlo1zY4vOsqkOxlyNYhe5l3b6u249XtUazjKcCTsEZuAA2uAENcA9aoAMweAIv4BW8Gc/Gu/FhfM5b14xy5gQsyPj+BYY8pWc=</latexit>

⌦ ⇠ ! ⇠ vphk ⇠ kBT

smallness: ions 
are heavy.

Antiferromagnet: order-parameter 
(n) has strongest correlations

• Diagonal scattering rate:

~ Td+2, Td, Td-2 ?



Scaling
• B coefficients: 

<latexit sha1_base64="QHEOay3y96yUTb29FDsvK+Jt54c=">AAACJ3icbZDLSsNAFIYnXmu9RV26GSyCq5KIqMtSN+6s0Bs0IUym03bITBJmJoUS8ha+hK/gVvfuRJf6JE7SLGzrDwMf/zmHc+b3Y0alsqwvY219Y3Nru7JT3d3bPzg0j467MkoEJh0csUj0fSQJoyHpKKoY6ceCIO4z0vODu7zemxIhaRS21SwmLkfjkI4oRkpbnll3HjgZI0dSDp0oR1jw1EsdwWE8yWAwdwKvCdueWbPqViG4CnYJNVCq5Zk/zjDCCSehwgxJObCtWLkpEopiRrKqk0gSIxygMRloDBEn0k2Lf2XwXDtDOIqEfqGChft3IkVcyhn3dSdHaiKXa7n5X22QqNGtm9IwThQJ8XzRKGFQRTAPCQ6pIFixmQaEBdW3QjxBAmGlo1zY4vOsqkOxlyNYhe5l3b6u249XtUazjKcCTsEZuAA2uAENcA9aoAMweAIv4BW8Gc/Gu/FhfM5b14xy5gQsyPj+BYY8pWc=</latexit>

⌦ ⇠ ! ⇠ vphk ⇠ kBT

smallness: ions 
are heavy.

Antiferromagnet: order-parameter 
(n) has strongest correlations

• Diagonal scattering rate:

~ Td+2, Td, Td-2 



Scaling: Hall

<latexit sha1_base64="Z7hMFnIjmunWeIqPsyF99uhLLiM=">AAACKnicbVDLTgIxFO3gC/E16tJNIzFxI5lRoi4JblxiwithgHRKBxrazqTtmJDJfIc/4S+41b074s74IXaAhYAnaXLuOffm3h4/YlRpx5lauY3Nre2d/G5hb//g8Mg+PmmqMJaYNHDIQtn2kSKMCtLQVDPSjiRB3Gek5Y8fMr/1TKSioajrSUS6HA0FDShG2kh92/U40qNAonHSSnuJF3IqYpVCT1EO671kcHVjiqwHI5ZU0165bxedkjMDXCfughTBArW+/e0NQhxzIjRmSKmO60S6myCpKWYkLXixIhHCYzQkHUMF4kR1k9nXUnhhlAEMQmme0HCm/p1IEFdqwn3TmR2pVr1M/M/rxDq47yZURLEmAs8XBTGDOoRZTnBAJcGaTQxBWFJzK8QjJBHWJs2lLT5PCyYUdzWCddK8Lrm3JfepXKxUF/HkwRk4B5fABXegAh5BDTQABi/gDbyDD+vV+rSm1te8NWctZk7BEqyfXy8up/w=</latexit>

W ⇠ T d�3B4

This gives Hall resistivity:

From the formula:

Effective TRS breaking: one factor of m-n coupling:



Check: numerical calculation
Many parameters: loosely inspired by Copper 

Deuteroformate Tetradeuterate (CFTD)   

Good match of 
magnon and phonon 

phase space



Diagonal conductivity

One can see Heisenberg regimes, 
anisotropic regime, extrinsic regime



Skew scattering
Cut through the skew scattering rate:

A very complex object, lots of phase space features



Thermal Hall resistivity

Observe T4 behavior 
(Heisenberg regime)

Larger effect with current 
perpendicular to plane, 
even though we took 
the magnetism strictly 
2d (magnons do not 

propagate in z direction)

<latexit sha1_base64="EG/ckcqthqEbP2pl9BI43s+PoCU=">AAACEnicbVDLSsNAFJ3UV62vqCtxM1gEN5ZERN0IRTcuK9gHNDHcTCft0MmDmUmhhOBP+Atude9O3PoDbv0Sp4+FbT1w4XDOvdx7j59wJpVlfRuFpeWV1bXiemljc2t7x9zda8g4FYTWScxj0fJBUs4iWldMcdpKBIXQ57Tp929HfnNAhWRx9KCGCXVD6EYsYASUljzzwBmAEL3Ys/A1dvqQJOBZj9mpnXtm2apYY+BFYk9JGU1R88wfpxOTNKSRIhykbNtWotwMhGKE07zkpJImQPrQpW1NIwipdLPxCzk+1koHB7HQFSk8Vv9OZBBKOQx93RmC6sl5byT+57VTFVy5GYuSVNGITBYFKccqxqM8cIcJShQfagJEMH0rJj0QQJRObWaLH+YlHYo9H8EiaZxV7IuKfX9ert5M4ymiQ3SETpCNLlEV3aEaqiOCntALekVvxrPxbnwYn5PWgjGd2UczML5+AV7rnPc=</latexit>

%0 = �1
0



Thanks

<latexit sha1_base64="61KYZyM/8JZy3Kl+wMbOF6x7s4w=">AAAB+nicbVA9T8MwEL2Ur1K+CowsFhUSU5UgBIwVLIxF0A+pjSrHdVqrthPZDqIK/QmssLMhVv4MK78Ep81AW5500tN7d7q7F8ScaeO6305hZXVtfaO4Wdra3tndK+8fNHWUKEIbJOKRagdYU84kbRhmOG3HimIRcNoKRjeZ33qkSrNIPphxTH2BB5KFjGBjpfth76lXrrhVdwq0TLycVCBHvVf+6fYjkggqDeFY647nxsZPsTKMcDopdRNNY0xGeEA7lkosqPbT6akTdGKVPgojZUsaNFX/TqRYaD0Wge0U2Az1opeJ/3mdxIRXfspknBgqyWxRmHBkIpT9jfpMUWL42BJMFLO3IjLEChNj05nbEohJyYbiLUawTJpnVe+i6t2dV2rXeTxFOIJjOAUPLqEGt1CHBhAYwAu8wpvz7Lw7H87nrLXg5DOHMAfn6xebwJSD</latexit>

hx

<latexit sha1_base64="V1oAJJLcPmo8R9jwScarm+npWdw=">AAAB+nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EomXQxjKi+YDkCHubvWTJ7t6xuyccZ36CrfZ2YuufsfWXuEmuMIkPBh7vzTAzL4g508Z1v53C2vrG5lZxu7Szu7d/UD48aukoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG+nfvuJKs0i+WjSmPoCDyULGcHGSg+jftovV9yqOwNaJV5OKpCj0S//9AYRSQSVhnCsdddzY+NnWBlGOJ2UeommMSZjPKRdSyUWVPvZ7NQJOrPKAIWRsiUNmql/JzIstE5FYDsFNiO97E3F/7xuYsJrP2MyTgyVZL4oTDgyEZr+jQZMUWJ4agkmitlbERlhhYmx6SxsCcSkZEPxliNYJa2LqlereveXlfpNHk8RTuAUzsGDK6jDHTSgCQSG8AKv8OY8O+/Oh/M5by04+cwxLMD5+gWdVJSE</latexit>

hy
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τ


