

Two stories*

*that have nothing to do with one another

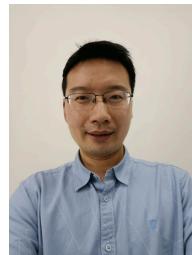
Leon Balents, KITP, UCSB

Oxford, March 2022

Outline

- Angular transition in triangle-based antiferromagnets

Kamran Behnia
ESPCI



Zengwei Zhu
Wuhan

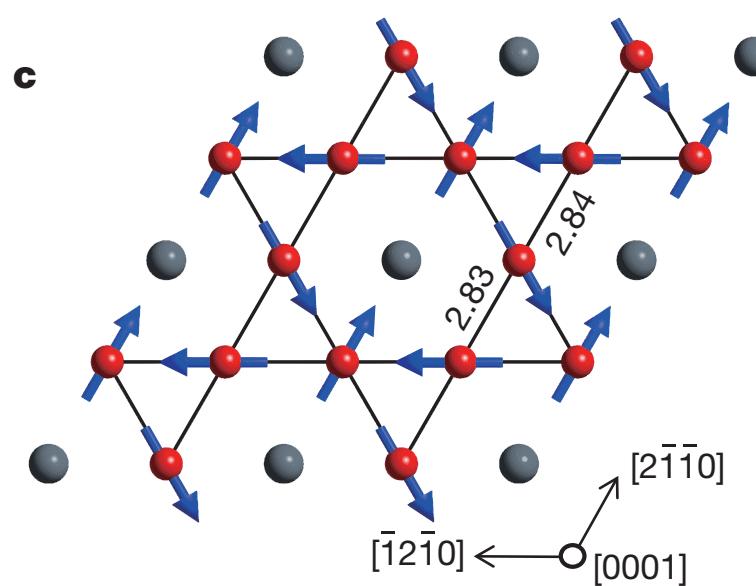
Xiaokang Li
Wuhan

- Thermal Hall effect of phonons from intrinsic skew scattering

Lucile Savary
ENS Lyon

Léo Mangeolle
ENS Lyon

Mn₃Sn



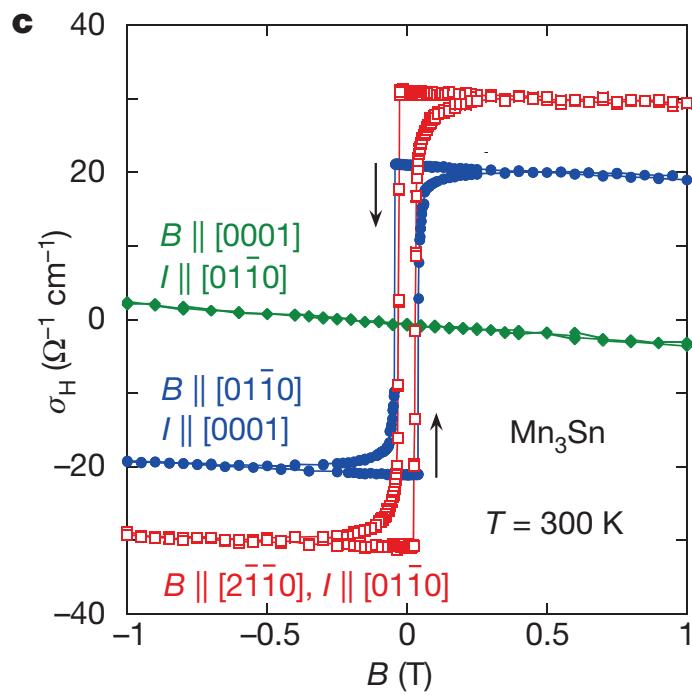
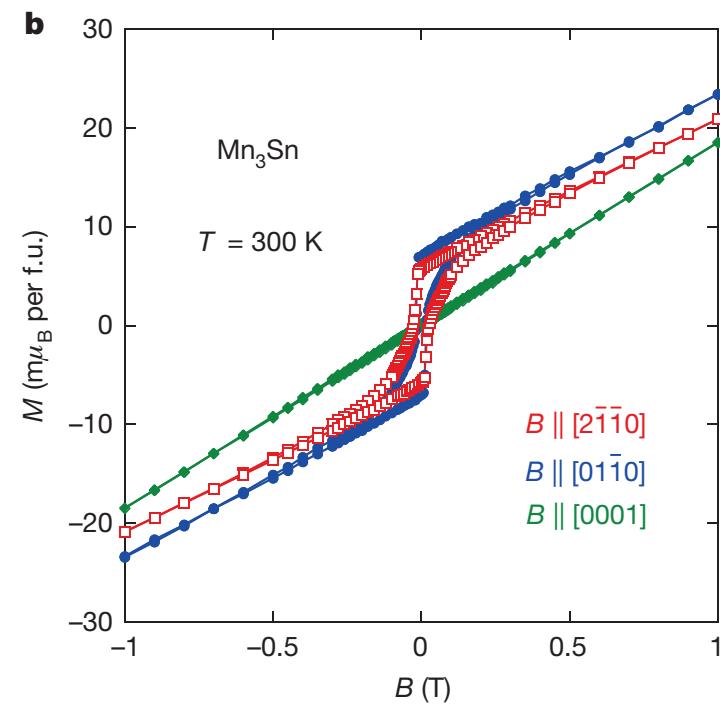
two kagomé layers of
Mn, related by inversion

large ordered
antiferromagnetic
moment
 $\sim 2 \mu_B / \text{Mn}$
tiny FM moment:
 $.002 \mu_B / \text{Mn}$

$$T_N \sim 420 \text{ K}$$

Nagamiya *et al*, 1982

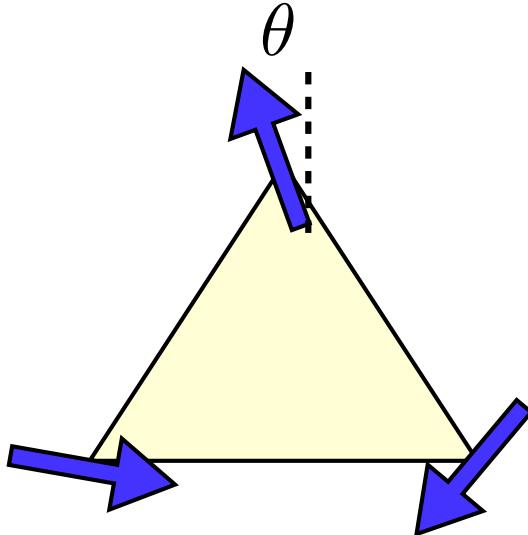
AHE



S. Nakatsuji et al, 2015

Why such a tiny moment?
Why such small coercive field?

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

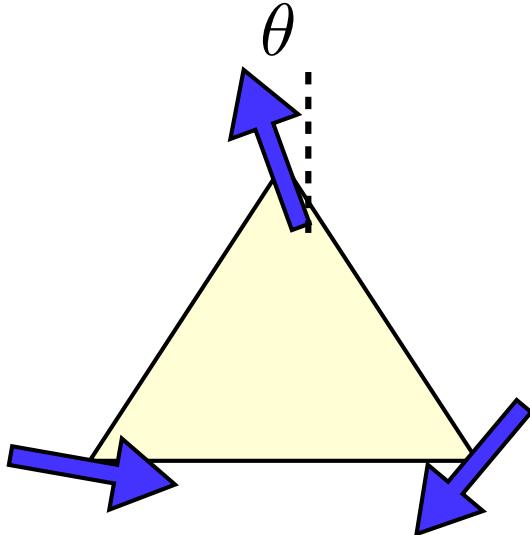
$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

$J \gg D \gg K$ **Hierarchy of interactions**

- J: spins at 120° angles and M=0
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment and fixes in-plane angle

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

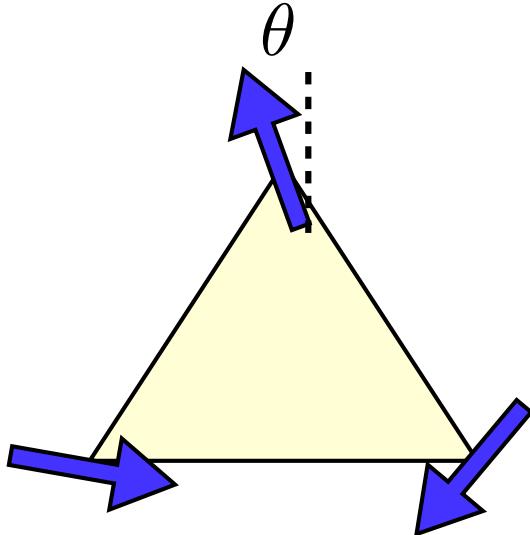
$J \gg D \gg K$ **Hierarchy of interactions**

- J: spins at 120° angles and M=0
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment and fixes in-plane angle

Global symmetries:
spin-space group

magnetic space group

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

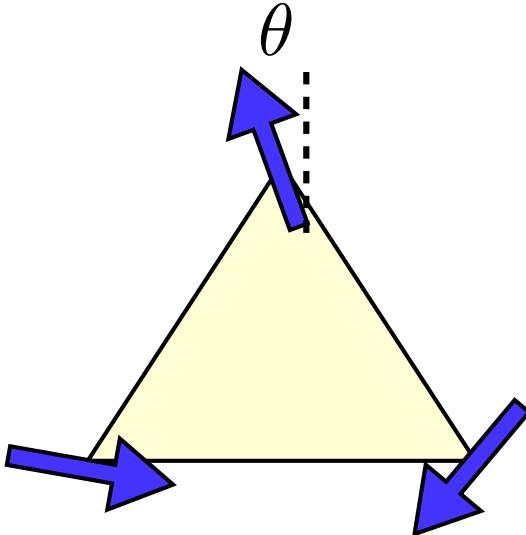
$J \gg D \gg K$ **Hierarchy of interactions**

- J: spins at 120° angles and M=0
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment and fixes in-plane angle

Global symmetries:
spin-space group

magnetic space group

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

$J \gg D \gg K$ **Hierarchy of interactions**

$$m_0 = \frac{K}{J} m_s$$

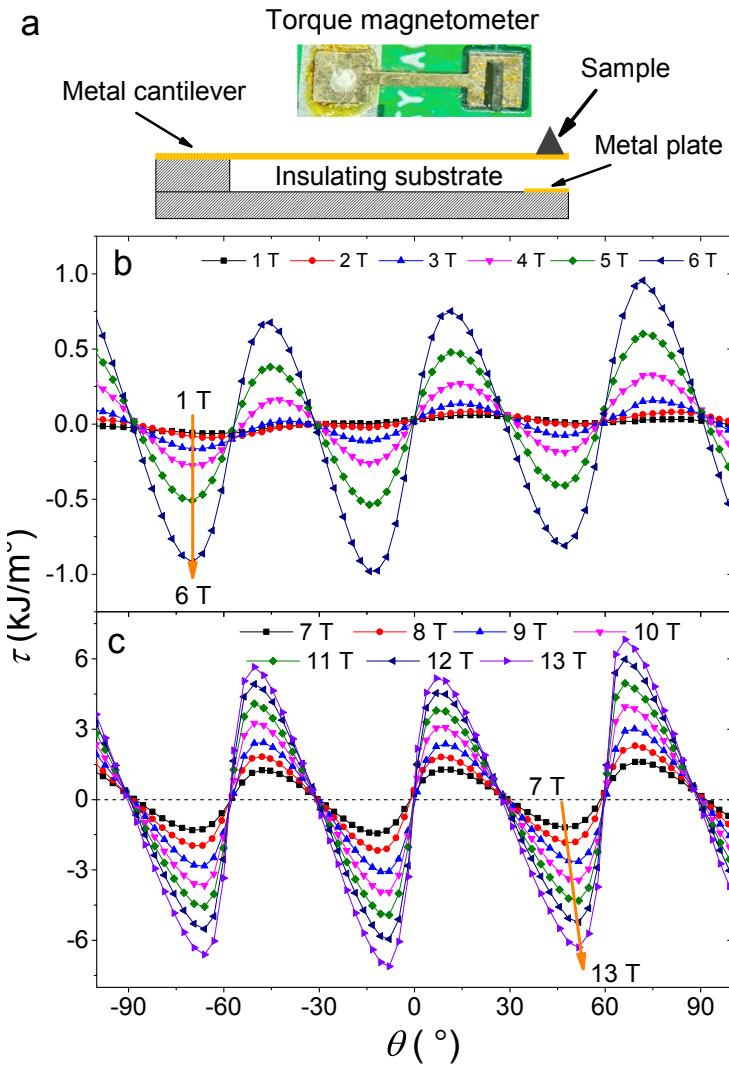
Uniform moment

$$\lambda = \frac{K^3}{12J^2}$$

In-plane anisotropy

Low coercive field
despite tiny Zeeman
energy

Torque



The free energy of twisting spins in Mn_3Sn

Xiaokang Li^{1,*}, Shan Jiang^{3,1}, Qingkai Meng¹, Huakun Zuo¹, Zengwei Zhu^{1,*}, Leon Balents^{2,4} and Kamran Behnia³

(1) *Wuhan National High Magnetic Field Center and School of Physics,
Huazhong University of Science and Technology, Wuhan 430074, China*

(2) *Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA*

(3) *Laboratoire de Physique et d'Étude des Matériaux
(ESPCI - CNRS - Sorbonne Université), PSL Research University, 75005 Paris, France*

(4) *Canadian Institute for Advanced Research, Toronto, Ontario, Canada*

(Dated: February 25, 2022)

Notice the evolution from
sinusoidal to sawtooth

First explanation

Extension of our expansion from 2017

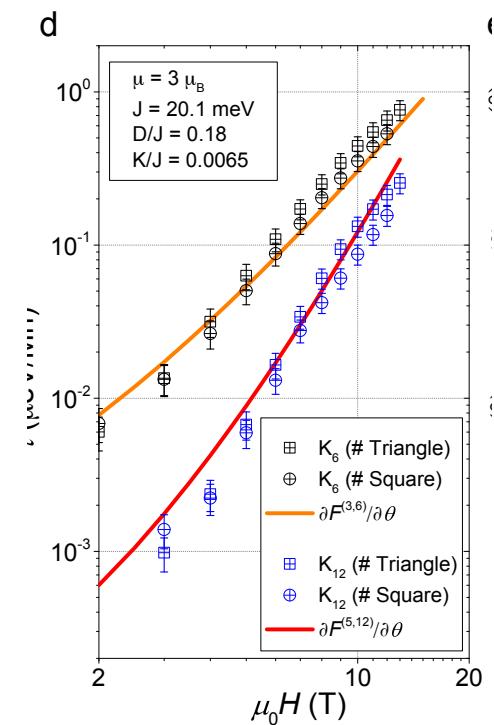
$$\phi_1 = \phi + \eta_1, \quad \phi_2 = \phi - \frac{2\pi}{3} + \eta_2, \quad \phi_3 = \phi - \frac{4\pi}{3} - \eta_1 - \eta_2.$$

$$\eta_i = \sum_{n=1}^{\infty} \eta_{i,n} r^n, \quad E_{u.c.} = \sum_{n=0}^{\infty} E_{u.c.}^{(n)},$$

$$\begin{aligned} E_{u.c.}^{(0)} &= -6J - 6\sqrt{3}D, \\ E_{u.c.}^{(1)} &= -3K, \\ E_{u.c.}^{(2)} &= -\frac{(\mu H)^2 + K^2 + 2\mu HK \cos(\theta + \phi)}{2(\sqrt{3}D + J)}, \\ E_{u.c.}^{(3)} &= -\frac{1}{36(J + \sqrt{3}D)^3} \left[(3J + 7\sqrt{3}D)K^3 \cos(6\phi) + 6(J + 3\sqrt{3}D)\mu HK^2 \cos(5\phi - \theta) \right. \\ &\quad \left. + 3(J + 5\sqrt{3}D)(\mu H)^2 K \cos(4\phi - 2\theta) + 4\sqrt{3}D(\mu H)^3 \cos(3\phi - 3\theta) \right]. \end{aligned}$$

Perturbatively solve
 $\phi(\theta)$

$$\begin{aligned} E_{u.c.} &= -6J - 6\sqrt{3}D - 3K - \frac{(\mu H + K)^2}{2(J + \sqrt{3}D)} \left[1 + \frac{(3J + 7\sqrt{3}D)K + 4\sqrt{3}D\mu H}{18(J + \sqrt{3}D)^2} \cos(6\theta) \right. \\ &\quad \left. + \frac{((3J + 7\sqrt{3}D)K^2 + 2(J + 4\sqrt{3}D)\mu HK + 2\sqrt{3}D(\mu H)^2)^2}{36(J + \sqrt{3}D)^4 \mu HK} \sin^2(6\theta) \right]. \end{aligned}$$



Angular transitions

A little simpler picture

Heisenberg model

$$E_{\text{tri}} = \frac{J}{2} \left(\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 - \frac{1}{J} \mathbf{h} \right)^2$$

“Order by disorder”: thermal and quantum fluctuations favor coplanar states

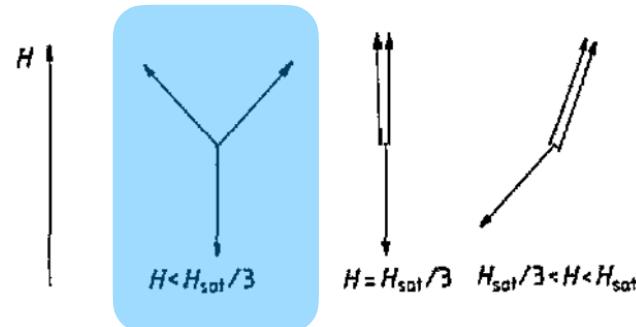
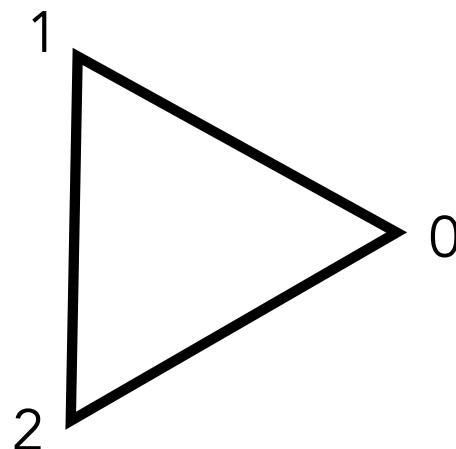


Figure 1. Reorientation process in the magnetic field in 2D Heisenberg AFM on a triangular lattice. Zero-point fluctuations stabilize the collinear phase in the finite region $H_1 < H < H_2$ in the vicinity of $H_{\text{sat}}/3$.

A. Chubukov and I. Golosov, 1991

Energy and symmetries: Heisenberg limit



$$\langle \mathbf{S}_n \rangle = \operatorname{Re} \left[\mathbf{d} e^{\frac{2\pi i n}{3}} \right]$$

$$\mathbf{d} \cdot \mathbf{d} = 0.$$

$$\mathbf{d} = \mathbf{u} + i\mathbf{v}$$

$$\text{SO}(3) \quad \mathbf{S}_n \rightarrow \mathbf{0} \mathbf{S}_n$$

$$S_3 \quad \mathbf{S}_n \rightarrow \mathbf{S}_{P(n)}$$

$$F_h^{\text{iso}} = c_1 |\mathbf{h} \cdot \mathbf{d}|^2 + c_2 \operatorname{Re} \left[(\mathbf{h} \cdot \mathbf{d})^3 \right] + O(h^4)$$

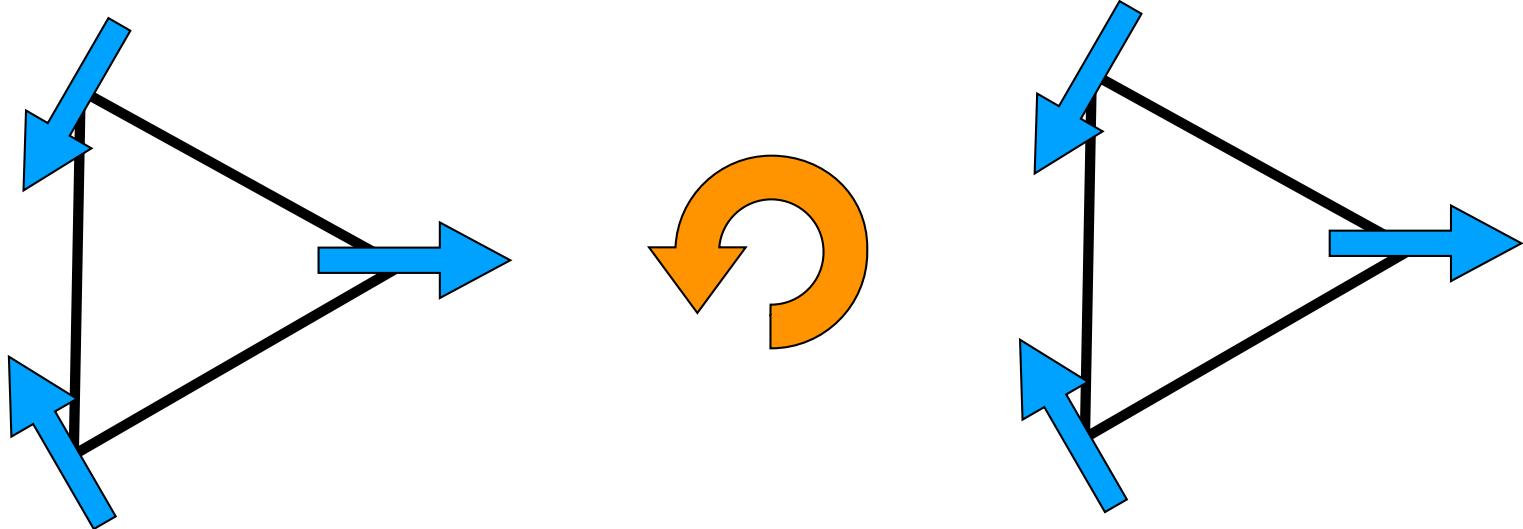
Selects plane Selects angle in plane

$$c_1 < 0$$

$$c_2 > 0$$

Anti-chiral state

Favored by $D>0$



counter-clockwise rigid rotation = clockwise spin rotation

$$d_{\pm} = d_x \pm i d_y \quad h_{\pm} = h_x \pm i h_y$$

Re[$h_+ d_+$] is an invariant

Full angular free energy

$$d_+ = ne^{i\phi}$$

$$d_- = d_z = 0$$

$$h_+ = he^{i\theta}$$

Zero field anisotropy
(Negligible)

$$f_+ = -w \cos 6\phi - uh \cos(\phi + \theta) - vh^3 \cos 3(\phi - \theta)$$

Anti-chiral
magnetization

Heisenberg
response

$$u \sim \frac{K}{J}$$

Full angular free energy

$$d_+ = ne^{i\phi} \quad h_+ = he^{i\theta}$$

$$d_- = d_z = 0$$

$$f_+ = -uh \cos(\phi + \theta) - vh^3 \cos 3(\phi - \theta),$$

Anti-chiral	Heisenberg
magnetization	response

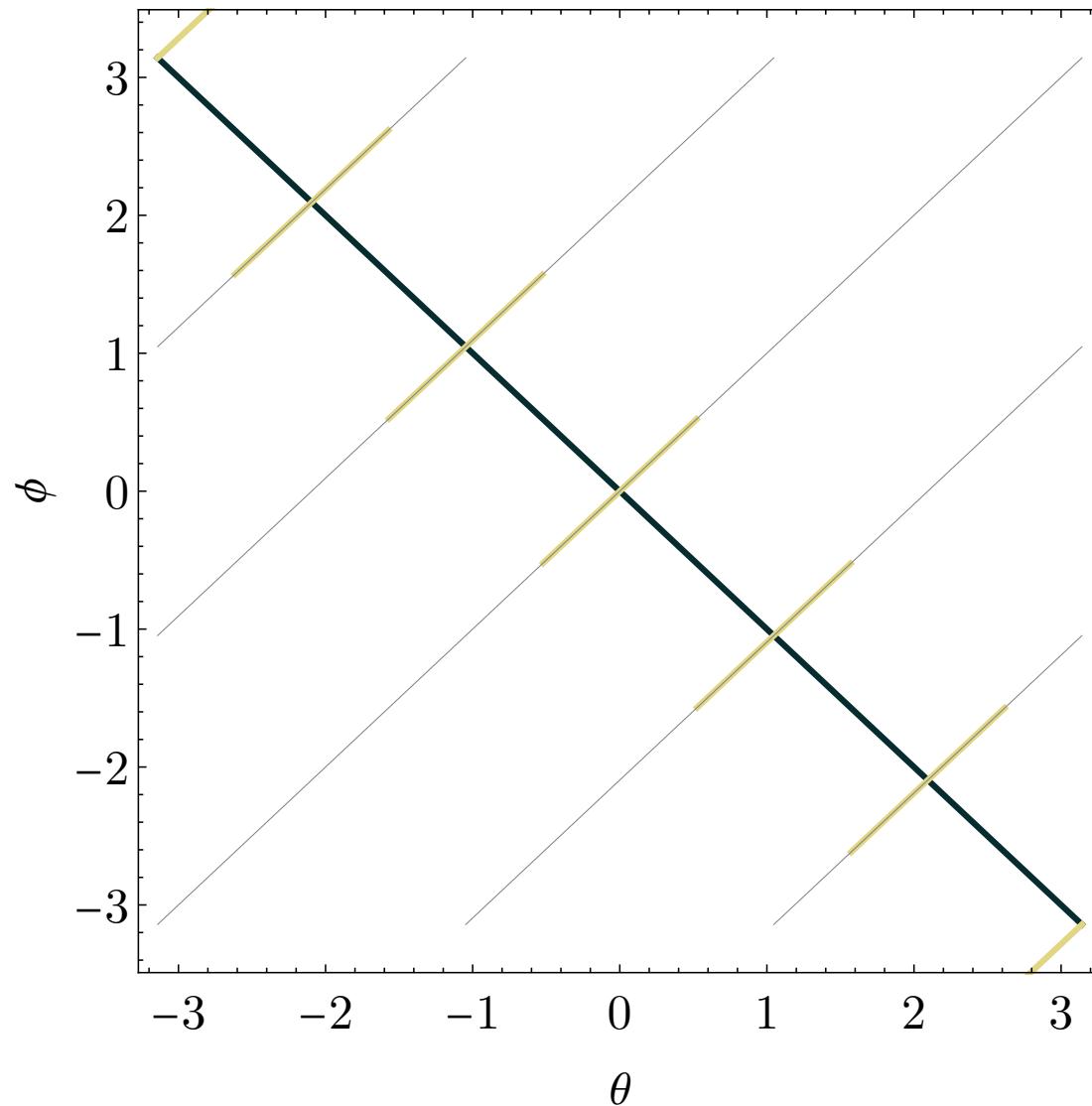
small h :

$$\phi \approx -\theta$$

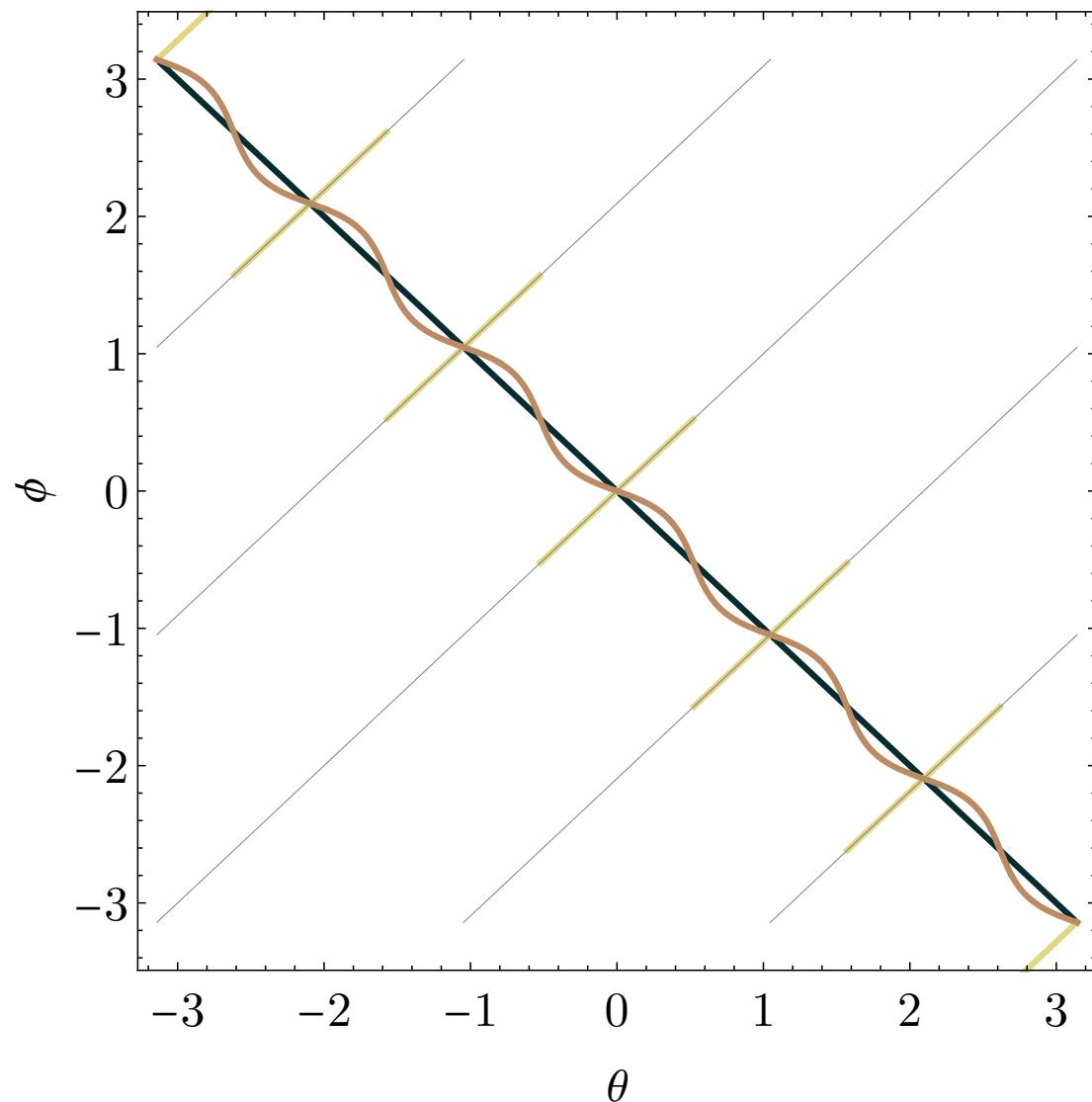
small h:

$$\phi \approx \theta + \frac{2\pi k}{3}$$

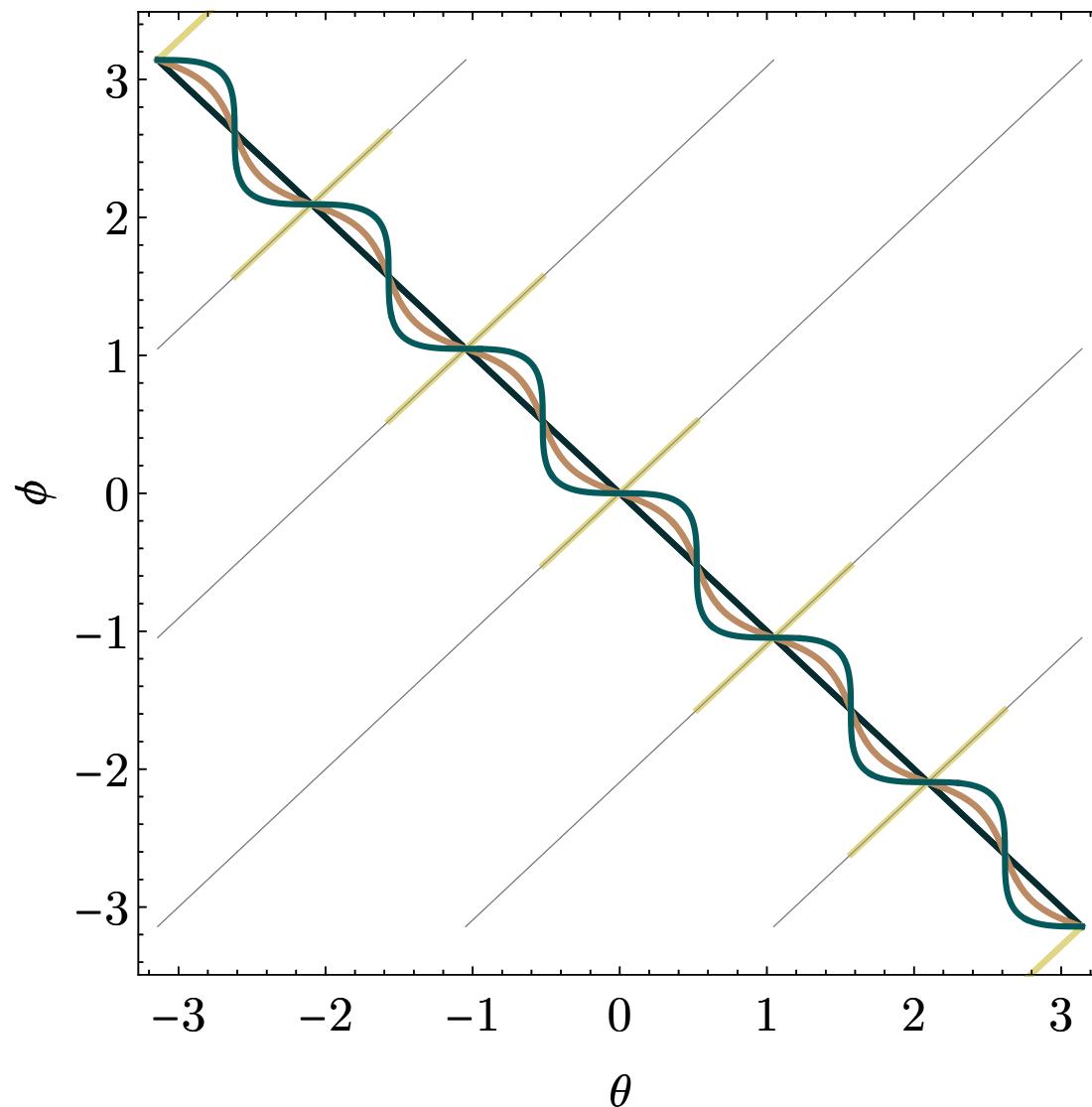
Angular evolution



Angular evolution

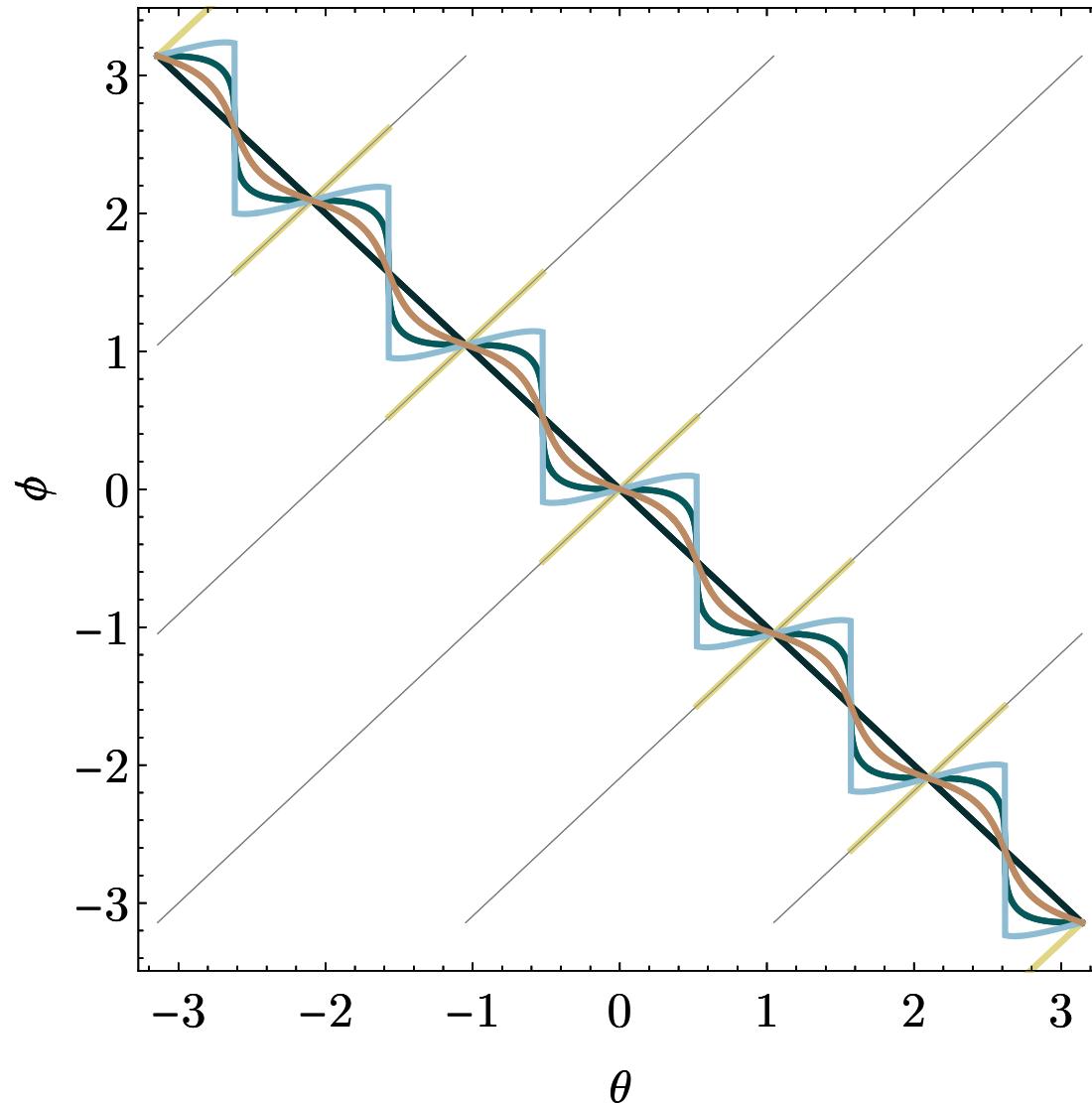


Angular evolution



Angular evolution

$$\theta = \frac{\pi}{6} + \frac{\pi m}{3}$$

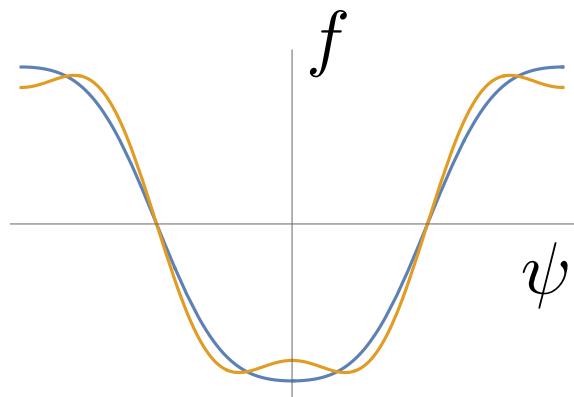


$h > h_{\text{crit}}$
Jumps at
 $\theta = \frac{\pi}{6} + \frac{\pi m}{3}$

How do the jumps onset?

$$\psi = \phi + \theta, \quad \theta = \pi/6 + \delta \quad x = \sqrt{v/u}h^2$$

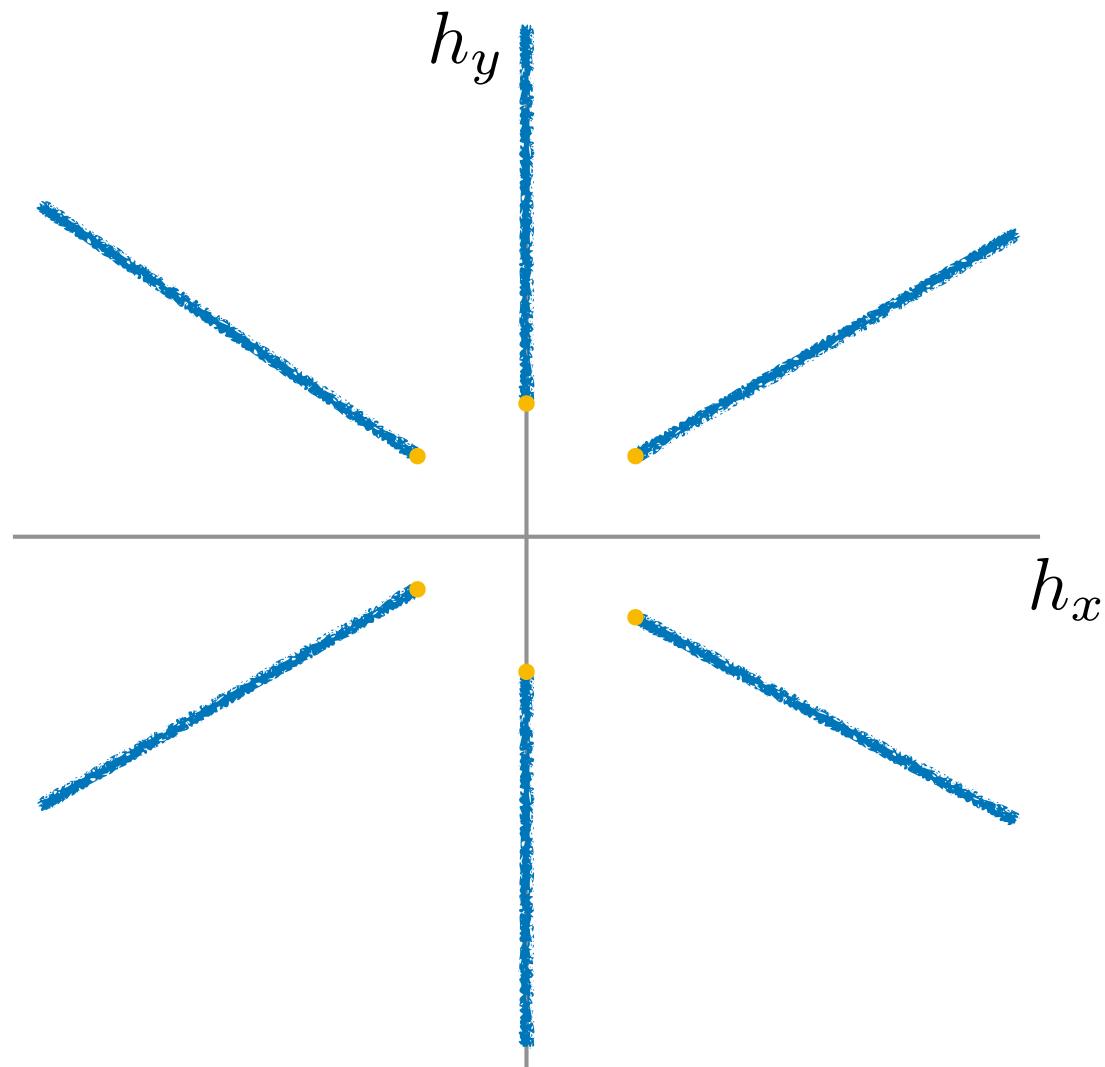
$$\begin{aligned} \frac{f}{uh} &= -\cos \psi + x \cos 6\delta \cos 3\psi + x \sin 6\delta \sin 3\psi \\ &= -\cos \psi + x \cos 3\psi \quad (\delta = 0) \end{aligned}$$



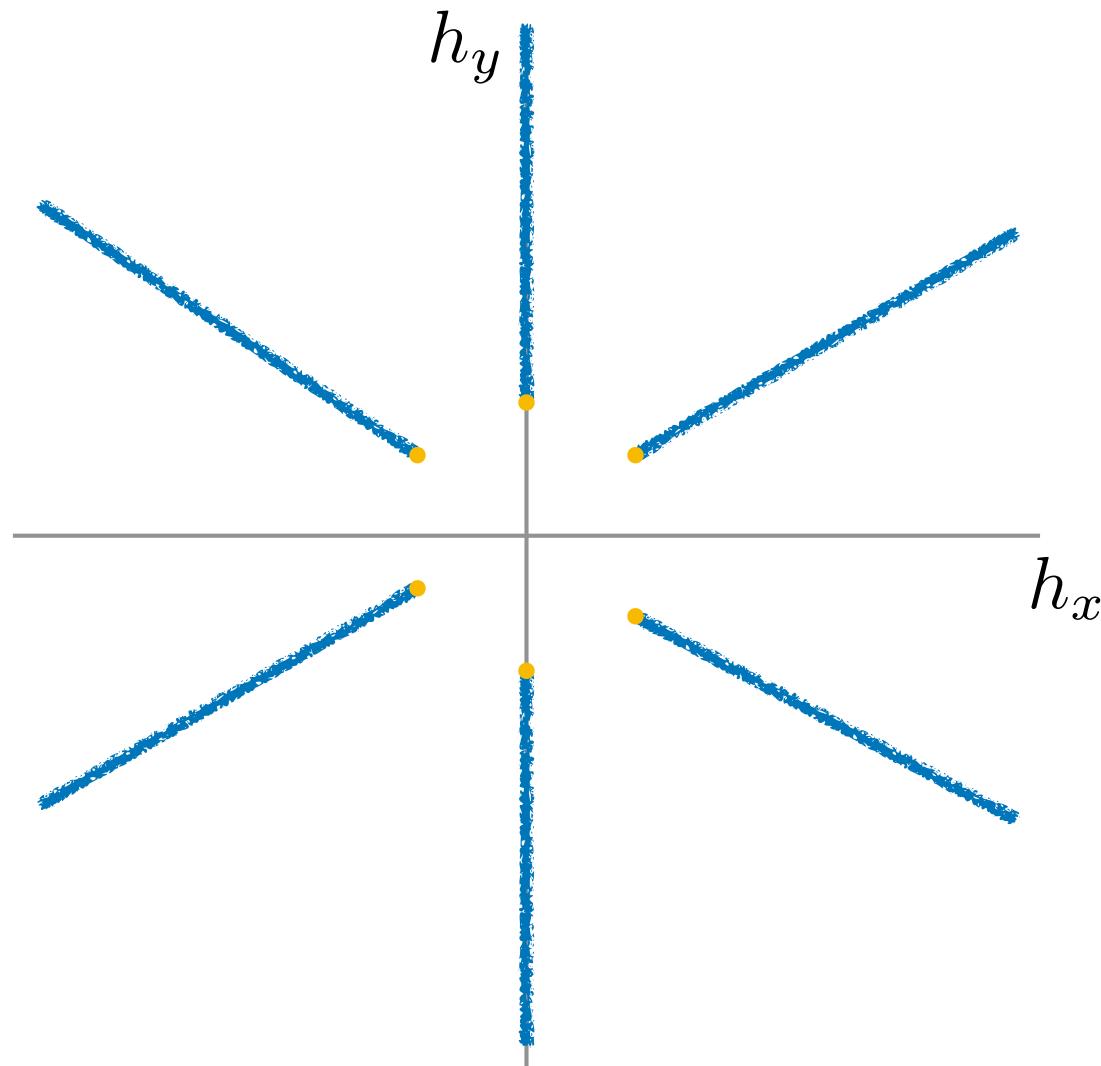
Ising transition
at $x=1/9$

δ acts as symmetry breaking field

Phase diagram

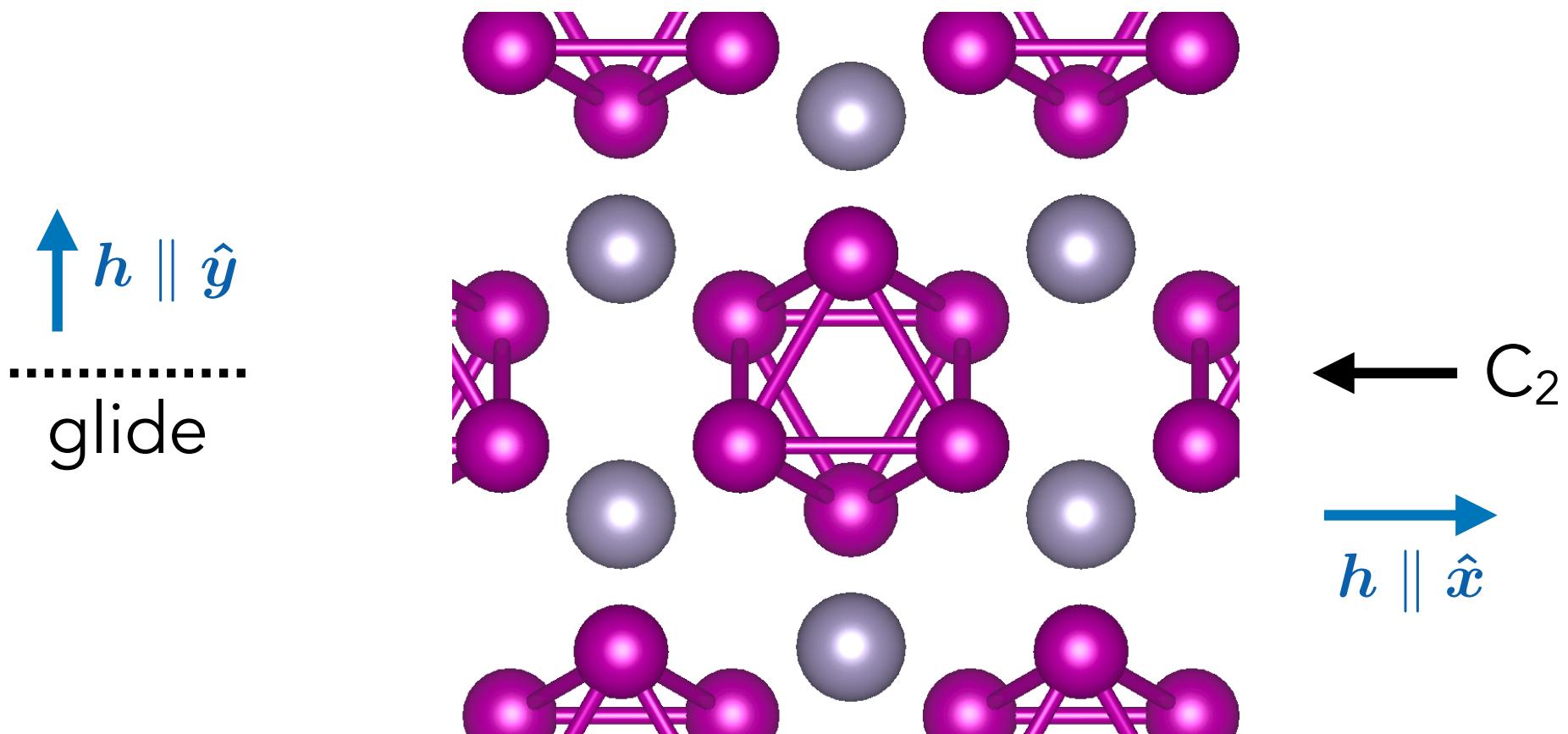


Phase diagram

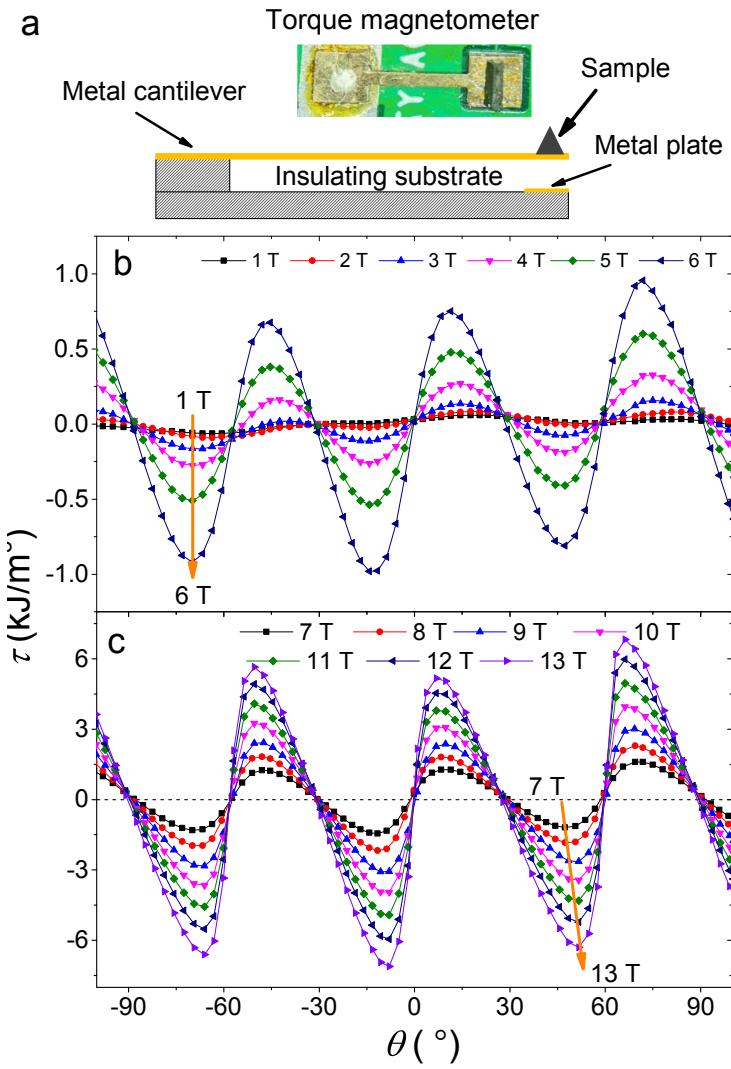


What symmetry is broken along the lines?

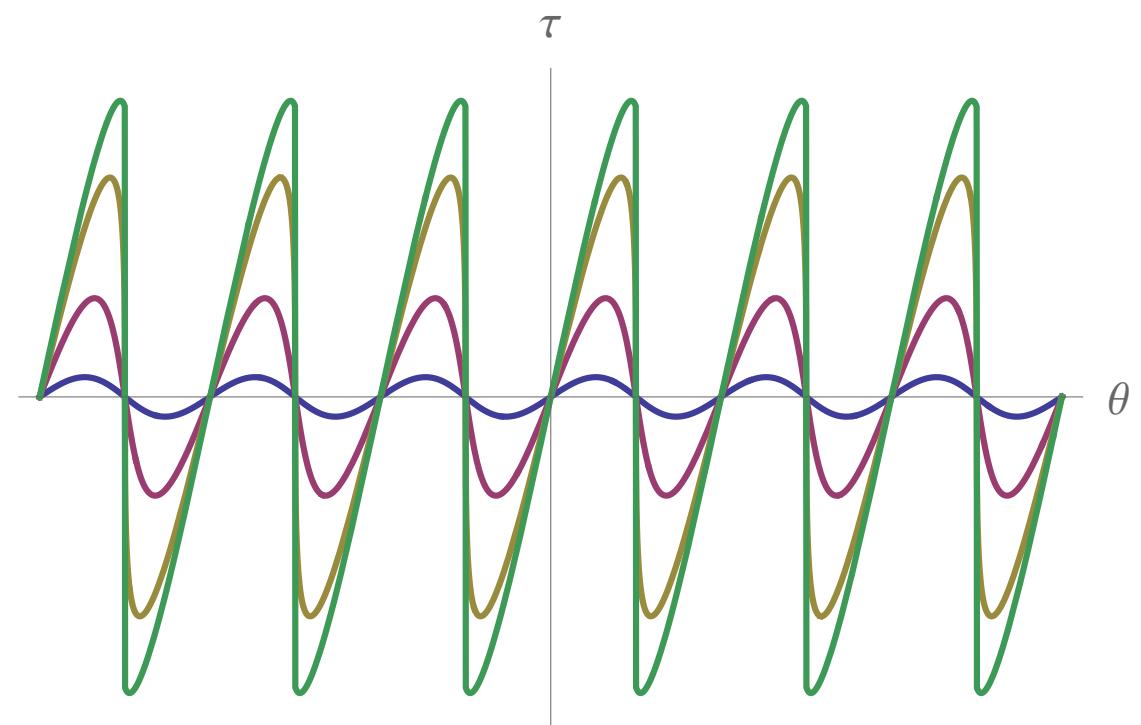
Mn_3Sn structure



Torque

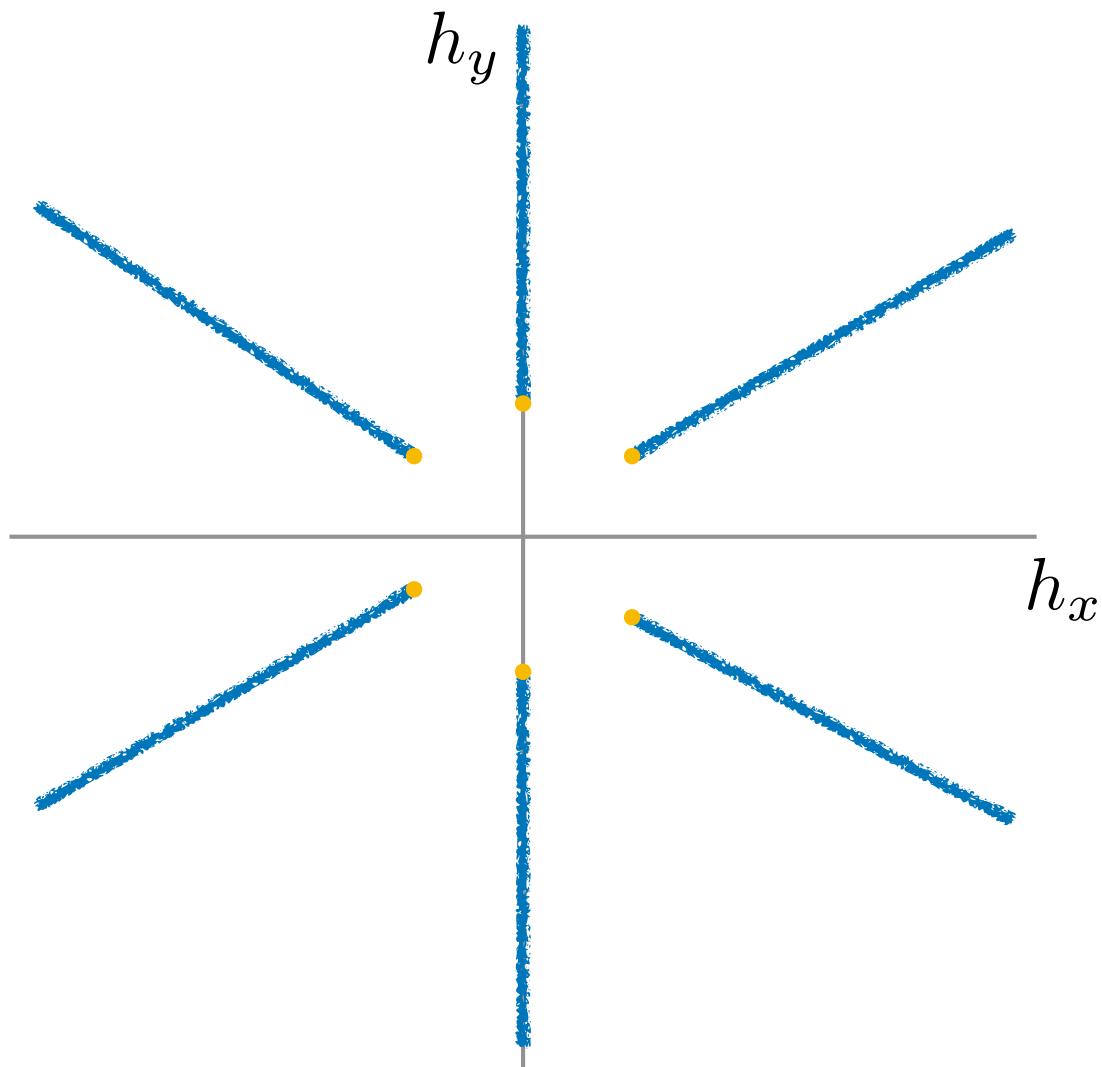


$$\tau = \frac{df}{d\theta}$$



Discontinuities for $h > h_c$

Estimate



Classical, $T=0$

$$H_c = \frac{J + \sqrt{3}D}{g\mu_B} \sqrt{\frac{K}{D}}$$

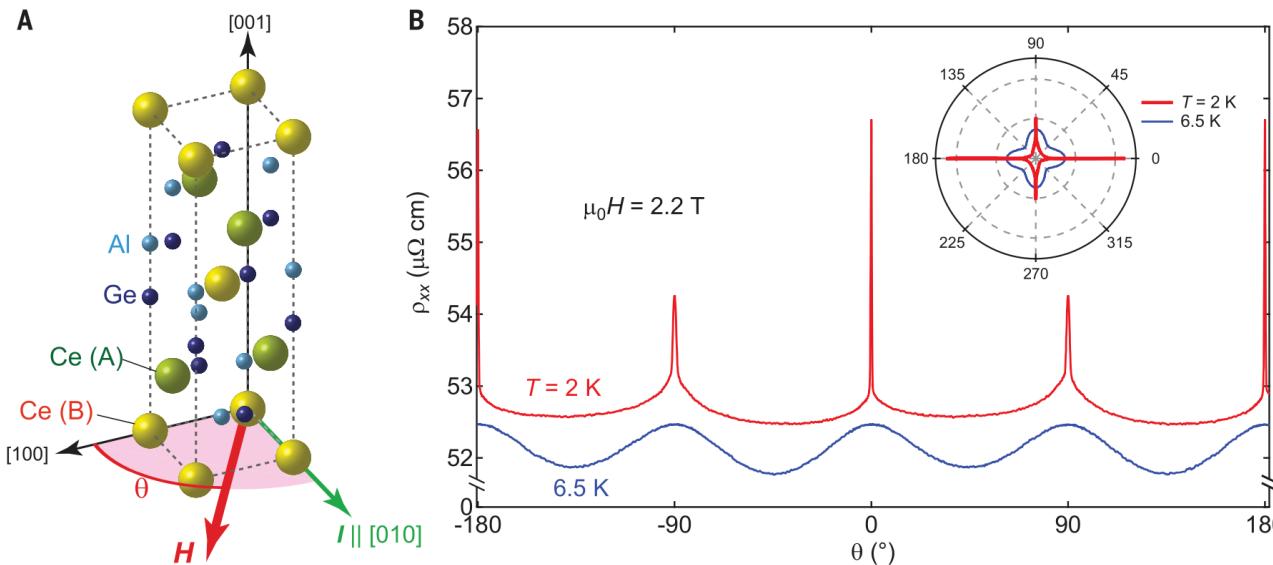
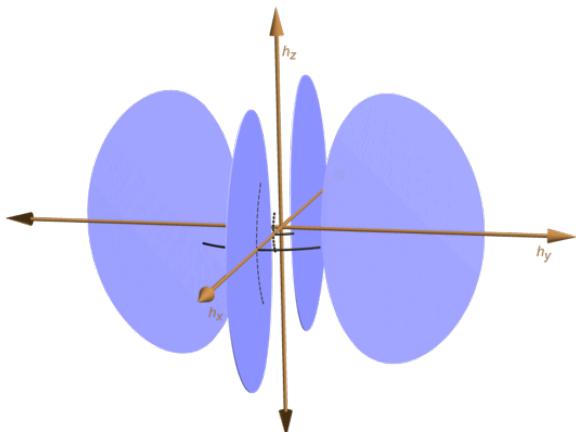
$\approx 20\text{T}$

c.f.

MAGNETISM

Singular angular magnetoresistance in a magnetic nodal semimetal

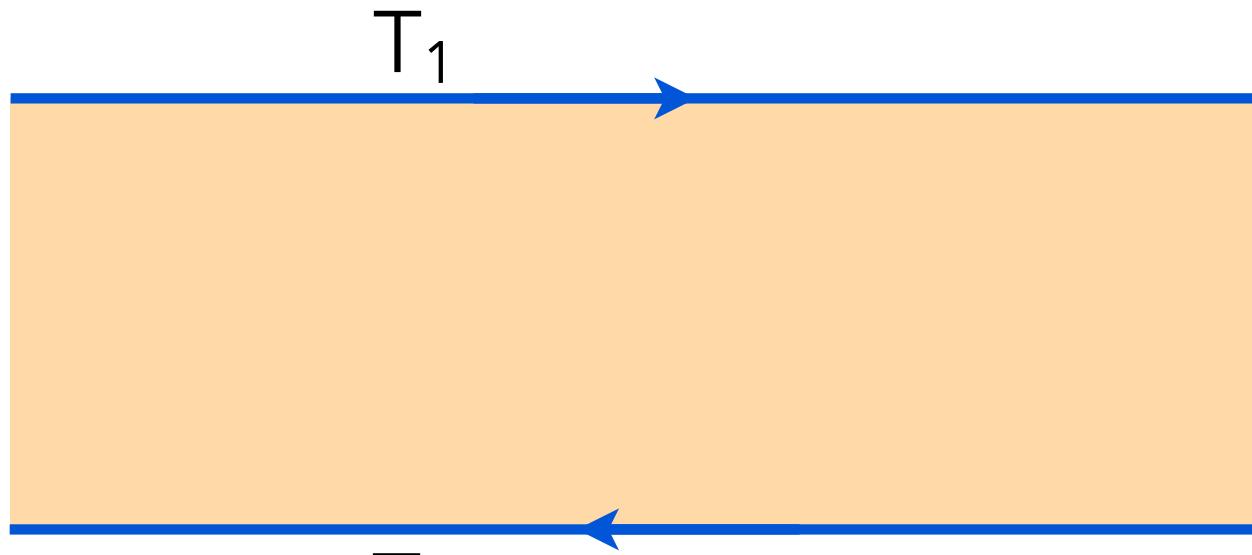
T. Suzuki¹, L. Savary^{1,2,3}, J.-P. Liu^{2,4}, J. W. Lynn⁵, L. Balents², J. G. Checkelsky^{1*}



Would be interesting to search for
transport signatures in Mn_3Sn

Thermal Hall effect

- Motivation: a probe of exotic phases. In insulators, “must” come from electrons

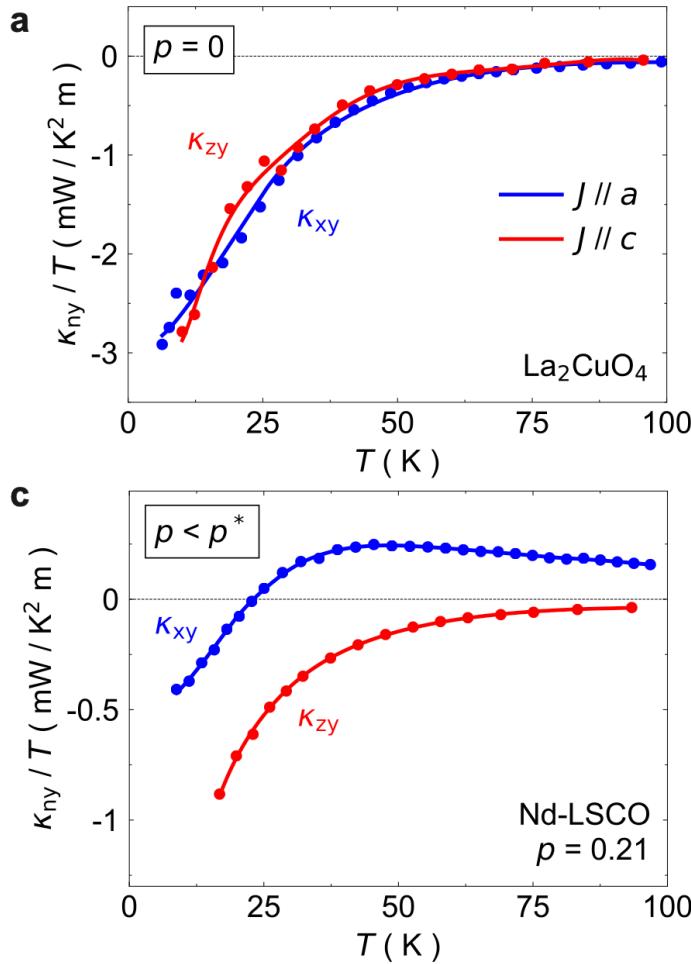
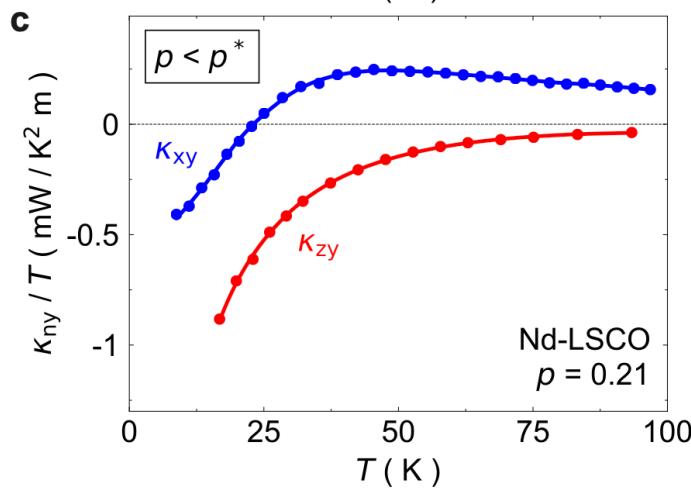


$$I_x = \kappa_H \Delta T_y$$

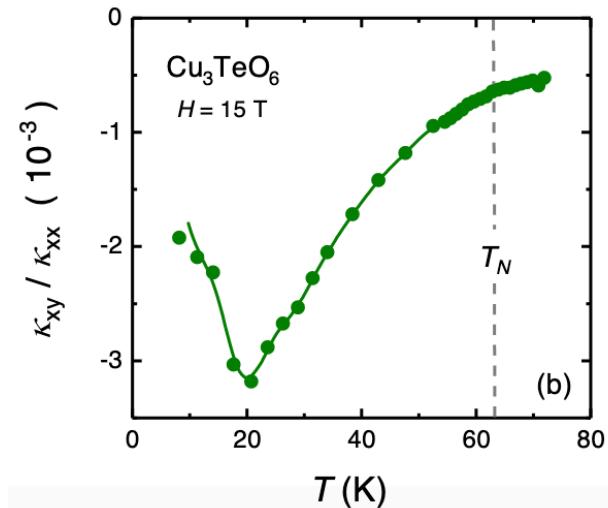
$$\kappa_H = \frac{\pi c k_B^2 T}{6\hbar}$$

a universal prediction for chiral
“Ising anyon” phase: agnostic to
microscopic spin interactions

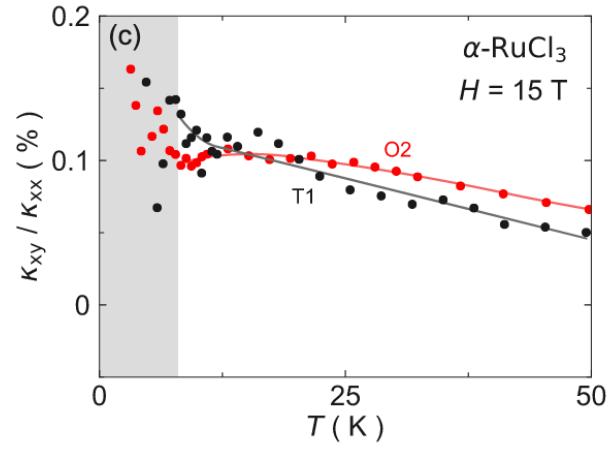
Phonons



Grissonanche *et al*, 2020



L. Chen *et al*, 2021



Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α -RuCl₃

É. Lefrançois,¹ G. Grissonanche,¹ J. Baglo,¹ P. Lampen-Kelley,^{2,3} J. Yan,² C. Balz,^{4,*} D. Mandrus,^{2,3} S. E. Nagler,⁴ S. Kim,⁵ Young-June Kim,⁵ N. Doiron-Leyraud,¹ and L. Taillefer^{1,6}

Two types of effects

- Phonons are good quasiparticles

Phonon Boltzmann
equation

Convective derivative. Dynamics.

- Non-dissipative effects:

modifications of intrinsic dynamics
of individual quasiparticles, e.g.
Berry phase effects, etc.

- Dissipative effects: modifications
of scattering of quasiparticles

$$D_t p = \Gamma[p]$$

Convective derivative. Dynamics.

Collision term

```
graph TD; A[Convective derivative. Dynamics.] --> B[D_t p = Gamma[p]]; C[Collision term] --> D[Gamma[p]]
```


Dissipative effects

- Basically, this is “skew scattering” of phonons
- We ask how this arises through coupling to electronic degrees of freedom
- Transition matrix in *full many-body space of phonons+electrons*:

$$T_{i \rightarrow f} = T_{fi} = \langle f | H' | i \rangle + \sum_n \frac{\langle f | H' | n \rangle \langle n | H' | i \rangle}{E_i - E_n + i\eta} + \dots$$

Important point: 1st order term is Hermitian, so 1st order T-matrix is effectively time-reversal invariant

- No Hall effect at leading order.

From T-matrix to collision term

- Coupling Hamiltonian

$$H' = \sum_{n\mathbf{k}} \left(a_{n\mathbf{k}}^\dagger Q_{n\mathbf{k}}^\dagger + a_{n\mathbf{k}} Q_{n\mathbf{k}} \right)$$

“Spin”

Can be anything non-phononic, e.g. electronic

- Full transition rate

$$\Gamma_{\mathbf{i} \rightarrow \mathbf{f}} = \frac{2\pi}{\hbar} |T_{\mathbf{i} \rightarrow \mathbf{f}}|^2 \delta(E_{\mathbf{i}} - E_{\mathbf{f}}). \quad p_{i_s} = \frac{1}{Z_s} e^{-\beta E_{i_s}}$$

- Phonon transition rate

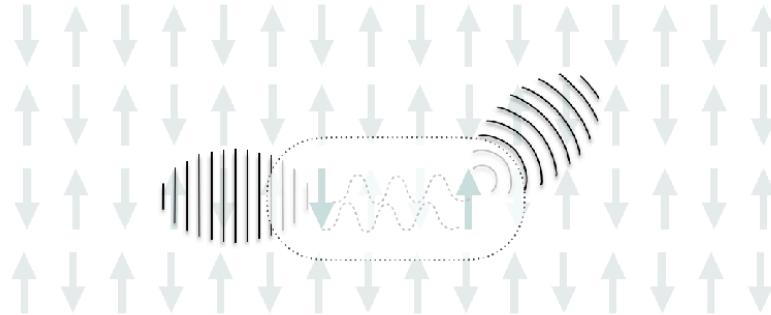
$$\tilde{\Gamma}_{i_p \rightarrow f_p} = \sum_{i_s f_s} \Gamma_{\mathbf{i} \rightarrow \mathbf{f}} p_{i_s},$$

- Master equation

$$\mathcal{C}_{n\mathbf{k}} = \sum_{i_p, f_p} \tilde{\Gamma}_{i_p \rightarrow f_p} (N_{n\mathbf{k}}(f_p) - N_{n\mathbf{k}}(i_p)) p_{i_p}$$

In this way we can construct $C_{n\mathbf{k}}$ for any “spin” subsystem

Scattering rates



$$O(Q^2) \rightarrow \star \text{ wavy line}$$

$$D_{n\mathbf{k}} = -\frac{1}{\hbar^2} \int dt e^{-i\omega_{n\mathbf{k}} t} \langle [Q_{n\mathbf{k}}(t), Q_{n\mathbf{k}}^\dagger(0)] \rangle_\beta + \check{D}_{n\mathbf{k}}$$

$$O(Q^4) \rightarrow \star \text{ wavy line} \star \rightarrow$$

$$\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\Theta,qq'} = \frac{2N_{\text{uc}}}{\hbar^4} \Re e \int_{t,t_1,t_2} e^{i[\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{q,q'} t + \Delta_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}(t_1+t_2)]} \text{sign}(t_2) \langle [Q_{n\mathbf{k}}^{-q}(-t-t_2), Q_{n'\mathbf{k}'}^{-q'}(-t+t_2)] \{Q_{n'\mathbf{k}'}^{q'}(-t_1), Q_{n\mathbf{k}}^q(t_1)\} \rangle$$

commutator

anti-commutator

Anti-detailed balance

$$\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\Theta,qq'} = - e^{-\beta(q\omega_{n\mathbf{k}} + q'\omega_{n'\mathbf{k}'})} \mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\Theta,-q-q'}$$

Thermal Hall effect

Anti-symmetric part

$$\kappa_H^{\mu\nu} = \frac{\hbar^2}{k_B T^2} \frac{1}{V} \sum_{n\mathbf{k}n'\mathbf{k}'} J_{n\mathbf{k}}^\mu \frac{e^{\beta\hbar\omega_{n\mathbf{k}}/2}}{2D_{n\mathbf{k}}} \left(\frac{1}{N_{\text{uc}}} \sum_{q=\pm} \frac{(e^{\beta\hbar\omega_{n\mathbf{k}}} - e^{q\beta\hbar\omega_{n'\mathbf{k}'}}) \mathfrak{W}_{n\mathbf{k},n'\mathbf{k}'}^{\ominus,+q}}{\sinh(\beta\hbar\omega_{n\mathbf{k}}/2) \sinh(\beta\hbar\omega_{n'\mathbf{k}'}/2)} \right) \frac{e^{\beta\hbar\omega_{n'\mathbf{k}'}/2}}{2D_{n'\mathbf{k}'}} J_{n'\mathbf{k}'}^\nu$$

$$J_{n\mathbf{k}}^\mu = N_{n\mathbf{k}}^{\text{eq}} \omega_{n\mathbf{k}} v_{n\mathbf{k}}^\mu$$

Thermal Hall effect

Anti-symmetric part

$$\kappa_H^{\mu\nu} = \frac{\hbar^2}{k_B T^2} \frac{1}{V} \sum_{n\mathbf{k}n'\mathbf{k}'} J_{n\mathbf{k}}^\mu \frac{e^{\beta\hbar\omega_{n\mathbf{k}}/2}}{2D_{n\mathbf{k}}} \left(\frac{1}{N_{\text{uc}}} \sum_{q=\pm} \frac{(e^{\beta\hbar\omega_{n\mathbf{k}}} - e^{q\beta\hbar\omega_{n'\mathbf{k}'}}) \mathfrak{W}_{n\mathbf{k},n'\mathbf{k}'}^{\ominus,+q}}{\sinh(\beta\hbar\omega_{n\mathbf{k}}/2) \sinh(\beta\hbar\omega_{n'\mathbf{k}'}/2)} \right) \frac{e^{\beta\hbar\omega_{n'\mathbf{k}'}/2}}{2D_{n'\mathbf{k}'}} J_{n'\mathbf{k}'}^\nu$$

$$J_{n\mathbf{k}}^\mu = N_{n\mathbf{k}}^{\text{eq}} \omega_{n\mathbf{k}} v_{n\mathbf{k}}^\mu$$

Basic idea $\#\nabla T = -\frac{1}{\tau} \delta n - \frac{1}{\tau_{\text{skew}}} \delta n$

$$\delta n = -\tau \#\nabla T - \frac{\tau}{\tau_{\text{skew}}} \delta n$$

$$\approx -\tau \#\nabla T - \frac{\tau^2}{\tau_{\text{skew}}} \#\nabla T$$

Thermal Hall effect

Conductivity versus resistivity

$$\kappa_H \sim \frac{\tau^2}{\tau_{\text{skew}}}$$

Sensitive to all ordinary scattering mechanisms.
Very non-universal

$$\varrho_H \sim -\frac{\kappa_H}{\kappa^2} \sim \frac{1}{\tau_{\text{skew}}}$$

Only sensitive to skew scattering. A better quantity to study.

$$\varrho_H \sim \mathfrak{W}^{\ominus, \text{eff}}, \quad \text{Indeed follows from our formulae}$$

Many-body skew scattering

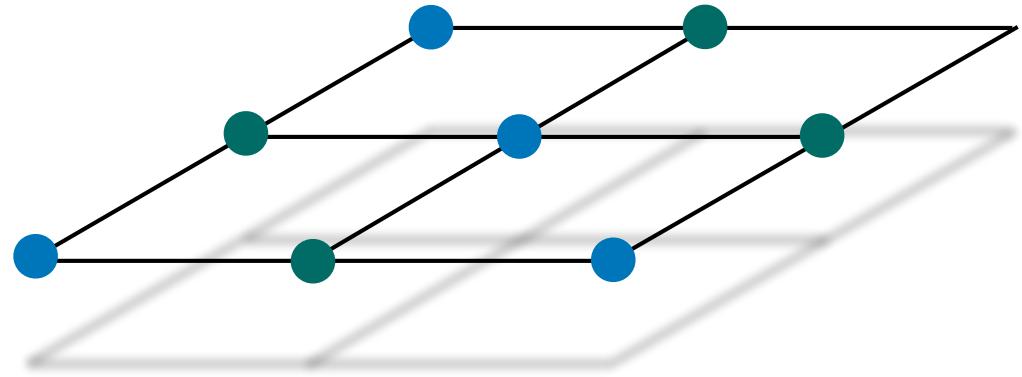
$$\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\ominus,qq'} = \frac{2N_{\text{uc}}}{\hbar^4} \Re e \int_{t,t_1,t_2} e^{i[\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{q,q'} t + \Delta_{n\mathbf{k}n'\mathbf{k}'}^{q,q'} (t_1 + t_2)]} \text{sign}(t_2) \left\langle \left[Q_{n\mathbf{k}}^{-q}(-t - t_2), Q_{n'\mathbf{k}'}^{-q'}(-t + t_2) \right] \left\{ Q_{n'\mathbf{k}'}^{q'}(-t_1), Q_{n\mathbf{k}}^q(t_1) \right\} \right\rangle$$

What good is it?

- In principle, this can be applied for any Q , could be e.g. quantum critical field etc.
- Can be used to analyze symmetries, *ala* Onsager
- That said, it is very hard to calculate such real-time correlation functions...maybe with a quantum simulator?

Application to an antiferromagnet

For concreteness,
2d, layered



Spin waves

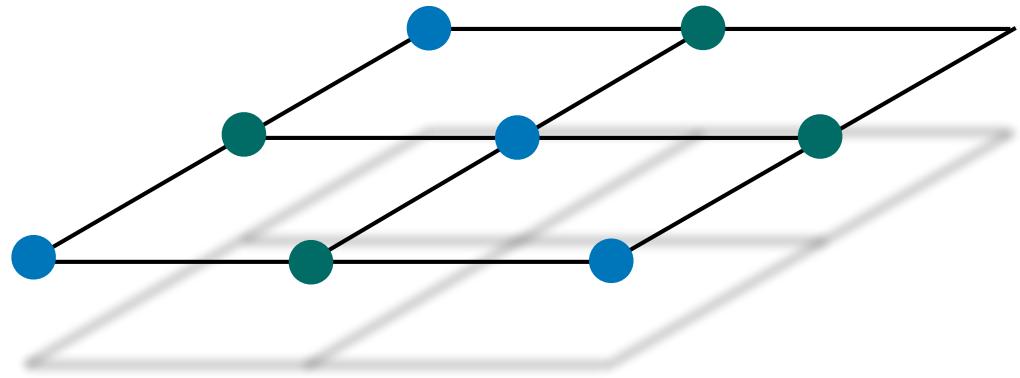
$$H_{\text{NLS}} + H_{\text{field}} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k}, \ell} b_{\mathbf{k}, \ell}^{\dagger} b_{\mathbf{k}, \ell}$$

Collective field

$$Q_{n\mathbf{k}}^q = \sum_{\ell, q_1, z} \mathcal{A}_{\mathbf{k}}^{n, \ell | q_1 q} e^{i k_z z} b_{\ell, \mathbf{k}, z}^{q_1} + \frac{1}{\sqrt{N_{\text{uc}}}} \sum_{\substack{\mathbf{p}, \ell, \ell' \\ q_1, q_2, z}} \mathcal{B}_{\mathbf{k}; \mathbf{p}}^{n, \ell_1, \ell_2 | q_1 q_2 q} e^{i k_z z} b_{\ell_1, \mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_1} b_{\ell_2, -\mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_2}$$

Application to an antiferromagnet

For concreteness,
2d, layered



Spin waves

$$H_{\text{NLS}} + H_{\text{field}} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k}, \ell} b_{\mathbf{k}, \ell}^{\dagger} b_{\mathbf{k}, \ell}$$

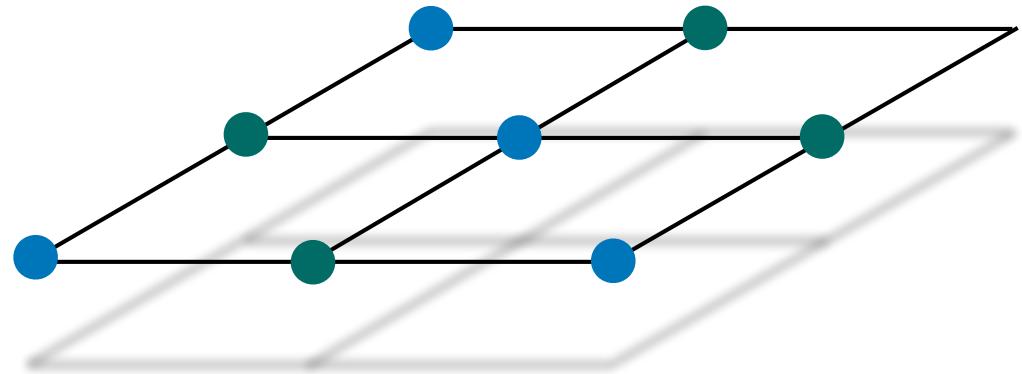
Collective field

$$Q_{n\mathbf{k}}^q = \sum_{\ell, q_1, z} \cancel{\mathcal{A}_{\mathbf{k}}^{n, \ell, q_1, z} e^{i k_z z} b_{\ell, \mathbf{k}, z}^{q_1}} + \frac{1}{\sqrt{N_{\text{uc}}}} \sum_{\substack{\mathbf{p}, \ell, \ell' \\ q_1, q_2, z}} \mathcal{B}_{\mathbf{k}; \mathbf{p}}^{n, \ell_1, \ell_2 | q_1 q_2 q} e^{i k_z z} b_{\ell_1, \mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_1} b_{\ell_2, -\mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_2}$$

Negligible phase space

Application to an antiferromagnet

For concreteness,
2d, layered



Spin waves

$$H_{\text{NLS}} + H_{\text{field}} = \sum_{\ell} \sum_{\mathbf{k}} \Omega_{\mathbf{k}, \ell} b_{\mathbf{k}, \ell}^{\dagger} b_{\mathbf{k}, \ell}$$

Collective field

$$Q_{n\mathbf{k}}^q = \sum_{\ell, q_1, z} \mathcal{A}_{\mathbf{k}}^{n, \ell, q_1, z} e^{i k_z z} b_{\ell, \mathbf{k}, z}^{q_1} + \frac{1}{\sqrt{N_{\text{uc}}}} \sum_{\substack{\mathbf{p}, \ell, \ell' \\ q_1, q_2, z}} \mathcal{B}_{\mathbf{k}; \mathbf{p}}^{n, \ell_1, \ell_2 | q_1 q_2 q} e^{i k_z z} b_{\ell_1, \mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_1} b_{\ell_2, -\mathbf{p} + \frac{q}{2} \mathbf{k}, z}^{q_2}$$

X Negligible phase space Structure hidden here

General result

- Diagonal scattering rate:

$$D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{\text{uc}}^{2d}} \sum_{\mathbf{p}} \sum_{\ell, \ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{n\mathbf{k}})}{\sinh(\frac{\beta}{2}\hbar\Omega_{\ell, \mathbf{p}}) \sinh(\frac{\beta}{2}\hbar\Omega_{\ell', \mathbf{p}-\mathbf{k}})} \delta(\omega_{n\mathbf{k}} - \Omega_{\ell, \mathbf{p}} - s\Omega_{\ell', \mathbf{p}-\mathbf{k}}) \left| \mathcal{B}_{\mathbf{k}; -\mathbf{p} + \frac{\mathbf{k}}{2}}^{n, \ell, \ell' | +s -} \right|^2$$

- Skew scattering rate:

$$\begin{aligned} \mathfrak{W}_{n\mathbf{k}, n'\mathbf{k}'}^{\ominus, qq'} &= \frac{64\pi^2}{\hbar^4} \frac{1}{N_{\text{uc}}^{2d}} \sum_{\mathbf{p}} \sum_{\{\ell_i, q_i\}} \mathfrak{D}_{q\mathbf{k}q'\mathbf{k}', \mathbf{p}}^{nn' | q_1q_2q_3, \ell_1\ell_2\ell_3} \mathfrak{F}_{q\mathbf{k}q'\mathbf{k}', \mathbf{p}}^{q_1q_2q_4, \ell_1\ell_2\ell_3} \text{Im} \left\{ \mathcal{B}_{\mathbf{k}, \mathbf{p} + \frac{1}{2}q\mathbf{k} + q'\mathbf{k}'}^{n\ell_2\ell_3 | q_2q_3q} \mathcal{B}_{\mathbf{k}', \mathbf{p} + \frac{1}{2}q'\mathbf{k}'}^{n'\ell_3\ell_1 | -q_3q_1q'} \right. \\ &\times \text{PP} \left[\frac{\mathcal{B}_{\mathbf{k}, \mathbf{p} + \frac{1}{2}q\mathbf{k}}^{n\ell_1\ell_4 | -q_1q_4-q} \mathcal{B}_{\mathbf{k}', \mathbf{p} + q\mathbf{k} + \frac{1}{2}q'\mathbf{k}'}^{n'\ell_4\ell_2 | -q_4-q_2-q'}}{\Delta_{n\mathbf{k}n'\mathbf{k}'}^{qq'} + q_1\Omega_{\ell_1, \mathbf{p}} + q_2\Omega_{\ell_2, \mathbf{p} + q\mathbf{k} + q'\mathbf{k}'} - 2q_4\Omega_{\ell_4, \mathbf{p} + q\mathbf{k}}} + \frac{\mathcal{B}_{\mathbf{k}', \mathbf{p} + \frac{1}{2}q'\mathbf{k}'}^{n'\ell_1\ell_4 | -q_1-q_4-q'} \mathcal{B}_{\mathbf{k}, \mathbf{p} + \frac{1}{2}q\mathbf{k} + q'\mathbf{k}'}^{n\ell_4\ell_2 | q_4-q_2-q}}{\Delta_{n\mathbf{k}n'\mathbf{k}'}^{qq'} - q_1\Omega_{\ell_1, \mathbf{p}} + q_2\Omega_{\ell_2, \mathbf{p} + q\mathbf{k} + q'\mathbf{k}'} - 2q_4\Omega_{\ell_4, \mathbf{p} + q'\mathbf{k}'}} \right] \left. \right\} \end{aligned}$$

$$\mathfrak{D}_{q\mathbf{k}q'\mathbf{k}', \mathbf{p}}^{nn' | q_1q_2q_3, \ell_1\ell_2\ell_3} = \delta \left(\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{qq'} + q_1\Omega_{\ell_1, \mathbf{p}} + q_2\Omega_{\ell_2, \mathbf{p} + q\mathbf{k} + q'\mathbf{k}'} \right) \delta \left(\Delta_{n\mathbf{k}n'\mathbf{k}'}^{qq'} + 2q_3\Omega_{\ell_3, \mathbf{p} + q'\mathbf{k}'} - q_1\Omega_{\ell_1, \mathbf{p}} + q_2\Omega_{\ell_2, \mathbf{p} + q\mathbf{k} + q'\mathbf{k}'} \right),$$

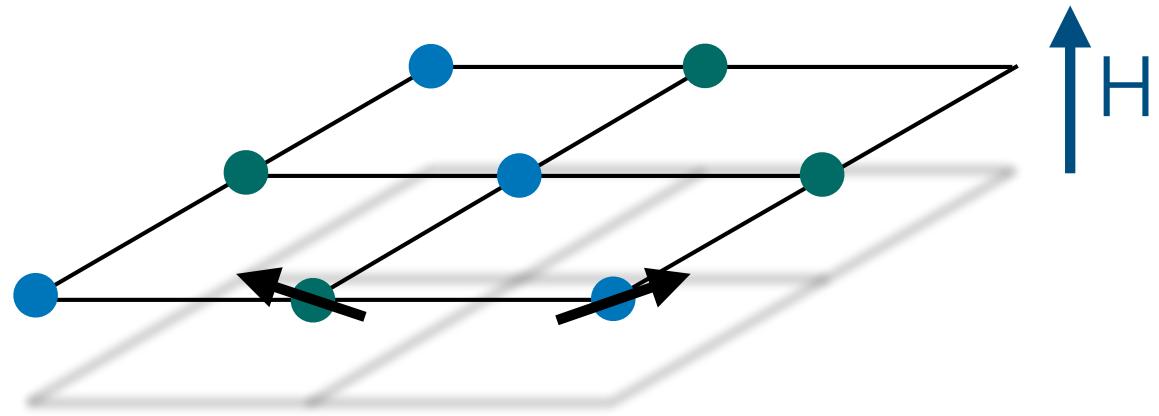
$$\mathfrak{F}_{q\mathbf{k}q'\mathbf{k}', \mathbf{p}}^{q_1q_2q_4, \ell_1\ell_2\ell_3} = q_4 (2n_B(\Omega_{\ell_3, \mathbf{p} + q'\mathbf{k}'}) + 1) (2n_B(\Omega_{\ell_1, \mathbf{p}}) + q_1 + 1) (2n_B(\Omega_{\ell_2, \mathbf{p} + q\mathbf{k} + q'\mathbf{k}'}) + q_2 + 1).$$

Could be applied to any magnet

Continuum magnons

Hamiltonian

$$\mathcal{H}_{\text{NLS}} = \frac{\rho}{2} (|\nabla n_y|^2 + |\nabla n_z|^2) + \frac{1}{2\chi} (m_y^2 + m_z^2) + \sum_{a,b=y,z} \frac{\Gamma_{ab}}{2} n_a n_b$$



Spin-lattice coupling

$$\mathcal{H}_{\text{S-L}} = \sum_{\substack{\alpha, \beta \\ a, b = x, y, z}} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \left(\Lambda_{ab}^{(n), \alpha\beta} n_a n_b + \frac{\Lambda_{ab}^{(m), \alpha\beta}}{n_0^2} m_a m_b \right) \Big|_{\mathbf{x}, z} \quad |\mathbf{n}|^2 + \frac{\mathbf{a}^4}{\mu_0^2} |\mathbf{m}|^2 = 1, \quad \mathbf{m} \cdot \mathbf{n} = 0.$$

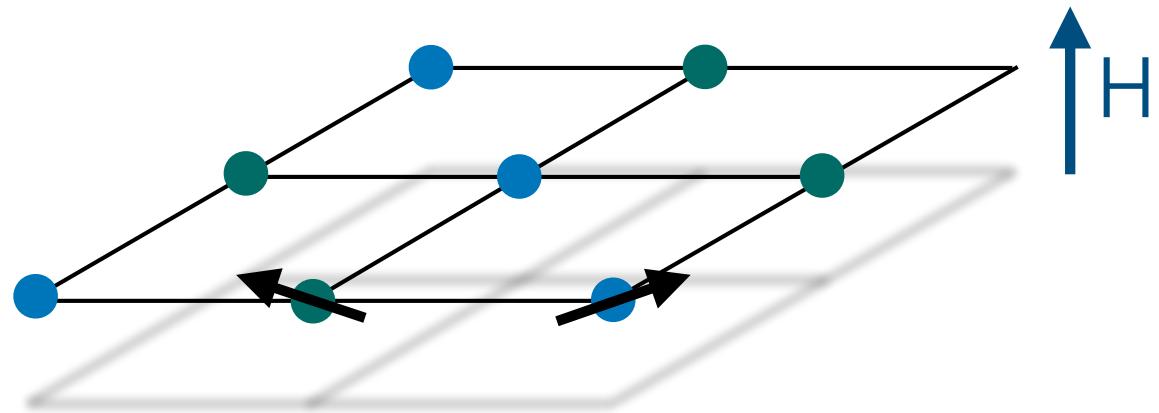
Solve NLSM constraints, expand around canted state

$$\mathcal{H}_{\text{S-L}} \approx \sum_{\alpha\beta} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \sum_{a,b=y,z} \sum_{\xi, \xi' = m, n} \lambda_{\xi_a, \xi'_b}^{\alpha\beta} n_0^{-\xi - \xi'} \xi_{a\mathbf{r}} \xi'_{b\mathbf{r}}$$

Continuum magnons

Hamiltonian

$$\mathcal{H}_{\text{NLS}} = \frac{\rho}{2} (|\nabla n_y|^2 + |\nabla n_z|^2) + \frac{1}{2\chi} (m_y^2 + m_z^2) + \sum_{a,b=y,z} \frac{\Gamma_{ab}}{2} n_a n_b$$



Spin-lattice coupling

$$\mathcal{H}_{\text{S-L}} = \sum_{\substack{\alpha, \beta \\ a, b = x, y, z}} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \left(\Lambda_{ab}^{(n), \alpha\beta} \mathbf{n}_a \mathbf{n}_b + \frac{\Lambda_{ab}^{(m), \alpha\beta}}{n_0^2} \mathbf{m}_a \mathbf{m}_b \right) \Big|_{\mathbf{x}, z} \quad |\mathbf{n}|^2 + \frac{\alpha^4}{\mu_0^2} |\mathbf{m}|^2 = 1, \quad \mathbf{m} \cdot \mathbf{n} = 0.$$

Solve NLSM constraints, expand around canted state

$$\mathcal{H}_{\text{S-L}} \approx \sum_{\alpha\beta} \mathcal{E}_{\mathbf{r}}^{\alpha\beta} \sum_{a,b=y,z} \sum_{\xi, \xi' = m, n} \lambda_{\xi_a, \xi'_b}^{\alpha\beta} n_0^{-\xi - \xi'} \xi_{a\mathbf{r}} \xi'_{b\mathbf{r}} \quad \text{n.b.}$$

Effective TRS breaking

m m
n n
m n

Scaling

- B coefficients: $\Omega \sim \omega \sim v_{\text{ph}} k \sim k_B T$

$$\mathcal{B} \sim \left(\frac{k_B T}{M v_{\text{ph}}^2} \right)^{\frac{1}{2}} n_0^{-1} \left(\lambda_{mm} \frac{\chi k_B T}{n_0} + \lambda_{mn} + \lambda_{nn} \frac{n_0}{\chi k_B T} \right) \sim T^{1/2+x}$$

smallness: ions are heavy. Antiferromagnet: order-parameter (n) has strongest correlations

- Diagonal scattering rate:

$$D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{\text{uc}}^{2d}} \sum_{\mathbf{p}} \sum_{\ell, \ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{n\mathbf{k}})}{\sinh(\frac{\beta}{2}\hbar\Omega_{\ell, \mathbf{p}}) \sinh(\frac{\beta}{2}\hbar\Omega_{\ell', \mathbf{p}-\mathbf{k}})} \delta(\omega_{n\mathbf{k}} - \Omega_{\ell, \mathbf{p}} - s\Omega_{\ell', \mathbf{p}-\mathbf{k}}) \left| \mathcal{B}_{\mathbf{k}; -\mathbf{p} + \frac{\mathbf{k}}{2}}^{n, \ell, \ell' | +s -} \right|^2$$

$$\frac{1}{\tau} \sim T^{d-1} |\mathcal{B}|^2 \sim T^{d+2x}$$

$\sim T^{d+2}, T^d, T^{d-2} ?$

Scaling

- B coefficients: $\Omega \sim \omega \sim v_{\text{ph}} k \sim k_B T$

$$\mathcal{B} \sim \left(\frac{k_B T}{M v_{\text{ph}}^2} \right)^{\frac{1}{2}} n_0^{-1} \left(\lambda_{mm} \frac{\chi k_B T}{n_0} + \lambda_{mn} + \lambda_{nn} \frac{n_0}{\chi k_B T} \right) \sim T^{1/2+x}$$

smallness: ions
are heavy.

Antiferromagnet: order-parameter
(n) has strongest correlations

- Diagonal scattering rate:

$$D_{n\mathbf{k}}^{(s)} = \frac{(3-s)\pi}{\hbar^2 N_{\text{uc}}^{2d}} \sum_{\mathbf{p}} \sum_{\ell, \ell'} \frac{\sinh(\frac{\beta}{2}\hbar\omega_{n\mathbf{k}})}{\sinh(\frac{\beta}{2}\hbar\Omega_{\ell, \mathbf{p}}) \sinh(\frac{\beta}{2}\hbar\Omega_{\ell', \mathbf{p}-\mathbf{k}})} \delta(\omega_{n\mathbf{k}} - \Omega_{\ell, \mathbf{p}} - s\Omega_{\ell', \mathbf{p}-\mathbf{k}}) \left| \mathcal{B}_{\mathbf{k}; -\mathbf{p} + \frac{\mathbf{k}}{2}}^{n, \ell, \ell' | +s -} \right|^2$$

$$\frac{1}{\tau} \sim T^{d-1} |\mathcal{B}|^2 \sim T^{d+2x}$$

$$\sim T^{d+2}, T^d, T^{d-2}$$

**Spin-phonon interactions in a Heisenberg antiferromagnet:
II. The phonon spectrum and spin-lattice relaxation rate**

M G Cottam
Department of Physics, University of Essex, Colchester CO4 3SQ, England

Received 11 March 1974

$$\frac{1}{\tau_{\text{SL}}} \simeq \frac{b_1 S^2 (r^2 - 1)}{D^{10}} \left(\frac{5 T_{\text{D}}^3}{12\pi^4} + \frac{\pi^2 D^3}{24V} \right) Q_0^2 T^5$$

Scaling: Hall

From the formula:

$$\mathfrak{W}^\ominus \sim T^{d-3} \mathcal{B}^4$$

Effective TRS breaking: one factor of m-n coupling:

$$\sim T^{d-1} \lambda_{mn} (\lambda_{mm} T + \lambda_{nn} T^{-1})^3 \sim T^{d-1+3x}$$

This gives Hall resistivity:

$$\varrho_H \sim \mathfrak{W}^{\ominus, \text{eff}} \sim T^{d-1+3x}$$

Check: numerical calculation

Many parameters: loosely inspired by Copper
Deuteroformate Tetra(deuterate) (CFTD)

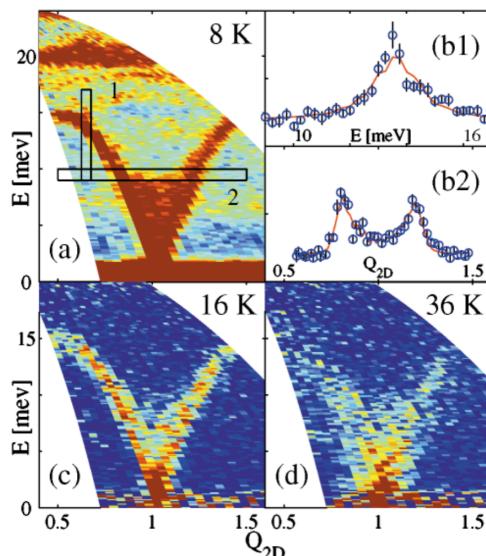
VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JULY 2001

Spin Dynamics of the 2D Spin $\frac{1}{2}$ Quantum Antiferromagnet Copper Deuteroformate Tetra(deuterate) (CFTD)

H. M. Rønnow,^{1,2} D. F. McMorrow,¹ R. Coldea,^{3,4} A. Harrison,⁵ I. D. Youngson,⁵ T. G. Perring,⁴ G. Aeppli,⁶ O. Syljuåsen,⁷ K. Lefmann,¹ and C. Rischel⁸



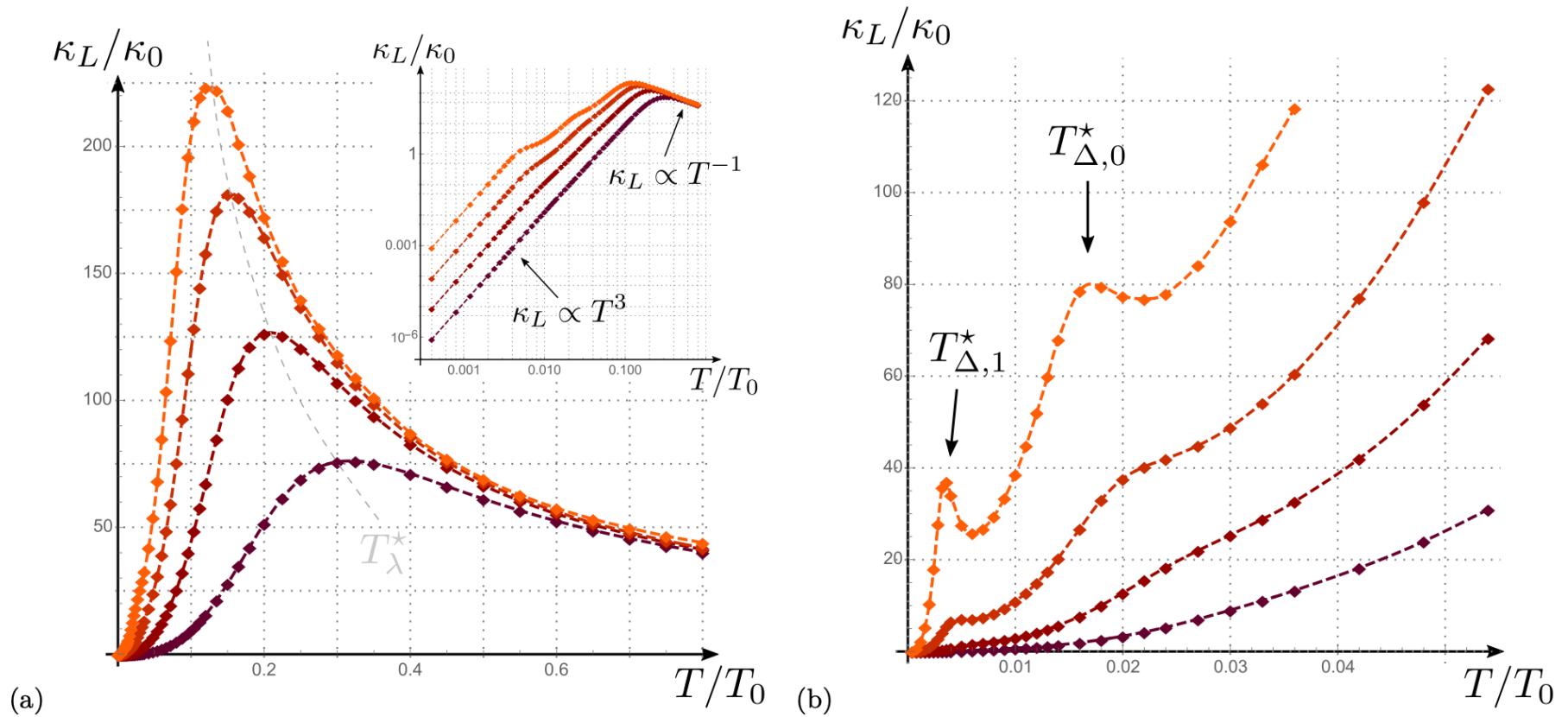
Good match of
magnon and phonon
phase space

$\frac{v_m}{v_{ph}}$	$\chi \epsilon_0 a^2$	n_0	$\frac{M_{uc} v_{ph} a}{\hbar}$	m_0^x	m_0^y	m_0^z	$\frac{\Delta_0}{\epsilon_0}$	$\frac{\Delta_1}{\epsilon_0}$
2.5	0.19	1/2	$8 \cdot 10^3$	0	0.0	0.05	0.2	0.04
					0.05	0.0		
ξ	$\Lambda_1^{(\xi)}$	$\Lambda_2^{(\xi)}$	$\Lambda_3^{(\xi)}$	$\Lambda_4^{(\xi)}$	$\Lambda_5^{(\xi)}$	$\Lambda_6^{(\xi)}$	$\Lambda_7^{(\xi)}$	
$n = 0$	12.0	10.0	14.0	10.0	12.0	0.6	0.8	
$m = 1$	-10.0	-12.0	-14.0	-12.0	-10.0	-0.8	-0.6	

TABLE I: Numerical values of the fixed dimensionless parameters used in all numerical evaluations. The upper and lower entries for m_0^y and m_0^z correspond to the two cases for calculating ϱ_H^{xy} and ϱ_H^{xz} , respectively.

The couplings $\Lambda_i^{(\xi)}$ are given in units of ϵ_0/a .

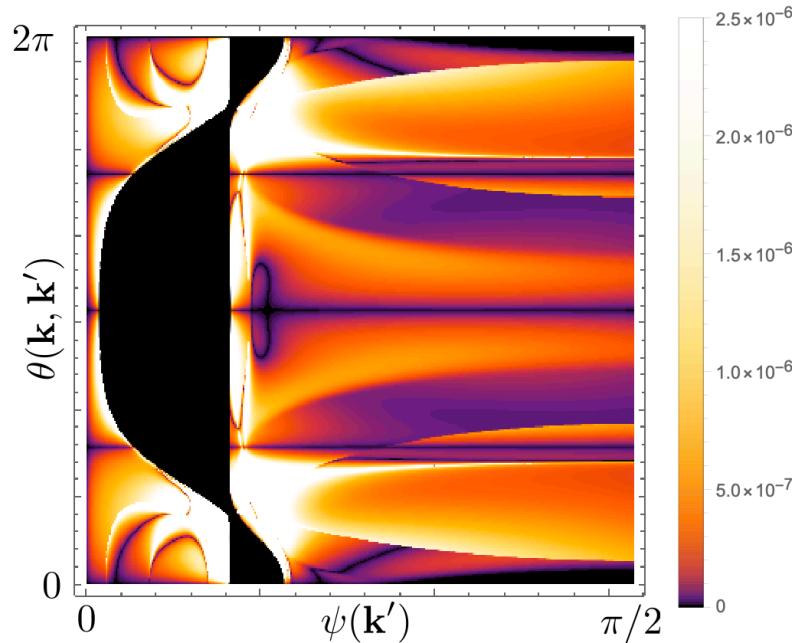
Diagonal conductivity



One can see Heisenberg regimes,
anisotropic regime, extrinsic regime

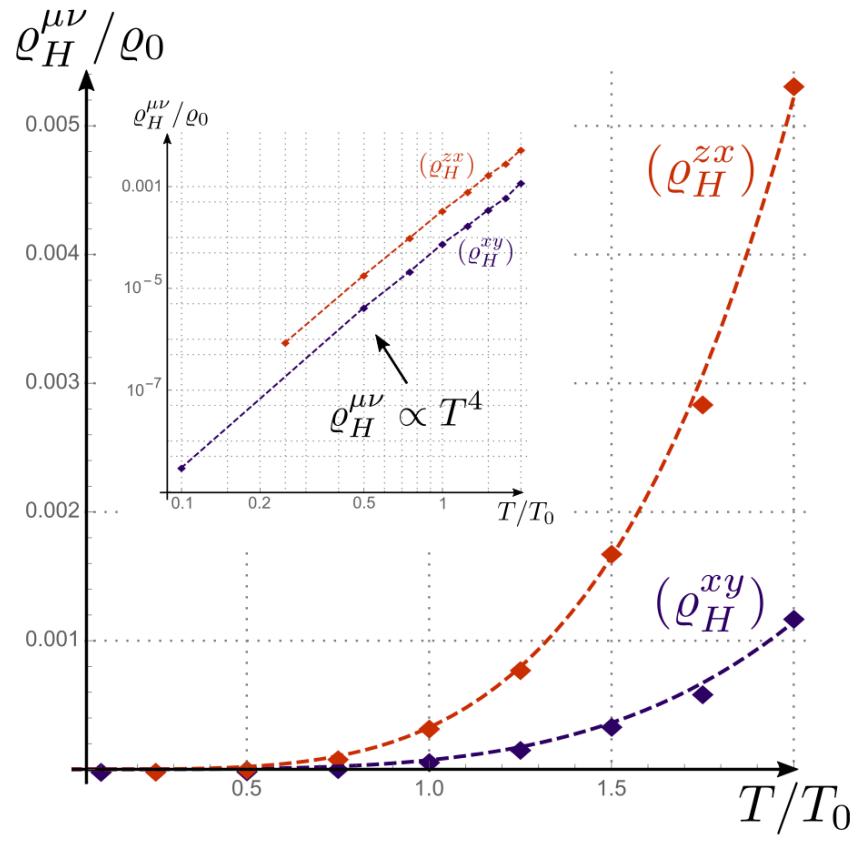
Skew scattering

Cut through the skew scattering rate:



A very complex object, lots of phase space features

Thermal Hall resistivity



Observe T^4 behavior
(Heisenberg regime)

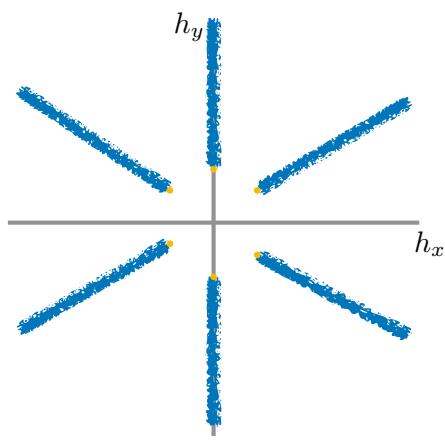
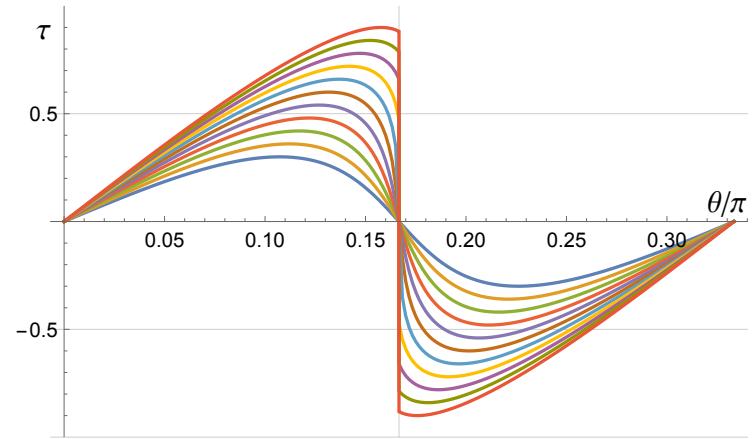
Larger effect with current perpendicular to plane,
even though we took
the magnetism *strictly*
2d (magnons do not
propagate in z direction)

$$\kappa_0 = \tilde{k}_B v_{\text{ph}} / \alpha^2$$

$$\rho_0 = \kappa_0^{-1}$$

$$\kappa_0^{\text{CFTD}} = 0.17 \text{ W}\cdot\text{K}^{-1}\cdot\text{m}^{-1}$$

Thanks



$$\mathfrak{W}_{n\mathbf{k}n'\mathbf{k}'}^{\ominus,qq'} = \frac{2N_{\text{uc}}}{\hbar^4} \Re e \int_{t,t_1,t_2} e^{i[\Sigma_{n\mathbf{k}n'\mathbf{k}'}^{q,q'} t + \Delta_{n\mathbf{k}n'\mathbf{k}'}^{q,q'}(t_1+t_2)]} \text{sign}(t_2) \left\langle \left[Q_{n\mathbf{k}}^{-q}(-t-t_2), Q_{n'\mathbf{k}'}^{-q'}(-t+t_2) \right] \left\{ Q_{n'\mathbf{k}'}^{q'}(-t_1), Q_{n\mathbf{k}}^q(t_1) \right\} \right\rangle$$

