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Mn3Sn

large ordered

C 0 . .
antiferromagnetic
moment
~ 2 Us /Mn
© R @ K @ e tiny FM moment:
[1210] [0001]
.002 MB/Mn

two kagomé layers of
Mn, related by inversion

Tn ~ 420K

Nagamiya et al, 1982
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Why such a tiny moment?

Why such small coercive field?



Energetics: triangle

' E=J(Si-So+Ss-S3+S5-51)
+D% - (S1 x Sy + So x S3+ S5 x S)
—KZ(m-Si)Z

Jianpeng Liu + LB, 2017

J > D> K Hierarchy of interactions

® J: spins at 120° angles and M=0

® D: spins are “anti-chiral” in XY plane

® K: weak canting toward easy axes creates tiny
moment and fixes in-plane angle



Energetics: triangle

' E=J(Si-So+Ss-S3+S5-51)
+D% - (S1 x Sy + So x S3+ S5 x S)
—KZ(m-Si)2

Jianpeng Liu + LB, 2017

J > D> K Hierarchy of interactions

® J: spins at 120° angles and M=0 L iics:

in-space group

® D: spins are “anti-chiral” in XY plane
® K: weak canting toward easy axes creates tiny
moment and fixes in-plane angle



Energetics: triangle

' E=J(Si-So+Ss-S3+S5-51)
+D% - (S1 x Sy + So x S3+ S5 x S)
—KZ(m-Si)2

Jianpeng Liu + LB, 2017

J > D> K Hierarchy of interactions

® J: spins at 120° angles and M=0 L iics:

in-space group

® D: spins are “anti-chiral” in XY plane
® K: weak canting toward easy axes creates tiny
moment and fixes in-plane angle



Energetics: triangle

' E=J(Si-So+Ss-S3+S5-51)
+D% - (S1 x Sy + So x S3+ S5 x S)
—KZ(m-Si)2

Jianpeng Liu + LB, 2017

J > D> K Hierarchy of interactions

K .
mo = —ms  Uniform moment

In-plane anisotropy



Torque

a Torque magnetometer
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Notice the evolution from
sinusoidal to sawtooth




First explanation

Extension of our expansion from 2017 -

1004 %= 3 ug
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Angular transitions

A little simpler picture

Heisenberg model

J 1 \?
B = = _ _h
) 2(51+SQ+53 ; )

"Order by disorder”: thermal and quantum fluctuations
favor coplanar states

\ Figure 1. Reorientation process in the magnetic
field in 20 Heisenberg AFM on a triangular lattice.
Zero-point fluctuations stabilize the collinear

¥ phase in the finite region H <H < H, in the
HeH, /3 HzHen /3 Hog/3<HeH gy vicinity of H,/3.

H

A. Chubukov and I. Golosov, 1991



Energy and symmetries:
Heisenberg limit

(Sn) = Re [de%;n} d-d=0.
1 d=u+1v

SO3) S, — 08,

S3 Sn — SP(n)

Fio — ¢1|h - d|? + coRe [(h - d)ﬂ +O(h)

Selects plane  Selects angle in plane

c1 <0 co > 0



Anti-chiral state
Favored by D>0

2,

counter-clockwise rigid rotation = clockwise spin rotation

dy =dy +id, hy = hy +ih,

Re[ hy d4] is an invariant



Full angular free energy

d, = ne'? -
hy = he®
d_=d, =0
| Zero field anisotropy
n (Negligible)
| fr = —wcos6p — uhcos(d + 0) — vh3 cos 3(¢ — 6)
| Anti-chiral Heisenberg /

magnetization response

4!




Full angular free energy

d. = ne'® -
‘|‘ h—|- — he’l,e
d_=d, =0
.}\ fo= — uh Cos(qﬁ -+ (9) — vh? cos 3(@75 — 6)
“ Anti-chiral Heisenberg /

magnetization response
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small h: small h:

¢~ —0 ¢~ 0



Angular evolution
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Angular evolution




Angular evolution




Angular evolution

Lo="+

h>hcri’c

Jumps at

s wm
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How do the jumps onset?
Y =¢+0, 9:77/6—|—5 r = \/v/uh?

f

_h — —cosY + x cos 60 cos 3y + x sin 60 sin 3
U

= — cos Y + x cos 3y (6 =0)
_ Fo -

\ / Ising transition
\ / Y at x=1/9

Se——

0 acts as symmetry breaking field



Phase diagram




Phase diagram

What symmetry is broken along the lines?



Mn3Sn structure
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Torque

a Torque magnetometer

_ }fh; ot =~ B = Sample df
Metal cantilever EY > 28

N | — A/Metal plate
do

101 b —=—1T —+—2T —+—3T —+4T—+—-5T —<+—6T |

Discontinuities for h>h.




Estimate

Ry |

Classical, T=0

= J++V3D |K
‘ 9B D

~ 20T
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MAGNETISM

Singular angular magnetoresistance
in a magnetic nodal semimetal

T. Suzuki’, L. Savary“>3, J.-P. Liu>*, J. W. Lynn®, L. Balents?, J. G. Checkelsky*

57t

noH=22T
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Would be interesting to search for

transport signatures in Mn3Sn



Thermal Hall effect

® Motivation: a probe of exotic phases. In
insulators, “must” come from electrons

T4

]:c s I{HATy

R EEEEEEEE——————.
T a universal prediction for chiral
2 ch%T P

K = “Ising anyon” phase: agnostic to

6h

microscopic spin interactions



honons
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Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate a-RuCl;

E. Lefrancois,' G. Grissonnanche,! J. Baglo,' P. Lampen-Kelley,>3 J. Yan,2 C. Balz,* *
D. Mandrus,>3 S. E. Nagler,* S. Kim,? Young-June Kim,> N. Doiron-Leyraud,' and L. Taillefer!®



Two types of eftects

Phonon Boltzmann
® Phonons are good quasiparticles equation

Convective derivative. Dynamics.

® Non-dissipative effects: )
mo.dif?c.ations of ir.wtrinsfic dynamics » Dyip = F[p]
of individual quasiparticles, e.qg.
Berry phase effects, etc.

® Dissipative effects: modifications
of scattering of quasiparticles




® Basically, this is “skew scattering” of phonons

® \We ask how this arises through coupling to electronic degrees
of freedom

® Transition matrix in full many-body space of phonons+electrons:

(f|H'|n)(n|H'|1)
Ti ¢ =Te; = (f|H'|1
— 1 f (£ +Z B, — E, +in +--

Important point: 1st order term is Hermitian, so 1st
order T-matrix is effectively time-reversal invariant

1 No Hall effect at leading order.



From T-matrix to collision term

N

® Coupling Hamiltonian H' = %; ( Qe T ankQ;:Q) pfj:o?iec?g;i;zg?;r;ic

® Full transition rate | PE— 2% ITi ¢ |*6(E; — Es). Dbi; = _ZLS?_ﬁEif
® Phonon transition rate zp_”cp ZI‘I_ﬁ Di.,

® Master equation Cnk = zpz;p Li,— s, (Nnk(fp) — Nak(ip)) pi,

In this way we can construct Cy for any “spin” subsystem



Scattering rates

commutator anti-commutator

1 : e,qq/ — _,B(qwnk'i‘q,wn/ ’) ea_q_q/
Anti-detailed balance W, e = — € SR |



Thermal Hall effect

Anti-symmetric part

W w S,+, W yey
MY Z p Pl Z (eFMeme — eaPluonnr) Wk ohe | ePwnne /2
H kBT2 V nk 2D,k sinh (Bhwnk /2) sinh(Bhwn/k /2)

B __ areq w
Jnk _ Nnk wnkvnk



Thermal Hall effect

Anti-symmetric part

" Bhwnic/2 (eBhewnme — eaBhwnne) R ) eBhw e /2

h? o1 y 1
Ky = kBTZVng;k, T i (Nuc qzz:isinh(ﬁhwnkﬂ) sinh(Bhwnic /2)

po _ aredq p
Jnk _ Nnk wnkvnk

Basicidea  #VT = _l(m _ 1 on
T Tskew
onm=—7#VI — LY
Tskew
-2
~ —T#VI1 — #VT

Tskew



Thermal Hall effect

Conductivity versus resistivity

7'2 Sensitive to all ordinary
Rg ~ scattering mechanisms.
Tskew Very non-universal
KH 1 Only sensitive to skew
OH ~ ——5 scattering. A better
K Tskew J

quantity to studly.

OH ~ pO-eft Indeed follows from our formulae



Many-body skew scattering

2N,

u i[naa’ a,q’ . _ —d /
C me / e [ann’k/t+A71k1L'k, (t1+t2)]81gn(t2) <|:in((l(—t —_ tz)’ Q’I’L/qk’ (_t + t2)] {Q’?’le/ (_tl), Qf,q@k(tl)}>
t.t1.t2

me,qq' —
nkn’k’ h4

What good is it?

* In principle, this can be applied for any Q,
could be e.g. quantum critical field etc.

® Can be used to analyze symmetries, ala
Onsager

* That said, it is very hard to calculate such real-
time correlation functions...maybe with a
quantum simulator?



Application to an

antiferromagnet

For concreteness,
2d, layered

Spin waves

Hnis + Hfielda = Z Z Qk,EbLTc,ebk,e
¢k

Collective field

n,f|q1q etk=2pd1
nk_ EA b!sz

£,q1,z

ﬁZB

Q1 CI2Z

n,l1,02|q1929 zk 22p 71 e
£ p—l—qkz Lo, p-l-qkz



Application to an
antiferromagnet

For concreteness,
2d, layered

Spin waves

Hnis + Hfielda = Z Z Qk,EbL,ebk,e
¢k

Collective field

q __ Z An Mg, + ZBn,£1,£2|Q1Q2q ezkzzbth p42
= 2 — : g —p+ 4
nk b /Nuc ) k;p elap+2kyz L3, p—|—2k,z
£,q1 v ol £,e
q1,92,2z
Negligible phase space



Application to an
antiferromagnet

For concreteness,
2d, layered

Spin waves
Hynis + Hfeld = Z Z Qk,ﬁbi,ebk,e
¢k

Collective field

B Ry . .. 1 ‘ )
q __ Ana gV, + Bn,gl,eiﬂ(hth zkzzbth bQ2
= % —_— (&
nk E : k g, K, § : k; L1, p+21k,z 4y, —p+1k,2
o V Nyc o LR 7Pt
’ T gy 7£7£
d - 91,92,z

Negligible phase space



General result

* Diagonal scattering rate:

nk — £2a72d . B ] B nk P P— k;—p+k
RN g oo Sinh(578p) sinh(5hQ pxk) 2
e Skew scattering rate:
' 6472 1 / 01028 140 I, 050 /
W9 — Z Z D" 919203,4162¢3 Fa19294,606205 g, ) gt sle2gsq  ppndsli|—qsqig
nk,n’k’ R4 N2d qgkq’k’,p gkq'k’,p k,p+3gk+q’k’ " k/,p+3q'k’
ue p {E’qu}
anl&|—Q1Q4—an'€452|—CI4—Q2—Q' Bn1£1£4|_Q1_Q4_q/Bn£4e2|Q4_Q2_q
o PP[ k,p+ 3 gk k’/,p+gk+3q'k’ k', p+3q'k’ k,p+ 3 gk+q'k’ ]
/ qq/
Afnne T 01 p — @2, proxtai — 201, prak  Abine — ©1%,p + 02 praktak — 2640, ptak

nn'|q192q3,01424 ! qq’
quq!kl’,;) TR =4 (Egz(fcn’k’ +q1€, p + Q2Q€2,p+qk+q’k’) 0 (Ankn’k' + 23, ,p+q'k — 18, ,p + Q2Q€2,p+qk+q’k’) ’

gic?’i%:f)leﬂs = ¢4 (2nB(Qe;,p+¢w) +1) (2nB(Qe,,p) + @1 + 1) (2nB(Qe, praktrr) + 92+ 1)

Could be applied to any magnet



Continuum magnons

Hamiltonian

HNus = L (|Zny|2 +|Vn,|?)

1 T,
+2X(m +m?) + Z Tbnanb.

a,b=y

Spin-lattice coupling

(m),ap

A 2, @ 2 _ o
HS—I — E gl?éﬁ (At(lr;),aﬁnanb_l_a;—2mamb) In| +M—g|m| =1, m - n = 0.
a,ﬂ O x’z
a,b:m7y’z

Solve NLSM constraints, expand around canted state

HoamTet 5 % g e

a,b=y,z £,£'=m,n



Continuum magnons

Hamiltonian

HNLs = o (|V”y|2 +|Vn.|?)

1
+2X(m +m?) + —nanb

Spin-lattice coupling

o [ x ()08 AP n2+ S m?=1, m-n=0
HS_I p— Z (C:r Aab ngng + an2 m,my 2 ) .
B

0

X,z
a,b=x,y,z

Solve NLSM constraints, expand around canted state

m m

Hs 1~ ZEQB Z Z ’\ga,gfnog ¢ Earpr n.b.

a,b=y,z £,£'=m,n

Effective TRS breaking l



Scaling

® B coefficients: d~w~ vk ~ kT

1
kBT 2 1 ( Xk'BT no ) 1
(M’Ugh) "o no T T xksT T

smallness: ions  Antiferromagnet: order-parameter
are heavy. (n) has strongest correlations

* Diagonal scattering rate: o 6 orgy s 0 e

RN * sinh(2rQy p) sinh (27 p_i) ki—p+%

l ~ Td—1|B|2 ~ Td+2:l:

T

~ Td+2, Td, Td2 ?



Scaling

® B coefficients: d~w~ vk ~ kT
2 k
kBT 2 X BT no )
B ~ : (Amm— A’m/n >\nn g 1/2—}-.’11
MvZy "o no T T xksT T

smallness: ions  Antiferromagnet: order-parameter
are heavy. (n) has strongest correlations

2

* Diagonal scattering rate: g 6 oryy sl 0 e

RN sinh(4 1€, p) sinh (5 hQ p_x) ki—p+%

p ¢

1 Spin—phonon interactions in a Heisenberg antiferromagnet:

d_ 1 2 d + 2 T I1. The phonon spectrum and spin-lattice relaxation rate
= ~TYBR ~ T
M G Cottam
7_ Department of Physics, University of Essex, Colchester CO4 3SQ, England
Received 11 March 1974
~ Td+2
I

10
TsL D

1 b,S2% —1)/5T3 w2D*\ .,
ot T 22y | QT



Scaling: Hall

From the formula:

QU@ -~ Td—3B4
Effective TRS breaking: one factor of m-n coupling:

~ T N T + Agn T 1) ~ 471432

This gives Hall resistivity:

OH ~ Qﬂ@,eff ~ Td—1—|—333



Check: numerical calculation

Many parameters: loosely inspired by Copper
Deuteroformate Tetradeuterate (CFTD)

VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 Jury 2001

Spin Dynamics of the 2D Spin % Quantum Antiferromagnet Copper Deuteroformate

Tetradeuterate (CFTD)

H. M. Rgnnow,!? D. E. McMorrow,! R. Coldea,>* A. Harrison,’ L. D. Youngson,5 T.G. Pern'ng,4 G. Aeppli,6

b 1)
M\ (
Mo

0 E[meV)

16

O. Syljussen,” K. Lefmann,! and C. Rischel®

Good match of
magnon and phonon
phase space

:j"; Xx€oa® no 71\4“:1,1,1: mg m§ m§ %? %}1
, 0.0 0.05
2.5 0.19 1/2 8-10 0 0.2 0.04
0.05 0.0
¢ Agﬁ) Agé) A:(f) Az(f) Agﬁ) Aéé) A;f)
n=0| 12.0 10.0 14.0 10.0 12.0 0.6 0.8
m=1{—10.0 —12.0 —14.0 —12.0 —10.0 —0.8 —0.6

TABLE I: Numerical values of the fixed dimensionless
parameters used in all numerical evaluations. The
upper and lower entries for m$§ and m§ correspond to
the two cases for calculating o7’ and ¢%7, respectively.

The couplings Agg) are given in units of €y/a.



Diagonal conductivity
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One can see Heisenberg regimes,
anisotropic regime, extrinsic regime



Skew scattering

Cut through the skew scattering rate:

2m [

0(k, k')

| 1.5x107°
1.0x1076
H50x107
- §

A very complex object, lots of phase space features




Thermal Hall resistivity
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Observe T4 behavior

(Heisenberg regime)

Larger effect with current
perpendicular to plane,
even though we took
the magnetism strictly
2d (magnons do not
propagate in z direction)

_ 1. 2
ko = kpvpn/a

o —1
00 = Ky

kGETP = 0.17 W-K~1.m™!
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