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Theorist’s view
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Coupling to the lattice

Coupling to itinerant electrons


Mulipolar, multi-spin interactions

Applied fields


…

Ising = ±1

Vectors


Quantum operators

Materials design: find good choices of Jij , Si (+…)
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FIG. 1. The prototype structure KV3Sb5 (a) crystallizes in the P6/mmm space group and exhibits a layered structure of V-Sb sheets
intercalated by K. The vanadium sublattice is a structurally perfect kagome lattice. There are two distinct Sb sublattices. The sublattice formed
by the Sb1 atom is a simple hexagonal net, centered on each kagome hexagon. The Sb2 sublattice creates a graphenelike Sb sheet below
and above each kagome layer. Bond distances for the V-V, V-Sb, and Sb-Sb nearest-neighbor interactions are also shown. Fourier-filtered,
false-colored atomic resolution TEM (b) is able to partially decouple the Sb sublattices (orange) from the K-V (red and purple) sublattices.
While we cannot mathematically separate the K and V sublattices during Fourier analysis, the large ionic radius of K is evident from visual
inspection alone.

structural prototype. We also provide evidence for the dein-
tercalation of potassium in KV3Sb5. Afterward, we provide
an extensive overview of the electronic structure in all three
materials, examining the electron band diagrams, density
of states, and crystal orbital Hamilton population. We have
focused our experimental characterization efforts on KV3Sb5,
examining magnetization, neutron scattering, and heat ca-
pacity experiments on polycrystalline powders. The effect of
deintercalation on single-crystal resistivity measurements is
also investigated.

A. Discovery and crystal structure

The discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5
emerged from our search for new transition-metal Zintl an-
timonides for thermoelectric applications [29,30]. The proto-
type KV3Sb5 was first isolated in powders, and the structure
was solved using charge-flipping methods on powder diffrac-
tion data. The resulting Rietveld refinement and associated
crystallographic information are shown in Fig. S1 of the
Supplemental Material [31]. Once we had identified KV3Sb5
as a new prototype structure, we explored all combinations
of (K,Rb,Cs)(V,Nb,Ta)(Sb,Bi) under a variety of synthesis
conditions. Only KV3Sb5, RbV3Sb5, and CsV3Sb5 crystallize
in the KV3Sb5 prototype. We did not attempt synthesis of the
arsenide analogs due to toxicity concerns.

To validate the structures and to provide a more robust plat-
form for future studies, we developed single-crystal syntheses
for all three materials—details are outlined in Sec. II. Crystals
recovered from flux growths are thin (10–100 microns), silver-
colored platelets. The crystals range from 1 mm × 1 mm to
5 mm × 5 mm in area. The platelets will often exhibit natural
hexagonal faceting. All materials are easily deformed, and the
platelets show a natural tendency to exfoliate (Fig. S2) [31].

A summary of crystallographic parameters and refine-
ment statistics obtained from single-crystal x-ray diffraction
(SCXRD) for all three materials are provided in Tables S1–S4
of the Supplemental Material [31]. For KV3Sb5, we have in-
cluded two refinements, one for the crystals grown in a KSb2-
KSb flux (etched in HNO3) and another for crystals grown in
a KSb2-Sb flux (etched in water). A selection of precession

images collected from the SCXRD for KV3Sb5 is also shown
in Fig. S3 [31]. Consistent with the powder diffraction data,
we find that KV3Sb5, RbV3Sb5, and CsV3Sb5 crystallize in
the hexagonal P6/mmm space group. All compounds consist
of V-Sb slabs intercalated by alkali-metal cations [Fig. 1(a)].
Most notably, the vanadium sublattice forms a structurally
perfect 2D kagome net. KV3Sb5 is a new kagome prototype
structure, and is one of the smallest and simplest examples of
a kagome lattice.

Due to the high symmetry of the P6/mmm space group
and the small unit cell, the KV3Sb5 prototype only possesses
three structural degrees of freedom (a and c lattice param-
eters, z-coordinate on Sb2). An intuitive description of the
KV3Sb5 prototype structure can be obtained by decomposing
the structure into the individual atomic sublattices created by
the atomic basis: K1, V1, Sb1, and Sb2. Figure 1(a) shows the
V1 + Sb1 and Sb2 sublattices alongside the overall structure
of KV3Sb5. As mentioned before, the vanadium sublattice is a
structurally perfect kagome net. The kagome net of vanadium
is interwoven with a simple hexagonal net formed by the
Sb1 sites. From a space-filling perspective, the Sb1 atoms
fill the natural gap formed in the kagome plane, which is
reminiscent of Herbertsmithite [ZnCu3(OH)6Cl2], where Zn
ions occupy the centers of the kagome hexagons. The Sb2
layers at c ∼ 0.25 and 0.75 form graphenelike networks of Sb
that sandwich the kagome layer. Each V-Sb slab is separated
by a simple hexagonal net of K formed by the K1 site.

In addition to the PXRD and SCXRD results, we also per-
formed atomic resolution transmission electron microscopy
(TEM) for platelets of KV3Sb5. Figure 1(b) shows the ex-
pected structure for KV3Sb5 along the [001] direction along-
side a Fourier-filtered, false-colored TEM micrograph. Using
Fourier-filtering, we were able to partially decouple the Sb
sublattices (orange) from the V and K sublattices (red). While
we were not able to mathematically decouple the V and K
sublattices during Fourier analysis, the large ionic radii of K
(purple) is quite apparent from visual inspection alone.

Despite the intercalated structure, powders, single crystals,
and densified pellets of KV3Sb5, RbV3Sb5, and CsV3Sb5
are remarkably stable. Samples are stable in air for >1 year
without decomposing or tarnishing. KV3Sb5 is stable under
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Design principle 1: get local 
moments

• Most magnetism in QMs 
comes from either 3d 
transition metal ions or 
4f rare earths.  These 
have relatively localized 
orbitals which don’t 
overlap strongly with 
neighbors and have 
strong Coulomb 
repulsion, which 
localizes electrons best. 



Local moments
• In 3d transition metals, 

usually magnetism is fairly 
isotropic, i.e. spins are 
“Heisenberg like”, because 
crystal fields split the d 
orbitals and spin-orbit 
coupling is relatively weak 
(Co is most common 
exception, when very 
localized).  Exchange 
interactions between spins 
vary from quite strong 
(1000K) to quite weak (1K).



Local moments
• In 4f lanthanides, spin-orbit 

coupling is dominant over 
crystal fields and so 
magnetic moments become 
large (incorporating orbital 
moment) and often very 
anisotropic (due to large 
SOC).  They have complex 
multiplet structures, and 
weak exchange interactions.  



QM Materials
• Quantum spin liquids 

and interesting 
insulating 
antiferromagnets


• ZnCu3(OH)6Cl2,      
a-RuCl3, Pr2Zr2O7, 
Cs2CuCl4, Yb2Ti2O7 



QM Materials
• Orbital degeneracy/spin-

orbit interaction


• RVO3,RCoO3,...


• Cd2Os2O7,Sr2IrO4, 
Na2IrO3, a-RuCl3…


• NaYbO2,TmMgGaO4,…

SOC increases with 
atomic number



Design principle 2: Frustration

• What is it? Competing multiple 
interactions that cannot be 
simultaneously satisfied

geometric 
frustration

exchange 
frustration



• Competition suppresses conventional 
ordered states: more exotic things are 
possible


• Fluctuating regimes


• Complex or quantum orders


• Spin liquids


• Unusual excitations

Why frustration?



Examples
Triangle based lattices

triangle kagome

pyrochlore fcc



Other interactions
• With more structured interactions, even non-geometrically 

frustrated lattices can show frustration

SxSx

S
y S

y S
zS

z

“Kitaev” terms in Na2IrO3, RuCl3…

Jackeli+Khalliulin, 2009

Spiral spin liquid in MnSc2S4

S. Gao et al, 2017



Ising systems
• Ising models


• Physically occurs when single ion has a doublet ground 
state and only one component couples strongly


• Requires significant spin-orbit coupling: some rare earths, 
Co, ...
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Wannier
• Triangular lattice Ising AF: macroscopic 

degeneracy (Wannier, 1950)

H = J

X

hiji

�i�j

�i = ±1

1 frustrated 
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⌦ = eS/kB

S ⇡ 0.34NkB



Wannier
• Triangular lattice Ising AF: macroscopic 

degeneracy (Wannier, 1950)

H = J

X

hiji

�i�j

�i = ±1

1 frustrated 
bond per 
triangle

⌦ = eS/kB

S ⇡ 0.34NkB

Somewhat close realization?

TmMgGeO4

H. Li et al, 2020
Degeneracy-breaking perturbations determine the low 

energy physics
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Spin ice
• Spins in Ho2Ti2O7, Dy2Ti2O7 have Ising doublets with 

dominant NN coupling Jzz enforcing classical 2in-2out 
“ice rules” for T < 1K

H ⇡ Jzz

X

hiji

S
z
i S

z
j



Spin ice
• rare earth pyrochlores Dy2Ti2O7, Ho2Ti2O7 with Ising 

doublet ground states

Local physics: L+S = J

Hion = �D

⇣
~Ji · n̂i
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flips between +-J 
states difficult 
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Spin ice
• Spins in Ho2Ti2O7, Dy2Ti2O7 have dominant NN Ising 

coupling Jzz enforcing classical 2in-2out “ice rules” for 
T < 1K



Spin ice
• Spins in Ho2Ti2O7, Dy2Ti2O7 have dominant NN Ising 

coupling Jzz enforcing classical 2in-2out “ice rules” for 
T < 1K
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.

Received 12 June 2012; accepted 22 February 2013;
published online 7 April 2013

References
1. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W.

Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7.
Phys. Rev. Lett. 79, 2554–2557 (1997).

2. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S.
Zero-point entropy in spin ice. Nature 399, 333–335 (1999).

3. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic
pyrochlore materials. Science 294, 1495–1501 (2001).

4. Ryzhkin, I. Magnetic relaxation in rare-earth oxide pyrochlores.
J. Exp. Theor. Phys. 101, 481–486 (2005).

5. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice.
Nature 451, 42–45 (2008).

6. Shannon, N., Sikora, O., Pollmann, F., Penc, K. & Fulde, P. Quantum ice: A
quantumMonte Carlo study. Phys. Rev. Lett. 108, 067204 (2012).

7. Pauling, L. The structure and entropy of ice and of other crystals with some
randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

8. Klemke, B. et al. Thermal relaxation and heat transport in the spin ice material
Dy2Ti2O7. J. Low Temp. Phys. 163, 345–369 (2011).

9. Higashinaka, R., Fukazawa, H., Yanagishima, D. & Maeno, Y. Specific heat
of Dy2Ti2O7 in magnetic fields: Comparison between single-crystalline and
polycrystalline data. J. Phys. Chem. Solids 63, 1043–1046 (2002).

10. Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice
Dy2Ti2O7. Science 326, 411–414 (2009).

11. Kadowaki, H. et al. Observation of magnetic monopoles in spin ice.
J. Phys. Soc. Jpn 78, 103706 (2009).

12. Melko, R. G., den Hertog, B. C. & Gingras, M. J. P. Long-range order at low
temperatures in dipolar spin ice. Phys. Rev. Lett. 87, 067203 (2001).

13. Melko, R. G. & Gingras, M. J. P. Monte Carlo studies of the dipolar spin ice
model. J. Phys. Condens. Matter 16, R1277 (2004).

14. Matsuhira, K. et al. Spin dynamics at very low temperature in spin ice Dy2Ti2O7.
J. Phys. Soc. Jpn 80, 123711 (2011).

15. Revell, H. M. et al. Evidence of impurity and boundary effects on magnetic
monopole dynamics in spin ice. Nature Phys. 9, 34–37 (2012).

16. Yaraskavitch, L. R. et al. Spin dynamics in the frozen state of the dipolar spin
ice material Dy2Ti2O7. Phys. Rev. B 85, 020410 (2012).

17. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides.
Rev. Mod. Phys. 82, 53–107 (2010).

18. Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and
Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009).

19. Bramwell, S. T. et al. Measurement of the charge and current of magnetic
monopoles in spin ice. Nature 461, 956–959 (2009).

20. Jaubert, L. D. C. & Holdsworth, P. C. W. Magnetic monopole dynamics in spin
ice. J. Phys. Condens. Matter 23, 164222 (2011).

21. Giblin, S. R., Bramwell, S. T., Holdsworth, P. C. W., Prabhakaran, D. &
Terry, I. Creation and measurement of long-lived magnetic monopole currents
in spin ice. Nature Phys. 7, 252–258 (2011).

NATURE PHYSICS | VOL 9 | JUNE 2013 | www.nature.com/naturephysics 355

© 2013 Macmillan Publishers Limited. All rights reserved

Pomaranski et al, Dy2Ti2O7
(original expts. by Harris et al, 1999)



Ice correlations
• “Pinch points” show that 2in-2out 

constraint holds

experiment theoryT. Fennell et al, 2009

Ho2Ti2O7



Monopoles

3in:1out defects act like monopoles, 
and can move almost freely



Quantum spin ice
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Still looking…

GENERIC QUANTUM SPIN ICE PHYSICAL REVIEW B 86, 104412 (2012)

Finally, to render the mean-field problem solvable, we
replace the constraint |!r| = 1 by the softened constraint
〈|!r|2〉 = 1, and implement the latter by including a Lagrange
multiplier term for each sublattice into the action S!.

Using this formulation, the mean-field Hamiltonian allows
one to calculate 〈HQED〉 [Eq. (11)] and minimize this varia-
tional energy. We found and compared several self-consistent
solutions of the gMFT equations, which are subsets of the
general Ansatz given above. First, we considered two limits
allowing for pairing, or A-B sublattice mixing, but not both,

(i) ξµ = 0, χ
A(B)
0 #= 0, χA(B)

µν #= 0, (30)

(ii) ξµ #= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both these
cases, we find that the minimum-energy solutions always have
either vanishing pairing/sublattice mixing (i.e., describe the
U (1) QSL) or exhibit spinon condensation.

However, both condensed solutions are unnatural, insofar
as once a single ! field is condensed, all the expectation
values χ

A/B
0 ,χ

A/B
i ,ξµ would be expected to be nonzero.

Guided by the above cases, we found a self-consistent Ansatz
where all these were allowed to be nonvanishing, with the
relations χA

0 = χB
0 ,

∑
µ #=ν γµνχ

B
µν =

∑
µ #=ν γ ∗

µνχ
A
µν #= 0 and

ξ0 = ξi = −ξj = −ξk #= 0, for {i,j,k} and permutation of
{1,2,3}. This more general Ansatz describes both condensed
and uncondensed states, and was found to capture all the
physical minimum-energy solutions.

2. Spinon condensation

In the gMFT scheme used here, Higgs phases in which
the single spinon field is condensed, 〈!r〉 #= 0, also occur.
This may appear surprising since the single spinon field was
not introduced explicitly as an order parameter [see Eqs. (13)
and (14)]. Instead, spinon condensation occurs, as discussed
in Ref. 15, via the same mechanism as does Bose-Einstein
condensation in the noninteracting Bose gas. In particular,
when a condensate is present, the Lagrange multiplier λ adjusts
itself self-consistently so that the minimum energy spinon state
lies, in the thermodynamic limit, at precisely zero energy.
For large but finite volume, a nonintensive part of the λ
leads to and controls the condensate, manifesting itself via
off-diagonal long-range order in the spinon Green’s function.
This is discussed in more detail in Appendix. Captured in this
way, spinon condensation does not introduce any additional
self-consistent variables, and only requires careful treatment
of any zero energy modes and the infinite volume limit. This
in turn means that the above Ansätze describe Higgs phases as
well, for appropriate values of parameters.

C. Gauge mean-field theory phase diagram

We minimized the variational energy using the above
Ansatz numerically (see Appendix for the formulation of the
variational energy). In fact, the self-consistent gMFT equations
are solved for any local minima of the variational energy, so
it is sufficient to search for the global minimum of the latter.
That determines the T = 0 phase diagram as a function of
J±/Jzz > 0 and J±±/Jzz (we assume Jzz > 0 throughout).
Note that by a canonical transformation, S± → ±iS±, we

U 1 QSL AFQ

noncoplanar FQ

Spin Ice

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

J J zz

J
J

zz

FIG. 3. Phase diagram of two dimensionless parameters J±/Jzz

vs J±±/Jzz. Four distinct phases exist: classical spin ice (at the origin),
U (1) QSL, AFQ, and FQ. (more details in the main context)

can always choose J±± > 0, without loss of generality. The
results are shown in Fig. 3.

The full phase diagram contains three distinct phases
in addition to the classical point corresponding to the
nearest-neighbor spin ice: a deconfined U (1) QSL phase
and two Higgs phases, corresponding to XY ferropseudospin
(antiferroquadrupolar) and antiferropseudospin (noncoplanar
ferroquadrupolar) orders. Unfortunately, the Z2 spin liquid
phase with nonzero pairing but a spinon gap is never
the minimum-energy solution. The QSL or Coulomb
phase occurs in the small J±,J±± region, consistent with
perturbative expectations. In this model, infinitesimal J±
and/or J±± interactions melt the classical spin ice, creating
a dynamical photon excitation and emergent quantum
electrodynamics. This phase is found to be more stable against
J±± than to Jz±, the latter having been studied already in
Ref. 15.

The Higgs or ordered phases merit some further description.
With increasing J±/Jzz but J±± = 0, the U (1) QSL phase
remains stable until J±

Jzz
|c ≈ 0.19, at which spinons start to

condense at a wave vector k0 ≡ 0 for both A and B sublattices.
This induces a classical XY order categorized in Table II and
has the ordering structure shown in Fig. 4(a). This phase has
already been obtained by a classical MF analysis,10 and in
gMFT for J±± = 0.15 From Eqs. (17) and (18), the spinon
condensate at k0 yields a ferroic ordering of the XY component
of pseudospins, for instance, given by

〈)Si〉 ≈
∣∣φk0

∣∣2
x̂i , (32)

for pseudospin on sublattice i. It spontaneously breaks the
threefold rotational symmetry while the twofold rotational
symmetries are preserved. This ferropseudospin ordering
structure is interpreted as an antiferroquadrupolar order for
Pr3+ case as is clear from Eq. (3) and the relation

∑3
i=0 x̂i = 0.

Namely, it produces an f -electron distribution shown in
Fig. 4(a). When J±± > 0 is sufficiently large and J± is small,
the QSL becomes unstable to a different Higgs phase, with
spinon condensation at k̃0 ≡ 2π (100) or the symmetry-related
points, on both A and B sublattices. Note that quantitatively
the QSL phase is wider in the J±± direction than in the J± one:

104412-7

+ Many subsequent numerical 
and analytical works

M. Hermele, MPA Fisher, L.B., 2004; 

A. Banerjee et al, 2008 
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Heisenberg systems
• Typically for closed shells - i.e. configurations w/o orbital 

degeneracy - of 3d transition metal ions, SOC effects are 
weak: good approximate spin-rotation symmetry

H =
1

2

X

ij

Jij
~Si · ~Sj + · · ·

single-ion and exchange 
anisotropy, ≲ 10% level

Spin “length” S =1/2 is most quantum, S>>1 is semiclassical



Triangle
• Classically: spins must sum to zero

Tendency to non-collinear ordering



Triangular lattice
• Classically: spins must sum to zero



Triangular lattice

Degrees of freedom: 2



Triangular lattice

Degrees of freedom: 2+1



Triangular lattice

Degrees of freedom: 2+1
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S=1/2 Triangular lattice

• Nice example with strong quantum renormalizations


• All phases encountered are ordered, short-range entangled states


• BUT most are different from those of the classical model


• And excitations are highly renormalized from linear spin waves
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Ru Chen et al 2013

Review: O. Starykh, RPP, 2015
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Fully consistent with rigid spins

This is the classical ground state throughout the phase space


Excitations are gapless spin waves - semiclassical quantization 
of small oscillations of spins



According to the classical molecular field theory,22,23 a
transition from a helical spin structure to a fan structure can
occur when an external field is applied in the easy plane. The
helix-fan transition is accompanied by a jump in magnetiza-
tion, and not by the plateau. Examples of this include the
recently observed phase transition in RbCuCl3 for a mag-
netic field perpendicular to the c axis.24,26 At low tempera-
tures, RbCuCl3 has a monoclinic structure, which is closely
related to the crystal structure of CsCuCl3.27,28 The exchange
interaction along the c axis is ferromagnetic, and interactions

FIG. 8. Magnetic field vs temperature phase diagrams for
Cs2CuBr4 for !a" H!a , !b" H!b , and !c" H!c . The gray lines are the
guides for the eyes.

FIG. 9. Magnetization curves for Cs2CuBr4 measured at T
!0.4 K for H!a , H!b , and H!c . The values of the magnetization
are shifted by 0.4#B . The inset shows dM /dH vs H around the
magnetization plateau for H!b and H!c .

FIG. 10. The magnetization curve and dM /dH vs H for H!b
measured in magnetic fields up to 20 T.

MAGNETIZATION PLATEAU IN THE FRUSTRATED . . . PHYSICAL REVIEW B 67, 104431 !2003"

104431-5

Magnetization plateau
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Spin gap stabilized by quantum zero point fluctuations


excitations are still spin waves but not Goldstone modes

c.f. Chubukov + Golosov, 91

T. Ono et al, 2003



Planar orders
CHEN, JU, JIANG, STARYKH, AND BALENTS PHYSICAL REVIEW B 87, 165123 (2013)
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FIG. 4. (Color online) Second derivative of the ground-state
energy with respect to R, for different values of magnetization. These
plots are used to locate the phase boundaries in Fig. 3.

commensurate momenta Q = (4π/3,2π/3) and (2π/3,4π/3),
respectively. This defines the “C planar” regions in Fig. 3.

III. SEMICLASSICAL BEHAVIOR IN THE
ISOTROPIC CASE

A. Two-dimensional model

The isotropic model J ′ = J has been extensively studied
in two dimensions, and it is believed that a semiclassical
description, with weak quantum fluctuations included via spin
wave theory, is qualitatively correct in this case.3 We find that
the semiclassical analysis largely carries over to the TST, with
small modifications to allow for one-dimensional fluctuations.
Therefore, we review the established semiclassical results first.

In the classical limit, where spins are described as O(3) vec-
tors, the isotropic problem is known to display an “accidental”
degeneracy in a nonzero applied magnetic field.14 This can be
seen from the fact that this model can be rewritten as

H = J

2

∑

"

(
S" − h

3J
ẑ
)2

, (5)

where S" = S1 + S2 + S3 is the sum of the spins on a triangle,
and the sum is over all triangles on the lattice. The ground-state
configuration is given by the constraint

S" − h

3J
ẑ = 0. (6)

ẑ

cos θx̂ + sin θŷ

ẑ

cos θx̂ + sin θŷ

(a) (b) ẑ(c)

FIG. 5. (Color online) Degenerate classical spin configurations
in the isotropic limit. With the magnetic field taken in the z direction,
(a) shows the “V” configuration above the 1

3 plateau, (b) depicts the
“Y” phase below the 1

3 plateau, while (c) shows the cone (or umbrella)
state.

At zero magnetization, this constraint is solved by placing all
spins in a plane, with the three spins in each triangle at 120◦

angles to one another in a three-sublattice structure. A specific
ground state is specified by three angles, e.g., two determining
the plane of the spins and one determining the angle within the
plane. All such states are related by O(3) spin symmetry; so,
this is a symmetry-demanded degeneracy. A previous DMRG
study15 on the 2D model also confirms the three-sublattice
structure.

In a nonzero field, the ground states retain a three-sublattice
structure, with three arbitrary angles remaining to determine
the specific ground state. However, the presence of the
field reduces the O(3) symmetry to O(2) [or U(1)], and
only one of these angular degrees of freedom is symmetry
demanded. The remaining two angular degrees of freedom
constitute an accidental degeneracy. Two simple states within
the degenerate manifold are the coplanar and umbrella ones,
shown in Fig. 5.

As first shown by Chubukov and Golosov,3 this accidental
degeneracy is lifted by quantum fluctuations. They showed
by a 1/S spin wave expansion that the degeneracy is lifted in
favor of the coplanar states. Additionally, they demonstrated
the existence of the 1

3 plateau, in which the spins adopt a three-
sublattice “up-up-down” structure. Away from the plateau, the
coplanar state retains a three-sublattice structure with ordering
wave vector Q = (4π/3,0), or Q = (4π/3,2π/3).3,4,16 Below
the plateau, the three spins form a “Y” with one spin
antiparallel to the field and two spins with equal positive
projection to the field but at opposite angles from each other.
This can be viewed as a deformation of the 120◦ state with
spins in a plane containing the magnetic field. Here, the spin
configurations can be parametrized by

〈S+
r 〉 = aeiθ sin(Q · r),

(7)〈
Sz

r

〉
= b − c cos2(Q · r),

where θ is an arbitrary angle specifying the plane of the spins,
while a,b,c are constants dependent upon the field magnitude.
Since Q · r = 2π (2x + y)/3, we see from Eq. (7) that when
2x + y is a multiple of 3, one of the spin is aligned with the
magnetic field. Above the plateau, one finds instead a “V”
configuration, with two spins identical and the third chosen to
give zero moment normal to z. In this case, we have

〈S+
r 〉 = aeiθ cos(Q · r)

(8)〈
Sz

r

〉
= b − c cos2(Q · r).
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Classical ground state is always umbrella-like, but 
quantum fluctuations almost completely remove this

cone/umbrellaplanar/fan
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Non-uniform spin lengths

non-classical!

SDW states can be considered soliton lattices, and can 
be understood based on the behavior of  spin chains


Large domain of SDW state means that quasi-1d nature 
is enhanced by quantum fluctuations



Kagome lattice

Degrees of freedom: 3



Kagome lattice

Degrees of freedom: 3+1+...



Kagome lattice

• Degrees of freedom: ~ N .  Much less likely to order.
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S=1/2 kagomé AF
• DMRG calculations give overwhelming evidence for QSL 

ground state 

4

site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C〉, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
〈C|"Si|C〉 = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)

0 0.05 0.1 0.15 0.2
1/c

-0.44

-0.435

-0.43

E/
sit

e

2D (est.)

Torus

DMRG

MERA

Upper Bound
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Series (HVBC)
DMRG, Cyl, Odd
DMRG, Cyl, Even
DMRG, Torus (Jiang...)
Lanczos, Torus

FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the
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S. Yan et al, 2010

Theorists are still debating the 
nature of the QSL state.  

Experimentalists are also debating 
the meaning of their observations.



Many kinds of QSLs


 





 = +...

For ~500 spins, there are more amplitudes than 
there are atoms in the visible universe!

Different choices of amplitudes can realize 
different QSL phases of matter.

# #’



• Topological QSLs


• U(1) QSL


• Dirac QSLs


• Spinon Fermi surface

Classes of QSLs
anyonic 
spinons 

electric+magnetic 
monopoles, photon

strongly 
interacting 

Dirac fermions

non-Fermi 
liquid “spin 

metal”



QSLs @ HFM2022



quantum-ness

spin ice

spin nematic

spin density wave

magnetization plateaux

skyrmions

quantum spin liquids

Fully classical

Local quantum 
fluctuations

Quantum 
entanglement

Frustrated Magnetism

quantum paramagnets

quantum criticality

AFsThis is all about the equilibrium phase/ground state.


We can also talk about excitations and response



Excitations in the usual 
case

Hamiltonian H =
X

(ij)

JijSi · Sj
exchange is short-

range: local

Wave 
function

| i ⇡
O

i

|Si · n̂i = +Si

Product state



Quasiparticles
excited states ~ excited 

levels of one block

•local excitation can be created 
with operators in one block


•localized excitation has 
discrete spectrum with non-
zero gap, and plane wave 
forms sharp band  

•quantum numbers consistent 
with finite system: no 
emergent or fractional 
quantum numbers



Spin wave

!(k) ⇡ �� 2t cos kxa� · · ·

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

|fi = S+
k |ii



Emergent excitations
• Emergent excitations may be very different from spin flips


• May be created in multiples, or very hard to create at 
all with a neutron, or just have different properties

jex

(�T )ph
H

(�T )f
H

Lx

Ly

Tf (x, y)

TrTl

jph(x, y)

If (x, y)

Tph(x, y)

Spinon

Monopoles

Majorana

Emergent photon

Skyrmion



Emergent excitations
• Emergent excitations may be very different from spin flips


• May be created in multiples, or very hard to create at 
all with a neutron, or just have different properties

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)

e.g. spinons



c.f. One dimension

A. Tennant et al, 2001

KCuF3

Understanding in d>1 is much more limited



Is there a gap?

•  Specific heat

•  NMR 1/T1

•  Dynamic susceptibility

•  T-dependence of 𝜒

A rough guide to 
experiments on HFMs

Does it order?

•  NMR line splitting

•  muSR oscillation

•  thermodynamic 

transition via specific 
heat, susceptibility


• Bragg peak in neutron/
x-ray

Delocalized 
excitations?


• thermal conductivity

• INS

Structure of 
excitations?


•  E(k) from INS,RIXS

•  optics, Raman

Exotica

• Local measurements

• thermal Hall

• ARPES (on insulator!)

• Proximity effects



• Local moments: Curie-Weiss law at high T


• Frustration parameter:  f = |ΘCW|/TN


• Larger f >> 1 is more frustrated (or 
fluctuating)

� ⇥ A

T ��CW

TTN

“Spin liquid”

��1

�CW |�CW |

Spin gas (paramagnet)
Spin solid (ordered)

Ramirez Plot



Heat capacity
• Sensitive 

indicator of 
phase transitions


• Useful to assess 
entropy, e.g. 
confirm effective 
spin

K. Feng et al, arXiv:2205.14063

<latexit sha1_base64="vtVsoq820RaS7fP27fCzE0ep7Qw="></latexit>

S(T ) =

Z T

0
dT 0 C(T 0)

T 0



Thermal conductivity
Spins carry 

heat
Phonons carry heat 

but interact with spins

Review: C. Hess, 2019

B.C. Sales et al, 2002

G. Laurence et D. 
Petitgrand, 1973

FeCl2



Thermal Hall effect
• Motivation: electronic/spin contribution 

theoretically closed tied to topology

T1

T2
H =

⇡ck2
B
T

6~
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a universal prediction for chiral 
“Ising anyon” phase: agnostic to 

microscopic spin interactions

Ix = H�Ty
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Thermal Hall conductivity
• Experimental situation very much under debate - electronic 

versus lattice transport, impurity versus intrinsic, Berry curvature 
versus scattering,…

3

sponse with respect to the field direction. In this config-
uration, Hall response is determined by H⊥. Since the
magnitude of κxy is extremely small compared to κxx in
α-RuCl3, special care was taken to detect the intrinsic
thermal Hall signal [28]. The experimental error in de-
termining κxy caused by the uncertainty in measuring
the distance between the Hall contacts and the thickness
of the crystal is within ±2%. Figures 3a, b, and c depict
κxy/T at θ = 60◦ plotted as a function of H⊥ above H∗

‖
at low temperatures. Below 3.7K, the transverse thermal
gradient is hard to detect within our resolution.

In the AFM state, κxy/T is extremely small (see Ex-
tended Data Fig. 3). Upon entering the field-induced spin
liquid state, κxy/T , which is positive in sign, increases
rapidly. The most striking feature is that κxy/T attains
a plateau in the field range of 4.5T< µ0H⊥ <4.8-5.0T,
as displayed in Figs. 3a, b and c. The right axes repre-
sent κ2D

xy in units of quantum thermal Hall conductance
(π/6)(k2B/!)T , where κ

2D
xy = κxyd with the layer distance

d = 5.72 Å [22]. Remarkably, the plateau is very close to
the half of quantum thermal Hall conductance reported
in the integer quantum Hall system [17] within the error
of 3%, demonstrating the emergence of half-integer ther-
mal Hall conductance plateau. Above µ0H⊥ ≈ 5.0T,
κ2D
xy /T decreases rapidly and vanishes. At 4.3 and 4.9K,

slight increase of κ2D
xy /T is observed before the reduc-

tion, while it is absent at 3.7K. Although the plateau
behaviour seems to be preserved at 5.6K, κ2D

xy /T slightly
deviates from the quantized value. At higher tempera-
tures, the plateau behaviour disappears (Fig. 3d).

The temperature dependence of κxy/T at the magnetic
fields where the plateau is observed is shown in Fig. 4.
The half-integer thermal Hall conductance is observable
up to ∼5.5K, above which κxy/T increases rapidly with
T . As shown in the inset of Fig. 4, κxy/T decreases af-
ter reaching a maximum at around 15K and nearly van-
ishes above ∼ 60K (see Extended Data Fig. 4). In usual
Heisenberg systems, finite thermal Hall effect can appear
in spin-liquid states in the presence of Dzyaloshinsky-
Moriya interaction [29]. However, such an interaction in
α-RuCl3 is negligible as it is less than 5% of JK [30].
Moreover, the phonon thermal Hall conductivity is three
orders of magnitude smaller than the observed κxy/T in
the spin-liquid state and shows essentially different T -
dependence [31]. As the vanishing temperature of κxy/T
is close to Kitaev interaction, it is natural to consider that
the finite thermal Hall signal reflects unusual quasiparti-
cle excitations inherent to the spin liquid state governed
by the Kitaev interaction.

In Eq.(1), the coefficient q gives the chiral central
charge of the gapless boundary modes, which propagate
along one direction. Central charge represents a num-
ber of freedom of 1D gapless modes; it is unity for con-
ventional fermions, while it is 1/2 for Majorana fermions
whose degrees of freedom is half of conventional fermions.
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FIG. 3. Half-integer thermal Hall conductance
plateau. a-d, Thermal Hall conductivity κxy/T in tilted
field of θ = 60◦ plotted as a function of H⊥. The top axes
show the parallel field component H‖. The right scales rep-
resent the 2D thermal Hall conductance κ2D

xy /T in units of
(π/6)(k2

B/!). Violet dashed lines represent the half-integer
thermal Hall conductance, κ2D

xy /[T (π/6)(k
2
B/!)] = 1/2.

Integer quantum Hall system with the bulk Chern num-
ber ν has ν boundary modes with q = ν, while a Ki-
taev QSL with the Chern number ν has ν Majorana
boundary modes with q = ν/2. Thus the observed
half-integer thermal Hall conductance provides direct ev-
idence of the chiral Majorana edge currents. We also
note that the positive Hall sign is also consistent with

Y. Kasahara et al, 2018 G. Grissonanche et al, 2019



Thermal Hall conductivity
• Advertisement for some theory work

arXiv:2206.06183

arXiv:2202.10366


Poster W2 (Wed afternoon)

w/ Léo Mangeolle+Lucile Savary

arXiv:2103.04223

w/ Mengxing Ye+Lucile Savary



Electrical conductivity
• Electron dynamics modified by magnet order

e.g. Hall conductivity due to skyrmions

T. Kuramaji et al, 2019

e.g. Gd2PdSi3



Electrical conductivity
• Electrons scattered by magnetic excitations

e.g. “Roller coaster”



More responses
• Diverse behaviors of HFMs demand a diverse set of 

probes:


• NMR/muSR/ESR - A. Zorko 


• Scattering - neutron - P. Deen - Raman, X-ray


• Optics, Kerr, Faraday, non-linear/ultrafast


• Magnetostriction, ultrasound, …



Moiré

mohair



Twisted AF6°

AA

AB

Frustration: Neél vectors must rotate 

N1 = �N2
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N1 = N2
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Twisted AF
Hcl =

X

l

h⇢
2
(rNl)

2
� d (Nz

l )
2
i
� J 0�(x)N1 ·N2
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DRAFT

such terms arise from pure geometry – i.e. carrying out the79

coordinate transformation from x(0)
l to xl defined in (1) –80

and from strain-induced changes in energetics. Taking them81

together, the leading corrections to (2) are82

L1[Nl, ul] = fl(Ál,xx + Ál,yy)
Ë

”1
v2 (ˆtNl)2

≠ ”2 (ÒNl)2
È

83

+”3Ál,µ‹ˆµNl · ˆ‹Nl, [3]84

where ”1,2,3 are dimensionless O(1) constants and Ál,µ‹ =85

(ˆµul,‹ + ˆ‹ul,µ)/2 is the strain field in layer l. For simplicity86

we assumed that spin-orbit e�ects (e.g. anisotropy d) are small87

and hence that deformation terms in (3) are SU(2) invariant:88

anisotropic deformation terms must be small in both spin-89

orbit coupling and in displacement gradients, and hence are90

neglected.91

Next we turn to the inter-layer coupling terms. By locality92

and translational symmetry, it is generally of the form93

L2[N1, N2, u1 ≠ u2] = J
Õ[u1 ≠ u2]N1 · N2, [4]94

where J
Õ[u] is a function with the periodicity of the unde-95

formed Bravais lattice. Due to the smallness of J
Õ, we ne-96

glect corrections proportional to displacement gradients in (4).97

Generally J
Õ[u] can be expanded in a Fourier series, and well-98

approximated by a small number of harmonics. We obtain a99

specific form by considering local coupling of the spin densities100

in the two layers. Using the symmetries of the honeycomb101

lattice, the minimal Fourier expansion of the spin density Sl102

of a single layer contains the three minimal reciprocal lattice103

vectors ba,104

Sl(x) = n0Nl

3ÿ

a=1

sin(ba · x(0)) = n0Nl

3ÿ

a=1

sin[ba · (x ≠ ul)],

[5]105

where n0 measures the size of the ordered moment, and we106

define the origin x = 0 at the center of a hexagon. Taking107

the product S1 · S2 and applying trigonometric identities to108

extract the terms which vary slowly on the lattice scale (rapidly109

varying components do not contribute at low energy) gives110

the form of (4), with111

J
Õ[u] = J

Õ
3ÿ

a=1

cos(ba · u), [6]112

where the constant J
Õ is proportional to the inter-layer ex-113

change and n
2
0. Physically, (6) captures the fact that e.g. for114

intrinsically ferromagnetic exchange J
Õ

> 0, the preferred rel-115

ative orientation of the A sublattice spins of the two layers116

is parallel for AA stacking but anti-parallel for AB and BA117

stackings.118

The full Lagrange density L =
q

l=1,2(L0[Nl] +119

L1[Nl, ul]) + L2[N1, N2, u1 ≠ u2] captures the low energy120

physics of a bilayer with arbitrary deformations of the two121

layers. We now specialize to the case of a rigid twist of the122

two layers by a relative angle ◊: u1 = ≠u2 = ◊
2 ẑ ◊ x. In this123

case the strain vanishes, and one finds the full Lagrangian is124

L =
ÿ

l

fl

2v2 (ˆtNl)2
≠ Hcl, [7]125

where126

Hcl =
ÿ

l

Ë
fl

2 (ÒNl)2
≠ d (Nz

l )2
È

≠ J
Õ�(x)N1 · N2 [8]127

is the classical energy density. Here the coupling function 128

�(x) =
3ÿ

a=1

cos(qa · x), [9] 129

and qa = ◊ẑ ◊ba are the reciprocal lattice vectors of the moiré 130

superlattice. 131

(7)-(9) form the basis for an analysis of the magnetic struc- 132

ture on the moiré scale, as well as for the magnon excitations 133

above them. The magnetic ground state is obtained as the 134

variational minimum of Hcl[N1, N2]. Owing to the sign change 135

of �(x), the problem is frustrated: the Néel vectors of the two 136

layers wish to be parallel in some regions and antiparallel in 137

others, forcing them to develop gradients within the plane – 138

the representation in the continuum of incompletely satisfied 139

in-plane bonds. We find that the optimal solution is non- 140

collinear but coplanar, and without loss of generality we can 141

take the spins to lie in the x-z plane: Ni = sin „lx̂ + cos „lẑ. 142

Then forming symmetric and antisymmetric combinations, 143

„s = „1 + „2, „a = „1 ≠ „2, we obtain, up to an additive 144

constant 145

Hcl = fl

4
!
|Ò„s|

2 + |Ò„a|
2"

≠(J Õ�(x)+d cos „s) cos „a. [10] 146

We can obtain partial di�erential equations for the phase
angles by applying calculus of variations to (10). Expressed in
terms of dimensionless coordinates x = qmx, with qm = |qa|

the moiré wavevector, let Ïs/a(x) = „s/a(x), and we obtain

Ò
2
Ïs = — cos Ïa sin Ïs, [11]

Ò
2
Ïa =

!
— cos Ïs + –�̂(x)

"
sin Ïa, [12]

where we introduced the dimensionless parameters 147

– = 2J
Õ

flq2
m

, — = 2d

flq2
m

[13] 148

and �̂(x) =
q3

a=1 cos(q̂a · x), where q̂a = qa/qm are unit vec- 149

tors. We must find the solutions of the saddle point equations 150

which minimize the integral of Hcl. There is a always a trivial 151

solution with Ïs = Ïa = 0, fi, which corresponds to the Ising 152

limit of aligned or counter-aligned spins. This has an energy 153

density Hcl = ≠d = ≠
1
2 flq

2
m—. A non-trivial solution can be 154

found in di�erent limits. For –, — π 1, corresponding to large 155

angles, the gradient terms in the Hamiltonian dominate and 156

the solution is nearly constant. The leading result in this limit 157

is 158

Ïs = fi

2 ≠ –—(�̂(x) + �0), Ïa = fi

2 ≠ –�̂(x), [14] 159

The overall signs of either phase can be switched due to 160

the symmetry of the Hamiltonian. One obtains from this 161

the energy density (averaged over the unit cell) Hcl = 162

≠
3
8 flq

2
m–

2(1 + —
2). Comparing this energy with the Ising 163

one, we see that the twisted solution is lower energy when 164

— <
3
4 –

2 to leading order. 165

For small angles, –, — ∫ 1. Then the potential terms in 166

Eq. (10) dominate. The energy is minimized by choosing 167

„a = 0 or fi almost everywhere, so that cos „a = sign[�(x)], 168

which means the spins in the two layers are locally parallel or 169

antiparallel, and then „s = 0, fi similarly to match the sign. 170

This means simply that the spins align along the ±ẑ axis. 171

Spin rotations occur in a narrow domain wall centered on the 172

zeros of �(x). 173
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Coplanar spin textures
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WHY TWO TWISTED PHASES? 

• Both coplanar 

• Twisted-s: Symmetric 

• Twisted-a: Asymmetric

Top layer Bottom layer

discrete symmetry of twisted-s solutions:          
Nz → − Nz, layer 1 ↔ layer 2

WHY TWO TWISTED PHASES? 

• Both coplanar 

• Twisted-s: Symmetric 

• Twisted-a: Asymmetric

Top layer Bottom layer

~d

~J’

Transitions should be tunable by applied field



CrI3

Scanning NV magnetometry

(twist disorder is evident)

(A twisted ferromagnet)



Thank you
• Frustrated and quantum magnetism is an exciting place for 

theory and experiment to meet


• The basic point is frustration allows more unusual 
structures to emerge, be they atypical orders, unusual 
excitations, or unconventional responses


• We surely missed many things.  That’s why you need to go 
to the meeting!


