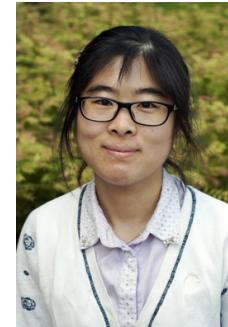


New twists on magnetism in flatland

Collaborators

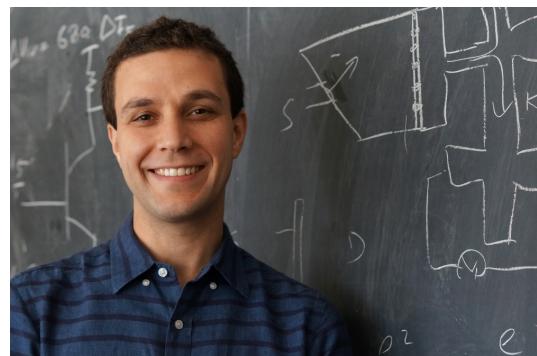
Kasra Hejazi

Zhu-Xi Luo



Mengxing Ye

Xuzhe Ying



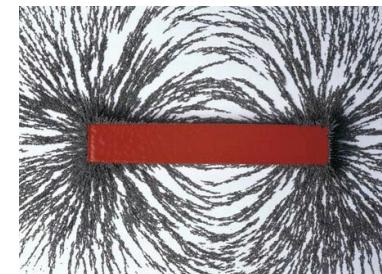
Andrea Young

Magnets

~500BC: Ferromagnetism
documented in Greece,
India, used in China

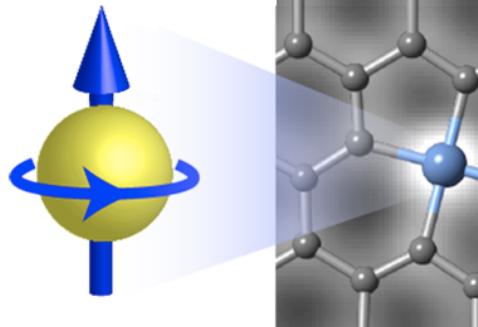
sinan, ~200BC

and in elementary school today



Spin

Almost all magnetism originates from unpaired d and f electrons in atoms



	3d	4s
^{21}Sc	↑	↑↓
^{22}Ti	↑↑	↑↓
^{23}V	↑↑↑	↑↓
^{24}Cr	↑↑↑↑↑	↑
^{25}Mn	↑↑↑↑↑	↑↓
^{26}Fe	↑↓↑↑↑	↑↓
^{27}Co	↑↑↓↑↑	↑↓
^{28}Ni	↑↑↓↑↑	↑↓
^{29}Cu	↑↑↓↑↓↑	↑
^{30}Zn	↑↑↓↑↓↑	↑↓

Friedrich Hund

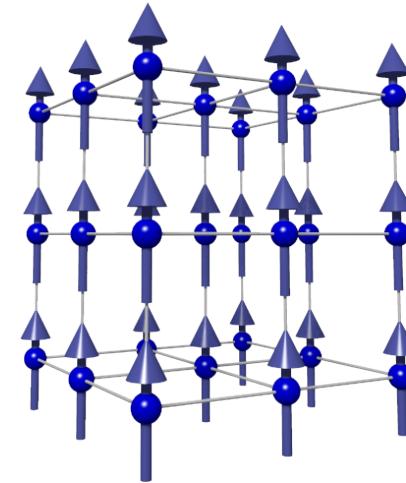
Hund's 1st rule: electrons avoid pairing within a shell

(this minimizes Coulomb repulsion within the same orbital)

Magnetism

- Atomic spins interact via exchange to favor an ordered arrangement
- Aligned parallel: ferromagnets

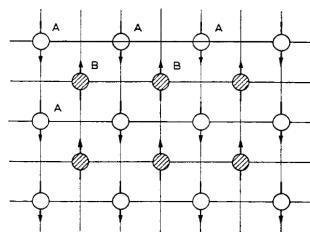
$$H = -J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



Magnetism

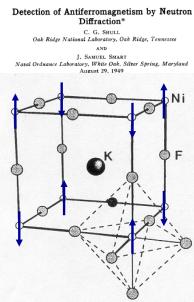
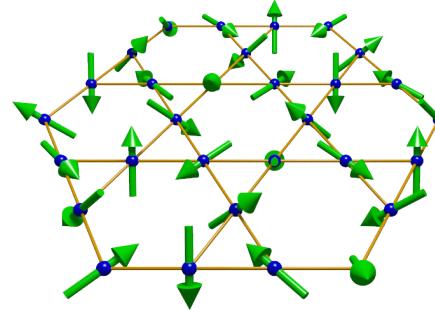
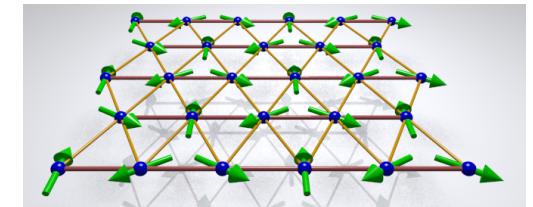
- Atomic spins interact via exchange to favor an ordered arrangement
- More complex arrangements: antiferromagnets

1970 LOUIS NÉEL



Louis Néel

1949AD:
antiferromagnetism
proven experimentally
but there are 1000s of
them, much more
common than FMs



2d Ising model

- Onsager, 1943: Solved 2d Ising model exactly, proving that a phase transition exists with non-trivial critical behavior

Lars Onsager

$$H = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j$$

$$Z = \sum_{\{\sigma_i = \pm 1\}} e^{-\beta H}$$

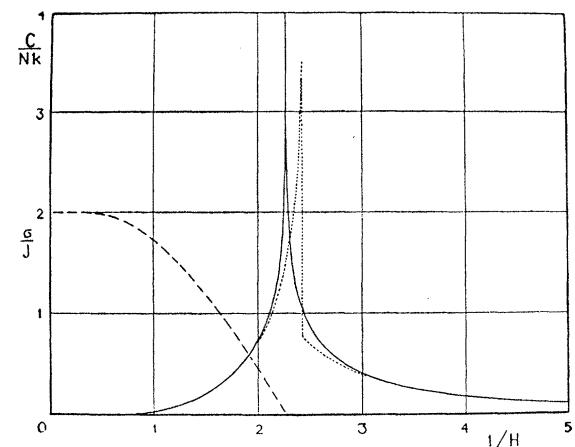


FIG. 6. Properties of quadratic crystal. — Boundary tension σ between regions of opposite order. — Specific heat C . - - - - Approximate computation of C by Kramers and Wannier.

Mermin-Wagner-Hohenberg-Berezinskii theorem

- Heisenberg (vector) spins with finite interactions cannot order in two dimensions at any $T>0$

ABSENCE OF FERROMAGNETISM OR ANTIKERROMAGNETISM
IN ONE- OR TWO-DIMENSIONAL ISOTROPIC HEISENBERG MODELS*

N. D. Mermin[†] and H. Wagner[‡]
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York
(Received 17 October 1966)

It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin- S Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

Thermal fluctuations prevent order

- Rough idea: $\mathbf{S}_i = M\hat{\mathbf{z}} + \delta\mathbf{S}_i \quad \delta\mathbf{S}_i \cdot \hat{\mathbf{z}} = 0$ suppose small fluctuation

$$E[\delta\mathbf{S}] \approx \int d^2\mathbf{x} \rho(\nabla\delta\mathbf{S})^2 \quad \text{rotational symmetry}$$

$$\langle(\delta\mathbf{S})^2\rangle \approx \frac{k_B T}{\rho} \int \frac{d^2\mathbf{k}}{(2\pi)^2} \frac{1}{k^2} \sim \frac{k_B T}{2\pi\rho} \ln(L/a)$$

diverges no matter how low the temperature is

O(3) model

- At low temperature, non-linear sigma model applies

$$Z = \int_{|\mathbf{n}|=1} [d\mathbf{n}(\mathbf{x})] e^{-\beta \rho \int d^2x (\nabla \mathbf{n})^2}$$

- Correlation length

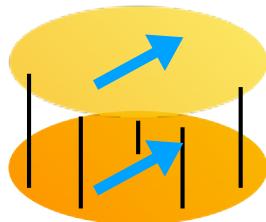
$$\langle \mathbf{n}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{0}) \rangle \sim e^{-|x|/\xi}, \quad \xi \sim e^{2\pi\rho/k_B T}$$

- When $kT \ll \rho$, correlation length becomes exponentially long and most properties become nearly indistinguishable from an ordered state

No phase transition but smooth evolution to almost ordered spins at low T

Quasi-2d systems

- Even most quasi-2d solids have some weak coupling between layers



$$E_{AF} - E_{FM} \sim J' \xi^2 \sim J' e^{4\pi\rho/k_B T}$$

$E_{AF} - E_{FM} > kT$ when $T < T_c$, with

$$k_B T_c \sim 4\pi\rho / \ln(4\pi\rho/J')$$

❖ 3d ordering is induced by even very weak J'

Example: 2d square AF

- La_2CuO_4 : parent material of high- T_c

Instantaneous spin correlations in La_2CuO_4

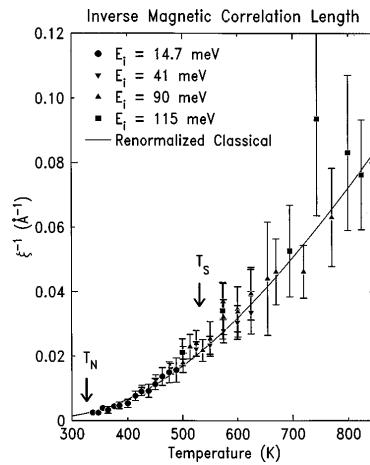
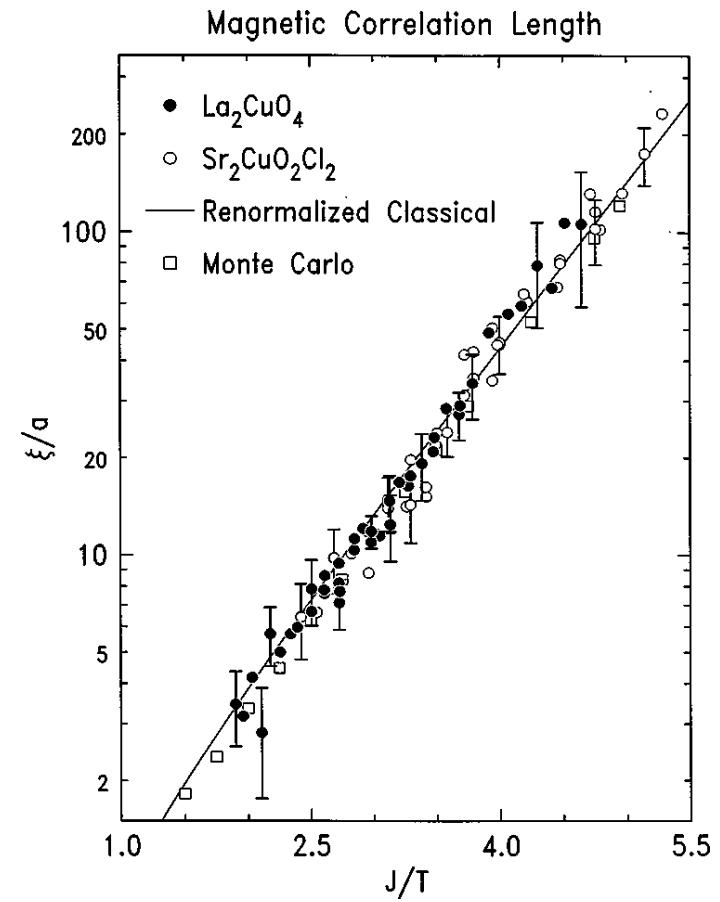
R. J. Birgeneau, M. Greven,* M. A. Kastner, Y. S. Lee, and B. O. Wells†
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Y. Endoh and K. Yamada‡
Department of Physics, Tohoku University, Aramaki, Aoba-ku, Sendai 980, 980-77 Japan

G. Shirane
Brookhaven National Laboratory, Upton, New York 11973
 (Received 23 October 1998)

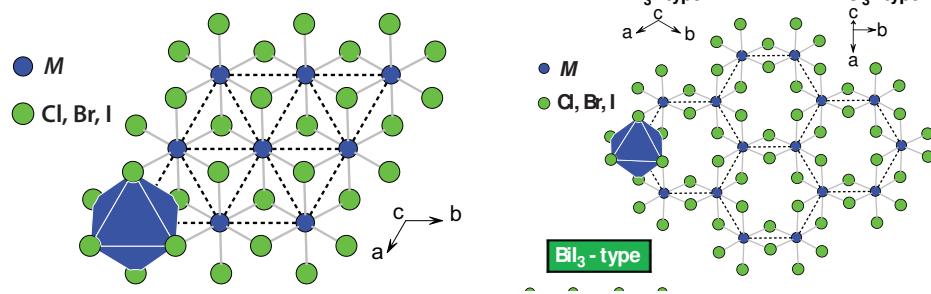
TABLE I. Néel temperature, superexchange energy, and corrections to the 2D Heisenberg Hamiltonian for La_2CuO_4 (Ref. 9) and $\text{Sr}_2\text{CuO}_2\text{Cl}_2$ (Ref. 10). α_{DM} and α_{XY} are larger than the values quoted in Refs. 9 and 10 by factors by (Z_c/Zg) and $(Zc/Zg)^2$, respectively. Here $Z_c(\frac{1}{2}) \approx 1.17$ and $Z_g(\frac{1}{2}) \approx 0.6$ are the quantum renormalization factors for the spin-wave velocity and spin-wave gap, respectively.

	La_2CuO_4	$\text{Sr}_2\text{CuO}_2\text{Cl}_2$
S	$\frac{1}{2}$	$\frac{1}{2}$
T_N (K)	325	256.5
J (meV)	135	125
α_{NNN}	~ 0.08	~ 0.08
α_{DM}	1.5×10^{-2}	—
α_{XY}	-5.7×10^{-4}	-5.3×10^{-4}
$\alpha_{\perp 1} - \alpha_{\perp 2}$	5×10^{-5}	$\sim 10^{-8}$



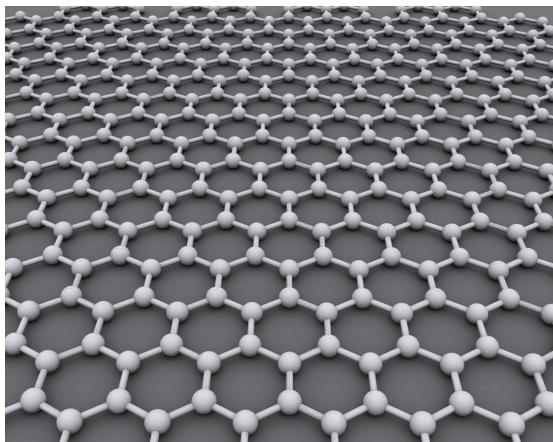
Truly 2d materials

- 2d Van der Waals magnets



MnPS₃, FePS₃, NiPS₃, CoPS₃, CrSiTe₃...
CrI₃, RuCl₃, ...

- The parent of 2d materials: graphene



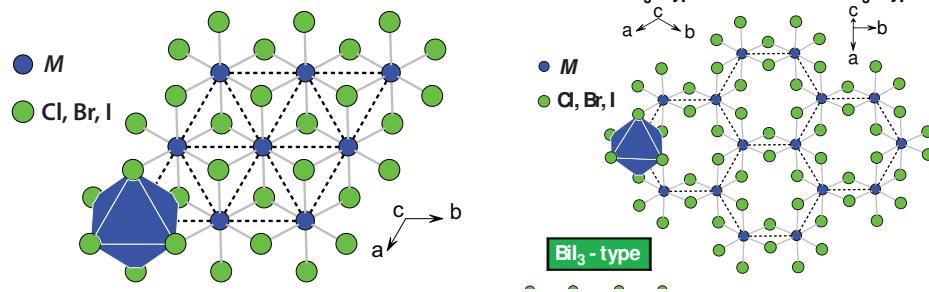
extraordinarily defect-free material, highly conducting, described by 2d Dirac equation

Entirely composed of C atoms, with electrons in bonded s+p orbitals. No local spins.

but it still shows magnetism!!

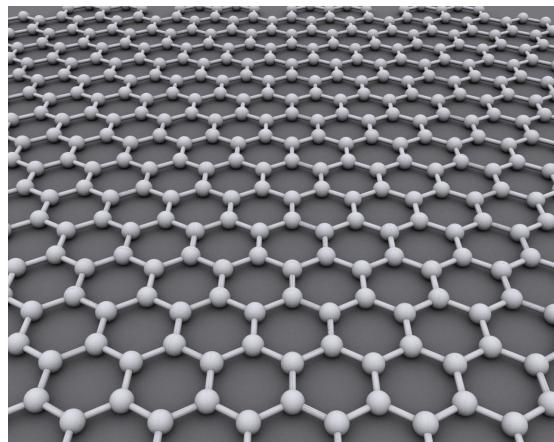
Truly 2d materials

- 2d Van der Waals magnets



$\text{MnPS}_3, \text{FePS}_3, \text{NiPS}_3, \text{CoPS}_3, \text{CrSiTe}_3, \dots$
 $\text{CrI}_3, \text{RuCl}_3, \dots$

- The parent of 2d materials: graphene

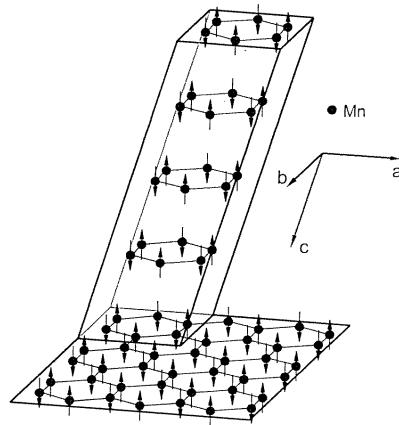


extraordinarily defect-free material, highly conducting, described by 2d Dirac equation

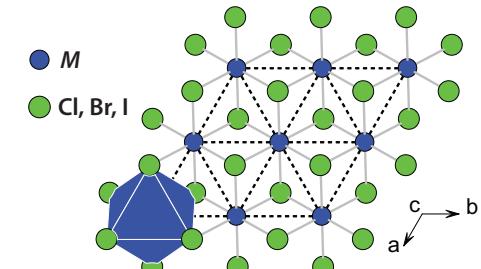
Entirely composed of C atoms, with electrons in bonded s+p orbitals. No local spins.

but it still shows magnetism!!

2d VdW magnets



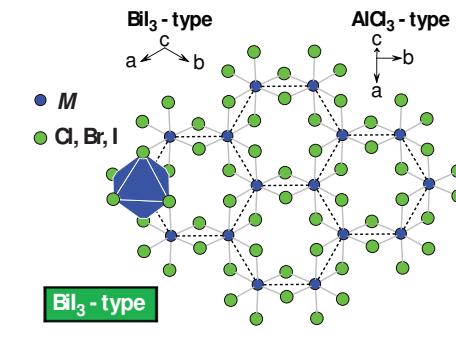
MCl_2							
Ti	V	Cr	Mn	Fe	Co	Ni	
Zr	Nb	Mo	Tc	Ru	Rh	Pd	
Hf	Ta	W	Re	Os	Ir	Pt	

 MBr_2


MnPS₃, FePS₃, NiPS₃, CoPS₃, CrSiTe₃...

MCl_3							
Ti	V	Cr	Mn	Fe	Co	Ni	
Zr	Nb	Mo	Tc	Ru	Rh	Pd	
Hf	Ta	W	Re	Os	Ir	Pt	

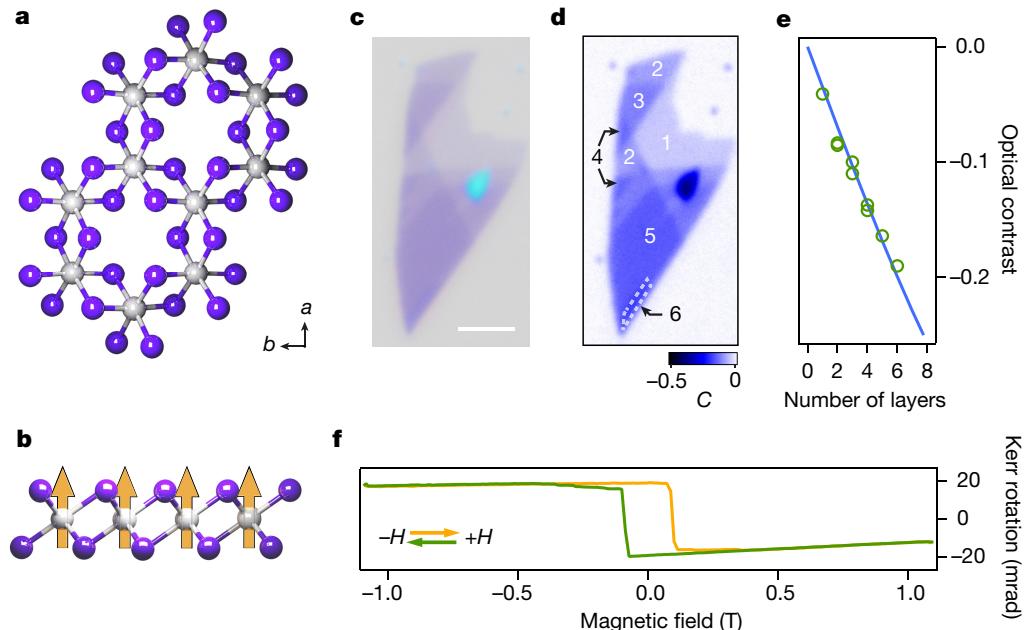
MBr_3						
Ti	V	Cr	Mn	Fe	Co	Ni



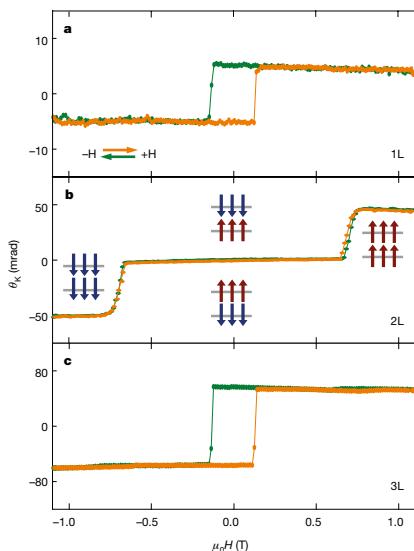
CrI₃, RuCl₃,...

CrI₃

B. Huang et al, 2017



1L



2L

Still ferromagnetic in single layer

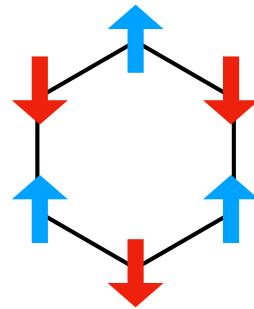
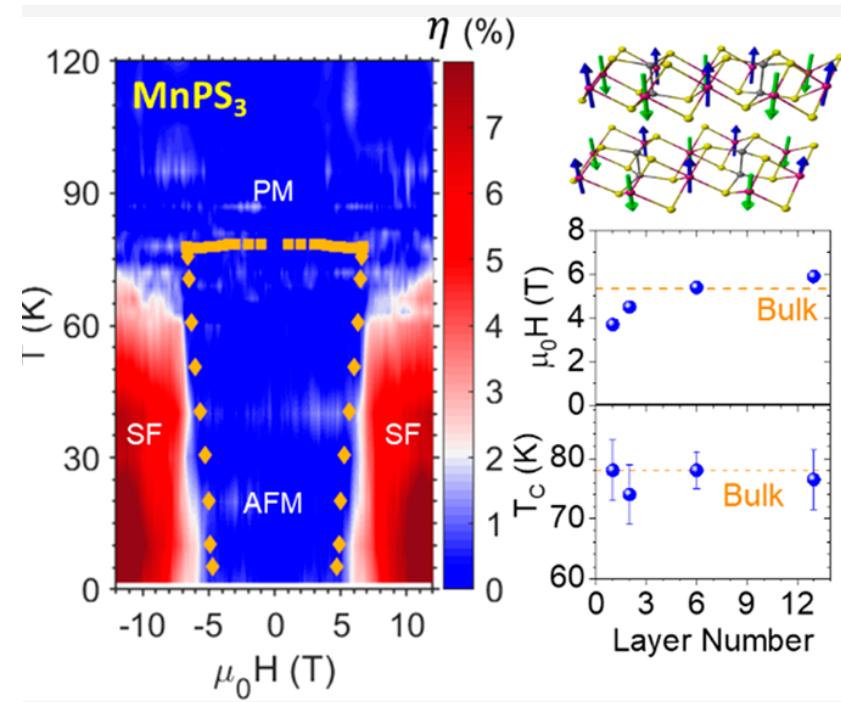
Surprise: bilayer is anti-ferromagnetic

3L

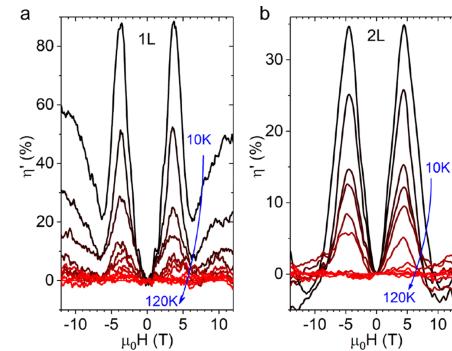
MnPS₃

G. Long et al, 2020

antiferromagnetic
honeycomb



order persists to single layer



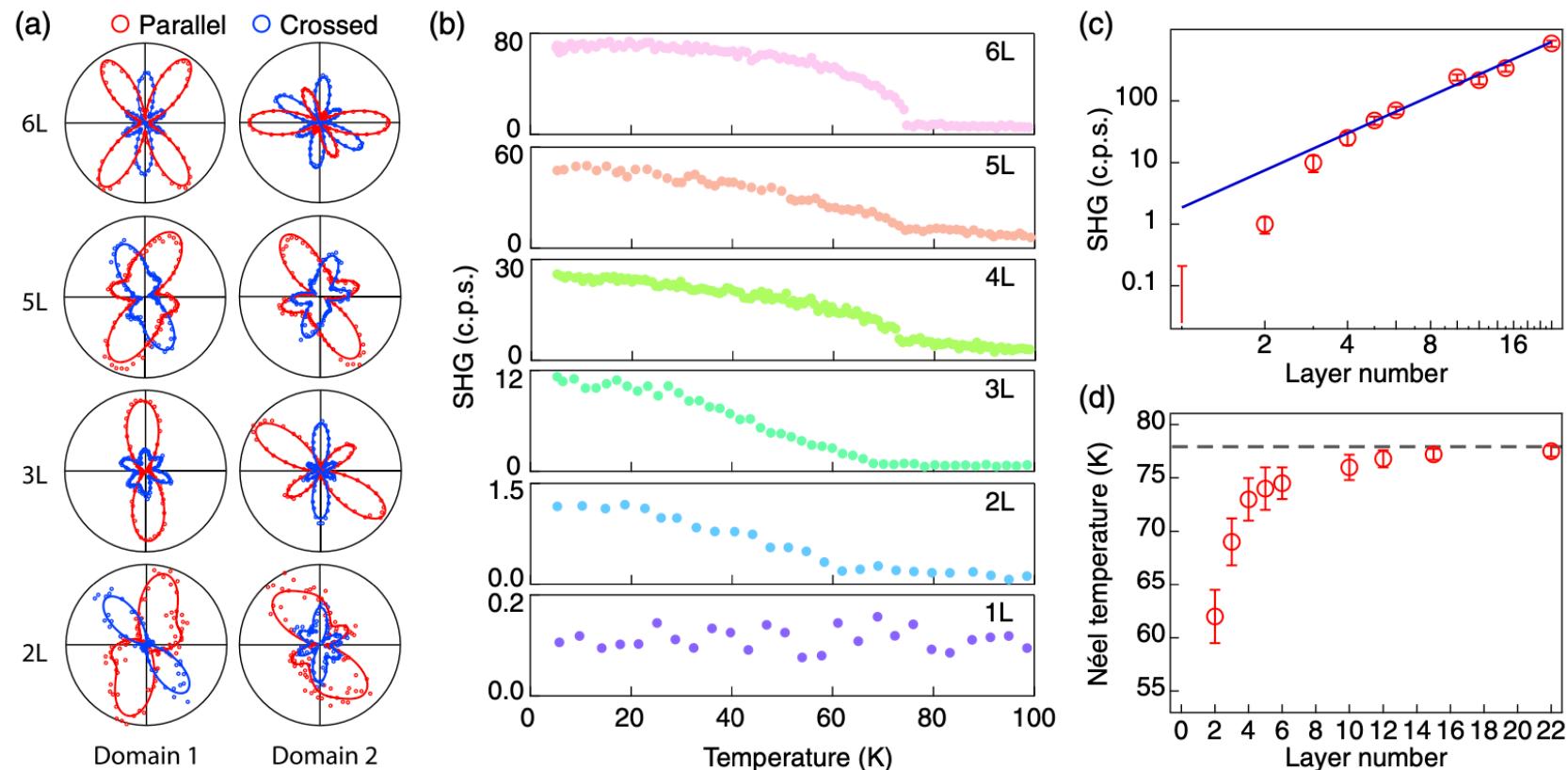
tunneling MR

MnPS₃

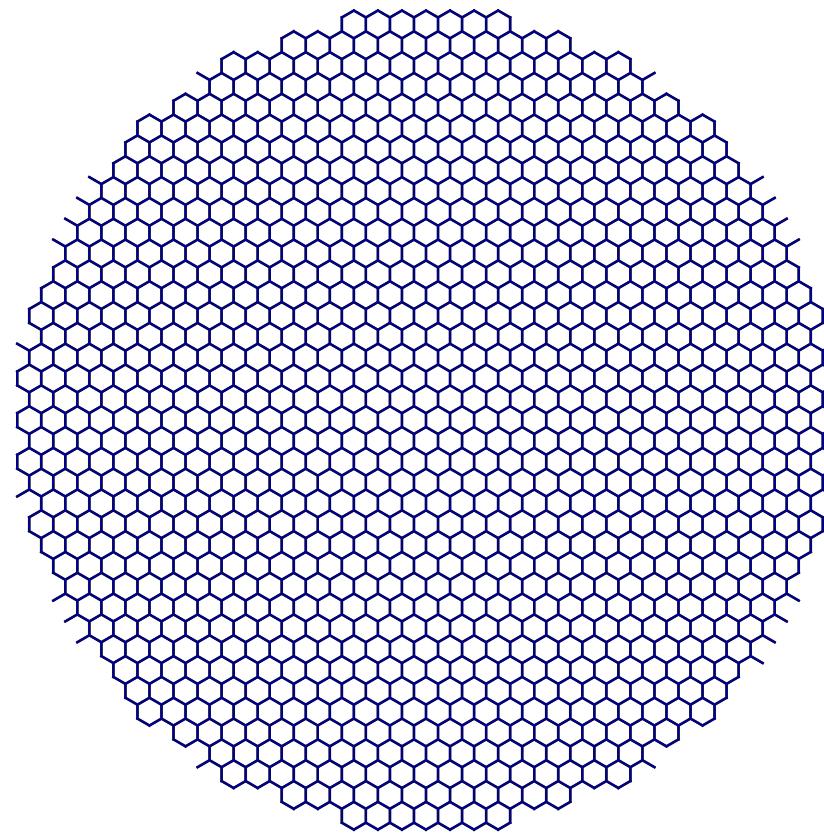
Direct Imaging of Antiferromagnetic Domains and Anomalous Layer-Dependent Mirror Symmetry Breaking in Atomically Thin MnPS₃

Zhuoliang Ni¹, Huiqin Zhang², David A. Hopper^{1,2}, Amanda V. Haglund³, Nan Huang³, Deep Jariwala², Lee C. Bassett², David G. Mandrus^{3,4}, Eugene J. Mele¹, Charles L. Kane¹, and Liang Wu^{1,*}

PHYSICAL REVIEW LETTERS 127, 187201 (2021)



Twisting and moiré



Moiré

mohair

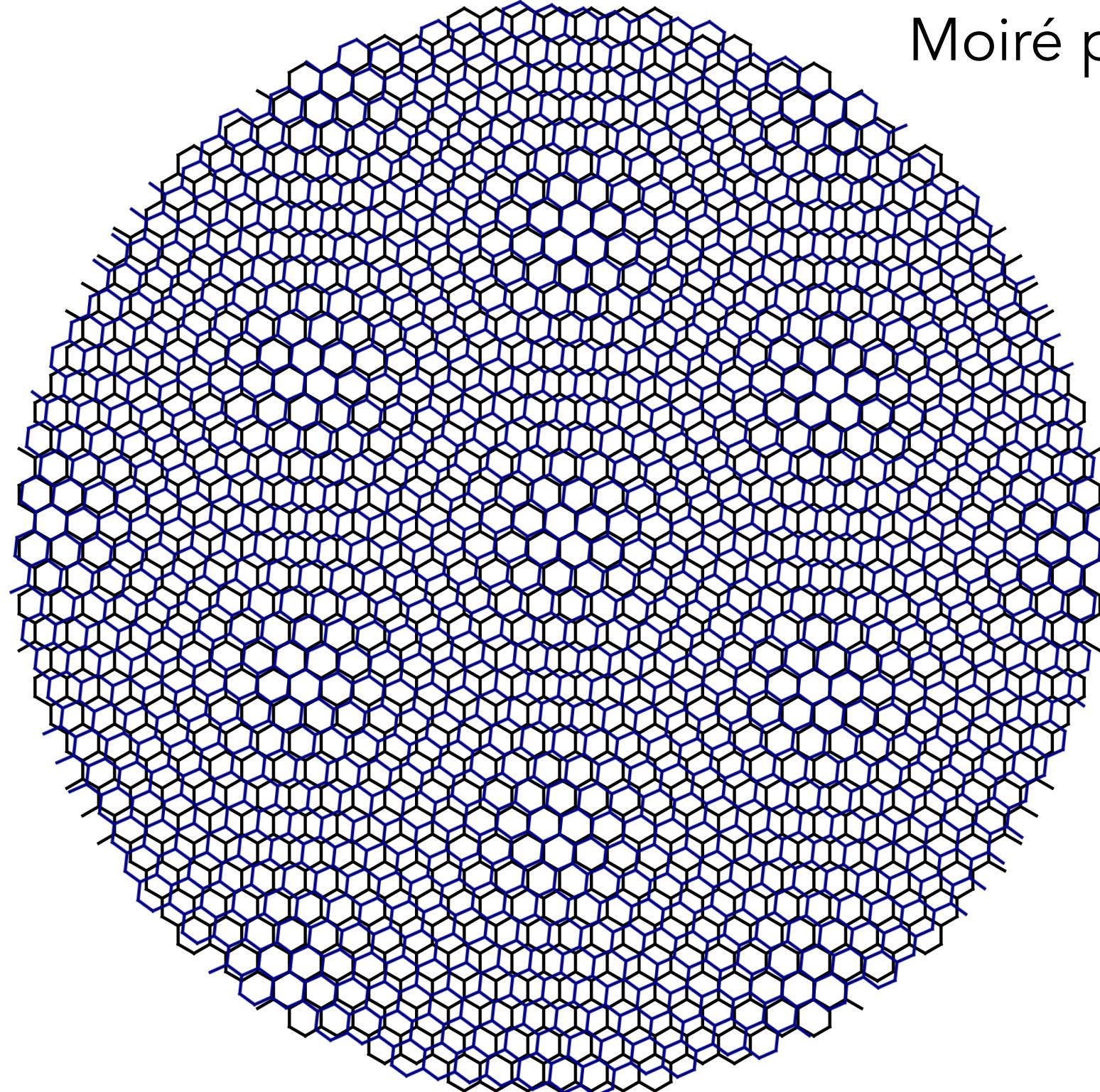
Le retour de la moire

Le grand retour de la moire chez vous

La moire : Un tissu d'exception pour des murs, des rideaux et des meubles originaux

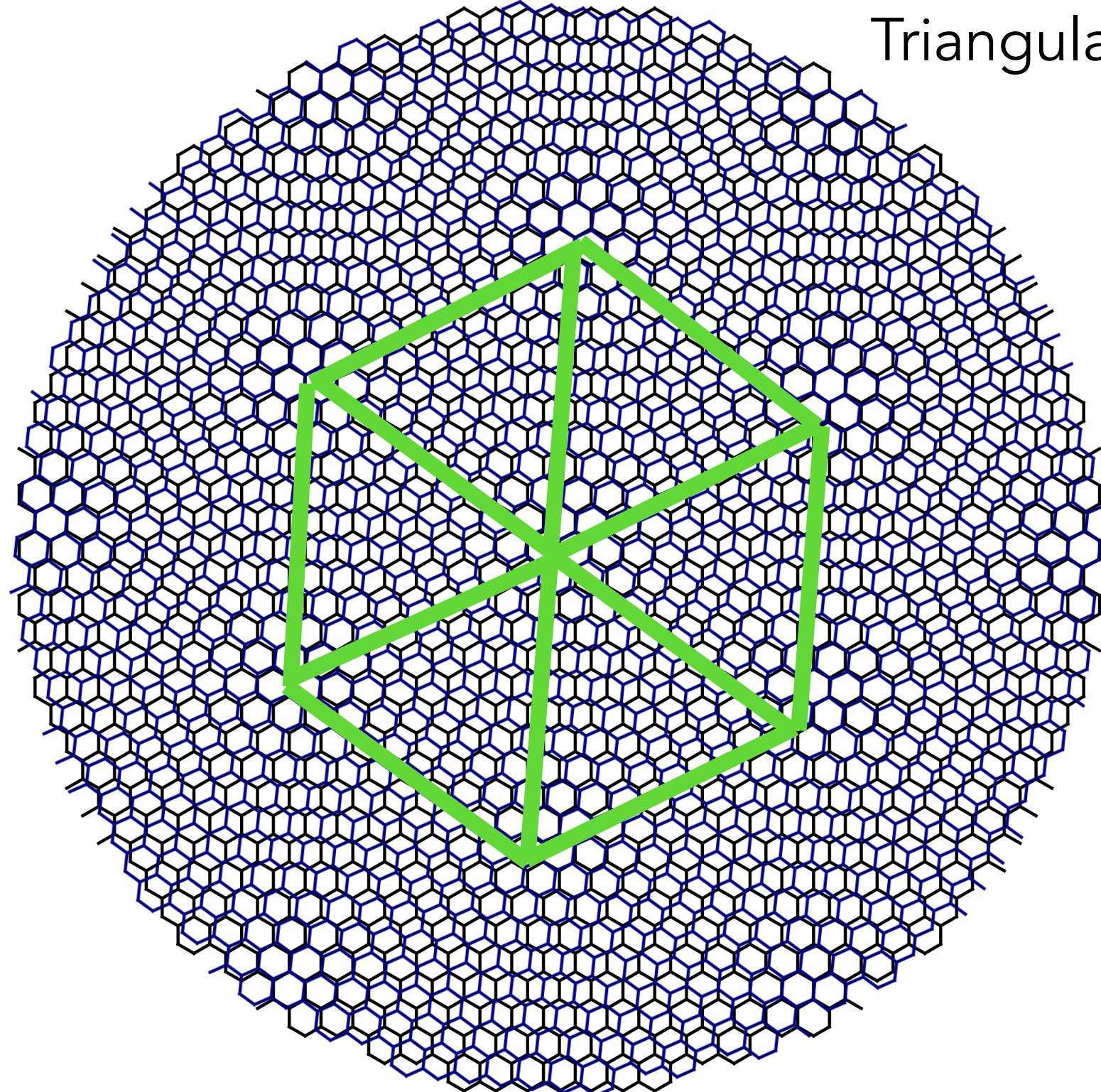
Moiré pattern

6°

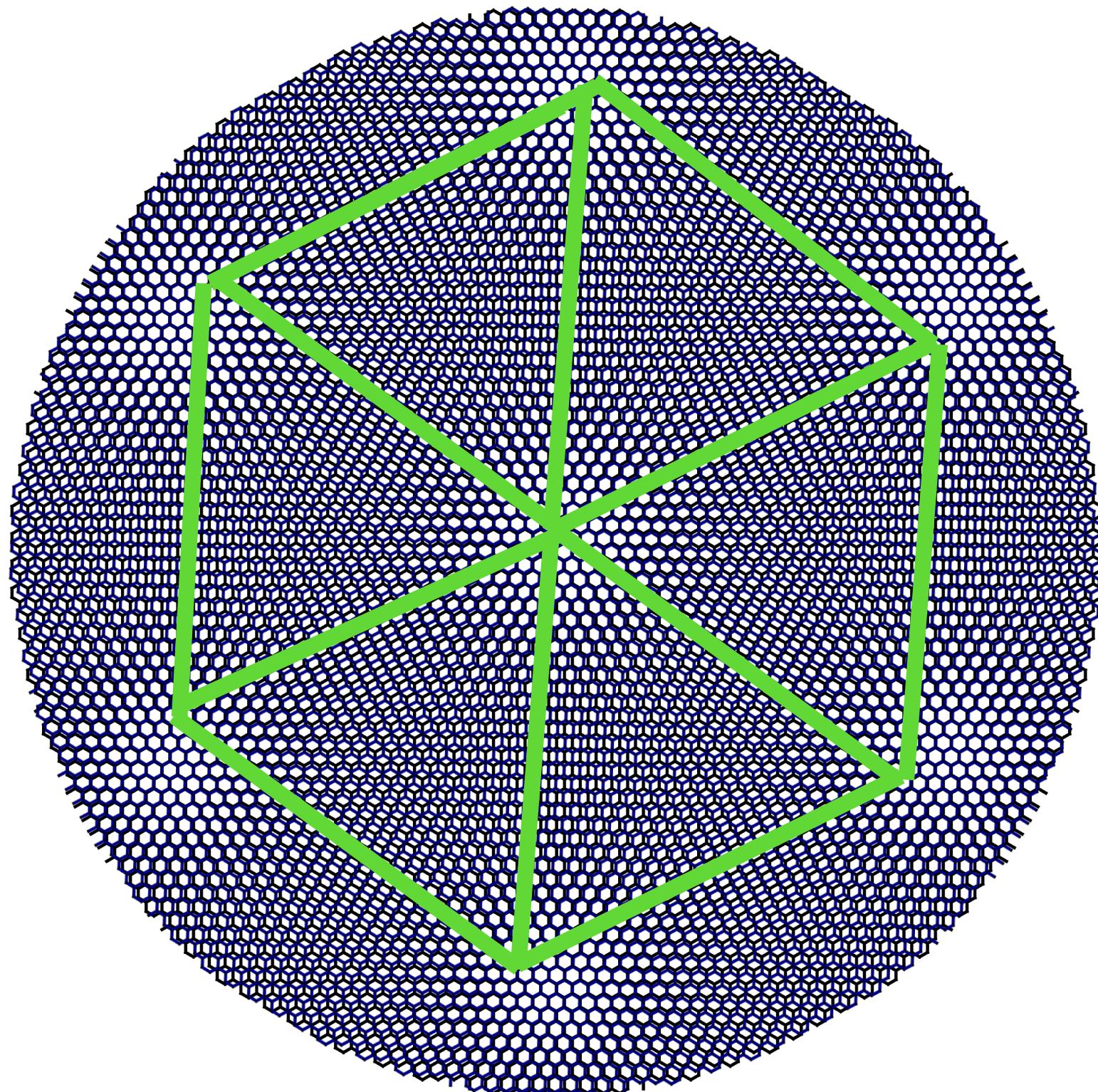


Triangular lattice

6°



2°



1°

$a_m = 13.4\text{nm}$

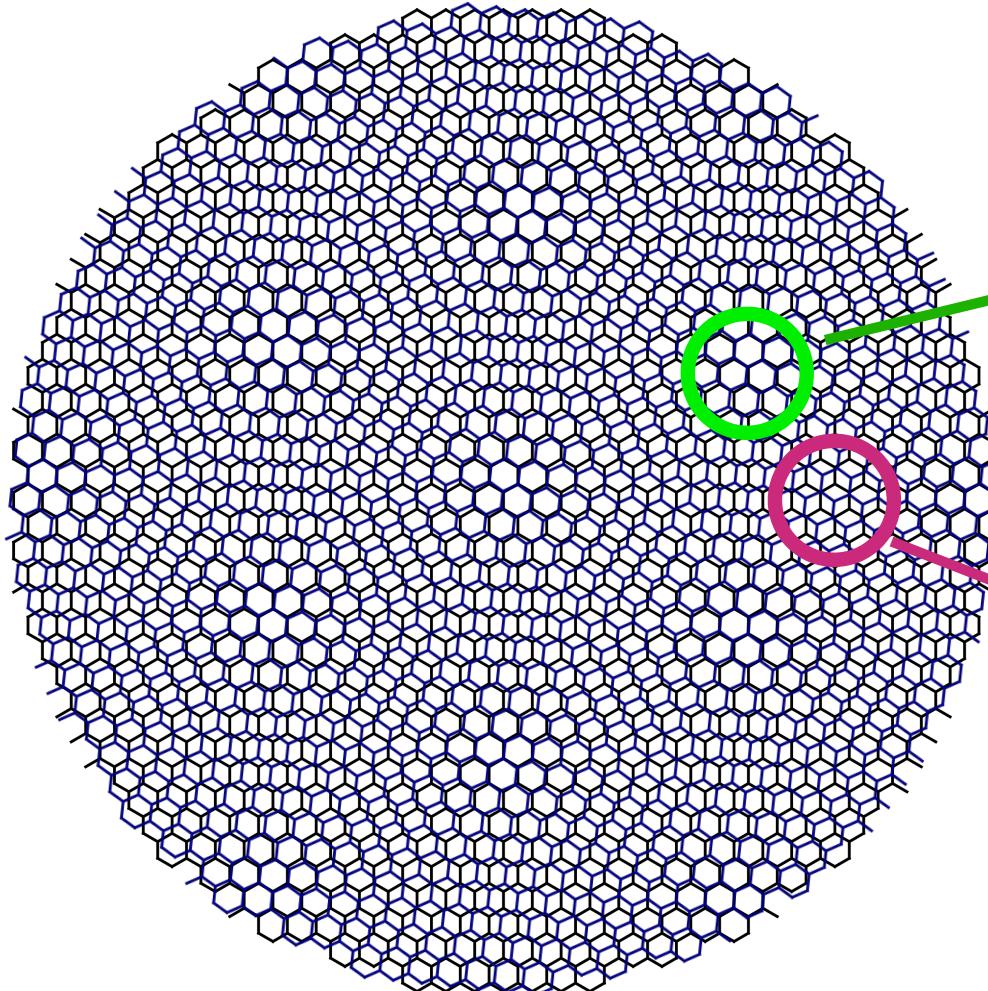
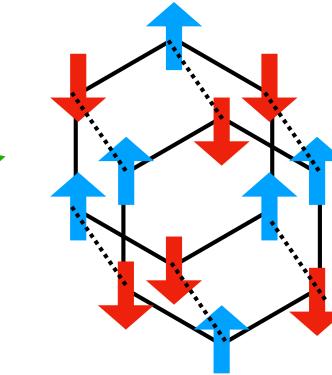
huge unit cell

6°

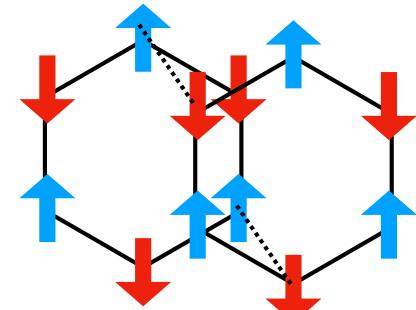
Twisted AF

Kasra Hejazi

Zhu-Xi Luo



$$N_1 = -N_2$$



$$N_1 = N_2$$

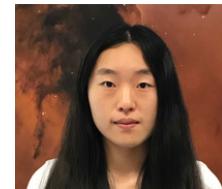
Frustration: Neél vectors must rotate

Continuum model(s)

- Basic assumptions:

- Inter-layer coupling weak $J' \ll J$

Kasra Hejazi



Zhu-Xi Luo

- Rotation angle is small (can also treat general strains)

- Example: MnPS_3 : excellent Heisenberg AF

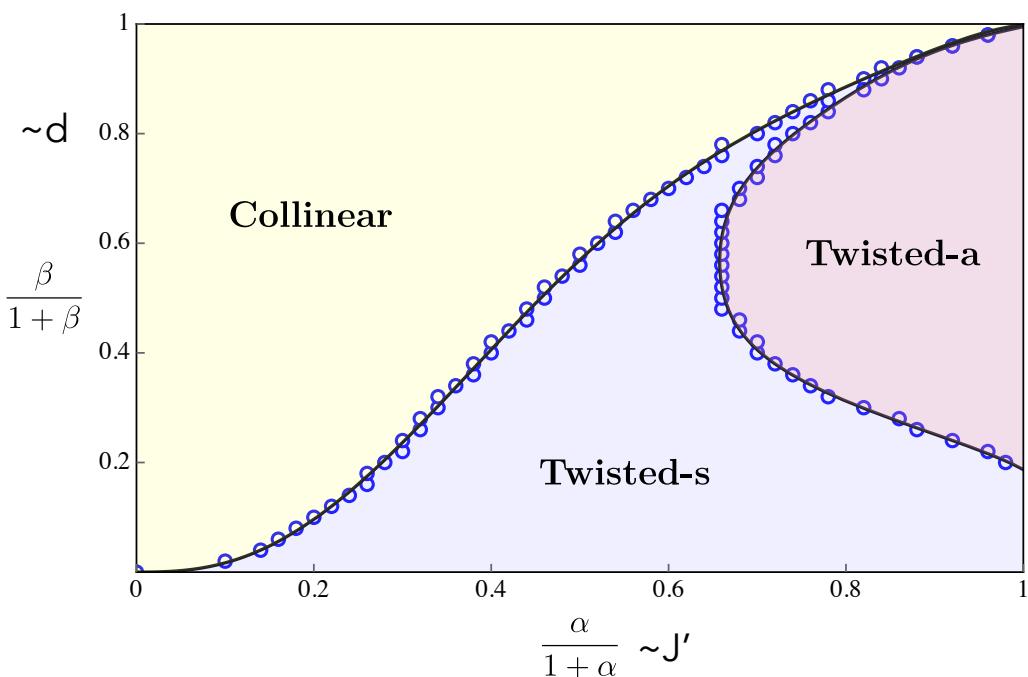
$$\mathcal{L} = \sum_l \frac{\rho}{2v^2} (\partial_t \mathbf{N}_l)^2 - \mathcal{H}_{\text{cl}} \quad \mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{N}_l)^2 - d (N_l^z)^2 \right] - J' \Phi(\mathbf{x}) \mathbf{N}_1 \cdot \mathbf{N}_2$$
$$\Phi(\mathbf{x}) = \sum_{a=1}^3 \cos(\mathbf{q}_a \cdot \mathbf{x})$$

Can predict spin textures, magnon subbands, etc.

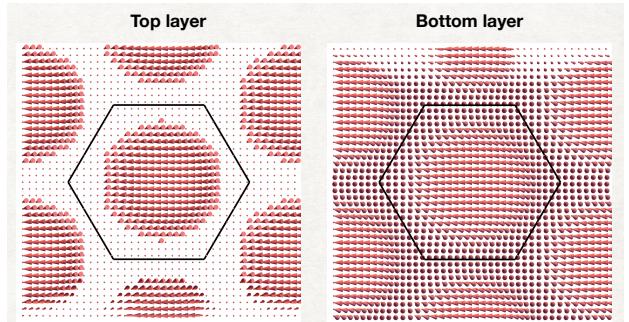
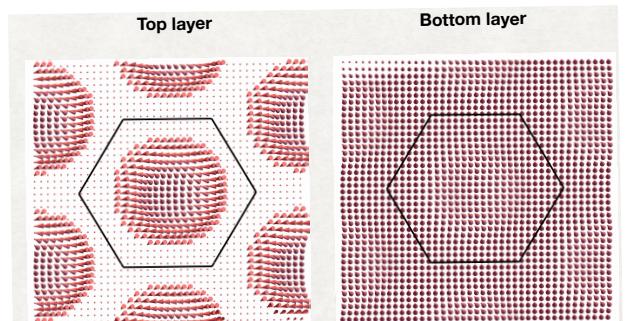
Twisted AF

$$\mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{N}_l)^2 - d (N_l^z)^2 \right] - J' \Phi(\mathbf{x}) \mathbf{N}_1 \cdot \mathbf{N}_2$$

Dimensionless parameter $\alpha = \frac{2J'}{\rho q_m^2} \sim \frac{J'}{J \theta^2}$

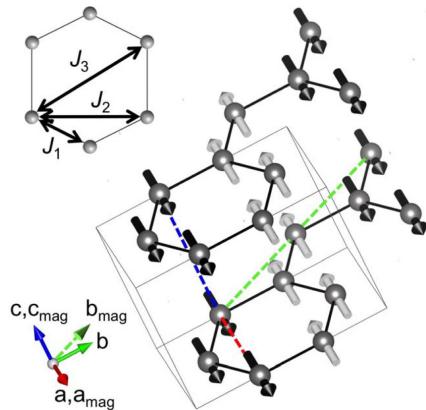


Coplanar spin textures



Transitions should be tunable by applied field

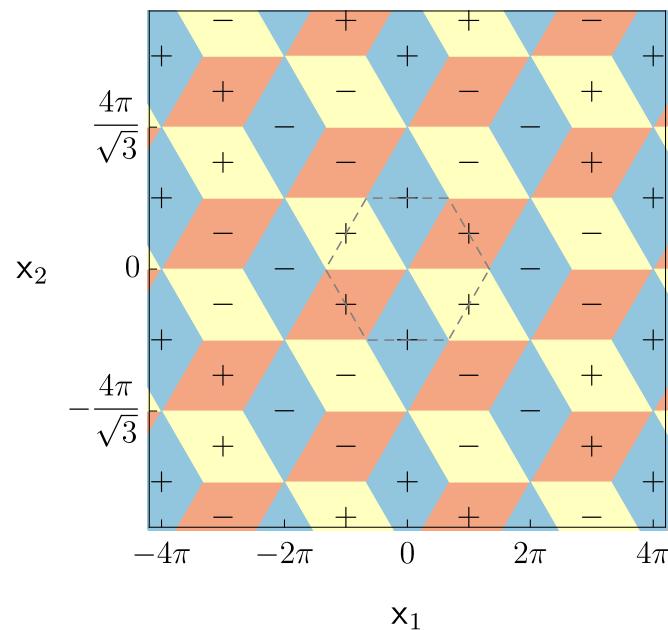
Zig-Zag antiferromagnets



$$\mathcal{H}_{cl} = \sum_{a,l} \frac{\rho}{2} (\nabla \mathbf{N}_{a,l})^2 - \frac{J'}{2} \sum_a \mathbf{N}_{a,1} \cdot \mathbf{N}_{a,2} \cos\left(\frac{\mathbf{q}_a \cdot \mathbf{x}}{2}\right)$$

3 distinct \mathbf{q}_a domains

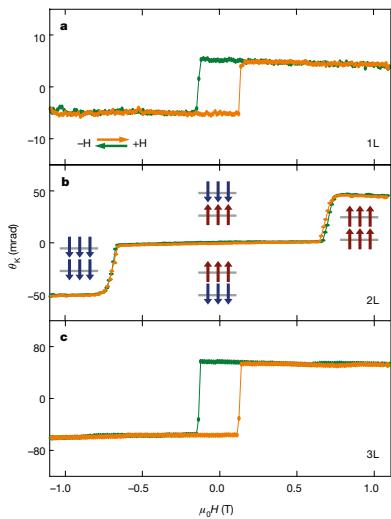
$\text{NiPS}_3, \text{FePS}_3, \text{CoPS}_3, \text{RuCl}_3 \dots$



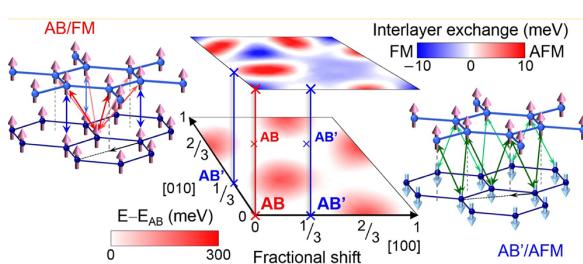
Strong-coupling
domains have structure
of “dice lattice”

CrI₃

Might not expect much from a *ferro*-magnet, but...



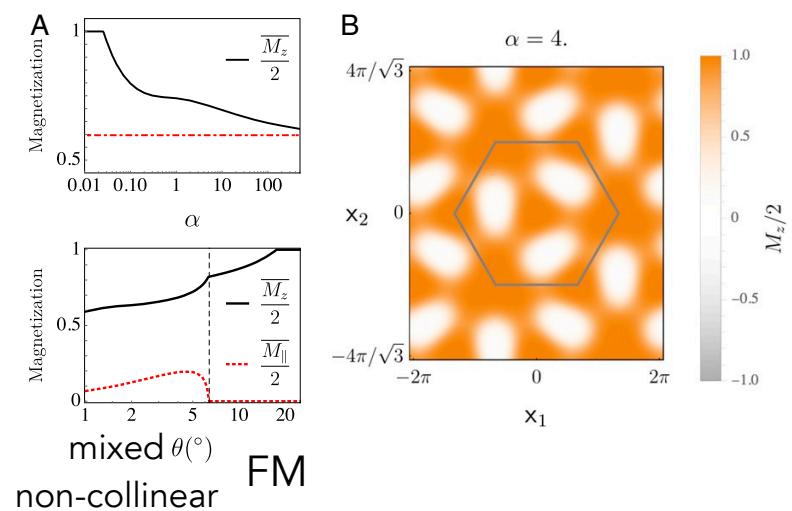
B. Huang *et al*, 2017



Sign-changing stacking-dependent interactions

$$\mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{M}_l)^2 - d (M_l^z)^2 \right] - J' \tilde{\Phi}(\mathbf{x}) \mathbf{M}_1 \cdot \mathbf{M}_2$$

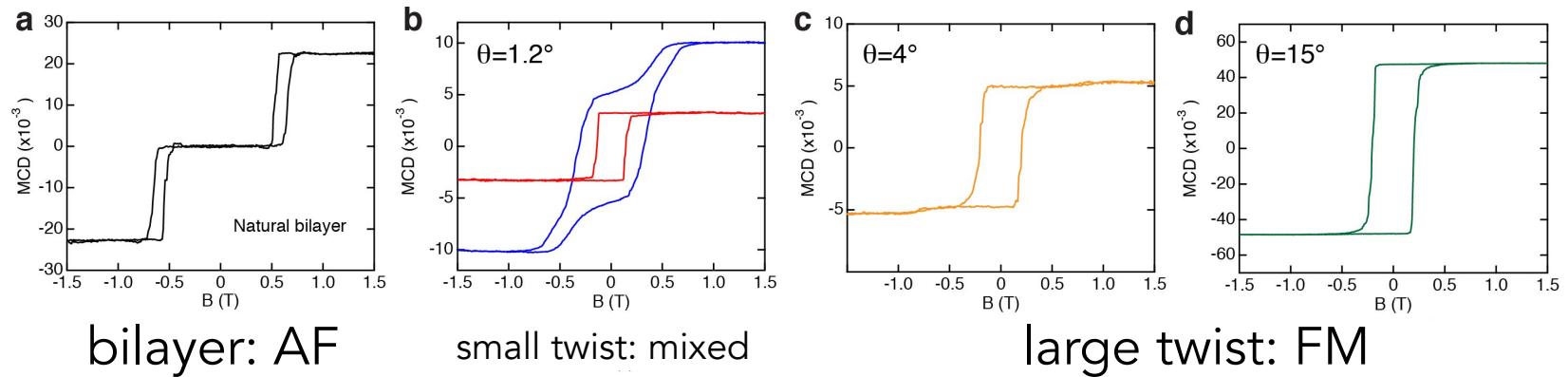
from DFT theory



Crl₃

Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer Crl₃

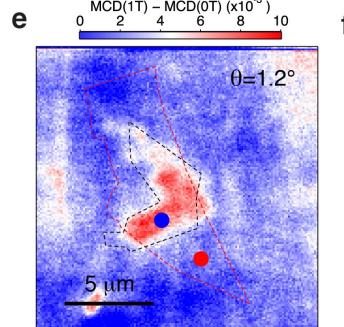
Yang Xu^{1,2}, Ariana Ray³, Yu-Tsun Shao¹, Shengwei Jiang³, Kihong Lee³, Daniel Weber³,
Joshua E. Goldberger⁴, Kenji Watanabe⁵, Takashi Taniguchi⁵, David A. Muller^{1,6}, Kin Fai Mak³,
and Jie Shan^{3,1,7}



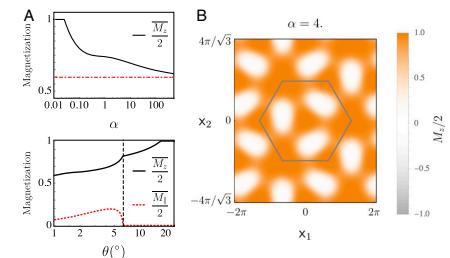
bilayer: AF

small twist: mixed

large twist: FM



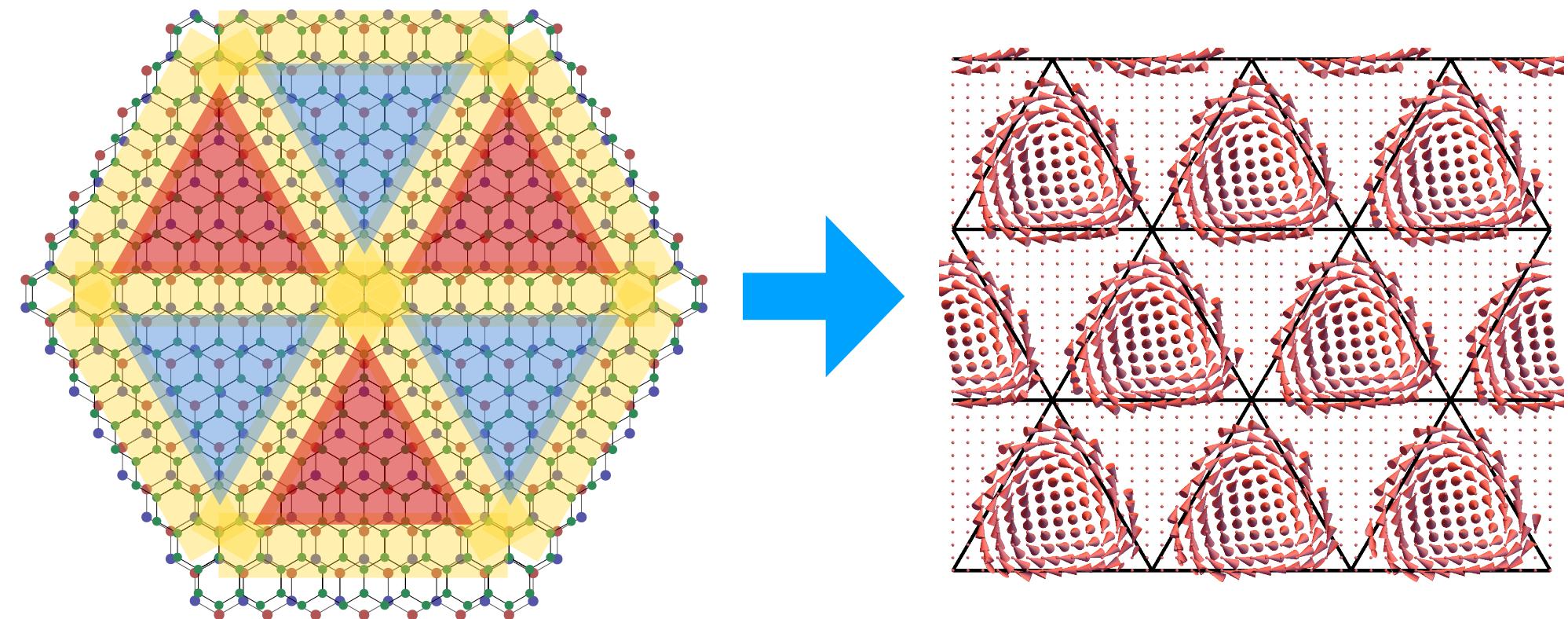
c.f.



n.b. Also recent twisted double bilayer arXiv:2103.13573 claims evidence of non-collinear state

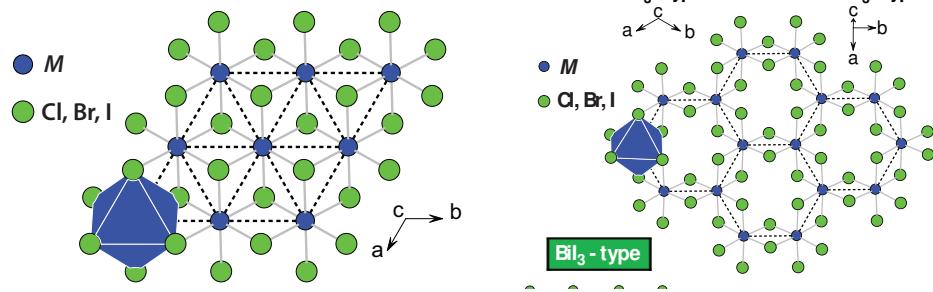
Moiré skyrmions

FM+AF heterobilayer



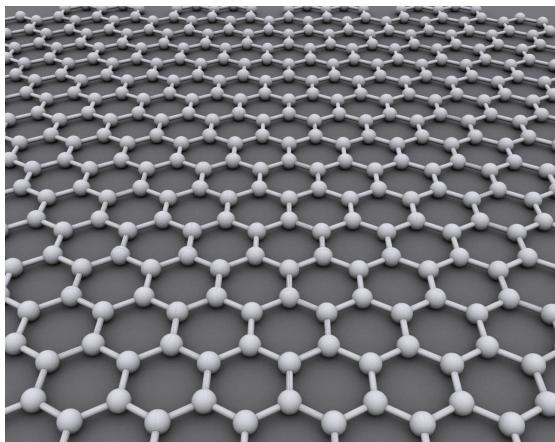
Truly 2d materials

- 2d Van der Waals magnets



MnPS₃, FePS₃, NiPS₃, CoPS₃, CrSiTe₃...
CrI₃, RuCl₃, ...

- The parent of 2d materials: graphene



extraordinarily defect-free material, highly conducting, described by 2d Dirac equation

Entirely composed of C atoms, with electrons in bonded s+p orbitals. No local spins.

but it still shows magnetism!!

How to make graphene magnetic

- Stoner criterion: need to enhance density of states/reduce Fermi energy

applied is not appreciably extended by the inclusion of further terms. The relation shows at once that there is a lower limit to $k\theta'/\epsilon_0$ for the occurrence of spontaneous magnetization at any temperature. For ferromagnetism to occur at all (i.e. for $k\theta'/\epsilon_0 > 0$) a necessary condition is

$$k\theta'/\epsilon_0 > \frac{2}{3}. \quad (5.4)$$

Stoner, 1938

- Twisting creates the required small Fermi energy

N.b.: even without twisting, multilayers recently observed to show ferromagnetism

[nature](#) > [articles](#) > [article](#)

Article | [Published: 01 September 2021](#)

Half- and quarter-metals in rhombohedral trilayer graphene

[Haoxin Zhou](#), [Tian Xie](#), [Areg Ghazaryan](#), [Tobias Holder](#), [James R. Ehrets](#), [Eric M. Spanton](#), [Takashi Taniguchi](#), [Kenji Watanabe](#), [Erez Berg](#), [Maksym Serbyn](#) & [Andrea F. Young](#)

Nature **598**, 429–433 (2021) | [Cite this article](#)

10k Accesses | 7 Citations | 29 Altmetric | [Metrics](#)

Science

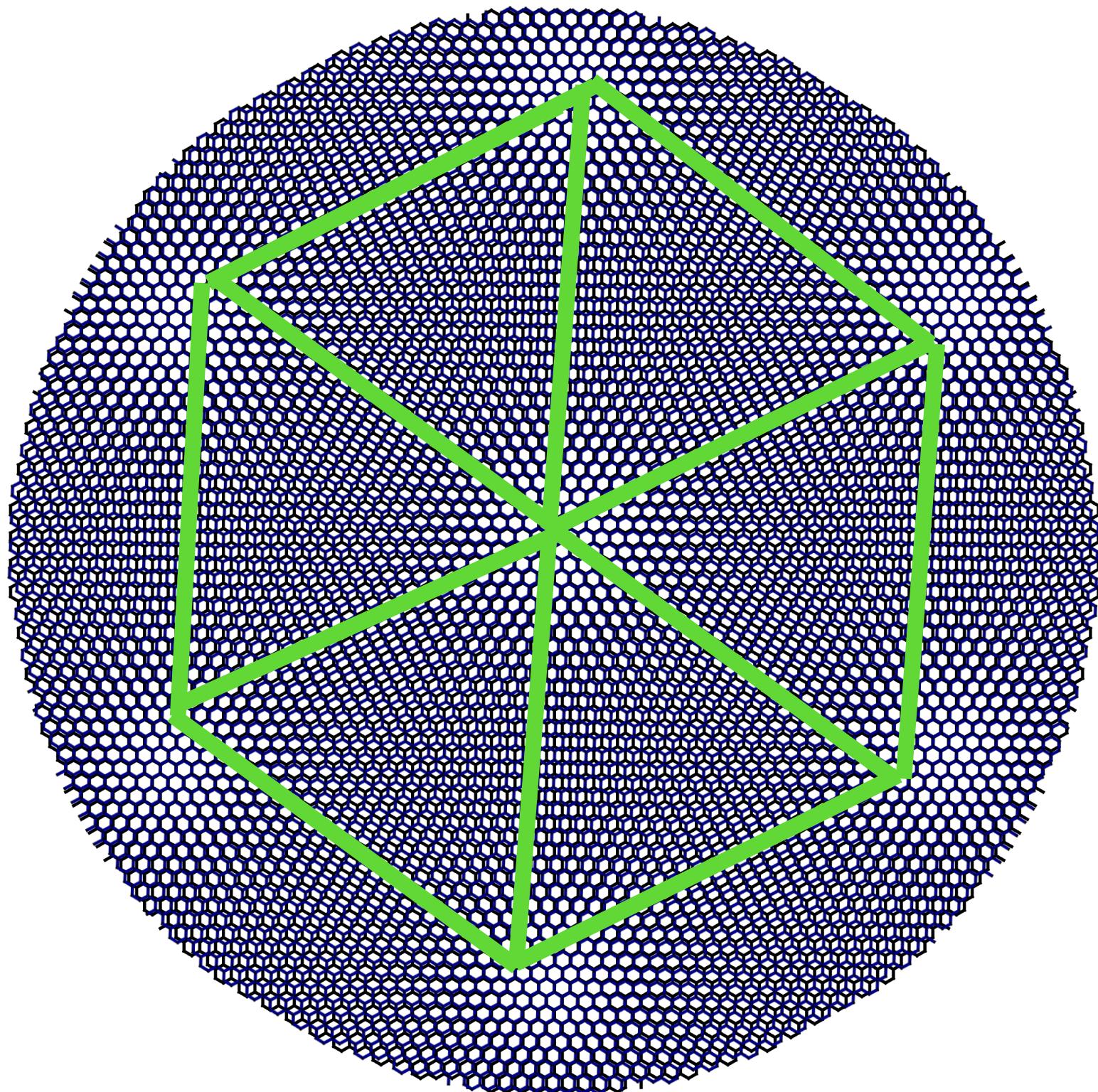
REPORTS

Cite as: H. Zhou *et al.*, *Science* 10.1126/science.abm8386 (2022).

Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene

[Haoxin Zhou](#)^{1†}, [Ludwig Holleis](#)¹, [Yu Saito](#)¹, [Liam Cohen](#)¹, [William Huynh](#)¹, [Caitlin L. Patterson](#)¹, [Fangyuan Yang](#)¹, [Takashi Taniguchi](#)², [Kenji Watanabe](#)³, [Andrea F. Young](#)^{1*}

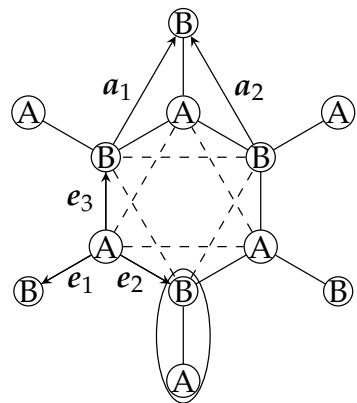
2°



Moiré Bands

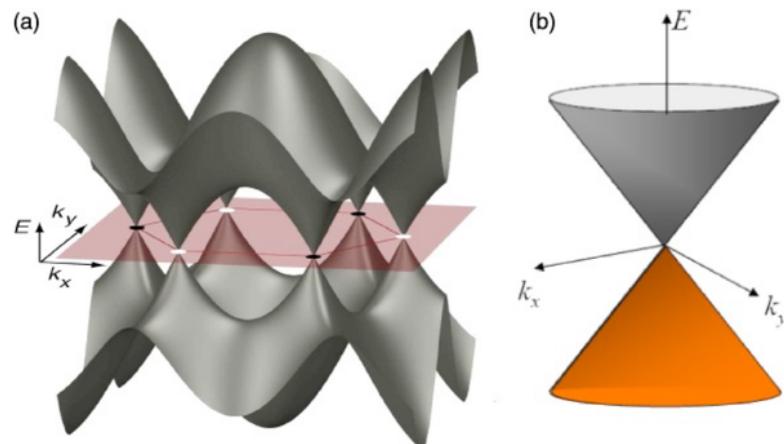
- What you need to know:
 - Moiré pattern creates an effective “artificial lattice” with huge lattice spacing
 - Corresponding moiré bands occupy a tiny region of momentum space, separated into two “valleys” originating from the underlying graphene Dirac points
 - The important moiré bands (near the Fermi energy) become exceptionally narrow near the “magic angle” ~ 1 degree
 - The moiré bands are topological, and in particular become Chern bands when the graphene is aligned with its hBN substrate

Dirac bands in graphene



2 sublattice spinor

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

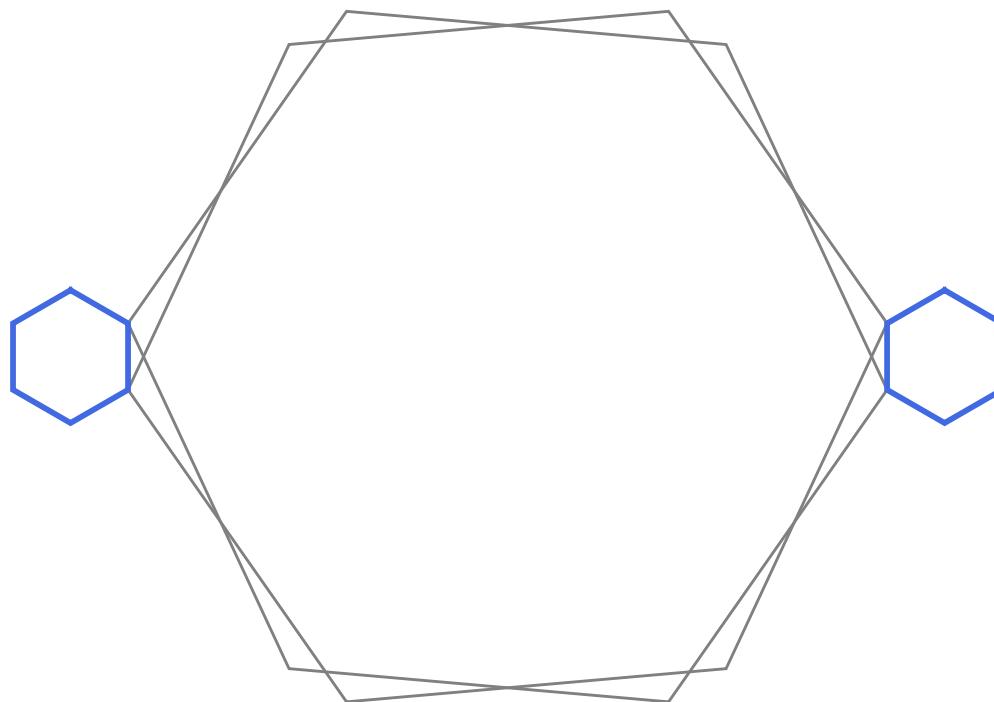


$$H_K = v \vec{k} \cdot \vec{\sigma}$$

$$H_{K'} = [H_K(-\vec{k})]^*$$

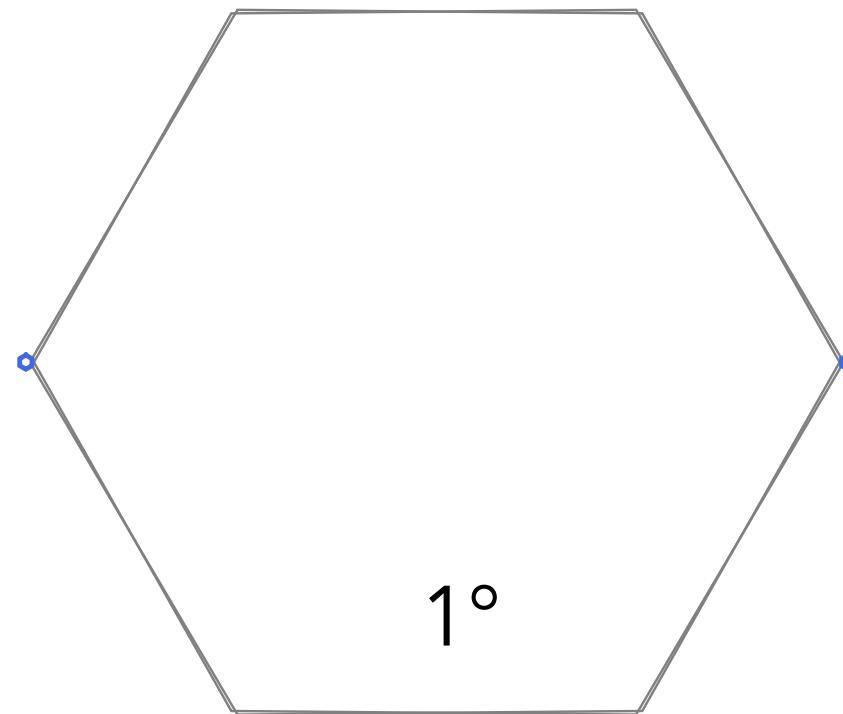
K,K' "valleys"

Moiré bands



Two layers define two slightly shifted Dirac points for each valley

Moiré bands



Tiny moiré bands at each valley are well separated - act as two “flavors” of electrons

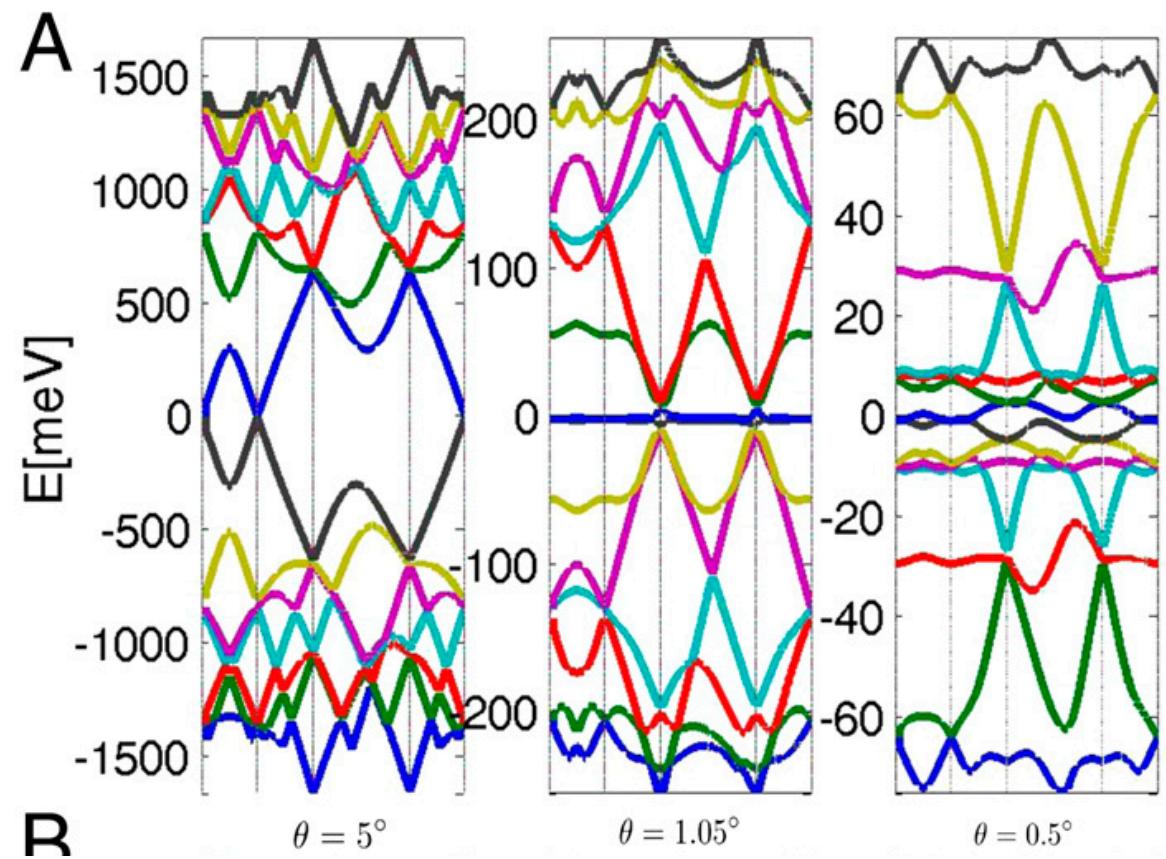
Moiré Bands

- What you need to know:
 - Moiré pattern creates an effective “artificial lattice” with huge lattice spacing
 - Corresponding moiré bands occupy a tiny region of momentum space, separated into two “valleys” originating from the underlying graphene Dirac points
 - The important moiré bands (near the Fermi energy) become exceptionally narrow near the “magic angle” ~ 1 degree
 - The moiré bands are topological, and in particular become Chern bands when the graphene is aligned with its hBN substrate

Magic angle bands

Bistritzer+Macdonald, 2011:
moiré pattern behaves like an
artificial lattice with its own
bands, which becomes
especially flat at the “magic”
angle ~ 1 degree

These bands retain their Dirac
points, i.e. Berry phase



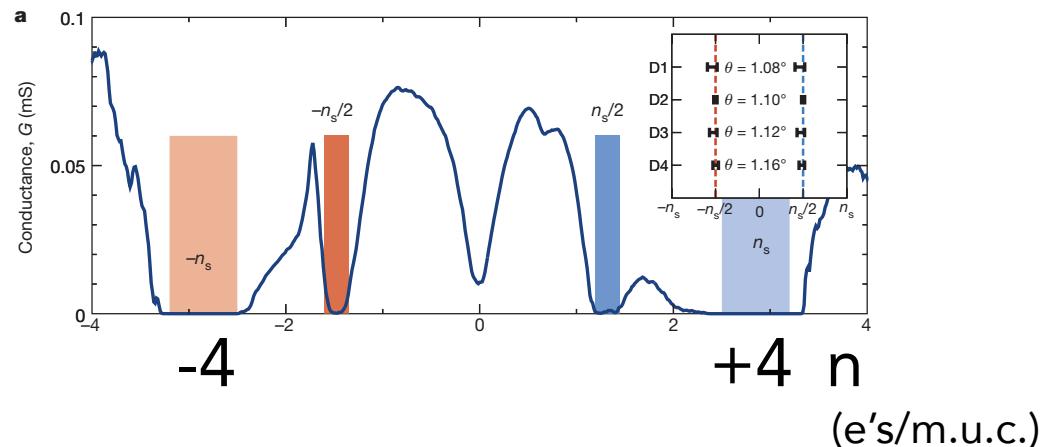
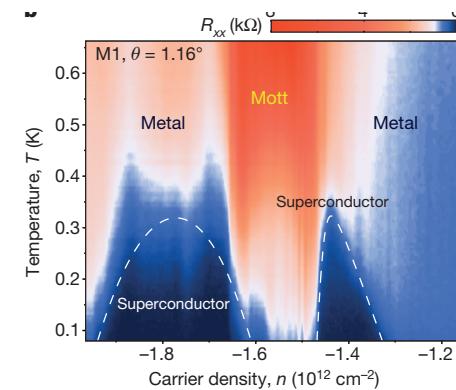
narrow band = small kinetic energy

Moiré Bands

- What you need to know:
 - Moiré pattern creates an effective “artificial lattice” with huge lattice spacing
 - Corresponding moiré bands occupy a tiny region of momentum space, separated into two “valleys” originating from the underlying graphene Dirac points
 - The important moiré bands (near the Fermi energy) become exceptionally narrow near the “magic angle” ~ 1 degree
 - The moiré bands are topological, and in particular become *Chern bands* when the graphene is aligned with its hBN substrate

Correlation effects

- A quantum correlated electron simulator
- Tunable electron density
- Tunable correlation
- (Somewhat) Tunable topology
- 1/100 energy scale of usual solids

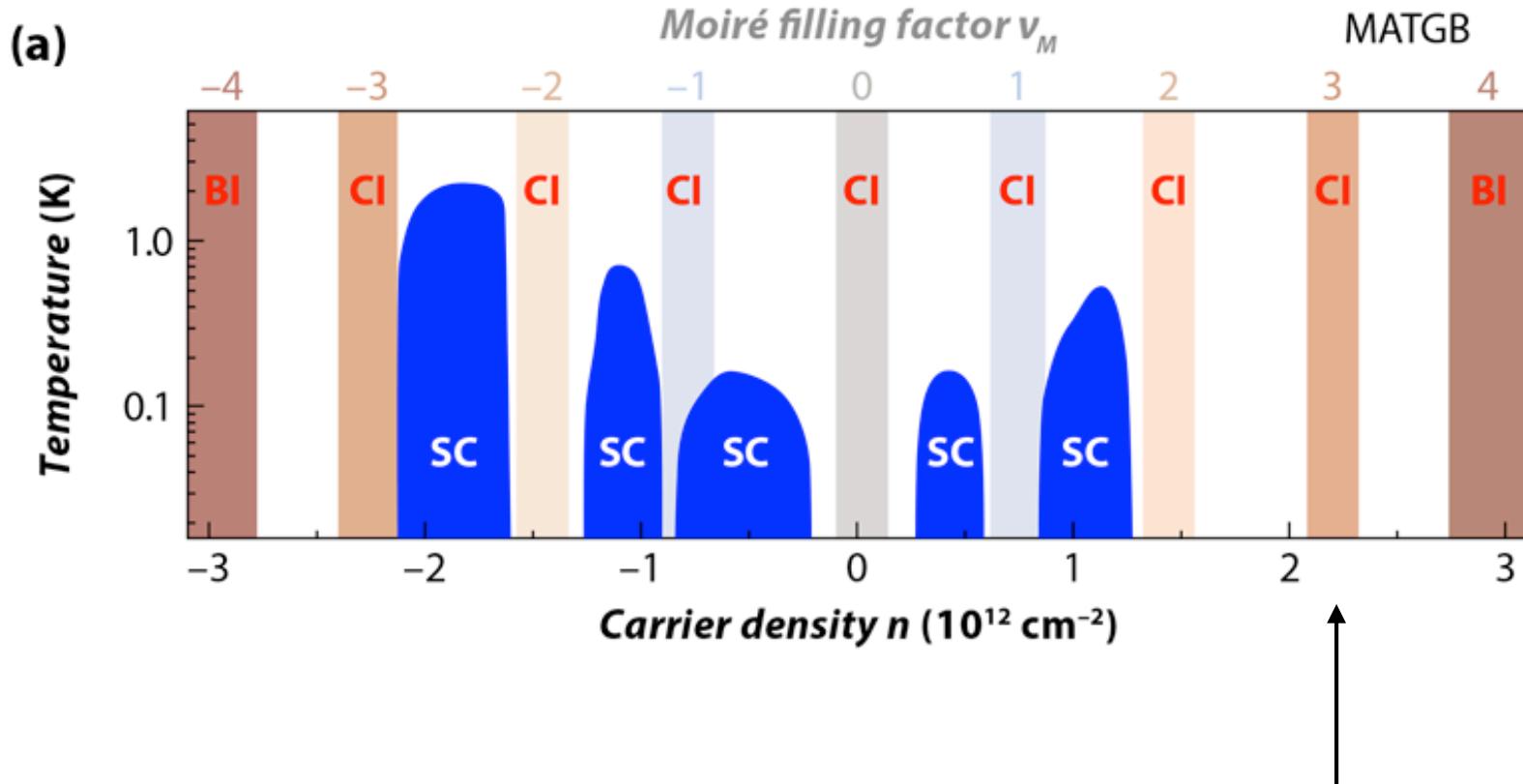


Jarillo-Herrero group
Nature 2018

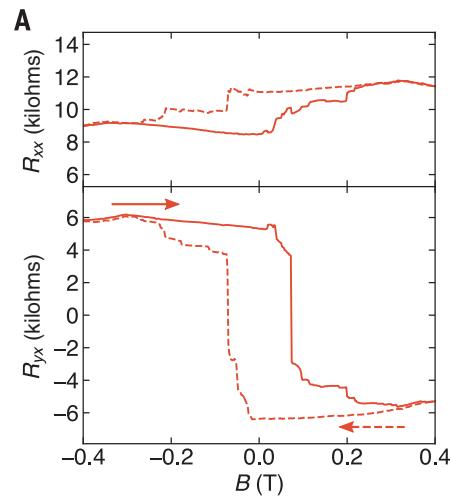
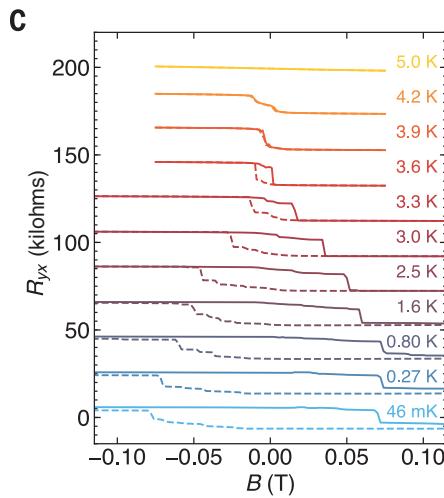
2021: >300 papers on arXiv

Correlation effects

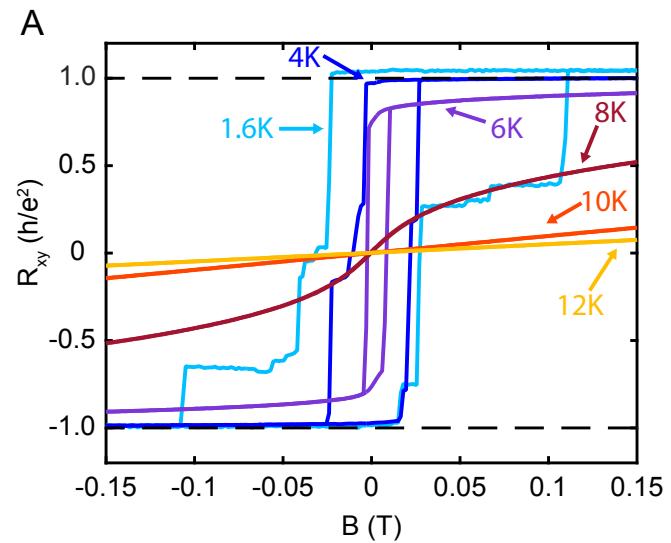
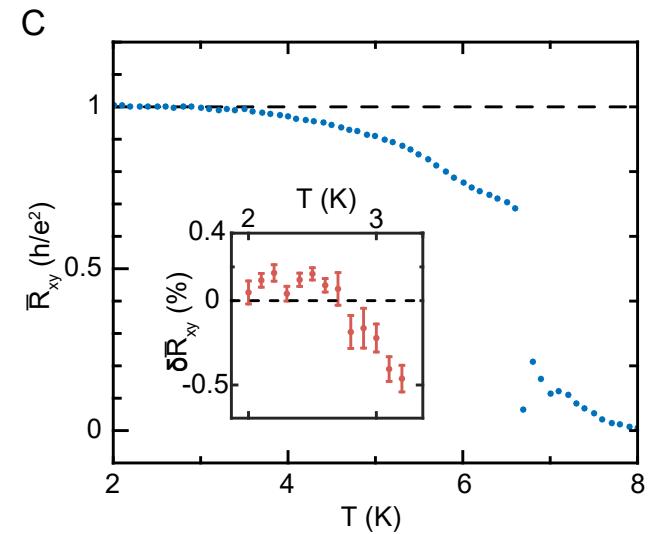
from A. Macdonald, Physics today



Ferromagnetism in TBG



A. Sharpe *et al*, 2019



M. Serlin *et al*, 2019

Moiré Bands

- What you need to know:
 - Moiré pattern creates an effective “artificial lattice” with huge lattice spacing
 - Corresponding moiré bands occupy a tiny region of momentum space, separated into two “valleys” originating from the underlying graphene Dirac points
 - The important moiré bands (near the Fermi energy) become exceptionally narrow near the “magic angle” ~ 1 degree
 - **The moiré bands are topological, and in particular become Chern bands when the graphene is aligned with its hBN substrate**

Berry phase and curvature

- Hamiltonian depending on parameters

$$H = H(\{\lambda_i\})$$

- Under adiabatic evolution $\lambda_i = \lambda_i(t)$

- Wavefunction accumulates a geometric (Berry) phase over a closed loop

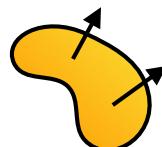
$$\gamma = i \oint d\lambda_i \langle \psi | \frac{\partial}{\partial \lambda_i} | \psi \rangle$$

~ Aharonov-Bohm
phase

- Using Stokes' theorem

$$\gamma = \iint d\lambda_{\mu\nu} F_{\mu\nu}$$

$$F_{\mu\nu} = i (\langle \partial_\mu \psi | \partial_\nu \psi \rangle - \langle \partial_\nu \psi | \partial_\mu \psi \rangle)$$



Berry curvature
~ magnetic field

Berry curvature in 2d solids

- Hamiltonian depends on k_x, k_y

$$\Omega = i \left(\langle \partial_{k_x} \psi | \partial_{k_y} \psi \rangle - \langle \partial_{k_y} \psi | \partial_{k_x} \psi \rangle \right)$$

- Controls several physical effects

- Hall conductivity $\sigma_{xy} = \frac{e^2}{\hbar} \sum_n \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \Omega_n(\mathbf{k}) f(\epsilon_n(\mathbf{k}))$

- Orbital magnetic moment $m_n^z(\mathbf{k}) \sim e \Omega_n(\mathbf{k})$

- $T=0$, insulator: quantization

$$\sigma_{xy} = \frac{e^2}{\hbar} \sum_{n \text{ occupied}} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \Omega_n(\mathbf{k}) = \frac{e^2}{h} \sum_{n \text{ occupied}} C_n$$

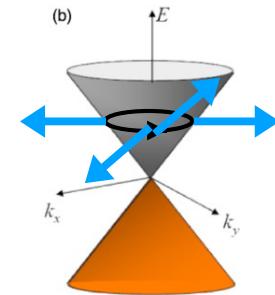
Chern number
= integer

Dirac and topology

- Dirac electrons are topological

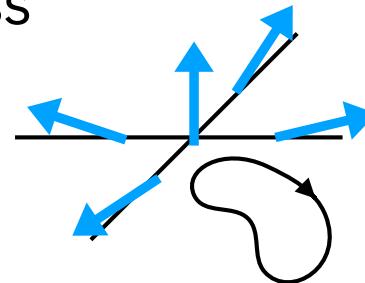
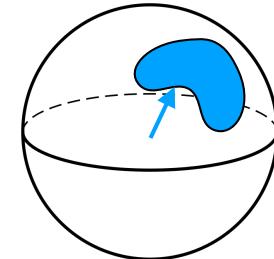
$$H_K = v \vec{k} \cdot \vec{\sigma}$$

$$\gamma = \pm \pi$$



- When symmetry relating the two sublattices is broken, the Dirac fermions acquire a “mass”

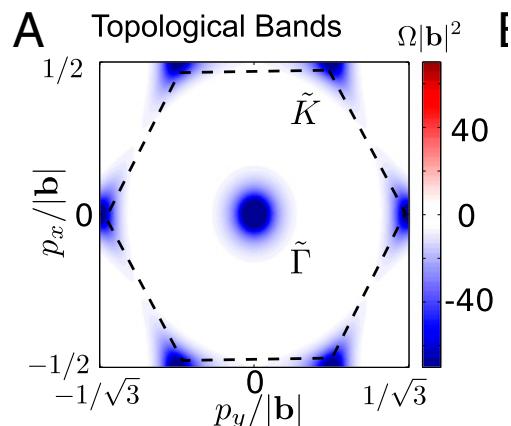
$$H_K \rightarrow v \vec{k} \cdot \vec{\sigma} + m \sigma^z$$



- Berry curvature = $1/2$ (area swept on sphere/unit area in k space). Large near Dirac points.

Moiré Chern bands

- Small coupling to aligned hBN substrate readily creates such Berry curvature



Topological Bloch bands in graphene superlattices

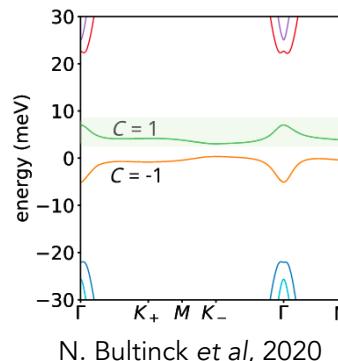
Justin C. W. Song^{a,b,c,1}, Polnop Samutpraphoot^c, and Leonid S. Levitov^{c,1}

^aWalter Burke Institute for Theoretical Physics, California Institute of Technology, CA 91125; ^bInstitute for Quantum Information and Matter, and Department of Physics, California Institute of Technology, CA 91125; and ^cDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Subir Sachdev, Harvard University, Cambridge, MA, and approved June 24, 2015 (received for review December 30, 2014)

- The flat moiré bands then become Chern bands

e.g.



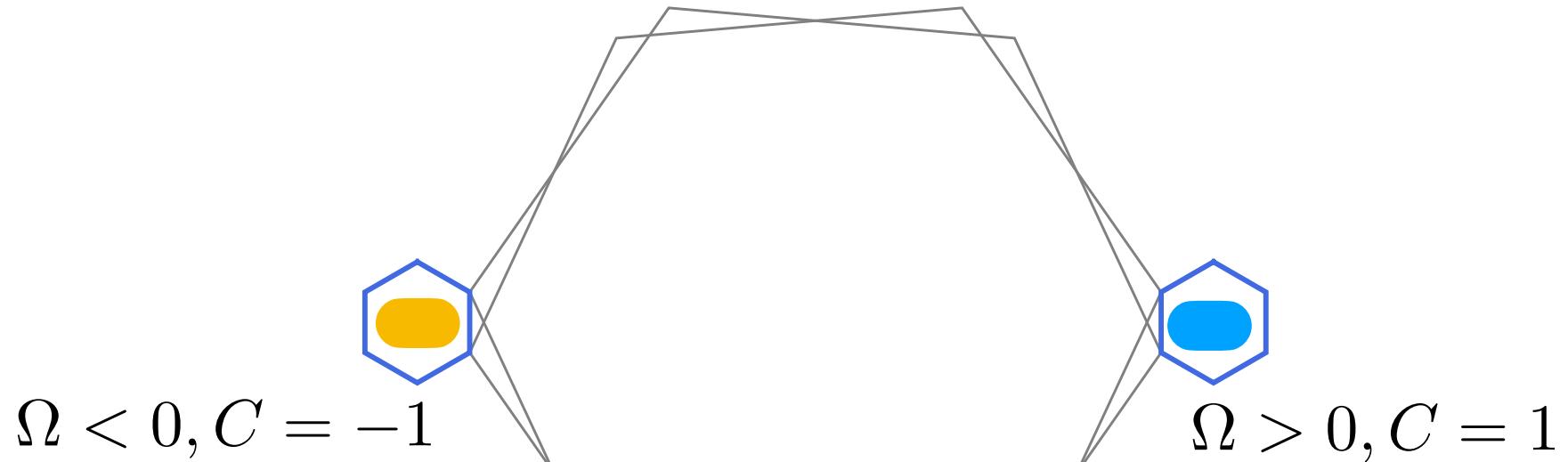
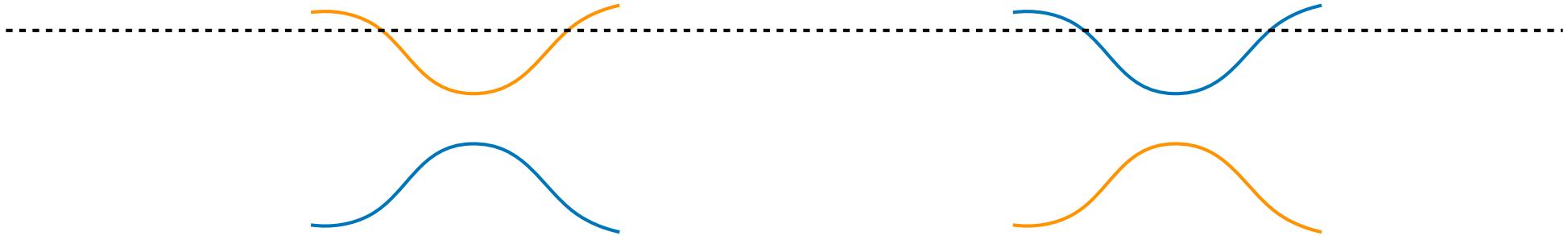
N. Bultinck et al., 2020

States in each valley carry Hall current and large orbital magnetic moment

Moiré Bands

- What you need to know:
 - Moiré pattern creates an effective “artificial lattice” with huge lattice spacing
 - Corresponding moiré bands occupy a tiny region of momentum space, separated into two “valleys” originating from the underlying graphene Dirac points
 - The important moiré bands (near the Fermi energy) become exceptionally narrow near the “magic angle” ~ 1 degree
 - The moiré bands are topological, and in particular become *Chern bands* when the graphene is aligned with its hBN substrate

Valley Chern number



Stoner ferromagnetism

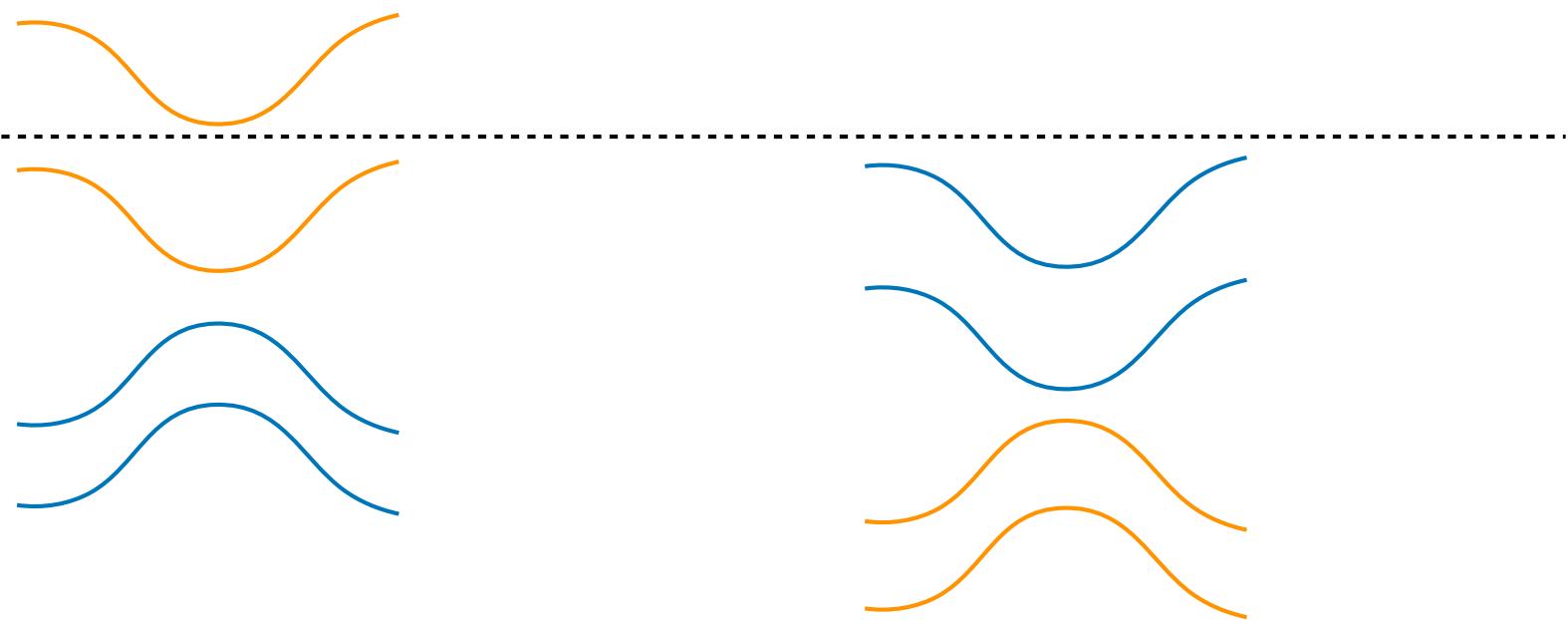
- Coulomb repulsion favors polarization of spin and valley, at cost of kinetic (band) energy
Due to narrow magic angle bands, Coulomb wins

$$H_{\text{int}} = \sum_{a < b} U_{ab} n_a n_b \quad (\text{a=spin+valley})$$

Stoner ferromagnetism

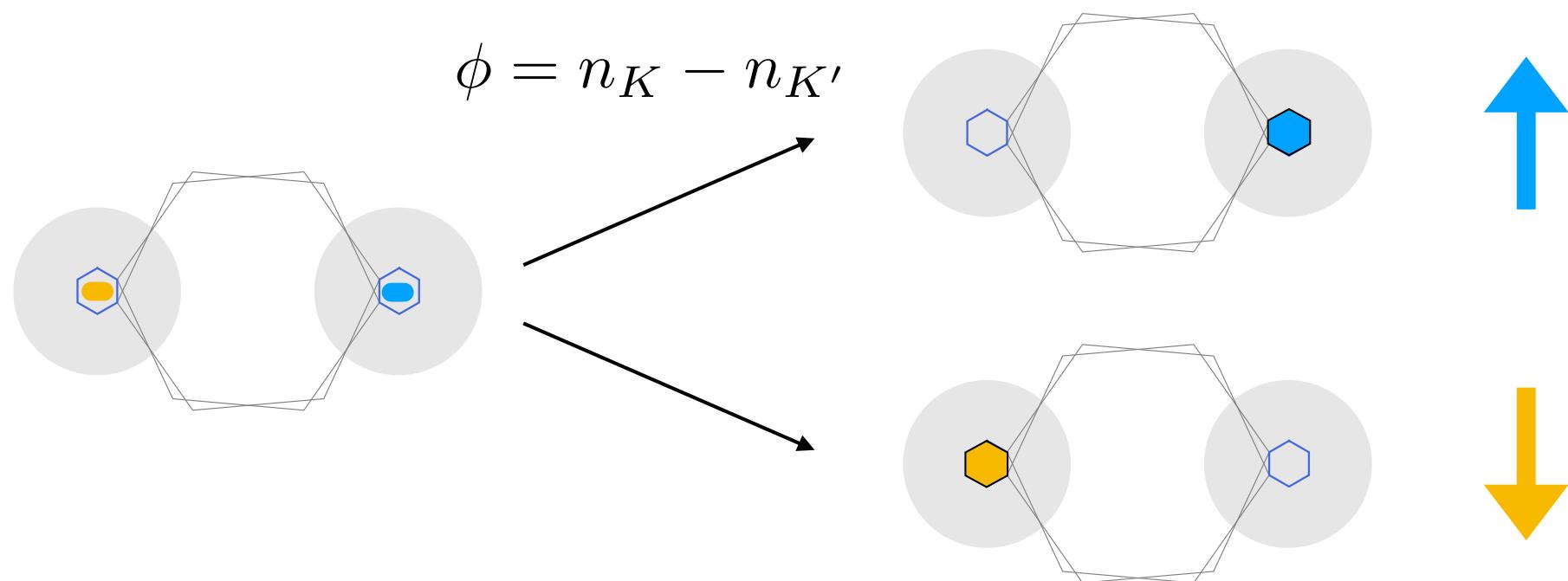
- Coulomb repulsion favors polarization of spin and valley, at cost of kinetic (band) energy

$$H_{\text{int}} = \sum_{a < b} U_{ab} n_a n_b \quad (\text{a=spin+valley})$$



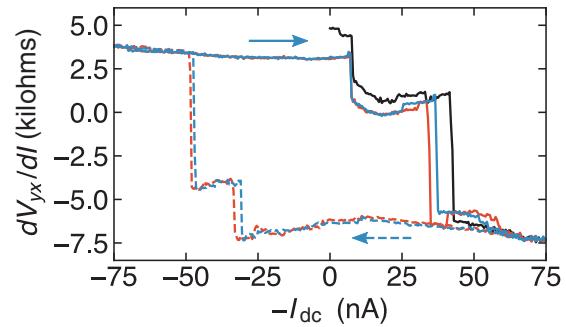
Valley ferromagnetism

- Recall Mermin-Wagner: is 2d ordering possible?
A1: ordering of the *valley* is possible, because this is an *Ising* symmetry breaking

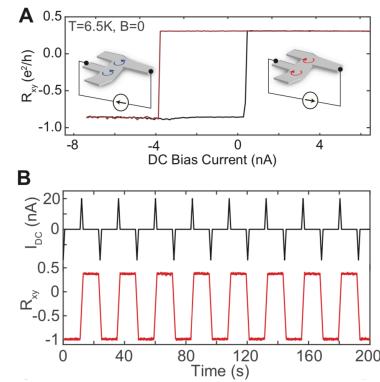


- A2: We expect no additional transition associated with spin

Current control



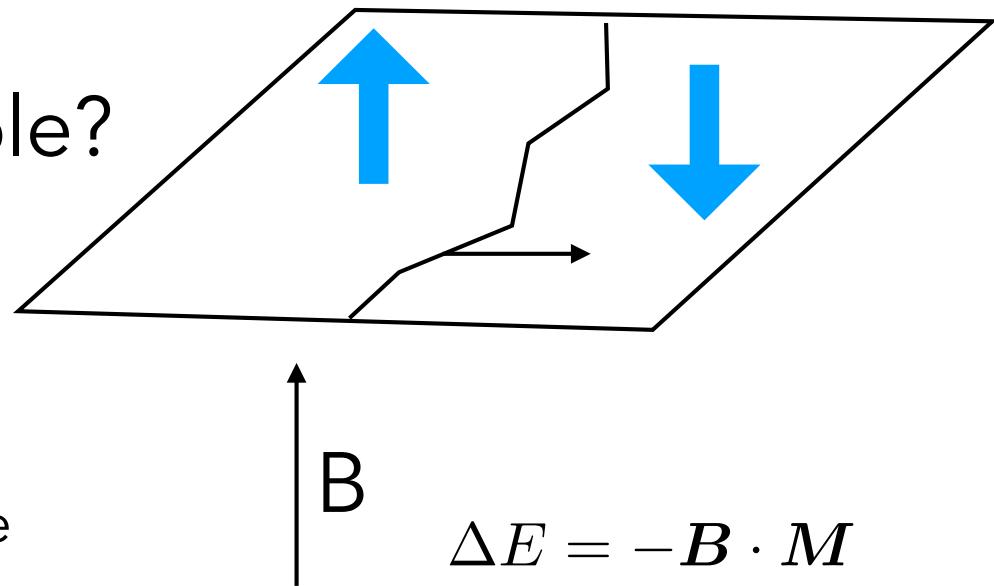
A. Sharpe *et al*, 2019



M. Serlin *et al*, 2019

How does the current couple?

For magnetic fields it is simple



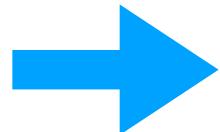
$$\Delta E = -\mathbf{B} \cdot \mathbf{M}$$

Quantized regime

$$\rho_{xx} \ll \rho_{xy}$$

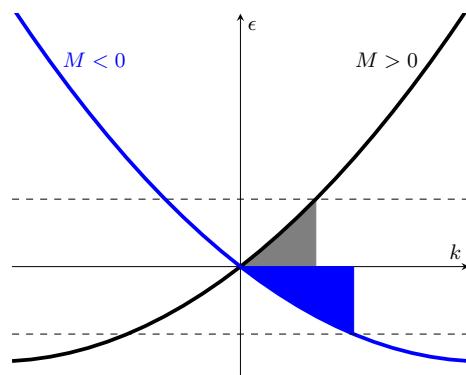
- no dissipation, only edge state transport
- Charge of each edge is separately conserved

♣ Can view current-carrying state as quasi-equilibrium ensemble where current determines edge occupation



Can formulate $F(I, M)$

$$\Delta F \sim \frac{\hbar^2}{me^3v^3} LI^3$$



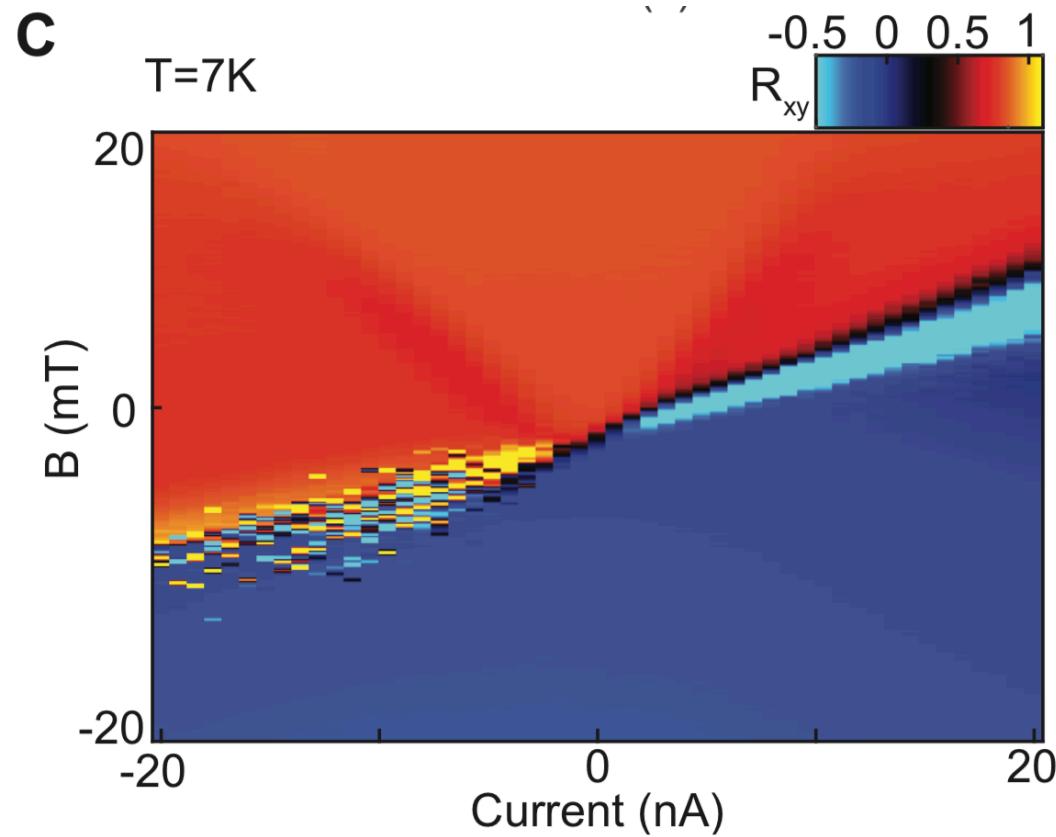
another mechanism

Current Driven Magnetization Reversal in Orbital Chern Insulators

Chunli Huang, Nemin Wei, and Allan H. MacDonald
Department of Physics, University of Texas at Austin, Austin TX 78712
(Dated: September 22, 2020)

Dissipative Regime

Close to Curie temperature
Small Hall angle
Presumably no spin polarization

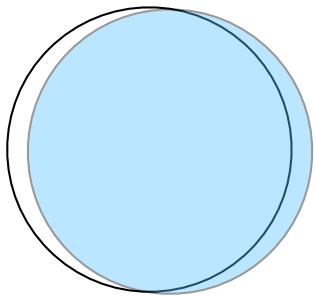


Xuzhe Ying

Mengxing Ye

A fully non-equilibrium problem, bulk 2d physics

Can current induce M?



Liouville theorem: semi-classical dynamics preserves phase space volume: Valley polarization is **not** induced by equations of motion

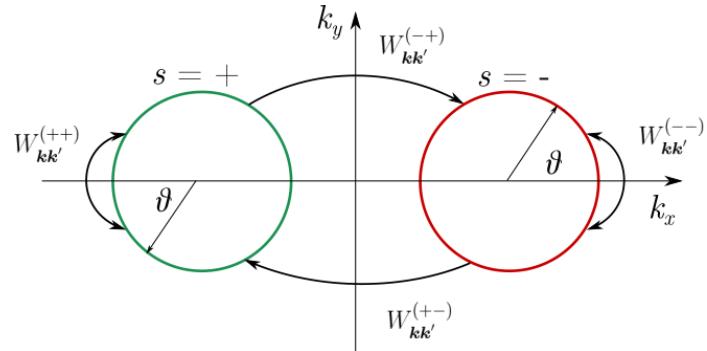
$$\partial_t f_{\mathbf{k}}^{(s)} + \mathbf{v}_{\mathbf{k}}^{(s)} \cdot \partial_{\mathbf{x}} f_{\mathbf{k}}^{(s)} + e \mathbf{E} \cdot \partial_{\mathbf{k}} f_{\mathbf{k}}^{(s)} = \sum_{s'=\pm} \int d\Gamma' W_{\mathbf{k}\mathbf{k}'}^{(ss')} \left(f_{\mathbf{k}'}^{(s')} - f_{\mathbf{k}}^{(s)} \right) \delta(\epsilon_{\mathbf{k}'}^{(s')} - \epsilon_{\mathbf{k}}^{(s)})$$

In relaxation time approximation:

$$\mathbf{M} = \alpha \mathbf{E} \sim \tau \mathbf{E} \sim \mathbf{j}$$

$\phi = 0$ Valley polarization is primary order parameter, but not induced by ME mechanism (not in equilibrium)

Inter-valley motion

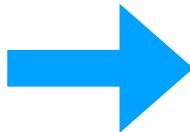


anisotropic scattering between valleys can induce polarization

$$\partial_t f_{\mathbf{k}}^{(s)} + \mathbf{v}_{\mathbf{k}}^{(s)} \cdot \partial_{\mathbf{x}} f_{\mathbf{k}}^{(s)} + e \mathbf{E} \cdot \partial_{\mathbf{k}} f_{\mathbf{k}}^{(s)} = \sum_{s'=\pm} \int d\Gamma' W_{\mathbf{kk}'}^{(ss')} \left(f_{\mathbf{k}'}^{(s')} - f_{\mathbf{k}}^{(s)} \right) \delta(\epsilon_{\mathbf{k}'}^{(s')} - \epsilon_{\mathbf{k}}^{(s)})$$

e.g.

$$W_{\mathbf{kk}'}^{(-+)} = W_{\mathbf{k}'\mathbf{k}}^{(+-)} = \frac{1}{\nu\tau'} (1 + a_1 \cos \theta_{\mathbf{k}} + b_1 \sin \theta_{\mathbf{k}} + a'_1 \cos \theta_{\mathbf{k}'} + b'_1 \sin \theta_{\mathbf{k}'})$$



$$\Delta n_0 = n^{(+)} - n^{(-)} = \frac{1}{2} \nu v_F \tau [eE_x (a_1 + a'_1) + eE_y (b_1 + b'_1)] \propto \frac{\tau}{\tau'}$$

$$\Delta n_0 = \frac{1}{2h\nu_F} \frac{h}{e^2} [ej_x (a_1 + a'_1) + ej_y (b_1 + b'_1)]$$

local k-space shift induces valley population shift through scattering

Result

Very rough estimates

$$\Delta n_0 \simeq \frac{1}{ev_F} \mathbf{j} \cdot \boldsymbol{\delta}_\epsilon \propto \frac{\epsilon}{\theta_w} \frac{1}{hv_F} \frac{h}{e^2} ej$$

This is the “bare” response just from quasiparticle physics. Should be included in a TDGL-like formulation as a force, to take into account both quasiparticle physics and interactions.

This gives $\alpha_4 \phi^3 + (r - r_c) \phi = \alpha_0 \Delta n_0$
describes hysteresis etc.

Quantitative estimates consistent with the observed effect

Thanks

Exciting new opportunities to study truly 2d magnetism in Van der Waals moiré materials

Twisted magnets: K. Hejazi, Z.-X. Luo, LB, PNAS **117**, 10721 (2020); PRB **104**, L100406 (2021).

QAHE and FM: M. Serlin *et al*, Science **367**, 900 (2019).

Current drive: X. Ying, M. Ye, LB, PRB **103**, 115436 (2021).

