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Magnets

sinan, ~200BC

Ferromagnetism 
documented in Greece, 
India, used in China 

~500BC:

and in elementary school today



Spin
Almost all magnetism originates from 
unpaired d and f electrons in atoms  

Friedrich Hund

Hund’s 1st rule: electrons avoid 
pairing within a shell

(this miminizes Coulomb 
repulsion within the same orbital)



Magnetism
• Atomic spins interact via exchange to favor an ordered 

arrangement


• Aligned parallel: ferromagnets
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Magnetism
• Atomic spins interact via exchange to favor an ordered 

arrangement


• More complex arrangements: antiferromagnets

1949AD: 
antiferromagnetism 
proven experimentally

but there are 1000s of 
them, much more 
common than FMs

Louis Néel



2d Ising model
• Onsager, 1943: Solved 2d Ising model exactly, proving 

that a phase transition exists with non-trivial critical 
behavior

Lars Onsager
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Mermin-Wagner-Hohenberg-
Berezinskii theorem

• Heisenberg (vector) spins with finite interactions cannot order in two 
dimensions at any T>0


• Rough idea:

Thermal fluctuations prevent order
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⇠ kBT

2⇡⇢
ln(L/a)

suppose small fluctuation

rotational symmetry

diverges no matter how 
low the temperature is



O(3) model
• At low temperature, non-linear sigma model applies


• Correlation length


• When kT << 𝜌, correlation length becomes exponentially 
long and most properties become nearly 
indistinguishable from an ordered state
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⇠ ⇠ e2⇡⇢/kBT

No phase transition but smooth evolution to almost ordered spins at low T



Quasi-2d systems
• Even most quasi-2d solids have some weak coupling 

between layers
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EAF � EFM ⇠ J 0⇠2 ⇠ J 0e4⇡⇢/kBT

EAF-EFM> kT when T<Tc, with 
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kBTc ⇠ 4⇡⇢/ ln(4⇡⇢/J 0)

❖3d ordering is induced by even very weak J’ 



Example: 2d square AF
• La2CuO4: parent material of high-Tc

is a'15a'2 . As shown in Table I there is a small XY an-
isotropy. In addition, from results in Sr2Cu3O4Cl2,11 we infer
that there is a next-nearest-neighbor in-plane Heisenberg ex-
change coupling which is about 8% of the nearest-neighbor
value. To first order, the latter should simply lead to a slight
renormalization of the effective J in Eq. ~1!. The XY anisot-
ropy will lead to a crossover from Heisenberg to XY behavior
for correlation lengths j/a*100. Thus Sr2CuO2Cl2 should
be a good realization of the S5 1

2 2DSLQHA for length
scales &100. This has, in fact, been confirmed in detail
experimentally;10 specifically, over a wide range of length
scales the 2D correlation length measured in Sr2CuO2Cl2
agrees quantitatively with results from quantum Monte Carlo
~QMC! calculations carried out on the Hamiltonian Eq. ~1!
with S5 1

2 .12–14 The value for J for Sr2CuO2Cl2 listed in
Table I is deduced from two magnon Raman-scattering
measurements.15
Both the QMC and the Sr2CuO2Cl2 experimental results

for the correlation length in turn are quantitatively predicted
by theory based on the QNLsM in the low-temperature
renormalized classical ~RC! regime.6,7 This comparison
again involves no adjustable parameters. Surprisingly, this
agreement holds for correlation lengths as short as a few
lattice constants. This is far outside of the temperature range
where the QNLsM-RC theory should hold. A plausible ex-
planation for this unexpected agreement has been given by
Beard et al.13
In spite of the fact that the progenitor of this work was the

discovery of high-temperature superconductivity in
La22xBaxCuO4,3 together with the early work on the 2D spin
correlations in La2CuO41y ,5 our knowledge of the spin cor-
relations in stoichiometric La2CuO4 is rather limited. The
primary correlation length data for La2CuO4 originate from
the neutron-scattering study of Keimer et al.9 on a carrier-
free single crystal of La2CuO4 with TN5325K. The Keimer
et al.9 data on the correlation length and structure factor ex-
tend up to 550 K. Their measurements are generally consis-
tent with the Sr2CuO2Cl2, QMC, and QNLsM-RC results,
but there appear to be systematic discrepancies at the limit of
the error bars for the correlation length at both low and high
temperatures. These neutron experiments were carried out
using a single incident neutron energy of 31 meV. It seems

likely that the discrepancies are an experimental artifact
originating from the use of a single incident neutron energy
over a wide range of temperatures. Alternatively, they could
represent a real effect originating from the antisymmetric
exchange and interplanar coupling terms in Eq. ~2! for
La2CuO4. Clearly, therefore, it is important to carry out a
more complete study of the spin-spin correlations in
La2CuO4 in order to characterize fully the magnetism in this
parent compound of the monolayer high-temperature super-
conductors. Such data would also be valuable for the inter-
pretation of NQR results in La2CuO4.16 Finally, there have
been some important advances in our understanding of the
theory for the 2DSLQHA since the work of Greven et al.10
on Sr2CuO2Cl2 and it is therefore of value to re-examine the
relationships between the results of experiments in real sys-
tems and theory.
The experiments were carried out primarily on the H7

triple-axis spectrometer at the High Flux Beam Reactor at
Brookhaven National Laboratory. The measurements utilized
the same single crystal of La2CuO4 as employed by Keimer
et al.;9 this crystal had a volume of about 1.5 cm3. Through-
out this paper we use Bmab orthorhombic axes; at TN
5325K the lattice constants are a55.338Å, b55.406Å,
and c513.141Å. We show in Fig. 1 the temperature depen-
dence of the ~0 1 2! nuclear superlattice peak intensity to-
gether with the reduced orthorhombic splitting (b2a)/(b
1a).17 As is evident from Fig. 1, the sample of La2CuO4
shows a sharp tetragonal-orthorhombic structural phase tran-
sition at Tst5530.560.5 K. The sharpness of the transition
in turn reflects the microscopic homogeneity of this sample.
The magnetic neutron-scattering experiments were carried

out in the energy-integrating two axis mode. For 2D systems
the integration over energy is carried out automatically in a
two axis experiment provided that the outgoing neutron
wave vector kf is perpendicular to the 2D planes and pro-
vided that the neutron energy is significantly larger than the
characteristic energy v0 of the spin fluctuations at a given
temperature.18 From the theory of CHN,6,19 one has

TABLE I. Néel temperature, superexchange energy, and correc-
tions to the 2D Heisenberg Hamiltonian for La2CuO4 ~Ref. 9! and
Sr2CuO2Cl2 ~Ref. 10!. aDM and aXY are larger than the values
quoted in Refs. 9 and 10 by factors by (Zc/Zg) and (Zc/Zg)2,
respectively. Here Zc(

1
2 ).1.17 and Zg(

1
2 ).0.6 are the quantum

renormalization factors for the spin-wave velocity and spin-wave
gap, respectively.

La2CuO4 Sr2CuO2Cl2

S 1
2

1
2

TN ~K! 325 256.5
J ~meV! 135 125
aNNN ;0.08 ;0.08
aDM 1.531022 –
aXY 25.731024 25.331024

a'12a'2 531025 ;1028

FIG. 1. Orthorhombic splitting and ~0,1,2! superlattice peak in-
tensity versus temperature; the data are normalized relative to each
other in the temperature region of overlap. The solid line is the
result of a fit to a power law A(Tst2T)2b with b50.3160.01 and
Tst5530.560.5 K.
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where q2D is the 2D deviation in wave vector from the posi-
tions of the (1,0,l) and (0,1,l) rods, convoluted with the
instrumental resolution function of the spectrometer.
The results so obtained for the inverse correlation length

j21 are shown in Fig. 5. These data are consistent within the
errors with the earlier results of Keimer et al.,9 but are much
more precise and cover a wider range of temperatures. The
solid line is the predicted behavior for the QNLsM in the
renormalized classical regime;6,7 this will be discussed be-
low. The results for the Lorentzian amplitude S(0)/j2 are
shown in Fig. 6. The four sets of data are normalized to unity
over the temperature interval 450<T<550K.
We now compare the results in Fig. 5 for the correlation

length in La2CuO4 with the predictions of various theories.
We begin with the results of QMC calculations for Eq. ~1!

with S5 1
2 . Because of both advances in computational tech-

niques and the implementation of finite-size scaling methods,
QMC data now exist for j/a for the S5 1

2 NN 2DSLQHA for
length scales varying from 1 to 350 000 lattice constants.
QMC results of Beard et al.13 and Kim and Troyer14 are
plotted in Fig. 7 together with our experimental results in
La2CuO4. The data are plotted in the reduced form j/a vs
J/T . It is evident that the QMC and La2CuO4 results agree in
absolute units over the complete temperature range (337
,T,824K) or equivalently, length scale range (3&j/a
&115). Thus over this range the 2D spin correlations in
La2CuO4 are entirely determined by the leading near-
neighbor Heisenberg couplings and the anisotropic in-plane
plus interplanar terms in Eq. ~2! have no measurable effect to
within the uncertainty of our experiments. Specifically, the
tetragonal-orthorhombic structural phase transition at 530 K
does not manifest itself in the temperature dependence of the
correlation length.
We now consider the predictions of various analytical

theories. A low-temperature theory for the 2DSLQHA was
formulated by Chakravarty, Halperin, and Nelson,6 in which
they obtained the static and dynamic properties of the
2DSLQHA by mapping it onto the 2D quantum nonlinear s
model. The 2D QNLsM is the simplest continuum model
which reproduces the correct spin-wave spectrum and spin-
wave interactions of the 2DSLQHA at long wavelengths and
low energies. First, CHN argued that for S> 1

2 the NN
2DSLQHA corresponds to the region of the 2D QNLsM in
which the ground state is ordered—the renormalized classi-
cal regime. Then, CHN used perturbative renormalization-
group arguments to derive an expression for the correlation
length to two-loop order, showing a leading exponential di-
vergence of j versus inverse temperature. Later, Hasenfratz

FIG. 5. Inverse magnetic correlation length of La2CuO4. The
solid line is Eq. ~6! with J5135 meV. The Néel and structural
transition temperatures are indicated by arrows.

FIG. 6. Lorentzian amplitude, S(0)/j2 versus temperature. The
data for the different incident neutron energies are normalized to
unity in the temperature range 450&T&550 K.

FIG. 7. The logarithm of the reduced magnetic correlation
length j/a versus J/T . The closed circles are data for La2CuO4
plotted with J5135 meV, the open circles are data for Sr2CuO2Cl2
plotted with J5125 meV ~Ref. 10!, and the open squares are the
results of the Monte Carlo computer simulations ~Refs. 12–14!. The
solid line is the theoretical prediction without adjustable parameters
of the 2DQNLsM for the renormalized classical regime, Eq. ~6!.
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results of the Monte Carlo computer simulations ~Refs. 12–14!. The
solid line is the theoretical prediction without adjustable parameters
of the 2DQNLsM for the renormalized classical regime, Eq. ~6!.
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We have carried out a neutron-scattering study of the instantaneous spin-spin correlations in La2CuO4
(TN5325 K) over the temperature range 337–824 K. Incident neutron energies varying from 14.7–115 meV
have been employed in order to guarantee that the energy integration is carried out properly. The results so
obtained for the spin-correlation length as a function of temperature when expressed in reduced units agree
quantitatively both with previous results for the two-dimensional ~2D! tetragonal material Sr2CuO2Cl2 and with
quantum Monte Carlo results for the nearest-neighbor square lattice S5 1

2 Heisenberg model. All of the
experimental and numerical results for the correlation length are well described without any adjustable param-
eters by the behavior predicted for the quantum nonlinear sigma model in the low-temperature renormalized
classical regime. The amplitude, on the other hand, deviates subtly from the predicted low-temperature behav-
ior. These results are discussed in the context of recent theory for the 2D quantum Heisenberg model.
@S0163-1829~99!08921-3#

The physics of low-dimensional quantum Heisenberg an-
tiferromagnets has been the subject of research ever since the
advent of modern quantum and statistical mechanics.1,2 In-
terest in two-dimensional ~2D! systems was heightened by
the discovery of high-temperature superconductivity in the
lamellar copper oxides.3 Specifically, it was realized early on
that the parent compounds such as La2CuO4 correspond to
rather good approximations to the S5 1

2 2D square-lattice
quantum Heisenberg antiferromagnet ~2DSLQHA!.4,5 It
seems at least possible that the 2D magnetism may in some
way be essential to the superconductivity in the charge-
carrier doped cuprates. Further, the magnetism itself is of
fundamental interest as a quantum many-body phenomenon
in lower dimensions.
Early experiments by Endoh et al.5 showed that over a

wide range of temperatures above the three-dimensional
Néel ordering transition in La2CuO41y ~that is, La2CuO4
with a small amount of excess oxygen! the instantaneous
spin-spin correlations were purely two dimensional and that
the correlation length diverged exponentially in 1/T . This led
to a flurry of theoretical activity2 including most especially
work based on the quantum nonlinear sigma model
~QNLsM! by Chakravarty, Halperin, and Nelson ~CHN!
~Ref. 6! and Hasenfratz and Niedermayer ~HN!.7 These theo-
ries are all based on the 2D Heisenberg Hamiltonian which
for nearest-neighbor ~NN! interactions alone takes the form

H5J (
^i ,dNN&

Si•Si1dNN
, ~1!

where the summation is over NN pairs on a square lattice.
In La2CuO4, for temperatures below the tetragonal

(I4/mmm)-orthorhombic ~Bmab! structural phase transition
temperature of Tst5530K, the leading terms in the spin
Hamiltonian8,9 are

H5JS (
^i ,dNN&

Si•Si1dNN
1aNNN (

^i ,dNNN&
Si•Si1dNNN

1axy (
^i ,dNN&

Si
cSi1dNN

c 1 (
^i ,d' j&

a' jSi•Si1d' j

1aDM (
^i ,dNN&

~2 ! iâ•Si•Si1dNND . ~2!

Here, aNNN , axy , a' j , and aDM represent the reduced next-
nearest-neighbor in-plane Heisenberg exchange coupling, XY
anisotropy, interlayer coupling, and Dzyaloshinski-Moriya
antisymmetric exchange, respectively, and Si

c is the c com-
ponent of the spin at site i. The fourth term in Eq. ~2! explic-
itly includes the two different out-of-plane neighbors at d'1
and d'2 . Note that, as was implicit in the work of Thio
et al.,8 the sign of the antisymmetric term changes on oppo-
site sublattices because of the opposite rotation of the CuO6
octahedra. This Dzyaloshinski-Moriya term originates from a
small rotation of the CuO6 octahedra about the â axis. In the
tetragonal phase aDM50 and the nearest-neighbor out-of-
plane effective coupling vanishes since a'15a'2 .
The most complete experimental study to date is on the

material Sr2CuO2Cl2 ~Ref. 10! rather than La2CuO4. The rea-
sons for this are twofold: First, Sr2CuO2Cl2 is very difficult
to dope so that there are no complications arising from the
effects of doped electrons or holes on the spin correlations.
Second, since Sr2CuO2Cl2 is tetragonal down to the lowest
temperatures measured ~,10 K!, aDM50 and the nearest-
neighbor interplanar coupling vanishes to leading order, that
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The layered phases are restricted to the first row of the transition metals, with the exception of the
4d element Zr. Both ZrCl2 and ZrI2 are reported, but not the dibromide. The zirconium compounds
are found to have different structures than the layered 3d transition metal dihalides. As shown in
Figure 2, ZrCl2 adopts the MoS2 structure type [60], which has the same triangular nets of metal
cations and ABC stacking found in CdCl2. However, in ZrCl2 the Zr atoms are in trigonal prismatic
coordination rather than octahedral coordination. As a result the Cl anions do not form a cubic close
packed arrangement in ZrCl2 but instead an AABBCC stacking sequence. ZrI2 is reported to adopt
both the MoTe2 and WTe2 structure types [61,62]. The closely related structures are shown in Figure 2.
The regular triangular net of M cations found in the compounds described previously is disrupted in
ZrI2, which has zigzag chains of Zr atoms (see M � M in-plane distances in Table 1). This points to the
tendency of heavier (4d and 5d) transition metals to form metal-metal bonds. Indeed, in addition to the
layered MoS2 structure described above for ZrCl2, a molecular crystal structure with Zr6 clusters is also
known [63]. Further examples of this tendency will be noted later in discussion of MX3 compounds.
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CdI2 - type
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bc

Figure 1. A section of the periodic table showing the transition metals for which layered MX2
compounds listed in Table 1 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. A plan view of a single layer common to both the CdI2 and
CdCl2 structure types is shown on the upper right.
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Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although

but it still shows magnetism!!
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The layered phases are restricted to the first row of the transition metals, with the exception of the
4d element Zr. Both ZrCl2 and ZrI2 are reported, but not the dibromide. The zirconium compounds
are found to have different structures than the layered 3d transition metal dihalides. As shown in
Figure 2, ZrCl2 adopts the MoS2 structure type [60], which has the same triangular nets of metal
cations and ABC stacking found in CdCl2. However, in ZrCl2 the Zr atoms are in trigonal prismatic
coordination rather than octahedral coordination. As a result the Cl anions do not form a cubic close
packed arrangement in ZrCl2 but instead an AABBCC stacking sequence. ZrI2 is reported to adopt
both the MoTe2 and WTe2 structure types [61,62]. The closely related structures are shown in Figure 2.
The regular triangular net of M cations found in the compounds described previously is disrupted in
ZrI2, which has zigzag chains of Zr atoms (see M � M in-plane distances in Table 1). This points to the
tendency of heavier (4d and 5d) transition metals to form metal-metal bonds. Indeed, in addition to the
layered MoS2 structure described above for ZrCl2, a molecular crystal structure with Zr6 clusters is also
known [63]. Further examples of this tendency will be noted later in discussion of MX3 compounds.
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Figure 1. A section of the periodic table showing the transition metals for which layered MX2
compounds listed in Table 1 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. A plan view of a single layer common to both the CdI2 and
CdCl2 structure types is shown on the upper right.
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Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although
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diffraction by Kurosawa et al (1983). The magnetism is due to the S = 5/2 manganese
atoms, which lie in a honeycomb arrangement in the ab planes. In the ordered state, the
moments on the manganese atoms align perpendicularly to these planes. Figure 1(a) shows
the atomic structure and figure 1(b) the magnetic structure.

(a) (b)

Figure 1. Atomic (a) and magnetic structure (b) of MnPS3. In (a), the structure is viewed with
the c-axis almost perpendicular to the paper, but turned 2 degrees around the a-axis and 1 degree
around the b-axis for illustrative purposes. The dashed lines in (a) shows the crystallographic
unit cell. In (b), the structure is viewed with the b-axis almost perpendicular to the paper, but
turned 15 degrees around the c-axis and 15 degrees around the a-axis for illustrative purposes.
Part of this diagram was produced with ATOMS, by Shape Software.

The magnetic properties have been investigated by many experimental techniques such
as magnetic susceptibility, electron paramagnetic resonance (Okuda et al 1986, Joy and
Vasudevan 1992, 1993) and nuclear magnetic resonance (Torre and Ziolo 1989). These
authors have given estimates for the magnetic exchange between nearest neighbours both
within and between planes. The results from these authors are not necessarily consistent. In
addition, Pich and Schwabl (1995) have presented a theoretical calculation for the spin wave
dispersion spectrum in isotropic two-dimensional honeycomb antiferromagnets. Thus it is
the aim of this work to measure the spin wave dispersion curve and quantify the magnetic
exchange integrals in MnPS3.

The experimental technique required to unambiguously determine magnetic exchange
integrals and spin wave dispersion is neutron inelastic scattering. Up until now it has been
extremely difficult to do such experiments on this system because of the lack of single
crystals of suitable size. The crystal used in this study was grown using a new technique,
and was large enough for inelastic and diffuse neutron scattering experiments (Wildes et al
1998). The spin wave dispersion at 4 K has subsequently been measured and the exchange
integrals were calculated by a least-squares fit to the data using linear spin wave theory.

Finally, as a prelude to further measurements on the critical scattering from this material
the critical exponent of the magnetization below TN, Ø, has been found by measuring the
temperature dependence of the magnetic intensity of the (020) Bragg peak. This was

MnPS3, FePS3,NiPS3,CoPS3,CrSiTe3…
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The layered phases are restricted to the first row of the transition metals, with the exception of the
4d element Zr. Both ZrCl2 and ZrI2 are reported, but not the dibromide. The zirconium compounds
are found to have different structures than the layered 3d transition metal dihalides. As shown in
Figure 2, ZrCl2 adopts the MoS2 structure type [60], which has the same triangular nets of metal
cations and ABC stacking found in CdCl2. However, in ZrCl2 the Zr atoms are in trigonal prismatic
coordination rather than octahedral coordination. As a result the Cl anions do not form a cubic close
packed arrangement in ZrCl2 but instead an AABBCC stacking sequence. ZrI2 is reported to adopt
both the MoTe2 and WTe2 structure types [61,62]. The closely related structures are shown in Figure 2.
The regular triangular net of M cations found in the compounds described previously is disrupted in
ZrI2, which has zigzag chains of Zr atoms (see M � M in-plane distances in Table 1). This points to the
tendency of heavier (4d and 5d) transition metals to form metal-metal bonds. Indeed, in addition to the
layered MoS2 structure described above for ZrCl2, a molecular crystal structure with Zr6 clusters is also
known [63]. Further examples of this tendency will be noted later in discussion of MX3 compounds.
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Figure 1. A section of the periodic table showing the transition metals for which layered MX2
compounds listed in Table 1 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. A plan view of a single layer common to both the CdI2 and
CdCl2 structure types is shown on the upper right.
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Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although
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Remarkably, the ferromagnetic ordering remains in the monolayer 
limit. Figure 2a shows θK as a function of µoH for a monolayer CrI3 
flake (inset to Fig. 2a). A single hysteresis loop in θK centred around 
µoH =  0 T, with a non-zero remanent Kerr rotation, demonstrates 
out-of-plane spin polarization. This implies Ising ferromagnetism in 
 monolayer CrI3. As expected, θK is independent of the excitation power 
(Fig. 2b). In the following, all data are taken with an excitation power 
of 10 µ W. We have measured a total of 12 monolayer samples, which 

show similar MOKE behaviour with consistent remanent θK values of 
about 5 ±  2 mrad at µoH =  0 T (Extended Data Fig. 8a). The coercive 
field (µoHc), which is approximately 50 mT for the sample in Fig. 2a, 
can vary between samples owing to the formation of domain structures 
in some samples.

Figure 2c shows spatial maps of θK for another monolayer, taken at 
selected magnetic field values. After cooling the sample from above 
TC at µoH =  0 T, the entire monolayer is spontaneously magnetized (in 
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Figure 1 | Crystal structure, layer thickness identification, and MOKE 
of bulk CrI3. a, View of the in-plane atomic lattice of a single CrI3 layer. 
Grey and purple balls represent Cr and I atoms, respectively. The Cr3+ ions 
are coordinated to six I− ions to form edge-sharing octahedra arranged 
in a hexagonal honeycomb lattice. b, Out-of-plane view of the same CrI3 
structure depicting the Ising spin orientation. c, Optical micrograph of a 

representative CrI3 flake. d, Calculated optical contrast map of the same 
flake with a 631-nm optical filter. The scale bar in c is 3 µ m. e, Averaged 
optical contrast of the steps of the sample with different numbers of layers 
(circles) fitted by a model based on Fresnel’s equations (solid line). f, Polar 
MOKE signal of a thin bulk CrI3 crystal.
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Figure 2 | MOKE measurements of monolayer CrI3. a, Polar MOKE 
signal for a CrI3 monolayer. The inset shows an optical image of an 
isolated monolayer (the scale bar is 2 µ m). b, Power dependence of the 
MOKE signal taken at incident powers of 3 µ W (blue), 10 µ W (pink), and 
30 µ W (red). c, MOKE maps at µoH =  0 T, 0.15 T and 0.3 T on a different 

monolayer. The scale bar is 1 µ m. d, θK versus µ0H sweeps taken at four 
points marked by dots on the µoH =  0.3 T map in c. e, Temperature 
dependence of MOKE signal with the sample initially cooled at µoH =  0 T 
(blue) and 0.15 T (red).
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blue, defined as spin down). As the field is increased to 0.15 T, the mag-
netization in the upper half of the flake switches direction (now spin 
up, in red). As the field is further increased to 0.3 T, the lower half of the 
monolayer flips and the entire flake becomes spin up, parallel to µoH. 
This observation of micrometre-scale lateral domains suggests  different 
values of coercivity in each domain. Indeed, magnetic field sweeps 
(θK versus µoH) taken at discrete points ranging across both domains  
(Fig. 2d) show the difference in coercive field between the upper and 
lower half of the monolayer. Sweeps taken only on the upper domain 
(marked by a blue circle) show a much narrower hysteresis loop (about 
50 mT) than sweeps from spots on the lower domain (orange and 
 purple circles, about 200 mT). When the beam spot is centred between 
the two domains, contributions from both can be seen in the resulting 
hysteresis loop (green circle), a consequence of the approximately 1-µ m  
beam spot illuminating both domains.

To determine the monolayer TC, we perform an analysis of the 
 irreversible field-cooled and zero-field-cooled Kerr signal. Zero-field-
cooled sweeps were performed by measuring θK while cooling the 
sample in zero field. After warming up to a temperature well above 
TC (90 K), the field-cooled measurement is taken upon cooling down 
in the presence of a small external magnetic field (µoH =  0.15 T). 
Thermomagnetic irreversibility can be observed below TC, at which 
point the zero-field-cooled sweep and the field-cooled sweep diverge 
as illustrated in Fig. 2e. We measured the average TC for the monolayer 
samples to be 45 K, slightly lower than the value (61 K) for bulk samples.

The layered structure of CrI3 provides a unique opportunity to inves-
tigate ferromagnetism as a function of layer thickness.  Figure 3a–c  
shows θK versus µoH for representative 1–3-layer CrI3 samples. All 
measured monolayer and trilayer samples consistently show ferro-
magnetic behaviour with a single hysteresis loop centred at µoH =  0 T 
(Fig. 3a and c and Extended Data Fig. 8). Both remanent and saturation 
values of θK for trilayers are about 50 ±  10 mrad, which is an order of 
magnitude larger than for monolayers. This drastic change in θK on 
moving from monolayer to trilayer may be due to a layer- dependent 
electronic structure, leading to weaker optical resonance effects at 
633 nm for the monolayer than for the trilayer (see Extended Data Fig. 9  
and Methods for thin-film interference and MOKE signal in CrI3). 
We find that for trilayers and thin bulk samples, TC is consistent with 
the bulk value of 61 K. The relatively small decrease of TC from bulk 
to few-layer and monolayer samples suggests that interlayer interac-
tions do not dominate the ferromagnetic ordering in CrI3. Compared 
with metallic magnetic thin films whose magnetic properties strongly 
depend on the underlying substrate30, the weak layer-dependent TC also 
implies a negligible substrate effect on the ferromagnetic phenomena 
in atomically thin CrI3. As such, exfoliated CrI3 of all thicknesses can 
be regarded as isolated single crystals.

A further observation is that bilayer CrI3 shows a markedly different 
magnetic behaviour from the monolayer (Fig. 3b). For all ten bilayer 
samples measured, the MOKE signal is strongly suppressed, with θK 
approaching zero (subject to slight variation between samples, see 
Extended Data Fig. 8b) at field values ± 0.65 T. This observation implies 
a compensation for the out-of-plane magnetization. Upon crossing a 
critical field, θK shows a sharp jump, depicting a sudden recovery of 
the out-of-plane co-parallel orientation of the spins. This new magnetic 
state has a saturation θK (40 ±  10 mrad) an order of magnitude larger 
than that of monolayer samples, and slightly smaller than for trilayers.

The suppression of the Kerr signal at zero magnetic field demon-
strates that the ground state has zero out-of-plane magnetization. 
The plateau behaviour of the magnetization curve—showing three 
horizontal regimes between magnetic field values of − 1.1 T and 1.1 T 
(Fig. 3b)—further implies that there are no in-plane spin components; 
otherwise, one would expect a gradual increase of the MOKE signal 
with increasing perpendicular magnetic field. Rather, our observa-
tion suggests that each individual layer is ferromagnetically ordered  
(out-of-plane) while the interlayer coupling is antiferromagnetic. In 
this case, the strength of the interlayer coupling determines the field 

at which jumps between different plateaus occur, ± 0.65 T. Although 
the detailed mechanism of this coupling remains unclear, the differ-
ent magnetic phases observed in bilayers and trilayers emphasizes the 
strong layer-dependent interplay between different mechanisms that 
stabilize magnetic ordering in the atomically thin limit.

Another bilayer feature distinct from those of monolayers is the 
 vanishingly small hysteresis around the jumps, suggesting negligible 
net perpendicular anisotropy. A possible interpretation is that the shape 
anisotropy (which prefers in-plane spin orientation) nearly compen-
sates for the intrinsic magnetocrystalline anisotropy (which prefers out-
of-plane spin orientation) so that the overall anisotropy is close to zero.

The insets in Fig. 3b display the layer-by-layer switching behaviour 
that leads to plausible magnetic ground states of bilayer CrI3. When 
the magnetic field is ± 0.65 T, the magnetization of the two layers 
are oppositely oriented to one another. Thus, the net magnetization 
vanishes and bilayer CrI3 behaves as an antiferromagnet with an 
exchange field of about 0.65 T. When | µoH|  >  0.65 T, magnetization in 
one layer flips to align with the external magnetic field and restores 
out-of-plane magnetization, giving rise to the large MOKE signal. At 
around | µoH|  =  0.65 T, the MOKE signal sharply increases from near 
zero to its saturation value within about 100 mT, suggesting an abrupt 
increase of out-of-plane magnetization triggered by a small change of 
magnetic field. Such behaviour is indicative of metamagnetism, the 
magnetic-field-driven transition from antiferromagnetic ordering to 
a fully spin-polarized state20.
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Figure 3 | Layer-dependent magnetic ordering in atomically-thin 
CrI3. a, MOKE signal on a monolayer (1L) CrI3 flake, showing hysteresis 
in the Kerr rotation as a function of applied magnetic field, indicative 
of ferromagnetic behaviour. b, MOKE signal from a bilayer CrI3 
showing vanishing Kerr rotation for applied fields ± 0.65 T, suggesting 
antiferromagnetic behaviour. Insets depict bilayer (2L) magnetic ground 
states for different applied fields. c, MOKE signal on a trilayer (3L) flake, 
showing a return to ferromagnetic behaviour.
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ABSTRACT: The magnetic state of atomically thin semiconducting layered
antiferromagnets such as CrI3 and CrCl3 can be probed by forming tunnel barriers
and measuring their resistance as a function of magnetic field (H) and temperature
(T). This is possible because the spins within each individual layer are ferromagneti-
cally aligned and the tunneling magnetoresistance depends on the relative orientation
of the magnetization in adjacent layers. The situation is different for systems that are
antiferromagnetic within the layers in which case it is unclear whether magneto-
resistance measurements can provide information about the magnetic state. Here, we
address this issue by investigating tunnel transport through atomically thin crystals of
MnPS3, a van der Waals semiconductor that in the bulk exhibits easy-axis
antiferromagnetic order within the layers. For thick multilayers below T ∼ 78 K, a
T-dependent magnetoresistance sets in at μ0H ∼ 5 T and is found to track the
boundary between the antiferromagnetic and the spin-flop phases known from bulk
measurements. We show that the magnetoresistance persists as thickness is reduced
with nearly unchanged characteristic temperature and magnetic field scales, albeit with a different dependence on H, indicating the
persistence of magnetism in the ultimate limit of individual monolayers.
KEYWORDS: MnPS3, 2D magnetism, spin flop, tunneling transport

Probing the occurrence of magnetism in atomically thin
crystals1−5 is difficult because experimental techniques

that are conventionally applied to bulk crystals (neutron
diffraction,6,7 magnetization measurements,8,9 and so forth) are
not sufficiently sensitive to work at the atomic scale. Recent
work on so-called layered antiferromagnets5,10−21 has shown
that measuring the temperature-dependent magnetoresistance
of tunnel barriers provides information about their magnetic
state and even allows their magnetic phase diagram to be
determined.22 That is because in these antiferromagnets the
spins within each individual layer are ferromagnetically aligned,
and their magnetic state is fully determined by the relative
orientation of the layer magnetization vectors, such that
aligning the magnetization of individual layers causes a
reduction in resistance.12−15,20−25 For van der Waals (vdW)
compounds in which antiferromagnetism occurs within an
individual layer, however, the same logic does not apply. For
atomically thin crystals, and certainly for monolayers, this
situation is problematic because if transport measurements
cannot be used it is not obvious what other technique could be
employed to detect antiferromagnetism (for interesting
attempts based on Raman spectroscopy see refs 26 and 27).
To address this issue, we perform tunneling magnetoresistance
measurements on atomically thin crystals of MnPS3 and show
that they allow the phase boundary between the antiferro-
magnetic and the spin-flop phases of these 2D systems to be

identified and the persistence of magnetism down to the
ultimate limit of individual monolayers to be detected.
MnPS3 is an exfoliable 2D material24,28−30 whose properties

in bulk form have been investigated in the past. It is known
that in bulk MnPS3 crystals antiferromagnetism sets in at TN =
78 K with the spins of the manganese atoms ordering within
individual layers and pointing nearly perpendicularly31 to them
due to an easy-axis out-of-plane anisotropy (Figure 1a).6 As the
antiferromagnetic exchange is much stronger than the
anisotropy energy,32 upon the application of magnetic field
perpendicular to the layers a spin-flop transition33,34 occurs at
Hsf. In the spin-flop state, the magnetic moments on the Mn
atoms preserve their antiferromagnetic ordering but realign to
point predominantly in the plane with an out-of-plane
component that increases upon increasing H (ref 7). The
spin-flop transition in bulk MnPS3 crystals is easy to detect, as
its occurrence is signaled by a well-defined onset of the out-of-
plane magnetization M (red curve in Figure 1b) and a
concomitant peak in the differential magnetic susceptibility
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order persists to single layer

scattering experiments on MnPS3 (ref 51) but a splitting of the
spin-flop transition was never reported in magnetization
measurements because inhomogeneity and disorder (such as
domain walls33) cause a large broadening of the corresponding
peak in the magnetic susceptibility (Figure 1b). Owing to their
very small size, tunnel barrier devices are much less influenced
by inhomogeneity of structural and magnetic origin as
compared to bulk crystals, enabling subtler features to be
detected. Under these conditions, we compare the character-
istic fields observed in the 13L and 6L with the bulk spin-flop
field Hsf, by defining, inspired by theory,45 an “effective” spin-
flop field = ×H H Hsf

e
1 2 . Figure 3b shows that Hsf

e matches
well Hsf throughout the temperature range investigated, which
strengthens our confidence in the proposed interpretation of
the fields H1 and H2.
Irrespective of these details, having observed tunneling

magnetoresistance in thick MnPS3 multilayers and identified
the presence of a spin-flop transition as a distinctive signature
of antiferromagnetism, we are now in the position to extend
our experiments to the ultimate limit of individual monolayer
barriers. The results of measurements performed on mono-
and bilayer tunnel barriers, shown in Figure 4a,b, exhibit
important similarities as well as clear differences to the
behavior observed in the 13L and 6L devices. The main
differences are the functional dependence of the magneto-
resistance, which starts varying already for small applied
magnetic field (without a threshold as for thick multilayers)
and its larger magnitude (in monolayer, the magnetoresistance
reaches values close to 100%, as compared to 15% observed in

the 13- and 6-layer devices). Key similarities are the
comparable magnetic field and temperature scales over which
the magnetoresistance is found to vary. For the magnetic field
scale, we take the position of the pronounced peak observed in
Figure 4a,b and notice that it corresponds well to the spin-flop
field measured in thicker multilayers: the peak occurs at μ0H ≅
4 T in monolayers and at μ0H ≅ 5 T in bilayers (close to μ0Hsf
= 5.3 T, the spin-flop field in bulk MnPS3). The
correspondence is even more striking for the temperature
scale: in the 1L and 2L devices, the magnetoresistance starts
depending on temperature as T is lowered below approx-
imately 75 K (respectively 78 ± 5 and 74 ± 5 K, see Figure
4c,d), that is, nearly exactly the temperature values observed in
the 13L and 6L devices. These findings are summarized in
Figure 4e,f. Figure 4e shows the evolution of the characteristic
field extracted from the magnetoresistance measurements as a
function of multilayer thickness (for 13L and 6L, the plotted
value corresponds to = ×H H Hsf

e
1 2 , see discussion above)

and compares it with the spin-flop field of bulk MnPS3
(represented by the dashed horizontal line). Figure 4f does
the same thing for the characteristic temperature that within
the experimental uncertainty is essentially independent of
thickness and coincides with the bulk Neél temperature.
Finding that a pronounced tunneling magnetoresistance

continues to be observed as the MnPS3 thickness is reduced
allows us to conclude, directly from the experimental data, that
magnetism persists in mono- and bilayer MnPS3, simply
because nonmagnetic tunnel barriers such as hBN52,53 exhibit
no tunneling magnetoresistance. This is a nontrivial con-

Figure 4. Persistence of magnetism in mono- and bilayer MnPS3. Tunneling magnetoresistance η′(H) of monolayer (a) and bilayer (b) MnPS3 as a
function of magnetic field (applied perpendicular to the layers), measured as T is increased from 10 to 120 K in 10 K steps. A small T-independent
magnetoresistance persists up to the highest temperature of our measurements, likely due to the graphene electrodes (mono- and bilayer devices
have much smaller resistance than thicker tunnel barriers and the contact magnetoresistance is not entirely negligible; see also Supporting
Information), which is why we plot η η η′ ≡ − =H T H T H T( , ) ( , ) ( , 120 K). η′(H,T) starts deviating from zero as T is lowered below
approximately 75−80 K (comparable to what is found in 13L and 6L devices) and increases upon cooling. In mono- and bilayer devices η’ (H,T)
exhibits no threshold at low field and peaks respectively at μ0H ≅ 4 T and μ0H ≅ 5 T, just slightly smaller than the bulk spin-flop field. Panels (c)
and (d) show the peak magnetoresistance as a function of T, and its extrapolation to the value of T for which η′ vanishes (78 and 74 K for mono-
and bilayer, respectively, in both cases with an error of approximately 5 K; the inset in (c) zooms in on the region close to the critical temperature).
Panels (e) and (f) show the characteristic magnetic fields (the position of the peak in mono and bilayers, and the value of Hsf

e in 13L and 6L
devices) and the temperature at which magnetoresistance vanishes for all devices, as a function of layer number. The horizontal orange dashed line
in the two panels indicate the bulk Neél temperature TN and the spin-flop field in bulk MnPS3, respectively.
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https://dx.doi.org/10.1021/acs.nanolett.9b05165
Nano Lett. 2020, 20, 2452−2459

2456

G. Long et al, 2020

tunneling MR



MnPS3



Twisting and moiré



Moiré

mohair







Moiré pattern
6°



Triangular lattice
6°



2°



1°

huge unit cell

am=13.4nm



Twisted AF6°

AA

AB

Frustration: Neél vectors must rotate 

N1 = �N2
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Continuum model(s)
• Basic assumptions:


• Inter-layer coupling weak J’ << J


• Rotation angle is small (can also treat general strains)


• Example: MnPS3: excellent Heisenberg AF
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Twisted AF
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DRAFT

such terms arise from pure geometry – i.e. carrying out the79

coordinate transformation from x(0)
l to xl defined in (1) –80

and from strain-induced changes in energetics. Taking them81

together, the leading corrections to (2) are82

L1[Nl, ul] = fl(Ál,xx + Ál,yy)
Ë

”1
v2 (ˆtNl)2

≠ ”2 (ÒNl)2
È

83

+”3Ál,µ‹ˆµNl · ˆ‹Nl, [3]84

where ”1,2,3 are dimensionless O(1) constants and Ál,µ‹ =85

(ˆµul,‹ + ˆ‹ul,µ)/2 is the strain field in layer l. For simplicity86

we assumed that spin-orbit e�ects (e.g. anisotropy d) are small87

and hence that deformation terms in (3) are SU(2) invariant:88

anisotropic deformation terms must be small in both spin-89

orbit coupling and in displacement gradients, and hence are90

neglected.91

Next we turn to the inter-layer coupling terms. By locality92

and translational symmetry, it is generally of the form93

L2[N1, N2, u1 ≠ u2] = J
Õ[u1 ≠ u2]N1 · N2, [4]94

where J
Õ[u] is a function with the periodicity of the unde-95

formed Bravais lattice. Due to the smallness of J
Õ, we ne-96

glect corrections proportional to displacement gradients in (4).97

Generally J
Õ[u] can be expanded in a Fourier series, and well-98

approximated by a small number of harmonics. We obtain a99

specific form by considering local coupling of the spin densities100

in the two layers. Using the symmetries of the honeycomb101

lattice, the minimal Fourier expansion of the spin density Sl102

of a single layer contains the three minimal reciprocal lattice103

vectors ba,104

Sl(x) = n0Nl

3ÿ

a=1

sin(ba · x(0)) = n0Nl

3ÿ

a=1

sin[ba · (x ≠ ul)],

[5]105

where n0 measures the size of the ordered moment, and we106

define the origin x = 0 at the center of a hexagon. Taking107

the product S1 · S2 and applying trigonometric identities to108

extract the terms which vary slowly on the lattice scale (rapidly109

varying components do not contribute at low energy) gives110

the form of (4), with111

J
Õ[u] = J

Õ
3ÿ

a=1

cos(ba · u), [6]112

where the constant J
Õ is proportional to the inter-layer ex-113

change and n
2
0. Physically, (6) captures the fact that e.g. for114

intrinsically ferromagnetic exchange J
Õ

> 0, the preferred rel-115

ative orientation of the A sublattice spins of the two layers116

is parallel for AA stacking but anti-parallel for AB and BA117

stackings.118

The full Lagrange density L =
q

l=1,2(L0[Nl] +119

L1[Nl, ul]) + L2[N1, N2, u1 ≠ u2] captures the low energy120

physics of a bilayer with arbitrary deformations of the two121

layers. We now specialize to the case of a rigid twist of the122

two layers by a relative angle ◊: u1 = ≠u2 = ◊
2 ẑ ◊ x. In this123

case the strain vanishes, and one finds the full Lagrangian is124

L =
ÿ

l

fl

2v2 (ˆtNl)2
≠ Hcl, [7]125

where126

Hcl =
ÿ

l

Ë
fl

2 (ÒNl)2
≠ d (Nz

l )2
È

≠ J
Õ�(x)N1 · N2 [8]127

is the classical energy density. Here the coupling function 128

�(x) =
3ÿ

a=1

cos(qa · x), [9] 129

and qa = ◊ẑ ◊ba are the reciprocal lattice vectors of the moiré 130

superlattice. 131

(7)-(9) form the basis for an analysis of the magnetic struc- 132

ture on the moiré scale, as well as for the magnon excitations 133

above them. The magnetic ground state is obtained as the 134

variational minimum of Hcl[N1, N2]. Owing to the sign change 135

of �(x), the problem is frustrated: the Néel vectors of the two 136

layers wish to be parallel in some regions and antiparallel in 137

others, forcing them to develop gradients within the plane – 138

the representation in the continuum of incompletely satisfied 139

in-plane bonds. We find that the optimal solution is non- 140

collinear but coplanar, and without loss of generality we can 141

take the spins to lie in the x-z plane: Ni = sin „lx̂ + cos „lẑ. 142

Then forming symmetric and antisymmetric combinations, 143

„s = „1 + „2, „a = „1 ≠ „2, we obtain, up to an additive 144

constant 145

Hcl = fl

4
!
|Ò„s|

2 + |Ò„a|
2"

≠(J Õ�(x)+d cos „s) cos „a. [10] 146

We can obtain partial di�erential equations for the phase
angles by applying calculus of variations to (10). Expressed in
terms of dimensionless coordinates x = qmx, with qm = |qa|

the moiré wavevector, let Ïs/a(x) = „s/a(x), and we obtain

Ò
2
Ïs = — cos Ïa sin Ïs, [11]

Ò
2
Ïa =

!
— cos Ïs + –�̂(x)

"
sin Ïa, [12]

where we introduced the dimensionless parameters 147

– = 2J
Õ

flq2
m

, — = 2d

flq2
m

[13] 148

and �̂(x) =
q3

a=1 cos(q̂a · x), where q̂a = qa/qm are unit vec- 149

tors. We must find the solutions of the saddle point equations 150

which minimize the integral of Hcl. There is a always a trivial 151

solution with Ïs = Ïa = 0, fi, which corresponds to the Ising 152

limit of aligned or counter-aligned spins. This has an energy 153

density Hcl = ≠d = ≠
1
2 flq

2
m—. A non-trivial solution can be 154

found in di�erent limits. For –, — π 1, corresponding to large 155

angles, the gradient terms in the Hamiltonian dominate and 156

the solution is nearly constant. The leading result in this limit 157

is 158

Ïs = fi

2 ≠ –—(�̂(x) + �0), Ïa = fi

2 ≠ –�̂(x), [14] 159

The overall signs of either phase can be switched due to 160

the symmetry of the Hamiltonian. One obtains from this 161

the energy density (averaged over the unit cell) Hcl = 162

≠
3
8 flq

2
m–

2(1 + —
2). Comparing this energy with the Ising 163

one, we see that the twisted solution is lower energy when 164

— <
3
4 –

2 to leading order. 165

For small angles, –, — ∫ 1. Then the potential terms in 166

Eq. (10) dominate. The energy is minimized by choosing 167

„a = 0 or fi almost everywhere, so that cos „a = sign[�(x)], 168

which means the spins in the two layers are locally parallel or 169

antiparallel, and then „s = 0, fi similarly to match the sign. 170

This means simply that the spins align along the ±ẑ axis. 171

Spin rotations occur in a narrow domain wall centered on the 172

zeros of �(x). 173

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Hejazi et al.
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FIG. 1. The magnetic structure of NiPS3 with the crystallo-
graphic unit cell, and the unit cell used in the calculation of the
magnetic dynamic structure factor. The insert shows the exchange
interactions between the first, second, and third nearest intraplanar
neighbors. The figure was created using the VESTA program [16].

and FePS3 [12,13]. The technique gives direct access to the
dynamic structure factor, S(Q, E), hence allowing the Hamil-
tonian to be tested and parameterized. In this paper, we report
neutron inelastic scattering experiments on powdered samples
of NiPS3. Estimates for the magnetic exchange parameters
and anisotropy have been determined and are compared in
a consistent manner with those for MnPS3 and FePS3. The
experiments and analysis closely follow those previously re-
ported for powdered FePS3 [12].

II. EXPERIMENTS

Crystal samples of NiPS3 were grown by a vapor transport
method using protocols that have been previously explained in
detail [15]. Approximately 10 grams of crystals were ground
to a powder. The powdered sample was divided into three
portions of approximately equal mass and each portion was
compressed into a cylindrical pellet of 10 mm diameter.
The three pellets were placed side by side in an aluminium
envelope with their cylindrical axes being collinear.

Neutron inelastic scattering measurements were performed
using the MARI [19] and MAPS [20] spectrometers at the
ISIS facility, Rutherford Appleton Laboratories, UK, and us-
ing the BRISP spectrometer [21] at the Institut Laue Langevin,
Grenoble. These are all direct geometry spectrometers, using
a fixed incident neutron energy Ei and measuring the neutron
time-of-flight to determine the final neutron energy.

MARI was used to give an overview of the magnetic exci-
tations. Measurements were performed with incident energies
Ei = 15, 30, 110, and 200 meV. MAPS has a longer sample-
detector path length than MARI and therefore has better
energy resolution for the same incident energy. It was used
with Ei = 200 meV to study in detail the scattering at small
momentum transfers and large energy transfers. BRISP is
optimized for spectroscopic measurements at small scattering

angles, and it was used to characterize a possible spin wave
gap. Measurements were performed with Ei = 20.45 and
81.81 meV.

The sample temperature was controlled using a closed-
cycle cryorefrigerator for the ISIS spectrometers, and a liquid
helium cryostat for the BRISP spectrometer. The measure-
ments were performed at the lowest possible temperature for
the sample environment, which was 5 K for the cryorefrigera-
tors and 1.5 K for the cryostat.

III. DATA MODELLING AND ANALYSIS

The MARI and MAPS data were reduced using the MAN-
TID software suite [22]. The LAMP software package was used
to reduce the BRISP data [23]. The data reduction involved
normalizing to the incident flux, binning the data in rings
with equivalent scattering angle, φ, subtracting a background
estimated from a measurement of the empty cryostat, and a
normalization of the detector efficiency from a measurement
of a vanadium standard.

The MARI and MAPS spectrometers have a large detector
coverage, measuring the scattering to large neutron momen-
tum transfers Q. The phonon contribution was estimated
through the Q dependence of scattering following a protocol
described in the appendix. The estimated phonon contribution
was then subtracted from the data and the results were taken
to be the magnetic inelastic scattering.

The magnetic inelastic scattering data were then modeled
and fitted using linear spin wave theory. The dynamic struc-
ture factor S(Q, E), used to fit the data, was derived from a
Heisenberg Hamiltonian with a single-ion anisotropy:

H = −
∑

i,j

Ji,j Si · Sj − !
∑

i

(
Sz

i

)2
, (1)

where ! is the strength of the anisotropy and Ji,j are the ex-
change interactions, with ferromagnetic exchange interactions
being positive and antiferromagnetic exchange interactions
being negative. The same Hamiltonian was successfully used
to model the magnon spectra for MnPS3 [10] and FePS3
[12,13], and was used to estimate the magnetic exchange and
anisotropy from the magnetic susceptibility of NiPS3 [17].

The crystal structure of NiPS3 is quoted to have some site
disorder between the main 4g and the minority 2a sites for the
Ni, and likewise for the main 4i and the minority 8j sites for
the P [3]. However, it is likely that the minority contribution
may be an artefact of the sample having stacking faults and
refinements of the magnetic structure were not improved
on including the site disorder [15]. Consequently, only the
magnetic structure of the majority sites was considered in the
analysis.

In keeping with previous calculations for FePS3 [13],
S(Q, E) was derived from Eq. (1) by decomposing the antifer-
romagnetic structure of NiPS3 into four interlocking magnetic
sublattices. The sublattice vectors were chosen to be slightly
different to the lattice vectors for the crystallographic unit cell.
Figure 1 shows the axes chosen for the calculation, with the
subscript mag designating the axes for a primitive sublattice.
The vectors a = amag and c = cmag, however the vectors b
and bmag differ. In the magnetic coordinates, |bmag| = 2|a| and
γmag = 120◦. The Miller indices for the two lattices are related
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blue, defined as spin down). As the field is increased to 0.15 T, the mag-
netization in the upper half of the flake switches direction (now spin 
up, in red). As the field is further increased to 0.3 T, the lower half of the 
monolayer flips and the entire flake becomes spin up, parallel to µoH. 
This observation of micrometre-scale lateral domains suggests  different 
values of coercivity in each domain. Indeed, magnetic field sweeps 
(θK versus µoH) taken at discrete points ranging across both domains  
(Fig. 2d) show the difference in coercive field between the upper and 
lower half of the monolayer. Sweeps taken only on the upper domain 
(marked by a blue circle) show a much narrower hysteresis loop (about 
50 mT) than sweeps from spots on the lower domain (orange and 
 purple circles, about 200 mT). When the beam spot is centred between 
the two domains, contributions from both can be seen in the resulting 
hysteresis loop (green circle), a consequence of the approximately 1-µ m  
beam spot illuminating both domains.

To determine the monolayer TC, we perform an analysis of the 
 irreversible field-cooled and zero-field-cooled Kerr signal. Zero-field-
cooled sweeps were performed by measuring θK while cooling the 
sample in zero field. After warming up to a temperature well above 
TC (90 K), the field-cooled measurement is taken upon cooling down 
in the presence of a small external magnetic field (µoH =  0.15 T). 
Thermomagnetic irreversibility can be observed below TC, at which 
point the zero-field-cooled sweep and the field-cooled sweep diverge 
as illustrated in Fig. 2e. We measured the average TC for the monolayer 
samples to be 45 K, slightly lower than the value (61 K) for bulk samples.

The layered structure of CrI3 provides a unique opportunity to inves-
tigate ferromagnetism as a function of layer thickness.  Figure 3a–c  
shows θK versus µoH for representative 1–3-layer CrI3 samples. All 
measured monolayer and trilayer samples consistently show ferro-
magnetic behaviour with a single hysteresis loop centred at µoH =  0 T 
(Fig. 3a and c and Extended Data Fig. 8). Both remanent and saturation 
values of θK for trilayers are about 50 ±  10 mrad, which is an order of 
magnitude larger than for monolayers. This drastic change in θK on 
moving from monolayer to trilayer may be due to a layer- dependent 
electronic structure, leading to weaker optical resonance effects at 
633 nm for the monolayer than for the trilayer (see Extended Data Fig. 9  
and Methods for thin-film interference and MOKE signal in CrI3). 
We find that for trilayers and thin bulk samples, TC is consistent with 
the bulk value of 61 K. The relatively small decrease of TC from bulk 
to few-layer and monolayer samples suggests that interlayer interac-
tions do not dominate the ferromagnetic ordering in CrI3. Compared 
with metallic magnetic thin films whose magnetic properties strongly 
depend on the underlying substrate30, the weak layer-dependent TC also 
implies a negligible substrate effect on the ferromagnetic phenomena 
in atomically thin CrI3. As such, exfoliated CrI3 of all thicknesses can 
be regarded as isolated single crystals.

A further observation is that bilayer CrI3 shows a markedly different 
magnetic behaviour from the monolayer (Fig. 3b). For all ten bilayer 
samples measured, the MOKE signal is strongly suppressed, with θK 
approaching zero (subject to slight variation between samples, see 
Extended Data Fig. 8b) at field values ± 0.65 T. This observation implies 
a compensation for the out-of-plane magnetization. Upon crossing a 
critical field, θK shows a sharp jump, depicting a sudden recovery of 
the out-of-plane co-parallel orientation of the spins. This new magnetic 
state has a saturation θK (40 ±  10 mrad) an order of magnitude larger 
than that of monolayer samples, and slightly smaller than for trilayers.

The suppression of the Kerr signal at zero magnetic field demon-
strates that the ground state has zero out-of-plane magnetization. 
The plateau behaviour of the magnetization curve—showing three 
horizontal regimes between magnetic field values of − 1.1 T and 1.1 T 
(Fig. 3b)—further implies that there are no in-plane spin components; 
otherwise, one would expect a gradual increase of the MOKE signal 
with increasing perpendicular magnetic field. Rather, our observa-
tion suggests that each individual layer is ferromagnetically ordered  
(out-of-plane) while the interlayer coupling is antiferromagnetic. In 
this case, the strength of the interlayer coupling determines the field 

at which jumps between different plateaus occur, ± 0.65 T. Although 
the detailed mechanism of this coupling remains unclear, the differ-
ent magnetic phases observed in bilayers and trilayers emphasizes the 
strong layer-dependent interplay between different mechanisms that 
stabilize magnetic ordering in the atomically thin limit.

Another bilayer feature distinct from those of monolayers is the 
 vanishingly small hysteresis around the jumps, suggesting negligible 
net perpendicular anisotropy. A possible interpretation is that the shape 
anisotropy (which prefers in-plane spin orientation) nearly compen-
sates for the intrinsic magnetocrystalline anisotropy (which prefers out-
of-plane spin orientation) so that the overall anisotropy is close to zero.

The insets in Fig. 3b display the layer-by-layer switching behaviour 
that leads to plausible magnetic ground states of bilayer CrI3. When 
the magnetic field is ± 0.65 T, the magnetization of the two layers 
are oppositely oriented to one another. Thus, the net magnetization 
vanishes and bilayer CrI3 behaves as an antiferromagnet with an 
exchange field of about 0.65 T. When | µoH|  >  0.65 T, magnetization in 
one layer flips to align with the external magnetic field and restores 
out-of-plane magnetization, giving rise to the large MOKE signal. At 
around | µoH|  =  0.65 T, the MOKE signal sharply increases from near 
zero to its saturation value within about 100 mT, suggesting an abrupt 
increase of out-of-plane magnetization triggered by a small change of 
magnetic field. Such behaviour is indicative of metamagnetism, the 
magnetic-field-driven transition from antiferromagnetic ordering to 
a fully spin-polarized state20.
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Figure 3 | Layer-dependent magnetic ordering in atomically-thin 
CrI3. a, MOKE signal on a monolayer (1L) CrI3 flake, showing hysteresis 
in the Kerr rotation as a function of applied magnetic field, indicative 
of ferromagnetic behaviour. b, MOKE signal from a bilayer CrI3 
showing vanishing Kerr rotation for applied fields ± 0.65 T, suggesting 
antiferromagnetic behaviour. Insets depict bilayer (2L) magnetic ground 
states for different applied fields. c, MOKE signal on a trilayer (3L) flake, 
showing a return to ferromagnetic behaviour.
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ABSTRACT: We report the connection between the stacking
order and magnetic properties of bilayer CrI3 using first-
principles calculations. We show that the stacking order
defines the magnetic ground state. By changing the interlayer
stacking order, one can tune the interlayer exchange
interaction between antiferromagnetic and ferromagnetic. To
measure the predicted stacking-dependent magnetism, we
propose using linear magnetoelectric effect. Our results not
only gives a possible explanation for the observed anti-
ferromagnetism in bilayer CrI3 but also have direct
implications in heterostructures made of two-dimensional magnets.
KEYWORDS: 2D magnets, Moire ́ superlattices, stacking order, CrI3, super-superexchange, beyond graphene

Since the demonstration of intrinsic ferromagnetism (FM)
in atomically thin crystals,1,2 there has been a lot of interest

in two-dimensional (2D) magnets.3−9 Among them, CrI3
presents an intriguing case. While bulk CrI3 is FM, it becomes
a layered antiferromagnet (AFM) when thinned down to a few
atomic layers.1 A number of interesting phenomena associated
with this layered antiferromagnetism have been observed,
including giant tunneling magnetoresistance when CrI3 is used
as the tunnel barrier,10−12 and gate tunable magneto-optical
Kerr effect, along with electrostatic doping control of
magnetism.13,14,14−16 However, despite the huge interest, the
origin of the AFM interlayer exchange in bilayer CrI3 remains
unclear.
Motivated by the above question, in this Letter, we explore

the connection between the crystal structure and magnetic
properties of bilayer CrI3 using first-principles calculations. We
find that the stacking order defines the magnetic ground state.
The coupling of stacking order and magnetism is qualitatively
unaffected by atomic relaxation, and is, therefore robust. This
stacking-dependent magnetism originates from the competi-
tion between orbital-dependent interlayer AFM super-super-
exchange (SSE) and interlayer FM SSE. Thus, by changing the
stacking order one can tune the magnetic ground state between
AFM and FM. We also propose using linear magnetoelectric
(ME) effect to distinguish between the various predicted AFM
stacking orders. In addition to providing a possible explanation
for the observed AFM in bilayer CrI3, our results have a
broader impact on other 2D honeycomb magnets such as CrX3
(X = Cl, Br, I)17−20 and their heterostructures, including
magnetic Moire ́ superlattices.

As our goal is to understand the stacking dependence of
magnetic order in CrI3, we begin our discussion with the
crystal structure of CrI3. Monolayer CrI3 consists of magnetic
Cr ions that form a honeycomb lattice, with each Cr atom
coordinated by six I atoms that form a distorted edge-sharing
octahedron (see Figure 1a,d). Monolayer CrI3 has the point
group D3d. Bulk CrI3 can be obtained by stacking these
monolayer units, which we label as the “A”-block (see Figure
1a). The bulk has a low-temperature (below 210 K) phase with
the space group R3̅ and a room-temperature phase with space
group C2/m.14,17,22 The low-temperature phase has an ABC-
Bernal stacking with each layer laterally shifted by [2/3, 1/3] in
fractional coordinates with respect to the neighboring layer.
The reduction in symmetry for the high-temperature phase is
associated with a relative lateral shift of the stacking order,
leaving the monolayer units unaffected.22 This corresponds to
a further lateral shift of [1/3, 0] and [2/3, 0] for the B- and C-
monolayer units, respectively, with respect to the ABC-
stacking. Thus, both R3̅ and C2/m phases have an ABC-
stacking sequence. To distinguish the two cases, we refer to the
R3̅ phase as the ABC-stacking sequence, and the C2/m phase
as the AB′C′-stacking sequence. While considering the
stacking order in the bilayer, it is, therefore, necessary to
consider at least two high-symmetry stacking orders shown in
Figure 1: the AB-stacking (S6 point group) from the low-
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A B

Fig. 4. Phase diagrams and a real space configuration plot in twisted bilayers of the ferromagnet CrI3. (A) (Top) The average value of the z component of
the sum of the two layers’ spins for CrI3, when the anisotropy parameter is taken to be positive and infinitesimal. A continuous transition from the collinear
phase to the twisted phase occurs at ↵= 0.025. This phase is analogous to the twisted-s phase discussed previously. The total area in which �̂(x) > 0 is
shown with a dashed red line here as the limiting value of Mz

2 for very large ↵. (Bottom) The average value of the z and in-plane components of the total
magnetization calculated with physical parameters chosen as discussed in the main text for CrI3. In particular, the anisotropy is nonzero here. At ✓= 17.5�,
a transition from collinear to twisted-s phase occurs at which point Mz starts to be nonzero. Moreover, a transition to the twisted-a phase occurs at ✓= 6.4�,
which exhibits itself in Mk starting to be nonzero for smaller angles. (B) Spatial profile of local magnetization Mz

2 = 1
2 (M1,z + M2,z)for a twisted solution in

CrI3. The anisotropy parameter is taken to be positive and infinitesimal. There are large regions in real space with a net magnetization, while other regions
have vanishingly small net magnetization.

while increasing ↵ from zero, cos �a will begin to have spatial variations at
the phase boundary between the collinear and the twisted-s phase. On the
other hand, if one fixes ↵ while increasing � from zero, the cos �s will start
from a constant in the twisted-s phase and begin to have spatial variations
once it crosses the phase boundary and enters the twisted-a phase. Similar
reasoning works for finding the phase boundaries in the case of CrI3, i.e.,
results presented in Fig. 4A.

As for Fig. 2C, the spin waves are obtained from the Bloch ansatz
us/a(x) = ûs/a(x)eik·x and similarly for vs/a. The variables in Eq. 17 thus
become ûs/a and v̂s/a with the substitutions r2

x ! (rx + ik)2 and �@2
t !!2.

Discretizing the moiré unit cell, the linear operators become large matri-
ces and can subsequently be diagonalized using Mathematica to find the
magnon bands.

The interlayer exchange for CrI3 is extracted from figure 2b of ref. 14,
where the dependence upon displacement is presented along two spe-
cial lines. The interlayer exchange is a periodic function with the same

period as that of the monolayer lattice; thus, a Fourier series for the
interlayer exchange (a constant along with the lowest five harmonics) in
the 2D space is assumed which induces one-dimensional functions on the
above two special lines. One can fix the Fourier coefficients by compar-
ing these induced forms with the given functions in the above reference.
The Euler–Lagrange equations for CrI3 are solved using the same methods
described above.

Data Availability. No data, materials, or protocols are needed to reproduce
the results presented in this paper. All codes are available upon request.
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Figure 2 | MCD microscopy in twisted bilayer CrI3. a-d, Magnetic field dependence of 
MCD for natural bilayer CrI3 (a) and twisted bilayer CrI3 with twist angle 1.2° (b), 4° (c) 
and 15° (d). The MCD signal of an isolated monolayer CrI3 is also shown in b for 
comparison. Coexistence of AF and FM states is seen at small twist angles. e, Image of 
!"# 1 ! −!"#(0 !) for the 1.2° sample. It shows the AF fraction of the sample. 
Non-zero contrast is seen only at the twisted bilayer region. f-h, MCD images at B = 0 T 
for the 1.2° (f), 4° (g) and 15° (h) samples after field polarization at 1 T. They show the 
FM fraction of the samples. In all images the dashed black and red lines outline the 
constituent monolayer regions. The color spots denote the locations of the MCD 
measurements in b-d with the same color.  
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n.b. Also recent twisted double bilayer arXiv:2103.13573 claims evidence of non-collinear state
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Fig. 4. Phase diagrams and a real space configuration plot in twisted bilayers of the ferromagnet CrI3. (A) (Top) The average value of the z component of
the sum of the two layers’ spins for CrI3, when the anisotropy parameter is taken to be positive and infinitesimal. A continuous transition from the collinear
phase to the twisted phase occurs at ↵= 0.025. This phase is analogous to the twisted-s phase discussed previously. The total area in which �̂(x) > 0 is
shown with a dashed red line here as the limiting value of Mz

2 for very large ↵. (Bottom) The average value of the z and in-plane components of the total
magnetization calculated with physical parameters chosen as discussed in the main text for CrI3. In particular, the anisotropy is nonzero here. At ✓= 17.5�,
a transition from collinear to twisted-s phase occurs at which point Mz starts to be nonzero. Moreover, a transition to the twisted-a phase occurs at ✓= 6.4�,
which exhibits itself in Mk starting to be nonzero for smaller angles. (B) Spatial profile of local magnetization Mz

2 = 1
2 (M1,z + M2,z)for a twisted solution in

CrI3. The anisotropy parameter is taken to be positive and infinitesimal. There are large regions in real space with a net magnetization, while other regions
have vanishingly small net magnetization.

while increasing ↵ from zero, cos �a will begin to have spatial variations at
the phase boundary between the collinear and the twisted-s phase. On the
other hand, if one fixes ↵ while increasing � from zero, the cos �s will start
from a constant in the twisted-s phase and begin to have spatial variations
once it crosses the phase boundary and enters the twisted-a phase. Similar
reasoning works for finding the phase boundaries in the case of CrI3, i.e.,
results presented in Fig. 4A.

As for Fig. 2C, the spin waves are obtained from the Bloch ansatz
us/a(x) = ûs/a(x)eik·x and similarly for vs/a. The variables in Eq. 17 thus
become ûs/a and v̂s/a with the substitutions r2

x ! (rx + ik)2 and �@2
t !!2.

Discretizing the moiré unit cell, the linear operators become large matri-
ces and can subsequently be diagonalized using Mathematica to find the
magnon bands.

The interlayer exchange for CrI3 is extracted from figure 2b of ref. 14,
where the dependence upon displacement is presented along two spe-
cial lines. The interlayer exchange is a periodic function with the same

period as that of the monolayer lattice; thus, a Fourier series for the
interlayer exchange (a constant along with the lowest five harmonics) in
the 2D space is assumed which induces one-dimensional functions on the
above two special lines. One can fix the Fourier coefficients by compar-
ing these induced forms with the given functions in the above reference.
The Euler–Lagrange equations for CrI3 are solved using the same methods
described above.

Data Availability. No data, materials, or protocols are needed to reproduce
the results presented in this paper. All codes are available upon request.
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Moiré engineering1–3 of van der Waals magnetic materials4–9 
can yield new magnetic ground states via competing inter-
actions in moiré superlattices10–13. Theory predicts a suite 
of interesting phenomena, including multiflavour magnetic 
states10, non-collinear magnetic states10–13, moiré magnon 
bands and magnon networks14 in twisted bilayer magnetic 
crystals, but so far such non-trivial magnetic ground states 
have not emerged experimentally. Here, by utilizing the 
stacking-dependent interlayer exchange interactions in 
two-dimensional magnetic materials15–18, we demonstrate a 
coexisting ferromagnetic (FM) and antiferromagnetic (AF) 
ground state in small-twist-angle CrI3 bilayers. The FM–AF 
state transitions to a collinear FM ground state above a criti-
cal twist angle of about 3°. The coexisting FM and AF domains 
result from a competition between the interlayer AF coupling, 
which emerges in the monoclinic stacking regions of the moiré 
superlattice, and the energy cost for forming FM–AF domain 
walls. Our observations are consistent with the emergence 
of a non-collinear magnetic ground state with FM and AF 
domains on the moiré length scale10–13. We further employ the 
doping dependence of the interlayer AF interaction to con-
trol the FM–AF state by electrically gating a bilayer sample. 
These experiments highlight the potential to create complex 
magnetic ground states in twisted bilayer magnetic crystals, 
and may find application in future gate-voltage-controllable 
high-density magnetic memory storage.

There is a one-to-one correspondence between the stacking 
structure and the magnetic ground state in CrI3 bilayers (Fig. 1b): 
the monoclinic (M) phase supports an A-type antiferromagnetic 
(AF) ground state with two AF-coupled ferromagnetic (FM) mono-
layers; and the rhombohedral (R) phase supports an FM ground 
state15,16,19,20. The magnetic easy axis is out-of-plane. There are both 
M and R regions in the triangular moiré superlattice of a twisted 
bilayer (Fig. 1a). The competing interlayer AF and FM interactions 
on the moiré length scale can induce non-trivial magnetic ground 
states with coexisting AF and FM domains (Fig. 1b)10–14. These 
states are expected to emerge when the energy gain from forming 
AF domains in the M regions exceeds the energy cost from forming 
domain walls. Since the energy gain scales with the area of the moiré 
unit cell, whereas the energy cost scales with the moiré period, such 
a coexisting FM–AF state is favoured below a critical twist angle10. 
This ideal picture could be modified in samples with very small 

twist angles, for instance, by lattice reconstruction21 that favours the 
most stable structure, the (FM) R phase15,16,19.

We fabricate twisted CrI3 bilayers by the tear-and-stack method 
(Methods and Extended Data Fig. 1), which has been widely used 
to make twisted bilayer graphene samples22–24. A series of samples 
with varying target twist angle θ has been studied. The twist-angle 
accuracy is ±0.5° on average. All samples are encapsulated between 
hexagonal boron nitride (hBN) substrates to prevent environmen-
tal degradation. The moiré structure of a small number of samples 
was verified by standard four-dimensional (4D) scanning transmis-
sion electron microscopy (STEM). Very thin hBN encapsulation 
layers (<5 nm) and substrates (8-nm-thick amorphous SiO2) were 
required to obtain TEM images (Extended Data Fig. 3). We have 
also fabricated a number of dual-gated field-effect devices to con-
tinuously tune the interlayer AF interaction by varying the doping 
level in CrI3 (refs. 25,26).

Figure 1c shows the electron diffraction pattern of sample 
1 with θ = 1.5°. Diffraction peaks from both hBN and CrI3 are 
observed. Figure 1d–f shows dark-field images obtained by select-
ing one of the third-order diffraction peaks of the CrI3 bilayer 
(circled in Fig. 1c). A clear moiré stripe pattern with a periodicity 
of one-third of the moiré period aM/3 = 6.1 ± 0.9 nm is seen. Each 
image is related to the other by a 60° rotation. The real-space moiré 
pattern can be constructed by superimposing the three images 
(Extended Data Figure 3). Using the measured aM, we determine 
Ȇ = � TJO

−�

(

B

�B

.

)

≈ ���

◦
± ���

◦ (a = 0.687 nm is the in-plane lat-
tice constant of CrI3). (Here the error for θ of sample 1 is propagated 
from that for aM.) The dark-field images in a larger field-of-view and 
for another sample are shown in Extended Data Figs. 4 and 5. These 
results verify the formation of moiré structures in twisted bilayer 
CrI3 and the expected twist-angle accuracy.

We probe the magnetic ground state by magnetic circular dichro-
ism (MCD) measurements. The MCD is linearly proportional to 
the out-of-plane magnetization. However, a direct comparison of  
the absolute MCD for different samples is not appropriate because 
of the different local field factors from different substrate thick-
nesses. Unless otherwise specified, all measurements were per-
formed at 4 K.

Figure 2a–d shows the MCD as a function of out-of-plane mag-
netic field B for four bilayer samples. (Extended Data Figs. 3, 4, 7 
and 8 show results from additional samples and correlated STEM 

Coexisting ferromagnetic–antiferromagnetic state 
in twisted bilayer CrI3

Yang Xu! !1,2, Ariana Ray3, Yu-Tsun Shao1, Shengwei Jiang! !3, Kihong Lee! !3, Daniel Weber! !4, 
Joshua E. Goldberger4, Kenji Watanabe! !5, Takashi Taniguchi! !6, David A. Muller! !1,7, Kin Fai Mak! !1,3,7 ✉ 
and Jie Shan! !1,3,7 ✉

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology



Moiré skyrmions
FM+AF heterobilayer



Truly 2d materials
• 2d Van der Waals magnets


• The parent of 2d materials: graphene

By AlexanderAlUS - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11294534

extraordinarily defect-free material, highly 
conducting, described by 2d Dirac equation 

Entirely composed of C atoms, with electrons 
in bonded s+p orbitals.  No local spins.

MnPS3, FePS3,NiPS3,CoPS3,CrSiTe3…

CrI3,RuCl3,…
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The layered phases are restricted to the first row of the transition metals, with the exception of the
4d element Zr. Both ZrCl2 and ZrI2 are reported, but not the dibromide. The zirconium compounds
are found to have different structures than the layered 3d transition metal dihalides. As shown in
Figure 2, ZrCl2 adopts the MoS2 structure type [60], which has the same triangular nets of metal
cations and ABC stacking found in CdCl2. However, in ZrCl2 the Zr atoms are in trigonal prismatic
coordination rather than octahedral coordination. As a result the Cl anions do not form a cubic close
packed arrangement in ZrCl2 but instead an AABBCC stacking sequence. ZrI2 is reported to adopt
both the MoTe2 and WTe2 structure types [61,62]. The closely related structures are shown in Figure 2.
The regular triangular net of M cations found in the compounds described previously is disrupted in
ZrI2, which has zigzag chains of Zr atoms (see M � M in-plane distances in Table 1). This points to the
tendency of heavier (4d and 5d) transition metals to form metal-metal bonds. Indeed, in addition to the
layered MoS2 structure described above for ZrCl2, a molecular crystal structure with Zr6 clusters is also
known [63]. Further examples of this tendency will be noted later in discussion of MX3 compounds.

M

Cl, Br, I

a b

c

a b

c

CdCl2 - type
CdI2 - type

other

a

bc

Figure 1. A section of the periodic table showing the transition metals for which layered MX2
compounds listed in Table 1 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. A plan view of a single layer common to both the CdI2 and
CdCl2 structure types is shown on the upper right.

Crystals 2017, 7, 121 7 of 25

M

Cl, Br, I

AlCl3 - type

BiI3 - type

a
b

c

a b

c

a

b
c

AlCl3 - typeBiI3 - type

a b

c

Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although

but it still shows magnetism!!



How to make graphene 
magnetic

• Stoner criterion: need to enhance density of states/reduce 
Fermi energy


• Twisting creates the required small Fermi energy 

384 E. C. Stoner 

the temperature T for which this equation is satisfied being the Curie 
temperature, 0; so that 

O'/0 = /F'. (5X1) 

This derivation is an alternative to that given above (see equations (3 9) 
and (3.10)) based on a consideration of the equation for paramagnetism 
above the Curie point. 

The series forms of the relation (5.1) for high and low temperatures are 
readily obtained. 

For k/0/o > 1, using (2.13), 
00 

O'/O = 1 + E bryr (5.2) 
r=I 

4 where Y 3 0 

N12 ~ 213) 3 2V 
l=84, b2 9- 81-) b3 = t_5 _16 3 

This series expression shows that 0'/O 1 for eo/kO -O 0, and that the ratio 
increases as kO/eo decreases. (Numerical values of related coefficients more 
convenient for computation are given below, equation (5.6).) 

For kO/eo < 1, using (2.14), 
kO' 2 7 T2 /kO\2 37T4/ko\41 
ka = 3 [1+12 (eo)+ 80 ( e ) eo *j| 

} ~~~(5-3) 2= 3a2' ko 2+a4 // JkJ 

where a' = 0 548 311, alf = 2 435 227. This expression is derived from the 
asymptotic series (2.14), and the kO/06 range for which it may be usefully 
applied is not appreciably extended by the inclusion of further terms. The 
relation shows at once that there is a lower limit to kO'/60 for the occurrence 
of spontaneous magnetization at any temperature. For ferromagnetism to 
occur at all (i.e. for kO/06 > 0) a necessary condition is 

kO'/e0 > t(54) 

(ii) kO'/60 as a function of kT/10 and C 

The relation between kO'/eo and kO/60 (i.e. kT/eo for C = 0) is a special case 
of the more general relations between kO/eo and kT/c0 for any value of ~. 
The procedure in obtaining the more general series expansions is similar, 
the starting point being equations (4.7) and (4.8). From these, inverse 

Stoner, 1938

N.b.: even without twisting, multilayers recently observed to show ferromagnetism
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Moiré Bands
• What you need to know:


• Moiré pattern creates an effective “artificial lattice” with huge lattice 
spacing ✅


• Corresponding moiré bands occupy a tiny region of momentum 
space, separated into two “valleys” originating from the underlying 
graphene Dirac points


• The important moiré bands (near the Fermi energy) become 
exceptionally narrow near the “magic angle” ~1degree


• The moiré bands are topological, and in particular become Chern 
bands when the graphene is aligned with its hBN substrate



Dirac bands in graphene

this estimate) are robust and rather stable.
The upshot though is that just this type of sub-band physics is not enough

to do the job. Luckily, this is not the whole story. The above estimate of the
bandwidth is too crude. The bandwidth is indeed generally of order vF/a, but
the prefactor is a function of the dimensionless parameters of the band prob-
lem, and that prefactor requires an actual computation. In TBG, we will see
that the specific physics of the twisted moiré pattern leads to extremely strong
dependence of this prefactor on angle. What emerges are “magic” angles near
which the bands are anomalously flat, maybe 100 times ?? narrower than the
naı̈ve estimate would predict. This fact, which was predicted theoretically by
Bistritzer and Macdonald, is a crucial ingredient for the breakthoughs in TBG.

2 Graphene fundamentals

2.1 From tight binding to Dirac

To go deeper into TBG, we need to understand some basic physics of graphene.

A
B

A
B

A

B

B

A A

A

B B

e3

e2e1

a1 a2

Figure 2: A hexagon of the honeycomb lattice. Nearest-neighbor bonds are
obvious, and representative second neighbor bonds are shown with dashed
lines. Two linearly independent Bravais lattice (translation) vectors a1, a2 are
shown, as are the three nearest-neighbor vectors e1, e2, e3. A unit cell consists
of a pair of A and B sites, one of which is enclosed by an ellipse.

Working out the band structure of graphene is by now a standard class-
room problem, starting from a tight-binding model of a single p orbital for
electrons on each site of a honeycomb lattice. You can find it discussed in
many many places, for example this Reviews of Modern Physics article[1].

For completeness, we include a brief exposition here. The geometry is
shown in Fig. 2. The lattice sites are divided into A and B sublattices, con-
nected by nearest-neighbor bonds shown as solid lines. We define a unit cell
containing two sites on a vertical bond, for example the pair in the ellipse
drawn in the figure. A site is indexed by the coordinate of its unit cell, which
we take to be the coordinate of the A site within that cell, and the sublat-
tice s = 1, 2 = A, B. The A sites are then located at the sites of the trian-
gular Bravais lattice, for which we may take a1 and a2 shown in the figure
as primitive lattice vectors. We define also the three nearest-neighbor vectors

5

2 sublattice spinor
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K,K’ “valleys”



Moiré bands

Two layers define two slightly shifted Dirac 
points for each valley



Moiré bands

1°

Tiny moiré bands at each valley are well 
separated - act as two “flavors” of electrons



Moiré Bands
• What you need to know:


• Moiré pattern creates an effective “artificial lattice” with huge lattice 
spacing ✅


• Corresponding moiré bands occupy a tiny region of momentum 
space, separated into two “valleys” originating from the underlying 
graphene Dirac points ✅


• The important moiré bands (near the Fermi energy) become 
exceptionally narrow near the “magic angle” ~1degree


• The moiré bands are topological, and in particular become Chern 
bands when the graphene is aligned with its hBN substrate



Magic angle bands

notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.

Partial insight into the origin of these behaviors can be achieved
by examining the simplest limit in which the momentum-space
lattice is truncated at the first honeycomb shell. Including the
sublattice degree of freedom, this truncation gives rise to the
Hamiltonian

Hk ¼

hkðθ∕2Þ Tb Ttr Ttl
T†
b hkbð−θ∕2Þ 0 0

T†
tr 0 hktrð−θ∕2Þ 0

T†
tl 0 0 hktlð−θ∕2Þ

2

664

3

775; [8]

where k is in the moiré Brillouin-zone and kj ¼ k þ qj. This
Hamiltonian acts on four two-component spinors Ψ ¼ ðψ0;ψ1;
ψ2;ψ3Þ. The first (ψ0) is at a momentum near the Dirac point of
one layer and the other three ψ j are at momenta near qj and in the

other layer. The dependence of hðθÞ on angle is parametrically
small and can be neglected. We have numerically verified that this
approximation reproduces the velocity with reasonable accuracy
down to the first magic angle (Fig. 4, Inset).

The renormalized velocity v⋆ ¼ ∂kϵ⋆k jk¼0 follows from the
spectrum ϵ⋆k of the twisted bilayer. The Hamiltonian is expressed
as a sum of the k ¼ 0 term Hð0Þ and the k-dependent term Hð1Þ

k
and solved to leading order in k.

Consider the k ¼ 0 term in the Hamiltonian. We assume that
Hð0Þ has zero energy eigenstates and prove our assumption by
explicitly finding these states. The zero energy eigenstates must
satisfy

ψ j ¼ −h−1j T†
j ψ0: [9]

Because

Tjh−1j T†
j ¼ 0 [10]

the equation for the ψ0 spinor is h0ψ0 ¼ 0, i.e., ψ0 is one of
the two zero energy states ψ ð1Þ

0 and ψ ð2Þ
0 of the isolated layer.

The two zero energy eigenstates of Hð0Þ then follow from Eq. 9.
Given that jψ ðjÞ

0 j ¼ 1, the wave functions should be normalized
by jΨj2 ¼ 1þ 6α2. The effective Hamiltonian matrix to leading
order in k is therefore

hΨðiÞjHð1Þ
k jΨðjÞi ¼ −v

1þ 6α2
ψ ðiÞ†
0

!
σ · k þ w2

∑

j

Tjh
−1†
j σ

· kh−1j T†
j

"
ψ ðjÞ
0 ¼ −v⋆ψ ðiÞ†

0 σ · kψ ðjÞ
0 :

Aside from a renormalized velocity

v⋆

v
¼ 1 − 3α2

1þ 6α2
; [11]

the Hamiltonian is identical to the continuum model Hamilto-
nian of single-layer graphene. The denominator in Eq. 11 cap-
tures the contribution of the Ψj’s to the normalization of the
wave function whereas the numerator captures their contribution
to the velocity matrix elements. For small α, Eq. 11 reduces to
the expression v⋆∕v ¼ 1 − 9α2, first obtained by Lopes dos Santos
et al. (15). The velocity vanishes at the first magic angle because it
is in the process of changing sign. The eigenstates at the Dirac
point are a coherent combination of components in the two layers
that have velocities of opposite sign.

Counterflow Conductivity. The distribution of the quasiparticle
velocity between the two layers implies exotic transport charac-
teristics for separately contacted layers. Consider a counterflow
geometry in which currents in the two layers flow antiparallel to
one another. We focus on twist angles θ ≳ 2° for which the eight-
band model is valid and to the semiclassical regime in which
ϵFτ > 1 and find the counterflow conductivity σCF. We assume
that the Fermi momentum is much smaller than kθ and that
1∕τ0 < ℏvkθ, where τ0 is single particle lifetime. Using the Kubo
formula we find that

σCF ¼ 4e2

π ∑

kμ

jhψkjvxCFjψkij2½ImfGr
kμðϵFÞg&2; [12]

where

vxCF ¼ −v

σx 0 0 0
0 −σx 0 0
0 0 −σx 0
0 0 0 −σx

0

BB@

1

CCA [13]

Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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moiré pattern behaves like an 

artificial lattice with its own 
bands, which becomes 

especially flat at the “magic” 
angle ~1degree

These bands retain their Dirac 
points, i.e. Berry phase

narrow band = small kinetic energy



Moiré Bands
• What you need to know:


• Moiré pattern creates an effective “artificial lattice” with huge lattice 
spacing ✅


• Corresponding moiré bands occupy a tiny region of momentum 
space, separated into two “valleys” originating from the underlying 
graphene Dirac points ✅


• The important moiré bands (near the Fermi energy) become 
exceptionally narrow near the “magic angle” ~1degree ✅


• The moiré bands are topological, and in particular become Chern 
bands when the graphene is aligned with its hBN substrate
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×  104 m s−1 compared to 106 m s−1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈  4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >  0 
branch of the low-energy bands for 0.04° <  θ <  2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >  1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >  ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−  ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
± ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ± ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ± ns =  ± 2.7 ×  1012 cm−2. The 
darker-shaded regions denote half-filling states at ± ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[− ∆/(2kT)] to the data, where 
∆ ≈  0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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Ferromagnetism in TBG

expected because flipping individual domains
or moving domain walls in a magnet is usually
thermally activated (22).
The Hall signal appears to be the sum of two

parts: an anomalous component that reflects the
sample magnetization (23), and a conventional
component linear in field with a Hall slope RH

(Fig. 2B) [see (17) for how we separate these two
components]. Unlike the coercive field, the mag-
nitude of the residual AH resistance at zero field,
which we denote by RAH

yx , does not vary mono-
tonically with temperature:RAH

yx rises slightly with
increasing T up to 2.8 K before rapidly falling to
zero by 5 K (Fig. 2, C and D).
Although the hysteresis is observable over a

wide range of displacement fields (17), it only
emerges in a narrow range of densities near 3

4=
filling of the mBZ.RAH

yx displays a sharp peak as a
function of n/ns, reaching 6.6 kilohms for n/ns =
0.758 with a full width at half maximum of
0.04ns (Fig. 2B). These measurements were
made along a trajectory for which D changes
by ~10% coincident with the primary intended
change in n (17). In a separate measurement,
we observed hysteresis loops with RAH

yx up to
10.4 kilohms (fig. S7B).

The gate-voltage dependence of the conven-
tional linearHall slopeRH (17) appears typical for
a transition from p-type– to n-type–dominated
conduction in a semimetal or small-gap semicon-
ductor, with jRHj rising when approaching the
transition from either side, then turning over and
crossing through zero (Fig. 2B). Recent studies
of near-magic-angle TBG have reported high re-
sistance at 3 4= filling (6, 7) (compare with Fig. 1),
suggesting that spin and valley symmetries are
spontaneously broken, resulting in a low density
of states (or a gap) at this filling. Our results sim-
ilarly indicate a possible correlated insulating
state, here with an AH effect in a narrow range
of densities around this same filling.
The presence of a giant AH effect in an ap-

parent insulator is reminiscent of a ferromag-
netic topological insulator approaching a Chern
insulator state (24–26), where it would exhibit a
quantum AH (QAH) effect: longitudinal resistiv-

ity rxx approaches zero and Hall resistivity ryx is
quantized to h/Ce2 (27, 28), where h is Planck’s
constant, e is the electron charge, and C is the
Chern number arising from the Berry curvature
of the filled bands (C = ±1 in presently available
QAH materials). Chiral edge modes associated
with a quantized Hall system manifest in non-
local transport measurements (29, 30). In an ideal
QAH system described by the Büttiker edge state
model (31), floating metallic contacts equilibrate
with the chiral edge states that propagate into
them. Clearly, our results are not those of an
ideal QAH system. Dissipation can cause devia-
tions from the ideal behavior, while still giving
results differing from classical diffusive trans-
port. Below, we present and analyze our exper-
imental evidence for nonlocal transport in the
magnetic state.
The three-terminal resistance R54,14, where

Rij,k‘ = Vk‘ /Iij and Vk‘ is the voltage between
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Fig. 1. Correlated states in near-magic-angle
TBG. (A) Longitudinal resistance Rxx of the
TBG device (measured between contacts
separated by 2.15 squares) as a function of
carrier density n (shown on the top axis) and
perpendicular displacement field D (left axis),
which are tuned by the top- and back-gate
voltages, at 2.1 K. n is mapped to a filling
factor relative to the superlattice density ns,
corresponding to four electrons per moiré unit
cell, shown on the bottom axis. (Inset) Optical
micrograph of the completed device showing the
top-gated Hall bar region (gold), electrical
contacts (gold), regions of the heterostructure
that have been etched to remove the TBG
(green), and regions of the heterostructure that
have not been etched (brown). Scale bar, 5 mm.
(B) Line cut of Rxx with respect to n taken at
D/D0 = −0.22 V/nm showing the resistance peaks
at full filling of the superlattice and additional
peaks likely corresponding to correlated states
emerging at intermediate fillings.
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Fig. 2. Emergent ferromagnetism near three-quarters filling. (A) Magnetic field dependence of
the longitudinal resistance Rxx (upper panel) and Hall resistance Ryx (lower panel) with n/ns = 0.746
and D/D0 = −0.62 V/nm at 30 mK, demonstrating a hysteretic AH effect resulting from emergent
magnetic order. The solid and dashed lines correspond to measurements taken while sweeping the
magnetic field B up and down, respectively. (B) Zero-field AH resistance RAH

yx (red) and ordinary Hall
slope RH (blue) as a function of n/ns for D/D0 ≈ −0.6 V/nm. RAH

yx is peaked sharply with a maximum
around n/ns = 0.758, coincident with RH changing sign. These parameters are extracted from line fits
of Ryx versus B on the upward and downward sweeping traces in a region where the B-dependence
appears dominated by the ordinary Hall effect (17). The error bars reflect fitting parameter
uncertainty along with the effect of varying the fitting window and are omitted when smaller than the
marker. (C) Temperature dependence of Ryx versus B at D/D0 = −0.62 V/nm and n/ns = 0.746
between 46 mK and 5.0 K, showing the hysteresis loop closing with increasing temperature.
Successive curves are offset vertically by 20 kilohms for clarity. (D) Coercive field and AH resistance
(extracted using the same fitting procedure as above) plotted as a function of temperature from
the same data partially shown in (C). Data in Fig. 2 were taken during a separate cooldown from that
of the data in the rest of the figures but show representative behavior (17).
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FIG. 2. Temperature dependence of the quantum anomalous Hall effect. (A) Rxy and (B) Rxx as a function of B measured at various
temperatures for n = 2.37⇥1012 cm�2. Rxx and Rxy mixing was corrected using contact symmetrization[29]. (C) Temperature dependence
of the field-training symmetrized resistance R̄xy at B = 0, as described in the main text. The Curie was determined to be TC ⇡ 7.5(.5) K
using an Arrott plot analysis (see Fig. S12. The inset shows detailed low-temperature dependence of R̄xy at B = 0. Error bars are the
standard error derived from 11 consecutive measurements. R̄xy saturates below ⇡ 3 K to a value of (1.0010 ± 0.0002) ⇥ h

e2
, determined

by averaging the points between 2 and 2.7 K. (D) Arrhenius plots of field training symmetrized resistances R̄xx and �R̄xy = h/e2 � R̄xy .
Dotted lines denote representative activation fits. Systematic treatment of uncertainty arising from the absence of a single activated regime
gives � = 31± 11 K and 26± 4 K for R̄xx and �R̄xy , respectively[29].

the quantum oscillations are highly anomalous, with hole-like 1

quantum oscillations originating at ⌫ = 2, again in contrast 2

to all prior reports[23–26]. Additional Landau fan features 3

also appear consistent with hBN alignment of 0.6�(Fig. S11); 4

however, twist angle variations within the tBLG itself pre- 5

clude unambiguous determination of the hBN-tBLG twist an- 6

gle. While no detailed theory for these observations is avail- 7

able, the extreme sensitivity of the detailed structure of the 8

flat bands to model parameters, combined with observations 9

that hBN substrates can produce energy gaps as large as 30 10

meV in monolayer graphene[34], point to the role of the sub- 11

strate in tipping the balance between competing many-body 12

ground states at ⌫ = 3 in favor of the QAH state. Taken to- 13

gether, these observations suggest that hBN aligned samples 14

constitute a different class of tBLG devices with distinct phe- 15

nomenology. 16

Figs. 2A and B show the temperature dependence of major 17

hysteresis loops in Rxx and Rxy , respectively. As T increases, 18

we observe both a departure from resistance quantization and 19

a suppression of hysteresis, with the Hall effect showing linear 20

behavior in field by T = 12 K. In our measurements, we ob- 21

serve resistance offsets of ⇠ 1 k⌦ from the ideal value, which 22

vanish when resistance is symmetrized or antisymmetrized 23

with respect to magnetic field (or, for B ⇡ 0, with respect 24

to field training). For quantitative analysis of the T -dependent 25

data, we thus study field-training symmetrized resistances, de- 26

noted R̄xy and R̄xx. Figure 2C shows R̄xy(0). Finite hys- 27

teresis is observed up to temperatures of 8K (Fig .2C), con- 28

sistent with the Curie temperature TC ⇡ 7.5 K determined 29

from an Arrott plot ( Fig. S12). At low temperatures, R̄xy is 30

quantized to (1.001± 0.0002)⇥ h

e2
, remaining quantized up 31

to T = 3 K before detectable deviation is observed.R̄xy re- 32

mains quantized up to T ⇡ 3 K, with the average value of 33

(1.0010± 0.0002)⇥ h

e2
between 2 and 2.7 K. 34

To quantitatively assess the energy scales associated with 35

the QAH state, we measure the activation energy at low tem- 36

perature. Fig. 2D shows both the measured R̄xx and the devi- 37

ation from quantization of the Hall resistance, �R̄xy = h/e2� 38

R̄xy , on an Arrhenius plot. We assume that the Hall conduc- 39

tivity �xy is approximately T -independent and the longitudi- 40

nal conductivity �xx ⇠ e��/(2T ), where � is the energy cost 41

of creating and separating a particle-antiparticle excitation of 42

the QAH state. Within this picture, inverting the conductivity 43

tensor gives �Rxy ⇠ e��/(T ) while Rxx ⇠ e��/(2T )[29]. 44

M. Serlin et al, 2019



Moiré Bands
• What you need to know:


• Moiré pattern creates an effective “artificial lattice” with huge lattice 
spacing ✅


• Corresponding moiré bands occupy a tiny region of momentum 
space, separated into two “valleys” originating from the underlying 
graphene Dirac points ✅


• The important moiré bands (near the Fermi energy) become 
exceptionally narrow near the “magic angle” ~1degree ✅


• The moiré bands are topological, and in particular become Chern 
bands when the graphene is aligned with its hBN substrate



Berry phase and curvature
•Hamiltonian depending on parameters
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H = H({�i})
•Under adiabatic evolution

<latexit sha1_base64="GVeUedJgDGyGl596DfPw4jLIhyI=">AAACEXicbVDLSsNAFL3xWesr6kZwM1iEuimJiLoRim5cVrAPaEOYTCbt0JkkzEyEUupP+Atude9O3PoFbv0Sp20QbT0wcDjnXO6dE6ScKe04n9bC4tLyymphrbi+sbm1be/sNlSSSULrJOGJbAVYUc5iWtdMc9pKJcUi4LQZ9K/HfvOeSsWS+E4PUuoJ3I1ZxAjWRvLt/Q434RD7DF2iH17Wx75dcirOBGieuDkpQY6ab391woRkgsaacKxU23VS7Q2x1IxwOip2MkVTTPq4S9uGxlhQ5Q0nPxihI6OEKEqkebFGE/X3xBALpQYiMEmBdU/NemPxXy8QM5t1dOENWZxmmsZkujjKONIJGteDQiYp0XxgCCaSmdsR6WGJiTYlFk0p7mwF86RxUnHPKu7taal6lddTgAM4hDK4cA5VuIEa1IHAAzzBM7xYj9ar9Wa9T6MLVj6zB39gfXwDrSGckw==</latexit>

�i = �i(t)

• Wavefunction accumulates a geometric (Berry) 
phase over a closed loop
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• Using Stokes’ theorem

Berry curvature

~ Aharonov-Bohm 
phase

~ magnetic field
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Berry curvature in 2d solids
•Hamiltonian depends on kx,ky
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�

•Controls several physical effects

• Hall conductivity

• Orbital magnetic moment
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⌦n(k)f(✏n(k))

•T=0, insulator: quantization
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Dirac and topology
• Dirac electrons are topological


• When symmetry relating the two sublattices is broken, the 
Dirac fermions acquire a “mass”


• Berry curvature = 1/2 (area swept on sphere/unit area in 
k space).  Large near Dirac points.

<latexit sha1_base64="fristZ0+G4xNd42j0VYO8aY/S58=">AAACG3icbZDLSsNAFIYn9VbrLerSzdAiuJCSiKgboeim4KaCvUATwmQybYfOJGFmUighe1/CV3Cre3fi1oVbn8RpmoW2/jDw8Z9zOGd+P2ZUKsv6Mkorq2vrG+XNytb2zu6euX/QkVEiMGnjiEWi5yNJGA1JW1HFSC8WBHGfka4/vp3VuxMiJI3CBzWNicvRMKQDipHSlmdWm94dvIYT6Jw6E4LTcebgIFI5O5IOOco8s2bVrVxwGewCaqBQyzO/nSDCCSehwgxJ2betWLkpEopiRrKKk0gSIzxGQ9LXGCJOpJvmf8ngsXYCOIiEfqGCuft7IkVcyin3dSdHaiQXazPz35rPFzarwZWb0jBOFAnxfPEgYVBFcBYUDKggWLGpBoQF1bdDPEICYaXjrOhQ7MUIlqFzVrcv6vb9ea1xU8RTBkegCk6ADS5BAzRBC7QBBo/gGbyAV+PJeDPejY95a8koZg7BHxmfPzVroTo=</latexit>

HK = v ~k · ~�

<latexit sha1_base64="N1Y+z/RiBxIkjT4mNVUQv6z7GYU="></latexit>

HK ! v ~k · ~� +m�
z

<latexit sha1_base64="r7/aUC3OVo06cNlwks5O4Q+7ZXI=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRIRdSMU3bisYB/QhHIznbRDZyZhZlIooV/gL7jVvTtx61e49Uuctllo9cCFwzn3ci4nSjnTxvM+ndLK6tr6RnmzsrW9s7vn7h+0dJIpQpsk4YnqRKApZ5I2DTOcdlJFQUSctqPR7cxvj6nSLJEPZpLSUMBAspgRMFbquW4wACEAX+MgFXZYz616NW8O/Jf4BamiAo2e+xX0E5IJKg3hoHXX91IT5qAMI5xOK0GmaQpkBAPatVSCoDrM559P8YlV+jhOlB1p8Fz9eZGD0HoiIrspwAz1sjcT//UisZRs4qswZzLNDJVkERxnHJsEz2rBfaYoMXxiCRDF7O+YDEEBMba8ii3FX67gL2md1fyLmn9/Xq3fFPWU0RE6RqfIR5eoju5QAzURQWP0hJ7Ri/PovDpvzvtiteQUN4foF5yPb7zMmWE=</latexit>

� = ±⇡



Moiré Chern bands
• Small coupling to aligned hBN substrate readily creates 

such Berry curvature 


• The flat moiré bands then become Chern bands

To illustrate this important point, we present the argument in
a form that does not depend on detailed knowledge of the reg-
istration within each of the domains. Of course, in practice the
registration types (and hence the asymmetry signs) arise from
general energetic and geometric constraints which can be easily
accounted for (27). As an example, we consider three possible
registrations: (i) site A in hBN aligned with site A in graphene
and site B in hBN with site B in graphene; (ii) site A in hBN
aligned with site B in graphene and site B in hBN with H (hol-
low) in graphene; and (iii) A in hBN aligned with site B in
graphene whereas site B in hBN aligned with site A in graphene.
Configurations (i) and (iii) cost the same energy, but have a

different energy than (ii). Importantly, lateral sliding of a cell
with configuration (i) cannot generate configuration (iii) because
it would require a lattice rotation. At the same time, whereas
lateral sliding of a cell with configuration (i) can generate con-
figuration (ii), it costs a different energy. As a result, stacking
frustration between neighboring cells cannot occur, locking the
registration between all hexagonal cells to yield a constant global
gap, Δg.
Next, we note that imperfect registration around the domain

boundaries yields a weaker coupling between G and hBN
[strained graphene sheet buckles (16) increasing the G-to-hBN
distance]. Reduction in sublattice-asymmetric potential Δg,0 can
be modeled as

ΔðrÞ=Δg,0 + δm½GðrÞ * FðrÞ$, sgn  δm=−sgn Δg,0, [3]

where FðrÞ describes the unit cell of the pattern of domain walls,
GðrÞ=

P
n,l∈Zδðr− na1 − la2Þ is the superlattice form factor (a1,2

are superlattice basis vectors), and * indicates convolution. The
relative sign sgn  δm=−sgn Δg accounts for the weaker coupling
between G and hBN at the domain boundaries.
Because we are interested in bandstructure reconstruction in

the lowest minibands, we expand ΔðrÞ into lowest harmonics
yielding Eq. 2 with

Δg =Δg,0 + δm~Fq=0, m3 = 2δm~Fq=bj , [4]

where ~FðqÞ= 1=A
R
d2rFðrÞeiq · r is the form factor, bj are the re-

ciprocal superlattice vectors, and A is the area of superlattice
unit cell. Crucially, the sign of the form factor F determines the
sign of m3. Choosing a symmetric FðrÞ, with origin at the center
of a hexagonal domain (pictured in Fig. 1A, x̂ and ŷ are the
horizontal and vertical directions) and δ-functions along the hex-
agonal domain walls, we obtain the form factor

~FðqÞ= 2w
A
X3

j=1

sin
!
d
2
qi · x̂

"

qi · x̂
cos

 ffiffiffi
3

p
d

2
qi · ŷ

!

. [5]

Here d and w are the domain wall length and width, and
qi =RðθjÞq, where RðθjÞ are the 2× 2 rotation matrices with
θ1 = 0, θ2 = π=3, and θ3 = 2π=3.
Evaluating Eq. 5 gives ~Fq=0 = 3ζ> 0 and ~Fq=bj =−9

ffiffiffi
3

p
ζ=4π< 0,

where ζ=wd=A> 0. Comparing with Eq. 2, we find the relation
between signs of m3 and Δg:

sgn m3 =−sgnðδmÞ= sgn
$
Δg

%
. [6]

As we will see, this leads to a nontrivial topological class Cv =±1
in the lowest minibands (Fig. 3A).
The incommensurate case (moiré superlattice) differs from

the commensurate case in two important ways. One is that the
G-to-hBN coupling is dominated by the modulational part
ΔðrÞ=m3

P3
j=1cosðbj · rÞ arising from the moiré pattern. The

other is that the global gap parameter Δg is zero in the bare

Hamiltonian; however, a nonzero Δg value is generated pertur-
batively in m3, with the Δg sign the opposite of the m3 sign. The
analysis is particularly simple for the long-period moiré patterns
arising for rigid G and hBN stackings at small twist angles, as
shown in Fig. 1B.
Of course, one m3 harmonic cannot produce an average global

gap at DP because it is sign-changing, heibxi= 0. However, a
combination of three different harmonics can open up a gap
(14). This can be seen from a perturbation analysis of the
Hamiltonian [2] which we write as H =H0 +V , where H0 = vσ · p,
V = σ3m3

P3
j=1cosðbj · rÞ. Perturbation theory in V yields a term

describing a global gap at a third order in V via

δH =V
1

e−H0
V

1
e−H0

V . [7]

Choosing triplets of harmonics with bi + bj + bk = 0, third-order
perturbation theory in m3 yields a gap

Δg =
X

±bi ,±bk

m3σ3
2

1
vσ · bi

m3σ3
2

1
vσ · bk

m3

2
=−

3m3
3

4ðvjbjÞ2
, [8]

where the minus sign results from the anticommutation relations
½σ1, σ3$+ = 0, ½σ2, σ3$+ = 0. Importantly, this analysis predicts a re-
lation between signs

sgn
$
Δg

%
=−sgnðm3Þ, [9]

which is opposite to the relation found for the commensurate
case, Eq. 6. Whereas the gap size obtained at a third order of
perturbation theory in a noninteracting system is small, electron
interaction effects are expected to produce an enhancement and

A B

DC

Fig. 3. (A and B) Berry curvature distribution, ΩðkÞ, in the lowest conduction
band (labeled “1” in Fig. 2B) obtained from the Hamiltonian in Eq. 2. Two
choices of signs, (A) sgnðΔgÞ= sgnðm3Þ and (B) sgnðΔgÞ=−sgnðm3Þ, yield
Cv =−1 and Cv = 0, respectively. The hot spots of ΩðkÞ at DP (point ~Γ) and SBZ
corners ~K, ~K′ correspond to gap opening and avoided band crossing regions.
The central hot spot carries a net Berry flux π, whereas the corner hot spots
carry a net flux ±π=2 (see the text). Parameters used: m3 = 20 meV,
e0 = Zvjbj= 300 meV, Δg =m3 in A; Δg =−m3 in B. (C and D) Valley Hall con-
ductivity, σvxy (Eq. 14), vs. carrier density for the two minibands above and
below DP: σvxy changes sign for topological bands (C) but keeps the same sign
for nontopological bands (D) (n0 is the density needed to fill the first miniband,
other parameter values are the same as in A and B).

Song et al. PNAS | September 1, 2015 | vol. 112 | no. 35 | 10881

PH
YS

IC
S

Topological Bloch bands in graphene superlattices
Justin C. W. Songa,b,c,1, Polnop Samutpraphootc, and Leonid S. Levitovc,1

aWalter Burke Institute for Theoretical Physics, California Institute of Technology, CA 91125; bInstitute for Quantum Information and Matter, and
Department of Physics, California Institute of Technology, CA 91125; and cDepartment of Physics, Massachusetts Institute of Technology, Cambridge,
MA 02139

Edited by Subir Sachdev, Harvard University, Cambridge, MA, and approved June 24, 2015 (received for review December 30, 2014)

We outline a designer approach to endow widely available plain
materials with topological properties by stacking them atop other
nontopological materials. The approach is illustrated with a model
system comprising graphene stacked atop hexagonal boron
nitride. In this case, the Berry curvature of the electron Bloch bands
is highly sensitive to the stacking configuration. As a result, electron
topology can be controlled by crystal axes alignment, granting a
practical route to designer topological materials. Berry curvature
manifests itself in transport via the valley Hall effect and long-range
chargeless valley currents. The nonlocal electrical response mediated
by such currents provides diagnostics for band topology.

topological bands | graphene | van der Waals heterostructure

Electronic states in topological materials possess unique
properties including a Hall effect without an applied mag-

netic field (1–3) and topologically protected edge states (4, 5).
Accessing nontrivial electron topology depends on identifying
materials in which symmetry and interactions produce topolog-
ical Bloch bands. Such bands can only arise when multiple re-
quirements, such as a multiband structure with a Berry phase and
suitable symmetry, are fulfilled. As a result, topological bands
are found in only a handful of exotic materials in which good
transport properties are often lacking. Formulating practical
methods for transforming widely available materials with a rea-
sonably high carrier mobility (such as silicon or graphene) into a
topological phase remains a grand challenge.
Here, we lay out an approach for engineering designer

topological materials out of stacks of generic materials—
“Chernburgers.” Our scheme naturally produces (i) topological
bands with different Chern invariant values, and (ii) tunable
topological transitions. As an illustration, we analyze graphene
on hexagonal boron–nitride heterostructures (G/hBN), where
broken inversion symmetry is expected to generate Berry cur-
vature (6, 7), a key ingredient of topological materials. Indeed,
recently valley currents have been demonstrated in a G/hBN
system (8) signaling the presence of Berry curvature (6). As we
will show, Berry curvature in G/hBN can be molded by stacking
configuration, leading to a large variability in properties.
Transitions between different topological states can be induced
by a slight change in stacking angle.
Topological bands in G/hBN arise separately for valley K and

valley K′. Graphene bandstructure reconstruction due to the
coupling to hBN produces superlattice minibands (9–14), with
Berry curvature ΩðkÞ developing near avoided crossings. The
minibands for each valley possess a valley Chern number

Cv =
1
2π

Z

k∈SBZ

d2kΩðkÞ, [1]

where the integral is taken over the entire superlattice Brillouin
zone (SBZ) in one valley (K or K′). As discussed below, for
commensurate stackings (Fig. 1A) Cv =±1 for the lowest mini-
bands. In contrast, for incommensurate moiré superlattice struc-
tures (Fig. 1B), the invariant [1] vanishes in these minibands,
Cv = 0. The difference in the behavior for these configurations
arises from the difference in sign of the contributions to Berry

curvature from regions near SBZ center ~Γ (the Dirac point,
hereafter denoted DP) and corners ~K, ~K′ (Fig. 2). We will see
that these contributions add in the commensurate case but sub-
tract for the incommensurate case, yielding topological and non-
topological bands, respectively (Fig. 1).
Interestingly, the conditions for both topological and non-

topological bands are met by currently available systems. Indeed,
both commensurate and incommensurate stackings have been
recently identified in G/hBN by scanning probe microscopy (15,
16). Further, the commensurate–incommensurate transition can
be controlled by twist angle between G and hBN, providing a
practical route in which to tailor electron topology via a tunable
structural transition.
We note that time-reversal (TR) symmetry requires that ΩðkÞ

in K and K ′ valleys have opposite signs. As a result, the total
Chern invariant always vanishes, CvðKÞ+ CvðK′Þ= 0. However,
the weakness of intervalley scattering (17, 18) can enable long-
range topological currents in individual valleys. As we will see,
the nonlocal electrical signals mediated by such currents can
provide diagnostics for valley band topology.
We also note that topological bands in graphene are some-

times presumed either impossible or impractical. Indeed, a
connection between K and K ′ bands at high energies, whenever
present, renders valley-specific topological invariants ill-defined
(19, 20). Proposals relying on large spin–orbit coupling (21, 22)
are also sensitive to disorder; proposals in other systems such as
optical flux lattices (23) suffer from similar implementation pit-
falls. Our scheme circumvents these difficulties by exploiting
Bragg scattering in the G/hBN superlattice to create energy gaps
above and below the K and K′ Dirac points (Fig. 2). The Dirac
points, sandwiched between these gaps, are no longer connected
in a single band; the resulting minibands possess well-defined
topological invariants.

Minimal Model for Superlattice Bands
Modeling the superlattice bandstructure is greatly facilitated by
several aspects of the G/hBN system. First is the long-wavelength
character of superlattice periodicity, which results from nearly
identical periods of graphene and hBN crystal structure. For

Significance

A family of designer topological materials is introduced, com-
prising stacks of two-dimensional materials which by them-
selves are not topological, such as graphene. Previously, topo-
logical bands in graphene were presumed either impossible or
impractical. The designer approach turns graphene into a ro-
bust platform with which a host of topological behavior can be
realized and explored.
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e.g.
States in each valley carry Hall 
current and large orbital 
magnetic moment



Moiré Bands
• What you need to know:


• Moiré pattern creates an effective “artificial lattice” with huge lattice 
spacing ✅


• Corresponding moiré bands occupy a tiny region of momentum 
space, separated into two “valleys” originating from the underlying 
graphene Dirac points ✅


• The important moiré bands (near the Fermi energy) become 
exceptionally narrow near the “magic angle” ~1degree ✅


• The moiré bands are topological, and in particular become Chern 
bands when the graphene is aligned with its hBN substrate ✅



Valley Chern number
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⌦ < 0, C = �1



Stoner ferromagnetism
•Coulomb repulsion favors polarization of spin 

and valley, at cost of kinetic (band) energy
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Hint =
X

a<b

Uabnanb (a=spin+valley)

Due to narrow magic angle bands, Coulomb wins



Stoner ferromagnetism
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Hint =
X

a<b

Uabnanb (a=spin+valley)

•Coulomb repulsion favors polarization of spin 
and valley, at cost of kinetic (band) energy



Valley ferromagnetism
•Recall Mermin-Wagner: is 2d ordering possible?

A1: ordering of the valley is possible, because this is an Ising 
symmetry breaking ✅ 

A2: We expect no additional transition associated with spin ✅
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Current control

terminals k and ‘ when a current Iij flows from
terminal i to j, is shown in Fig. 3A for two values
of n/ns. When the density is tuned away from the
center of themagnetic regime,R54,14 is ~5 kilohms
and nearly independent of the applied field. We
ascribe this behavior to diffusive bulk transport
and a finite contact resistance to ground. By con-
trast, at the center of the magnetic regime, we
observe a hysteresis loopwithR↓

54;14 ¼ 3:3 kilohms
and R↑

54;14 ¼ 9:1 kilohms, where R↑ð↓Þ
ij;k‘ are the

remanent resistances at zero field after the sam-
ple has been magnetized by an upward (down-
ward) applied field [more precisely defined in
(17) in the discussion of calculating RAH

yx ]. The
difference jR↑

54;14 $ R↓
54;14j is largest near the

peak inRAH
yx shown in Fig. 2B. For a QAH effect,

we would expect R54;14 to be either 0 or h/Ce2

(25,813 ohms for C = 1). Although the difference
jR↑

54;14 $ R↓
54;14j ¼ 5:8 kilohms is smaller than

the ideal C = 1 QAH case by a factor of 4, it could
be consistent with a QAH state in combination
with other dissipative transportmechanisms or a
complex network of domain walls (in addition to
contact resistance). These three-terminal mea-
surements alone cannot rule out diffusive bulk
transport with a very large (anomalous) Hall co-
efficient, but four-terminal measurements sug-
gest this is unlikely.

In contrast to the three-terminal case, four-
terminal nonlocal resistances where the voltage
is measured far from the current path are expo-
nentially small in the case of homogeneous dif-
fusive conduction (32). Forn/ns = 0.725, away from
the peak in RAH

yx , the measured R54,12 = 10 ohms
(Fig. 3B) is indeed small. In the magnetic regime
at n/ns = 0.749, however, the four-terminal re-
sistance is two orders of magnitude larger than
the 3 ohms expected from homogeneous bulk con-
duction, with a hysteresis loop yieldingR↓

54;12 ¼
42 ohms and R↑

54;12 ¼ 240 ohms. Although this
four-terminal resistance would be zero in an ideal
QAH state with pure chiral edge conduction, the
presence of additional conduction paths, such as
extra nonchiral edge states (33), parallel bulk con-
duction, or transport along magnetic domain
walls (34, 35), can result in large, hysteretic non-
local resistances [we elaborate on this discussion
in (17)].
We find that the n/ns = 3

4= state is extremely
sensitive to the direction of an applied current.
All of the measurements described above were
performedwith a 5 nA RMS ac bias current, but
we observed curious behavior when we added a
dc bias Idc to this small ac signal. Sweeping Idc
between±75 nAwithB= 0 (Fig. 4), we found that
the differential Hall resistance dVyx/dI follows a
hysteresis loop reminiscent of its magnetic field
dependence. This loop was very repeatable after
a slight deviation from the first trace (black trace,
Fig. 4), for which Idc was ramped from 0 to
−75 nA after first magnetizing the sample in a
−500mT field. Additional details about the nature
of the jumps in differential resistance and the
effect of external magnetic field on the hysteresis
loops are presented in (17).
The switching of dVyx/dI clearly demonstrates

that, like the external magnetic field, the applied
dc biasmodifies themagnetization. This phenom-

enon might be similar to switching in other
ferromagnetic materials, in which spin-transfer
or spin-orbit torques can influence the magneti-
zation. However, the current necessary to flip the
moment appears to be very small (36). It has also
been proposed that a current could efficiently
drive domainwallmotion in aQAH systemowing
to quantum interference effects from the edge
states (37).
Our observation of a large hysteretic AH effect

establishes a ferromagnetic moment associated
with the apparent 3 4= correlated insulating state.
Specifically, we suggest that this state is a Chern
insulator, with the AH effect arising intrinsically
from Berry curvature in the band structure. Ex-
trinsic mechanisms for AH, based on scattering
rather than band topology, cannot contribute to
the Hall resistance of an insulator (23), yet the
measured RAH

yx is largest at an apparent insulat-
ing state. Furthermore, our measurements yield
a Hall angle ryx/rxx up to 1.4, almost an order of
magnitude larger than any other reported AH
(38), apart from magnetic topological insulators
exhibiting a QAH effect (here, we convert our
measured resistances to resistivities, which we
approximate as spatially homogeneous). With
ryx ≲ 0:4h=e2 and rxx ≈ 0:3h=e2, the present de-
vice is not an ideal Chern insulator. Yet after early
magnetically doped topological insulators showed
comparable values (39–41), growth improvements
in those materials soon yielded QAH (24–26). If
the present device is a nascent Chern insulator,
the largest measured RAH

yx ≈ h=2:5e2 limits the
possible Chern number to C = 1 or 2.
In combination with nonlocal transport that

appears incompatible with homogeneous bulk
conduction, the sheer magnitudes of the Hall
and longitudinal resistances suggest a picture
of chiral edge modes in combination with a
poorly conducting bulk or a network of magnetic
domain walls resulting from inhomogeneity [see
(17) for additional discussion]. These possibilities
can be directly explored in future experiments
using spatially resolved magnetometry to search
for domains and transport in a Corbino geome-
try to measure bulk conduction independent of
chiral edgemodes if domainwalls can be removed.
Achieving a Chern insulator state by definition

requires opening a topologically nontrivial gap.
The low-energy flat minibands in magic-angle
TBG are empirically isolated from higher order
bands (4), which is expected when taking into
account mutual relaxation of the two layers’ lat-
tices (3). The low energy conduction and valence
minibands have been variously predicted tomeet
at Dirac points at the CNP, whichmay (42, 43) or
may not (44, 45) be symmetry protected. The ro-
tational alignment of the TBG to one of the hBN
cladding layers in our device could thus be key to
the observed AH effect: the associated periodic
moiré potential should, on average, break A-B
sublattice symmetry, opening or enhancing a
gap at the mini-Dirac points. A gap associated
with such symmetry breaking has been seen
(19, 46, 47) and explained (48–50) in heterostruc-
tures of monolayer or Bernal-stacked bilayer
graphene aligned with hBN. At 3 4= filling of the
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Fig. 3. Nonlocal resistances providing
evidence of chiral edge states. (A and B) Three-
and four-terminal nonlocal resistances R54,14

(A) and R54,12 (B), measured at 2.1 K with
D/D0 = −0.22 V/nm on upward and downward
sweeps of the magnetic field (solid and dashed
traces, respectively). For n/ns = 0.725 (blue)
away from the peak in AH resistance RAH

yx , the
nonlocal resistances are consistent with diffusive
bulk transport. However, with n/ns = 0.749 (red)
in the magnetic regime where RAH

yx is maximal,
large, hysteretic nonlocal resistances suggest
chiral edge states are present. (Insets) Sche-
matics of the respective measurement configu-
rations. Green arrows in the upper inset represent
the apparent edge state chirality for positive
magnetization, whereas in the lower inset they
reflect negative magnetization.

dc
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Fig. 4. Current-driven switching of the magne-
tization. Differential Hall resistance dVyx/dI
measured with a 5 nA ac bias as a function of an
applied dc bias Idc at 2.1 K with D/D0 = −0.22 V/nm
and n/ns = 0.749. After magnetizing the sample
in a −500 mT field and returning to B = 0, Idc was
swept from 0 to −75 nA (black trace), resulting
in dVyx/dI changing sign. Two successive loops
in Idc between ±75 nA demonstrate reversible
and repeatable switching of the differential
Hall resistance (red and blue, with solid and
dashed traces corresponding to opposite sweep
directions). Note that dVyx/dI is plotted against
−Idc for better comparison with magnetic field
hysteresis loops.
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How does the current couple?

B
�E = �B ·M
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For magnetic fields it is simple



Quantized regime

• no dissipation, only edge state transport

• Charge of each edge is separately conserved

✤Can view current-carrying state as quasi-equilibrium ensemble 
where current determines edge occupation

Can formulate F(I,M)

⇢xx ⌧ ⇢xy
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A schematic of the mechanism of domain selection is shown in Fig. S17. For simplicity of illustration we assume one edge is1

much “sharper” than the other, which means that its dispersion is much steeper than the other “smooth” edge. The sharp edge2

with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport because electrons move faster on this edge. This3

allows us to draw a picture of the dispersion just near one edge. In the figure, the edge dispersion is shown in black for one sign of4

the magnetization/Hall conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal5

copies, so are reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and6

down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for M < 0. Focus7

on the positive current case I > 0. We seek to find the energy difference for fixed current but opposite domains. Consider first8

the M > 0 domain. The positive current raises the Fermi level, populating additional states. The total energy of those states is9

the integral over the domain of added states of the single particle energy of those states: this defines the gray shaded area under10

the black dispersion curve and above the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the11

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area12

above the blue curve and below the k axis for k > 0, ✏ < 0 is the energy cost for creating these hole states. One can see that the13

blue area is not equal to the gray area, and that the inequality is due to the curvature of the dispersion. The difference in the two14

areas is the energy difference the two domains due to the non-equilibrium current.15

M > 0M < 0

k

✏

FIG. S17. Schematic illustration of an asymmetric “fast” edge and the population changes at this edge due to a current I > 0 for positive and
negative domains, shown in black and blue. The dashed lines show the Fermi energy for the two cases in the presence of the current. The
difference of the two shaded areas is the energy difference between the two domains due to the current (see text).

Estimates of effect magnitude in tBLG16

To make an estimate of the magnitude of these effects, we use the same “fast edge” approximation to simplify to a single17

velocity and mass parameter. Then the cubic term in the free energy is18

F ⇠ (2⇡)3

3⇡

~2sign(v)
me3v3

LI3. (S10)

Here we restored the dependence on ~. The contribution the current to the free energy is enhanced by decreases in the edge19

mass and velocity, which are determined by non-universal edge physics. The free energy is particularly sensitive to v and I , since20

both appear cubed, which renders making precise estimates difficult. Nonetheless, to show consistency, we take v = 5⇥104 m/s21

(a typical literature value for magic angle tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which22

is the order of the switching currents at low temperature (since the theory has been carried at T = 0). This gives an energy23

F = 4.0 meV, which is similar to the magnetostatic energy assuming an orbital moment per electron of a few Bohr magnetons.24

Uncertainties in the edge properties as well as thermal renormalizations not taken into account here make it hard to make a more25

quantitative comparison at present. These are interesting subjects for future work.26

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH device with gate defined edges. In such a27

device, one could systematically vary the sharpness and symmetry of the edge potential to probe which effects are most relevant28

to critical switching currents.29

�F ⇠ ~2
me3v3

LI3
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Current Driven Magnetization Reversal in Orbital Chern Insulators

Chunli Huang, Nemin Wei, and Allan H. MacDonald
Department of Physics, University of Texas at Austin, Austin TX 78712

(Dated: September 22, 2020)

Graphene multilayers with flat moiré minibands can exhibit the quantized anomalous Hall e↵ect
due to the combined influence of spontaneous valley polarization and topologically non-trival valley-
projected bands. The sign of the Hall e↵ect in these Chern insulators can be reversed either by
applying an external magnetic field, or by driving a transport current through the system. We
propose a current-driven mechanism whereby reversal occurs along lines in the (current I, magnetic-
field B) control parameter space with slope dI/dB = (e/h)MAM (1 � �2)/�, where M is the
magnetization, AM is the moiré unit cell area, and � < 1 is the ratio of the chemical potential
di↵erence between valleys along a domain wall to the electrical bias eV .

Introduction:— Magnetism in solid state system is pro-
duced by both spin and orbital electronic angular mo-
mentum, but the two constituents normally have a decid-
edly asymmetric relationship in which spins order spon-
taneously and orbital magnetism is induced parasitically
by spin-orbit interactions. Current control of ordered
spins is now routine in spintronics [1–4]. The recent dis-
covery [5, 6] of spontaneous orbital order manifested by
a quantum anomalous Hall e↵ect in graphene moiré su-
perlattice systems, and of current driven magnetization
reversal in those systems, is the first demonstration of,
an influence of a transport current on orbital magnetism.
In this Letter we propose an experimentally testable ex-
planation for this e↵ect.

The quantum anomalous Hall e↵ect, a property of in-
sulators whose occupied bands carry a net Chern number,
is common in graphene moiré superlattice systems [5–9]
when the minibands are flat and the moiré band filling
factor ⌫ = neAM is close to an odd integer. (Here ne is
the carrier density and AM is the moiré unit cell area.)
In magic angle twisted bilayer graphene [10] (MATBG),
for example, the intriguing family of strongly correlated
states in the �4 < ⌫ < 4 flat-band regime includes super-
conductors and Mott insulators[11–14], and also a Chern
insulator state with a Hall resistance close [5, 6] to the
von Klitzing constant. The quantized Hall conductance
appears at ⌫ = 3 when the graphene bilayer is aligned
with an adjacent hexagonal boron nitride layer, but un-
like the case of magnetized topological insulators [15–
17], cannot be a consequence of spin-order plus spin-
orbit coupling since the latter is negligible in pristine
graphene. The Chern insulator is instead thought to
be a combined consequence of the non-trivial topology
of moiré minibands in graphene multilayers [18–26] and
momentum-space condensation [27–29] in the form of
spontaneous valley polarization. Indeed, Hartree-Fock
calculations [25, 30] predict that odd integer ⌫ insula-
tors in graphene multilayers are very often Chern insu-
lators. We refer to these states as orbital Chern insula-
tors (OCIs) although they break time reversal symmetry
in both spin and orbital degrees of freedom, because the
main observable - the anomalous Hall e↵ect - is of orbital

origin, and because spin-order cannot be maintained at
finite temperature when spin-orbit interactions are neg-
ligible. We therefore drop the spin-degree of freedom
from the following discussion. The properties of OCIs
are quite distinct[31] from those of spin Chern insulators
[17]. From a statistical physics point of view, an OCI is
an Ising ferromagnet in which the total Chern number of
the occupied bands C± = ±C can be viewed as an order
parameter.

Experiments have shown that the Hall conductance of
an OCI can be switched between +Ce2/h and �Ce2/h,
signaling a complete reversal of orbital magnetization
[5, 6], by applying either an external magnetic field
B and/or an electrical bias voltage V . The magneti-
zation reversal mechanisms in conventional spin ferro-
magnets are relatively well established [32–34], and in-
volve a combination of Stoner-Wohlfarth single domain
switching and domain-wall depinning, driven by a com-
bination of spin-transfer torques, spin-orbit torques, and
magnetic fields. Consensus has however not yet been
reached on the microscopics of orbital-magnetization re-
versal, although some interesting proposals have been
put forward [6, 35, 36]. Here we analyze the case of
current driven reversal in an OCI with a bulk that is
perfectly insulating so that gapless charge excitations
are present only at the sample edge and along domain
walls. We find that both magnetic fields B and trans-
port bias voltages V apply pressure to domain walls and
predict that switching occurs along a line in the (current
I, magnetic-field B) control parameter space with slope
dI/dB = (e/h)MAM (1��2)/�, where M is the magne-
tization, AM is the moiré unit cell area, and � < 1 is the
ratio of the chemical potential di↵erence between valleys
along a domain wall to the electrical bias voltage. In the
following we first argue that moiré superlattice OCIs are
described by an O(3) field theory in which the vector or-
der parameter characterizes the local valley polarization
direction. This property allows domain pinning to be
analyzed using conventional Landau-Lifshitz equations.

Valley-pseudospins in MATBG:— The valley-
projected ⇡-bands of twisted bilayer graphene are
described by a low-energy continuum model [10] in
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Can current induce M?
Liouville theorem: semi-classical dynamics preserves phase 
space volume: Valley polarization is not induced by 
equations of motion

4

FIG. 3. Impurity scattering between two Fermi pockets.

III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:

@tf
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(s)
k + eE · @kf
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k =
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The integration in the collision integral is defined as

d�0 = d2k0

(2⇡)2 . Both the intra-valley scattering, W
(++)
kk0

and W
(��)
kk0 , as well as the inter-valley ones, W

(�+)
kk0

and W
(+�)
kk0 , are included. TRS requires that W

(++)
kk0 =

W
(��)
k0k and W

(�+)
kk0 = W

(+�)
k0k . Here, the detailed balance

is assumed, which follows from the first Born approxima-
tion.
We look for the static solution of the SBE, Eq. (7),

within the linear response. The distribution functions
can be conveniently parameterized by the harmonic co-
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where f0 is the equilibrium Fermi distribution function,
the angle ✓k for s = ± valleys are defined as shown in
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where ⌫ is the density of states at the Fermi level. Notice
that the simplification to the second line of Eq. (9) is a
result of the assumed circular Fermi pockets, see Fig. 3.

Before presenting the solution of the Boltzmann equa-
tion, we point out that the inter-valley scattering plays a
central role here. Namely, to obtain nonzero valley den-

sity di↵erence, �n0, the inter-valley scattering rate needs
careful analysis. In particular, a constant inter-valley
scattering rate cannot generate a nonzero valley density
di↵erence in the static limit. To see this point, one can in-
tegrate the SBE, Eq. (7), over the full Brillouin zone. The
result is the continuity equation for the valley densities:
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III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:
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where ⌫ is the density of states at the Fermi level. Notice
that the simplification to the second line of Eq. (9) is a
result of the assumed circular Fermi pockets, see Fig. 3.

Before presenting the solution of the Boltzmann equa-
tion, we point out that the inter-valley scattering plays a
central role here. Namely, to obtain nonzero valley den-

sity di↵erence, �n0, the inter-valley scattering rate needs
careful analysis. In particular, a constant inter-valley
scattering rate cannot generate a nonzero valley density
di↵erence in the static limit. To see this point, one can in-
tegrate the SBE, Eq. (7), over the full Brillouin zone. The
result is the continuity equation for the valley densities:
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which explicitly breaks the rotational symmetry. The

dimensionless parameters a(0)1 and b
(0)
1 are closely related

to the mechanisms of breaking rotational symmetry.
For demonstration purpose, we make two additional

simplifications. First, we assume the intra-valley scatter-
ing is constant,
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kk0 = W
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1

⌫⌧
, (11)

where ⌫ and ⌧ are the density of states and the intra-
valley scattering time, respectively. Second, the Fermi
surfaces are assumed to be circular. Indeed, given the
inter-valley scattering rate in Eq. (10), the detailed form
of the intra-valley scattering and the Fermi surface geom-
etry are expected to play a secondary role on the genera-
tion of valley polarization. They will not a↵ect whether
a valley density di↵erence can be generated by external
bias or not. They only a↵ect the magnitude of the valley
density di↵erence. Thus, for simplicity and demonstra-
tion purpose, we assume a constant intra-valley scatter-
ing rate and circular Fermi surface.

The solution to Eq. (7) is physically intuitive in the
limit that the intra-valley scattering time (⌧) is much
shorter than the inter-valley one (⌧ 0).

At the leading order in ⌧/⌧
0, the static solution satisfies

the SBE with only the intra-valley scattering,
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where ⌧ is the intra-valley scattering time, vF is the Fermi

velocity defined from v(s)
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that without inter-valley scattering, there is no constraint
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valley should be conserved separately.
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(14)

This equation states a balance between the inter-valley
relaxation process (the first two terms) and a “source”
(the last term in parentheses) that generates the valley
density di↵erence. The “source” originates from the in-
terplay between the nonequilibrium distribution function
from Eq. (13) and the rotation symmetry breaking inter-
valley scattering rate, Eq. (10).

FIG. 4. The valley density di↵erence, �n0, as a function of
the ratio of the inter- and intra valley scattering time, ⌧ 0/⌧ .
The density is normalized to the value of Eq. (15).

Solving Eq. (14), we found that the valley density dif-
ference �n0 is given by:
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or equivalently expressed in terms of the current density
j = �E:
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Notice the bulk longitudinal conductivity � is related to
the intra-valley scattering rate ⌧ through � = 2 e2

h h⌫D,
where D = 1

2v
2
F⌧ is the two dimensional di↵usion con-

stant and the prefactor of 2 accounts for the two valleys.
The simplified model presented in this subsection can

be solved exactly. The valley density di↵erence at a gen-
eral ratio of inter- and intra-valley scattering time, ⌧ 0/⌧ ,
is shown in Fig. 4. Indeed, when the inter-valley scat-
tering time is much longer than the intra-valley one, the
valley density di↵erence saturates to a value given by
Eq. (15). On the other hand, �n0 decreases with de-
creasing inter-valley scattering time. �n0 vanishes when
the inter-valley relaxation time ⌧

0 goes to zero.
As has been emphasized, the inter-valley scattering is

essential to have the current induced valley density dif-
ference, because it is the channel to exchange electrons
between the two valleys. Without inter-valley scattering,
the electron density within each valley is exactly con-
served.
The valley density di↵erence in Eq. (15) is determined

by the first harmonic of the inter-valley scattering rate,
which explicitly breaks the discrete rotation symmetry
of the system to C1z. In the next section, we determine
the coe�cients a1, a01, b1, b

0
1 in Eq. (10) from microscopic

modeling of h-BN aligned TBG with C1z symmetry.
Lastly, the valley density di↵erence is proportional to

the current, Eq. (15), as we restricted ourselves to the
linear response. By reversing the current direction, the
valley density di↵erence is also reversed. So is the valley
polarization, see Eq. (5). Therefore, we conclude that
with the broken rotational symmetry, the valley polar-
ization can be controlled by a DC current.

5

valley scattering rate given by:

W
(�+)
kk0 = W

(+�)
k0k =

1

⌫⌧ 0
(1 + a1 cos ✓k + b1 sin ✓k

+a
0
1 cos ✓k0 + b

0
1 sin ✓k0)

(10)

which explicitly breaks the rotational symmetry. The

dimensionless parameters a(0)1 and b
(0)
1 are closely related

to the mechanisms of breaking rotational symmetry.
For demonstration purpose, we make two additional

simplifications. First, we assume the intra-valley scatter-
ing is constant,

W
(++)
kk0 = W

(��)
kk0 =

1

⌫⌧
, (11)

where ⌫ and ⌧ are the density of states and the intra-
valley scattering time, respectively. Second, the Fermi
surfaces are assumed to be circular. Indeed, given the
inter-valley scattering rate in Eq. (10), the detailed form
of the intra-valley scattering and the Fermi surface geom-
etry are expected to play a secondary role on the genera-
tion of valley polarization. They will not a↵ect whether
a valley density di↵erence can be generated by external
bias or not. They only a↵ect the magnitude of the valley
density di↵erence. Thus, for simplicity and demonstra-
tion purpose, we assume a constant intra-valley scatter-
ing rate and circular Fermi surface.

The solution to Eq. (7) is physically intuitive in the
limit that the intra-valley scattering time (⌧) is much
shorter than the inter-valley one (⌧ 0).

At the leading order in ⌧/⌧
0, the static solution satisfies

the SBE with only the intra-valley scattering,

eE · v(s)
k

@f0

@✏
= I

(s)
intra[fk]. (12)

The harmonic expansion coe�cients of the distribution
function are

(
x
(s)
i = 0 y

(s)
i = 0 if i 6= 0, 1

x
(s)
1 = s eExvF⌧ y

(s)
1 = s eEyvF⌧

, (13)

where ⌧ is the intra-valley scattering time, vF is the Fermi

velocity defined from v(s)
kF

= s vF(cos ✓k, sin ✓k). Note
that without inter-valley scattering, there is no constraint

on x
(s)
0 from the SBE because the number density of each

valley should be conserved separately.
On the other hand, the static valley density di↵erence

can be determined by solving 0 = I
(s)
inter[fk]:

0 = x
(+)
0 � x

(�)
0 +

1

2

⇣
a
0
1x

(+)
1 + b

0
1y

(+)
1 � a1x

(�)
1 � b1y

(�)
1

⌘
.

(14)

This equation states a balance between the inter-valley
relaxation process (the first two terms) and a “source”
(the last term in parentheses) that generates the valley
density di↵erence. The “source” originates from the in-
terplay between the nonequilibrium distribution function
from Eq. (13) and the rotation symmetry breaking inter-
valley scattering rate, Eq. (10).

FIG. 4. The valley density di↵erence, �n0, as a function of
the ratio of the inter- and intra valley scattering time, ⌧ 0/⌧ .
The density is normalized to the value of Eq. (15).

Solving Eq. (14), we found that the valley density dif-
ference �n0 is given by:

�n0 = n
(+)

� n
(�) = 1

2⌫vF⌧ [eEx (a1 + a
0
1) + eEy (b1 + b

0
1)]

or equivalently expressed in terms of the current density
j = �E:

�n0 =
1

2hvF

h

e2
[ejx (a1 + a

0
1) + ejy (b1 + b

0
1)] (15)

Notice the bulk longitudinal conductivity � is related to
the intra-valley scattering rate ⌧ through � = 2 e2

h h⌫D,
where D = 1

2v
2
F⌧ is the two dimensional di↵usion con-

stant and the prefactor of 2 accounts for the two valleys.
The simplified model presented in this subsection can

be solved exactly. The valley density di↵erence at a gen-
eral ratio of inter- and intra-valley scattering time, ⌧ 0/⌧ ,
is shown in Fig. 4. Indeed, when the inter-valley scat-
tering time is much longer than the intra-valley one, the
valley density di↵erence saturates to a value given by
Eq. (15). On the other hand, �n0 decreases with de-
creasing inter-valley scattering time. �n0 vanishes when
the inter-valley relaxation time ⌧

0 goes to zero.
As has been emphasized, the inter-valley scattering is

essential to have the current induced valley density dif-
ference, because it is the channel to exchange electrons
between the two valleys. Without inter-valley scattering,
the electron density within each valley is exactly con-
served.
The valley density di↵erence in Eq. (15) is determined

by the first harmonic of the inter-valley scattering rate,
which explicitly breaks the discrete rotation symmetry
of the system to C1z. In the next section, we determine
the coe�cients a1, a01, b1, b

0
1 in Eq. (10) from microscopic

modeling of h-BN aligned TBG with C1z symmetry.
Lastly, the valley density di↵erence is proportional to

the current, Eq. (15), as we restricted ourselves to the
linear response. By reversing the current direction, the
valley density di↵erence is also reversed. So is the valley
polarization, see Eq. (5). Therefore, we conclude that
with the broken rotational symmetry, the valley polar-
ization can be controlled by a DC current.

5

valley scattering rate given by:

W
(�+)
kk0 = W

(+�)
k0k =

1

⌫⌧ 0
(1 + a1 cos ✓k + b1 sin ✓k

+a
0
1 cos ✓k0 + b

0
1 sin ✓k0)

(10)

which explicitly breaks the rotational symmetry. The

dimensionless parameters a(0)1 and b
(0)
1 are closely related

to the mechanisms of breaking rotational symmetry.
For demonstration purpose, we make two additional

simplifications. First, we assume the intra-valley scatter-
ing is constant,

W
(++)
kk0 = W

(��)
kk0 =

1

⌫⌧
, (11)

where ⌫ and ⌧ are the density of states and the intra-
valley scattering time, respectively. Second, the Fermi
surfaces are assumed to be circular. Indeed, given the
inter-valley scattering rate in Eq. (10), the detailed form
of the intra-valley scattering and the Fermi surface geom-
etry are expected to play a secondary role on the genera-
tion of valley polarization. They will not a↵ect whether
a valley density di↵erence can be generated by external
bias or not. They only a↵ect the magnitude of the valley
density di↵erence. Thus, for simplicity and demonstra-
tion purpose, we assume a constant intra-valley scatter-
ing rate and circular Fermi surface.

The solution to Eq. (7) is physically intuitive in the
limit that the intra-valley scattering time (⌧) is much
shorter than the inter-valley one (⌧ 0).

At the leading order in ⌧/⌧
0, the static solution satisfies

the SBE with only the intra-valley scattering,

eE · v(s)
k

@f0

@✏
= I

(s)
intra[fk]. (12)

The harmonic expansion coe�cients of the distribution
function are

(
x
(s)
i = 0 y

(s)
i = 0 if i 6= 0, 1

x
(s)
1 = s eExvF⌧ y

(s)
1 = s eEyvF⌧

, (13)

where ⌧ is the intra-valley scattering time, vF is the Fermi

velocity defined from v(s)
kF

= s vF(cos ✓k, sin ✓k). Note
that without inter-valley scattering, there is no constraint

on x
(s)
0 from the SBE because the number density of each

valley should be conserved separately.
On the other hand, the static valley density di↵erence

can be determined by solving 0 = I
(s)
inter[fk]:

0 = x
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(�)
0 +

1

2

⇣
a
0
1x

(+)
1 + b

0
1y

(+)
1 � a1x

(�)
1 � b1y

(�)
1

⌘
.

(14)

This equation states a balance between the inter-valley
relaxation process (the first two terms) and a “source”
(the last term in parentheses) that generates the valley
density di↵erence. The “source” originates from the in-
terplay between the nonequilibrium distribution function
from Eq. (13) and the rotation symmetry breaking inter-
valley scattering rate, Eq. (10).

FIG. 4. The valley density di↵erence, �n0, as a function of
the ratio of the inter- and intra valley scattering time, ⌧ 0/⌧ .
The density is normalized to the value of Eq. (15).

Solving Eq. (14), we found that the valley density dif-
ference �n0 is given by:

�n0 = n
(+)

� n
(�) = 1

2⌫vF⌧ [eEx (a1 + a
0
1) + eEy (b1 + b

0
1)]

or equivalently expressed in terms of the current density
j = �E:

�n0 =
1

2hvF

h

e2
[ejx (a1 + a

0
1) + ejy (b1 + b

0
1)] (15)

Notice the bulk longitudinal conductivity � is related to
the intra-valley scattering rate ⌧ through � = 2 e2

h h⌫D,
where D = 1

2v
2
F⌧ is the two dimensional di↵usion con-

stant and the prefactor of 2 accounts for the two valleys.
The simplified model presented in this subsection can

be solved exactly. The valley density di↵erence at a gen-
eral ratio of inter- and intra-valley scattering time, ⌧ 0/⌧ ,
is shown in Fig. 4. Indeed, when the inter-valley scat-
tering time is much longer than the intra-valley one, the
valley density di↵erence saturates to a value given by
Eq. (15). On the other hand, �n0 decreases with de-
creasing inter-valley scattering time. �n0 vanishes when
the inter-valley relaxation time ⌧

0 goes to zero.
As has been emphasized, the inter-valley scattering is

essential to have the current induced valley density dif-
ference, because it is the channel to exchange electrons
between the two valleys. Without inter-valley scattering,
the electron density within each valley is exactly con-
served.
The valley density di↵erence in Eq. (15) is determined

by the first harmonic of the inter-valley scattering rate,
which explicitly breaks the discrete rotation symmetry
of the system to C1z. In the next section, we determine
the coe�cients a1, a01, b1, b

0
1 in Eq. (10) from microscopic

modeling of h-BN aligned TBG with C1z symmetry.
Lastly, the valley density di↵erence is proportional to

the current, Eq. (15), as we restricted ourselves to the
linear response. By reversing the current direction, the
valley density di↵erence is also reversed. So is the valley
polarization, see Eq. (5). Therefore, we conclude that
with the broken rotational symmetry, the valley polar-
ization can be controlled by a DC current.
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/ ⌧

⌧ 0

e.g.

anisotropic scattering between 
valleys can induce polarization

local k-space shift induces valley population shift through scattering



Result
Very rough estimates

This is the “bare” response just from quasiparticle physics.  Should 
be included in a TDGL-like formulation as a force, to take into 
account both quasiparticle physics and interactions.

This gives
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↵4�
3 + (r � rc)� = ↵0�n0

describes hysteresis etc.
Quantitative estimates consistent with the observed effect
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FIG. 6. The valley density di↵erence generated by a DC cur-
rent in TBG under strain field. The density is normalized

to 3t2/4
1+3t2/4

1
hvF

h
e2
ej. The dotted line are obtained from the

numerical calculation. The dashed lines correspond to the
analytical expression of Eq. (19) for comparison. The param-
eters are chosen as ✓w = 1.03�, � = 17.20�, q/m = 0.1 and
k/m = 0.005.

As discussed in the previous subsection, the intra-
valley scattering only plays a secondary role in the gener-
ation of valley density di↵erence under a bias DC current.
Hence, we assume the intra-valley scattering is domi-
nated by the scattering within each Fermi pocket with
a constant relaxation time, ⌧ .

Meanwhile, the inter-valley scattering requires more
careful examination to obtain the coe�cients a1, a01, b1, b

0
1

in Eq. (10). There are several processes as shown in
Fig. 5. With a simple on-site disorder, it turns out
that the scattering between the two valleys in the same
graphene layer does not break C3z and generate non-
zero a1, a

0
1, b1, b

0
1 since we neglected the anisotropy of the

Dirac spectrum. Thus, the scattering rates between the
two valleys of the same graphene layer are taken to be
constant, (⌫⌧ 0)�1, as indicated by the green arrows in
Fig. 5. At the same time, the scattering rates between the
two valleys in di↵erent layers may break rotation symme-
try through the process as indicated by the red arrows
in Fig. 5. It is directly related to the shift of the Dirac
points due to strain as well as the coherent inter-layer
tunneling. As in Fig. 5, the scattering rates of such pro-
cesses are parameterized by ⇠ (⌫⌧ 0)�1

t
2, where t is a

dimensionless perturbation parameter for the inter-layer
tunneling, Eq. (B13).

After fitting the scattering rates into the semi-classical
Boltzmann equation introduced in the previous subsec-
tion, we obtain the valley density di↵erence generated by
DC current. The main result is summarized in Fig. 6,
where without loss of generality, only one graphene layer
is strained (see Appendix B for more details of the cal-
culation).

When the strain strength is zero, C3z is restored and
the valley density di↵erence is identically zero. For
nonzero strain strength, the valley density di↵erence start

to develop non-vanishing value as expected from the
breaking of C3 symmetry. At small strain strength, the
valley density di↵erence is linear in the strain strength:

�n0 = 6(1 + ⌫✏)
k

m

✏

✓w
sin (2�+ ✓j) (19)

in unit of 3t2/4
1+3t2/4

1
hvF

h
e2 ej, where ✓j is the angle of the

current, � is the angle of uniaxial strain as defined in
Eq. (16). The small numerical value in Fig. 6 is a result of
the low doping assumption, where k/m is a small param-
eter. The result is further suppressed by the inter-layer
tunneling t

2, which is assumed to be small to introduce
the inter-layer tunneling perturbatively.
Even though our result, Fig. 6 and Eq. (19), was ob-

tained with a set of very specific assumptions (weak
inter-layer coupling and low doping level), some implica-
tions about the real samples can be made. In the actual
sample, there are several comparable scale: moire band
width, inter-layer coupling and the mass gap[13, 15].
Therefore, the dimensionless parameter t

2 is not small.
In addition, the phenomenon of current switching of val-
ley polarization is observed at three quarters of filling.
Thus, it is reasonable to expect that the small factor
of k/m in Eq. (19) is lifted and is on the order of O(1).
Therefore, we conclude that the actual valley density dif-
ference can be parameterized as:

�n0 /
✏

✓w

1

hvF

h

e2
ej (20)

with a numerical coe�cient on the order of O(1). Based
on the argument above, one may roughly estimate that
a small DC current (⇠ 10�3A/m) could generate a large
valley density di↵erence on the order of 1011m�2. This is
comparable to the e↵ect of magnetic field (⇠ ⌫µBB and
B ⇠ 10 mT with µB being the Bohr magneton)[1].

IV. SUMMARY AND DISCUSSION

In this work, we proposed a mechanism in the dissipa-
tive regime for DC current switching of valley polariza-
tion. First, the dynamics of valley polarization order pa-
rameter (VPOP) under a bias electric field near its Curie-
Weiss temperature Tc is obtained within the nonequilib-
rium Keldysh formalism. From the steady state solu-
tion of the VPOP, we point out that by sweeping the
DC current, and thus varying the current generated val-
ley density di↵erence, the VPOP undergoes a first order
phase transition. Consequently, the system observes a
hysteresis curve in the Hall conductance, which explains
the experimental finding in Refs. [1, 2]. The current gen-
erated valley density di↵erence takes the generic form of
Eq. (6) and we repeat here

�n0 '
1

evF
j · �✏. (21)

We solve the semi-classical Boltzmann equation, and
point out that a proper form of inter-valley scattering
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k/m = 0.005.

As discussed in the previous subsection, the intra-
valley scattering only plays a secondary role in the gener-
ation of valley density di↵erence under a bias DC current.
Hence, we assume the intra-valley scattering is domi-
nated by the scattering within each Fermi pocket with
a constant relaxation time, ⌧ .

Meanwhile, the inter-valley scattering requires more
careful examination to obtain the coe�cients a1, a01, b1, b

0
1

in Eq. (10). There are several processes as shown in
Fig. 5. With a simple on-site disorder, it turns out
that the scattering between the two valleys in the same
graphene layer does not break C3z and generate non-
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1 since we neglected the anisotropy of the

Dirac spectrum. Thus, the scattering rates between the
two valleys of the same graphene layer are taken to be
constant, (⌫⌧ 0)�1, as indicated by the green arrows in
Fig. 5. At the same time, the scattering rates between the
two valleys in di↵erent layers may break rotation symme-
try through the process as indicated by the red arrows
in Fig. 5. It is directly related to the shift of the Dirac
points due to strain as well as the coherent inter-layer
tunneling. As in Fig. 5, the scattering rates of such pro-
cesses are parameterized by ⇠ (⌫⌧ 0)�1
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2, where t is a

dimensionless perturbation parameter for the inter-layer
tunneling, Eq. (B13).

After fitting the scattering rates into the semi-classical
Boltzmann equation introduced in the previous subsec-
tion, we obtain the valley density di↵erence generated by
DC current. The main result is summarized in Fig. 6,
where without loss of generality, only one graphene layer
is strained (see Appendix B for more details of the cal-
culation).

When the strain strength is zero, C3z is restored and
the valley density di↵erence is identically zero. For
nonzero strain strength, the valley density di↵erence start

to develop non-vanishing value as expected from the
breaking of C3 symmetry. At small strain strength, the
valley density di↵erence is linear in the strain strength:
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current, � is the angle of uniaxial strain as defined in
Eq. (16). The small numerical value in Fig. 6 is a result of
the low doping assumption, where k/m is a small param-
eter. The result is further suppressed by the inter-layer
tunneling t

2, which is assumed to be small to introduce
the inter-layer tunneling perturbatively.
Even though our result, Fig. 6 and Eq. (19), was ob-

tained with a set of very specific assumptions (weak
inter-layer coupling and low doping level), some implica-
tions about the real samples can be made. In the actual
sample, there are several comparable scale: moire band
width, inter-layer coupling and the mass gap[13, 15].
Therefore, the dimensionless parameter t

2 is not small.
In addition, the phenomenon of current switching of val-
ley polarization is observed at three quarters of filling.
Thus, it is reasonable to expect that the small factor
of k/m in Eq. (19) is lifted and is on the order of O(1).
Therefore, we conclude that the actual valley density dif-
ference can be parameterized as:
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with a numerical coe�cient on the order of O(1). Based
on the argument above, one may roughly estimate that
a small DC current (⇠ 10�3A/m) could generate a large
valley density di↵erence on the order of 1011m�2. This is
comparable to the e↵ect of magnetic field (⇠ ⌫µBB and
B ⇠ 10 mT with µB being the Bohr magneton)[1].

IV. SUMMARY AND DISCUSSION

In this work, we proposed a mechanism in the dissipa-
tive regime for DC current switching of valley polariza-
tion. First, the dynamics of valley polarization order pa-
rameter (VPOP) under a bias electric field near its Curie-
Weiss temperature Tc is obtained within the nonequilib-
rium Keldysh formalism. From the steady state solu-
tion of the VPOP, we point out that by sweeping the
DC current, and thus varying the current generated val-
ley density di↵erence, the VPOP undergoes a first order
phase transition. Consequently, the system observes a
hysteresis curve in the Hall conductance, which explains
the experimental finding in Refs. [1, 2]. The current gen-
erated valley density di↵erence takes the generic form of
Eq. (6) and we repeat here
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We solve the semi-classical Boltzmann equation, and
point out that a proper form of inter-valley scattering
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