

Twisting spins and twisting layers

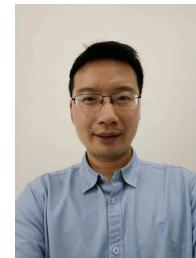
Leon Balents, KITP

College de France, June 10, 2022

Outline

- Twisting spins in Mn_3Sn with a magnetic field
- Multiple energy scales enable control of anomalous Hall effect

Kamran Behnia
ESPCI



Zengwei Zhu
Wuhan

Xiaokang Li
Wuhan

- Twisting layers of spins in 2d materials
- Twists control new spin textures

Kasra Hejazi
Caltech

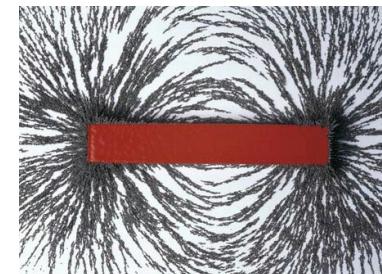
Zhu-Xi Luo
UCSB

Magnets

~500BC: Ferromagnetism
documented in Greece,
India, used in China

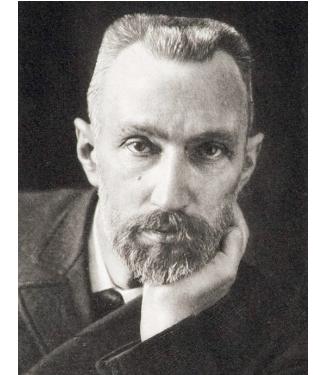
sinan, ~200BC

and in elementary school today



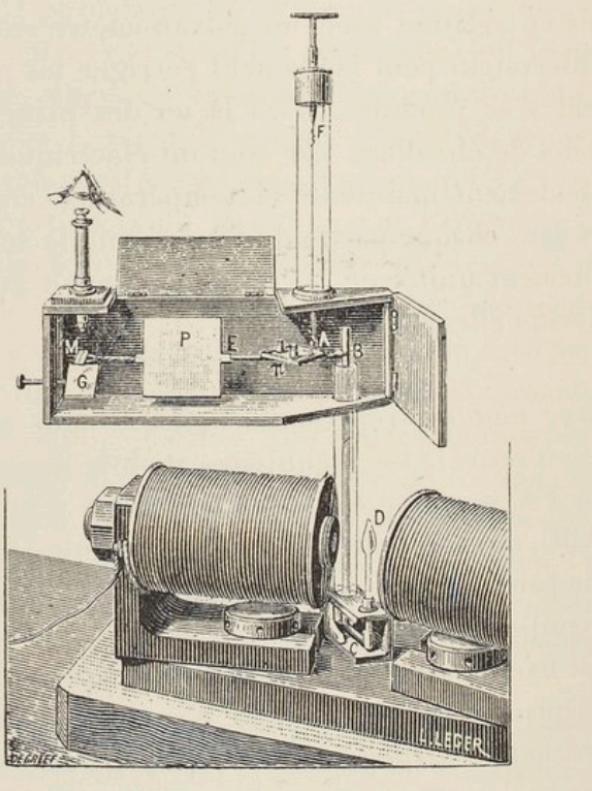
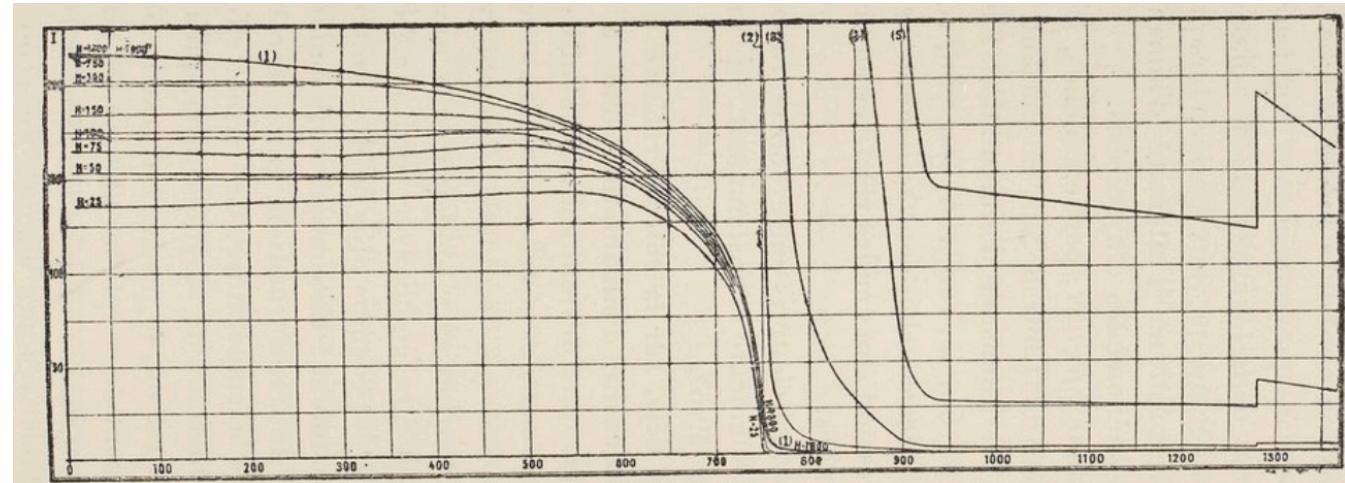
PROPRIÉTÉS MAGNÉTIQUES DES CORPS A DIVERSES TEMPÉRATURES.

Annales de Chimie et de Physique, 7^e série, t. V, 1895, p. 289.



Pierre Curie

Fig. 3.



ÉLÉMENTS
DE PHYSIQUE
EXPÉRIMENTALE
ET DE MÉTÉOROLOGIE
PAR
M. POUILLETT
MEMBRE DE L'INSTITUT (ACADEMIE DES SCIENCES)

205. Influence de la chaleur sur le magnétisme. — Nous avons déjà dit qu'un aimant artificiel ou naturel, chauffé jusqu'au rouge blanc, perd complètement son magnétisme, de telle sorte qu'il n'est plus, après le refroidissement, qu'un corps inerte, sans force directrice et sans force magnétique. Cette observation est fort ancienne; elle avait été faite par Gilbert.

Quelques analogies assez remarquables entre les distances des atomes des corps et leurs propriétés magnétiques m'avaient conduit à penser que la limite magnétique des différents corps devait se trouver à des températures très-différentes, et j'ai, en effet, démontré par l'expérience :

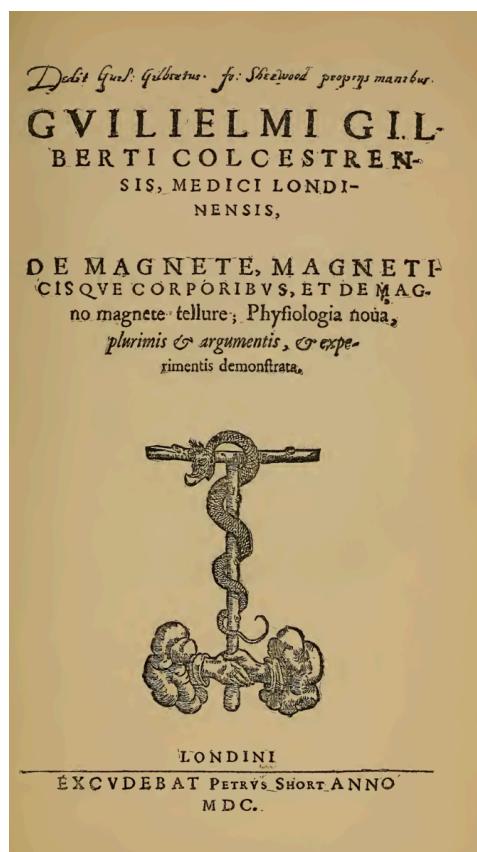
1^o Que le cobalt ne cesse jamais d'être magnétique, ou plutôt que sa limite magnétique est à une température plus haute que le rouge blanc le plus éclatant;

2^o Que le chrome a sa limite magnétique un peu au-dessus de la température rouge sombre;

3^o Que le nickel a sa limite magnétique vers 350°, à peu près à la température de la fusion du zinc;

4^o Enfin, que le manganèse a sa limite magnétique à la température de 20 à 25° au-dessus de 0°.

ÉLÉMENTS
DE PHYSIQUE
EXPÉRIMENTALE
ET DE MÉTÉOROLOGIE
PAR
M. POUILLETT
MEMBRE DE L'INSTITUT (ACADEMIE DES SCIENCES)



205. Influence de la chaleur sur le magnétisme. — Nous avons déjà dit qu'un aimant artificiel ou naturel, chauffé jusqu'au rouge blanc, perd complètement son magnétisme, de telle sorte qu'il n'est plus, après le refroidissement, qu'un corps inerte, sans force directrice et sans force magnétique. Cette observation est fort ancienne; elle avait été faite par Gilbert.

Quelques analogies assez remarquables entre les distances des atomes des corps et leurs propriétés magnétiques m'avaient conduit à penser que la limite magnétique des différents corps devait se trouver à des températures très-différentes, et j'ai, en effet, démontré par l'expérience :

1^o Que le cobalt ne cesse jamais d'être magnétique, ou plutôt que sa limite magnétique est à une température plus haute que le rouge blanc le plus éclatant;

2^o Que le chrome a sa limite magnétique un peu au-dessus de la température rouge sombre;

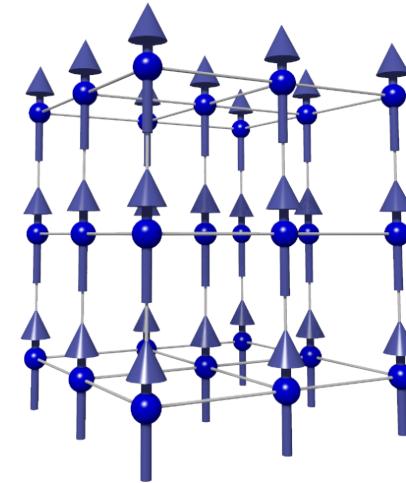
3^o Que le nickel a sa limite magnétique vers 350°, à peu près à la température de la fusion du zinc;

4^o Enfin, que le manganèse a sa limite magnétique à la température de 20 à 25° au-dessus de 0°.

Magnetism

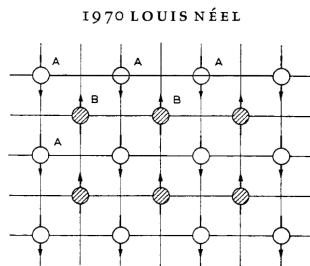
- Atomic spins interact via exchange to favor an ordered arrangement
- Aligned parallel: ferromagnets

$$H = -J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



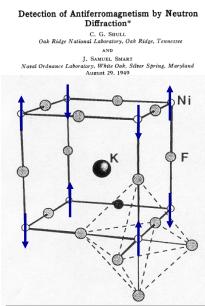
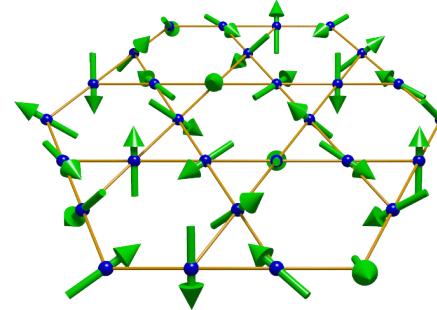
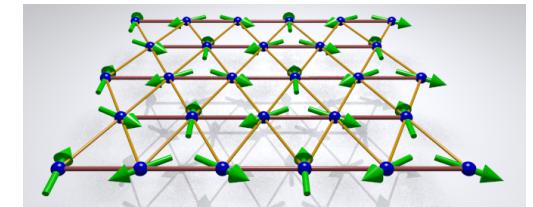
Magnetism

- Atomic spins interact via exchange to favor an ordered arrangement
- More complex arrangements: antiferromagnets



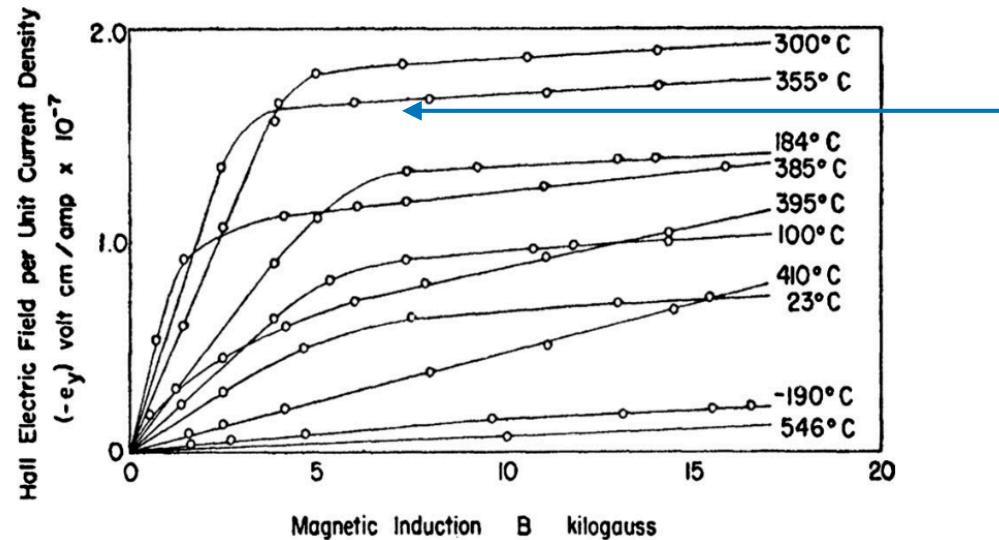
Louis Néel

1949AD:
antiferromagnetism
proven experimentally
but there are 1000s of
them, much more
common than FMs



AHE

“Anomalous” Hall effect: a field-independent contribution to the Hall effect due to magnetic order



$$\rho_H = R_H B + \rho_{AH}$$

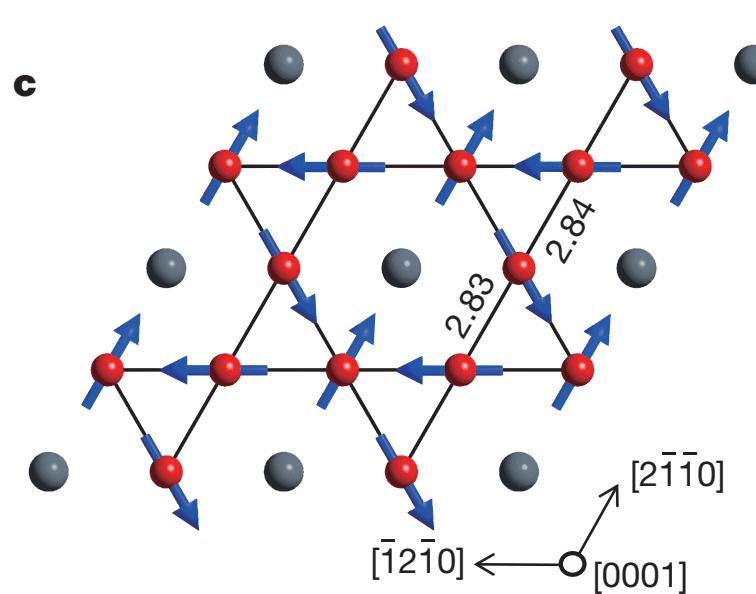
FIG. 1. The Hall effect in Ni (data from [Smith, 1910](#)). From [Pugh and Rostoker, 1953](#).

NICKEL.

La température de transformation magnétique du nickel est voisine de 340°; nous avons étudié ce corps entre 373° et 806°. Le coefficient d'aimantation est alors indépendant de l'intensité du champ. Il décroît régulièrement et très rapidement quand la température augmente. Le nickel était renfermé dans un tube de platine. Les résultats obtenus sont consignés dans le Tableau XV et figure 12.

Commonly seen in ferromagnets

Mn₃Sn



Spins arranged into
elementary triangles -
“kagomé”

large ordered
antiferromagnetic
moment
 $\sim 2 \mu_B / \text{Mn}$
tiny FM moment:
.002 μ_B / Mn

$T_N \sim 420 \text{K}$

Nagamiya *et al*, 1982

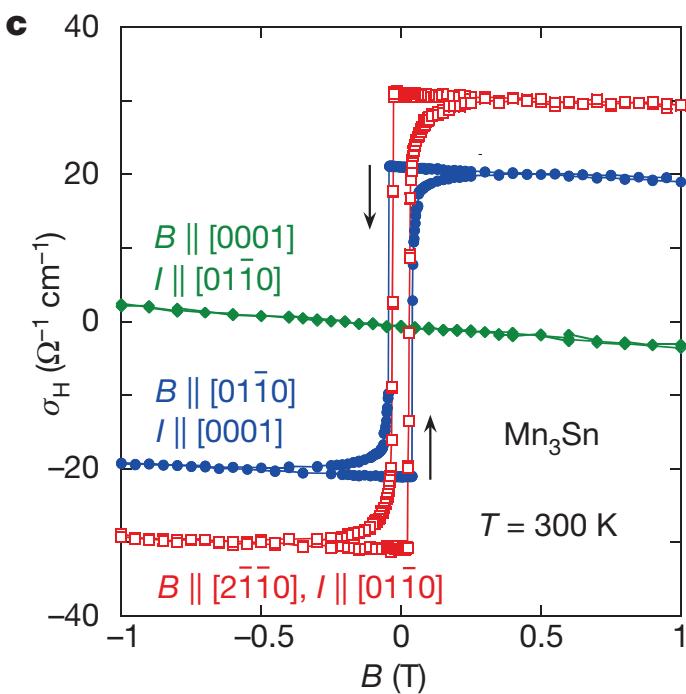
AHE

Mn₃Sn:

Large “anomalous” Hall conductivity

Tiny magnetization

Small coercive field

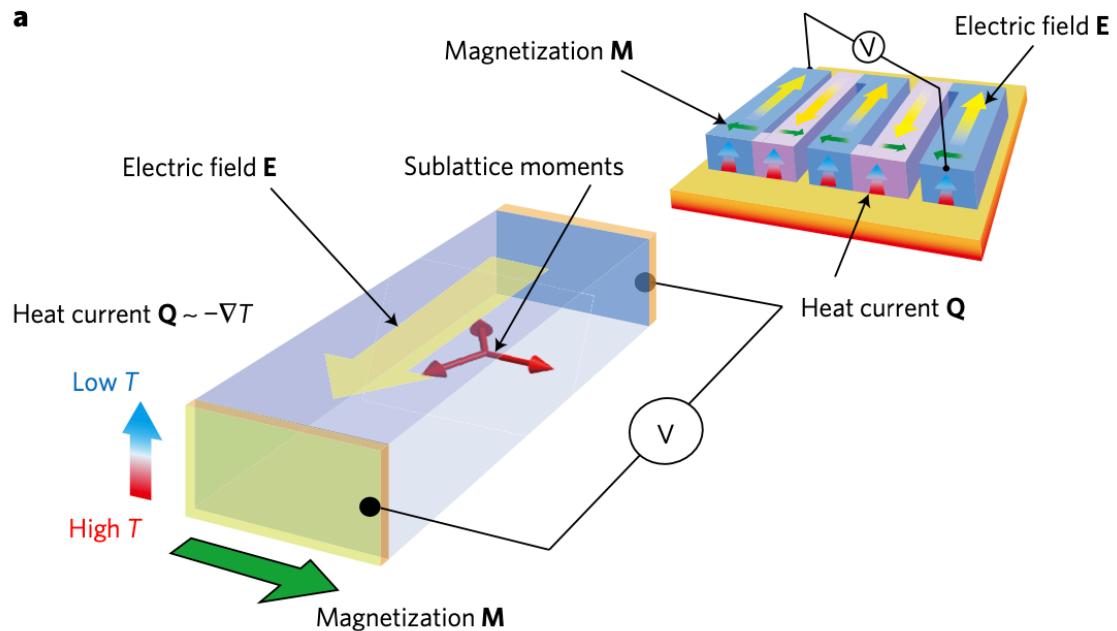


S. Nakatsuji *et al*, 2015

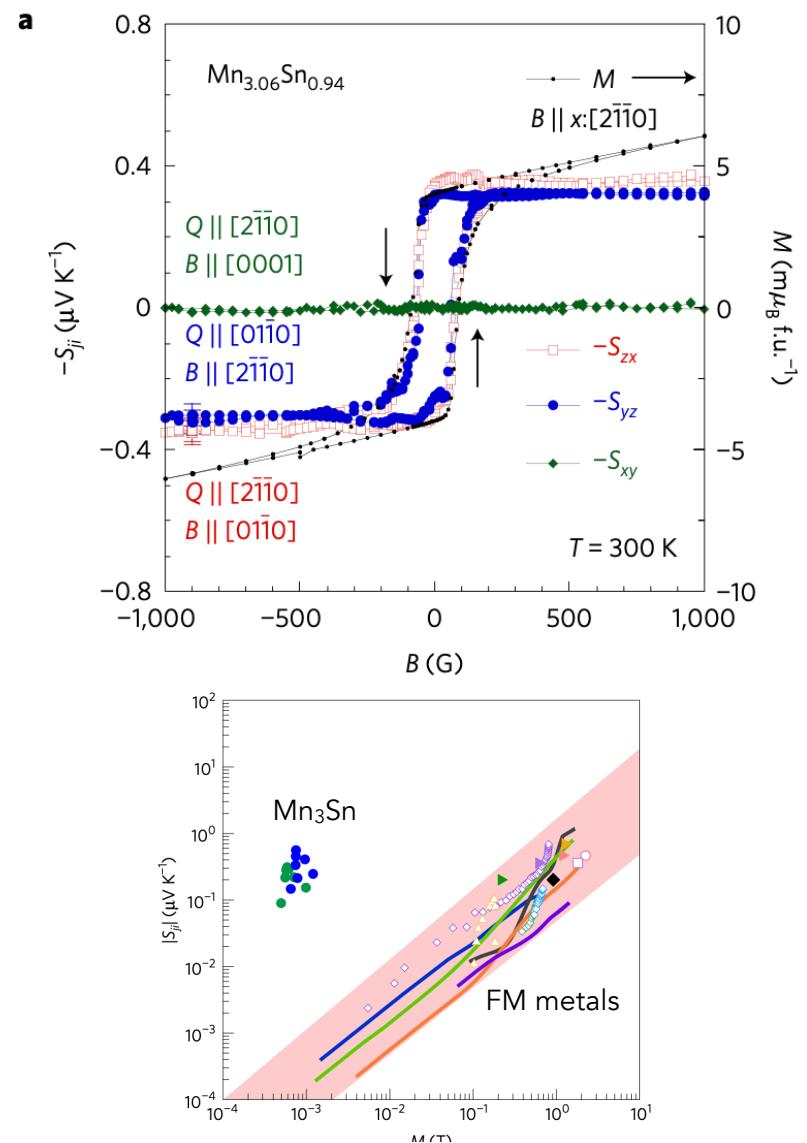
These properties are a desirable combination

Anomalous Nernst Effect

Related effect with potential
thermoelectric applications



Electric field perpendicular to
temperature gradient



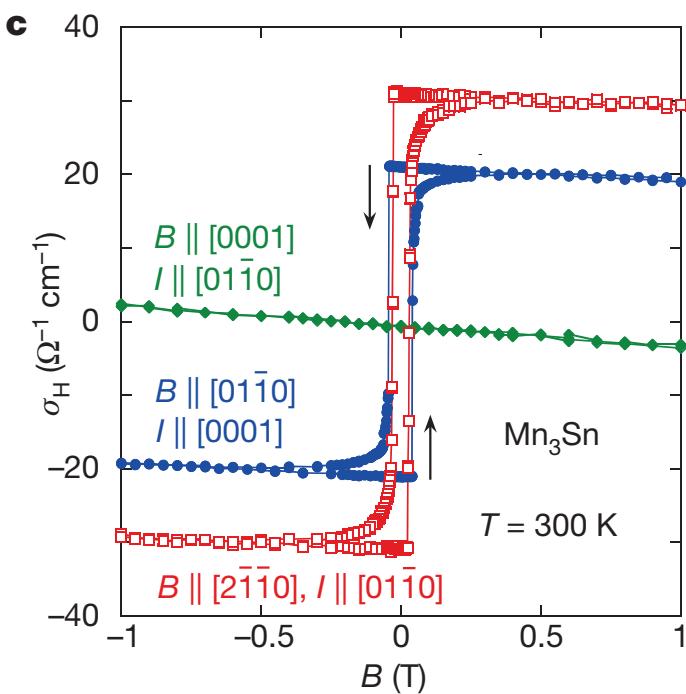
AHE

Mn₃Sn:

Large “anomalous” Hall conductivity

Tiny magnetization

Small coercive field



S. Nakatsuji *et al*, 2015

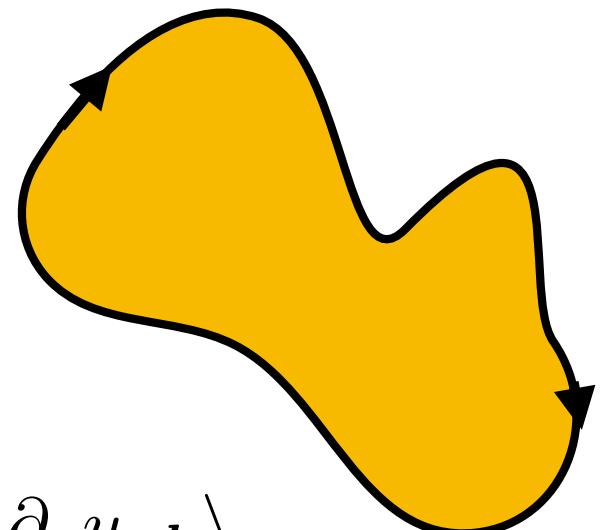
How do these properties go together???

Twisting wave functions

Intrinsic anomalous Hall effect from
Berry curvature:

$$\sigma_{\mu\nu}^{\text{AH}} = \frac{e^2}{\hbar} \epsilon_{\mu\nu\lambda} \Omega_\lambda$$

$$\Omega_\lambda = \epsilon_{\mu\nu\lambda} \sum_n \int \frac{d^3\mathbf{k}}{(2\pi)^3} n_F(\epsilon_{n\mathbf{k}}) \langle \partial_\mu u_{n\mathbf{k}} | \partial_\nu u_{n\mathbf{k}} \rangle$$



Karplus+Luttinger,
1954

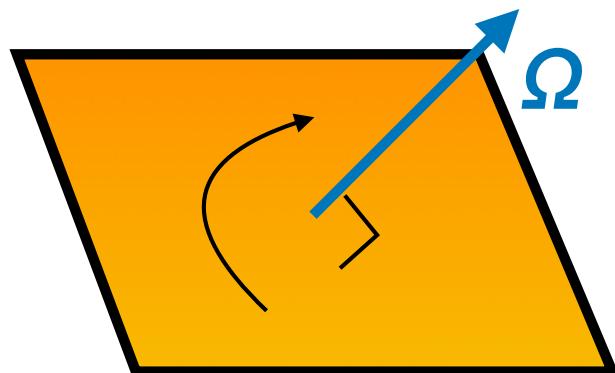
Physical meaning:

“Flux” of Berry curvature gives phase
accumulated in an electron’s orbit

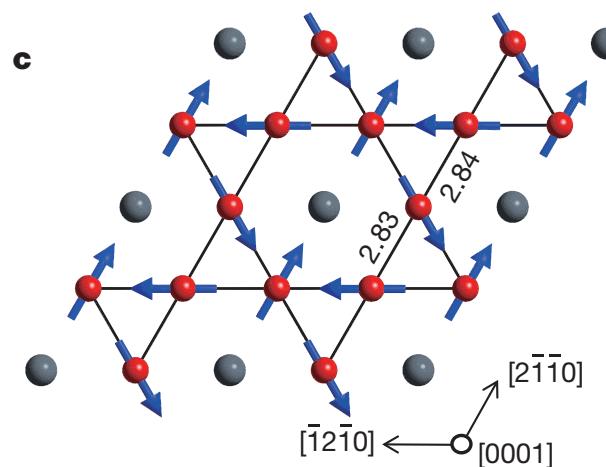
Thouless, Haldane

Twisting wave functions

Hall vector Ω : $\sigma_{\mu\nu}^{\text{AH}} = \frac{e^2}{\hbar} \epsilon_{\mu\nu\lambda} \Omega_\lambda$



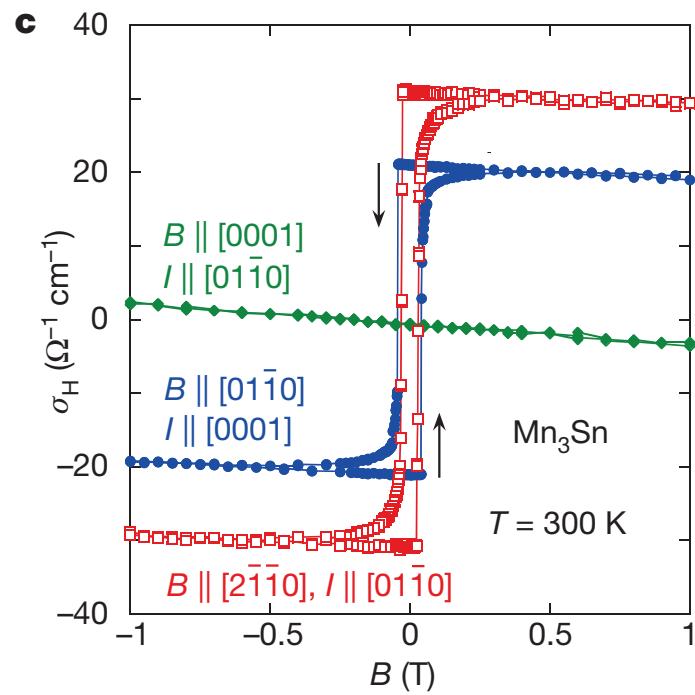
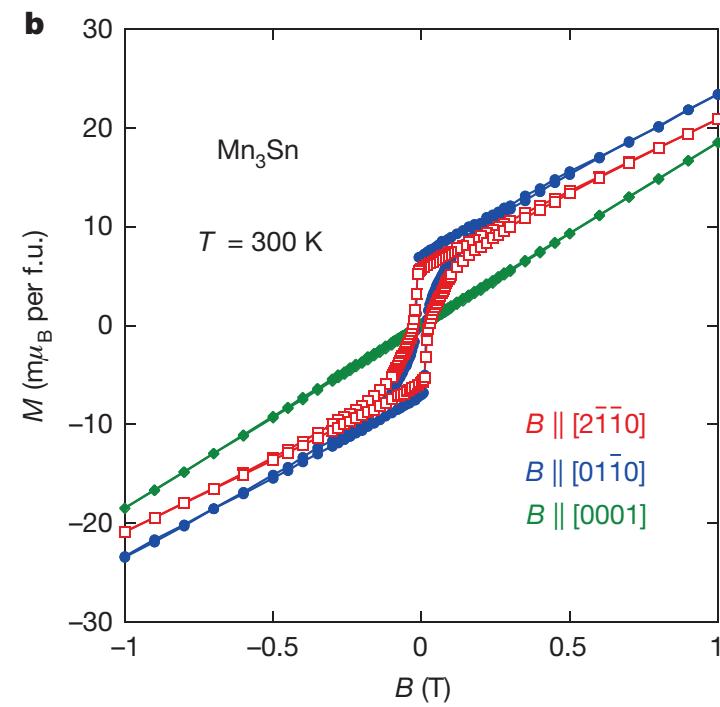
Determines plane of Hall effect



Spin configuration determines Ω through influence on electrons

Because *local* moments are not small, neither is Ω

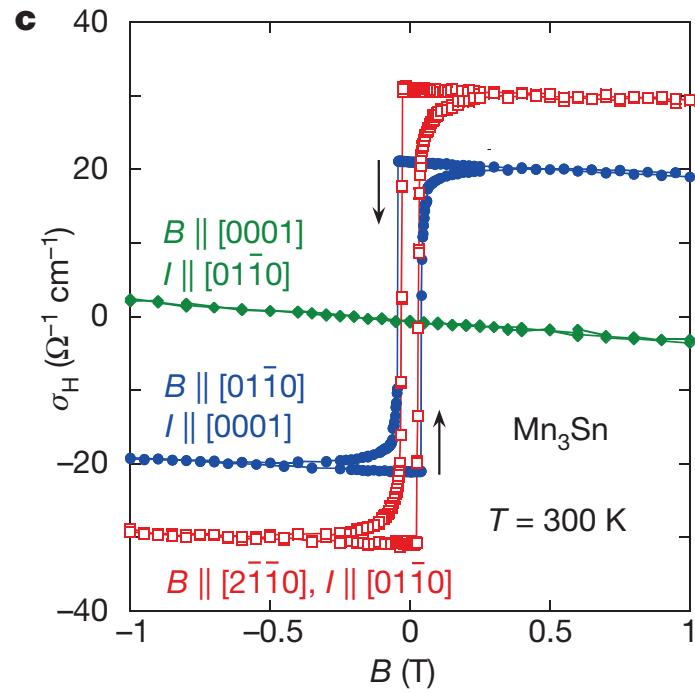
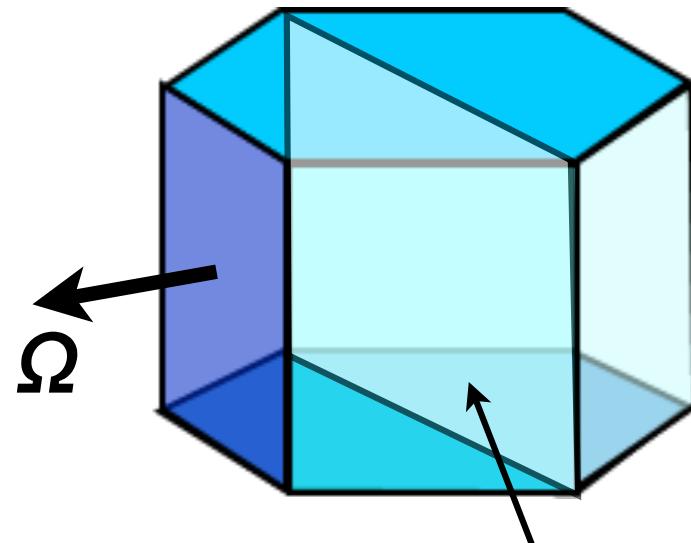
AHE



S. Nakatsuji et al, 2015

Why such a tiny moment?
Why such small coercive field?

AHE

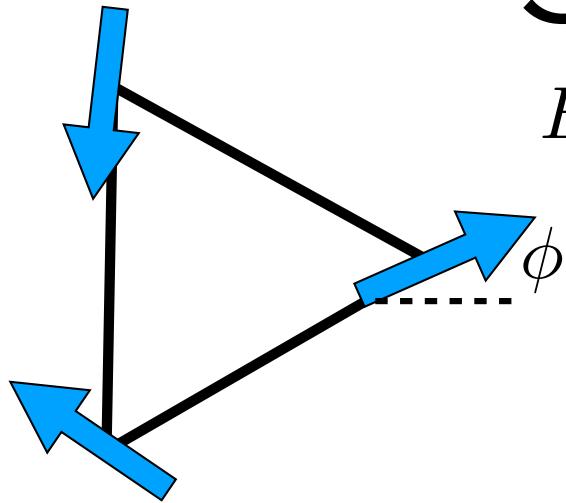


Hall effect in
vertical plane

Why such a tiny moment?

For $B > .2T$, plane of the AHE follows the field

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

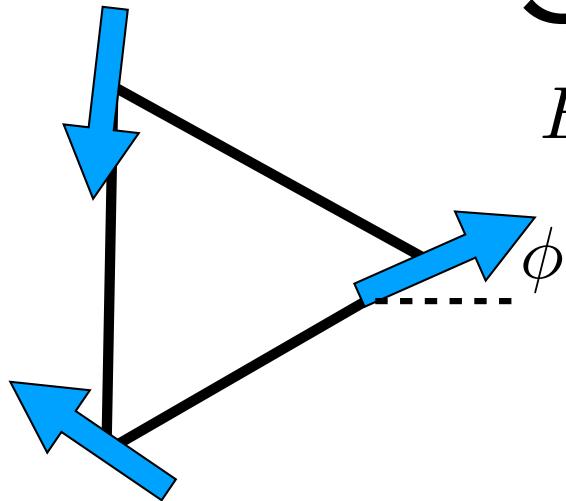
$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

$J \gg D \gg K$ **Hierarchy of interactions**

- J: spins at 120° angles and M=0
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment, and even tinier preference for ϕ

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

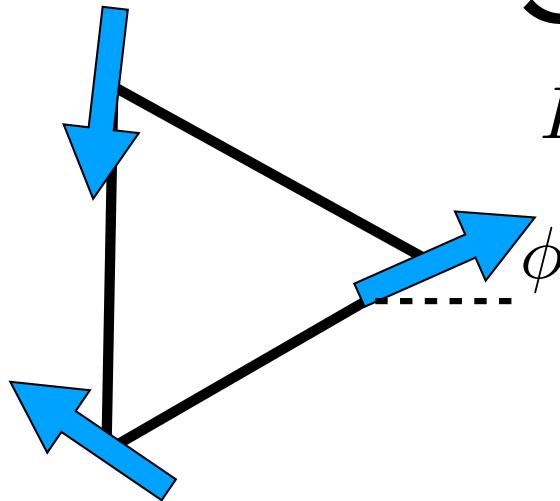
$J \gg D \gg K$ **Hierarchy of interactions**

- J: spins at 120° angles and $M=0$
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment, and even tinier preference for ϕ

Global symmetries:
spin-space group

magnetic space group

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

Jianpeng Liu + LB, 2017

$J \gg D \gg K$ **Hierarchy of interactions**

$$m_0 = \frac{K}{J} m_s$$

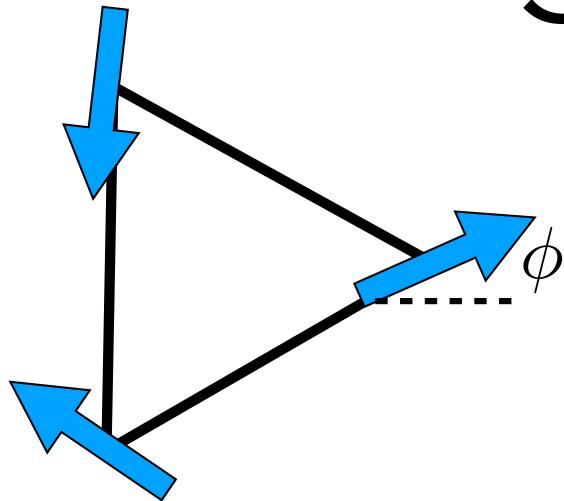
Uniform moment

Low coercive field
despite tiny Zeeman
energy

$$\lambda = \frac{K^3}{12J^2}$$

In-plane anisotropy

Energetics: triangle



$$\Omega = |\Omega| \begin{pmatrix} \cos \phi \\ -\sin \phi \\ 0 \end{pmatrix}$$

Jianpeng Liu + LB, 2017

$J \gg D \gg K$ **Hierarchy of interactions**

$$m_0 = \frac{K}{J} m_s$$

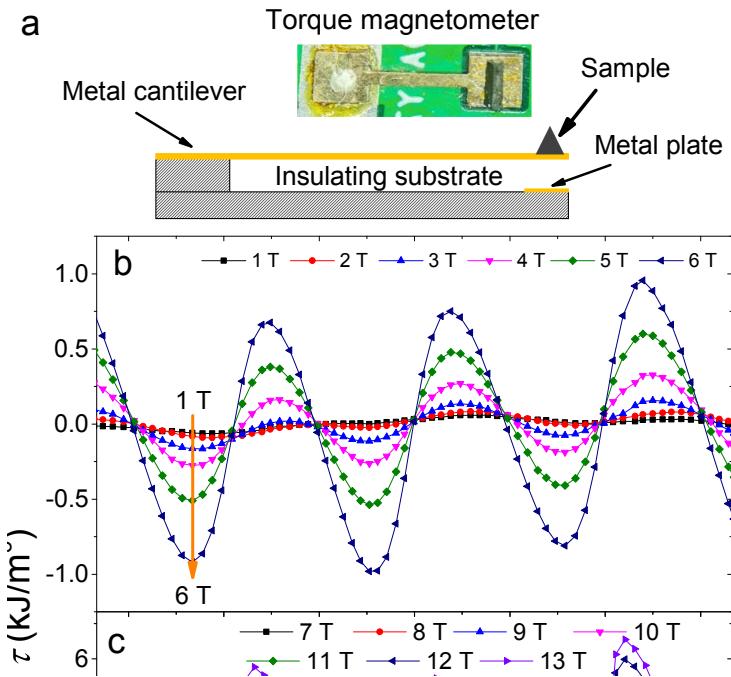
Uniform moment

$$\lambda = \frac{K^3}{12J^2}$$

In-plane anisotropy

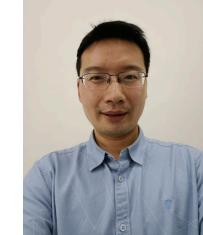
Low coercive field
despite tiny Zeeman
energy

Torque



Kamran Behnia

ESPCI



Zengwei Zhu

Wuhan

Xiaokang Li

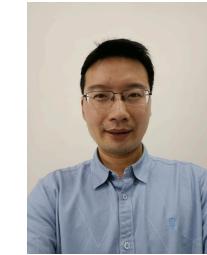
Wuhan

$$\tau = \mathbf{M} \times \mathbf{B}$$

Tracks mis-alignment of
M with **B**.

Total **M** results from twists
that spoil cancellation of
antiferromagnetically aligned
spins.

Torque



Kamran Behnia

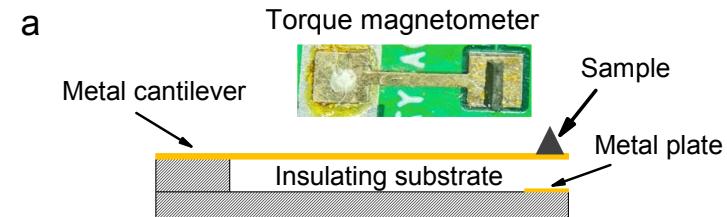
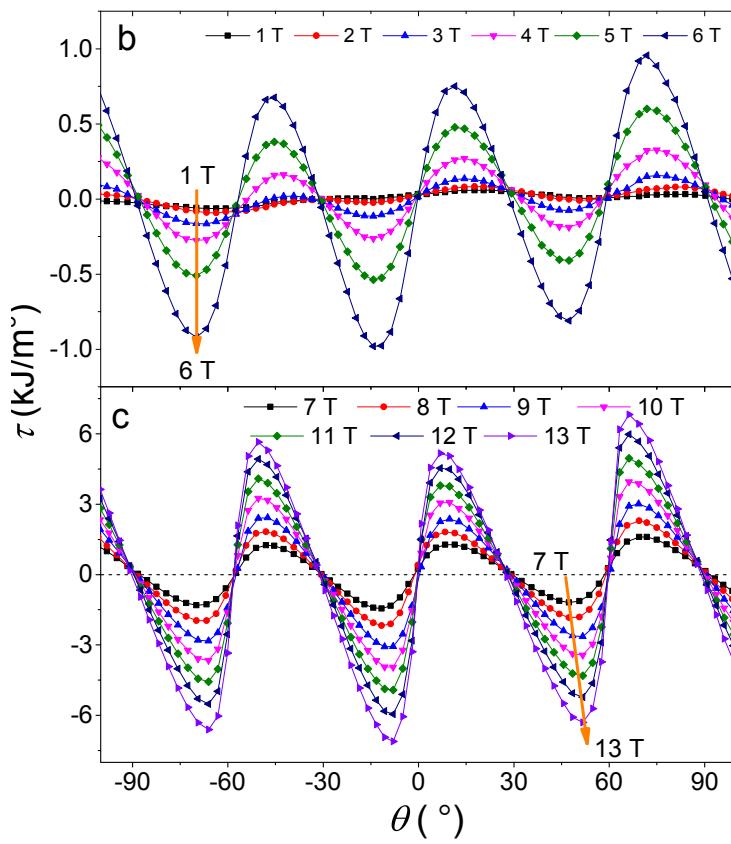
ESPCI

Zengwei Zhu

Wuhan

Xiaokang Li

Wuhan



The free energy of twisting spins in Mn_3Sn

Xiaokang Li^{1,*}, Shan Jiang^{3,1}, Qingkai Meng¹, Huakun Zuo¹, Zengwei Zhu^{1,*}, Leon Balents^{2,4} and Kamran Behnia³

(1) Wuhan National High Magnetic Field Center and School of Physics,
Huazhong University of Science and Technology, Wuhan 430074, China

(2) Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA

(3) Laboratoire de Physique et d'Étude des Matériaux

(ESPCI - CNRS - Sorbonne Université), PSL Research University, 75005 Paris, France

(4) Canadian Institute for Advanced Research, Toronto, Ontario, Canada

(Dated: February 25, 2022)

First explanation

Extension of our expansion from 2017

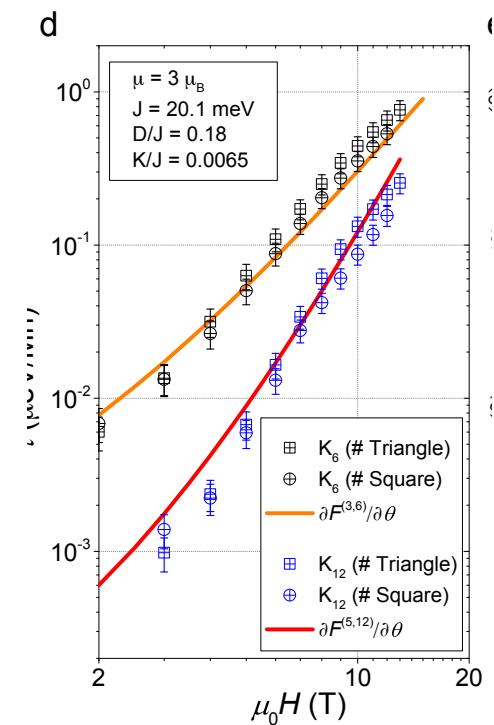
$$\phi_1 = \phi + \eta_1, \quad \phi_2 = \phi - \frac{2\pi}{3} + \eta_2, \quad \phi_3 = \phi - \frac{4\pi}{3} - \eta_1 - \eta_2.$$

$$\eta_i = \sum_{n=1}^{\infty} \eta_{i,n} r^n, \quad E_{u.c.} = \sum_{n=0}^{\infty} E_{u.c.}^{(n)},$$

$$\begin{aligned} E_{u.c.}^{(0)} &= -6J - 6\sqrt{3}D, \\ E_{u.c.}^{(1)} &= -3K, \\ E_{u.c.}^{(2)} &= -\frac{(\mu H)^2 + K^2 + 2\mu HK \cos(\theta + \phi)}{2(\sqrt{3}D + J)}, \\ E_{u.c.}^{(3)} &= -\frac{1}{36(J + \sqrt{3}D)^3} \left[(3J + 7\sqrt{3}D)K^3 \cos(6\phi) + 6(J + 3\sqrt{3}D)\mu HK^2 \cos(5\phi - \theta) \right. \\ &\quad \left. + 3(J + 5\sqrt{3}D)(\mu H)^2 K \cos(4\phi - 2\theta) + 4\sqrt{3}D(\mu H)^3 \cos(3\phi - 3\theta) \right]. \end{aligned}$$

Perturbatively solve
 $\phi(\theta)$

$$\begin{aligned} E_{u.c.} &= -6J - 6\sqrt{3}D - 3K - \frac{(\mu H + K)^2}{2(J + \sqrt{3}D)} \left[1 + \frac{(3J + 7\sqrt{3}D)K + 4\sqrt{3}D\mu H}{18(J + \sqrt{3}D)^2} \cos(6\theta) \right. \\ &\quad \left. + \frac{((3J + 7\sqrt{3}D)K^2 + 2(J + 4\sqrt{3}D)\mu HK + 2\sqrt{3}D(\mu H)^2)^2}{36(J + \sqrt{3}D)^4 \mu HK} \sin^2(6\theta) \right]. \end{aligned}$$



Angular transitions

A little simpler picture

Heisenberg model

$$E_{\text{tri}} = \frac{J}{2} \left(\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 - \frac{1}{J} \mathbf{h} \right)^2$$

“Order by disorder”: thermal and quantum fluctuations favor coplanar states

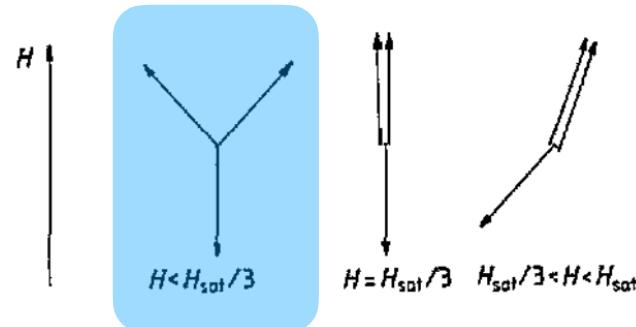


Figure 1. Reorientation process in the magnetic field in 2D Heisenberg AFM on a triangular lattice. Zero-point fluctuations stabilize the collinear phase in the finite region $H_1 < H < H_2$ in the vicinity of $H_{\text{sat}}/3$.

A. Chubukov and I. Golosov, 1991

Experiments

PHYSICAL REVIEW B 92, 014414 (2015)

Magnetic phase diagram of $\text{Ba}_3\text{CoSb}_2\text{O}_9$ as determined by ultrasound velocity measurements

G. Quirion,^{*} M. Lapointe-Major, M. Poirier, and J. A. Quilliam
Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

Z. L. Dun and H. D. Zhou
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996-1200, USA
(Received 8 April 2015; revised manuscript received 26 May 2015; published 13 July 2015)

Numerous examples
amongst insulating
anti-ferromagnets

c.f.

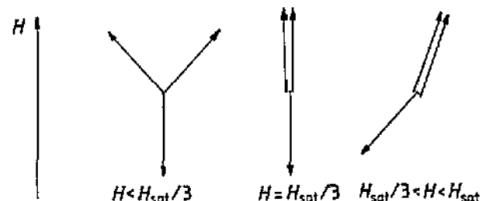
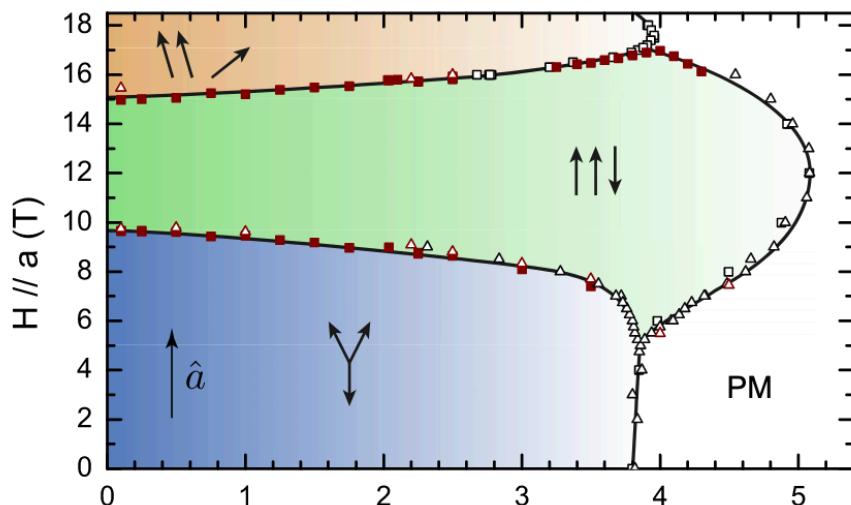
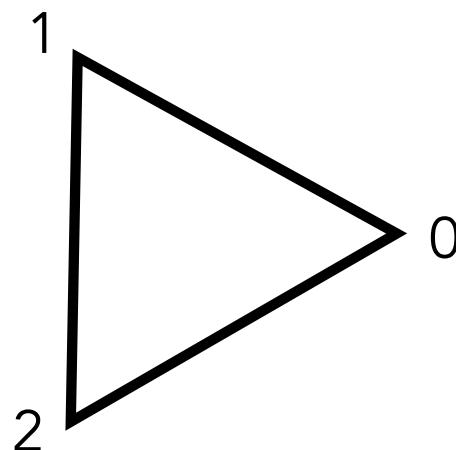


Figure 1. Reorientation process in the magnetic field in 2D Heisenberg AFM on a triangular lattice. Zero-point fluctuations stabilize the collinear phase in the finite region $H_1 < H < H_2$ in the vicinity of $H_{\text{sat}}/3$.

Energy and symmetries: Heisenberg limit



$$\langle \mathbf{S}_n \rangle = \operatorname{Re} \left[\mathbf{d} e^{\frac{2\pi i n}{3}} \right]$$

$$\mathbf{d} \cdot \mathbf{d} = 0.$$

$$\mathbf{d} = \mathbf{u} + i\mathbf{v}$$

$$\text{SO}(3) \quad \mathbf{S}_n \rightarrow \mathbf{0} \mathbf{S}_n$$

$$S_3 \quad \mathbf{S}_n \rightarrow \mathbf{S}_{P(n)}$$

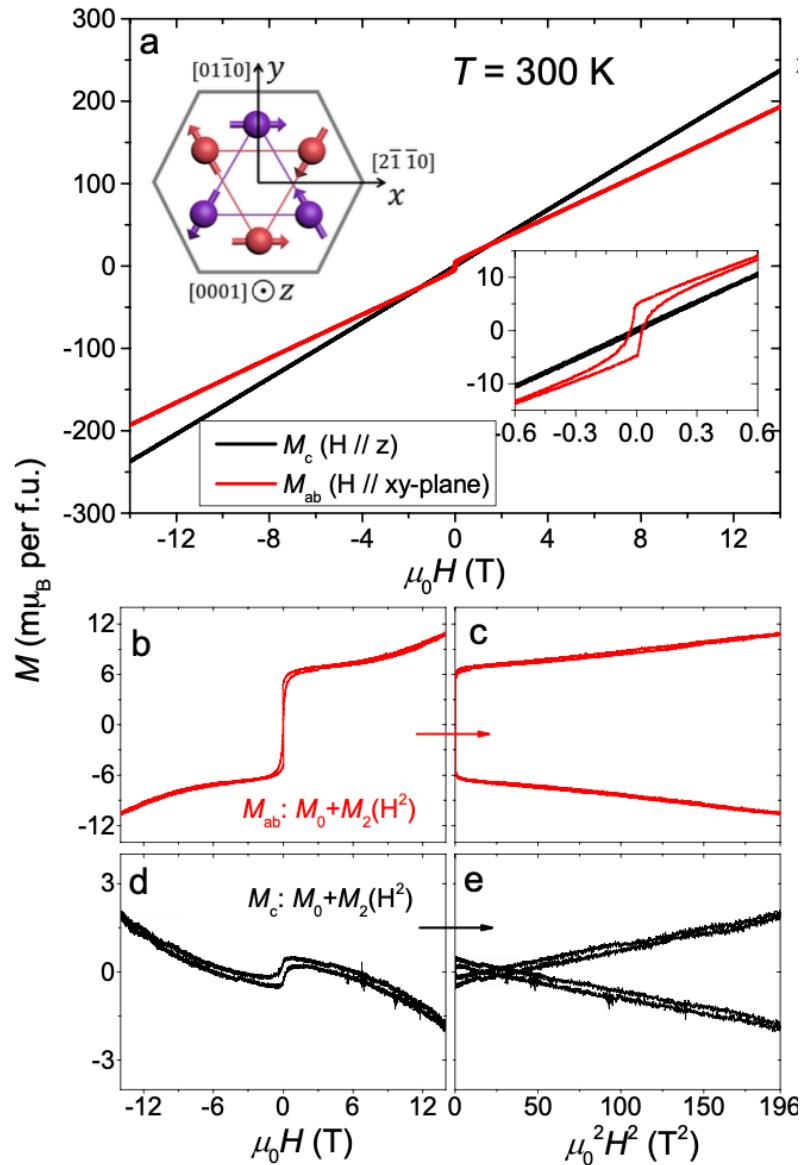
$$F_h^{\text{iso}} = c_1 |\mathbf{h} \cdot \mathbf{d}|^2 + c_2 \operatorname{Re} \left[(\mathbf{h} \cdot \mathbf{d})^3 \right] + O(h^4)$$

Selects plane Selects angle in plane

$$c_1 < 0 \quad c_2 > 0$$

Coefficients are “large”: arise from $J \gg D, K$

Quadratic magnetization



Thermodynamics:

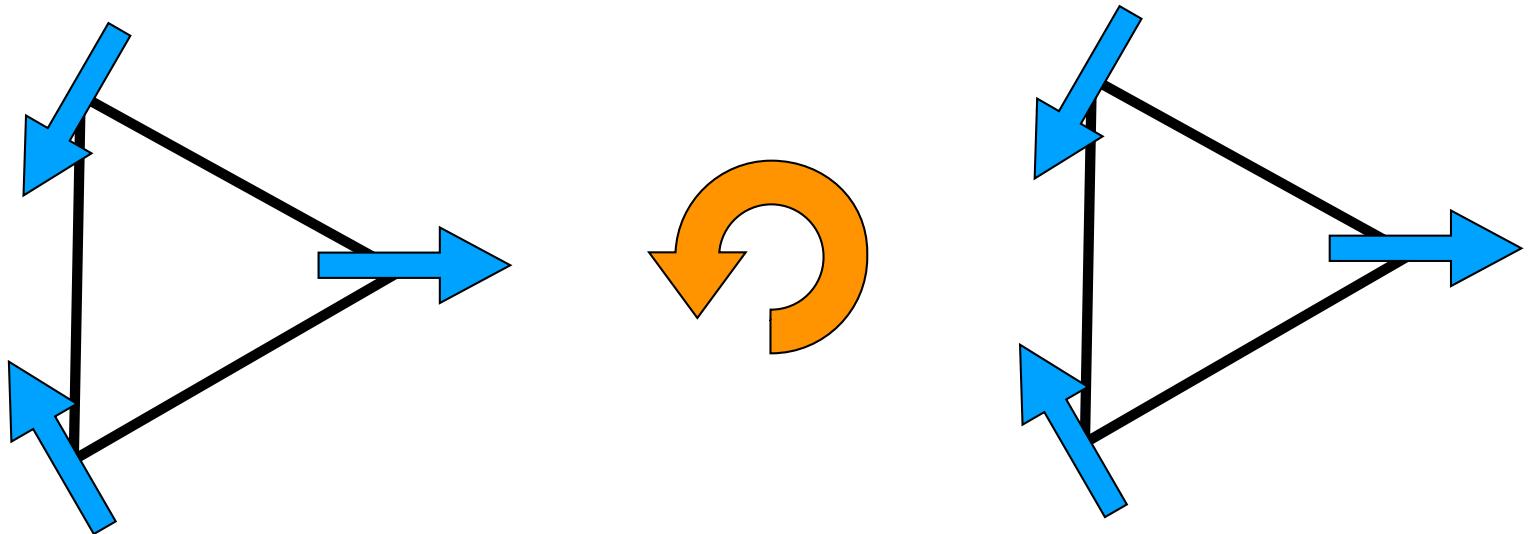
$$M = -\frac{\partial F}{\partial H}$$

$$\sim c_1 H + c_2 H^2$$

Can directly see the energy responsible for order by disorder !

Anti-chiral state

Favored by $D > 0$ $d = d e^{i\phi} (\hat{x} + i\hat{y})$



counter-clockwise rigid rotation = clockwise spin rotation

$$d_{\pm} = d_x \pm i d_y \quad h_{\pm} = h_x \pm i h_y$$

Re[$h_+ d_+$] is an invariant

Full angular free energy

$$d_+ = ne^{i\phi}$$

$$d_- = d_z = 0$$

$$h_+ = he^{i\theta}$$

Zero field anisotropy
(Negligible)

$$f_+ = -w \cos 6\phi - uh \cos(\phi + \theta) - vh^3 \cos 3(\phi - \theta)$$

Anti-chiral
magnetization

Heisenberg
response

$$u \sim \frac{K}{J}$$

Full angular free energy

$$d_+ = ne^{i\phi} \quad h_+ = he^{i\theta}$$

$$d_- = d_z = 0$$

$$f_+ = -uh \cos(\phi + \theta) - vh^3 \cos 3(\phi - \theta),$$

Anti-chiral	Heisenberg
magnetization	response

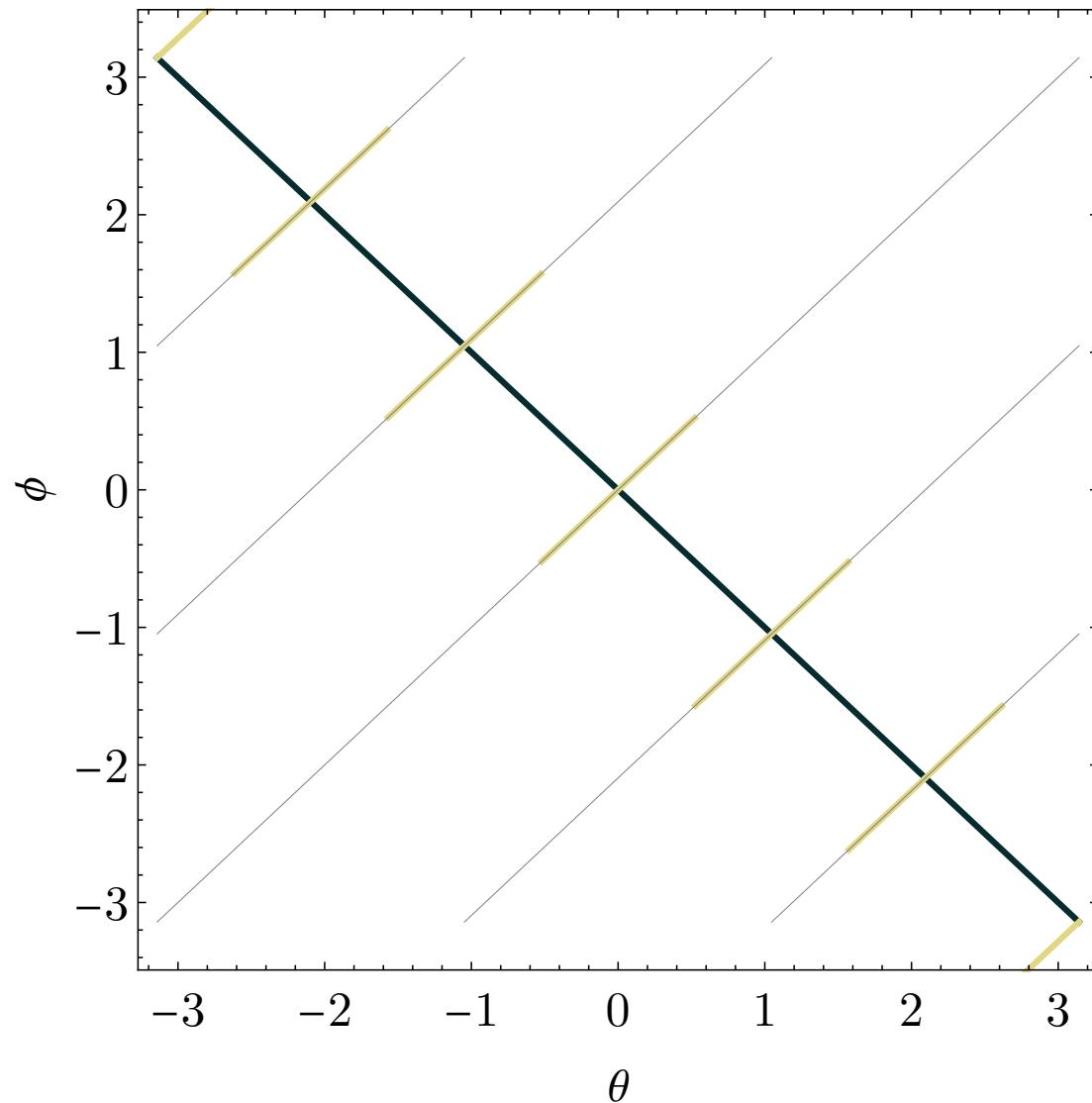
small h:

large h :

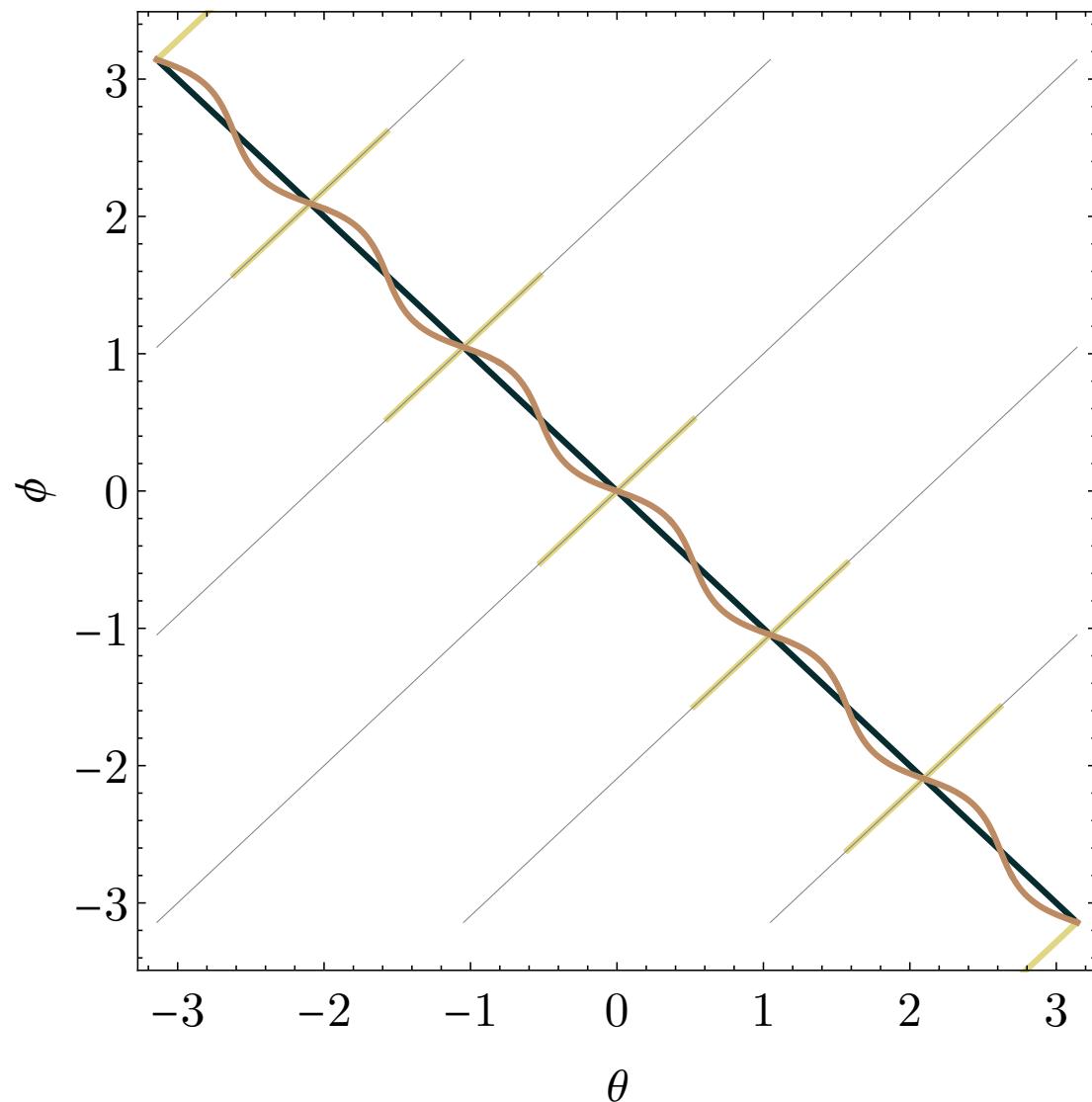
$$\phi \approx -\theta$$

$$\phi \approx \theta + \frac{2\pi k}{3}$$

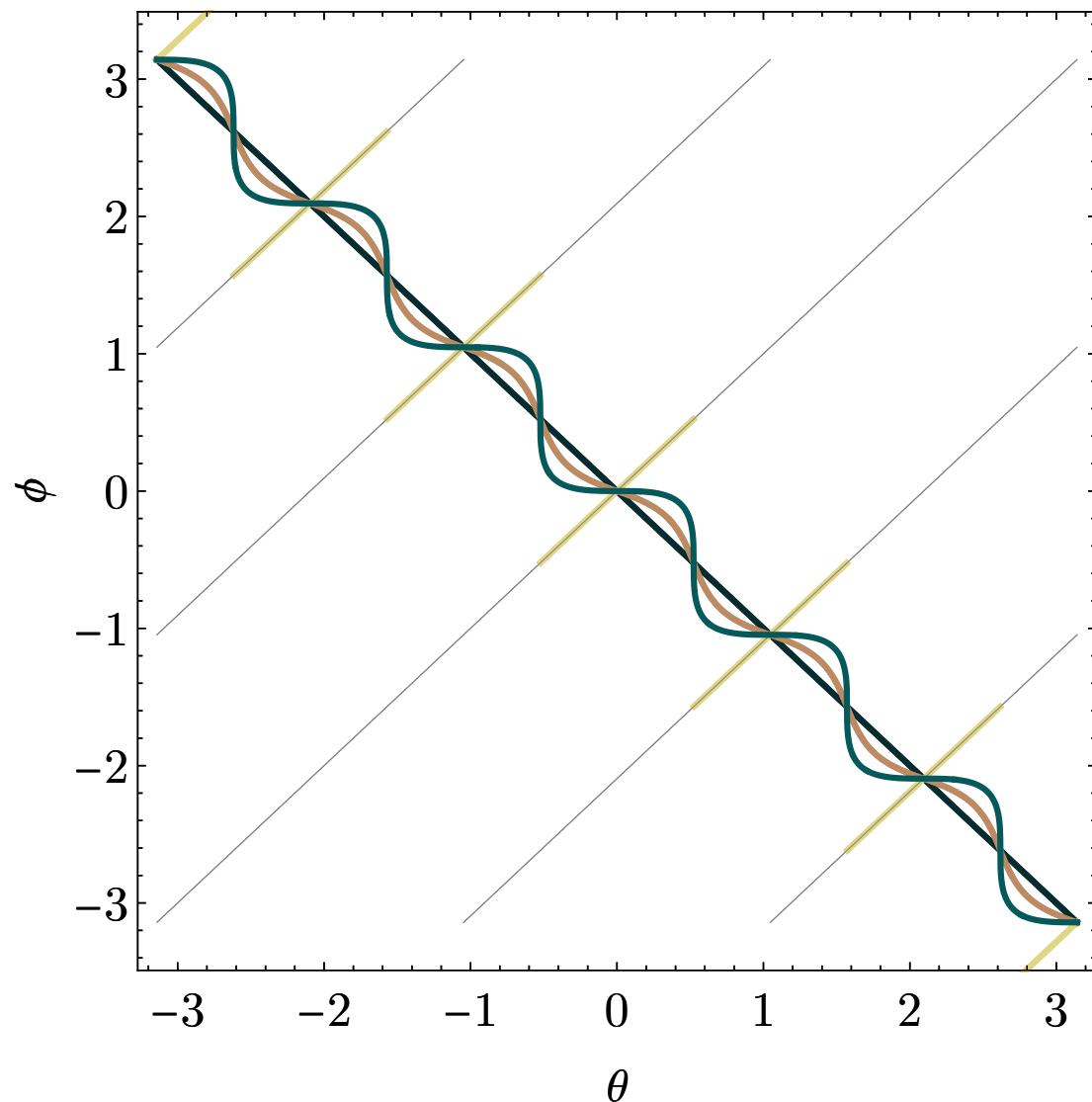
Angular evolution



Angular evolution

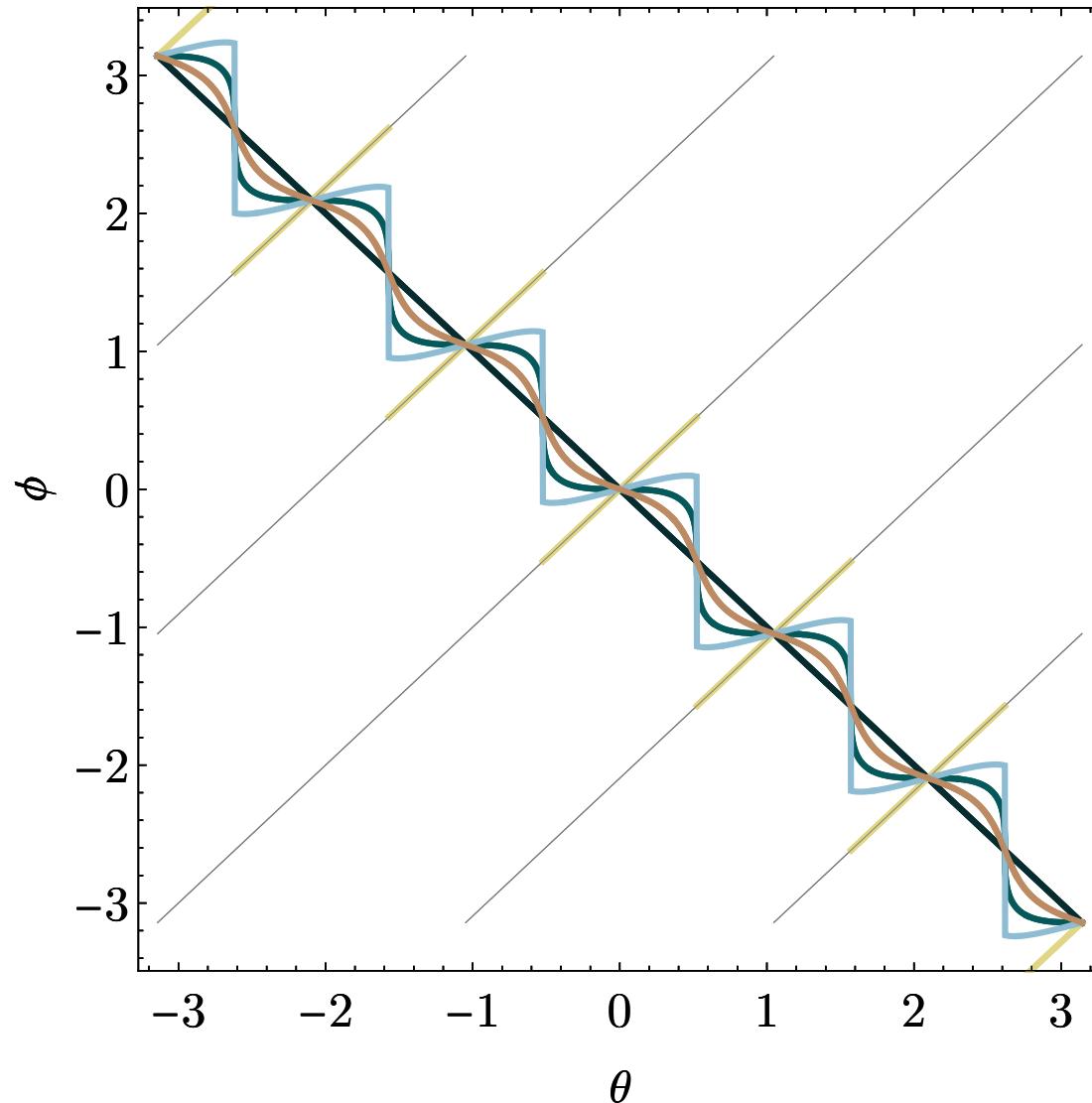


Angular evolution

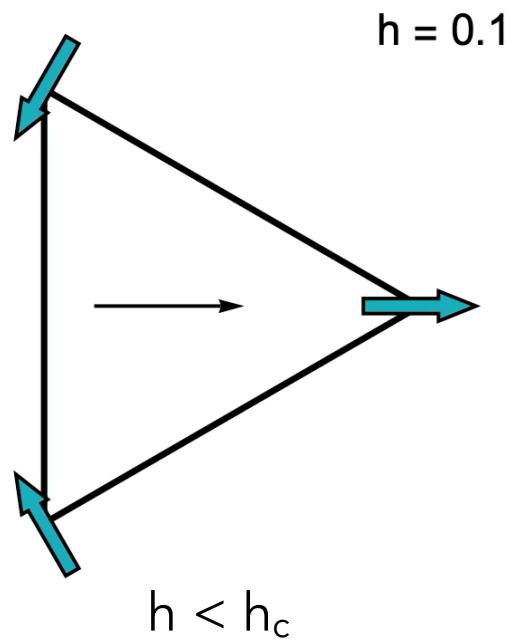
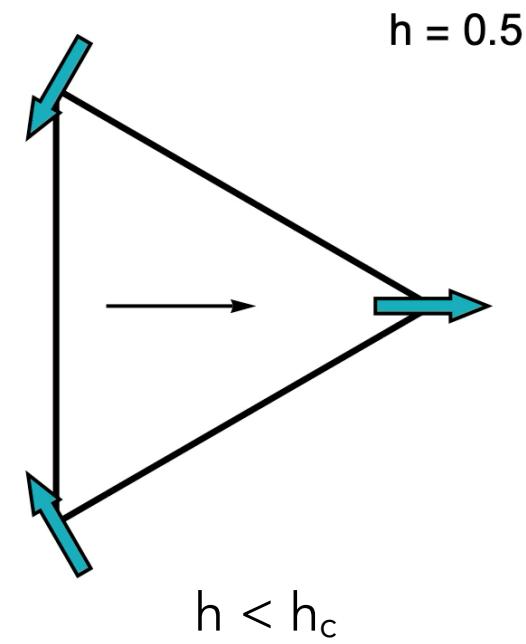
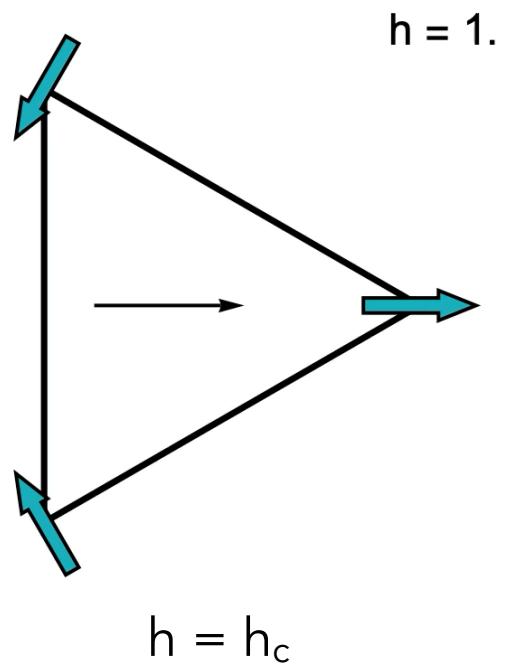
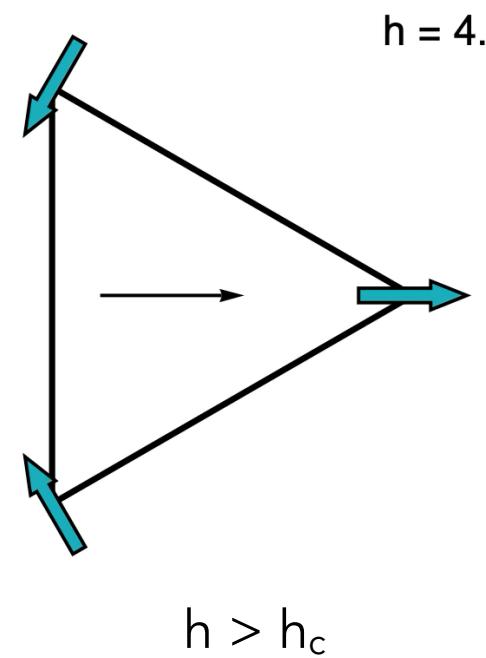


Angular evolution

$$\theta = \frac{\pi}{6} + \frac{\pi m}{3}$$



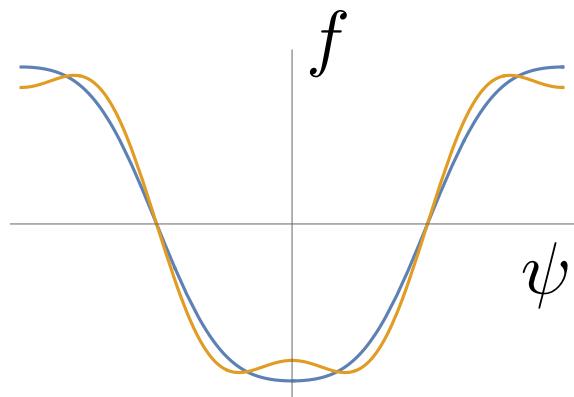
$h > h_{\text{crit}}$
Jumps at
 $\theta = \frac{\pi}{6} + \frac{\pi m}{3}$



How do the jumps onset?

$$\psi = \phi + \theta, \quad \theta = \pi/6 + \delta \quad x = \sqrt{v/u}h^2$$

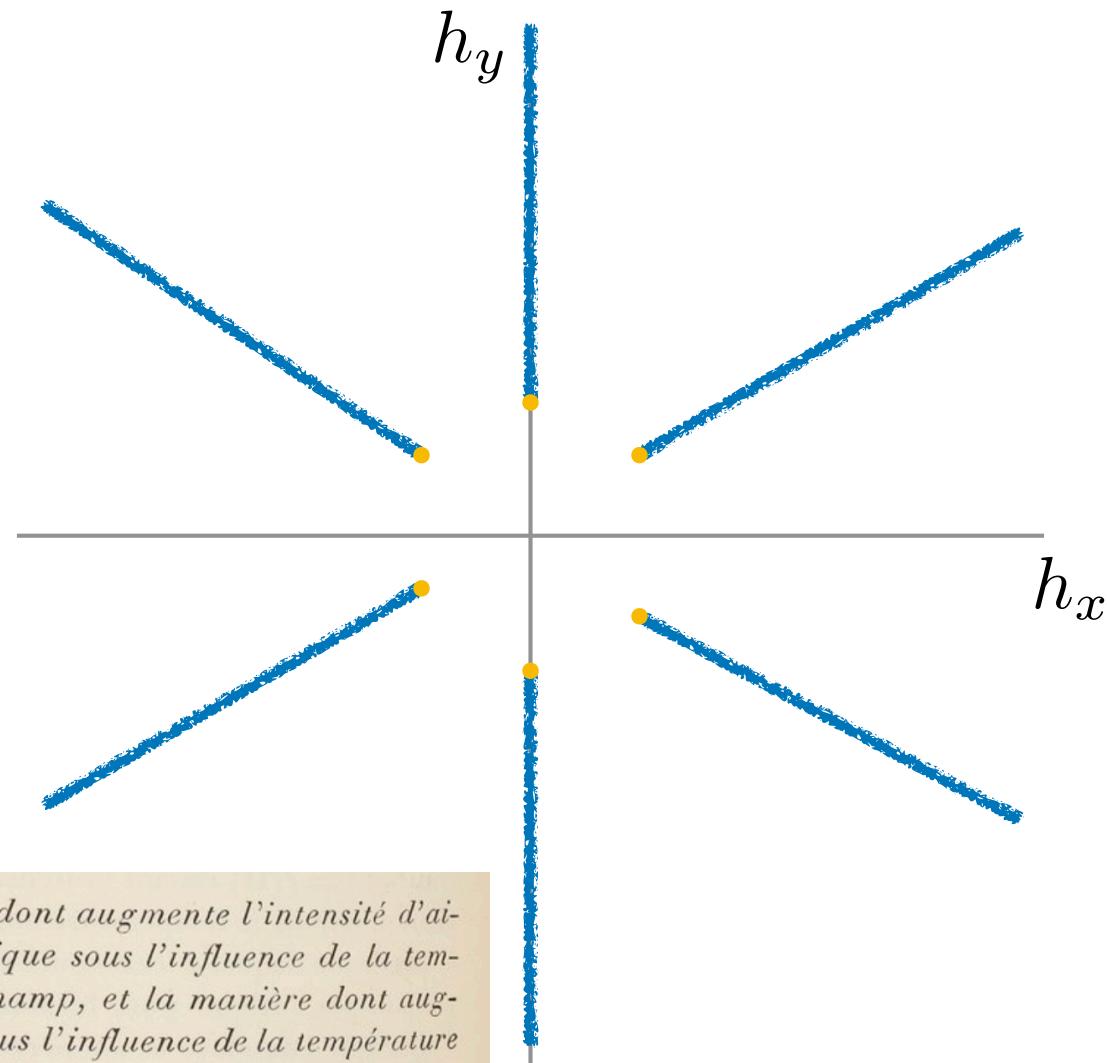
$$\begin{aligned} \frac{f}{uh} &= -\cos \psi + x \cos 6\delta \cos 3\psi + x \sin 6\delta \sin 3\psi \\ &= -\cos \psi + x \cos 3\psi \quad (\delta = 0) \end{aligned}$$



Ising transition
at $x=1/9$

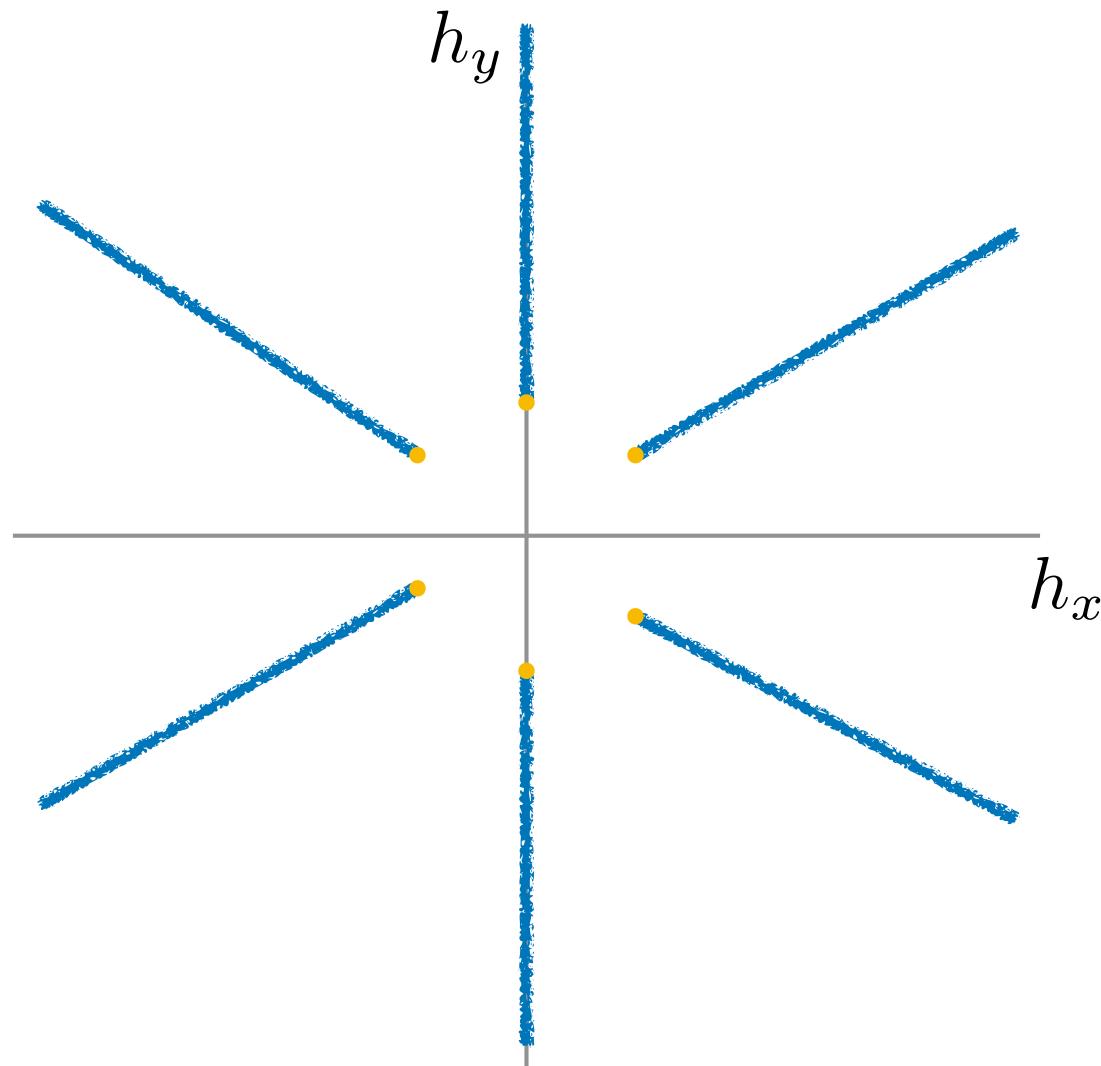
δ acts as symmetry breaking field

Phase diagram



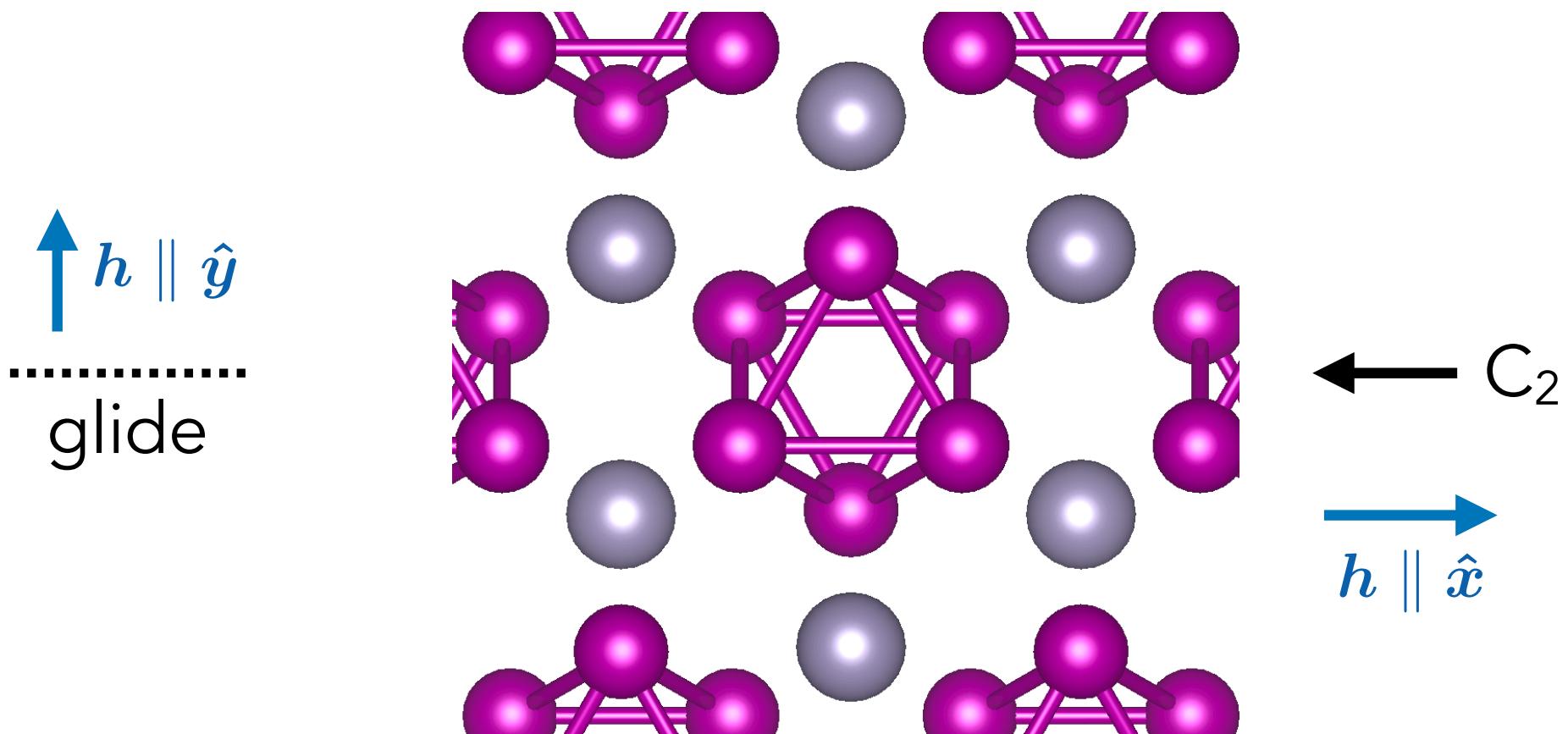
Analogie entre la manière dont augmente l'intensité d'aimantation d'un corps magnétique sous l'influence de la température et de l'intensité du champ, et la manière dont augmente la densité d'un fluide sous l'influence de la température et de la pression. — Il y a des analogies entre la fonction $f(I, H, T) = 0$ relative à un corps magnétique et la fonction $f(D, p, T) = 0$ relative à un fluide. L'intensité d'aimantation I

Phase diagram

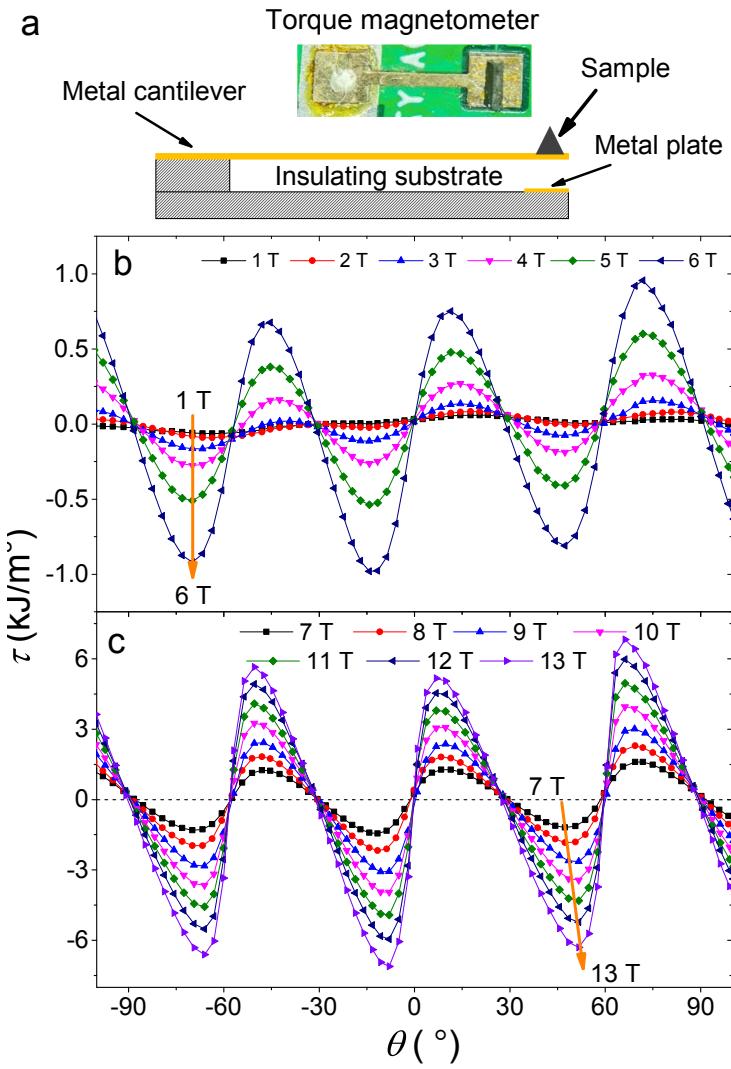


What symmetry is broken along the lines?

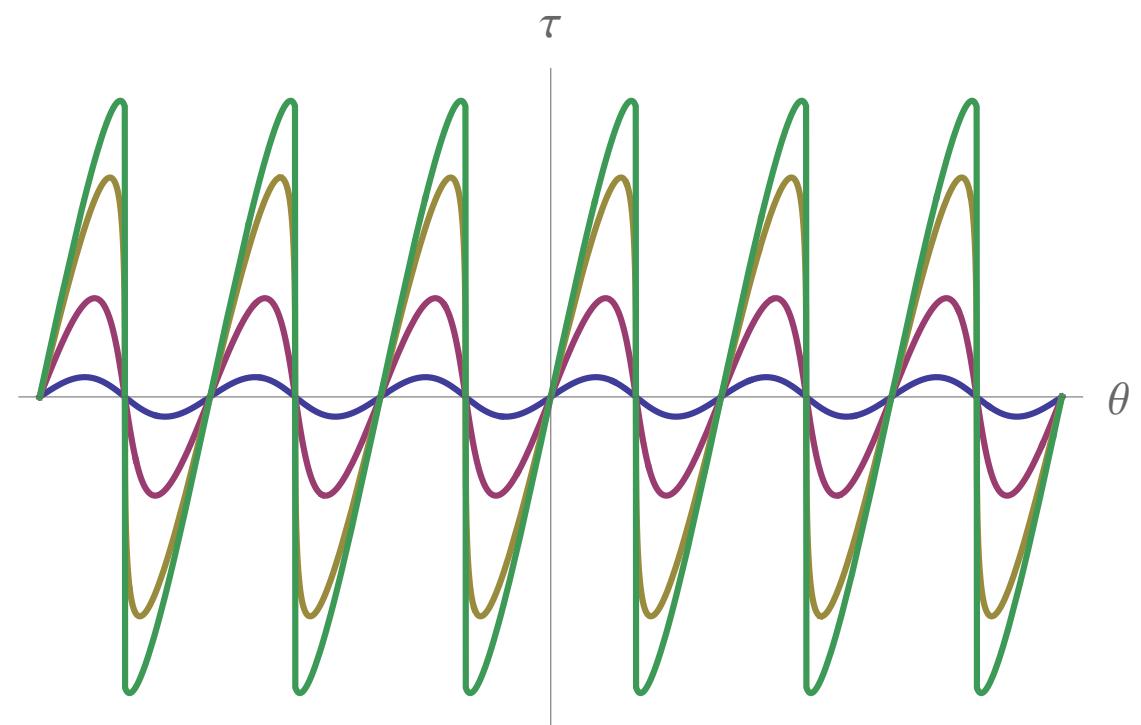
Mn_3Sn structure



Torque

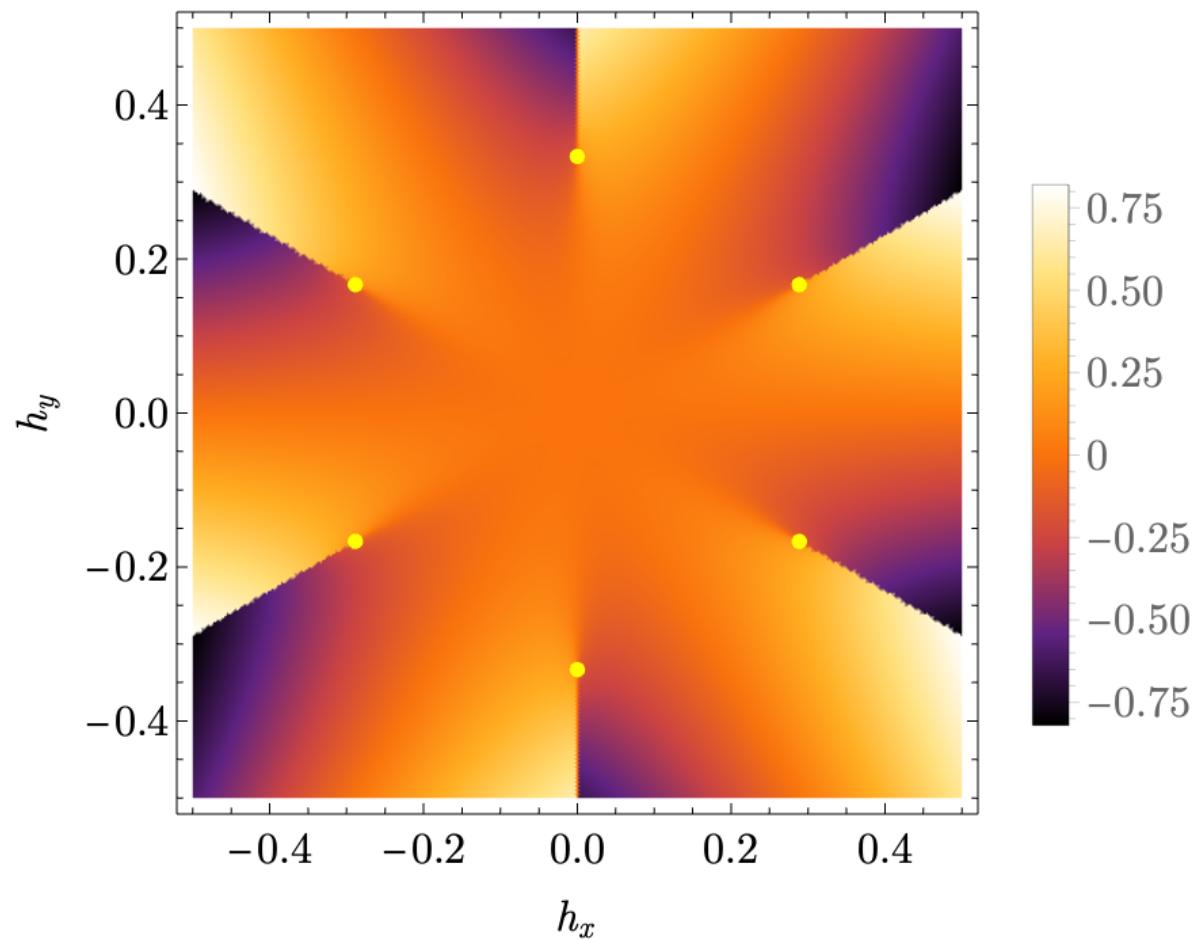


$$\tau = \frac{df}{d\theta}$$



Discontinuities for $h > h_c$

Estimate

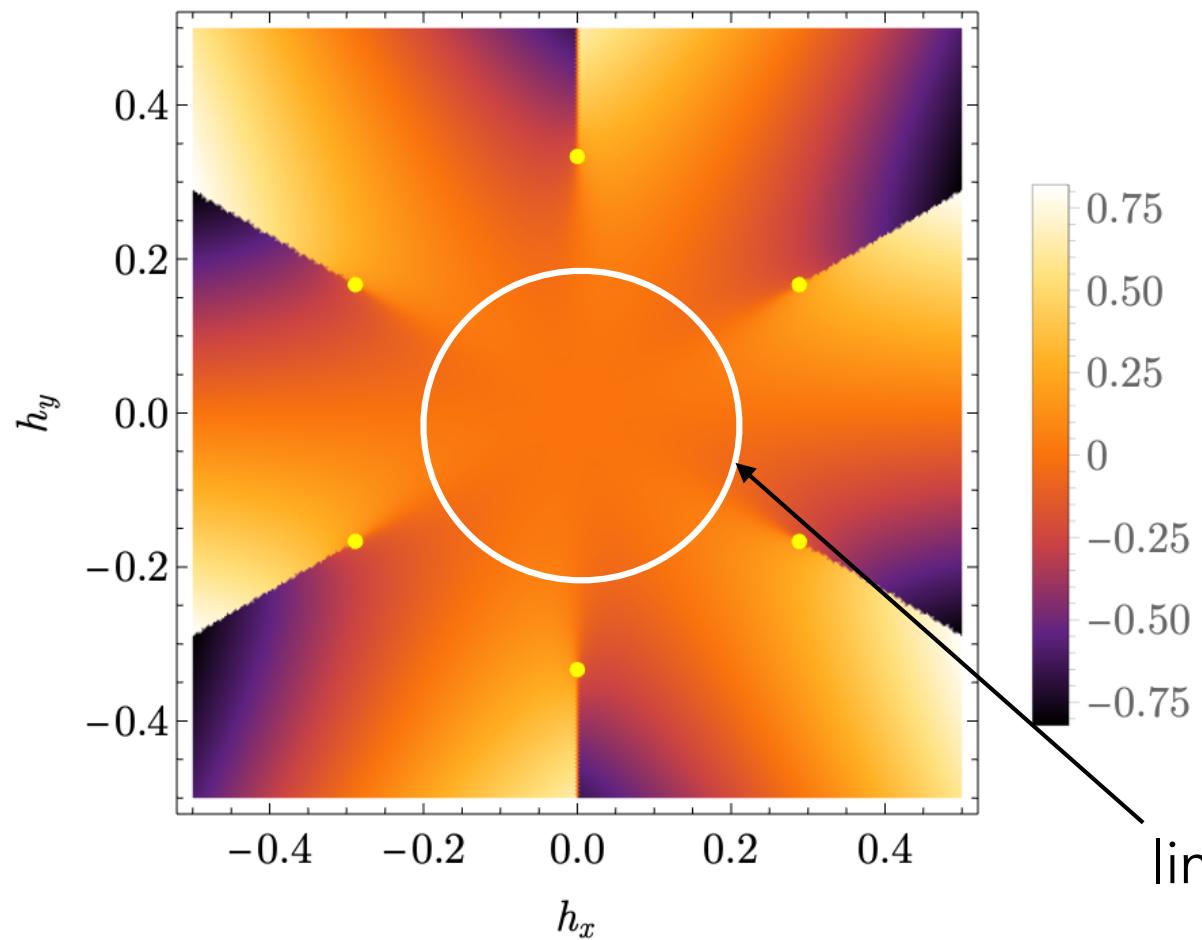


Classical, $T=0$

$$H_c = \frac{J + \sqrt{3}D}{g\mu_B} \sqrt{\frac{K}{D}}$$

$\approx 20\text{T}$

Estimate



$$H_c = \frac{J + \sqrt{3}D}{g\mu_B} \sqrt{\frac{K}{D}}$$

$\approx 20\text{T}$

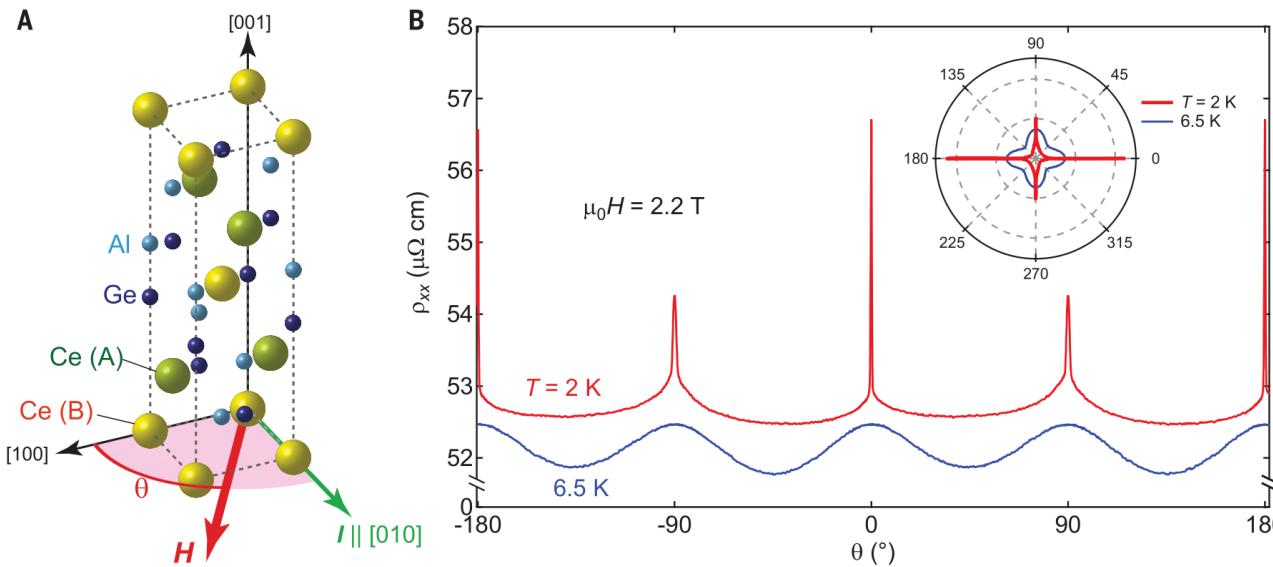
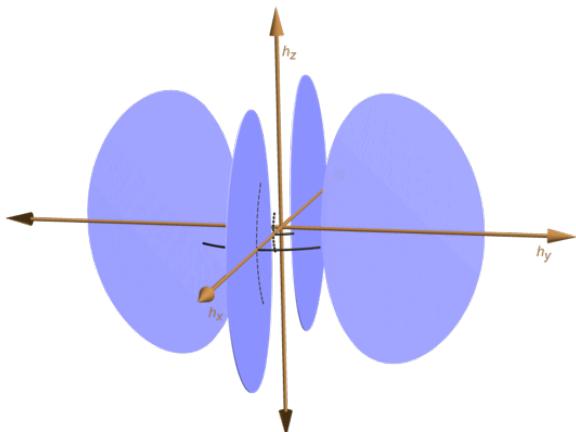
Hope to observe these transitions in future experiments

c.f.

MAGNETISM

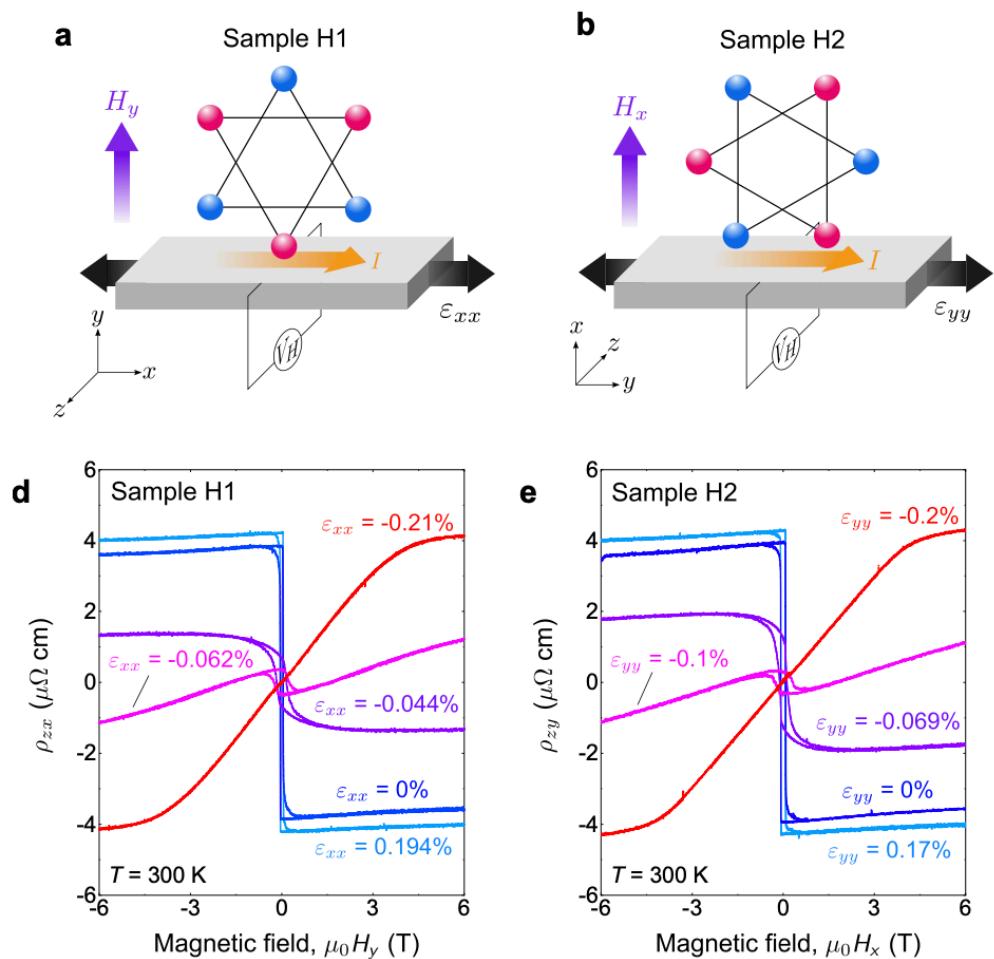
Singular angular magnetoresistance in a magnetic nodal semimetal

T. Suzuki¹, L. Savary^{1,2,3}, J.-P. Liu^{2,4}, J. W. Lynn⁵, L. Balents², J. G. Checkelsky^{1*}



Would be interesting to search for
transport signatures in Mn_3Sn

Strain control

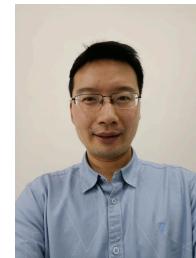


Strain also twists spins,
allowing separate control
of magnetization and Berry
curvature

Outline

- Twisting spins in Mn_3Sn with a magnetic field
- Multiple energy scales enable control of anomalous Hall effect

Kamran Behnia
ESPCI



Zengwei Zhu
Wuhan

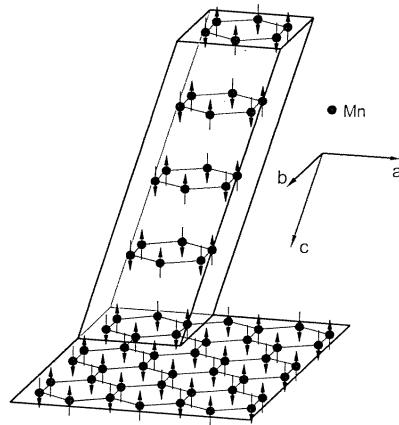
Xiaokang Li
Wuhan

- Twisting layers of spins in 2d materials
- Twists control new spin textures

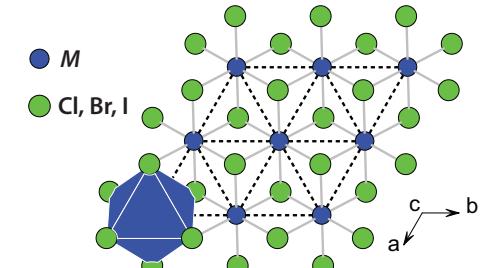
Kasra Hejazi
Caltech

Zhu-Xi Luo
UCSB

2d VdW magnets



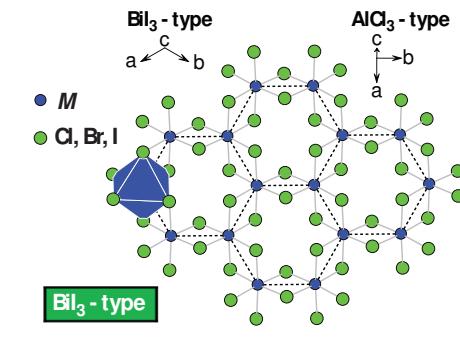
MCl_2							
Ti	V	Cr	Mn	Fe	Co	Ni	
Zr	Nb	Mo	Tc	Ru	Rh	Pd	
Hf	Ta	W	Re	Os	Ir	Pt	

 MBr_2


MnPS₃, FePS₃, NiPS₃, CoPS₃, CrSiTe₃...

MCl_3							
Ti	V	Cr	Mn	Fe	Co	Ni	
Zr	Nb	Mo	Tc	Ru	Rh	Pd	
Hf	Ta	W	Re	Os	Ir	Pt	

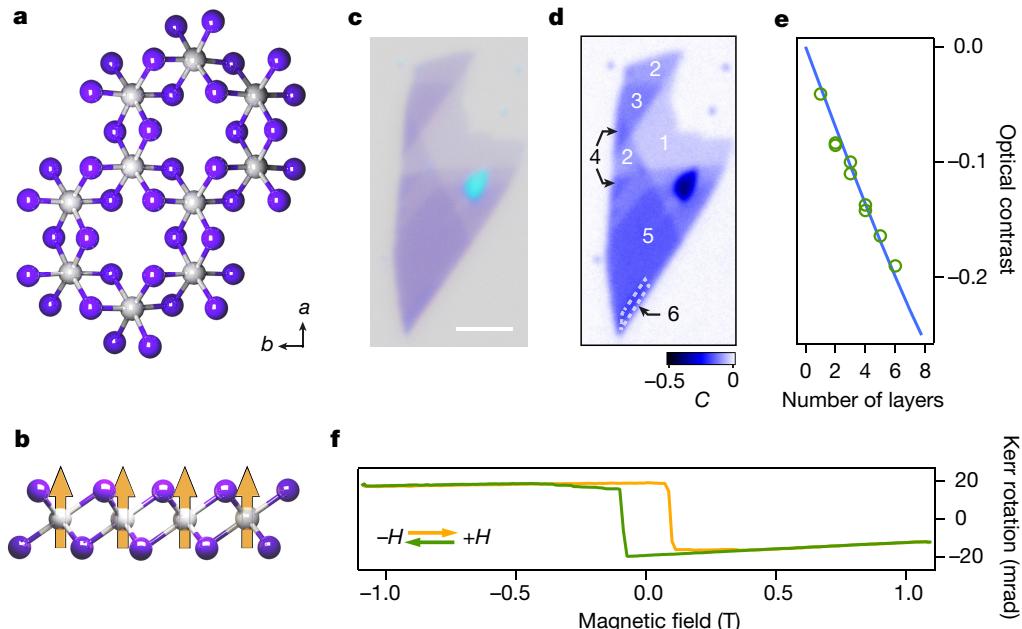
MBr_3						
Ti	V	Cr	Mn	Fe	Co	Ni



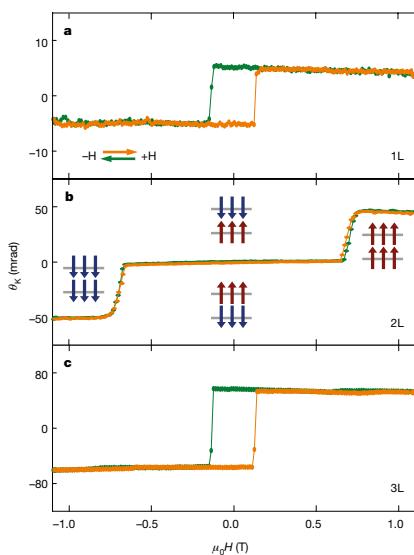
CrI₃, RuCl₃,...

CrI₃

B. Huang et al, 2017



1L



2L

Still ferromagnetic in single layer

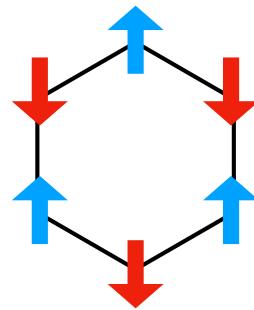
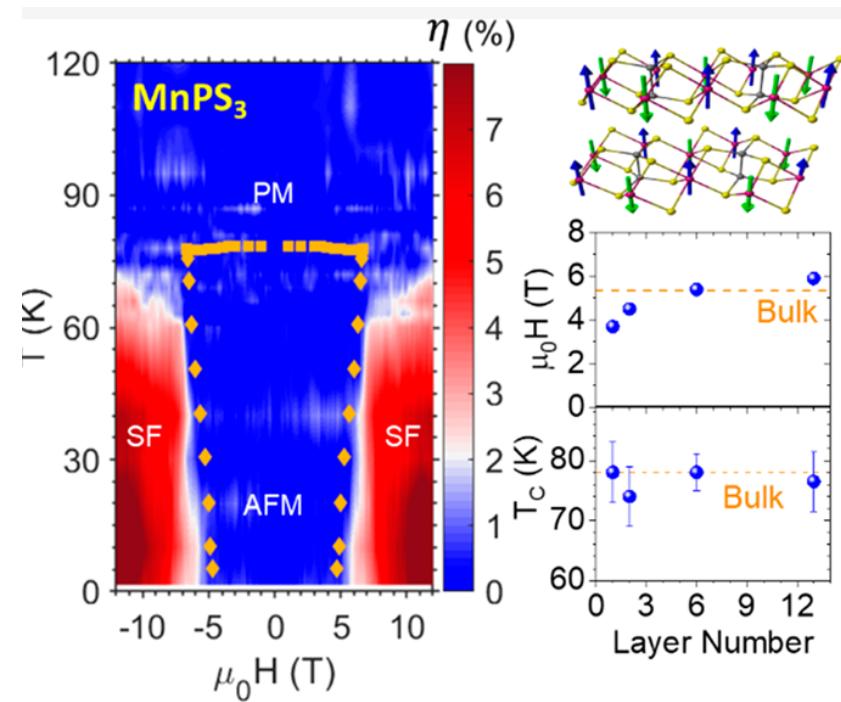
Surprise: bilayer is anti-ferromagnetic

3L

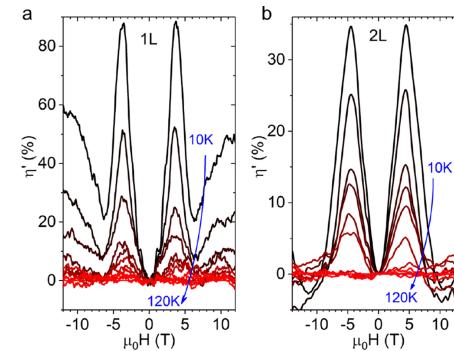
MnPS₃

G. Long et al, 2020

antiferromagnetic
honeycomb



order persists to single layer



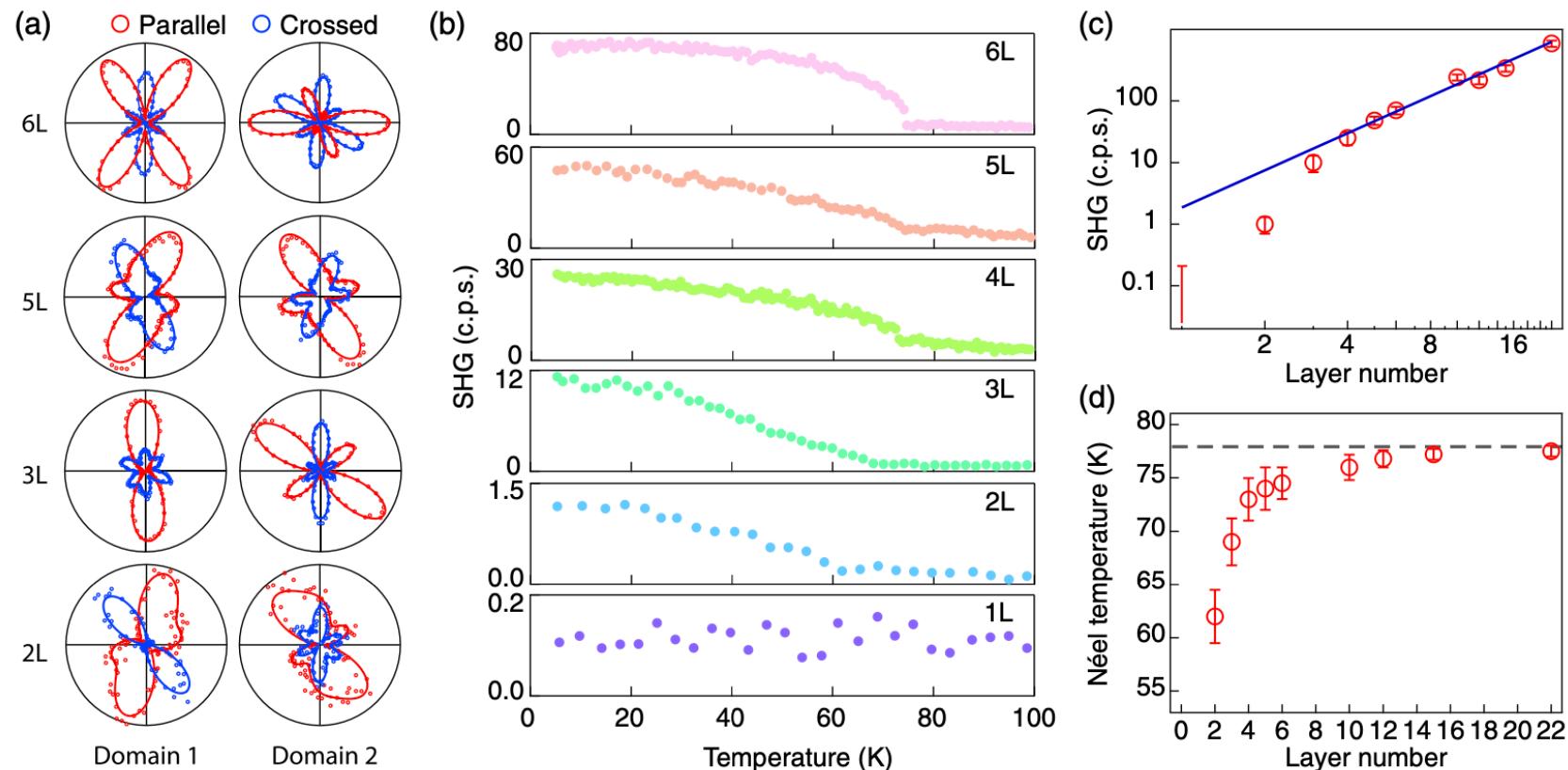
tunneling MR

MnPS₃

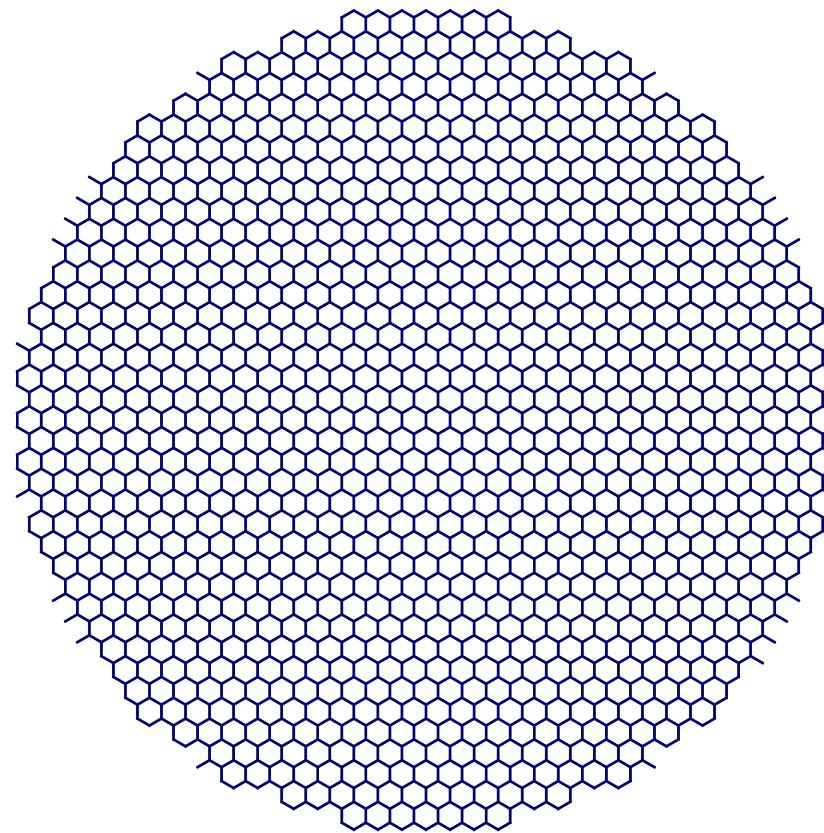
Direct Imaging of Antiferromagnetic Domains and Anomalous Layer-Dependent Mirror Symmetry Breaking in Atomically Thin MnPS₃

Zhuoliang Ni¹, Huiqin Zhang², David A. Hopper^{1,2}, Amanda V. Haglund³, Nan Huang³, Deep Jariwala², Lee C. Bassett², David G. Mandrus^{3,4}, Eugene J. Mele¹, Charles L. Kane¹, and Liang Wu^{1,*}

PHYSICAL REVIEW LETTERS 127, 187201 (2021)



Twisting and moiré



Moiré

mohair

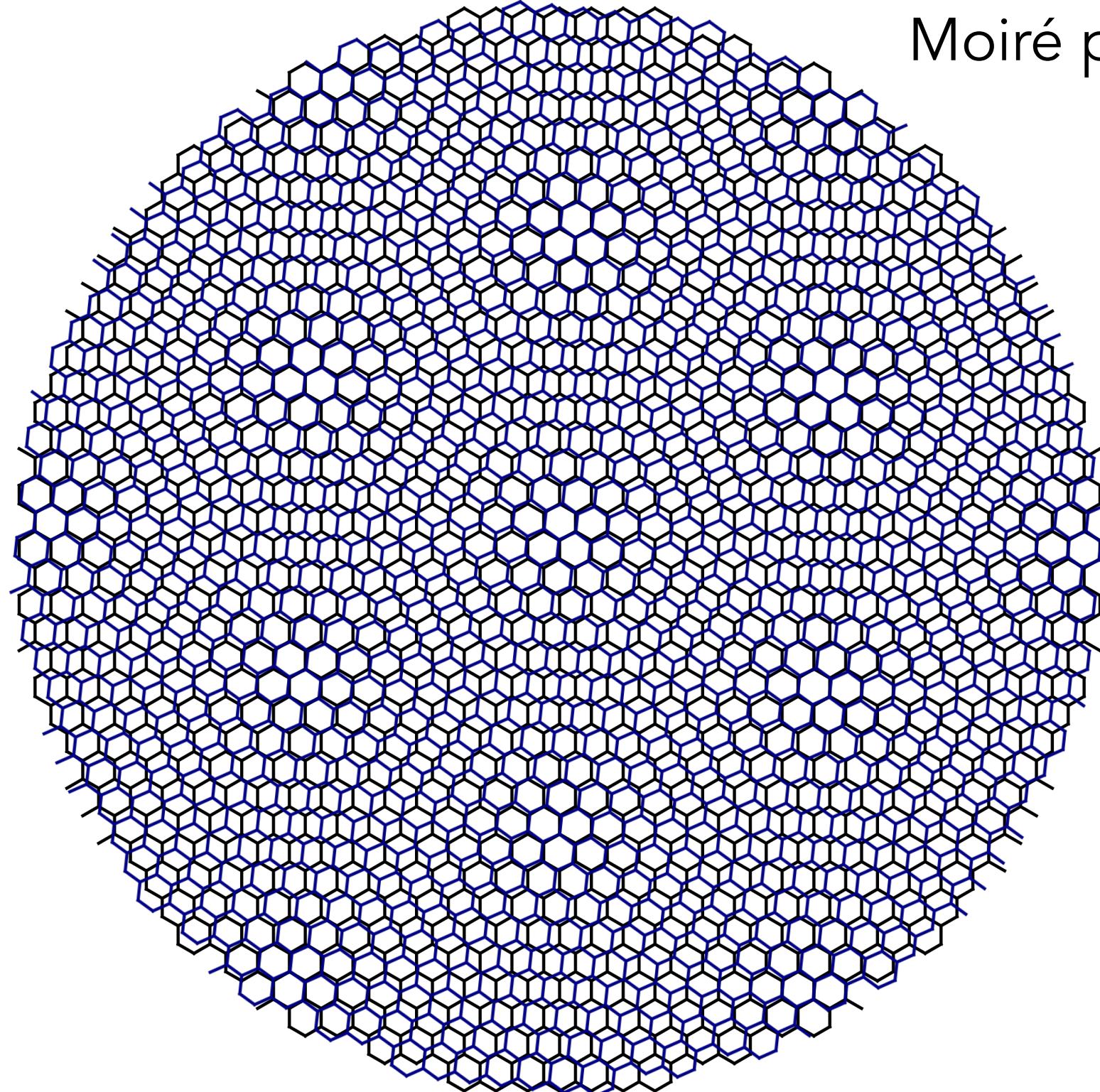
Le retour de la moire

Le grand retour de la moire chez vous

La moire : Un tissu d'exception pour des murs, des rideaux et des meubles originaux

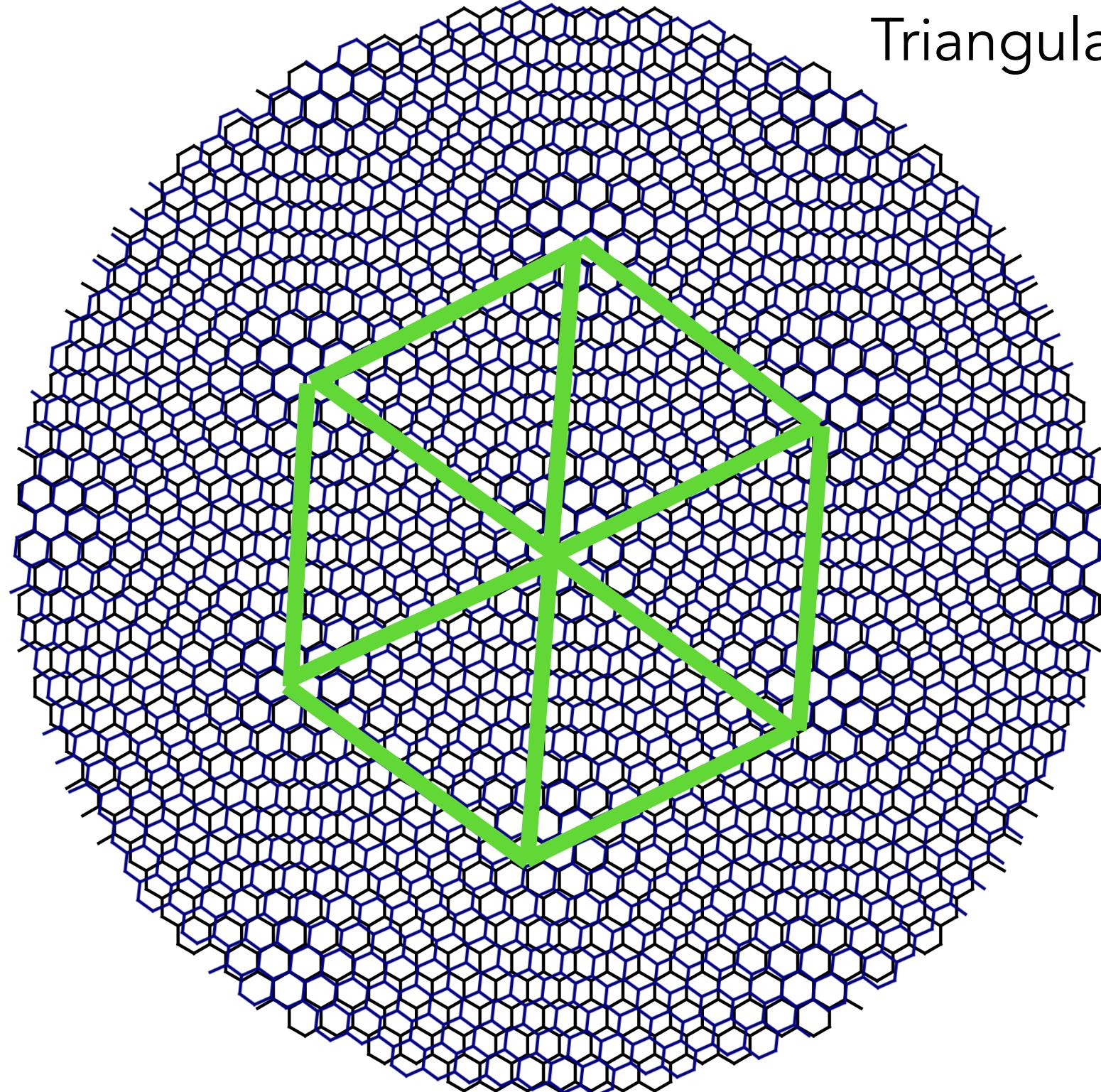
Moiré pattern

6°

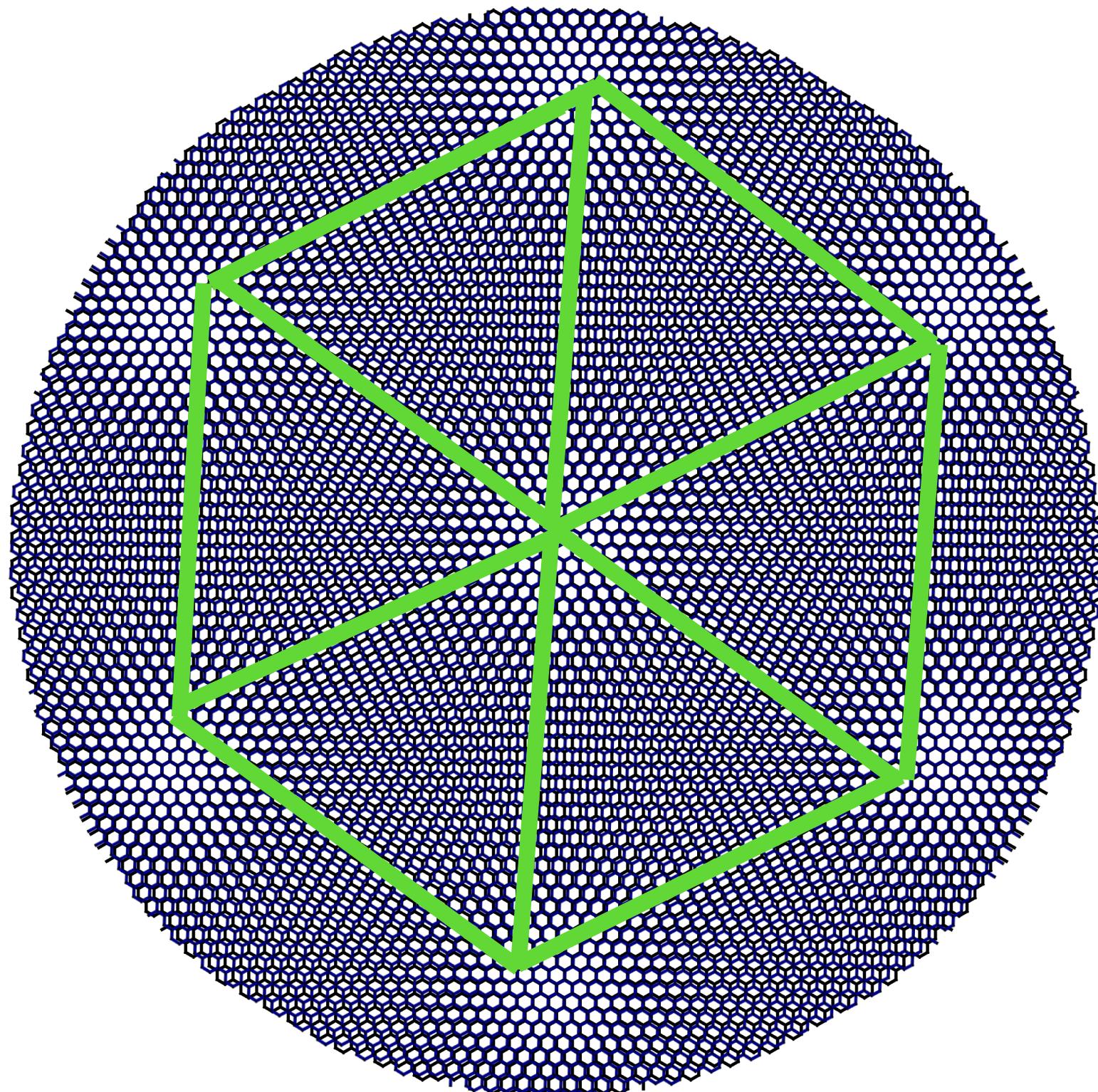


Triangular lattice

6°



2°



1°

$a_m = 13.4\text{nm}$

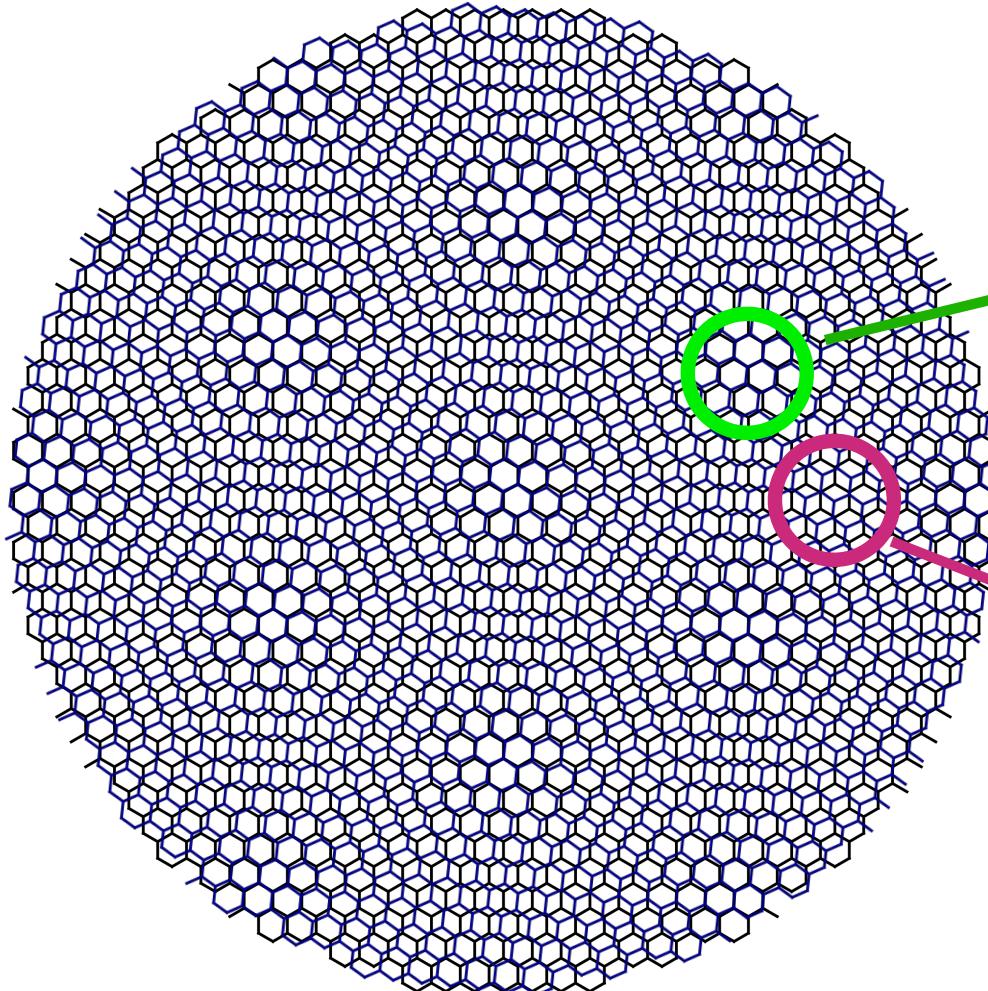
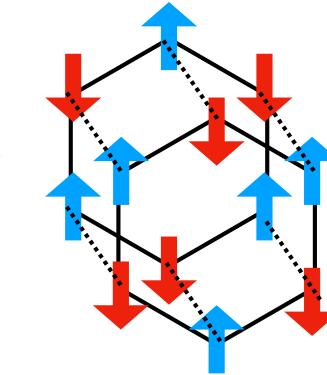
huge unit cell

6°

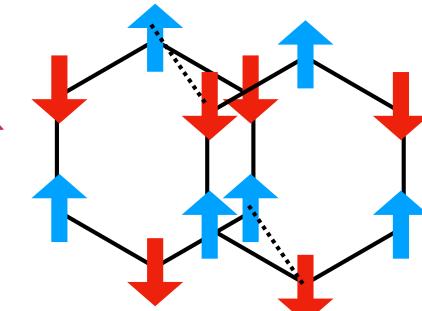
Twisted AF

Kasra Hejazi

Zhu-Xi Luo



$$N_1 = -N_2$$



$$N_1 = N_2$$

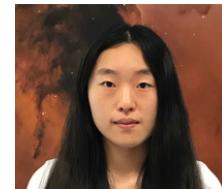
Frustration: Neél vectors must rotate

Continuum model(s)

- Basic assumptions:

- Inter-layer coupling weak $J' \ll J$

Kasra Hejazi



Zhu-Xi Luo

- Rotation angle is small (can also treat general strains)

- Example: MnPS_3 : excellent Heisenberg AF

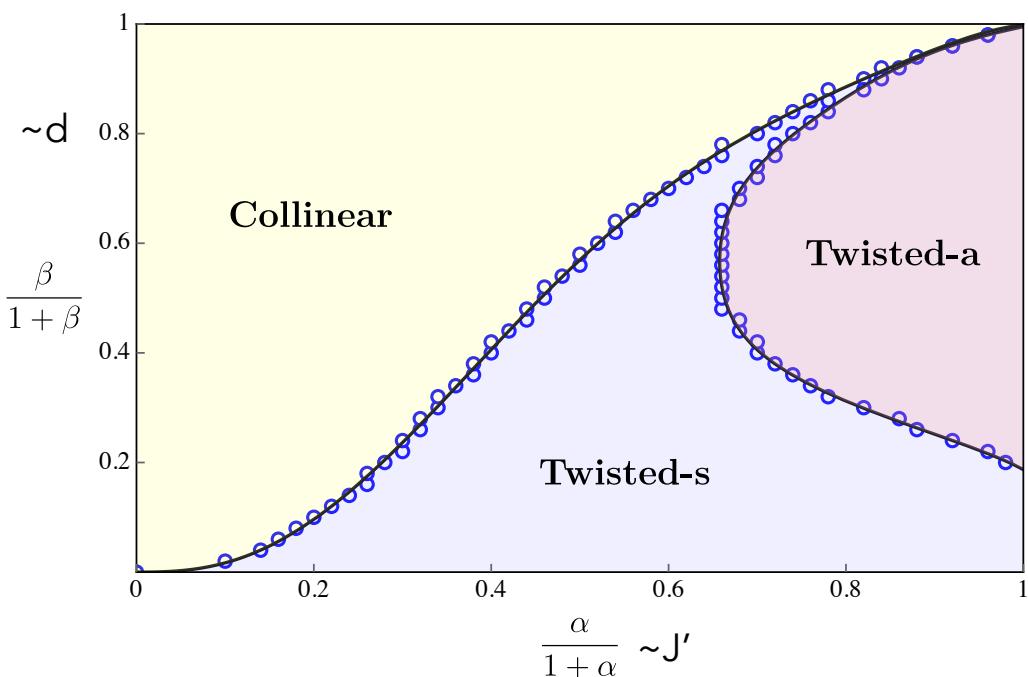
$$\mathcal{L} = \sum_l \frac{\rho}{2v^2} (\partial_t \mathbf{N}_l)^2 - \mathcal{H}_{\text{cl}} \quad \mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{N}_l)^2 - d (N_l^z)^2 \right] - J' \Phi(\mathbf{x}) \mathbf{N}_1 \cdot \mathbf{N}_2$$
$$\Phi(\mathbf{x}) = \sum_{a=1}^3 \cos(\mathbf{q}_a \cdot \mathbf{x})$$

Can predict spin textures, magnon subbands, etc.

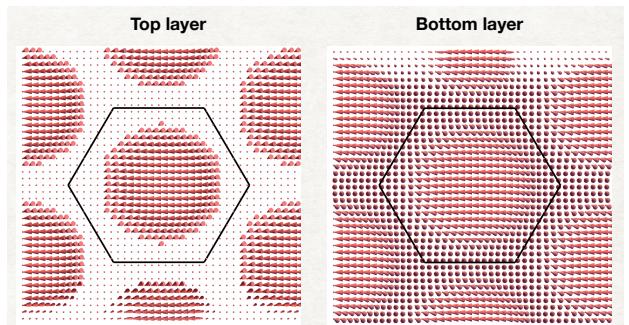
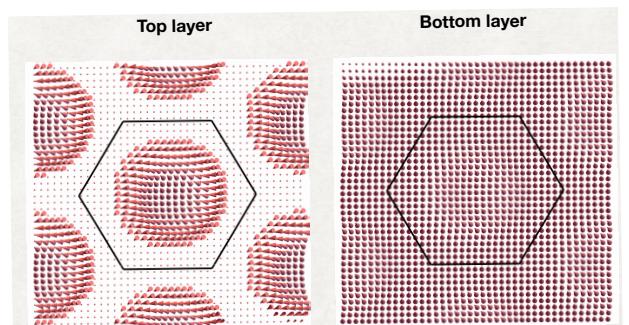
Twisted AF

$$\mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{N}_l)^2 - d (N_l^z)^2 \right] - J' \Phi(\mathbf{x}) \mathbf{N}_1 \cdot \mathbf{N}_2$$

Dimensionless parameter $\alpha = \frac{2J'}{\rho q_m^2} \sim \frac{J'}{J \theta^2}$

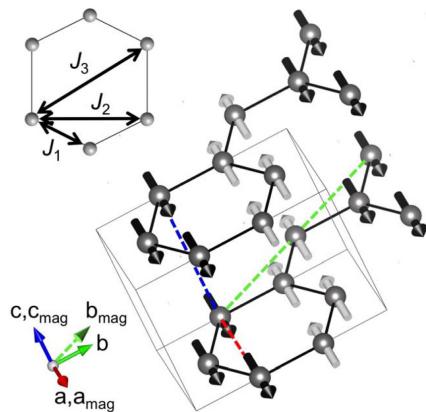


Coplanar spin textures



Transitions should be tunable by applied field

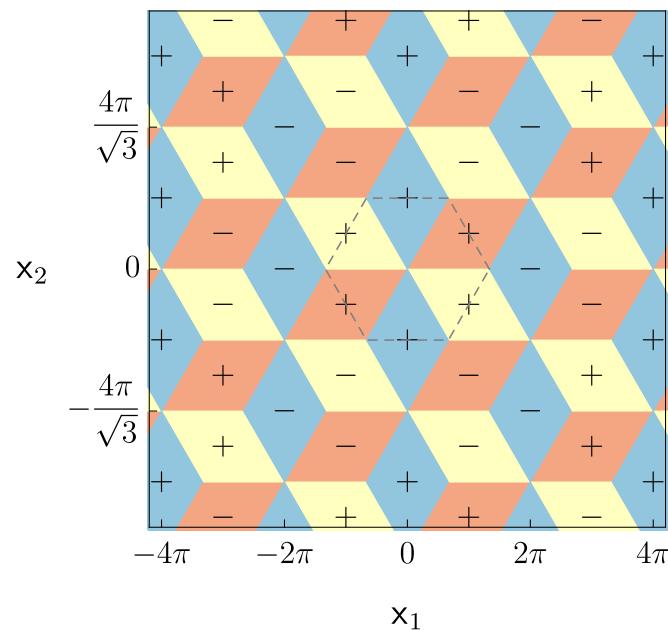
Zig-Zag antiferromagnets



$$\mathcal{H}_{cl} = \sum_{a,l} \frac{\rho}{2} (\nabla \mathbf{N}_{a,l})^2 - \frac{J'}{2} \sum_a \mathbf{N}_{a,1} \cdot \mathbf{N}_{a,2} \cos\left(\frac{\mathbf{q}_a \cdot \mathbf{x}}{2}\right)$$

3 distinct \mathbf{q}_a domains

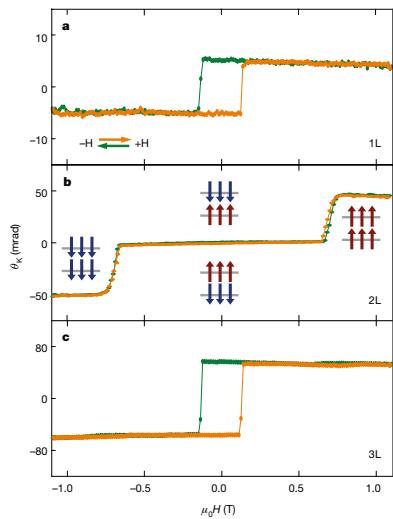
$\text{NiPS}_3, \text{FePS}_3, \text{CoPS}_3, \text{RuCl}_3 \dots$



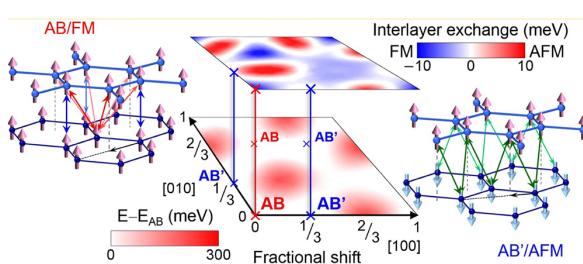
Strong-coupling
domains have structure
of “dice lattice”

CrI₃

Might not expect much from a *ferro*-magnet, but...



B. Huang *et al*, 2017

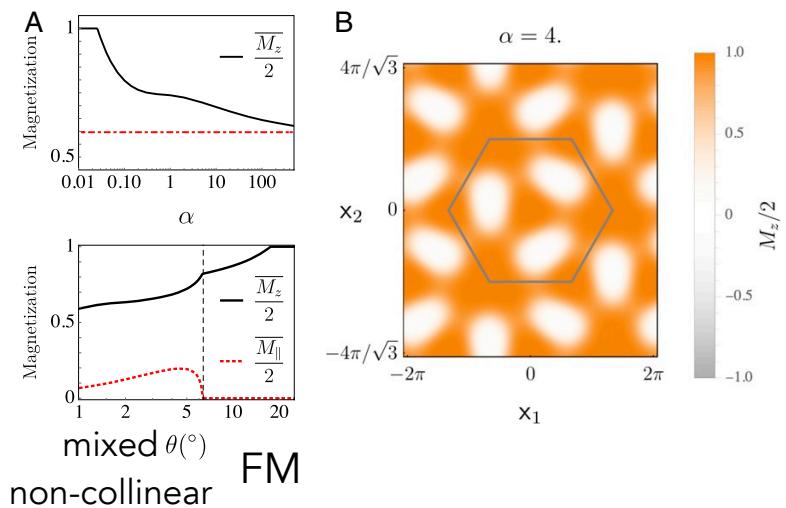


Sivadas *et al*, 2018

$$\mathcal{H}_{\text{cl}} = \sum_l \left[\frac{\rho}{2} (\nabla \mathbf{M}_l)^2 - d (M_l^z)^2 \right] - J' \tilde{\Phi}(\mathbf{x}) \mathbf{M}_1 \cdot \mathbf{M}_2$$

from DFT theory

Sign-changing stacking-dependent interactions



CrI₃

nature
nanotechnology

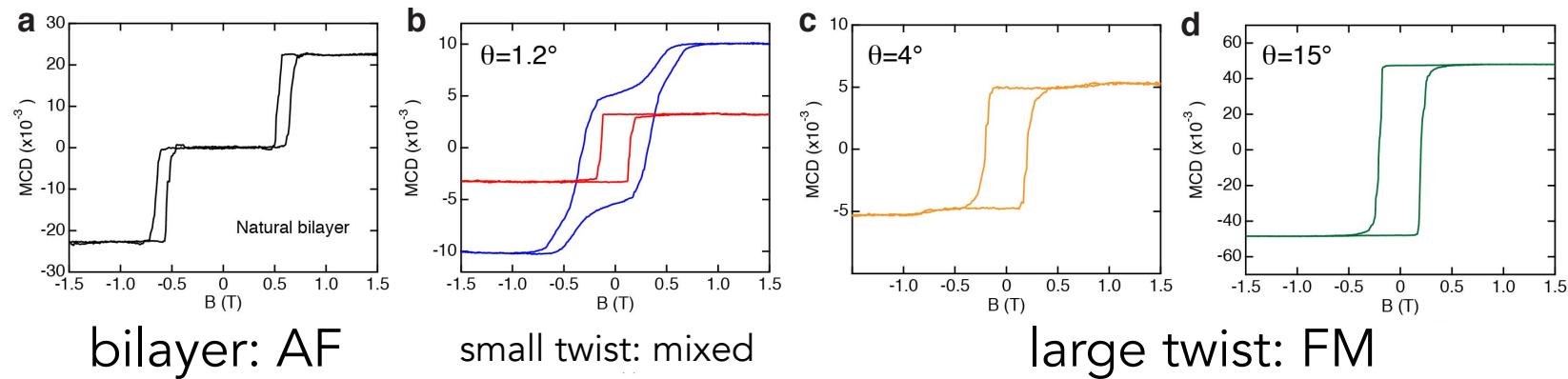
LETTERS

<https://doi.org/10.1038/s41565-021-01014-y>

 Check for updates

Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer CrI₃

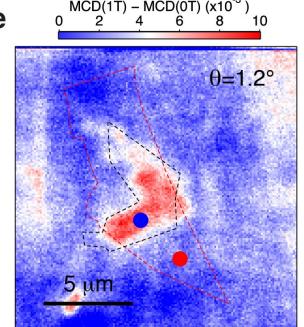
Yang Xu^{1,2}, Ariana Ray³, Yu-Tsun Shao¹, Shengwei Jiang^{1,3}, Kihong Lee^{1,3}, Daniel Weber^{1,4}, Joshua E. Goldberger⁴, Kenji Watanabe^{1,5}, Takashi Taniguchi^{1,6}, David A. Muller^{1,7}, Kin Fai Mak^{1,3,7}✉ and Jie Shan^{1,3,7}✉



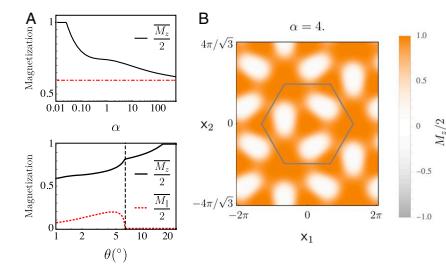
bilayer: AF

small twist: mixed

large twist: FM



c.f.



CrI₃

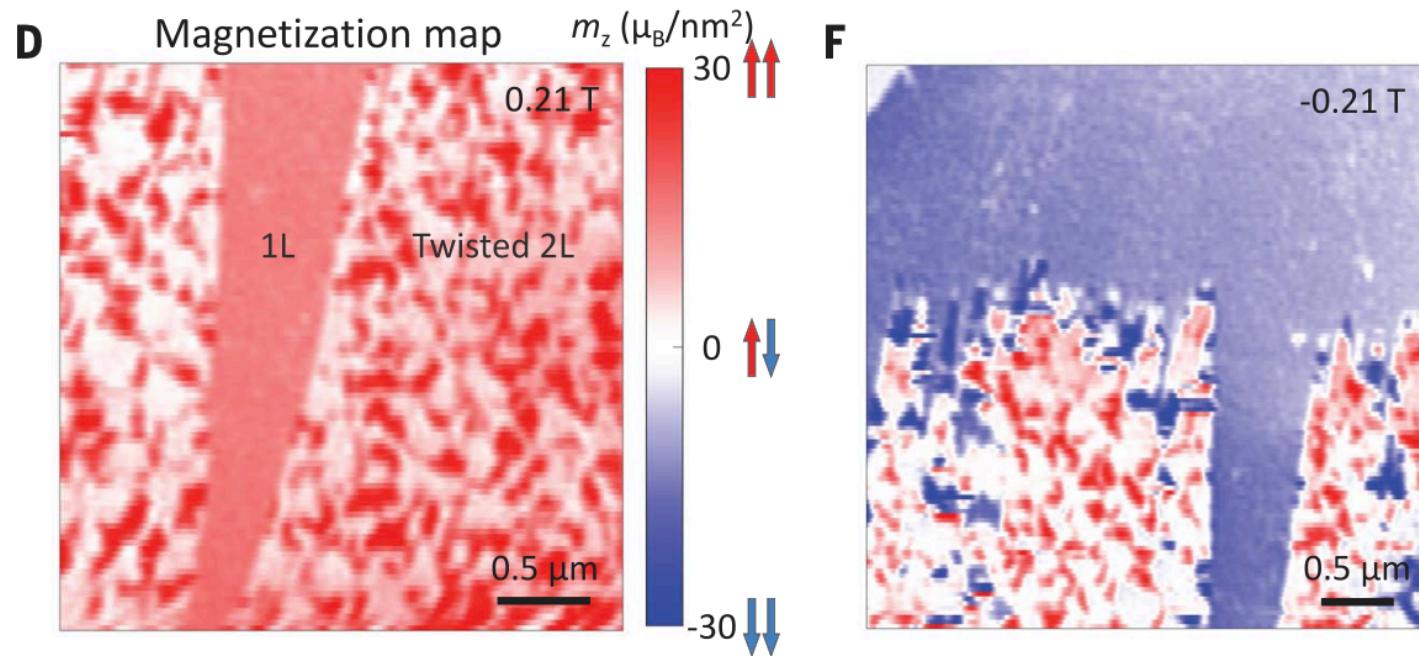
REPORT

MAGNETISM

Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets

Tiancheng Song^{1†}, Qi-Chao Sun^{2†}, Eric Anderson^{1†}, Chong Wang³, Jimin Qian⁴, Takashi Taniguchi⁵, Kenji Watanabe⁶, Michael A. McGuire⁷, Rainer Stöhr^{2,8}, Di Xiao³, Ting Cao⁴, Jörg Wrachtrup^{2,9*}, Xiaodong Xu^{1,4*}

Scanning NV magnetometry



(twist disorder is evident)

Merci

