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Outline
• Twisting spins in Mn3Sn with a magnetic field 


• Multiple energy scales enable control of anomalous Hall 
effect


• Twisting layers of spins in 2d materials


• Twists control new spin textures
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Magnetism
• Atomic spins interact via exchange to favor an ordered 

arrangement


• Aligned parallel: ferromagnets
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Magnetism
• Atomic spins interact via exchange to favor an ordered 

arrangement


• More complex arrangements: antiferromagnets

1949AD: 
antiferromagnetism 
proven experimentally

but there are 1000s of 
them, much more 
common than FMs

Louis Néel



AHE
“Anomalous” Hall effect: a field-independent 

contribution to the Hall effect due to magnetic order
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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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Large “anomalous” Hall 
conductivity

These properties are a desirable combination

Mn3Sn:
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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Large “anomalous” Hall 
conductivity

How do these properties go together???
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Twisting wave functions
Intrinsic anomalous Hall effect from 
Berry curvature:

Physical meaning:

“Flux” of Berry curvature gives phase 
accumulated in an electron’s orbit

Karplus+Luttinger, 
1954

Thouless, Haldane
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Twisting wave functions
Hall vector Ω:

Ω Determines plane of Hall effect
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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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values of ~10 Ω −1 cm−1 at 400 K, which is the highest temperature of 
our measurements. On the other hand, σxy obtained after the FC pro-
cedure in BFC || [0001] with I || [0110] is zero within our experimental 
accuracy at T >  50 K. In the low temperature phase below 50 K, |σxy| 
increases on cooling and reaches 140 Ω −1 cm−1 at 5 K, the lowest tem-
perature of our measurements. In the three FC procedures described 
above, the temperature dependence of the longitudinal resistivity 
ρ(B =  0) was also concomitantly obtained (Fig. 4a, inset). Both in-plane 
and out-of-plane components show saturation at T >  300 K, indicating 
the presence of strong inelastic scattering at high temperatures.

Conventionally, the Hall resistivity is described as ρH =  R0B +  Rsμ0M. 
Here, R0 and Rs are the ordinary and anomalous Hall coefficients, and 
μ0 is the permeability. To further examine the field and magnetization 
dependence of the AHE, we estimated the ordinary Hall contribution 
R0B by using the temperature dependent ρH and M/B for B || c 
(Extended Data Fig. 2, Methods). The obtained R0 =  3.0 ×  10−4 cm3 
C−1 indicates that R0B is negligibly small compared to the observed 
ρH. Plotting ρH versus M in Fig. 2e, we note that ρH for B || c has a 
normal M-linear AHE. Likewise, ρH for B || a–b also shows an M-linear 
AHE in field, Δ ρH =  Rsμ0M (broken lines). Clearly, however, the large 
hysteresis with a sharp sign change in ρH cannot be described by the 
simple linear term, indicating that there is another dominant contri-
bution to the AHE. If we label this additional term as ρH

AF, the Hall 
resistivity in Mn3Sn can be described by

= + + ( )ρ R B R μ M ρ 1H 0 s 0 H
AF

By subtracting R0B and Rsμ0M from ρH, we find that ρH
AF is nearly inde-

pendent of B or M, unlike what is found in FMs (Fig. 2f, Extended Data 
Fig. 3). With the reversal of a small applied field, ρH

AF changes sign,  
corresponding to the rotation of the staggered moments of the non- 
collinear spin structure10,12. Thus, the large AHE, ρH

AF, must have a dis-
tinct origin driven by the antiferromagnetic order.

In a magnetic conductor with relatively high resistivity, the AHE  
is dominated by contributions ∝ ρ2. Thus, it is useful to compare 
SH =  μ0Rs/ρ2 for Mn3Sn with those for various magnets (Extended  
Data Table 1, Methods)3. Normally for FMs such as Fe, Ni and MnSi, 
SH is known to be field-independent, and takes values of the order of 
0.01–0.1 V−1 (refs 3, 18, 19). Indeed, the field-induced M-linear con-
tribution of the AHE has a field-independent SH, which has the posi-
tive sign and the same order of magnitude as in FMs. On the other 
hand, one can also define SH for the spontaneous component at zero 
field as SH

0  =   ρH(B =   0)/[ρ2(B =   0)M(B =   0)] =   ρH
AF(B =   0)/

[ρ2(B =  0)M(B =  0)] +  SH. We find significantly large |SH
0 | ! |SH|, 

reaching 14 V−1 at 100 K and with a different sign from SH (Fig. 4b, 
Extended Data Table 1). This indicates that ρH

AF, which is the dominant 
part of the spontaneous component, has a different origin from the 
conventional AHE (Methods).

A large AHE in a non-collinear AFM was first theoretically predicted 
for Mn3Ir, which has a stacked kagome lattice of Mn atoms, similarly to 
Mn3Sn (ref. 7). Chen et al.7 considered that an AHE may be induced by 
breaking a symmetry of a single layer kagome lattice that has a triangular 
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.

–6

–4

–2

0

2

4

6

–1 –0.5 0 0.5 1
–6

–4

–2

0

2

4

6

–20 –10 0 10 20
M (mPB per f.u.)

–40

–20

0

20

40

–1 –0.5 0 0.5 1

V H
 (Ω

–1
 c

m
–1

)

V H
 (Ω

–1
 c

m
–1

)

–150

–100

–50

0

50

100

150

–1 –0.5 0 0.5 1

T = 100 K

–4

–2

0

4

2

316

318

320

322

324

–1 –0.5 0 0.5 1

Mn3Sn Mn3Sn

Mn3Sn

Mn3Sn

Mn3SnMn3Sn

T = 300 K

T = 300 K

T = 300 KT = 300 K

U H
 (μ
Ω

 c
m

)
U H

 (μ
Ω

 c
m

)

U (μΩ
 cm

) U H
 (μ
Ω

 c
m

)
U H

  (
μΩ

 c
m

)
A

F

UH

U

B (T) B (T)

B (T) B (T)

B (T)

–8

–4

0

4

8

–1 –0.5 0 0.5 1

350 K

400 K

200 K

100 K

300 K

ba

c d

e f

B || [2110] 

I || [0110] 

I || [0001] 

I || [0001] 

I || [0001] 

B || [0110] 

B || [0110] 

B || [0110],  I || [0001] B || [0110],  

I || [0001] 
B || [0110] 

B || [2110] 

B || [2110],  

B || [0001] 

I || [0110] 

B || [2110] 
I || [0110] 

B || [2110] 
I || [0110] 

I || [0110] 

I || [0110] 

B || [0001] 
I || [0110] 

B || [0001] 
I || [0110] 

B || [0001] 
I || [0110] 

Why such a tiny moment?
For B>.2T, plane of the AHE follows the field

Hall effect in 
vertical plane

Ω



Energetics: triangle
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FIG. 2. Magnetic torque measurements: (a) The home-made experimental setup and its photograph (top) with a capacitive
torque magnetometer, rotating the field in the xy-plane of the Mn3Sn sample. (b) The angle dependent torque responses for
magnetic fields up to 6 T. (c) The angle dependent torque responses for magnetic fields larger than 6 T. H k x corresponds
to 0�. (d) Fit to the 13 T data with an expression, which has only a two-fold and a six-fold term (⌧ = K2 · sin(2 · (� +
�2)) +K6 · sin(6 · (�+ �6))). The mismatch is obvious. (e) The residual torque component after subtracting the data and the
previous fit. It shows a clear twelve-fold symmetry. (f) A fit which includes an additional twelve-fold symmetry component
(K12 · sin(12 · (�+ �12))). (g) Fitting parameters K2(H), K6(H) and K12(H) as a function of magnetic field.

(F (3,6) / H3cos6✓). A consistency check can be done
by comparing the magnitude of K6, the angle deriva-
tive and M2,6, the field derivative. At 13 T, K6 is 4700-
5600 Jm�3, implying F (3,6) ⇡ 0.34 ± 4 µeV/f.u. and
M2,6 is 0.8 mµB per f.u. corresponding to F (3,6) ⇡
0.20 µeV/f.u.. The di↵erence may result from the low-
order (< H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments are
given in Table I.

Let us now show that theory provides a satisfactory
account of the existence and the amplitude of K6 term as
well as the emergence and rapid growth of the secondary
K12 term with increasing magnetic field.

Following Liu and Balents [19], the energy per mag-
netic unit cell (six spins) consists of the sum of four terms
(See Fig.3b) [32], written in terms of spin vectors Si on
the three sublattices i = 1, 2, 3 (with 4 $ 1 identified).
These are Heisenberg: 4J

P
i Si · Si+1; Dzyaloshinskii-

Moriya (DM): 4D
P

i ẑ ·Si⇥Si+1; Single-ion-anisotropy
(SIA) : �2K

P
i(Si · êi)2; and Zeeman: �2µ

P
i H · Si.

For D > 0 and in absence of SIA and Zeeman terms, the
ground state is an anti-chiral state with in-plane spins.
A finite magnetic field will distort the spin triangles (See
Fig.3a) by some small amounts ⌘i from the ideal 120�

state. The distortion angles ⌘i are small, because in our

window of investigation (H < 14T), one has K ⌧ J
and µH ⌧ J . In the supplement[32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion
for the free energy and angles in the small parameters
K/J, µH/J ⌧ 1, which are indeed small in our experi-
mental window (H < 14T). This leads to an expression
for the free energy per unit cell (See the supplement[32]).

The first term is linear in magnetic field :

F (1,ab) =
KµH

J +
p
3D

(3)

The quadratic term [32] has slightly di↵erent expressions
for in-plane and out-of-plane orientations of magnetic
field is:

F (2,ab) =
(µH)2

2J
(1�

p
3D

J
)

F (2,c) =
(µH)2

2J
(1� Dp

3J
)

(4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic
field, in agreement with what is seen experimentally (See
Table I). For in-plane configuration, the first correction
to the quadratic term has a cos6✓ angle dependence. Its
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(F (3,6) / H3cos6✓). A consistency check can be done
by comparing the magnitude of K6, the angle deriva-
tive and M2,6, the field derivative. At 13 T, K6 is 4700-
5600 Jm�3, implying F (3,6) ⇡ 0.34 ± 4 µeV/f.u. and
M2,6 is 0.8 mµB per f.u. corresponding to F (3,6) ⇡
0.20 µeV/f.u.. The di↵erence may result from the low-
order (< H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments are
given in Table I.

Let us now show that theory provides a satisfactory
account of the existence and the amplitude of K6 term as
well as the emergence and rapid growth of the secondary
K12 term with increasing magnetic field.

Following Liu and Balents [19], the energy per mag-
netic unit cell (six spins) consists of the sum of four terms
(See Fig.3b) [32], written in terms of spin vectors Si on
the three sublattices i = 1, 2, 3 (with 4 $ 1 identified).
These are Heisenberg: 4J

P
i Si · Si+1; Dzyaloshinskii-

Moriya (DM): 4D
P

i ẑ ·Si⇥Si+1; Single-ion-anisotropy
(SIA) : �2K

P
i(Si · êi)2; and Zeeman: �2µ

P
i H · Si.

For D > 0 and in absence of SIA and Zeeman terms, the
ground state is an anti-chiral state with in-plane spins.
A finite magnetic field will distort the spin triangles (See
Fig.3a) by some small amounts ⌘i from the ideal 120�

state. The distortion angles ⌘i are small, because in our

window of investigation (H < 14T), one has K ⌧ J
and µH ⌧ J . In the supplement[32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion
for the free energy and angles in the small parameters
K/J, µH/J ⌧ 1, which are indeed small in our experi-
mental window (H < 14T). This leads to an expression
for the free energy per unit cell (See the supplement[32]).

The first term is linear in magnetic field :

F (1,ab) =
KµH

J +
p
3D

(3)

The quadratic term [32] has slightly di↵erent expressions
for in-plane and out-of-plane orientations of magnetic
field is:

F (2,ab) =
(µH)2

2J
(1�

p
3D

J
)

F (2,c) =
(µH)2

2J
(1� Dp

3J
)

(4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic
field, in agreement with what is seen experimentally (See
Table I). For in-plane configuration, the first correction
to the quadratic term has a cos6✓ angle dependence. Its
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The magnetic free energy is usually quadratic in magnetic field and depends on the mutual ori-
entation of the magnetic field and the crystalline axes. Tiny in magnitude, this magnetocrystalline
anisotropy energy (MAE) is nevertheless indispensable for the existence of permanent magnets.
Here, we show that in Mn3Sn, a non-collinear antiferromagnet attracting much attention following
the discovery of its large anomalous Hall e↵ect, the free energy of spins has superquadratic compo-
nents, which drive the MAE. We experimentally demonstrate that the thermodynamic free energy
includes terms odd in magnetic field (F (H3)+F (H5)) and generating sixfold and twelve-fold angu-
lar oscillations in the torque response. We show that they are quantitatively explained by theory,
which can be used to quantify relevant energy scales (Heisenberg, Dzyaloshinskii-Moriya, Zeeman
and single-ion anisotropy) of the system. Based on the theory, we conclude that, in contrast with
common magnets, what drives the MAE in Mn3Sn is the field-induced deformation of the spin
texture.

Aligned spins located on two adjacent atoms are af-
fected by the anisotropic electrostatic forces connecting
their orbital angular momenta [1]. This magnetocrys-
talline anisotropy energy (MAE), a consequence of the
spin-orbit coupling, is remarkably small (⇠ 60µ eV/atom
in Co and ⇠ 1µ eV/atom in Fe and Ni). Since it is the
outcome of the competition between energies many or-
ders of magnitude larger, it is hard to calculate from first
principles [2, 3].

Mn3Sn, a noncollinear antiferromagnet with an inverse
triangle spin structure located on a breathing kagome
lattice [4] has attracted much attention following the
observation of a large anomalous Hall e↵ect(AHE) [5]
with a sizeable net Berry curvature near the Fermi
level [6]. The discovery was followed by the observation
of various counterparts of AHE, including the anoma-
lous Nernst [7, 8] and the anomalous thermal Hall ef-
fects [8–10], as well as the anomalous magneto-optical
Kerr e↵ect [11, 12]. These are room-temperature e↵ects
requiring a small magnetic field. Therefore, Mn3Sn is
potentially attractive in the field of antiferromagnetic
spintronics [13–16] or as a Nernst thermopile [7, 17].
The peculiar spin texture of Mn3Sn has been subject
of several studies [18–23]. The magnetic Hamiltonian
includes Heisenberg and Dzyloshinskii-Moriya spin-spin
interaction terms dominating by far the small single-ion
anisotropy term [19]. A study of torque magnetome-
try [24] quantified the latter. Previous experiments have
documented that magnetic domain walls are chiral [25]
and host a topological Hall e↵ect associated with a finite
skyrmionic number [26].

In this letter, combining experimental and theoretical
study of angular magnetization and torque magnetom-
etry, we have resolved di↵erent components (up to the
fifth order) of magnetic free energy in a kagome anti-
ferromagnet Mn3Sn, including two rare odd terms with

superquadratic field dependence and presenting sixfold
and twelvefold oscillations. Moreover, the quantitative
agreement between theory and torque magnetometry ex-
periments permit us to quantify all relevant energy scales
of spin interactions such as Heisenberg, Dzyaloshinskii-
Moriya, Zeeman and single-ion anisotropy.

Fig. 1 shows in-plane, Mab, and out-of-plane, Mc, mag-
netization. As shown in Fig. 1b-e. After subtracting the
linear background, we find an additional term quadratic
in magnetic field. We conclude that the magnetization
consists of at least three terms:

Mtotal = M0 +M1 +M2 +O(H3) ⇡ m0 + �H + CH2

(1)
The first two terms are the zero-field spontaneous weak
ferromagnetism and the linear paramagnetism respec-
tively resolved in previous studies [5]. The third term,
M2, was not detected in previous studies and repre-
sents a second-order correction to the magnetization re-
sponse [27–30]. Since the magnetization is the partial
derivative of the magnetic free energy with respect to
the magnetic field (M = @FM/@H), a finite M2 implies
an additional term for the magnetic free energy:

FM =
X

i

m0,iHi+
1

2

X

i,j

�i,jHiHj+
1

3

X

i,j,k

Ci,j,kHiHjHk.

(2)
Here, Ci,j,k is a 3 ⇥ 3 ⇥ 3 tensor, which represents

the second odd term in the field dependence of the free
energy.

The angular variation of these three terms was inves-
tigated by measuring magnetization at di↵erent angles,
using the set-up shown in Fig. 1f. Rotation was achieved
by changing the sharp angle of a quartz wedge held be-
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We then write the angles as

�1 = �+ ⌘1, �2 = �� 2⇡

3
+ ⌘2, �3 = �� 4⇡

3
� ⌘1 � ⌘2. (S5)

Here � gives the order parameter angle, and ⌘1, ⌘2 are small distortions of the triangle.
To be systematic, we introduce a small parameter r ⌧ 1, and let K ! Kr and H ! Hr, and then expand ⌘1,2

in a formal series in r and minimize the energy order by order in r. This is e↵ectively an expansion in K/J and
µH/J , which may safely be considered small parameters. There is a priori no need to assume D ⌧ J as a second
small parameter but since in reality it is small, it is sometimes convenient to simplify very cumbersome algebraic
expressions, and we will occasionally use it.
This procedure can be carried out at fixed �.
So assuming this condition, we can systematically write

⌘i =
1X

n=1

⌘i,nr
n, (S6)

and expand the full energy order by order in r. We successively minimize terms beginning at O(r2) in the energy
over ⌘i,n which appear in these expressions. This determines the small distortions of the triangle at each order and
results in a fully determined expansion of the energy:

Eu.c. =
1X

n=0

E(n)
u.c., (S7)

where

E(0)
u.c. =� 6J � 6

p
3D, (S8)

E(1)
u.c. =� 3K, (S9)

E(2)
u.c. =� (µH)2 +K2 + 2µHK cos(✓ + �)

2
�p

3D + J
� , (S10)

E(3)
u.c. =� 1

36(J +
p
3D)3

h
(3J + 7

p
3D)K3 cos(6�) + 6(J + 3

p
3D)µHK2 cos(5�� ✓)

+ 3(J + 5
p
3D)(µH)2K cos(4�� 2✓) + 4

p
3D(µH)3 cos(3�� 3✓)

i
. (S11)

These expressions are a bit complicated and rather ugly at higher orders. Higher order terms are negligible for the
e↵ects we discuss here.
The energy should now be minimized over the order parameter angle �. One can see that the third and second order

terms have di↵erent angular dependence, hence there is a competition between the two in determining this angle.
To proceed, we will assume that the second order term is dominant, being lower order. This is true unlessH becomes

very small, because the second order term’s angular dependence vanishes for H = 0. Comparing the coe�cient of
cos(� + ✓) from the second order term and the coe�cient of cos(6�) from the third order term, we see this implies
the condition

µH � K2/J. (S12)

When this is true, (and recall we assumed µH,K ⌧ J) the second order term is parametrically larger, so � must be
close (but not equal!) to the minimum of this term. Hence we can write � = �✓+ , and we expect  ⌧ 1. Therefore

we expand E(2)
u.c. to second order in  (it is quadratic around its minimum) and E(3)

u.c. to first order in  , and minimize
over  . This leads to the final expression for the energy

Eu.c. = �6J � 6
p
3D � 3K � (µH +K)2

2(J +
p
3D)

h
1 +

(3J + 7
p
3D)K + 4

p
3DµH

18(J +
p
3D)2

cos(6✓)

+

�
(3J + 7

p
3D)K2 + 2(J + 4

p
3D)µHK + 2

p
3D(µH)2

�2

36(J +
p
3D)4µHK

sin2(6✓)
i
. (S13)
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Component F (1,ab) F (1,c) F (2,ab) F (2,c) F (3,0) F (3,6) F (5,12) F (1.5,2)

Experimental responses Mab
0 Mc

0 Mab
1 Mc

1 Mab
2,0 Mab

2,6/K6 K12 K2

Experimental amplitude 1.7 0.11 21.4 27.9 0.37 0.067/0.115 0.018 0.028

TABLE I. Components of the magnetic free energy in Mn3Sn identified by measurements of magnetization (M0, M1 and M2)
and torque (K2, K6 and K12). Experimental amplitudes refer to what was measured at 13 T, expressed in units of µ eV/Mn.
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FIG. 3. Magneto-crystalline anisotropy driven by field-induced twist of non-aligned spins: (a) The magnetic field
distorts the spin triangle (in white), which is no more isomorphic to the lattice triangle (in gray). The deformation angles ⌘i
quantify the distortion. (b) Interaction between one spin and its immediate neighbors favor clockwise and anticlockwise twists.
The Zeeman e↵ect favors alignment of all spins with magnetic field. Single-ion anisotropy causes in-equivalency between the
two perpendicular orientations of the spin triangle with respect to the lattice triangle. (c) The lag angle  between the rotated
magnetic field and the total magnetization. (d) The experimental K6 and K12 (symbols) compared to theoretical expectation
(solid line) using µ = 3µB , J = 20.1meV , D/J = 0.18, K/J = 0.0065. (e) The deformation angles ⌘i and lag angle  at 3 T,
8 T and 13 T predicted by theory [32].

amplitude is equal to:

F (3,6) =
(K + µH)2((3J + 7

p
3D)K + 4

p
3DµH)

36(J +
p
3D)3

(5)

The term with highest exponent is H3. As one can see in
Fig. 3d, this expression provides an excellent account of
the field and angular dependence of the experimentally
observed K6. The next component has a sin2(6✓) angle
dependence and is equal to:

F (5,12) =
(K + µH)2

72(J +
p
3D)5µHK

((3J + 7
p
3D)K2+

2(J + 4
p
3D)µHK + 2

p
3D(µH)2)2

(6)

Here, the highest-order term is H5 and it accounts for
the emergence of K12 in the torque data and its field
dependence. (See Fig. 3d). The model also yields the
evolution of the deformation angles ⌘i and the lag angle  
with rotating magnetic field. They are plotted in Fig.3e.

The agreement between theory and experiment allows
us to extract the energy scales of the system. Taking

the magnetic moment of each Mn atom to be µ = 3 µB ,
as reported by neutron di↵raction studies [33, 34], we
extracted J , D, and K by fitting the torque data with
the angle derivative F (3,6) and F (5,12), as seen in Fig.3d.
The results are summarized in table II. Alternatively, one
can use the magnetization data and the field derivative
F (1,ab), F (2,ab) and F (2,c), the results are given in the sec-
ond row of table II. As seen in the table II, J = 20.1 meV,
which is somewhat larger than what is yielded by mag-
netization. There are several plausible sources for this.
One is the presence of additional ferromagnetic couplings
between spins of the same sublattice [21], which enhance
the magnetization but do not contribute to torque. A
second is field-induced out-of-plane spin canting [26] ne-
glected in the present model. A third possible source is
a finite orbital contribution [35–39] to the in-plane mag-
netization (See the supplement for details [32]). We note
that our result for J is fairly close to the what has been
reported by a study of magnon dispersion by inelastic
neutron scattering (18 meV) [21]. Finally, our study pins
down the values for K and D.

In summary, the magnetic free energy in Mn3Sn, in-
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We discuss the orientation of triangle-based antiferromagnets in an applied field.

The elementary unit of a triangle of spins is often
considered the building block of frustrated magnetism.
Three spins on such a triangle with antiferromagnetic
Heisenberg interactions enjoy, in the classical limit, an
O(3) rotational degeneracy of ground states in which the
spins lie in a plane at 120 degree angles to one another.
When a field is applied, the degeneracy enlarges from
this symmetry-mandated one to an accidental degeneracy
which includes both coplanar and non-coplanar states.
When such triangles are assembled into the canonical
triangular lattice, thermal and quantum fluctuations are
known to break this degeneracy in favor of the copla-
nar ones, a phenomena known as “order by disorder”.
Larger degeneracies are found when the triangles are
more weakly connected, as in the famous kagomé lat-
tice. There the Heisenberg degeneracy becomes exten-
sive, and ordering is strongly suppressed. Commonly
in real materials, weak symmetry breaking e↵ects such
as Dzyaloshinskii-Moriya (DM) coupling and single-ion
anisotropy (SIA) provide another degeneracy breaking
mechanism leading to a selection of three-sublattice or-
dered states.

In this Letter?, we study a very common situation
of three-sublattice order based on triangles in which the
Heisenberg O(3) symmetry of the Hamiltonian is weakly
broken by DM and SIA in favor of coplanar order in
zero applied field. We adopt a symmetry-based approach
based on order parameters, which is more universal than
microscopic models of specific exchange interactions, but
which incorporates a hierarchy of coupling strengths. In
particular, we assume that Heisenberg exchange J is the
largest scale, followed by DM with strength D and SIA
of strength K, i.e. J � D � K. This is inspired by the
breathing kagomé lattice materials Mn3Sn and Mn3Ge,
but is very typical for third row transition metal magnets.
We focus on the anti-chiral state (selected for D > 0, see
Eq. (5)), in which, proceeding clockwise around the tri-
angle, spins rotate counter-clockwise. Spins in the anti-
chiral state are nearly free to rotate globally (see below).

From this perspective, we consider the evolution of the
spin configurations in an applied field, and in particu-
lar how the spins rotate when the field is rotated within
the XY plane favored by DM coupling. We show that
there is an emergent low magnetic field scale H⇤ sepa-
rating two distinct behaviors. When the field is much
smaller than H⇤, the angle of a single spin within the
plane rotates in the opposite sense as the field, i.e. if
the field is oriented at an angle ✓ in this plane, each spin

rotates with angle �n = �(0)
n � ✓, where �(0)

n is an o↵-

set for each sublattice n. Conversely, when the field is
much larger than H⇤, the spins rotate in sync with the

field, i.e. �n = �(0)
n + ✓. These competing tendencies

result in abrupt and discontinuous changes in the spin
configurations, which form lines of first order transitions
in the plane of the magnetic field, terminating at second
order Ising critical points. We argue that features re-
cently observed in sensitive measurements of the angular
dependence of magnetization and torque in Mn3Sn are
precursors of these transitions, and that the transitions
should be observable in higher magnetic fields.
Symmetry and order parameters: We begin by present-

ing a derivation of the free energy as a function of spin
angle based on symmetry and the hierarchy of energy
scales. We assume at the outset that we have a mag-
netic system whose ordered structure is fully specified by
giving the orientation of a set of three spins on an ele-
mentary triangle. We further assume that the dominant
interactions between these three spins are antiferromag-
netic and isotropic,

H0 = J (S0 · S1 + S1 · S2 + S2 · S0) , (1)

with J > 0. This favors an ordered state in which the
three spins sum to zero, and have equal magnitudes of
their expectation values. Such states can be written as

hSni = Re
h
d e

2⇡in
3

i
, (2)

where d is a complex vector satisfying

d · d = 0. (3)

The last relation is required for the magnitude |hSni| to
be independent of n = 0, 1, 2. This is not a requirement,
but would be expected at low temperature classically.
In general, the order parameter can also be written in
terms of two orthogonal real vectors of equal magnitude,
d = u+ iv, where Eq. (3) implies |u|2 = |v|2, u · v = 0.
These two vectors u,v define a plane in which the spins
lie. From this one can define a third vector normal to the
plane, w = u⇥ v = 1

2 Im (d⇤ ⇥ d).
In the following, we use the assumption that perturba-

tions from the Heisenberg limit, i.e. DM, SIA, and ap-
plied field, are all small compared to J . Then deviations
from the above form are small and more importantly they
can be considered to be induced by the perturbations. In
the e↵ective field theory (or Landau) sense such devia-
tions correspond to massive modes or subdominant order
parameters, and can be integrated out order by order in
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more weakly connected, as in the famous kagomé lat-
tice. There the Heisenberg degeneracy becomes exten-
sive, and ordering is strongly suppressed. Commonly
in real materials, weak symmetry breaking e↵ects such
as Dzyaloshinskii-Moriya (DM) coupling and single-ion
anisotropy (SIA) provide another degeneracy breaking
mechanism leading to a selection of three-sublattice or-
dered states.

In this Letter?, we study a very common situation
of three-sublattice order based on triangles in which the
Heisenberg O(3) symmetry of the Hamiltonian is weakly
broken by DM and SIA in favor of coplanar order in
zero applied field. We adopt a symmetry-based approach
based on order parameters, which is more universal than
microscopic models of specific exchange interactions, but
which incorporates a hierarchy of coupling strengths. In
particular, we assume that Heisenberg exchange J is the
largest scale, followed by DM with strength D and SIA
of strength K, i.e. J � D � K. This is inspired by the
breathing kagomé lattice materials Mn3Sn and Mn3Ge,
but is very typical for third row transition metal magnets.
We focus on the anti-chiral state (selected for D > 0, see
Eq. (5)), in which, proceeding clockwise around the tri-
angle, spins rotate counter-clockwise. Spins in the anti-
chiral state are nearly free to rotate globally (see below).

From this perspective, we consider the evolution of the
spin configurations in an applied field, and in particu-
lar how the spins rotate when the field is rotated within
the XY plane favored by DM coupling. We show that
there is an emergent low magnetic field scale H⇤ sepa-
rating two distinct behaviors. When the field is much
smaller than H⇤, the angle of a single spin within the
plane rotates in the opposite sense as the field, i.e. if
the field is oriented at an angle ✓ in this plane, each spin

rotates with angle �n = �(0)
n � ✓, where �(0)

n is an o↵-

set for each sublattice n. Conversely, when the field is
much larger than H⇤, the spins rotate in sync with the

field, i.e. �n = �(0)
n + ✓. These competing tendencies

result in abrupt and discontinuous changes in the spin
configurations, which form lines of first order transitions
in the plane of the magnetic field, terminating at second
order Ising critical points. We argue that features re-
cently observed in sensitive measurements of the angular
dependence of magnetization and torque in Mn3Sn are
precursors of these transitions, and that the transitions
should be observable in higher magnetic fields.
Symmetry and order parameters: We begin by present-

ing a derivation of the free energy as a function of spin
angle based on symmetry and the hierarchy of energy
scales. We assume at the outset that we have a mag-
netic system whose ordered structure is fully specified by
giving the orientation of a set of three spins on an ele-
mentary triangle. We further assume that the dominant
interactions between these three spins are antiferromag-
netic and isotropic,

H0 = J (S0 · S1 + S1 · S2 + S2 · S0) , (1)

with J > 0. This favors an ordered state in which the
three spins sum to zero, and have equal magnitudes of
their expectation values. Such states can be written as

hSni = Re
h
d e

2⇡in
3

i
, (2)

where d is a complex vector satisfying

d · d = 0. (3)

The last relation is required for the magnitude |hSni| to
be independent of n = 0, 1, 2. This is not a requirement,
but would be expected at low temperature classically.
In general, the order parameter can also be written in
terms of two orthogonal real vectors of equal magnitude,
d = u+ iv, where Eq. (3) implies |u|2 = |v|2, u · v = 0.
These two vectors u,v define a plane in which the spins
lie. From this one can define a third vector normal to the
plane, w = u⇥ v = 1

2 Im (d⇤ ⇥ d).
In the following, we use the assumption that perturba-

tions from the Heisenberg limit, i.e. DM, SIA, and ap-
plied field, are all small compared to J . Then deviations
from the above form are small and more importantly they
can be considered to be induced by the perturbations. In
the e↵ective field theory (or Landau) sense such devia-
tions correspond to massive modes or subdominant order
parameters, and can be integrated out order by order in
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the perturbations. This allows one to work with an e↵ec-
tive free energy which is a function of d only (satisfying
Eq. (3)), but in which the strength of perturbations may
enter non-linearly.

We construct this free energy based on symmetry and
the hierarchy of interactions. First, consider the sym-
metries in the isotropic limit where D = K = 0, i.e.
with the Hamiltonian in Eq. (1). There is in this case
a global SO(3) symmetry under Sn ! OSn, where O

is an arbitrary SO(3) matrix. From Eq. (2), this takes
d ! Od. Second, Eq. (1) has full S3 symmetry under ar-
bitrary permutations of the three spins. It is convenient
to regard the permutation symmetry as generated by a
Z3 cyclic permutation which takes Sn ! Sn+1 and a
Z2 permutation which exchanges S1 $ S2. Under these
two operations, respectively, we have d ! e2⇡i/3d and
d ! d⇤.

In zero magnetic field, the only non-zero invariant (us-
ing Eq. (3)) under all these symmetries is d⇤ · d, so the
zero field free energy in the isotropic limit is a function of
this quantity alone. This dependence can be regarded as
simply fixing the overall magnitude of the order parame-
ter, d⇤ · d = 2n2

0, where n0 is the size of a local moment.
While this may shift slightly as anisotropy and field are
turned on, the e↵ects can be absorbed in other terms,
and we can treat it, following the Landau logic, as fixed.

With this understanding, we now introduce the mag-
netic field h on the isotropic spins. It transforms in the
same was d under global SO(3) rotations, and is invari-
ant under all the permutations. Consequently, we find
that the purely field-induced terms in the free energy are
of the form

F iso
h = c1|h · d|2 + c2Re

h
(h · d)3

i
+O(h4). (4)

As is typical for an antiferromagnet, there is no linear
coupling of the field to the order parameter, but in this
case both quadratic and cubic terms occur.

The physical meaning of these terms is as follows. The
leading quadratic term selects configurations in which the
spins lie in a plane either normal to or containing the
field, for c1 > 0 and c1 < 0, respectively. Note that the
form in Eq. (2) only defines the antiferromagnetic compo-
nents of the spins (the primary order parameter), and not
the field-induced uniform moment. For the semi-classical
Heisenberg antiferromagnet on the triangular lattice, the
two types of orderings are classically degenerate (i.e. at
1/S = T = 0), but it is known that the coplanar config-
urations are favored by both thermal and quantum fluc-
tuations, which selects c1 < 0 (c1 ⇠ �1/(JS) at T = 0)1.
The cubic term selects an orientation of the spins within
this plane: when the sign of c2 is positive (negative),
one of the three spins lies anti-parallel (parallel) to the
field. According to Ref.1, for the triangular lattice the
preferred configuration of the former type, and c2 > 0
(c2 ⇠ 1/(J2S) in at T = 0). The same signs are found
for the classical kagomé lattice at non-zero temperature
due to thermal fluctuations (though the estimates dif-

fer quantitatively due to the higher degeneracy of the
kagomé case)2.
Now consider the e↵ects of DM and SIA, of the micro-

scopic form

H 0 =
X

n

h
Dẑ · Sn ⇥ Sn+1 �K (ên · Sn)

2
i
, (5)

where ên = (cos( 2⇡n3 ), sin( 2⇡n3 ), 0). These additional
terms lower the symmetry as follows. The DM interac-
tion D maintains a global SO(2)/U(1) subgroup of SO(3)
under rotations about the ẑ axis, under the Z3 cyclic per-
mutation of the spins, and under the spin-orbit coupled
C2 symmetry in which the Z2 spin permutation discussed
earlier is combined with the corresponding rotation in
spin space:

C2 : S0 ! O2S0 S1/2 ! O2S2/1, (6)

where O2 = diag(1,�1,�1). With the SIA term K, the
symmetry is further reduced, so that the global SO(2)
and Z3 operations are collapsed to a single C3 combined
rotation

C3 : Sn ! O3Sn+1, (7)

where O3 is the appropriate rotation matrix.3

To incorporate the symmetry-lowering e↵ects, it is con-
venient to adopt a new basis

d± =
1

2
(dx ± idy), (8)

and trade d for d+, d� and dz. Note that because d is
complex, d+ is not the conjugate of d� and is an inde-
pendent complex field. The symmetry operations in the
new basis become

SO(2) : d+ ! ei#d+, d� ! e�i#d�, dz ! dz,

Z3 : d+ ! e2⇡i/3d+, d� ! e2⇡i/3d�, dz ! e2⇡i/3dz,

Z2 : d+ ! d⇤�, d� ! d⇤+, dz ! d⇤z,

C3 : d+ ! e4⇡i/3d+, d� ! d�, dz ! e2⇡i/3dz,

C2 : d+ ! d⇤+, d� ! d⇤�, dz ! �d⇤z,

T : d+ ! �d+, d� ! �d�, dz ! �dz.
(9)

To summarize, the DM term is invariant under SO(2),
Z3, C2 and T . The K term is invariant under C3,C2 and
T . It is also useful to note that under Z2, D ! �D (but
Z2 does not act simply upon K).
Using the above symmetries, and using the constraint

Eq. (3) and the condition that d⇤ · d = 2n2
0, the most

general, non-constant free energy terms at zero field and
quadratic in d are

F2 =s1
�
d⇤+d+ � d⇤�d�

�

+ s2
�
d⇤zdz � 2d⇤+d+ � 2d⇤�d�

�
+ s3Re

�
d2�

�
. (10)

Selects plane
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Coefficients are “large”: arise from J >> D,K



Quadratic magnetization

Thermodynamics:
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Can directly see the energy responsible 
for order by disorder !



Anti-chiral state

counter-clockwise rigid rotation = clockwise spin rotation

Favored by D>0
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h± = hx ± ihy

Re[ h+ d+] is an invariant
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Full angular free energy
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h+ = hei✓

3

A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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<latexit sha1_base64="8v4ckAT4Uv8KyTYH8sBv6ivd+XE=">AAACDXicbVDLSsNAFJ3UV62v+Ni5GSyCG0sioi6LblxWsA9oQplMJ+3QSTLM3Ig19Bv8Bbe6dydu/Qa3fonTNgvbeuDC4Zx7OZcTSME1OM63VVhaXlldK66XNja3tnfs3b2GTlJFWZ0mIlGtgGgmeMzqwEGwllSMRIFgzWBwM/abD0xpnsT3MJTMj0gv5iGnBIzUsQ882efYI1Kq5BGfetBnQDp22ak4E+BF4uakjHLUOvaP101oGrEYqCBat11Hgp8RBZwKNip5qWaS0AHpsbahMYmY9rPJ9yN8bJQuDhNlJgY8Uf9eZCTSehgFZjMi0Nfz3lj8z2unEF75GY9lCiym06AwFRgSPK4Cd7liFMTQEEIVN79i2ieKUDCFzaQE0ahkSnHnK1gkjbOKe1Fx787L1eu8niI6REfoBLnoElXRLaqhOqLoCb2gV/RmPVvv1of1OV0tWPnNPpqB9fULmcSbkQ==</latexit>

� ⇡ �✓

large h:
<latexit sha1_base64="0fCMnanZ41PFdcivjpAClwu6dnM=">AAACH3icbZDLSsNAFIYn9VbrLerSzWBRBKEkVdRl0Y3LCvYCTSmT6aQdOkmGmROxhLyBL+EruNW9O3HbrU/i9LKwrT8M/PznHM6Zz5eCa3CckZVbWV1b38hvFra2d3b37P2Duo4TRVmNxiJWTZ9oJnjEasBBsKZUjIS+YA1/cDeuN56Y0jyOHmEoWTskvYgHnBIwUcc+9WSfY49IqeJn7EGfAcHn2AsUoWnZkxwPsvQi69hFp+RMhJeNOzNFNFO1Y/943ZgmIYuACqJ1y3UktFOigFPBsoKXaCYJHZAeaxkbkZDpdjr5T4ZPTNLFQazMiwBP0r8TKQm1Hoa+6QwJ9PVibRz+V2slENy0Ux7JBFhEp4uCRGCI8RgO7nLFKIihMYQqbm7FtE8MCjAI57b4YVYwUNxFBMumXi65VyX34bJYuZ3hyaMjdIzOkIuuUQXdoyqqIYpe0Bt6Rx/Wq/VpfVnf09acNZs5RHOyRr/g4aKQ</latexit>

� ⇡ ✓ +
2⇡k

3



Angular evolution

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ



Angular evolution

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ



Angular evolution

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ



Angular evolution

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

ϕ

h>hcrit

Jumps at 

<latexit sha1_base64="ldqHJWD7PsqyVFE+RombCRBdYeo=">AAACH3icbZDLSgMxFIYzXmu9VV26CRZFEMqMSnUjFN24rGAv0Cklk2ba0GRmSM4IZZg38CV8Bbe6dyduu/VJTNtBbOsPgT//OYeTfF4kuAbbHllLyyura+u5jfzm1vbObmFvv67DWFFWo6EIVdMjmgkesBpwEKwZKUakJ1jDG9yN640npjQPg0cYRqwtSS/gPqcETNQpnLjQZ0DwDXZ9RWjiRjxNyunZ7w3LNLlIO4WiXbInwovGyUwRZap2Ct9uN6SxZAFQQbRuOXYE7YQo4FSwNO/GmkWEDkiPtYwNiGS6nUz+k+Jjk3SxHypzAsCT9O9EQqTWQ+mZTkmgr+dr4/C/WisG/7qd8CCKgQV0usiPBYYQj+HgLleMghgaQ6ji5q2Y9okhAQbhzBZPpnkDxZlHsGjq5yWnXHIeLouV2wxPDh2iI3SKHHSFKugeVVENUfSMXtEberderA/r0/qati5Z2cwBmpE1+gHEEqMd</latexit>

✓ =
⇡

6
+

⇡m

3

<latexit sha1_base64="ldqHJWD7PsqyVFE+RombCRBdYeo=">AAACH3icbZDLSgMxFIYzXmu9VV26CRZFEMqMSnUjFN24rGAv0Cklk2ba0GRmSM4IZZg38CV8Bbe6dyduu/VJTNtBbOsPgT//OYeTfF4kuAbbHllLyyura+u5jfzm1vbObmFvv67DWFFWo6EIVdMjmgkesBpwEKwZKUakJ1jDG9yN640npjQPg0cYRqwtSS/gPqcETNQpnLjQZ0DwDXZ9RWjiRjxNyunZ7w3LNLlIO4WiXbInwovGyUwRZap2Ct9uN6SxZAFQQbRuOXYE7YQo4FSwNO/GmkWEDkiPtYwNiGS6nUz+k+Jjk3SxHypzAsCT9O9EQqTWQ+mZTkmgr+dr4/C/WisG/7qd8CCKgQV0usiPBYYQj+HgLleMghgaQ6ji5q2Y9okhAQbhzBZPpnkDxZlHsGjq5yWnXHIeLouV2wxPDh2iI3SKHHSFKugeVVENUfSMXtEberderA/r0/qati5Z2cwBmpE1+gHEEqMd</latexit>

✓ =
⇡

6
+

⇡m

3



h < hc h < hc

h = hc h > hc



How do the jumps onset?

3

A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
4

of the discontinuities for x > xc. Some algebra gives

g̃( , �) = g( � ⇡
6 � �, ✓) (21)

= � cos + x cos 6� cos 3 + x sin 6� sin 3 .

We see that at � = 0, g̃( , 0) is an even function of  . In
fact, the even-ness of this function reflects a symmetry
� ! ⇡/3 � �, which is a C2 symmetry of the Hamilto-
nian when the field angle ✓ = ⇡/6. Hence g̃( , �) can be
regarded as a Landau function, with a minima at  = 0
for x < xc = 1/9, which bifurcates for x > xc into two
degenerate minima at  = ± 0. This is an Ising phase
transition. The deviation � of the field angle plays the
role of a symmetry-breaking field on the Ising order pa-
rameter, and the discontinuities in ✓ are analogous to
the first order transition that occurs within the ordered
phase of the Ising model on changing the sign of the field.

This analysis determines a critical field hc = 1
3

p
u
v .

Following the analogy with the Ising model, one observes
within this mean field picture that at the critical field,
the angle  ⇠ �|!|1/3sign(!) for small variations of the
field angle near ⇡/6. This is analogous to the non-linear
susceptibility of the Ising ferromagnet at criticality. A
priori thermal fluctuations will renormalize this exponent
to that of the 3d Ising model – there we have  ⇠ |!|1/�
and the true value is approximately � ⇡ 4.8.

Clearly for small x, the minima must be close to � =
�✓, so define  = �+ ✓. Then

g̃( , ✓) = g( � ✓, ✓) = cos + x cos(3 � 6✓). (22)

This form clarifies the six-fold periodicity of the problem
with respect to the angle of the field ✓. It is instructive
to consider two special values of ✓. First, for ✓ = 0, we
have

g̃( , 0) = cos + x cos 3 . (23)

This is obviously maximized uniquely at  = 0. So we
know that  (0, x) = 0. Next consider ✓ = ⇡/6. Then
obviously

g̃( , ⇡
6 ) = cos � x cos 3 . (24)

Here it is clear that while the minimum is at  = 0
for small x, there is a bifurcation at the point where
the curvature at  = 0 changes sign, i.e. for x > 1/9,
there are two degenerate minima with equal and opposite
 = ± 0.
The two special angles ✓ = 0, ✓ = ⇡/6 correspond to

di↵erent in-plane C2 axes, I think. By doing a rotation,
we obtain an equivalent axis with ✓ = ⇡/2, which may be
easier to visualize. This is an axis which is perpendicular
to the easy axis of a single spin I believe. For a field
along this direction, the Hamiltonian in a field retains
this C2 symmetry, but it is spontaneously broken for x >
1/9. When ✓ is varied through e.g. ⇡/6, away from the
special value the C2 symmetry is explicitly broken by
the field, and the two equivalent minima are biased, so
that one has lower energy. The lower energy minimum
“switches” as ✓ passes through ⇡/6. Consequently,  
jumps from � 0 to + 0 discontinuously. This is a first
order transition, analogous to changing the sign of the
field in an Ising ferromagnet when the system is below
the critical temperature. Here ✓ � ⇡/6 plays the role
of the field, while 1/9 � x plays the role of T � Tc in
the Ising model. This analysis determines a critical field
hc =

1
3

p
u
v .

We can see slightly more analytical structure by writ-
ing ✓ = ⇡/6 + !, which gives

g̃( , ⇡
6 + !) = cos � x (cos 6! cos 3 + sin 6! sin 3 ) .

(25)
From here we can see that the energy has the property
that it is invariant under simultaneous change of sign of
! and  . Consequently, the curve  (✓) is odd under re-
flection around ✓ = ⇡/6. Following the analogy with the
Ising model, one observes within this mean field picture
that at the critical field, the angle  ⇠ �|!|1/3sign(!)
for small variations of the field angle near ⇡/6. This is
analogous to the non-linear susceptibility of the Ising fer-
romagnet at criticality. A priori thermal fluctuations will
renormalize this exponent to that of the 3d Ising model
– there we have  ⇠ |!|1/� and the true value is approx-
imately � ⇡ 4.8. To observe the transition graphically,
we plot the dependence  (✓) (or plot �(✓)?) for di↵erent
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(� = 0)
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A näıve calculation, simply inserting Eq. (2) in Eq. (5),
shows that s1 ⇠ �D, s3 ⇠ �K, while s2 ⇠ K, while
an additional contribution �s2 ⇠ D2/J is expected to
arise at second order in the DM coupling. In both cases
s2, s3 ⌧ |s1|.

Here we are interested in D > 0 which implies s1 < 0
which favors d� = dz = 0 and |d+| = n0 (check factors).
This is the anti-chiral state. Then the s2 term is constant
and the s3 term vanishes. Note that the phase of d+ is
arbitrary at this level, reflecting the fact that the rotation
of the spins is in the opposite sense to the rotation of the
local easy axes, so that the two are incompatible. If by
contrast we takeD < 0, the chiral state with d+ = dz = 0
is stabilized and |d�| = n0. Then the s3 term is non-zero
and in fact fixes the phase of d�, which means the spins
are not free to rotate in the chiral state.

For the anti-chiral state, the complete freedom to ro-
tate the phase is an artifact of the truncation of Eq. (10)
to second order in d. A non-trivial invariant fixing the
phase of d+ arises at sixth order:

f6 = �Re
�
d6+

�
. (11)

We expect that � ⇠ K3/J , as was verified by calculations
for Mn3Sn, and therefore is extremely small and often
negligible.

Now consider the terms involving the magnetic field.
Similarly to Eq. (8), define

h± = hx ± ihy. (12)

Note that h⇤
± = h⌥ (unlike for d±), so it is su�cient

to list the properties of h+ and hz. Under the various
transformations, we have

C3 :h+ ! e2⇡i/3h+, hz ! hz, (13)

C2 :h+ ! h⇤
+ = h�, hz ! �hz, (14)

T :h+ ! �h+, hz ! �hz. (15)

Comparing now Eq. (9) and Eq. (13), we can find invari-
ants involving the field and dµ. To linear order in the
field, we find

fh,1 = g1Re (h+d+) + g2 hzIm (d�) . (16)

In Mn3Sn, where the order is anti-chiral, d� = 0 and only
the g1 term is active. It is order of g1 ⇠ K/J . We see
that the linear coupling to the field multiplies h+ and
d+, which favors rotating these complex numbers with
opposite phases. This expresses the surprising phenom-
ena that each spin in the anti-chiral case at small fields
actually rotates in the opposite sense as the applied field!

Note that this e↵ect contradicts the behavior in the
isotropic system, which is dictated by the cubic coupling
in Eq. (4), and favors rotating each spin in sync with the
field. The opposite tendencies lead to a transition as a
function of field strength.

To unveil it more cleanly, we focus now on the case
in which only d+ is assumed non-zero, and the magnetic

field is in the plane, and write the free energy as a series
in d+ and the field only. We furthermore assume that
the higher order terms in field are dominated by the ones
already present in Eq. (4), and simply express those in
the case where dz = d� = 0 in terms of d+. We find in
this case h · d = 1/2h�d+ which leads to

f+ =�Re
�
d6+

�
+ g1Re (h+d+)

+
c1
4
|h+|2|d+|2 +

c2
8
Re

�
(h�d+)

3
�
. (17)

There are many more symmetry allowed terms, but
the above minimal expression is su�cient to expose the
physics and indeed one can also show for the case of
Mn3Sn that all remaining terms which arise are para-
metrically small in the regime of interest when K ⌧ J .
To analyze Eq. (17), we change to angular coordinates,

h+ = hei✓ and d+ = dei�. It becomes, up to a constant,

f+ = �w cos 6�� uh cos(�+ ✓)� vh3 cos 3(�� ✓),
(18)

where

w = ��d6, u = �g1d, v = �c2d
3/8. (19)

Angular analysis and phase transitions: Eq. (18) is the
general result for the angle-dependent free energy of the
anti-chiral state. We now show that it exhibits the phase
transitions described in the introduction.
Without loss of generality, we take u, v, w > 0. Using

the aforementioned estimates w ⇠ K3/J2,u ⇠ K/J and
v ⇠ D/J3, we establish the condition of very small w ⌧p
u3/v is very small, under which w can be neglected in

the field regime h � w/u. We henceforth assume this
condition and take w = 0. Then the order parameter
angle � is determined just by minimizing the final two
terms in Eq. (18). So we may write f+ = uhg(�, ✓), with

g(�, ✓) = � cos(�+ ✓)� x cos 3(�� ✓), (20)

where x =
p

v/uh2 > 0. The optimal spin angle �(✓, x)
is determined from minimizing g at fixed field angle ✓
and x. It is instructive to analyze the two limits x = 0
and x = 1. At x = 0, g is clearly minimized by
� = �✓. At x = 1, there are three degenerate mn-
ima with � = ✓ + 2⇡k/3, with k = 0, 1, 2. One observes
that the spin angles winds in the opposite sense in the
two extreme limits. The degeneracy in the large x limit is
resolved by selecting the branch (k) which minimizes the
first term in Eq. (20). This leads to jumps in k (and hence
�) as a function of ✓, which occur when ✓ = ⇡/6+⇡m/3,
with integer m, as shown in Figure XX. Away from the
two extreme limits, the curve �(✓) evolves, but the dis-
continuities persist for large x, while they are absence for
small x. A transition occurs for x = xc, where the the
discontinuities first appear.
To clarify the critical points, we define  = �+ ✓, and

let ✓ = ⇡/6 + �, so that � = 0 defines the location of one
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Ising transition 

at x=1/9
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� acts as symmetry breaking field



Phase diagram
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FIG. 2. Magnetic torque measurements: (a) The home-made experimental setup and its photograph (top) with a capacitive
torque magnetometer, rotating the field in the xy-plane of the Mn3Sn sample. (b) The angle dependent torque responses for
magnetic fields up to 6 T. (c) The angle dependent torque responses for magnetic fields larger than 6 T. H k x corresponds
to 0�. (d) Fit to the 13 T data with an expression, which has only a two-fold and a six-fold term (⌧ = K2 · sin(2 · (� +
�2)) +K6 · sin(6 · (�+ �6))). The mismatch is obvious. (e) The residual torque component after subtracting the data and the
previous fit. It shows a clear twelve-fold symmetry. (f) A fit which includes an additional twelve-fold symmetry component
(K12 · sin(12 · (�+ �12))). (g) Fitting parameters K2(H), K6(H) and K12(H) as a function of magnetic field.

(F (3,6) / H3cos6✓). A consistency check can be done
by comparing the magnitude of K6, the angle deriva-
tive and M2,6, the field derivative. At 13 T, K6 is 4700-
5600 Jm�3, implying F (3,6) ⇡ 0.34 ± 4 µeV/f.u. and
M2,6 is 0.8 mµB per f.u. corresponding to F (3,6) ⇡
0.20 µeV/f.u.. The di↵erence may result from the low-
order (< H3) contribution of K6. The list of all compo-
nents of the free energy identified by our experiments are
given in Table I.

Let us now show that theory provides a satisfactory
account of the existence and the amplitude of K6 term as
well as the emergence and rapid growth of the secondary
K12 term with increasing magnetic field.

Following Liu and Balents [19], the energy per mag-
netic unit cell (six spins) consists of the sum of four terms
(See Fig.3b) [32], written in terms of spin vectors Si on
the three sublattices i = 1, 2, 3 (with 4 $ 1 identified).
These are Heisenberg: 4J

P
i Si · Si+1; Dzyaloshinskii-

Moriya (DM): 4D
P

i ẑ ·Si⇥Si+1; Single-ion-anisotropy
(SIA) : �2K

P
i(Si · êi)2; and Zeeman: �2µ

P
i H · Si.

For D > 0 and in absence of SIA and Zeeman terms, the
ground state is an anti-chiral state with in-plane spins.
A finite magnetic field will distort the spin triangles (See
Fig.3a) by some small amounts ⌘i from the ideal 120�

state. The distortion angles ⌘i are small, because in our

window of investigation (H < 14T), one has K ⌧ J
and µH ⌧ J . In the supplement[32], we extend the
treatment in Ref. [8] to obtain a perturbative expansion
for the free energy and angles in the small parameters
K/J, µH/J ⌧ 1, which are indeed small in our experi-
mental window (H < 14T). This leads to an expression
for the free energy per unit cell (See the supplement[32]).

The first term is linear in magnetic field :

F (1,ab) =
KµH

J +
p
3D

(3)

The quadratic term [32] has slightly di↵erent expressions
for in-plane and out-of-plane orientations of magnetic
field is:

F (2,ab) =
(µH)2

2J
(1�

p
3D

J
)

F (2,c) =
(µH)2

2J
(1� Dp

3J
)

(4)

Therefore, one expects the quadratic free energy to be
larger for the out-of-plane orientation of the magnetic
field, in agreement with what is seen experimentally (See
Table I). For in-plane configuration, the first correction
to the quadratic term has a cos6✓ angle dependence. Its
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FIG. 1: Variation of angle  and torque ⌧ versus field angle for di↵erent values of x. Here the di↵erent curves
correspond to x = 0.5, 0.6, · · · , 1.5.
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FIG. 2: Variation of angle  and torque ⌧ versus field angle for the critical value x = 1/9.

values of x over a single period 0 < ✓ < ⇡/3. Knowing  ,
we can of course obtain also the torque ⌧ = df/d✓. Here
the derivative should be taken at the minimum with re-
spect to �. Because df/� = 0 at the minimum, one finds
⌧ = �uh @

@✓ g̃( (✓), ✓) = 6uh sin(3 (✓) � 6✓). This is
plotted in column (b) of the figures. The shape of ⌧(✓)
is visually extremely similar to that of  (✓).

The transition should be detectable in various ways.
The free energy is determined from the minimum of f+
over �, which for h > hc has a slope discontinuity at
✓ = ⇡/6. Consequently the torque, which is the deriva-
tive of the free energy with respect to theta, has a discon-
tinuity. In practice, the first order nature of the transi-
tion with respect to angle means that in a narrow angular
range around this value, coexistence of two states can oc-
cur, manifesting as the appearance of domains, hystere-
sis, etc. It may also be disrupted by strains, which break
rotational symmetry and might a↵ect the transition. It
is interesting to point out that a very similar phenomena
has already been observed in CeAlGe, in which the spon-
taneous formation of domains was argued to give rise to

a sharp peak in the resistance versus angle, dubbed sin-
gular angular magneto-resistance. It would be very inter-
esting to study the angular dependence of the resistance
in Mn3Sn in an appropriate range.
From the calculations in the Supplemental Material

of our paper, we can compare directly to Eq. (18), and
extract the parameters of the symmetry based theory in
terms of microscopics. In the classical zero temperature
model, one obtains thereby

u =
K

J +
p
3D

, v =
D

3
p
3(J +

p
3D)3

. (26)

This leads to the critical field, restoring units

Hc =
J +

p
3D

gµB

r
K

D
. (27)

Taking D = 0.2J , K = .006J , J = 20meV and g = 3
yields Hc ⇡ 20T . This is of course to be renormalized by
thermal and quantum fluctuations, but gives an idea of
the order of magnitude. It strongly suggests the transi-
tion should be within range of current experiments.

1 A. Chubukov and D. Golosov, Journal of Physics: Con-
densed Matter 3, 69 (1991).

2 M. Gvozdikova, P. Melchy, and M. Zhitomirsky, Journal of
Physics: Condensed Matter 23, 164209 (2011).

3 Explicitly O3 =

0

@
cos 2⇡

3 sin 2⇡
3 0

� sin 2⇡
3 cos 2⇡

3 0
0 0 1

1

A.

Classical, T=0
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values of x over a single period 0 < ✓ < ⇡/3. Knowing  ,
we can of course obtain also the torque ⌧ = df/d✓. Here
the derivative should be taken at the minimum with re-
spect to �. Because df/� = 0 at the minimum, one finds
⌧ = �uh @

@✓ g̃( (✓), ✓) = 6uh sin(3 (✓) � 6✓). This is
plotted in column (b) of the figures. The shape of ⌧(✓)
is visually extremely similar to that of  (✓).

The transition should be detectable in various ways.
The free energy is determined from the minimum of f+
over �, which for h > hc has a slope discontinuity at
✓ = ⇡/6. Consequently the torque, which is the deriva-
tive of the free energy with respect to theta, has a discon-
tinuity. In practice, the first order nature of the transi-
tion with respect to angle means that in a narrow angular
range around this value, coexistence of two states can oc-
cur, manifesting as the appearance of domains, hystere-
sis, etc. It may also be disrupted by strains, which break
rotational symmetry and might a↵ect the transition. It
is interesting to point out that a very similar phenomena
has already been observed in CeAlGe, in which the spon-
taneous formation of domains was argued to give rise to

a sharp peak in the resistance versus angle, dubbed sin-
gular angular magneto-resistance. It would be very inter-
esting to study the angular dependence of the resistance
in Mn3Sn in an appropriate range.
From the calculations in the Supplemental Material

of our paper, we can compare directly to Eq. (18), and
extract the parameters of the symmetry based theory in
terms of microscopics. In the classical zero temperature
model, one obtains thereby

u =
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J +
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3(J +
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. (26)

This leads to the critical field, restoring units

Hc =
J +
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gµB
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K

D
. (27)

Taking D = 0.2J , K = .006J , J = 20meV and g = 3
yields Hc ⇡ 20T . This is of course to be renormalized by
thermal and quantum fluctuations, but gives an idea of
the order of magnitude. It strongly suggests the transi-
tion should be within range of current experiments.

1 A. Chubukov and D. Golosov, Journal of Physics: Con-
densed Matter 3, 69 (1991).

2 M. Gvozdikova, P. Melchy, and M. Zhitomirsky, Journal of
Physics: Condensed Matter 23, 164209 (2011).
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Hope to observe these transitions in future experiments

limit of current experiments



c.f.

Would be interesting to search for 
transport signatures in Mn3Sn
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diffraction by Kurosawa et al (1983). The magnetism is due to the S = 5/2 manganese
atoms, which lie in a honeycomb arrangement in the ab planes. In the ordered state, the
moments on the manganese atoms align perpendicularly to these planes. Figure 1(a) shows
the atomic structure and figure 1(b) the magnetic structure.

(a) (b)

Figure 1. Atomic (a) and magnetic structure (b) of MnPS3. In (a), the structure is viewed with
the c-axis almost perpendicular to the paper, but turned 2 degrees around the a-axis and 1 degree
around the b-axis for illustrative purposes. The dashed lines in (a) shows the crystallographic
unit cell. In (b), the structure is viewed with the b-axis almost perpendicular to the paper, but
turned 15 degrees around the c-axis and 15 degrees around the a-axis for illustrative purposes.
Part of this diagram was produced with ATOMS, by Shape Software.

The magnetic properties have been investigated by many experimental techniques such
as magnetic susceptibility, electron paramagnetic resonance (Okuda et al 1986, Joy and
Vasudevan 1992, 1993) and nuclear magnetic resonance (Torre and Ziolo 1989). These
authors have given estimates for the magnetic exchange between nearest neighbours both
within and between planes. The results from these authors are not necessarily consistent. In
addition, Pich and Schwabl (1995) have presented a theoretical calculation for the spin wave
dispersion spectrum in isotropic two-dimensional honeycomb antiferromagnets. Thus it is
the aim of this work to measure the spin wave dispersion curve and quantify the magnetic
exchange integrals in MnPS3.

The experimental technique required to unambiguously determine magnetic exchange
integrals and spin wave dispersion is neutron inelastic scattering. Up until now it has been
extremely difficult to do such experiments on this system because of the lack of single
crystals of suitable size. The crystal used in this study was grown using a new technique,
and was large enough for inelastic and diffuse neutron scattering experiments (Wildes et al
1998). The spin wave dispersion at 4 K has subsequently been measured and the exchange
integrals were calculated by a least-squares fit to the data using linear spin wave theory.

Finally, as a prelude to further measurements on the critical scattering from this material
the critical exponent of the magnetization below TN, Ø, has been found by measuring the
temperature dependence of the magnetic intensity of the (020) Bragg peak. This was

MnPS3, FePS3,NiPS3,CoPS3,CrSiTe3…

Crystals 2017, 7, 121 4 of 25

The layered phases are restricted to the first row of the transition metals, with the exception of the
4d element Zr. Both ZrCl2 and ZrI2 are reported, but not the dibromide. The zirconium compounds
are found to have different structures than the layered 3d transition metal dihalides. As shown in
Figure 2, ZrCl2 adopts the MoS2 structure type [60], which has the same triangular nets of metal
cations and ABC stacking found in CdCl2. However, in ZrCl2 the Zr atoms are in trigonal prismatic
coordination rather than octahedral coordination. As a result the Cl anions do not form a cubic close
packed arrangement in ZrCl2 but instead an AABBCC stacking sequence. ZrI2 is reported to adopt
both the MoTe2 and WTe2 structure types [61,62]. The closely related structures are shown in Figure 2.
The regular triangular net of M cations found in the compounds described previously is disrupted in
ZrI2, which has zigzag chains of Zr atoms (see M � M in-plane distances in Table 1). This points to the
tendency of heavier (4d and 5d) transition metals to form metal-metal bonds. Indeed, in addition to the
layered MoS2 structure described above for ZrCl2, a molecular crystal structure with Zr6 clusters is also
known [63]. Further examples of this tendency will be noted later in discussion of MX3 compounds.

M

Cl, Br, I

a b

c

a b

c

CdCl2 - type
CdI2 - type

other

a

bc

Figure 1. A section of the periodic table showing the transition metals for which layered MX2
compounds listed in Table 1 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. A plan view of a single layer common to both the CdI2 and
CdCl2 structure types is shown on the upper right.
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M

Cl, Br, I

AlCl3 - type

BiI3 - type

a
b

c

a b

c

a

b
c

AlCl3 - typeBiI3 - type

a b

c

Figure 3. A section of the periodic table showing the transition metals for which layered MX3
compounds listed in Table 2 form. The metals are highlighted with colors that correspond to the
structure types shown on the lower right. Crosshatching indicates multiple structures have been
reported (see Table 2). A plan view of a single layer common to both the BiI3 and AlCl3 structure types
is shown on the upper right, with coordinate systems corresponding to each structure type.

TiCl3 undergoes a structural phase transition at low temperature [87]. Troyanov et al.
demonstrated that the distortion upon cooling corresponds to a dimerization similar to that noted
above in MoCl3 and TcCl3 [70]. Below 220 K a monoclinic structure was reported. The space group,
C2/m is the same as the AlCl3 structure type, but the structure is different, with three layers per unit
cell. The dimerization is not as extreme in TiCl3 as it is in MoCl3 and TcCl3. At 160 K the Ti-Ti distances
within the distorted honeycomb net are 3.36 and 3.59 Å [70], so the dimerization is not as strong at
this temperature, 60 K below the transition, as it is in MoCl3 and TcCl3 (Table 2) at room temperature.
A structural phase transition is also reported for TiBr3, with a triclinic low temperature structure
(P1) [88], and this same triclinic structure was also later reported for TiCl3 [89].

All three of the layered chromium trihalides are known to undergo temperature induced
crystallographic phase transitions between the AlCl3 and BiI3 structure types [16,73]. At high
temperatures all three adopt the AlCl3 structure and transition to the BiI3 structure upon cooling.
This happens near 240, 420, and 210 K in the chloride, bromide, and iodide, respectively. The phase
transition is first order, displaying thermal hysteresis and a temperature range over which both
phases coexist. Interestingly, it is the lower symmetry monoclinic phase that is preferred at higher
temperatures. The transition must be driven by interlayer interactions, since the layers themselves are
changed little between the two phases. As expected, twinning and stacking faults develops during the
transition upon cooling as the layers rearrange themselves into the BiI3 stacking, which can complicate
interpretation of diffraction data [16].

Multiple structure types have been assigned to the layered form of RuCl3, known as a-RuCl3.
Early reports assigned the trigonal space group P3112 [82] (known as the CrCl3 structure type, although

CrI3,RuCl3,…
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Remarkably, the ferromagnetic ordering remains in the monolayer 
limit. Figure 2a shows θK as a function of µoH for a monolayer CrI3 
flake (inset to Fig. 2a). A single hysteresis loop in θK centred around 
µoH =  0 T, with a non-zero remanent Kerr rotation, demonstrates 
out-of-plane spin polarization. This implies Ising ferromagnetism in 
 monolayer CrI3. As expected, θK is independent of the excitation power 
(Fig. 2b). In the following, all data are taken with an excitation power 
of 10 µ W. We have measured a total of 12 monolayer samples, which 

show similar MOKE behaviour with consistent remanent θK values of 
about 5 ±  2 mrad at µoH =  0 T (Extended Data Fig. 8a). The coercive 
field (µoHc), which is approximately 50 mT for the sample in Fig. 2a, 
can vary between samples owing to the formation of domain structures 
in some samples.

Figure 2c shows spatial maps of θK for another monolayer, taken at 
selected magnetic field values. After cooling the sample from above 
TC at µoH =  0 T, the entire monolayer is spontaneously magnetized (in 
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Figure 1 | Crystal structure, layer thickness identification, and MOKE 
of bulk CrI3. a, View of the in-plane atomic lattice of a single CrI3 layer. 
Grey and purple balls represent Cr and I atoms, respectively. The Cr3+ ions 
are coordinated to six I− ions to form edge-sharing octahedra arranged 
in a hexagonal honeycomb lattice. b, Out-of-plane view of the same CrI3 
structure depicting the Ising spin orientation. c, Optical micrograph of a 

representative CrI3 flake. d, Calculated optical contrast map of the same 
flake with a 631-nm optical filter. The scale bar in c is 3 µ m. e, Averaged 
optical contrast of the steps of the sample with different numbers of layers 
(circles) fitted by a model based on Fresnel’s equations (solid line). f, Polar 
MOKE signal of a thin bulk CrI3 crystal.
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Figure 2 | MOKE measurements of monolayer CrI3. a, Polar MOKE 
signal for a CrI3 monolayer. The inset shows an optical image of an 
isolated monolayer (the scale bar is 2 µ m). b, Power dependence of the 
MOKE signal taken at incident powers of 3 µ W (blue), 10 µ W (pink), and 
30 µ W (red). c, MOKE maps at µoH =  0 T, 0.15 T and 0.3 T on a different 

monolayer. The scale bar is 1 µ m. d, θK versus µ0H sweeps taken at four 
points marked by dots on the µoH =  0.3 T map in c. e, Temperature 
dependence of MOKE signal with the sample initially cooled at µoH =  0 T 
(blue) and 0.15 T (red).
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blue, defined as spin down). As the field is increased to 0.15 T, the mag-
netization in the upper half of the flake switches direction (now spin 
up, in red). As the field is further increased to 0.3 T, the lower half of the 
monolayer flips and the entire flake becomes spin up, parallel to µoH. 
This observation of micrometre-scale lateral domains suggests  different 
values of coercivity in each domain. Indeed, magnetic field sweeps 
(θK versus µoH) taken at discrete points ranging across both domains  
(Fig. 2d) show the difference in coercive field between the upper and 
lower half of the monolayer. Sweeps taken only on the upper domain 
(marked by a blue circle) show a much narrower hysteresis loop (about 
50 mT) than sweeps from spots on the lower domain (orange and 
 purple circles, about 200 mT). When the beam spot is centred between 
the two domains, contributions from both can be seen in the resulting 
hysteresis loop (green circle), a consequence of the approximately 1-µ m  
beam spot illuminating both domains.

To determine the monolayer TC, we perform an analysis of the 
 irreversible field-cooled and zero-field-cooled Kerr signal. Zero-field-
cooled sweeps were performed by measuring θK while cooling the 
sample in zero field. After warming up to a temperature well above 
TC (90 K), the field-cooled measurement is taken upon cooling down 
in the presence of a small external magnetic field (µoH =  0.15 T). 
Thermomagnetic irreversibility can be observed below TC, at which 
point the zero-field-cooled sweep and the field-cooled sweep diverge 
as illustrated in Fig. 2e. We measured the average TC for the monolayer 
samples to be 45 K, slightly lower than the value (61 K) for bulk samples.

The layered structure of CrI3 provides a unique opportunity to inves-
tigate ferromagnetism as a function of layer thickness.  Figure 3a–c  
shows θK versus µoH for representative 1–3-layer CrI3 samples. All 
measured monolayer and trilayer samples consistently show ferro-
magnetic behaviour with a single hysteresis loop centred at µoH =  0 T 
(Fig. 3a and c and Extended Data Fig. 8). Both remanent and saturation 
values of θK for trilayers are about 50 ±  10 mrad, which is an order of 
magnitude larger than for monolayers. This drastic change in θK on 
moving from monolayer to trilayer may be due to a layer- dependent 
electronic structure, leading to weaker optical resonance effects at 
633 nm for the monolayer than for the trilayer (see Extended Data Fig. 9  
and Methods for thin-film interference and MOKE signal in CrI3). 
We find that for trilayers and thin bulk samples, TC is consistent with 
the bulk value of 61 K. The relatively small decrease of TC from bulk 
to few-layer and monolayer samples suggests that interlayer interac-
tions do not dominate the ferromagnetic ordering in CrI3. Compared 
with metallic magnetic thin films whose magnetic properties strongly 
depend on the underlying substrate30, the weak layer-dependent TC also 
implies a negligible substrate effect on the ferromagnetic phenomena 
in atomically thin CrI3. As such, exfoliated CrI3 of all thicknesses can 
be regarded as isolated single crystals.

A further observation is that bilayer CrI3 shows a markedly different 
magnetic behaviour from the monolayer (Fig. 3b). For all ten bilayer 
samples measured, the MOKE signal is strongly suppressed, with θK 
approaching zero (subject to slight variation between samples, see 
Extended Data Fig. 8b) at field values ± 0.65 T. This observation implies 
a compensation for the out-of-plane magnetization. Upon crossing a 
critical field, θK shows a sharp jump, depicting a sudden recovery of 
the out-of-plane co-parallel orientation of the spins. This new magnetic 
state has a saturation θK (40 ±  10 mrad) an order of magnitude larger 
than that of monolayer samples, and slightly smaller than for trilayers.

The suppression of the Kerr signal at zero magnetic field demon-
strates that the ground state has zero out-of-plane magnetization. 
The plateau behaviour of the magnetization curve—showing three 
horizontal regimes between magnetic field values of − 1.1 T and 1.1 T 
(Fig. 3b)—further implies that there are no in-plane spin components; 
otherwise, one would expect a gradual increase of the MOKE signal 
with increasing perpendicular magnetic field. Rather, our observa-
tion suggests that each individual layer is ferromagnetically ordered  
(out-of-plane) while the interlayer coupling is antiferromagnetic. In 
this case, the strength of the interlayer coupling determines the field 

at which jumps between different plateaus occur, ± 0.65 T. Although 
the detailed mechanism of this coupling remains unclear, the differ-
ent magnetic phases observed in bilayers and trilayers emphasizes the 
strong layer-dependent interplay between different mechanisms that 
stabilize magnetic ordering in the atomically thin limit.

Another bilayer feature distinct from those of monolayers is the 
 vanishingly small hysteresis around the jumps, suggesting negligible 
net perpendicular anisotropy. A possible interpretation is that the shape 
anisotropy (which prefers in-plane spin orientation) nearly compen-
sates for the intrinsic magnetocrystalline anisotropy (which prefers out-
of-plane spin orientation) so that the overall anisotropy is close to zero.

The insets in Fig. 3b display the layer-by-layer switching behaviour 
that leads to plausible magnetic ground states of bilayer CrI3. When 
the magnetic field is ± 0.65 T, the magnetization of the two layers 
are oppositely oriented to one another. Thus, the net magnetization 
vanishes and bilayer CrI3 behaves as an antiferromagnet with an 
exchange field of about 0.65 T. When | µoH|  >  0.65 T, magnetization in 
one layer flips to align with the external magnetic field and restores 
out-of-plane magnetization, giving rise to the large MOKE signal. At 
around | µoH|  =  0.65 T, the MOKE signal sharply increases from near 
zero to its saturation value within about 100 mT, suggesting an abrupt 
increase of out-of-plane magnetization triggered by a small change of 
magnetic field. Such behaviour is indicative of metamagnetism, the 
magnetic-field-driven transition from antiferromagnetic ordering to 
a fully spin-polarized state20.
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Figure 3 | Layer-dependent magnetic ordering in atomically-thin 
CrI3. a, MOKE signal on a monolayer (1L) CrI3 flake, showing hysteresis 
in the Kerr rotation as a function of applied magnetic field, indicative 
of ferromagnetic behaviour. b, MOKE signal from a bilayer CrI3 
showing vanishing Kerr rotation for applied fields ± 0.65 T, suggesting 
antiferromagnetic behaviour. Insets depict bilayer (2L) magnetic ground 
states for different applied fields. c, MOKE signal on a trilayer (3L) flake, 
showing a return to ferromagnetic behaviour.
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ABSTRACT: The magnetic state of atomically thin semiconducting layered
antiferromagnets such as CrI3 and CrCl3 can be probed by forming tunnel barriers
and measuring their resistance as a function of magnetic field (H) and temperature
(T). This is possible because the spins within each individual layer are ferromagneti-
cally aligned and the tunneling magnetoresistance depends on the relative orientation
of the magnetization in adjacent layers. The situation is different for systems that are
antiferromagnetic within the layers in which case it is unclear whether magneto-
resistance measurements can provide information about the magnetic state. Here, we
address this issue by investigating tunnel transport through atomically thin crystals of
MnPS3, a van der Waals semiconductor that in the bulk exhibits easy-axis
antiferromagnetic order within the layers. For thick multilayers below T ∼ 78 K, a
T-dependent magnetoresistance sets in at μ0H ∼ 5 T and is found to track the
boundary between the antiferromagnetic and the spin-flop phases known from bulk
measurements. We show that the magnetoresistance persists as thickness is reduced
with nearly unchanged characteristic temperature and magnetic field scales, albeit with a different dependence on H, indicating the
persistence of magnetism in the ultimate limit of individual monolayers.
KEYWORDS: MnPS3, 2D magnetism, spin flop, tunneling transport

Probing the occurrence of magnetism in atomically thin
crystals1−5 is difficult because experimental techniques

that are conventionally applied to bulk crystals (neutron
diffraction,6,7 magnetization measurements,8,9 and so forth) are
not sufficiently sensitive to work at the atomic scale. Recent
work on so-called layered antiferromagnets5,10−21 has shown
that measuring the temperature-dependent magnetoresistance
of tunnel barriers provides information about their magnetic
state and even allows their magnetic phase diagram to be
determined.22 That is because in these antiferromagnets the
spins within each individual layer are ferromagnetically aligned,
and their magnetic state is fully determined by the relative
orientation of the layer magnetization vectors, such that
aligning the magnetization of individual layers causes a
reduction in resistance.12−15,20−25 For van der Waals (vdW)
compounds in which antiferromagnetism occurs within an
individual layer, however, the same logic does not apply. For
atomically thin crystals, and certainly for monolayers, this
situation is problematic because if transport measurements
cannot be used it is not obvious what other technique could be
employed to detect antiferromagnetism (for interesting
attempts based on Raman spectroscopy see refs 26 and 27).
To address this issue, we perform tunneling magnetoresistance
measurements on atomically thin crystals of MnPS3 and show
that they allow the phase boundary between the antiferro-
magnetic and the spin-flop phases of these 2D systems to be

identified and the persistence of magnetism down to the
ultimate limit of individual monolayers to be detected.
MnPS3 is an exfoliable 2D material24,28−30 whose properties

in bulk form have been investigated in the past. It is known
that in bulk MnPS3 crystals antiferromagnetism sets in at TN =
78 K with the spins of the manganese atoms ordering within
individual layers and pointing nearly perpendicularly31 to them
due to an easy-axis out-of-plane anisotropy (Figure 1a).6 As the
antiferromagnetic exchange is much stronger than the
anisotropy energy,32 upon the application of magnetic field
perpendicular to the layers a spin-flop transition33,34 occurs at
Hsf. In the spin-flop state, the magnetic moments on the Mn
atoms preserve their antiferromagnetic ordering but realign to
point predominantly in the plane with an out-of-plane
component that increases upon increasing H (ref 7). The
spin-flop transition in bulk MnPS3 crystals is easy to detect, as
its occurrence is signaled by a well-defined onset of the out-of-
plane magnetization M (red curve in Figure 1b) and a
concomitant peak in the differential magnetic susceptibility
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scattering experiments on MnPS3 (ref 51) but a splitting of the
spin-flop transition was never reported in magnetization
measurements because inhomogeneity and disorder (such as
domain walls33) cause a large broadening of the corresponding
peak in the magnetic susceptibility (Figure 1b). Owing to their
very small size, tunnel barrier devices are much less influenced
by inhomogeneity of structural and magnetic origin as
compared to bulk crystals, enabling subtler features to be
detected. Under these conditions, we compare the character-
istic fields observed in the 13L and 6L with the bulk spin-flop
field Hsf, by defining, inspired by theory,45 an “effective” spin-
flop field = ×H H Hsf

e
1 2 . Figure 3b shows that Hsf

e matches
well Hsf throughout the temperature range investigated, which
strengthens our confidence in the proposed interpretation of
the fields H1 and H2.
Irrespective of these details, having observed tunneling

magnetoresistance in thick MnPS3 multilayers and identified
the presence of a spin-flop transition as a distinctive signature
of antiferromagnetism, we are now in the position to extend
our experiments to the ultimate limit of individual monolayer
barriers. The results of measurements performed on mono-
and bilayer tunnel barriers, shown in Figure 4a,b, exhibit
important similarities as well as clear differences to the
behavior observed in the 13L and 6L devices. The main
differences are the functional dependence of the magneto-
resistance, which starts varying already for small applied
magnetic field (without a threshold as for thick multilayers)
and its larger magnitude (in monolayer, the magnetoresistance
reaches values close to 100%, as compared to 15% observed in

the 13- and 6-layer devices). Key similarities are the
comparable magnetic field and temperature scales over which
the magnetoresistance is found to vary. For the magnetic field
scale, we take the position of the pronounced peak observed in
Figure 4a,b and notice that it corresponds well to the spin-flop
field measured in thicker multilayers: the peak occurs at μ0H ≅
4 T in monolayers and at μ0H ≅ 5 T in bilayers (close to μ0Hsf
= 5.3 T, the spin-flop field in bulk MnPS3). The
correspondence is even more striking for the temperature
scale: in the 1L and 2L devices, the magnetoresistance starts
depending on temperature as T is lowered below approx-
imately 75 K (respectively 78 ± 5 and 74 ± 5 K, see Figure
4c,d), that is, nearly exactly the temperature values observed in
the 13L and 6L devices. These findings are summarized in
Figure 4e,f. Figure 4e shows the evolution of the characteristic
field extracted from the magnetoresistance measurements as a
function of multilayer thickness (for 13L and 6L, the plotted
value corresponds to = ×H H Hsf

e
1 2 , see discussion above)

and compares it with the spin-flop field of bulk MnPS3
(represented by the dashed horizontal line). Figure 4f does
the same thing for the characteristic temperature that within
the experimental uncertainty is essentially independent of
thickness and coincides with the bulk Neél temperature.
Finding that a pronounced tunneling magnetoresistance

continues to be observed as the MnPS3 thickness is reduced
allows us to conclude, directly from the experimental data, that
magnetism persists in mono- and bilayer MnPS3, simply
because nonmagnetic tunnel barriers such as hBN52,53 exhibit
no tunneling magnetoresistance. This is a nontrivial con-

Figure 4. Persistence of magnetism in mono- and bilayer MnPS3. Tunneling magnetoresistance η′(H) of monolayer (a) and bilayer (b) MnPS3 as a
function of magnetic field (applied perpendicular to the layers), measured as T is increased from 10 to 120 K in 10 K steps. A small T-independent
magnetoresistance persists up to the highest temperature of our measurements, likely due to the graphene electrodes (mono- and bilayer devices
have much smaller resistance than thicker tunnel barriers and the contact magnetoresistance is not entirely negligible; see also Supporting
Information), which is why we plot η η η′ ≡ − =H T H T H T( , ) ( , ) ( , 120 K). η′(H,T) starts deviating from zero as T is lowered below
approximately 75−80 K (comparable to what is found in 13L and 6L devices) and increases upon cooling. In mono- and bilayer devices η’ (H,T)
exhibits no threshold at low field and peaks respectively at μ0H ≅ 4 T and μ0H ≅ 5 T, just slightly smaller than the bulk spin-flop field. Panels (c)
and (d) show the peak magnetoresistance as a function of T, and its extrapolation to the value of T for which η′ vanishes (78 and 74 K for mono-
and bilayer, respectively, in both cases with an error of approximately 5 K; the inset in (c) zooms in on the region close to the critical temperature).
Panels (e) and (f) show the characteristic magnetic fields (the position of the peak in mono and bilayers, and the value of Hsf

e in 13L and 6L
devices) and the temperature at which magnetoresistance vanishes for all devices, as a function of layer number. The horizontal orange dashed line
in the two panels indicate the bulk Neél temperature TN and the spin-flop field in bulk MnPS3, respectively.
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Continuum model(s)
• Basic assumptions:


• Inter-layer coupling weak J’ << J


• Rotation angle is small (can also treat general strains)


• Example: MnPS3: excellent Heisenberg AF
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Can predict spin textures, magnon subbands, etc.

Kasra Hejazi Zhu-Xi Luo



Twisted AF
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DRAFT

such terms arise from pure geometry – i.e. carrying out the79

coordinate transformation from x(0)
l to xl defined in (1) –80

and from strain-induced changes in energetics. Taking them81

together, the leading corrections to (2) are82

L1[Nl, ul] = fl(Ál,xx + Ál,yy)
Ë

”1
v2 (ˆtNl)2

≠ ”2 (ÒNl)2
È

83

+”3Ál,µ‹ˆµNl · ˆ‹Nl, [3]84

where ”1,2,3 are dimensionless O(1) constants and Ál,µ‹ =85

(ˆµul,‹ + ˆ‹ul,µ)/2 is the strain field in layer l. For simplicity86

we assumed that spin-orbit e�ects (e.g. anisotropy d) are small87

and hence that deformation terms in (3) are SU(2) invariant:88

anisotropic deformation terms must be small in both spin-89

orbit coupling and in displacement gradients, and hence are90

neglected.91

Next we turn to the inter-layer coupling terms. By locality92

and translational symmetry, it is generally of the form93

L2[N1, N2, u1 ≠ u2] = J
Õ[u1 ≠ u2]N1 · N2, [4]94

where J
Õ[u] is a function with the periodicity of the unde-95

formed Bravais lattice. Due to the smallness of J
Õ, we ne-96

glect corrections proportional to displacement gradients in (4).97

Generally J
Õ[u] can be expanded in a Fourier series, and well-98

approximated by a small number of harmonics. We obtain a99

specific form by considering local coupling of the spin densities100

in the two layers. Using the symmetries of the honeycomb101

lattice, the minimal Fourier expansion of the spin density Sl102

of a single layer contains the three minimal reciprocal lattice103

vectors ba,104

Sl(x) = n0Nl

3ÿ

a=1

sin(ba · x(0)) = n0Nl

3ÿ

a=1

sin[ba · (x ≠ ul)],

[5]105

where n0 measures the size of the ordered moment, and we106

define the origin x = 0 at the center of a hexagon. Taking107

the product S1 · S2 and applying trigonometric identities to108

extract the terms which vary slowly on the lattice scale (rapidly109

varying components do not contribute at low energy) gives110

the form of (4), with111

J
Õ[u] = J

Õ
3ÿ

a=1

cos(ba · u), [6]112

where the constant J
Õ is proportional to the inter-layer ex-113

change and n
2
0. Physically, (6) captures the fact that e.g. for114

intrinsically ferromagnetic exchange J
Õ

> 0, the preferred rel-115

ative orientation of the A sublattice spins of the two layers116

is parallel for AA stacking but anti-parallel for AB and BA117

stackings.118

The full Lagrange density L =
q

l=1,2(L0[Nl] +119

L1[Nl, ul]) + L2[N1, N2, u1 ≠ u2] captures the low energy120

physics of a bilayer with arbitrary deformations of the two121

layers. We now specialize to the case of a rigid twist of the122

two layers by a relative angle ◊: u1 = ≠u2 = ◊
2 ẑ ◊ x. In this123

case the strain vanishes, and one finds the full Lagrangian is124

L =
ÿ

l

fl

2v2 (ˆtNl)2
≠ Hcl, [7]125

where126

Hcl =
ÿ

l

Ë
fl

2 (ÒNl)2
≠ d (Nz

l )2
È

≠ J
Õ�(x)N1 · N2 [8]127

is the classical energy density. Here the coupling function 128

�(x) =
3ÿ

a=1

cos(qa · x), [9] 129

and qa = ◊ẑ ◊ba are the reciprocal lattice vectors of the moiré 130

superlattice. 131

(7)-(9) form the basis for an analysis of the magnetic struc- 132

ture on the moiré scale, as well as for the magnon excitations 133

above them. The magnetic ground state is obtained as the 134

variational minimum of Hcl[N1, N2]. Owing to the sign change 135

of �(x), the problem is frustrated: the Néel vectors of the two 136

layers wish to be parallel in some regions and antiparallel in 137

others, forcing them to develop gradients within the plane – 138

the representation in the continuum of incompletely satisfied 139

in-plane bonds. We find that the optimal solution is non- 140

collinear but coplanar, and without loss of generality we can 141

take the spins to lie in the x-z plane: Ni = sin „lx̂ + cos „lẑ. 142

Then forming symmetric and antisymmetric combinations, 143

„s = „1 + „2, „a = „1 ≠ „2, we obtain, up to an additive 144

constant 145

Hcl = fl

4
!
|Ò„s|

2 + |Ò„a|
2"

≠(J Õ�(x)+d cos „s) cos „a. [10] 146

We can obtain partial di�erential equations for the phase
angles by applying calculus of variations to (10). Expressed in
terms of dimensionless coordinates x = qmx, with qm = |qa|

the moiré wavevector, let Ïs/a(x) = „s/a(x), and we obtain

Ò
2
Ïs = — cos Ïa sin Ïs, [11]

Ò
2
Ïa =

!
— cos Ïs + –�̂(x)

"
sin Ïa, [12]

where we introduced the dimensionless parameters 147

– = 2J
Õ

flq2
m

, — = 2d

flq2
m

[13] 148

and �̂(x) =
q3

a=1 cos(q̂a · x), where q̂a = qa/qm are unit vec- 149

tors. We must find the solutions of the saddle point equations 150

which minimize the integral of Hcl. There is a always a trivial 151

solution with Ïs = Ïa = 0, fi, which corresponds to the Ising 152

limit of aligned or counter-aligned spins. This has an energy 153

density Hcl = ≠d = ≠
1
2 flq

2
m—. A non-trivial solution can be 154

found in di�erent limits. For –, — π 1, corresponding to large 155

angles, the gradient terms in the Hamiltonian dominate and 156

the solution is nearly constant. The leading result in this limit 157

is 158

Ïs = fi

2 ≠ –—(�̂(x) + �0), Ïa = fi

2 ≠ –�̂(x), [14] 159

The overall signs of either phase can be switched due to 160

the symmetry of the Hamiltonian. One obtains from this 161

the energy density (averaged over the unit cell) Hcl = 162

≠
3
8 flq

2
m–

2(1 + —
2). Comparing this energy with the Ising 163

one, we see that the twisted solution is lower energy when 164

— <
3
4 –

2 to leading order. 165

For small angles, –, — ∫ 1. Then the potential terms in 166

Eq. (10) dominate. The energy is minimized by choosing 167

„a = 0 or fi almost everywhere, so that cos „a = sign[�(x)], 168

which means the spins in the two layers are locally parallel or 169

antiparallel, and then „s = 0, fi similarly to match the sign. 170

This means simply that the spins align along the ±ẑ axis. 171

Spin rotations occur in a narrow domain wall centered on the 172

zeros of �(x). 173
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FIG. 1. The magnetic structure of NiPS3 with the crystallo-
graphic unit cell, and the unit cell used in the calculation of the
magnetic dynamic structure factor. The insert shows the exchange
interactions between the first, second, and third nearest intraplanar
neighbors. The figure was created using the VESTA program [16].

and FePS3 [12,13]. The technique gives direct access to the
dynamic structure factor, S(Q, E), hence allowing the Hamil-
tonian to be tested and parameterized. In this paper, we report
neutron inelastic scattering experiments on powdered samples
of NiPS3. Estimates for the magnetic exchange parameters
and anisotropy have been determined and are compared in
a consistent manner with those for MnPS3 and FePS3. The
experiments and analysis closely follow those previously re-
ported for powdered FePS3 [12].

II. EXPERIMENTS

Crystal samples of NiPS3 were grown by a vapor transport
method using protocols that have been previously explained in
detail [15]. Approximately 10 grams of crystals were ground
to a powder. The powdered sample was divided into three
portions of approximately equal mass and each portion was
compressed into a cylindrical pellet of 10 mm diameter.
The three pellets were placed side by side in an aluminium
envelope with their cylindrical axes being collinear.

Neutron inelastic scattering measurements were performed
using the MARI [19] and MAPS [20] spectrometers at the
ISIS facility, Rutherford Appleton Laboratories, UK, and us-
ing the BRISP spectrometer [21] at the Institut Laue Langevin,
Grenoble. These are all direct geometry spectrometers, using
a fixed incident neutron energy Ei and measuring the neutron
time-of-flight to determine the final neutron energy.

MARI was used to give an overview of the magnetic exci-
tations. Measurements were performed with incident energies
Ei = 15, 30, 110, and 200 meV. MAPS has a longer sample-
detector path length than MARI and therefore has better
energy resolution for the same incident energy. It was used
with Ei = 200 meV to study in detail the scattering at small
momentum transfers and large energy transfers. BRISP is
optimized for spectroscopic measurements at small scattering

angles, and it was used to characterize a possible spin wave
gap. Measurements were performed with Ei = 20.45 and
81.81 meV.

The sample temperature was controlled using a closed-
cycle cryorefrigerator for the ISIS spectrometers, and a liquid
helium cryostat for the BRISP spectrometer. The measure-
ments were performed at the lowest possible temperature for
the sample environment, which was 5 K for the cryorefrigera-
tors and 1.5 K for the cryostat.

III. DATA MODELLING AND ANALYSIS

The MARI and MAPS data were reduced using the MAN-
TID software suite [22]. The LAMP software package was used
to reduce the BRISP data [23]. The data reduction involved
normalizing to the incident flux, binning the data in rings
with equivalent scattering angle, φ, subtracting a background
estimated from a measurement of the empty cryostat, and a
normalization of the detector efficiency from a measurement
of a vanadium standard.

The MARI and MAPS spectrometers have a large detector
coverage, measuring the scattering to large neutron momen-
tum transfers Q. The phonon contribution was estimated
through the Q dependence of scattering following a protocol
described in the appendix. The estimated phonon contribution
was then subtracted from the data and the results were taken
to be the magnetic inelastic scattering.

The magnetic inelastic scattering data were then modeled
and fitted using linear spin wave theory. The dynamic struc-
ture factor S(Q, E), used to fit the data, was derived from a
Heisenberg Hamiltonian with a single-ion anisotropy:

H = −
∑

i,j

Ji,j Si · Sj − !
∑

i

(
Sz

i

)2
, (1)

where ! is the strength of the anisotropy and Ji,j are the ex-
change interactions, with ferromagnetic exchange interactions
being positive and antiferromagnetic exchange interactions
being negative. The same Hamiltonian was successfully used
to model the magnon spectra for MnPS3 [10] and FePS3
[12,13], and was used to estimate the magnetic exchange and
anisotropy from the magnetic susceptibility of NiPS3 [17].

The crystal structure of NiPS3 is quoted to have some site
disorder between the main 4g and the minority 2a sites for the
Ni, and likewise for the main 4i and the minority 8j sites for
the P [3]. However, it is likely that the minority contribution
may be an artefact of the sample having stacking faults and
refinements of the magnetic structure were not improved
on including the site disorder [15]. Consequently, only the
magnetic structure of the majority sites was considered in the
analysis.

In keeping with previous calculations for FePS3 [13],
S(Q, E) was derived from Eq. (1) by decomposing the antifer-
romagnetic structure of NiPS3 into four interlocking magnetic
sublattices. The sublattice vectors were chosen to be slightly
different to the lattice vectors for the crystallographic unit cell.
Figure 1 shows the axes chosen for the calculation, with the
subscript mag designating the axes for a primitive sublattice.
The vectors a = amag and c = cmag, however the vectors b
and bmag differ. In the magnetic coordinates, |bmag| = 2|a| and
γmag = 120◦. The Miller indices for the two lattices are related

134414-2

NiPS3,FePS3, CoPS3,RuCl3…

Hcl =
X

a,l

⇢

2
(rNa,l)

2
�

J 0

2

X

a

Na,1 ·Na,2 cos
⇣qa · x

2

⌘

<latexit sha1_base64="ZjVy52MzbMlTi2515XvblvV/DK0="></latexit>

3 distinct qa domains

Strong-coupling 
domains have structure 

of “dice lattice”



CrI3
Might not expect much from a ferro-magnet, but…

LETTERRESEARCH

2 7 2  |  N A T U R E  |  V O L  5 4 6  |  8  J U N E  2 0 1 7

blue, defined as spin down). As the field is increased to 0.15 T, the mag-
netization in the upper half of the flake switches direction (now spin 
up, in red). As the field is further increased to 0.3 T, the lower half of the 
monolayer flips and the entire flake becomes spin up, parallel to µoH. 
This observation of micrometre-scale lateral domains suggests  different 
values of coercivity in each domain. Indeed, magnetic field sweeps 
(θK versus µoH) taken at discrete points ranging across both domains  
(Fig. 2d) show the difference in coercive field between the upper and 
lower half of the monolayer. Sweeps taken only on the upper domain 
(marked by a blue circle) show a much narrower hysteresis loop (about 
50 mT) than sweeps from spots on the lower domain (orange and 
 purple circles, about 200 mT). When the beam spot is centred between 
the two domains, contributions from both can be seen in the resulting 
hysteresis loop (green circle), a consequence of the approximately 1-µ m  
beam spot illuminating both domains.

To determine the monolayer TC, we perform an analysis of the 
 irreversible field-cooled and zero-field-cooled Kerr signal. Zero-field-
cooled sweeps were performed by measuring θK while cooling the 
sample in zero field. After warming up to a temperature well above 
TC (90 K), the field-cooled measurement is taken upon cooling down 
in the presence of a small external magnetic field (µoH =  0.15 T). 
Thermomagnetic irreversibility can be observed below TC, at which 
point the zero-field-cooled sweep and the field-cooled sweep diverge 
as illustrated in Fig. 2e. We measured the average TC for the monolayer 
samples to be 45 K, slightly lower than the value (61 K) for bulk samples.

The layered structure of CrI3 provides a unique opportunity to inves-
tigate ferromagnetism as a function of layer thickness.  Figure 3a–c  
shows θK versus µoH for representative 1–3-layer CrI3 samples. All 
measured monolayer and trilayer samples consistently show ferro-
magnetic behaviour with a single hysteresis loop centred at µoH =  0 T 
(Fig. 3a and c and Extended Data Fig. 8). Both remanent and saturation 
values of θK for trilayers are about 50 ±  10 mrad, which is an order of 
magnitude larger than for monolayers. This drastic change in θK on 
moving from monolayer to trilayer may be due to a layer- dependent 
electronic structure, leading to weaker optical resonance effects at 
633 nm for the monolayer than for the trilayer (see Extended Data Fig. 9  
and Methods for thin-film interference and MOKE signal in CrI3). 
We find that for trilayers and thin bulk samples, TC is consistent with 
the bulk value of 61 K. The relatively small decrease of TC from bulk 
to few-layer and monolayer samples suggests that interlayer interac-
tions do not dominate the ferromagnetic ordering in CrI3. Compared 
with metallic magnetic thin films whose magnetic properties strongly 
depend on the underlying substrate30, the weak layer-dependent TC also 
implies a negligible substrate effect on the ferromagnetic phenomena 
in atomically thin CrI3. As such, exfoliated CrI3 of all thicknesses can 
be regarded as isolated single crystals.

A further observation is that bilayer CrI3 shows a markedly different 
magnetic behaviour from the monolayer (Fig. 3b). For all ten bilayer 
samples measured, the MOKE signal is strongly suppressed, with θK 
approaching zero (subject to slight variation between samples, see 
Extended Data Fig. 8b) at field values ± 0.65 T. This observation implies 
a compensation for the out-of-plane magnetization. Upon crossing a 
critical field, θK shows a sharp jump, depicting a sudden recovery of 
the out-of-plane co-parallel orientation of the spins. This new magnetic 
state has a saturation θK (40 ±  10 mrad) an order of magnitude larger 
than that of monolayer samples, and slightly smaller than for trilayers.

The suppression of the Kerr signal at zero magnetic field demon-
strates that the ground state has zero out-of-plane magnetization. 
The plateau behaviour of the magnetization curve—showing three 
horizontal regimes between magnetic field values of − 1.1 T and 1.1 T 
(Fig. 3b)—further implies that there are no in-plane spin components; 
otherwise, one would expect a gradual increase of the MOKE signal 
with increasing perpendicular magnetic field. Rather, our observa-
tion suggests that each individual layer is ferromagnetically ordered  
(out-of-plane) while the interlayer coupling is antiferromagnetic. In 
this case, the strength of the interlayer coupling determines the field 

at which jumps between different plateaus occur, ± 0.65 T. Although 
the detailed mechanism of this coupling remains unclear, the differ-
ent magnetic phases observed in bilayers and trilayers emphasizes the 
strong layer-dependent interplay between different mechanisms that 
stabilize magnetic ordering in the atomically thin limit.

Another bilayer feature distinct from those of monolayers is the 
 vanishingly small hysteresis around the jumps, suggesting negligible 
net perpendicular anisotropy. A possible interpretation is that the shape 
anisotropy (which prefers in-plane spin orientation) nearly compen-
sates for the intrinsic magnetocrystalline anisotropy (which prefers out-
of-plane spin orientation) so that the overall anisotropy is close to zero.

The insets in Fig. 3b display the layer-by-layer switching behaviour 
that leads to plausible magnetic ground states of bilayer CrI3. When 
the magnetic field is ± 0.65 T, the magnetization of the two layers 
are oppositely oriented to one another. Thus, the net magnetization 
vanishes and bilayer CrI3 behaves as an antiferromagnet with an 
exchange field of about 0.65 T. When | µoH|  >  0.65 T, magnetization in 
one layer flips to align with the external magnetic field and restores 
out-of-plane magnetization, giving rise to the large MOKE signal. At 
around | µoH|  =  0.65 T, the MOKE signal sharply increases from near 
zero to its saturation value within about 100 mT, suggesting an abrupt 
increase of out-of-plane magnetization triggered by a small change of 
magnetic field. Such behaviour is indicative of metamagnetism, the 
magnetic-field-driven transition from antiferromagnetic ordering to 
a fully spin-polarized state20.
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Figure 3 | Layer-dependent magnetic ordering in atomically-thin 
CrI3. a, MOKE signal on a monolayer (1L) CrI3 flake, showing hysteresis 
in the Kerr rotation as a function of applied magnetic field, indicative 
of ferromagnetic behaviour. b, MOKE signal from a bilayer CrI3 
showing vanishing Kerr rotation for applied fields ± 0.65 T, suggesting 
antiferromagnetic behaviour. Insets depict bilayer (2L) magnetic ground 
states for different applied fields. c, MOKE signal on a trilayer (3L) flake, 
showing a return to ferromagnetic behaviour.
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ABSTRACT: We report the connection between the stacking
order and magnetic properties of bilayer CrI3 using first-
principles calculations. We show that the stacking order
defines the magnetic ground state. By changing the interlayer
stacking order, one can tune the interlayer exchange
interaction between antiferromagnetic and ferromagnetic. To
measure the predicted stacking-dependent magnetism, we
propose using linear magnetoelectric effect. Our results not
only gives a possible explanation for the observed anti-
ferromagnetism in bilayer CrI3 but also have direct
implications in heterostructures made of two-dimensional magnets.
KEYWORDS: 2D magnets, Moire ́ superlattices, stacking order, CrI3, super-superexchange, beyond graphene

Since the demonstration of intrinsic ferromagnetism (FM)
in atomically thin crystals,1,2 there has been a lot of interest

in two-dimensional (2D) magnets.3−9 Among them, CrI3
presents an intriguing case. While bulk CrI3 is FM, it becomes
a layered antiferromagnet (AFM) when thinned down to a few
atomic layers.1 A number of interesting phenomena associated
with this layered antiferromagnetism have been observed,
including giant tunneling magnetoresistance when CrI3 is used
as the tunnel barrier,10−12 and gate tunable magneto-optical
Kerr effect, along with electrostatic doping control of
magnetism.13,14,14−16 However, despite the huge interest, the
origin of the AFM interlayer exchange in bilayer CrI3 remains
unclear.
Motivated by the above question, in this Letter, we explore

the connection between the crystal structure and magnetic
properties of bilayer CrI3 using first-principles calculations. We
find that the stacking order defines the magnetic ground state.
The coupling of stacking order and magnetism is qualitatively
unaffected by atomic relaxation, and is, therefore robust. This
stacking-dependent magnetism originates from the competi-
tion between orbital-dependent interlayer AFM super-super-
exchange (SSE) and interlayer FM SSE. Thus, by changing the
stacking order one can tune the magnetic ground state between
AFM and FM. We also propose using linear magnetoelectric
(ME) effect to distinguish between the various predicted AFM
stacking orders. In addition to providing a possible explanation
for the observed AFM in bilayer CrI3, our results have a
broader impact on other 2D honeycomb magnets such as CrX3
(X = Cl, Br, I)17−20 and their heterostructures, including
magnetic Moire ́ superlattices.

As our goal is to understand the stacking dependence of
magnetic order in CrI3, we begin our discussion with the
crystal structure of CrI3. Monolayer CrI3 consists of magnetic
Cr ions that form a honeycomb lattice, with each Cr atom
coordinated by six I atoms that form a distorted edge-sharing
octahedron (see Figure 1a,d). Monolayer CrI3 has the point
group D3d. Bulk CrI3 can be obtained by stacking these
monolayer units, which we label as the “A”-block (see Figure
1a). The bulk has a low-temperature (below 210 K) phase with
the space group R3̅ and a room-temperature phase with space
group C2/m.14,17,22 The low-temperature phase has an ABC-
Bernal stacking with each layer laterally shifted by [2/3, 1/3] in
fractional coordinates with respect to the neighboring layer.
The reduction in symmetry for the high-temperature phase is
associated with a relative lateral shift of the stacking order,
leaving the monolayer units unaffected.22 This corresponds to
a further lateral shift of [1/3, 0] and [2/3, 0] for the B- and C-
monolayer units, respectively, with respect to the ABC-
stacking. Thus, both R3̅ and C2/m phases have an ABC-
stacking sequence. To distinguish the two cases, we refer to the
R3̅ phase as the ABC-stacking sequence, and the C2/m phase
as the AB′C′-stacking sequence. While considering the
stacking order in the bilayer, it is, therefore, necessary to
consider at least two high-symmetry stacking orders shown in
Figure 1: the AB-stacking (S6 point group) from the low-
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2
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2
� d (Mz
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2
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A B

Fig. 4. Phase diagrams and a real space configuration plot in twisted bilayers of the ferromagnet CrI3. (A) (Top) The average value of the z component of
the sum of the two layers’ spins for CrI3, when the anisotropy parameter is taken to be positive and infinitesimal. A continuous transition from the collinear
phase to the twisted phase occurs at ↵= 0.025. This phase is analogous to the twisted-s phase discussed previously. The total area in which �̂(x) > 0 is
shown with a dashed red line here as the limiting value of Mz

2 for very large ↵. (Bottom) The average value of the z and in-plane components of the total
magnetization calculated with physical parameters chosen as discussed in the main text for CrI3. In particular, the anisotropy is nonzero here. At ✓= 17.5�,
a transition from collinear to twisted-s phase occurs at which point Mz starts to be nonzero. Moreover, a transition to the twisted-a phase occurs at ✓= 6.4�,
which exhibits itself in Mk starting to be nonzero for smaller angles. (B) Spatial profile of local magnetization Mz

2 = 1
2 (M1,z + M2,z)for a twisted solution in

CrI3. The anisotropy parameter is taken to be positive and infinitesimal. There are large regions in real space with a net magnetization, while other regions
have vanishingly small net magnetization.

while increasing ↵ from zero, cos �a will begin to have spatial variations at
the phase boundary between the collinear and the twisted-s phase. On the
other hand, if one fixes ↵ while increasing � from zero, the cos �s will start
from a constant in the twisted-s phase and begin to have spatial variations
once it crosses the phase boundary and enters the twisted-a phase. Similar
reasoning works for finding the phase boundaries in the case of CrI3, i.e.,
results presented in Fig. 4A.

As for Fig. 2C, the spin waves are obtained from the Bloch ansatz
us/a(x) = ûs/a(x)eik·x and similarly for vs/a. The variables in Eq. 17 thus
become ûs/a and v̂s/a with the substitutions r2

x ! (rx + ik)2 and �@2
t !!2.

Discretizing the moiré unit cell, the linear operators become large matri-
ces and can subsequently be diagonalized using Mathematica to find the
magnon bands.

The interlayer exchange for CrI3 is extracted from figure 2b of ref. 14,
where the dependence upon displacement is presented along two spe-
cial lines. The interlayer exchange is a periodic function with the same

period as that of the monolayer lattice; thus, a Fourier series for the
interlayer exchange (a constant along with the lowest five harmonics) in
the 2D space is assumed which induces one-dimensional functions on the
above two special lines. One can fix the Fourier coefficients by compar-
ing these induced forms with the given functions in the above reference.
The Euler–Lagrange equations for CrI3 are solved using the same methods
described above.

Data Availability. No data, materials, or protocols are needed to reproduce
the results presented in this paper. All codes are available upon request.
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Figure 2 | MCD microscopy in twisted bilayer CrI3. a-d, Magnetic field dependence of 
MCD for natural bilayer CrI3 (a) and twisted bilayer CrI3 with twist angle 1.2° (b), 4° (c) 
and 15° (d). The MCD signal of an isolated monolayer CrI3 is also shown in b for 
comparison. Coexistence of AF and FM states is seen at small twist angles. e, Image of 
!"# 1 ! −!"#(0 !) for the 1.2° sample. It shows the AF fraction of the sample. 
Non-zero contrast is seen only at the twisted bilayer region. f-h, MCD images at B = 0 T 
for the 1.2° (f), 4° (g) and 15° (h) samples after field polarization at 1 T. They show the 
FM fraction of the samples. In all images the dashed black and red lines outline the 
constituent monolayer regions. The color spots denote the locations of the MCD 
measurements in b-d with the same color.  
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A B

Fig. 4. Phase diagrams and a real space configuration plot in twisted bilayers of the ferromagnet CrI3. (A) (Top) The average value of the z component of
the sum of the two layers’ spins for CrI3, when the anisotropy parameter is taken to be positive and infinitesimal. A continuous transition from the collinear
phase to the twisted phase occurs at ↵= 0.025. This phase is analogous to the twisted-s phase discussed previously. The total area in which �̂(x) > 0 is
shown with a dashed red line here as the limiting value of Mz

2 for very large ↵. (Bottom) The average value of the z and in-plane components of the total
magnetization calculated with physical parameters chosen as discussed in the main text for CrI3. In particular, the anisotropy is nonzero here. At ✓= 17.5�,
a transition from collinear to twisted-s phase occurs at which point Mz starts to be nonzero. Moreover, a transition to the twisted-a phase occurs at ✓= 6.4�,
which exhibits itself in Mk starting to be nonzero for smaller angles. (B) Spatial profile of local magnetization Mz

2 = 1
2 (M1,z + M2,z)for a twisted solution in

CrI3. The anisotropy parameter is taken to be positive and infinitesimal. There are large regions in real space with a net magnetization, while other regions
have vanishingly small net magnetization.

while increasing ↵ from zero, cos �a will begin to have spatial variations at
the phase boundary between the collinear and the twisted-s phase. On the
other hand, if one fixes ↵ while increasing � from zero, the cos �s will start
from a constant in the twisted-s phase and begin to have spatial variations
once it crosses the phase boundary and enters the twisted-a phase. Similar
reasoning works for finding the phase boundaries in the case of CrI3, i.e.,
results presented in Fig. 4A.

As for Fig. 2C, the spin waves are obtained from the Bloch ansatz
us/a(x) = ûs/a(x)eik·x and similarly for vs/a. The variables in Eq. 17 thus
become ûs/a and v̂s/a with the substitutions r2

x ! (rx + ik)2 and �@2
t !!2.

Discretizing the moiré unit cell, the linear operators become large matri-
ces and can subsequently be diagonalized using Mathematica to find the
magnon bands.

The interlayer exchange for CrI3 is extracted from figure 2b of ref. 14,
where the dependence upon displacement is presented along two spe-
cial lines. The interlayer exchange is a periodic function with the same

period as that of the monolayer lattice; thus, a Fourier series for the
interlayer exchange (a constant along with the lowest five harmonics) in
the 2D space is assumed which induces one-dimensional functions on the
above two special lines. One can fix the Fourier coefficients by compar-
ing these induced forms with the given functions in the above reference.
The Euler–Lagrange equations for CrI3 are solved using the same methods
described above.

Data Availability. No data, materials, or protocols are needed to reproduce
the results presented in this paper. All codes are available upon request.
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Moiré engineering1–3 of van der Waals magnetic materials4–9 
can yield new magnetic ground states via competing inter-
actions in moiré superlattices10–13. Theory predicts a suite 
of interesting phenomena, including multiflavour magnetic 
states10, non-collinear magnetic states10–13, moiré magnon 
bands and magnon networks14 in twisted bilayer magnetic 
crystals, but so far such non-trivial magnetic ground states 
have not emerged experimentally. Here, by utilizing the 
stacking-dependent interlayer exchange interactions in 
two-dimensional magnetic materials15–18, we demonstrate a 
coexisting ferromagnetic (FM) and antiferromagnetic (AF) 
ground state in small-twist-angle CrI3 bilayers. The FM–AF 
state transitions to a collinear FM ground state above a criti-
cal twist angle of about 3°. The coexisting FM and AF domains 
result from a competition between the interlayer AF coupling, 
which emerges in the monoclinic stacking regions of the moiré 
superlattice, and the energy cost for forming FM–AF domain 
walls. Our observations are consistent with the emergence 
of a non-collinear magnetic ground state with FM and AF 
domains on the moiré length scale10–13. We further employ the 
doping dependence of the interlayer AF interaction to con-
trol the FM–AF state by electrically gating a bilayer sample. 
These experiments highlight the potential to create complex 
magnetic ground states in twisted bilayer magnetic crystals, 
and may find application in future gate-voltage-controllable 
high-density magnetic memory storage.

There is a one-to-one correspondence between the stacking 
structure and the magnetic ground state in CrI3 bilayers (Fig. 1b): 
the monoclinic (M) phase supports an A-type antiferromagnetic 
(AF) ground state with two AF-coupled ferromagnetic (FM) mono-
layers; and the rhombohedral (R) phase supports an FM ground 
state15,16,19,20. The magnetic easy axis is out-of-plane. There are both 
M and R regions in the triangular moiré superlattice of a twisted 
bilayer (Fig. 1a). The competing interlayer AF and FM interactions 
on the moiré length scale can induce non-trivial magnetic ground 
states with coexisting AF and FM domains (Fig. 1b)10–14. These 
states are expected to emerge when the energy gain from forming 
AF domains in the M regions exceeds the energy cost from forming 
domain walls. Since the energy gain scales with the area of the moiré 
unit cell, whereas the energy cost scales with the moiré period, such 
a coexisting FM–AF state is favoured below a critical twist angle10. 
This ideal picture could be modified in samples with very small 

twist angles, for instance, by lattice reconstruction21 that favours the 
most stable structure, the (FM) R phase15,16,19.

We fabricate twisted CrI3 bilayers by the tear-and-stack method 
(Methods and Extended Data Fig. 1), which has been widely used 
to make twisted bilayer graphene samples22–24. A series of samples 
with varying target twist angle θ has been studied. The twist-angle 
accuracy is ±0.5° on average. All samples are encapsulated between 
hexagonal boron nitride (hBN) substrates to prevent environmen-
tal degradation. The moiré structure of a small number of samples 
was verified by standard four-dimensional (4D) scanning transmis-
sion electron microscopy (STEM). Very thin hBN encapsulation 
layers (<5 nm) and substrates (8-nm-thick amorphous SiO2) were 
required to obtain TEM images (Extended Data Fig. 3). We have 
also fabricated a number of dual-gated field-effect devices to con-
tinuously tune the interlayer AF interaction by varying the doping 
level in CrI3 (refs. 25,26).

Figure 1c shows the electron diffraction pattern of sample 
1 with θ = 1.5°. Diffraction peaks from both hBN and CrI3 are 
observed. Figure 1d–f shows dark-field images obtained by select-
ing one of the third-order diffraction peaks of the CrI3 bilayer 
(circled in Fig. 1c). A clear moiré stripe pattern with a periodicity 
of one-third of the moiré period aM/3 = 6.1 ± 0.9 nm is seen. Each 
image is related to the other by a 60° rotation. The real-space moiré 
pattern can be constructed by superimposing the three images 
(Extended Data Figure 3). Using the measured aM, we determine 
Ȇ = � TJO

−�

(

B

�B

.

)

≈ ���

◦
± ���

◦ (a = 0.687 nm is the in-plane lat-
tice constant of CrI3). (Here the error for θ of sample 1 is propagated 
from that for aM.) The dark-field images in a larger field-of-view and 
for another sample are shown in Extended Data Figs. 4 and 5. These 
results verify the formation of moiré structures in twisted bilayer 
CrI3 and the expected twist-angle accuracy.

We probe the magnetic ground state by magnetic circular dichro-
ism (MCD) measurements. The MCD is linearly proportional to 
the out-of-plane magnetization. However, a direct comparison of  
the absolute MCD for different samples is not appropriate because 
of the different local field factors from different substrate thick-
nesses. Unless otherwise specified, all measurements were per-
formed at 4 K.

Figure 2a–d shows the MCD as a function of out-of-plane mag-
netic field B for four bilayer samples. (Extended Data Figs. 3, 4, 7 
and 8 show results from additional samples and correlated STEM 
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