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Localized magnons
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along this direction in space. If the dispersion is com-
pletely flat, the magnon can be localized in a finite region
of the lattice. This localized excitation can have N!ns
different positions. Now it is clear that one can construct
further local excitations. There will be no interaction with
the other excitations as long as they are sufficiently well
separated in space, and therefore each excitation will have
the same energy. In this manner, one obtains n-magnon ex-
citations for n # nmax whose energy is exactly n times the
one-magnon energy. Because of the absence of attractive
interaction, it is plausible that these excitations are also the
lowest n-magnon excitations. A proof of this statement for
s ! 1!2, arbitrary D $ 0, and all Jij equal will be given
elsewhere [12]; below we report numerical evidence for the
occurrence of this effect for several models. The essence
of the above argument is that the ground state energies in
the 1, 2, . . . , nmax magnon spaces depend linearly on the
number of magnons, i.e., on the total magnetic quantum
number. Hence the total Sz in the ground state goes di-
rectly from Ns 2 nmax to the saturation value Ns when
increasing the magnetic field. In terms of the magnetiza-
tion curve m"h# ! Sz"h#!"Ns#, this implies that there is a
jump dm ! nmax!"Ns#. If one band is completely flat, the
system can support a macroscopic amount of independent
magnons nmax $ N and one obtains a macroscopic jump
just below saturation.

To be more precise, denote the region of localization of
the magnon state by L. Then the coefficients al in (2) are
different from zero only for sites l [ L. The local one-
magnon state is completely decoupled from the rest of the
lattice R and the eigenstate jC% can be written as a product
jC% ! jCL% jCR % of a local part L and the rest R. jCL% is
the local magnon state and jCR % is the vacuum state. The
coefficients ai vanish for i [ R in the one-magnon state
(2); i.e., ai fi 0 ; i [ L and ai ! 0 ; i [ R.

The necessary and sufficient condition for decoupling of
the local state from the rest R is

X

l[L
alJlk ! 0 ; k [ R . (3)

The Hamiltonian (1) can be divided into three parts,

Ĥ ! ĤL 1 ĤL2R 1 ĤR , (4)

with L being the part of the lattice where one magnon is
localized and R the rest. The first term ĤL is the local part
of the Hamiltonian with Jij ! Jl1l2 and l1, l2 [ L, whereof
jCL% is the lowest eigenstate. The second term ĤL2R is
the coupling of the local part to the rest of the lattice with
Jij ! Jlk and l [ L, k [ R. Jlk must satisfy condition
(3). The rest of the Hamiltonian which is not connected
with the local part is ĤR with Jij ! Jk1k2 and k1, k2 [ R.
ĤL2R together with condition (3) creates the frustration;
therefore, it seems that the magnetization jump described
here is restricted to highly frustrated lattices. The simplest
realizations of such a Hamiltonian are rings connected only
by triangles.

In the Kagomé lattice [1,7] as a typical example of flat
one-magnon dispersion w0" "k# ! h 2 2sJ"1 1 2D# the
magnon can be localized around a hexagon (see Fig. 1).
Choosing the coefficients al ! "21#l with l numbering
the sites around a hexagon ensures that jCL% is an exact
eigenstate for the hexagon (as illustrated by the bold one in
Fig. 1). The triangles around the hexagon fulfill condition
(3) and therefore the magnon on the hexagon is decoupled
from the rest of the lattice, showing that this state is also an
eigenstate of the whole Kagomé lattice. Further magnons
can be put on the lattice without disturbing existing exci-
tations. This can be repeated until every third hexagon is
excited as shown in Fig. 1. As a consequence we have a
macroscopic magnetization jump dm having its maximal
value dm ! 2!9 for the extreme quantum case s ! 1!2.

A proof that these states are the lowest eigenstates in the
corresponding sectors is given in [12] for s ! 1!2, arbi-
trary D $ 0 and all Jij equal. Here we present numerical
evidence for this statement. In Fig. 2 exact diagonalization
results are shown for finite systems with periodic boundary
conditions for the s ! 1!2 Heisenberg antiferromagnet on
the Kagomé lattice. Only lattices with N being a multiple
of 9 (three unit cells) are presented, which fit to the m !
7!9 state corresponding to Fig. 1. The jump to saturation
can easily be seen in this figure. We have also computed
curves on smaller clusters. They agree with those pre-
sented in [7,8]. If the boundary conditions do not fit to thep

3 3
p

3 state or if the cluster is too small, the jump may
show finite-size effects.

We emphasize that the existence of this jump is quite
independent of several details of the system. First, one
can construct N!9 independent magnons for any s, leading
to a jump of height dm ! 1!"9s#. Indeed, the results for
the s ! 1 Kagomé lattice presented in [7] show a jump
of the expected height for the given cluster sizes. Second,

− +

+− 

+ − 

FIG. 1. Kagomé spin array, which hosts at least N!9 indepen-
dent magnons in a

p
3 3

p
3 structure if it consists of N spins.

The circles mark hexagons where the independent magnons can
be localized. The structure of one localized magnon is indicated
by the signs around the bold hexagon which correspond to coef-
ficient al ! 61 with which a spin flip contributes at each site l.
Together with the surrounding triangles the local state satisfies
Eq. (3).
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Tight-binding model (with negative t) describes dispersion of 
magnons in ferromagnetic state.  Interactions make them 
crystallize.
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FIG. 2. Magnetization curves of an s ! 1!2 Heisenberg anti-
ferromagnet on a finite Kagomé lattice for N ! 27, 36, 45, 54
and D ! 1. For N ! 45 and N ! 54 the curve starts just below
the magnetization jump. It can be clearly seen that the jump to
full magnetization has no finite size dependence.

introduction of an XXZ anisotropy D fi 1 does not affect
the crucial properties of the one-magnon dispersion, and
therefore one expects the magnitude of the degeneracy and
the associated jump to be independent of D. In the exact
diagonalization results for s ! 1!2 [8] jumps of identical
size are indeed observed for D ! 0, 1, and 2.5. Third,
the argument remains also unchanged if one generalizes
to different coupling constants in the triangles pointing up
and down (see Fig. 1) [3]. The degeneracy is (partially)
lifted only if coupling constants are changed such that they
become different around one triangle. The jump therefore
seems to be very stable not only in the Kagomé lattice but
also in the other models to be discussed next where similar
arguments can be applied.

Another 2D example for completely flat one-magnon
dispersion w0""k# ! h 2 2sJ"1 1 3D# is the checker-
board lattice [13], a 2D variant of the pyrochlore lattice.
In this case, localized magnon excitations live around
a square without diagonal interactions, again with coef-
ficients al ! "21#l . The magnetization jump is dm !
1!"8s#. We have verified the predicted degeneracy and
associated macroscopic jump numerically for the checker-
board lattice with s ! 1!2 and D ! 1.

Completely flat bands can also be found in dimensions
different from two. For example, the generalized pyro-
chlore lattice in three dimensions with two different cou-
pling constants J, J0 (see, e.g., [14]) gives rise to the high
frustration necessary for a decoupling of local magnon ex-
citations. The lowest two out of the four magnon bands are
indeed degenerate and completely flat: w0" "k# ! w1" "k# !
h 2 s"J 1 J0# "1 1 3D#. We expect a macroscopic jump
of dm $ 1!"12s# for all J, J 0 $ 0.

Even in one dimension, one can find systems with a flat
dispersion: Some examples are shown in Fig. 3 together
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FIG. 3. One-dimensional quantum antiferromagnets with a
magnetization jump to the full moment m ! 1: (a) the sawtooth
chain [15,16], (b) the Kagomé-like chain of [17], and (c) the
Kagomé-like chain of [18]. The position of a local magnon is
marked by thick lines with coefficients al attached.

with the structure of the localized magnon excitations.
For the generalized sawtooth chain [15,16] of Fig. 3(a),
the lowest magnon branch is completely flat for J2 !
p

2"1 1 D# J1 and all s. Note that this example satisfies
(3) with more complicated coefficients al than encoun-
tered previously. The lowest magnon branch for the one-
dimensional Kagomé variant [17] shown in Fig. 3(b) is
also completely flat: w0" "k# ! h 2 2sJ"1 1 2D#. Fig-
ure 3(c) shows another variant of a Kagomé chain [18].
Here, the state indicated by the bold hexagon is an eigen-
state for J2 ! "2D 1 1#J1!"D 1 1# with w0""k# ! h 2
2sJ1"1 1 2D#. We have checked numerically that, for
s ! 1!2 and D ! 1, 0, a jump of size dm ! 1!2, 1!3,
or 1!5 exists in cases (a), (b), or (c), respectively. As an
example, Fig. 4 shows the m"h# curve of the model of
Fig. 3(c) with s ! 1!2, D ! 0, and J2 ! J1 (to ensure
a flat dispersion). The jump of height dm ! 1!5 can be
seen clearly (compare also the inset). Furthermore, one
can see several plateaus in the magnetization curve. This
suggests that the same conditions which give rise to the
jump also favor the formation of magnetization plateaus.
In particular, our numerical data always show a plateau
preceding the jump. However, this is beyond the scope of
the present Letter and needs further investigations.

So far, we have discussed cases with completely flat dis-
persion. However, in more than one dimension it is also
possible that the lowest magnon branch has a flat disper-
sion only in some, but not all directions. This has been
noticed previously for the J1-J2 model on the square lat-
tice antiferromagnet with J2 ! J1!2 [19]. The generalized
checkerboard lattice [13] is another 2D model which has
flat directions if the couplings J 0 along the diagonals are
larger than those for the square lattice J. In these cases,
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Kagomé metals

Mn3Sn, Mn3Ge, FeSn,YbMn6Sn6, CoSn, Co3Sn2S2



Bands and photoemission

E lectronic correlations are a hallmark of condensed matter
systems with many-body character. Localizing electrons in
real space is often considered as a route to enhance corre-

lation effects and engineer emergent phases of matter. Most well-
known examples include d-electron systems, where the subtle
balance between kinetic energy and localization-enhanced Cou-
lomb interaction leads to collective electron behavior and rich
many-body physics encompassing unconventional super-
conductivity, metal–insulator transitions, density-wave instabil-
ities, and quantum spin liquids1. In band-like systems, electrons
can still be confined in real space in lattices supporting dis-
persionless electronic excitations (i.e., flat bands) in momentum
space. Due to the prominence of the interaction energy scale over
the quenched kinetic energy, flat bands represent a versatile
platform to explore exotic correlated electron phenomena.
Notable examples include f-electron systems with Kondo physics
and heavy fermions2, Landau levels under high magnetic fields
and the fractional quantum Hall effect3, and, more recently,
magic-angle twisted bilayer graphene superlattices with Mott-
insulating phase and unconventional superconductivity4,5.

A known experimental route to engineering electronic con-
finement and flat bands relies on the destructive quantum phase
interference of fermion hopping paths in certain networks,
including the dice, Lieb, kagome, and decorated square lattices6–12.
Here we focus on the case of the kagome lattice depicted in Fig. 1a.
In the simplest nearest-neighbor electronic hopping model of the
s-orbital kagome lattice H= Σ<i,j>c

y
i cj+ h.c., one can construct

real-space eigenfunctions with alternating phases at neighboring
corners of the hexagon (Fig. 1a). This electronic state is geome-
trically confined within the single hexagon since any hopping to
neighboring cells is hindered by the destructive phase interference
as shown in Fig. 1a. This real-space electronic localization trans-
lates into momentum–space (Bloch) eigenfunctions with no
energy dispersion, namely flat bands (Fig. 1b). In the tight-binding
model of kagome lattice, this dispersionless excitation materializes
alongside a pair of Dirac bands that are protected by the lattice

symmetry similar to the case of the honeycomb lattice. Both the
linear band crossing at K and quadratic band touching point at Γ
become gapped once spin–orbit coupling (SOC) is included, and
the Dirac and flat bands become topologically nontrivial10–15. This
peculiar band structure of the kagome lattice has recently attracted
significant interest, not only in the context of electronic topology—
topological insulator, Chern insulator, and fractional quantum
Hall phases10–15—but also as a platform to realize many-body
electronic phases—density waves, magnetism, Pomeranchuk
instability, and superconductivity16–18.

While the lattice-born flat bands have been recently observed in
optical and engineered atomic Lieb lattices, their experimental rea-
lization in a solid-state system has remained elusive19,20. Unlike the
ideal case shown in Fig. 1b, the dispersion of the flat band in real
kagome compounds is modified by additional factors, such as in-
plane next-nearest-neighbor hopping, interlayer coupling, and
multiple orbital degrees of freedom. Therefore, the experimental
realization of the kagome flat band requires careful and systematic
material design. Prior scanning tunneling microscopy (STM) studies
on kagome compounds Fe3Sn2 and Co3Sn2S2 reported the evidence
of flat bands from the enhancement of the momentum-integrated
density of states (DOS)21–23. However, detailed band structure
calculations revealed that the region of existence of these dis-
persionless excitations is rather limited in the momentum space21,24,
due to complex hopping pathways distorting the flat dispersions in
these compounds. These calculations are consistent with the rela-
tively weak enhancement of the DOS in STM measurements
compared to the ideal flat band case (see the Supplementary Fig. 1
for details)21–23. Accordingly, angle-resolved photoemission spec-
troscopy (ARPES) experiments have been carried out on Fe3Sn2 and
Co3Sn2S2, but no robust evidence for flat bands have been
detected24,25. The unambiguous momentum–space identification of
the kagome-based flat band and analysis of its topological character
have, therefore, remained the subject of ongoing investigations.

In the present study of kagome metal CoSn, we combine
ARPES and band structure calculations to report the presence of
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Fig. 1 Electronic confinement and flat band in ideal kagome lattice and kagome metal CoSn. a Confinement of electron in kagome lattice with nearest-
neighbor hopping. Plus and minus signs indicate the phase of flat band eigenstate at neighboring sublattices. Any hoppings outside the hexagon (arrows)
are canceled by destructive quantum interferences, resulting in the perfect localization of electron in the blue-colored hexagon. b Tight-binding band
structure of kagome lattice featuring flat band (blue solid line) and two Dirac bands with linear crossing at K (black solid lines). Inclusion of spin–orbit
coupling gaps both Dirac crossing and quadratic touching between the flat band and the Dirac band (dotted lines). c In-plane structure of kagome layer in
CoSn consists of kagome network of Co atoms and space-filling Sn atoms. d Three-dimensional structure of CoSn with alternating stacking of the kagome
layer A and Sn layer S. e Relativistic density functional theory (DFT) band structure of CoSn. Orange, cyan, and brown-colored regions highlight the
manifestation of the kagome flat band flat bands with different d-orbital characters. Inset shows the bulk Brillouin zone of CoSn. The DFT Fermi level is
shifted down by 140meV to fit the experimental Fermi level.
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the assignment of these features to the two flat bands arising from
different d-orbital degrees of freedom as discussed above. The
Dirac point is again observed at K, and positioned at slightly
higher binding energy 0.73 ± 0.05 eV due to small but finite
dispersion of the Dirac bands along kz. We note that the flat band
highlighted in Fig. 2 corresponds to the lower flat band (cyan)
with dxz/dyz orbital characters. Below, we will focus on these
prototypical flat bands at kz= 0 to analyze their localization and
topology.

At this point, an important outstanding question is how the
localization mechanism in the simple s-orbital kagome tight-
binding model (Fig. 1a, b) manifests in the realistic d-orbital
kagome lattice of CoSn. To address this aspect, we derived a DFT-

based ab initio tight-binding model of CoSn (Supplementary
Fig. 5), and use the kz= 0 flat bands to construct the real-space
effective Wannier functions on the 2D kagome plane (see the
Supplementary Note 3 for details). We construct the flat band
Wannier function to retain the highest degree of symmetries
possible (except those abandoned by the topological obstructions
associated with nontrivial Z2 invariant and mirror Chern number;
see “Discussion” below), which include a subset of important
symmetries of the kagome lattice such as C6 rotational symmetry,
xz/yz mirror symmetry, combined inversion/time-reversal sym-
metry, and combined xy mirror/time-reversal symmetry. As
such, the Wannier functions we derived could serve as a basis for
future analyses of interaction effects within the flat bands. The
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Fig. 3 Orbital texture of flat bands and effective Wannier wave function. a, c High-resolution band structure of CoSn along Γ–M and Γ–K–M high-
symmetry directions, respectively. The data are measured with 128 eV photons, which probes band structure at kz= 0 plane. b, d Corresponding DFT band
structures. Cyan and orange lines, respectively, mark two flat bands arising from dxz/dyz and dxy/dx2− y2 orbital degrees of freedom. Experimental dispersion
of the flat bands (marked with orange and cyan arrows in a, c) are well reproduced by the calculation. The Dirac point at K are marked with white dots in c.
e, f Orbital textures of the effective Wannier states constructed from the flat bands with dxz/dyz and dxy/dx2− y2 orbitals, respectively. Length scale of the
orbitals at each site is proportional to the orbital wave functions in the majority spin channel. Insets of e, f display the decay of total charge density
(including the contribution from other orbitals) of the Wannier functions away from the central hexagon.
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Topological flat bands in frustrated kagome lattice
CoSn
Mingu Kang 1, Shiang Fang 2,3,4, Linda Ye 1, Hoi Chun Po1, Jonathan Denlinger5, Chris Jozwiak 5,
Aaron Bostwick 5, Eli Rotenberg5, Efthimios Kaxiras 2,3, Joseph G. Checkelsky 1 & Riccardo Comin 1✉

Electronic flat bands in momentum space, arising from strong localization of electrons in real

space, are an ideal stage to realize strongly-correlated phenomena. Theoretically, the flat

bands can naturally arise in certain geometrically frustrated lattices, often with nontrivial

topology if combined with spin-orbit coupling. Here, we report the observation of topological

flat bands in frustrated kagome metal CoSn, using angle-resolved photoemission spectro-

scopy and band structure calculations. Throughout the entire Brillouin zone, the bandwidth of

the flat band is suppressed by an order of magnitude compared to the Dirac bands originating

from the same orbitals. The frustration-driven nature of the flat band is directly confirmed by

the chiral d-orbital texture of the corresponding real-space Wannier functions. Spin-orbit

coupling opens a large gap of 80meV at the quadratic touching point between the Dirac and

flat bands, endowing a nonzero Z2 invariant to the flat band. These findings demonstrate that

kagome-derived flat bands are a promising platform for novel emergent phases of matter at

the confluence of strong correlation and topology.
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Vanadium rush
NEW KAGOME PROTOTYPE MATERIALS: DISCOVERY … PHYSICAL REVIEW MATERIALS 3, 094407 (2019)

FIG. 1. The prototype structure KV3Sb5 (a) crystallizes in the P6/mmm space group and exhibits a layered structure of V-Sb sheets
intercalated by K. The vanadium sublattice is a structurally perfect kagome lattice. There are two distinct Sb sublattices. The sublattice formed
by the Sb1 atom is a simple hexagonal net, centered on each kagome hexagon. The Sb2 sublattice creates a graphenelike Sb sheet below
and above each kagome layer. Bond distances for the V-V, V-Sb, and Sb-Sb nearest-neighbor interactions are also shown. Fourier-filtered,
false-colored atomic resolution TEM (b) is able to partially decouple the Sb sublattices (orange) from the K-V (red and purple) sublattices.
While we cannot mathematically separate the K and V sublattices during Fourier analysis, the large ionic radius of K is evident from visual
inspection alone.

structural prototype. We also provide evidence for the dein-
tercalation of potassium in KV3Sb5. Afterward, we provide
an extensive overview of the electronic structure in all three
materials, examining the electron band diagrams, density
of states, and crystal orbital Hamilton population. We have
focused our experimental characterization efforts on KV3Sb5,
examining magnetization, neutron scattering, and heat ca-
pacity experiments on polycrystalline powders. The effect of
deintercalation on single-crystal resistivity measurements is
also investigated.

A. Discovery and crystal structure

The discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5
emerged from our search for new transition-metal Zintl an-
timonides for thermoelectric applications [29,30]. The proto-
type KV3Sb5 was first isolated in powders, and the structure
was solved using charge-flipping methods on powder diffrac-
tion data. The resulting Rietveld refinement and associated
crystallographic information are shown in Fig. S1 of the
Supplemental Material [31]. Once we had identified KV3Sb5
as a new prototype structure, we explored all combinations
of (K,Rb,Cs)(V,Nb,Ta)(Sb,Bi) under a variety of synthesis
conditions. Only KV3Sb5, RbV3Sb5, and CsV3Sb5 crystallize
in the KV3Sb5 prototype. We did not attempt synthesis of the
arsenide analogs due to toxicity concerns.

To validate the structures and to provide a more robust plat-
form for future studies, we developed single-crystal syntheses
for all three materials—details are outlined in Sec. II. Crystals
recovered from flux growths are thin (10–100 microns), silver-
colored platelets. The crystals range from 1 mm × 1 mm to
5 mm × 5 mm in area. The platelets will often exhibit natural
hexagonal faceting. All materials are easily deformed, and the
platelets show a natural tendency to exfoliate (Fig. S2) [31].

A summary of crystallographic parameters and refine-
ment statistics obtained from single-crystal x-ray diffraction
(SCXRD) for all three materials are provided in Tables S1–S4
of the Supplemental Material [31]. For KV3Sb5, we have in-
cluded two refinements, one for the crystals grown in a KSb2-
KSb flux (etched in HNO3) and another for crystals grown in
a KSb2-Sb flux (etched in water). A selection of precession

images collected from the SCXRD for KV3Sb5 is also shown
in Fig. S3 [31]. Consistent with the powder diffraction data,
we find that KV3Sb5, RbV3Sb5, and CsV3Sb5 crystallize in
the hexagonal P6/mmm space group. All compounds consist
of V-Sb slabs intercalated by alkali-metal cations [Fig. 1(a)].
Most notably, the vanadium sublattice forms a structurally
perfect 2D kagome net. KV3Sb5 is a new kagome prototype
structure, and is one of the smallest and simplest examples of
a kagome lattice.

Due to the high symmetry of the P6/mmm space group
and the small unit cell, the KV3Sb5 prototype only possesses
three structural degrees of freedom (a and c lattice param-
eters, z-coordinate on Sb2). An intuitive description of the
KV3Sb5 prototype structure can be obtained by decomposing
the structure into the individual atomic sublattices created by
the atomic basis: K1, V1, Sb1, and Sb2. Figure 1(a) shows the
V1 + Sb1 and Sb2 sublattices alongside the overall structure
of KV3Sb5. As mentioned before, the vanadium sublattice is a
structurally perfect kagome net. The kagome net of vanadium
is interwoven with a simple hexagonal net formed by the
Sb1 sites. From a space-filling perspective, the Sb1 atoms
fill the natural gap formed in the kagome plane, which is
reminiscent of Herbertsmithite [ZnCu3(OH)6Cl2], where Zn
ions occupy the centers of the kagome hexagons. The Sb2
layers at c ∼ 0.25 and 0.75 form graphenelike networks of Sb
that sandwich the kagome layer. Each V-Sb slab is separated
by a simple hexagonal net of K formed by the K1 site.

In addition to the PXRD and SCXRD results, we also per-
formed atomic resolution transmission electron microscopy
(TEM) for platelets of KV3Sb5. Figure 1(b) shows the ex-
pected structure for KV3Sb5 along the [001] direction along-
side a Fourier-filtered, false-colored TEM micrograph. Using
Fourier-filtering, we were able to partially decouple the Sb
sublattices (orange) from the V and K sublattices (red). While
we were not able to mathematically decouple the V and K
sublattices during Fourier analysis, the large ionic radii of K
(purple) is quite apparent from visual inspection alone.

Despite the intercalated structure, powders, single crystals,
and densified pellets of KV3Sb5, RbV3Sb5, and CsV3Sb5
are remarkably stable. Samples are stable in air for >1 year
without decomposing or tarnishing. KV3Sb5 is stable under
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FIG. 1. The prototype structure KV3Sb5 (a) crystallizes in the P6/mmm space group and exhibits a layered structure of V-Sb sheets
intercalated by K. The vanadium sublattice is a structurally perfect kagome lattice. There are two distinct Sb sublattices. The sublattice formed
by the Sb1 atom is a simple hexagonal net, centered on each kagome hexagon. The Sb2 sublattice creates a graphenelike Sb sheet below
and above each kagome layer. Bond distances for the V-V, V-Sb, and Sb-Sb nearest-neighbor interactions are also shown. Fourier-filtered,
false-colored atomic resolution TEM (b) is able to partially decouple the Sb sublattices (orange) from the K-V (red and purple) sublattices.
While we cannot mathematically separate the K and V sublattices during Fourier analysis, the large ionic radius of K is evident from visual
inspection alone.
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examining magnetization, neutron scattering, and heat ca-
pacity experiments on polycrystalline powders. The effect of
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eters, z-coordinate on Sb2). An intuitive description of the
KV3Sb5 prototype structure can be obtained by decomposing
the structure into the individual atomic sublattices created by
the atomic basis: K1, V1, Sb1, and Sb2. Figure 1(a) shows the
V1 + Sb1 and Sb2 sublattices alongside the overall structure
of KV3Sb5. As mentioned before, the vanadium sublattice is a
structurally perfect kagome net. The kagome net of vanadium
is interwoven with a simple hexagonal net formed by the
Sb1 sites. From a space-filling perspective, the Sb1 atoms
fill the natural gap formed in the kagome plane, which is
reminiscent of Herbertsmithite [ZnCu3(OH)6Cl2], where Zn
ions occupy the centers of the kagome hexagons. The Sb2
layers at c ∼ 0.25 and 0.75 form graphenelike networks of Sb
that sandwich the kagome layer. Each V-Sb slab is separated
by a simple hexagonal net of K formed by the K1 site.

In addition to the PXRD and SCXRD results, we also per-
formed atomic resolution transmission electron microscopy
(TEM) for platelets of KV3Sb5. Figure 1(b) shows the ex-
pected structure for KV3Sb5 along the [001] direction along-
side a Fourier-filtered, false-colored TEM micrograph. Using
Fourier-filtering, we were able to partially decouple the Sb
sublattices (orange) from the V and K sublattices (red). While
we were not able to mathematically decouple the V and K
sublattices during Fourier analysis, the large ionic radii of K
(purple) is quite apparent from visual inspection alone.

Despite the intercalated structure, powders, single crystals,
and densified pellets of KV3Sb5, RbV3Sb5, and CsV3Sb5
are remarkably stable. Samples are stable in air for >1 year
without decomposing or tarnishing. KV3Sb5 is stable under
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• Metallic (μΩ-cm) 
• Quasi-2d: Rc/Rab = 600 
• Pauli paramagnetism - no 

local moments 
• CDW transition ~90K 
• SC Tc ≲ 3.5K

we next examine the normal state metal via a combination
of ARPES measurements and DFT modeling. Figure 3(a)
shows both ARPES and DFT modeling data with the
hexagonal Brillouin zone superimposed on the E ¼ 0 eV
constant energy contour and high-symmetry points K, M,
and Γ labeled. Data collected with differing photon
energies did not reveal any appreciable dispersion along
kz, consistent with a quasi-2D band structure. ARPES data
were collected at 50, 80, 100, and 120 K, and no resolvable
changes were observed in the band structure when tran-
sitioning through the T" transition. The DFT model shows
remarkable agreement with the ARPES data, recovering
all experimental observed crossings below the Fermi level.
Figure 3(b) shows both the measured and calculated
electronic structure hosts multiple Dirac points at finite
binding energies.
While inaccessible in the present ARPES data, the DFT

model further reveals multiple topological band features
slightly above the Fermi energy. The M̄ point is of par-
ticular interest, asM is a time-reversal invariant momentum
(TRIM) point. Figure 4 shows the results of a tight-binding

calculation of surface states in CsV3Sb5, where bright spots
slightly above the Fermi energy indicate surface states.
Unlike many heavily studied kagome lattices [e.g.,

ZnCu3ðOHÞ6Cl2 [40–42], Fe3Sn2 [9,43], Mn3Ge [44,45],
and Co3Sn2S2 [10,46,47]], CsV3Sb5 does not exhibit
resolvable magnetic order. Given that CsV3Sb5 possesses
both time-reversal and inversion symmetry as well as a
continuous, symmetry-enforced, direct gap at every k point,
one can calculate theZ2 topological invariant between each
pair of bands near the Fermi level by simply analyzing the
parity of the wave function at the TRIM points [48]. This
analysis reveals a number of topologically nontrivial cross-
ings between adjacent bands in the region %1 eV from the
Fermi level. For clarity, we will focus on the surface states
crossing at the M̄ point here with further analysis presented
in Supplemental Material [18]. Figure 4(b) presents a
close-up of the calculated surface states near the M̄ point.
The surface states at the M̄ point manifest approximately
0.05 eVabove the Fermi energy. The apparent anisotropy in
the calculated surface state dispersions (M̄-K̄ versus M̄-Γ̄)
derives from the direct “gap” moving up or down in energy

FIG. 2. (a),(c),(e) Full temperature ranges for the magnetization, electrical resistivity, and heat capacity, respectively, shown for single
crystals of CsV3Sb5. All measurements indicate the presence of an anomaly T" at 94 K, suspected to be an electronic instability (e.g.,
charge ordering). The inset in (a) shows line cuts through x-ray diffraction data below and above T". Dashed lines denote the appearance
of half-integer reflections. (b),(d),(f) Field-dependent measurements at low temperatures, showing the onset of superconductivity in
magnetization, resistivity, and heat capacity, respectively. The Tc for CsV3Sb5 is approximately 2.5 K, with a slight suppression in
resistivity due to high probe currents.
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Fig. 1 Superlattice modulation observed via atomically resolved topographic imaging. a, Crystal 
structure of KV3Sb5 from 3D view and top view. b, Topographic image of a surface step edge, containing 
both K and Sb surfaces. c, Atomically resolved topographic image of K hexagonal surface showing a 2×2 
modulation. d, Atomically resolved topographic image of Sb honeycomb surface showing a 2×2 
modulation. The inset shows the six atoms in the honeycomb unit cell. e, Fourier transform of the Sb 
topographic image, showing the ordering peaks. f, Illustration of the order in the underlying V-based 
kagome lattice, which is consistent with star of David formation. 
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Band structure

depending on direction away from the M̄ point. This is not
uncommon among topological metals [49–51].
Topologically nontrivial surface states close to EF and

the continuous direct gap throughout the Brillouin zone
allow the identification of the normal state as a Z2

topological metal [52,53]. The T! transition in this com-
pound also suggests that electronic interactions are appre-
ciable in this material. This transition is accompanied by a
subtle change in the derivative of the lattice parameters, cell
volume, and associated crystallographic parameters upon
crossing T! [18]. Single-crystal x-ray diffraction further
shows the formation of a weak superlattice of charge
scattering at half-integer reflections [an example shown
in the inset in Fig. 2(a)] [18].
The presence of a weak, structural superlattice is

suggestive of a secondary structural response to a primary
electronic order parameter such as a charge or bond density
wave instability. Theoretical studies of partially filled
kagome lattices predict a wide array of electronic order
parameters [11]. The metallic nature of CsV3Sb5 and its
high degree of covalency makes formal charge assignment
imprecise; however, in the ionic limit, the kagome lattice of
V sites would possess one electron per triangle (1=6

filling). Charge density wave (CDW) order with a (π, 0)
in-plane wave vector consistent with our single-crystal
x-ray diffraction data is predicted in spinful models and
spinless fermion models of interacting electrons in a
partially filled kagome lattice [11].
Nesting across a two-dimensional Fermi surface with an

underlying hexagonal motif is also thought to promote the
formation of a superconducting state [14]. Competing
density wave instabilities may also arise, and, in the present
case, scattering along the (π, 0) wave vector would connect
an enhanced density of states at saddle points near the
Fermi energy at the M points in CsV3Sb5’s band structure.
To our knowledge, this is the first material example hosting
the band structure, Fermi energy, and ground state requisite
for this theoretical mechanism. Given the CDW-like
instability observed at T! in this compound, interactions
along this wave vector are likely enhanced and may
promote a competition between CDWand superconducting
instabilities. Although a structural superlattice exists,
ARPES data do not resolve spectral broadening of the
Fermi surface across the nested M points, consistent with
the long-range, weak nature of the high-temperature
density wave order. Unconventional superconductivity with
chiral d-wave pairing may emerge in this scenario [1,13].
Superconductivity manifest within an electronically two-

dimensional kagome lattice is rare unto itself. While other
materials with kagome networks embedded within their
lattice structures are known to superconduct (e.g., in certain

FIG. 3. Experimental ARPES data and comparison with DFT
calculations. (a) A selection of constant energy maps at 80 K are
compared with DFT calculations, showing excellent agreement.
The hexagonal Brillouin zone is superimposed on the E ¼ 0 eV
data. (b) ARPES and DFT data tracing from M-K-Γ-K-M reveal
multiple Dirac points throughout the dispersion. Surface states
can be observed in the DFT data at the M point, slightly
above EF.

FIG. 4. (a) Calculated band structure of CsV3Sb5 along high-
symmetry directions across the Brillouin zone. A continuous
direct gap (shaded) is noted and high-symmetry points in the BZ
are labeled. (b) Tight-binding model of CsV3Sb5 showing
topologically protected surface states that manifest at the time-
reversal invariant momentum M̄ point.

PHYSICAL REVIEW LETTERS 125, 247002 (2020)
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depending on direction away from the M̄ point. This is not
uncommon among topological metals [49–51].
Topologically nontrivial surface states close to EF and

the continuous direct gap throughout the Brillouin zone
allow the identification of the normal state as a Z2

topological metal [52,53]. The T! transition in this com-
pound also suggests that electronic interactions are appre-
ciable in this material. This transition is accompanied by a
subtle change in the derivative of the lattice parameters, cell
volume, and associated crystallographic parameters upon
crossing T! [18]. Single-crystal x-ray diffraction further
shows the formation of a weak superlattice of charge
scattering at half-integer reflections [an example shown
in the inset in Fig. 2(a)] [18].
The presence of a weak, structural superlattice is

suggestive of a secondary structural response to a primary
electronic order parameter such as a charge or bond density
wave instability. Theoretical studies of partially filled
kagome lattices predict a wide array of electronic order
parameters [11]. The metallic nature of CsV3Sb5 and its
high degree of covalency makes formal charge assignment
imprecise; however, in the ionic limit, the kagome lattice of
V sites would possess one electron per triangle (1=6

filling). Charge density wave (CDW) order with a (π, 0)
in-plane wave vector consistent with our single-crystal
x-ray diffraction data is predicted in spinful models and
spinless fermion models of interacting electrons in a
partially filled kagome lattice [11].
Nesting across a two-dimensional Fermi surface with an

underlying hexagonal motif is also thought to promote the
formation of a superconducting state [14]. Competing
density wave instabilities may also arise, and, in the present
case, scattering along the (π, 0) wave vector would connect
an enhanced density of states at saddle points near the
Fermi energy at the M points in CsV3Sb5’s band structure.
To our knowledge, this is the first material example hosting
the band structure, Fermi energy, and ground state requisite
for this theoretical mechanism. Given the CDW-like
instability observed at T! in this compound, interactions
along this wave vector are likely enhanced and may
promote a competition between CDWand superconducting
instabilities. Although a structural superlattice exists,
ARPES data do not resolve spectral broadening of the
Fermi surface across the nested M points, consistent with
the long-range, weak nature of the high-temperature
density wave order. Unconventional superconductivity with
chiral d-wave pairing may emerge in this scenario [1,13].
Superconductivity manifest within an electronically two-

dimensional kagome lattice is rare unto itself. While other
materials with kagome networks embedded within their
lattice structures are known to superconduct (e.g., in certain

FIG. 3. Experimental ARPES data and comparison with DFT
calculations. (a) A selection of constant energy maps at 80 K are
compared with DFT calculations, showing excellent agreement.
The hexagonal Brillouin zone is superimposed on the E ¼ 0 eV
data. (b) ARPES and DFT data tracing from M-K-Γ-K-M reveal
multiple Dirac points throughout the dispersion. Surface states
can be observed in the DFT data at the M point, slightly
above EF.

FIG. 4. (a) Calculated band structure of CsV3Sb5 along high-
symmetry directions across the Brillouin zone. A continuous
direct gap (shaded) is noted and high-symmetry points in the BZ
are labeled. (b) Tight-binding model of CsV3Sb5 showing
topologically protected surface states that manifest at the time-
reversal invariant momentum M̄ point.
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Why?
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M point is always a critical point:
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r✏(k)|k=M = 0

Morse theory: for a “sufficiently smooth” 
function on a closed 2d manifold

<latexit sha1_base64="i29Yl0c82lKoah8l2PxZdKjbWXM=">AAACKXicbVDLSgMxFM34rPU16tJNsAiCWGaKqBuhKILLCvYBnTJk0kwbmmSGJCOWYX7Dn/AX3OrenbrUHzFtR9DWA4Fzz7mXe3OCmFGlHefdmptfWFxaLqwUV9fWNzbtre2GihKJSR1HLJKtACnCqCB1TTUjrVgSxANGmsHgcuQ374hUNBK3ehiTDkc9QUOKkTaSbzvCTz3JIUf3GTyCeaXiDB7+FJyKDJ5DD/epfwV9u+SUnTHgLHFzUgI5ar796XUjnHAiNGZIqbbrxLqTIqkpZiQreokiMcID1CNtQwXiRHXS8c8yuG+ULgwjaZ7QcKz+nkgRV2rIA9PJke6raW8k/usFfGqzDs86KRVxoonAk8VhwqCO4Cg22KWSYM2GhiAsqbkd4j6SCGsTbtGE4k5HMEsalbJ7Uq7cHJeqF3k8BbAL9sABcMEpqIJrUAN1gMEDeALP4MV6tF6tN+tj0jpn5TM74A+sr28+9aWu</latexit>

nmax � nsp + nmin = �E = 0 for torus

2 - 3 + 1 = 0
(K) (M) (𝚪)



Square lattice

1613

Antiferromagnetism and superconductivity in a quasi two-dimensional electron gas.
Scaling theory of a generic Hubbard model

P. Lederer+, G. Montambaux++ and D. Poilblanc+++

Laboratoire de Physique des Solides*, Bât. 510, Université Paris-Sud, Centre d’Orsay, 91405 Orsay Cedex,
France

(Re§u Ie 8 juillet 198?’, accepti le 27 juillet 1987)

Résumé.- Nous étudions un modèle de Hubbard bi-dimensionnel, dans une limite de coupage faible. Le modèle

générique a des intégrales de recouvrement entre premiers voisins, mais aussi entre seconds voisins. Le modèle peut
être pertinent pour les oxydes supraconducteurs à haute Tc. Nous développons pour le cas générique une théorie
d’échelle mise au point pour le cas d’une surface de Fermi carrée à demi remplissage. Nous traitons de manière
cohérente les singularités en In2( T) et en In (T) qui proviennent des fonctions de corrélations d’onde de densité ou
de paires de Cooper. Lorsque l’emboîtement de la surface de Fermi est suffisamment mauvais, la supraconductivité
singlet de symétrie orbitale d, renforcée par les fluctuations de spin antiferromagnétiques, gagne la compétition avec
ces dernières même lorsque le niveau de Fermi est à la singularité de Van Hove. Nous trouvons que la température
de supraconductivité Tsc est de l’ordre de la température de Néel du modèle à emboîtement parfait dans une part
significative du diagramme de phase. La diffusion des électrons sur des impuretés normales peut être efficace pour
supprimer la supraconductivité. La température de Néel peut être maximum ailleurs qu’au demi remplissage, et
l’antiferromagnétisme est facilement supprimé par de faibles variations du nombre de porteurs. Nous discutons de la
pertinence de nos résultats pour les oxydes supraconducteurs.

Abstract.- We study the two dimensional Hubbard model in the weak coupling limit, in the vicinity of half band
filling, for a generic model which has nearest neighbour as well as next nearest neighbour overlap integrals. The model
is hoped to be relevant to the new high Tc superconducting oxides. A scaling theory, previously studied for the case
of perfectly nested square Fermi surface at half band filling, is developed for the generic case, and allows a consistent
treatment of the coupled In2 ( T) and In (T) singularities arising from density wave and Cooper pair fluctuations.
When violation of perfect nesting is sufficient, d type singlet superconductivity, induced by antiferromagnetic spin
fluctuations, overwhelms the latter even when the Fermi level is at the Van Hove singularity. We find that the

superconducting temperature Tsc is of the order of the Néel temperature of the perfectly nested model in a sizeable
part of the phase diagram. We also find that normal impurity scattering, when sufficiently strong, may be efficient in
suppressing superconductivity. The maximum Néel temperature, in the antiferromagnetic part of the phase diagram
may occur away from half band filling, and antiferromagnetism is easily suppressed by small changes in carrier
concentration. The relevance of our results to actual high Tc superconducting oxides is discussed.
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The existence of antiferromagnetism in La2 Cu

04-6 compounds is a strong indication that the me-
chanism of superconductivity in the new high Tc ox-
ides has to do with electron electron interactions in a

non conventional way [1 to 4].

One crucial point is the nature of antiferromag-
netic order, which seems to be experimentally con-
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Enhanced superconductivity

describes competition of SC with antiferromagnetism

Renormalization Group (RG)
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Peierls channel at Q ≠ sp , pd diverges as

x
ph
Q svd ≠

(
h lnsvyE0d lnsvy2tk2

cd v ¿ jt0j
2h ln jt0ytj lnsvyE0d v ø jt0j . (2)

The susceptibilities for the Peierls channel at q ≠ 0 sxph
0 d

and the Cooper channel at q ≠ Q sxpp
Q d also diverges as

x
ph
0 , 2x

pp
Q , 2h lnsE0yvd , (3)

but the coefficients of lnsvd are smaller than that of x
ph
Q .

In Fig. 2 we define the interaction vertices gi si ≠ 1 ,
4d. Normal and umklapp processes are indistinguishable
since the patches are at the zone edge. We use a Wilson
RG flow, parametrized by a decreasing energy scale, in
which all degrees of freedom above that energy scale are
integrated out. Wilson’s effective action at scale E0 has
the dual interpretation that (a) it generates the interac-
tion vertices, and thus an effective Hamiltonian, for the
particles with energy below E0 and (b) these vertices
are also the connected correlation functions with the in-
frared cutoff E0. We consider only the four-point func-
tion and include only the one-loop terms. The one-loop
RG was justified as the leading behavior at low energies
and weak coupling for a class of FS in Ref. [6], which in-
cludes those with nonzero curvature (t0 fi 0 in our case).
It leads to the flow equations (see also Lederer et al. [4])

Ÿg1 ≠ 2d1g1sg2 2 g1d 1 2d2g1g4 2 2d3g1g2 , (4)

Ÿg2 ≠ d1sg2
2 1 g2

3d 1 2d2sg1 2 g2dg4 2 d3sg2
1 1 g2

2d ,
(5)

Ÿg3 ≠ 22g3g4 1 2d1g3s2g2 2 g1d , (6)

Ÿg4 ≠ 2sg2
3 1 g2

4d 1 d2sg2
1 1 2g1g2 2 2g2

2 1 g2
4d .
(7)

Here, we introduced the normalizationgi ! hgi , to give
dimensionless couplings, and Ÿgi ; sdgidysdyd, where y ;
ln2svyE0d ~ x

pp
0 svd. We define functions which de-

FIG. 2. The definitions of vertices for the two-patch model.

scribe the relative weight of q ≠ 0 Cooper channel contri-
bution and those of other channels,

d1s yd ≠ dx
ph
Q ydy , (8)

d2s yd ≠ dx
ph
0 ydy , (9)

d3s yd ≠ 2dx
pp
Q ydy . (10)

Their asymptotic forms are d1s yd ! 1 at y ¯ 1 and
d1s yd , ln jtyt0jypy as y ! `, while d2s yd , d3s yd ,
1ypy throughout the region of interest.
The case d1 ≠ 1 and d2, d3 ø d1 was studied by Schulz

[2], Dzyaloshinskii [3], and Lederer et al. [4] which arises
at t0 ≠ 0 as well as in a sufficiently largeU region where t0

is irrelevant. Spin-density wave (SDW) susceptibility has
the same exponent as d-wave pairing but is dominant due
to the next leading divergent terms. The fixed point is un-
derstood as a Mott insulator with long range AF order. The
limit d1 ≠ d2 ≠ d3 ≠ 0 was treated by Dzyaloshinskii
[5]. In this case, (6) and (7) combine to give Ÿg2 ≠ 2g2

2
with g2 ≠ g4 2 g3. Dzyaloshinskii considered the weak-
coupling fixed point g2 ! 0 which arises when g2 $
0, and discussed the resulting Tomonaga-Luttinger liquid
behavior.
In this Letter we examine the RG equations with 0 ,

d1s yd , 1 which enables us to consider nonzero values of
the ratios t0yt and Uyt. Since d2, d3 ø d1, we neglect d2
and d3 in RG equations for simplicity. Note the terms
involving d1 act to enhance the basin of attraction for
the strong coupling fixed point, g2 ! 2` [4]. The one-
loop RG equations are solved numerically. Starting from
a Hubbard-model initial value gi ≠ U si ≠ 1 , 4d, the
vertices flow to strong coupling fixed points with g2 !
1`, g3 ! 1`, and g4 ! 2`, with the asymptotic form

gis yd ≠ g0
i ys yc 2 yd . (11)

Here yc , tyU is the critical point of one-loop RG equa-
tions. The divergence of g1s yd with respect to yc 2 y
is only logarithmic. To analyze this fixed point more
precisely, we substitute the asymptotic form (11) into
Eqs. (4)–(7) and obtain polynomial equations

g0
1 ≠ 2d1s ycdg0

1sg0
2 2 g0

1d , (12)

g0
2 ≠ d1s ycd fsg0

2d2 1 sg0
3d2g , (13)

g0
3 ≠ 22g0

3g0
4 1 2d1s ycdg0

3s2g0
2 2 g0

1d , (14)

g0
4 ≠ 2fsg0

3d2 1 sg0
4d2g . (15)

Figure 3 shows the solution of these equations g0
i for the

initial values gi ≠ U. The coefficients g0
i are determined

as a function of d1s ycd ,
p

Uyt ln jtyt0j, i.e., the critical
behavior of the fixed point is a function of U.
Although one cannot solve for the strong coupling fixed

point using only one-loop RG equations, a qualitative
description comes from the susceptibilities. Using these
coefficients g0

i , exponents for various susceptibilities are
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We study a two-dimensional Fermi liquid with a Fermi surface containing the saddle points sp , 0d

and s0, pd. Including Cooper and Peierls channel contributions leads to a one-loop renormalization
group flow to strong coupling for short range repulsive interactions. In a certain parameter range the
characteristics of the fixed point, opening of a spin and charge gap, and dominant pairing correlations
are similar to those of a two-leg ladder at half-filling. We argue that an increase of the electron density
leads to a truncation of the Fermi surface to only four disconnected arcs. [S0031-9007(98)07323-2]

PACS numbers: 71.10.Hf, 71.27.+a, 74.72.–h

The origin of the instability of the Landau-Fermi liquid
state as the electron density is increased in overdoped
cuprates is one of the most interesting open questions
in the field. Recently, we proposed that the origin lies
in a flow of umklapp scattering to strong coupling [1].
The simpler case with the Fermi surface (FS) extrema at
s6py2, 6py2d was considered and not the realistic case
for hole-doped cuprates where the leading contribution
from umklapp processes comes from scattering at the
saddle points sp, 0d and s0, pd. In this Letter we report
a one-loop renormalization group (RG) calculation for the
realistic case including contributions from both Cooper
and Peierls channels. Reasonable conditions can lead to
a strong coupling fixed point whose characteristics are
similar to those of half-filled two-leg ladders. There,
strong coupling umklapp processes lead to spin and charge
gaps but only short range spin correlations. A particularly
interesting and novel feature is that, although the strongest
divergence is in the d-wave pairing channel, the charge
gap causes insulating not superconducting behavior.
There have been a number of previous RG investigations

for a FS with saddle points. Schulz [2] and Dzyaloshinskii
[3] considered the special case with only nearest neigh-
bor (nn) hopping so that the saddle points coincide with a
square FS and perfect nesting exactly at half-filling, lead-
ing to a fixed point with long range antiferromagnetic (AF)
order. Lederer et al. [4] and Dzyaloshinskii [5] also con-
sidered the same model as we do. There are two fixed
points, one at a strong coupling fixed point with d-wave
pairing found by Lederer et al. [4], and a weak coupling
examined by Dzyaloshinskii [5]. A Hubbard parametriza-
tion of the repulsive interactions sUd and moderate interac-
tion strength suffices to stabilize the strong coupling fixed
point. The new feature we wish to stress is that there can
be both spin and charge gaps. The FS is then truncated
through the formation of an insulating spin liquid (ISL)
with resonance valence bond (RVB) character. We pro-

pose that as the hole doping decreases these gaps spread
out from the saddle points so the FS consists of a set of arcs,
which progressively shrink as the hole doping decreases.
We start with a two-dimensional FS touching the saddle

points sp, 0d and s0, pd. Such a FS is realized in the case
of the dispersion relation ´skd ≠ 22tscos kx 1 cos kyd 2
4t0 cos kx cos ky with t . 0 st0 , 0d as nn [next-nearest
neighbor (nnn)] hoppings. Throughout this Letter, we
assume t0yt small but nonzero so that we are close to half-
filling. Because of the van Hove singularity, the leading
singularity arises from electron states in the vicinity of the
saddle points. We consider two FS patches at the saddle
points and examine the coupling between them using one-
loop RG equations, as illustrated in Fig. 1a. kc is the radius
of the patches.
The susceptibility for the Cooper channel at q ≠ 0 has

a log-square behavior of the form

x
pp
0 svd ≠ 2h lnsvyE0d lnsvy2tk2

c d . (1)

Here, the sum over k is restricted to the patches. E0 is
the cutoff energy and h ≠ s8p2td21 for jt0ytj ø 1. The

FIG. 1. Fermi surface (FS). (a) Two patches of the FS at
the saddle points. (b) Truncated FS as electron density is
increased.
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Chiral superconductivity from repulsive
interactions in doped graphene
Rahul Nandkishore1, L. S. Levitov1 and A. V. Chubukov2*
Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly
sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity
can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of
states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using
a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak
repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that
the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π
around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from
electron–electron repulsion, and will open the door to applications of chiral superconductivity.

The simplicity of the electronic properties of graphene1 is
both a blessing and a curse. On one hand, it singles
out graphene as a material of choice for applications.

On the other hand, the difficulty of modifying the electronic
spectrum severely limits the available functionality2. However, the
effects of electron–electron interactions gain more prominence
when the electron concentration is adjusted so that the carrier
dispersion at the Fermi level becomes quadratic rather than
linear. This is the case in graphene bilayer at the Dirac point,
where a variety of new correlated states have been predicted3.
This is also the case in graphene monolayer doped to the
saddle point, where the density of states (DOS) has a Van Hove
singularity. Although a number of interesting states have been
considered in this system4–8, the competition between these states
is at present poorly understood. In this Article, we argue that
generic repulsive interactions favour a superconducting d + id
state with the d(x±iy)2 gap structure and broken time-reversal
symmetry (TRS). Our renormalization group analysis indicates that
superconductivity dominates over competing density-wave orders,
and also indicates that interactions select the chiral d+ id state over
TRS-preserving d-wave states.

Chiral superconductors are interesting because they feature
pairing gaps that wind in phase around the Fermi surface
in multiples of 2π, breaking the TRS and exhibiting many
other fascinating properties9–11. The non-trivial topology of the
d+ id state is analogous to that studied in other systems with
chiral pairing, such as the two-dimensional 3He (ref. 9) and
the fractional quantum Hall state at 5/2 filling12,13. Interest
in chiral superconductivity has intensified greatly in the past
few years with the advent of topological superconductivity14–16.
The non-trivial topological properties manifest themselves in
exceptionally rich phenomenology, in particular the Majorana
states in vortex defects17 and the gapless modes bound to the edge
by Andreev scattering that can carry quantized particle current and
spin current18. Similar phenomena have been predicted for the
hypothetical d+ id state in cuprate superconductors19–22 and other
chiral superconducting states23,24.

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA, 2Department of Physics, University of
Wisconsin-Madison, Madison, Wisconsin 53706, USA. *e-mail: chubukov@physics.wisc.edu.

The search for solid-state realization of chiral superconductivity
has a long history. Spin-triplet p-wave chiral superconductivity
(px± ipy state) has probably been found in Sr2RuO4 (ref. 25), which
represents an analogue of superfluid 3He (ref. 9), but the spin-
singlet d+ id state has not yet been observed experimentally. Such
a state was once proposed as a candidate state for high-Tc cuprate
superconductors19, but later gave way to a more conventional
TRS-preserving d-wave state. The key difficulty in realizing a d+ id
state is that the interactions that favour a d-wave state usually
have strongmomentumdependence and hence distinguish between
dx2−y2 and dxy pairing. However, in graphene the dx2−y2 and dxy
pairing channels are degenerate by symmetry4,26, opening the door
to formation of a d+id superconducting state.

How can superconductivity be induced in graphene? Existing
proposals for superconductivity in undoped graphene rely on the
conventional phonon-mediated BCS mechanism27, which leads
to an s-wave superconductivity with low Tc values for realistic
carrier densities owing to the vanishing density of states of
relativistic particles. However, there is an alternative route to
superconductivity, wherein repulsive microscopic interactions give
rise to attraction in a d-wave channel28. This alternative route
becomes viable when graphene is doped to the M point of the
Brillouin zone corresponding to 3/8 or 5/8 filling of the π
band (pristine graphene corresponds to 1/2 filling). At this filling
factor, a logarithmic Van Hove singularity originates from three
inequivalent saddle points, and the Fermi surface also exhibits a
high degree of nesting, forming a perfect hexagon when third-
neighbour (and higher) hopping effects are neglected1,4 (Fig. 1).
The combination of a singular DOS and a near-nested Fermi
surface strongly enhances the effect of interactions29–31, allowing
non-trivial phases to emerge at relatively high temperatures,
even if interactions are weak compared with the fermionic
bandwidth W . Relevant doping levels were recently achieved
experimentally using calcium and potassium dopants32. Also, a
new technique33 that employs ionic liquids as gate dielectrics
allows high levels of doping to be reached without introducing
chemical disorder.
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Interplay of superconductivity and spin-density-wave order in doped graphene
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We study the interplay between superconductivity and spin-density-wave order in graphene doped to 3/8 or
5/8 filling (a van Hove doping). At this doping level, the system is known to exhibit weak-coupling instabilities
to both chiral d + id superconductivity and to a uniaxial spin density wave. Right at van Hove doping, the
superconducting instability is strongest and emerges at the highest Tc, but slightly away from van Hove doping,
a spin density wave likely emerges first. We investigate whether at some lower temperature superconductivity
and spin density waves coexist. We derive the Landau-Ginzburg functional describing interplay of the two order
parameters. Our calculations show that superconductivity and spin-density-wave order do not coexist and are
separated by first-order transitions, either as a function of doping or as a function of T .

DOI: 10.1103/PhysRevB.86.115426 PACS number(s): 73.22.Gk, 73.22.Pr, 75.10.Lp, 84.71.Ba

I. INTRODUCTION

Two-dimensional electron systems provide an ideal envi-
ronment for exploration of many-body physics. Graphene, as
a new two-dimensional electron system, may allow us to access
new many-body phases that have not been hitherto observed.
Unfortunately, undoped single-layer graphene seems to be
well described by a noninteracting model,1 with the vanishing
density of states suppressing interaction effects. In order to
access many-body physics in graphene, one must sidestep
the vanishing density of states. One way to do this is by
doping. When graphene is doped to the M point of the
Brillouin zone, a doping level that corresponds to 3/8 (or
5/8) filling (undoped graphene corresponds to 1/2 filling),
the Fermi surface undergoes a topological transition from
a two-piece to a one-piece Fermi surface.2 Associated with
this topological transition is a divergent density of states,
which gives rise to weak-coupling instabilities to unusual
many-body states. Doped graphene thus provides a promising
playground for exploration of new quantum many-body
states.

The recent success of experimental efforts to dope graphene
to the M point3 has inspired a flurry of theoretical works
studying many-body physics in doped graphene.4–14 It has
been established4 that the principal weak-coupling insta-
bilities are to chiral d + id superconductivity and to a
uniaxial spin density wave (SDW). The superconductivity
arises from spin fluctuation exchange in a model that starts
with weak, purely repulsive electronic interactions. This
is in contrast to studies of graphene at half-filling, where
superconductivity arises either due to phonons15 or due
to strong interelectron interactions.16,17 It is known from
a renormalization-group analysis4 that the superconducting
instability is leading at van Hove doping,4 and the SDW is
leading somewhat away from van Hove doping.11 However, it
is not known whether these two orders are mutually exclusive,
or whether they coexist in some range of temperatures and
dopings.

In this paper, we demonstrate that for graphene near the M
point, superconductivity and SDW magnetism are mutually
exclusive orders. We derive Landau-Ginzburg action for

two order parameters and show that the interplay between
quartic terms is such that the minimum of the action is when
only one order parameter is nonzero. This result stands in
stark contrast to pnictide materials, where Landau-Ginzburg
analysis shows that superconducting and SDW orders do
coexist.18,19 In doped graphene, one expects to observe pure
chiral superconductivity at van Hove doping, with a first-order
transition to pure spin-density-wave order upon doping away
from the van Hove point. Our conclusions apply also to
doped triangular lattice systems,20 which have an identical
low-energy description near 3/4 filling.

II. THE MODEL

Our point of departure is the tight-binding model2 with the
nearest-neighbor dispersion

εk = ±t

√

1 + 4 cos
ky

√
3

2
cos

3kx

2
+ 4 cos2

ky

√
3

2
− µ, (1)

where the overall sign is + or − depending on whether
we are above or below half-filling. For definiteness, we
take a plus sign. The van Hove doping then corresponds
to µ = t , at which point the Fermi surface has the form
shown in Fig. 1. The Fermi velocity vanishes near the
hexagon corners M1 = (2π/3,0), M2 = (π/3,π/

√
3), M3 =

(−π/3,π/
√

3), which are saddle points of the dispersion:

εk≈M1 = 3t

4

(
3k2

x − k2
y

)
, εk≈M2 = 3t

4
2ky(ky −

√
3kx),

(2)
εk≈M3 = 3t

4
2ky(ky +

√
3kx).

Each time, k is a deviation from a saddle point. Saddle points
give rise to a logarithmic singularity in the density of states
(DOS) and control physics at weak coupling. There are three
inequivalent nesting vectors Qab connecting inequivalent pairs
of saddle points Ma and Mb (see Fig. 1):

Q1 = Q23 = (π,π/
√

3), Q2 = Q31 = (π, − π/
√

3),
(3)

Q3 = Q12 = (0,2π/
√

3).
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Competing electronic orders on kagome lattices at van Hove filling
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The electronic orders in Hubbard models on a kagome lattice at van Hove filling are of intense current interest
and debate. We study this issue using the singular-mode functional renormalization group theory. We discover
a rich variety of electronic instabilities under short-range interactions. With increasing on-site repulsion U , the
system develops successively ferromagnetism, intra-unit-cell antiferromagnetism, and charge bond order. With
nearest-neighbor Coulomb interaction V alone (U = 0), the system develops intra-unit-cell charge density wave
order for small V , s-wave superconductivity for moderate V , and the charge density wave order appears again
for even larger V . With both U and V , we also find spin bond order and chiral dx2−y2 + idxy superconductivity
in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge
density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand,
the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The
phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the
kagome lattice.
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I. INTRODUCTION

The kagome lattice model has attracted considerable at-
tention due to its high degree of geometrical frustration. In
the Mott insulating limit, several possible states have been
proposed as the ground state of the Heisenberg model in this
lattice, such as the U(1) algebraic spin liquid (SL),1 the valance
bond solid,2 the triplet-gapped SL,3 and the singlet-gapped
SL with signatures of Z2 topological order.4 On the other
hand, several exotic phases have been proposed for the kagome
Hubbard model, such as the ferromagnetism at electron filling
1/3 (or 5/3) per site,5 the fractional charge at 1/3 filling
for spinless fermions,6 and the Mott transition in anisotropic
kagome lattices.7,8

Of particular interest is the possible phases at the van Hove
filling (the filling fraction is 2/3 ± 1/6 per site), where the
Fermi surface (FS) is perfectly nested and has saddle points
on the edges of the Brillouine zone. These properties of the
normal state make it unstable against infinitesimal interactions.
Similar FS appears in triangle and honeycomb lattices and was
shown to develop, under short-range repulsive interactions, a
chiral spin-density-wave (SDW) state9–11 or a chiral dx2−y2 +
idxy superconducting state.12,13 Both states break time-reversal
and parity symmetries and are topologically nontrivial. Given
the similar FS, a simple FS nesting argument would predict
similar phases in the kagome model. This seems to be the
case in a recent variational cluster perturbation theory (with
an additional spin disordered phase).14 However, as already
realized in Ref. 14 and emphasized in Ref. 15, the interaction
vertex viewed in the band basis has a strong momentum
dependence (matrix element effect). This is because the
character of the Bloch state on the FS depends on the position
of the momentum. The matrix element effect weakens the
nesting effect significantly for a local interaction U , leading
to a new phase diagram in a recent analytical renormalization
group study.15 Such an analysis would be exact for a featureless
fermi surface and infinitesimal interactions. In this paper, we
are interested in finite interactions together with perfect fermi
surface nesting and van Hove singularity.

The functional renormalization group (FRG) method is a
differential perturbation theory with respect to the increment
of the phase space (starting from the high energy window)
rather than in the interaction itself. It provides the flow of
one-particle irreducible vertex functions versus the running
parameter that controls the phase space.16 The FRG is capable
of treating interactions up to a moderate size (at the tree level).
It also treats particle-particle and particle-hole channels on
equal footing. The way how interaction vertices diverge during
the flow indicates what kind of ordering is to be realized at
low-energy scales in the system. The applicability of FRG
has been demonstrated in the contexts of cuprates17 and iron
based superconductors.18 Recently, a singular-mode functional
renormalization group (SMFRG) method was developed and
applied to investigate topological superconductivity in corre-
lated electron systems with or near van Hove singularities.11,19

In this paper, we perform an SMFRG study of the model at
van Hove filling. We discover a rich variety of electronic insta-
bilities under short-range interactions. With increasing on-site
repulsion U , the system develops successively ferromagnetism
(FM), intra-unit-cell antiferromagnetism (AFM), and charge
bond order (CBO). With nearest-neighbor Coulomb inter-
action V alone (U = 0), the system develops intra-unit-cell
charge density wave (CDW) order for small V , s-wave
superconductivity (sSC) for moderate V , and CDW appears
again for even larger V . With both U and V , we also find
SBO and chiral dx2−y2 + idxy superconductivity (dSC). Our
results are summarized in the phase diagram in Fig. 9. We find
that the sSC is a result of CDW fluctuations and the squared
logarithmic divergence in the pairing susceptibility. On the
other hand, the dSC follows from bond order fluctuations that
avoid the matrix element effect. The phase diagram is vastly
different from that in honeycomb lattices.

The rest of the paper is arranged as follows. In Sec. II,
we define the model and illustrate the matrix element effect.
In Sec. III, we introduce the FRG method. In Sec. IV, we
first discuss the leading instabilities at typical points in the
parameter space, and conclude by a discussion of the phase
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We study the Kondo Lattice and the Hubbard models on a triangular lattice. We find that at the mean-

field level, these rotationally invariant models naturally support a noncoplanar chiral magnetic ordering. It

appears as a weak-coupling instability at the band filling factor 3=4 due to the perfect nesting of the

itinerant electron Fermi surface. This ordering is a triangular-lattice counterpart of the collinear Neel

ordering that occurs on the half-filled square lattice. While the long-range magnetic ordering is destroyed

by thermal fluctuations, the chirality can persist up to a finite temperature, causing a spontaneous quantum

Hall effect in the absence of any externally applied magnetic field.
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Interactions commonly lead to magnetism. For instance,
the ground state of the half-filled Hubbard model becomes
antiferromagnetic (AFM) for a finite on-site Coulomb
interaction U. The AFM phase is collinear on bipartite
lattices and exists for any finite U=t (t being the nearest-
neighbor hopping) in the cases of square and cubic lattices
due to nesting properties of the Fermi surface (FS). The
situation is less clear when competing interactions or lat-
tice topology lead to frustration and more complex mag-
netic orderings. For instance, a 120" three-sublattice
(noncollinear) structure is stabilized on the half-filled tri-
angular lattice for large enough U=t and a spin liquid
ground state has been proposed for the kagome lattice.
The noncoplanar spin orderings have proven to be particu-
larly elusive. Besides being the next level in magnetic
ordering complexity, the noncoplanar states have unusual
transport [1] and magnetoelectric [2] properties resulting
from their chiral structure. Consequently, it is important to
find simple and realistic models in which such states could
emerge and remain stable over a range of Hamiltonian
parameters.

A triangular plaquette is a basic building block for
lattices with built-in geometrical frustration. Assume that
on every site i there is an ordered magnetic moment Si. If
the moments on the plaquette are noncoplanar, the result-
ing scalar spin chirality, hSi # Sj $ Ski ! 0, breaks both the
time-reversal and the parity symmetries. Notably, the sca-
lar spin chirality can exist even without having statically
ordered magnetic moments (hSii ¼ 0) [3]. When conduc-
tion electrons propagate through such a spin texture, they
may exhibit spontaneous Hall effect in the absence of any
externally applied magnetic field [4]. Moreover, if the spin
ordering opens a full gap in the charge excitation spectrum,
a spontaneous quantum Hall insulator can form [1]. This
exotic phenomenon has the following origin: Because of
the exchange interaction, the underlying local moment
texture aligns the spins of the conduction electrons induc-
ing a Berry phase in the electron wavefunction, which is
indistinguishable from a ‘‘real’’ magnetic flux. Ohgushi

et al. [1], considered a model of 2D kagome ferromagnet
where spin orbit interaction tilts the local moments so as to
produce nonzero chirality. The spin configuration corre-
sponded to total zero fictitious flux through the unit cell,
while still creating nonzero quantized Hall conductivity at
filling 1=3. The authors were primarily concerned with the
double exchange model, which assumes two species of
electrons—the localized ones and the itinerant ones, but
also suggested that similar physics may occur in a single
band Hubbard-like model in the presence of spin-obit
interaction. Appearance of quantumHall effects in systems
with spontaneous bond ordering has recently been dis-
cussed in Raghu et al. [5].
In the present work we consider the Kondo lattice and

the Hubbard models on a triangular lattice. We demon-
strate that a noncoplanar magnetic ordering with uniform
scalar spin chirality is self-consistently generated at the
mean-field level. The magnetic ordering has the four-site
unit cell, with the local spin orientations corresponding to
the normals to the faces of a regular tetrahedron, see Fig. 1.
This structure has been earlier proposed to describe the
magnetic ordering in Mn monolayers on Cu(111) surfaces
[6] and the nuclear spin ground state of a two-dimensional
3He [7]. In the Kondo lattice and the Hubbard models, this
structure appears as a weak-coupling instability at 3=4
filling due to the nesting properties of the electronic
Fermi surface, in close analogy to the magnetic instability
of the half-filled square-lattice Hubbard model. The result-
ing insulating state at 3=4 filling exhibits spontaneous
quantum Hall effect.
Let us first consider the Kondo-Lattice Hamiltonian,

H ¼ !t
X

hiji
cyi!cj! ! J

X

i

Si # cyi!!!"ci"; (1)

which describes electrons hopping between the nearest-
neighbor sites of triangular lattice interacting via on-site
exchange coupling J with the localized moments Si. The
operator cyi! (cyi!) creates (destroys) an electron with spin!
on site i and !!" ¼ ð#x

!";#
y
!";#

z
!"Þ is a vector of the
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FIG. 9. (Color online) The phase diagram of the kagome lattice at
van Hove filling versus U and V (in units of t). The electronic orders
and the associated ordering momenta are FM (Q = 0), intra-unit-cell
AFM (Q = 0), CBO (Q = M), intra-unit-cell CDW (Q = 0), SBO
(Q = M), dx2−y2 + idxy-wave SC (dSC, Q = 0) and s-wave SC (sSC,
Q = 0). Here, M is one of the nesting vectors connecting the saddle
points on the Fermi surface.

mode φSC, we construct the effective pairing operator HSC
and get the gap function in the momentum space as shown in
Fig. 8(c). This is clearly a dxy-wave gap function. In fact, there
is another degenerate singular mode that gives a dx2−y2 -wave
gap function (not shown). Using the renormalized pairing
interaction, we performed mean-field calculations to find that
the ordered state is a chiral dx2−y2 + idxy superconducting
state, which we call the dSC state. The chiral state is fully
gapped on the Fermi surface and thus saves more energy.
Figure 8(a) shows that the SDW and CDW channels are
dominant at high-energy scales. Inspection of the later stage of
the FRG flow reveals that the singular modes in these channels
contains dominant CBO and SBO components (on nearest
bonds). We shall come back to this point later.

The phase diagram. Apart from the typical results discussed
above, we have performed systematic SMFRG calculations on
a dense grid in the (U,V ) plane. The interactions are chosen
to be smaller than the total bandwidth (6t). Projected on the
Fermi surface they are even smaller. In such a case, the FRG
method is expected to be reliable. The results are summarized
as a phase diagram shown in Fig. 9. The CBO and SBO states
have ordering momenta at one of the nesting vectors, while the
others order at zero momentum without breaking translation
symmetry. However, the CDW and AFM states have intra-
unit-cell structures. This phase diagram can be understood as
follows.

Along the U = 0 axis, the s-wave superconductivity ap-
pears between the intra-unit-cell CDW states at small and
large values of V . This is counterintuitive at a first sight
since increasing V would always favor CDW. However, the
numerical result is reasonable for the following reasons. While
the CDW susceptibility behaves as ln(W/") at the running
scale " because of the van Hove singularities in the normal
state density of states (here W is of the order of the bandwidth),
the SC susceptibility diverges as ln2(W/") due to a further
Cooper instability.12 Therefore once the initially repulsive
pairing channel becomes slightly attractive via the overlap

with the CDW channel, the pairing interaction could grow
in magnitude faster than the CDW interaction, and could
eventually overwhelm the CDW interaction. This explains the
emergence of the s-wave superconductivity for moderate V .
However, if V is initially small, the overlap with the SC channel
is small during the flow. On the other hand, if V is large
enough, the CDW channel diverges before the SC channel
takes advantage of the fast growth. These considerations are
consistent with our results along the U = 0 axis.

In the phase diagram, we see that both CBO and SBO
phases are in proximity to the d-wave SC phase. This is
a reasonable result since we find that the bond orders are
on nearest-neighbor bonds, while the d-wave pairing are on
third-neighbor bonds (or nearest similar-sublattice neighbor
bonds). It is the even order processes involving the bond-
density interactions that have overlap with the above singlet
pairing interaction, which are therefore immune to the sign
structure in the SBO and CBO interactions. On the other hand,
the on-site repulsion disfavors s-wave pairing. This makes
d-wave pairing viable. Interestingly, by utilizing the bond
order fluctuations, the pairing mechanism avoids the matrix
element effect that would frustrate site-local spin fluctuations
at the nesting vector.

Along the V = 0 axis, our SMFRG result predicts the
charge bond order for large U . This is indeed a spin disordered
phase as found in Ref. 14, and is beyond the mean-field theory
but consistent with the lack of a well defined site-local spin or-
dered phase. The reason that a large U favors a spin disordered
state rather than local spin moment ordering is twofold. First,
the matrix element effect weakens nested scattering and favors
ferromagnetic ordering. Second, a sufficiently large U makes
the nested scattering more important as compared to the case
of small U . This would favor antiferromagnetic ordering. The
site-local spin ordering is thus frustrated by the competition
of ferromagnetism and antiferromagnetism. The compromise
is the CBO state, which is an analog of the valence bond solid
and reflects the short-range spin correlations.

Finally, for U ∼ t and with increasing V , the succes-
sive orders are FM, CBO, SBO, dSC, sSC, and CDW.
This sequence is reasonable as follows. The CBO and SBO
states take advantage of V since by connecting different
sublattices it avoids the matrix element effect. However, a
large V favors CDW. In the intermediate region, the CBO/SBO
fluctuations drive dSC while CDW fluctuations drives sSC, as
discussed above. This explains why there is a transition from
dSC to sSC with increasing V .

V. SUMMARY AND PERSPECTIVE

In summary, we have studied the extended Hubbard model
on kagome lattice at van Hove filling using the SMFRG
method. We discovered a variety of phases in the parameter
space. Along the V = 0 axis and with increasing on-site re-
pulsion U , the system develops successively ferromagnetism,
intra-unit-cell antiferromagnetism, and charge bond order.
With nearest-neighbor Coulomb interaction V alone (U = 0),
the system develops intra-unit-cell CDW order for small V ,
s-wave superconductivity for moderate V , and CDW appears
again for even larger V . With both U and V , we also find
spin bond order and chiral dx2−y2 + idxy superconductivity.
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M-point orders
Order parameters:

• particle/hole: 
• particle-particle:
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Tij = @�̃i/@�j |{�⇤}. The RG fixed point is stable only
when all the eigenvalues of T are non-positive.

In addition to identifying the leading instabilities, the
subleading ones are also considered here for three reasons.
First, as discussed above, when the interaction strengths
are not truly infinitesimal, flow to the unstable regime
may occur before the fixed ray is reached. This may oc-
cur when bare couplings are small but not too close to a
fixed ray, and deviate from it in a particular direction fa-
voring a subleading instability. Second, the flow may be
also cut o↵ by imperfect nesting and/or a non-zero chem-
ical potential (i.e. doping from the saddle point). These
e↵ects limit the convergence to the fixed ray, and at that
point a di↵erent instability might dominate. Third, a sec-
ondary instability may develop at a lower temperature,
even if the primary one occurs first. To account for those
possibilities, which depend upon the microscopic details,
we will list the leading two instabilities at the RG fixed
points.

To summarize, we list all the stable fixed point solu-
tions for both repulsive and attractive bare interactions.
In addition, we discuss an interesting semi-stable fixed
point solution with only one weak unstable direction flow-
ing out of the fixed point.

When g(0)2 > 0, there are three (semi)stable fixed
points, which we take the liberty of denoting “phases”
I, II, III – this is an abuse of terminology since these
solutions really describe unstable rays in the full phase
space, which may not correspond to a unique phase. As
g2(y) must diverge as ⇠ 1

yc�y , we choose g(y) = g2(y) =
1

d1(1+�2
3)(yc�y)

.

I. When g(0)3 < 0, g3 flows to negative value at the sta-
ble RG fixed point, and we find �1 = 0, �2 = 1, �3 ⇡
�6.1, �4 ⇡ �5.5. The subleading divergence of g1

goes as g1(y) ⇠ (yc � y)
�

2
1+�2

3 ⇠ 1
(yc�y)0.05 . Note

that as the flow of g1 is subleading here, the sign

of g(0)1 is not qualitatively important to determine
the fixed trajectory. The leading instabilities are
GsSC = 17.6g, GrCDW = GiSDW = 7.1g.

II. When g(0)1 < 0, g(0)3 > 0, and for large enough

|g(0)1 |, the system may flow to a semi-stable fixed
point, where there is only 1 weak unstable direc-
tion in the 4-dimensional parameter space defined
by {g1, g2, g3, g4}. The fixed point solution reads
�1 ⇡ �46.7, �2 = 1, �3 ⇡ 9.7, �4 ⇡ �4.4. The
leading instabilities are GiCDW = 104.0g, GrCDW =
84.6g.

III. When g(0)1 , g(0)3 > 0, the stable RG fixed point has
been discussed a lot in the literature [46]. The
fixed point solution gives �1 = 0, �2 = 1, �3 ⇡
5.6, �4 ⇡ �10.0, where the subleading divergence

of g1 can be obtained as g1(y) ⇠ (yc � y)
�

2
1+�2

3 ⇡
1

(yc�y)0.06 . The leading divergent instabilities are
GdSC = 15.6g, GrSDW = GiCDW = 6.6g.

OP Definition Interaction
strength (G)

rCDW N↵ = GrCDW
|✏↵�� |
2N

P
q

D
c†�qc�q

E
�2g1 + g2 � g3

iCDW �↵ = GiCDW
✏↵��

2iN
P

q

D
c†�qc�q

E
�2g1 + g2 + g3

rSDW S↵ = GrSDW
|✏↵�� |
2N

P
q

D
c†�q

�
2 c�q

E
g2 + g3

iSDW  ↵ = GiSDW
✏↵��

2iN
P

q

D
c†�q

�
2 c�q

E
g2 � g3

sSC �s = GsSC
1p
3N

P
q hc↵q#c↵�q"i �2g3 � g4

dSC

�xy =GdSC
1
N

⇥
X

q

hcq#Dxyc�q"i

�x2�y2 =GdSC
1
N

⇥
X

q

⌦
cq#Dx2�y2c�q"

↵

g3 � g4

TABLE I. List of all bilinear order parameters (OPs) in
the patch model. � are the Pauli matrices in spin space,
and

P
q ⌘

P
|q|<⇤. Dxy, Dx2�y2 are matrices in the patch

space defined as Dxy =
p

1/2diag (0, 1,�1) and Dx2�y2 =p
2/3 diag(1,�1/2,�1/2), and cq� = (c1q�, c2q�, c3q�).

In Fig. 4, the phase diagram in the space of g(0)1 , g(0)3

for g(0)2 > 0 is shown.

When g(0)2 < 0, g2 may instead flow to zero. We find in
this way a fourth fixed ray, which we denote phase IV. It
is describe by letting g = g1(y) = � 1

2d1(yc�y) , and �1 =

1, �2 = 0, �3 = 0, �4 = 0. This solution requires g(0)1 <

0, g(0)4 > 0, and is only stable when g(0)3 > 0. Moreover,
g3(y) is also divergent and is only logarithmically smaller

than g1. We find g3(y) =
1

yc�y

⇣
ln 1

yc�y

⌘�1
. The leading

instabilities are GrCDW = GiCDW = �2g = 1
d1(yc�y) .

The fixed point solution indicates that the rCDW and
iCDW orders are degenerate at the leading order, but
they are split by a logarithmically subdominant e↵ect
due to g3 > 0 weakly in favor of the iCDW, i.e. GiCDW >
GrCDW.

In passing, we note that purely electronic interactions

generally give repulsion for all couplings, i.e. g(0)i > 0
with i = 1, 2, 3, 4. However, other factors, such as orbital
composition of the wave function near saddle points, and
electron-phonon coupling, may contribute to attraction

for certain g(0)i . In App. B, we consider the e↵ect of
electron-phonon coupling, and show that the renormal-

ization to g(0)i can be attractive for both �g(0)1 and �g(0)3 or

only �g(0)1 , depending upon the strength of the coupling
and and phonon modes involved.

M1=M2-M3 etc. 
(up to RLVs)

these are the CDW 
wavevectors in experiment
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the evolution of gi at energy E as the fermion fluctua-
tions from cuto↵ energy ⇤RG ⇠ t⇤2 to E are integrated
out, we perform a parquet renormalization group (pRG)
analysis. Following Ref. [46], the pRG equations for gi
are

dg1
dy

= 2d1g1(g2 � g1),

dg2
dy

= d1(g
2
2 + g23),

dg3
dy

= �g23 � 2g3g4 + 2d1g3(2g2 � g1),

dg4
dy

= �2g23 � g24 , (4)

where y = ⇧pp(0, E) ⇠ ln2(⇤RG/E) is the RG time and
d1(y) = d⇧ph(Ma)/ dy is the “nesting parameter”, which
satisfies 0 < d1(y) 6 1/2. For perfect nesting, d1(y) =
1/2 and is independent of RG time. For concreteness, we
will consider the perfect nesting case hereafter, i.e. d1 ⌘
1/2. It has been checked that other 0 < d1(yc) < 1/2
does not qualitatively change the fixed point solutions
and leading density wave instabilities.

The RG equations, having entirely quadratic �-
functions (the right hand sides of the pRG equations),
do not have any non-trivial controlled fixed points in the
usual sense. Rather, they describe flows in the vicinity of
the free fixed point: since the RG equations are pertur-
bative, they are strictly valid only within some sphere of
small radius of the origin in g-space. Within certain do-
mains of this space, the flows will be unstable, i.e. they
will exit the sphere of control, which indicates an insta-
bility towards a new regime, and most likely an ordered
state. Within the unstable regions of phase space, RG
flows that begin very close to the origin tend to converge
toward particular unstable trajectories which act as at-
tractors, and are typically straight “rays”[61, 62]. Below
we follow previous works that reformulate these rays to
appear as fixed points, by projecting the trajectories to
a plane of constant value of one of the parameters. The
stable “fixed rays” are expected to describe the asymp-
totic limit of arbitrarily weak but non-zero bare interac-
tion, such that convergence to these rays is nearly perfect
before the sphere of control is exited. One should keep
in mind that when the bare interactions are small but
not arbitrarily so, the deviations from these rays become
important, and the physics will be less universal and con-
trolled more by the actual values of the interactions, but
the RG equations can still be employed.

Before considering the stable fixed rays, we note a few
features of these equations. The �-functions for g1 and g3
contain an overall factor of g1 and g3, respectively. This
follows from symmetry: all terms except g1 conserve spin
at each saddle point separately, and all terms except g3
conserve the number of electrons at each saddle point
separately. The conserving interactions cannot generate
a non-conserving one. As a result, the sign of g1 and
g3 remain fixed through out the RG evolution. One also

notes that the dg2/dy > 0 and dg4/dy < 0 under the RG.
Thus an initially positive g2 must remain positive, and
an initially negative g4 remains negative.
To understand the physical meaning of the gi, it is

useful to define interactions that parametrize particular
channels of ordering, e.g. they appear in the mean-field
treatment below in Sec. IV. They were previously de-
fined in Ref. [46, 49]. Here, we consider the interactions
in the d-wave superconductivity (GdSC = g3 � g4), s-
wave superconductivity (GsSC = �2g3 � g4), real charge
density (GrCDW = �2g1 + g2 � g3), orbital moment
density (GiCDW = �2g1 + g2 + g3) 1, real spin density
(GrSDW = g2 + g3), spin flux order (GiSDW = g2 � g3)
channels. The interactions Ga are defined such that the
a instability develops only when Ga > 0.
From the previous discussion, we can see a few features

clearly. Real and imaginary parts of the CDW and SDW
order parameters (OPs) are degenerate if g3 = 0. This is
because the umklapp interaction is the only one transfer-
ring charge between saddle points, so that in its absence
there is a separate U(1) charge rotation for each valley.
Similarly, the corresponding real and imaginary parts of
the CDW and SDW orders are degenerate when g1 = 0.
This is because only g1 violates separate spin conserva-
tion at each saddle, so that when g1 = 0, independent
SU(2) rotations may be made for each flavor, which mixes
CDW and SDW orders. Thus, we see that the sign of g3
decides between real and imaginary CDW/SDW, while
the sign of g1 decides between CDW and SDW order.
To proceed further, we determine the fixed rays and the

pRG flow trajectory near them. We rewrite interactions
as gi = �ig, and choose g as one of the interactions,
which diverges as g ⇠ 1

yc�y along the fixed trajectory

(as we verify afterwards). A proper identification of g
ensures that �i tends to a constant value �⇤

i along the
fixed trajectory, and �⇤

i = 0 implies that the interaction
gi either flows to zero or diverges slower than 1

yc�y . We
call it a fixed point hereafter. The solutions to �⇤

i can be
obtained by solving a set of algebraic equations �̃i({�}) =
0 for i = 1, 2, 3, 4, where

�̃i({�}) = �̇i =
1

g
(ġi � �iġ) . (5)

Among those solutions, only the stable fixed point solu-
tions are of physical interest, as they do not flow away
under small perturbations. To examine the stability
of a fixed point solution, we define a matrix T that
is determined by the flow of �̃i at the fixed point, i.e.

1
Here, iCDW standards for “imaginary charge density wave”.

However, note that the latter does not necessarily mean that

the charge instability must break time reversal symmetry for a

generic wave vector. But at wave vector M = �M up to a

reciprocal lattice vector, imaginary charge density must break

time-reversal symmetry, and correspond to orbital moment den-

sity wave. For similar reasoning, we use iSDW for spin flux order.

umklapp

intra-valley

inter-valley density

inter-valley exchange
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Saddle point RG: determines behavior for very weak 
interactions, such that log2 is dominant even over log

• Sign of g1 preserved: g1>0 favors singlet/charge while 
g1<0 favors triplet/spin 

• Sign of g3 preserved: g3>0 prefers imaginary density 
wave while g3<0 favors real density wave
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the evolution of gi at energy E as the fermion fluctua-
tions from cuto↵ energy ⇤RG ⇠ t⇤2 to E are integrated
out, we perform a parquet renormalization group (pRG)
analysis. Following Ref. [46], the pRG equations for gi
are

dg1
dy

= 2d1g1(g2 � g1),

dg2
dy

= d1(g
2
2 + g23),

dg3
dy

= �g23 � 2g3g4 + 2d1g3(2g2 � g1),

dg4
dy

= �2g23 � g24 , (4)

where y = ⇧pp(0, E) ⇠ ln2(⇤RG/E) is the RG time and
d1(y) = d⇧ph(Ma)/ dy is the “nesting parameter”, which
satisfies 0 < d1(y) 6 1/2. For perfect nesting, d1(y) =
1/2 and is independent of RG time. For concreteness, we
will consider the perfect nesting case hereafter, i.e. d1 ⌘
1/2. It has been checked that other 0 < d1(yc) < 1/2
does not qualitatively change the fixed point solutions
and leading density wave instabilities.

The RG equations, having entirely quadratic �-
functions (the right hand sides of the pRG equations),
do not have any non-trivial controlled fixed points in the
usual sense. Rather, they describe flows in the vicinity of
the free fixed point: since the RG equations are pertur-
bative, they are strictly valid only within some sphere of
small radius of the origin in g-space. Within certain do-
mains of this space, the flows will be unstable, i.e. they
will exit the sphere of control, which indicates an insta-
bility towards a new regime, and most likely an ordered
state. Within the unstable regions of phase space, RG
flows that begin very close to the origin tend to converge
toward particular unstable trajectories which act as at-
tractors, and are typically straight “rays”[61, 62]. Below
we follow previous works that reformulate these rays to
appear as fixed points, by projecting the trajectories to
a plane of constant value of one of the parameters. The
stable “fixed rays” are expected to describe the asymp-
totic limit of arbitrarily weak but non-zero bare interac-
tion, such that convergence to these rays is nearly perfect
before the sphere of control is exited. One should keep
in mind that when the bare interactions are small but
not arbitrarily so, the deviations from these rays become
important, and the physics will be less universal and con-
trolled more by the actual values of the interactions, but
the RG equations can still be employed.

Before considering the stable fixed rays, we note a few
features of these equations. The �-functions for g1 and g3
contain an overall factor of g1 and g3, respectively. This
follows from symmetry: all terms except g1 conserve spin
at each saddle point separately, and all terms except g3
conserve the number of electrons at each saddle point
separately. The conserving interactions cannot generate
a non-conserving one. As a result, the sign of g1 and
g3 remain fixed through out the RG evolution. One also

notes that the dg2/dy > 0 and dg4/dy < 0 under the RG.
Thus an initially positive g2 must remain positive, and
an initially negative g4 remains negative.
To understand the physical meaning of the gi, it is

useful to define interactions that parametrize particular
channels of ordering, e.g. they appear in the mean-field
treatment below in Sec. IV. They were previously de-
fined in Ref. [46, 49]. Here, we consider the interactions
in the d-wave superconductivity (GdSC = g3 � g4), s-
wave superconductivity (GsSC = �2g3 � g4), real charge
density (GrCDW = �2g1 + g2 � g3), orbital moment
density (GiCDW = �2g1 + g2 + g3) 1, real spin density
(GrSDW = g2 + g3), spin flux order (GiSDW = g2 � g3)
channels. The interactions Ga are defined such that the
a instability develops only when Ga > 0.
From the previous discussion, we can see a few features

clearly. Real and imaginary parts of the CDW and SDW
order parameters (OPs) are degenerate if g3 = 0. This is
because the umklapp interaction is the only one transfer-
ring charge between saddle points, so that in its absence
there is a separate U(1) charge rotation for each valley.
Similarly, the corresponding real and imaginary parts of
the CDW and SDW orders are degenerate when g1 = 0.
This is because only g1 violates separate spin conserva-
tion at each saddle, so that when g1 = 0, independent
SU(2) rotations may be made for each flavor, which mixes
CDW and SDW orders. Thus, we see that the sign of g3
decides between real and imaginary CDW/SDW, while
the sign of g1 decides between CDW and SDW order.
To proceed further, we determine the fixed rays and the

pRG flow trajectory near them. We rewrite interactions
as gi = �ig, and choose g as one of the interactions,
which diverges as g ⇠ 1

yc�y along the fixed trajectory

(as we verify afterwards). A proper identification of g
ensures that �i tends to a constant value �⇤

i along the
fixed trajectory, and �⇤

i = 0 implies that the interaction
gi either flows to zero or diverges slower than 1

yc�y . We
call it a fixed point hereafter. The solutions to �⇤

i can be
obtained by solving a set of algebraic equations �̃i({�}) =
0 for i = 1, 2, 3, 4, where

�̃i({�}) = �̇i =
1

g
(ġi � �iġ) . (5)

Among those solutions, only the stable fixed point solu-
tions are of physical interest, as they do not flow away
under small perturbations. To examine the stability
of a fixed point solution, we define a matrix T that
is determined by the flow of �̃i at the fixed point, i.e.

1
Here, iCDW standards for “imaginary charge density wave”.

However, note that the latter does not necessarily mean that

the charge instability must break time reversal symmetry for a

generic wave vector. But at wave vector M = �M up to a

reciprocal lattice vector, imaginary charge density must break

time-reversal symmetry, and correspond to orbital moment den-

sity wave. For similar reasoning, we use iSDW for spin flux order.
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y = ⇧pp(0, E) ⇠ ln2(⇤/E)

Saddle point RG: determines behavior for very weak 
interactions, such that log2 is dominant even over log

Analysis:  
- 4 instability pathways
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interactions, such that log2 is dominant even over log

Analysis:  
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if bare couplings are comparable, larger 
order dominates

5

Tij = @�̃i/@�j |{�⇤}. The RG fixed point is stable only
when all the eigenvalues of T are non-positive.

In addition to identifying the leading instabilities, the
subleading ones are also considered here for three reasons.
First, as discussed above, when the interaction strengths
are not truly infinitesimal, flow to the unstable regime
may occur before the fixed ray is reached. This may oc-
cur when bare couplings are small but not too close to a
fixed ray, and deviate from it in a particular direction fa-
voring a subleading instability. Second, the flow may be
also cut o↵ by imperfect nesting and/or a non-zero chem-
ical potential (i.e. doping from the saddle point). These
e↵ects limit the convergence to the fixed ray, and at that
point a di↵erent instability might dominate. Third, a sec-
ondary instability may develop at a lower temperature,
even if the primary one occurs first. To account for those
possibilities, which depend upon the microscopic details,
we will list the leading two instabilities at the RG fixed
points.

To summarize, we list all the stable fixed point solu-
tions for both repulsive and attractive bare interactions.
In addition, we discuss an interesting semi-stable fixed
point solution with only one weak unstable direction flow-
ing out of the fixed point.

When g(0)2 > 0, there are three (semi)stable fixed
points, which we take the liberty of denoting “phases”
I, II, III – this is an abuse of terminology since these
solutions really describe unstable rays in the full phase
space, which may not correspond to a unique phase. As
g2(y) must diverge as ⇠ 1

yc�y , we choose g(y) = g2(y) =
1

d1(1+�2
3)(yc�y)

.

I. When g(0)3 < 0, g3 flows to negative value at the sta-
ble RG fixed point, and we find �1 = 0, �2 = 1, �3 ⇡
�6.1, �4 ⇡ �5.5. The subleading divergence of g1

goes as g1(y) ⇠ (yc � y)
�

2
1+�2

3 ⇠ 1
(yc�y)0.05 . Note

that as the flow of g1 is subleading here, the sign

of g(0)1 is not qualitatively important to determine
the fixed trajectory. The leading instabilities are
GsSC = 17.6g, GrCDW = GiSDW = 7.1g.

II. When g(0)1 < 0, g(0)3 > 0, and for large enough

|g(0)1 |, the system may flow to a semi-stable fixed
point, where there is only 1 weak unstable direc-
tion in the 4-dimensional parameter space defined
by {g1, g2, g3, g4}. The fixed point solution reads
�1 ⇡ �46.7, �2 = 1, �3 ⇡ 9.7, �4 ⇡ �4.4. The
leading instabilities are GiCDW = 104.0g, GrCDW =
84.6g.

III. When g(0)1 , g(0)3 > 0, the stable RG fixed point has
been discussed a lot in the literature [46]. The
fixed point solution gives �1 = 0, �2 = 1, �3 ⇡
5.6, �4 ⇡ �10.0, where the subleading divergence

of g1 can be obtained as g1(y) ⇠ (yc � y)
�

2
1+�2

3 ⇡
1

(yc�y)0.06 . The leading divergent instabilities are
GdSC = 15.6g, GrSDW = GiCDW = 6.6g.

OP Definition Interaction
strength (G)

rCDW N↵ = GrCDW
|✏↵�� |
2N

P
q

D
c†�qc�q

E
�2g1 + g2 � g3

iCDW �↵ = GiCDW
✏↵��

2iN
P

q

D
c†�qc�q

E
�2g1 + g2 + g3

rSDW S↵ = GrSDW
|✏↵�� |
2N

P
q

D
c†�q

�
2 c�q

E
g2 + g3

iSDW  ↵ = GiSDW
✏↵��

2iN
P

q

D
c†�q

�
2 c�q

E
g2 � g3

sSC �s = GsSC
1p
3N

P
q hc↵q#c↵�q"i �2g3 � g4

dSC

�xy =GdSC
1
N

⇥
X

q

hcq#Dxyc�q"i

�x2�y2 =GdSC
1
N

⇥
X

q

⌦
cq#Dx2�y2c�q"

↵

g3 � g4

TABLE I. List of all bilinear order parameters (OPs) in
the patch model. � are the Pauli matrices in spin space,
and

P
q ⌘

P
|q|<⇤. Dxy, Dx2�y2 are matrices in the patch

space defined as Dxy =
p

1/2diag (0, 1,�1) and Dx2�y2 =p
2/3 diag(1,�1/2,�1/2), and cq� = (c1q�, c2q�, c3q�).

In Fig. 4, the phase diagram in the space of g(0)1 , g(0)3

for g(0)2 > 0 is shown.

When g(0)2 < 0, g2 may instead flow to zero. We find in
this way a fourth fixed ray, which we denote phase IV. It
is describe by letting g = g1(y) = � 1

2d1(yc�y) , and �1 =

1, �2 = 0, �3 = 0, �4 = 0. This solution requires g(0)1 <

0, g(0)4 > 0, and is only stable when g(0)3 > 0. Moreover,
g3(y) is also divergent and is only logarithmically smaller

than g1. We find g3(y) =
1

yc�y

⇣
ln 1

yc�y

⌘�1
. The leading

instabilities are GrCDW = GiCDW = �2g = 1
d1(yc�y) .

The fixed point solution indicates that the rCDW and
iCDW orders are degenerate at the leading order, but
they are split by a logarithmically subdominant e↵ect
due to g3 > 0 weakly in favor of the iCDW, i.e. GiCDW >
GrCDW.

In passing, we note that purely electronic interactions

generally give repulsion for all couplings, i.e. g(0)i > 0
with i = 1, 2, 3, 4. However, other factors, such as orbital
composition of the wave function near saddle points, and
electron-phonon coupling, may contribute to attraction

for certain g(0)i . In App. B, we consider the e↵ect of
electron-phonon coupling, and show that the renormal-

ization to g(0)i can be attractive for both �g(0)1 and �g(0)3 or

only �g(0)1 , depending upon the strength of the coupling
and and phonon modes involved.

g3<0 g1<0, g3>0

g1 > 0, g3>0 g2<0
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Return to experiment: what can we say about density 
wave orders?  

•Several possible order parameters with the 
observed in-plane periodicity of charge modulation
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Fig. 1 Superlattice modulation observed via atomically resolved topographic imaging. a, Crystal 
structure of KV3Sb5 from 3D view and top view. b, Topographic image of a surface step edge, containing 
both K and Sb surfaces. c, Atomically resolved topographic image of K hexagonal surface showing a 2×2 
modulation. d, Atomically resolved topographic image of Sb honeycomb surface showing a 2×2 
modulation. The inset shows the six atoms in the honeycomb unit cell. e, Fourier transform of the Sb 
topographic image, showing the ordering peaks. f, Illustration of the order in the underlying V-based 
kagome lattice, which is consistent with star of David formation. 
 
 
 
 

rCDW order

• Is rCDW the primary order? Or could this be due to 
other iCDW,rSDW orders?



rCDW
General plan: apply Landau/symmetry analysis
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structure of KV3Sb5 from 3D view and top view. b, Topographic image of a surface step edge, containing 
both K and Sb surfaces. c, Atomically resolved topographic image of K hexagonal surface showing a 2×2 
modulation. d, Atomically resolved topographic image of Sb honeycomb surface showing a 2×2 
modulation. The inset shows the six atoms in the honeycomb unit cell. e, Fourier transform of the Sb 
topographic image, showing the ordering peaks. f, Illustration of the order in the underlying V-based 
kagome lattice, which is consistent with star of David formation. 
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N1 ⇠ hc†2�c3�i = hc†3�c2�i

invariant under time-reversal
point group symmetries ~ tetrahedral Td

+ cyclic permutations
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order parameters. The mean field free energy becomes

FrCDW =
N

2GrCDW

3X

↵=1

N2
↵ � (Tr log G�1), (10)

where G�1 is defined as

G�1(i!n, q; {N↵})

=

2

4
�i!n + "1(q) �N3/2 �N2/2

�N3/2 �i!n + "2(q) �N1/2
�N2/2 �N1/2 �i!n + "3(q)

3

5 . (11)

As a function of N↵, the rCDW free energy has the sym-
metry of the tetrahedral point group, Td. This can be
deduced by applying the symmetry operations of the full
space group of the lattice, P6/mmm, to the definitions
of the rCDW order parameter. Using our knowledge of
this symmetry, we can determine what solutions of the
free energy are possible. In the cases that are physically
relevant, the solutions of the mean-field theory belong in
either the 3Q+, 3Q�, or 1Q rCDW configurations which
are classes of rCDW states with directions:

3Q+: {(111), (11̄1̄), (1̄11̄), (1̄1̄1)},
3Q�: {(1̄1̄1̄), (1̄11), (11̄1), (111̄)},
1Q: {(100), (1̄00), (010), (01̄0), (001), (001̄)}.

Indeed, by numerically solving the full free energy we
will see that the solutions belong in either the 3Q± or
1Q rCDW classes. A detailed discussion is provided in
App. C. The rCDW patterns of the 3Q± and 1Q states
are shown in Fig. 7.

By assuming we are near the rCDW transition where
the rCDW order parameters are su�ciently small, we
can expand the free energy to fourth order in N↵. The
resulting Landau theory is

frCDW =

✓
1

2GrCDW
+K1

◆X

↵

N2
↵ +K2N1N2N3

+K4

 
X

↵

N2
↵

!2

+ (K3 � 2K4)
X

↵<�

N2
↵N

2
� +O(N5),

(12)

where frCDW is the free energy density. The definitions of
the coe�cients K1, · · · ,K4 which are functions of chem-
ical potential and temperature are given in App. D. The
coe�cients can be evaluated asymptotically in the limit
µ, kBT ⌧ t⇤2 and can also be found in App. D.

Fig. 5 shows the temperature dependence of these co-
e�cients when µ/t⇤2 = 0.01. Notice that the coe�cients
exhibit a change in behavior at the cross-over tempera-
ture kBT ⇠ µ. In addition, the K2,K3,K4 coe�cients
change sign near the cross-over temperature. When the
quartic coe�cients become negative, the Landau theory
expression given by Eq. (12) becomes unstable, but in
those regions stability can be restored by including sixth-
order terms to the free energy.

FIG. 5. Absolute value of the Landau theory coe�cients,
K1, · · · ,K4 evaluated at µ/t⇤2 = 10�2 for the case of perfect
nesting (a = 9t/4 , b = 3t/4). Solid lines indicate positive
values and dashed lines indicate negative values. K2,K3,K4

change sign at µ/kBT ⇠ 2.14, 4.05, 1.91 respectively.

Eq. (12) has a third order term, K2, that couples all
three rCDW order parameters. This is allowed by sym-
metry since this term is even under time-reversal sym-
metry and the sum of the three nesting wave vectors sat-
isfies

P
↵ Q↵ ⌘ 0. This term introduces a preference for

3Q+ or 3Q� rCDW states depending on the sign of K2.
On the other hand, when K3 � 2K4 > 0, the fourth or-
der term sets a preference for 1Q rCDW states. When
K3 � 2K4 < 0, this fourth order term prefers the 3Q±
states equally.
When a/b = 3, Fig. 5 shows that K2 < 0 when

µ/kBT . 2.14 in the asymptotic limit. In addition,
K3 � 2K4 < 0 for µ ⌧ kBT . Hence, in this region,
all terms in the rCDW Landau theory prefer the 3Q+
rCDW state. The transition to the 3Q+ rCDW state
must be a first-order transition because the free energy
can become negative before the second-order term van-
ishes due to the third-order term. One thing to note is
that the rCDW order parameter is not necessarily small
near the first-order rCDW transition, so the results of
the Landau theory must be treated with caution. We
can avoid this issue by numerically solving the full free
energy.

The full free energy defined in Eqs. (10), (11) has four
tunable parameters: temperature T , chemical potential
µ, the rCDW interaction strength GrCDW, and the nest-
ing ratio a/b. As explained in Sec. II, we only need to
consider the case a, b > 0. Given this condition, we can
introduce a convenient reparametrization,

a =
� +

p
3 + �2p
3

t,

b =
�� +

p
3 + �2p
3

t, (13)

where t > 0 and � 2 R. We see that t represents the

cubic term:  
dominant near Tc 
and generically 
fixes 3Q order
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where f(") = 1/(exp("/T ) + 1) is the Fermi-Dirac func-
tion. These integrals can be evaluated asymptotically
in the limit µ , kBT ⌧ a⇤2 , b⇤2. If we assume perfect
nesting, the patch dispersions take the form,

"1(q) =
3t

4

�
3q2x � q2y

�
, (D5)

"2(q) =
3t

4
2qy

⇣
qy +

p
3qx

⌘
, (D6)

"3(q) =
3t

4
2qy

⇣
qy �

p
3qx

⌘
, (D7)

where t > 0. Given this definition, the asymptotic ex-
pressions of K2,K3,K4 in the limit µ, kBT ⌧ t⇤2 are

K2 ⇡� 16

⇡2t⇤2kBT
H2(µ/kBT ), (D8)

K3 ⇡ 8

3⇡2⇤2(kBT )2
H3(µ/kBT ), (D9)

K4 ⇡ 1

12
p
3⇡2t⇤2(kBT )2

H4(µ/kBT ) ln
�
t⇤2/kBT

�
,
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where H2, H3, H4 are the integral functions,

H2(z) =
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0
dx

Z x/
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0
dy
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In the equations above, F (x) = 1/(ex+1), and "̃1(x, y) =
3x2�y2 , "̃2(x, y) = 2y(y+

p
3x) , "̃3(x, y) = 2y(y�

p
3x).

The expression holds for arbitrary ratios of µ/kBT . The

values of the H2, H3, H4 when µ ⌧ kBT are

H2(0) ⇡0.039571, (D14)

H3(0) ⇡0.014216, (D15)
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where f(") = 1/(exp("/T ) + 1) is the Fermi-Dirac func-
tion. These integrals can be evaluated asymptotically
in the limit µ , kBT ⌧ a⇤2 , b⇤2. If we assume perfect
nesting, the patch dispersions take the form,
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where t > 0. Given this definition, the asymptotic ex-
pressions of K2,K3,K4 in the limit µ, kBT ⌧ t⇤2 are
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In the equations above, F (x) = 1/(ex+1), and "̃1(x, y) =
3x2�y2 , "̃2(x, y) = 2y(y+
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3x) , "̃3(x, y) = 2y(y�

p
3x).

The expression holds for arbitrary ratios of µ/kBT . The

values of the H2, H3, H4 when µ ⌧ kBT are

H2(0) ⇡0.039571, (D14)

H3(0) ⇡0.014216, (D15)
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K1(T, µ) =
1

2⇤2

Z ⇤

�⇤

d2q

(2⇡)2
f("2(q)� µ)� f("3(q)� µ)

"2(q)� "3(q)
, (D1)

K2(T, µ) =� 1

2⇤2

Z ⇤

�⇤

d2q

(2⇡)2

✓
f("1(q)� µ)

("1(q)� "2(q))("1(q)� "3(q))

+
f("2(q)� µ)

("2(q)� "1(q))("2(q)� "3(q))
+

f("3(q)� µ)

("3(q)� "1(q))("3(q)� "2(q))

◆
, (D2)

K3(T, µ) =
1

24⇤2

Z ⇤

�⇤

d2q

(2⇡)2

✓
f 0("1(q)� µ)

("1(q)� "2(q))("1(q)� "3(q))

+
f 0("2(q)� µ)

("2(q)� "1(q))("2(q)� "3(q))
+

f 0("3(q)� µ)

("3(q)� "1(q))("3(q)� "2(q))

◆
, (D3)

K4(T, µ) =� 1

8⇤2

Z ⇤

�⇤

d2q

(2⇡)2

✓
f("2(q)� µ)� f("3(q)� µ)

("2(q)� "3(q))3
� f 0("2(q)� µ) + f 0("3(q)� µ)

2("2(q)� "3(q))2

◆
, (D4)

where f(") = 1/(exp("/T ) + 1) is the Fermi-Dirac func-
tion. These integrals can be evaluated asymptotically
in the limit µ , kBT ⌧ a⇤2 , b⇤2. If we assume perfect
nesting, the patch dispersions take the form,

"1(q) =
3t

4

�
3q2x � q2y

�
, (D5)

"2(q) =
3t

4
2qy

⇣
qy +

p
3qx

⌘
, (D6)

"3(q) =
3t

4
2qy

⇣
qy �

p
3qx

⌘
, (D7)

where t > 0. Given this definition, the asymptotic ex-
pressions of K2,K3,K4 in the limit µ, kBT ⌧ t⇤2 are

K2 ⇡� 16

⇡2t⇤2kBT
H2(µ/kBT ), (D8)

K3 ⇡ 8

3⇡2⇤2(kBT )2
H3(µ/kBT ), (D9)

K4 ⇡ 1

12
p
3⇡2t⇤2(kBT )2

H4(µ/kBT ) ln
�
t⇤2/kBT

�
,

(D10)

where H2, H3, H4 are the integral functions,

H2(z) =

Z
1

0
dx

Z x/
p
3

0
dy

✓
F ("̃1(x, y)� z)

("̃1(x, y)� "̃2(x, y))("̃1(x, y)� "̃3(x, y))

� F ("̃2(x, y)� z)

("̃1(x, y)� "̃2(x, y))("̃2(x, y)� "̃3(x, y))
+

F ("̃3(x, y)� z)

("̃1(x, y)� "̃3(x, y))("̃2(x, y)� "̃3(x, y))

◆
, (D11)

H3(z) =

Z
1

0
dx

Z x/
p
3

0
dy

✓
F 0("̃1(x, y)� z)

("̃1(x, y)� "̃2(x, y))("̃1(x, y)� "̃3(x, y))

� F 0("̃2(x, y)� z)

("̃1(x, y)� "̃2(x, y))("̃2(x, y)� "̃3(x, y))
+

F 0("̃3(x, y)� z)

("̃1(x, y)� "̃3(x, y))("̃2(x, y)� "̃3(x, y))

◆
, (D12)

H4(z) =

Z
1

0
dv

✓
�F (v � z) + F (�v � z)

v3
+

F 0(v � z) + F 0(�v � z)

z2

◆
. (D13)

In the equations above, F (x) = 1/(ex+1), and "̃1(x, y) =
3x2�y2 , "̃2(x, y) = 2y(y+

p
3x) , "̃3(x, y) = 2y(y�

p
3x).

The expression holds for arbitrary ratios of µ/kBT . The

values of the H2, H3, H4 when µ ⌧ kBT are

H2(0) ⇡0.039571, (D14)

H3(0) ⇡0.014216, (D15)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. rCDW phase diagrams calculated in the kBT–µ plane. G̃rCDW = GrCDW/t⇤2 is defined as the dimensionless rCDW
strength. � parametrizes nesting as defined in Eq. (13). The phase diagrams correspond to the case t, � > 0 (a, b > 0 and a/b >
1). The phase diagrams for t, � < 0 (a, b > 0 and a/b < 1) are related to these phase diagrams under the exchange 3Q+ $ 3Q�
and reflection in the µ = 0 axis.

us the rSDW free energy (which may be added to the
rCDW free energy in Eq. (12)):

frSDW =

✓
1

2GrSDW
+

K1

4

◆X

↵

|S↵|2

+
K2

4
(N1S2 · S3 +N2S3 · S1 +N3S1 · S2)

+
K3

16

X

↵<�

|S↵|2|S� |2 +
K4

16

X

↵

|S↵|4+

+K5

X

↵<�

|S↵ · S� |2 +K6 (S1 · S2 ⇥ S3)
2 + · · · .

(16)

Here K5,K6 are new symmetry-allowed coe�cients. The
important aspect of this Landau theory is the third-order
term which couples the rSDW and rCDW order parame-
ters. This term is allowed by symmetry since it is invari-
ant under time-reversal and lattice translation symmetry.

Close to the transition temperature Tc for the rSDW
order, the rSDW-rCDW coupling term can be treated as
a perturbation and we can first solve the rSDW Landau
theory. Like the iCDW OPs, the 3Q+ and 3Q� classes
are related under time-reversal symmetry so we only need
to consider the 3Q and 1Q rSDW classes. This Landau
theory has previously been studied in Ref. [47]. For
chemical potential su�ciently close to the saddle point,
the solution to the SDW Landau theory is a uniaxial
3Q rSDW phase where all three rSDW order parameters

generic example: 
3Q order dominates, with 

1Q CDW intervening

10

have the same magnitude and are oriented along the same
axis, i.e. S⇤

↵ = sn↵, where n↵ = ±1. If we substitute
this solution into Eq. (16) and add the terms from Eq.
(12), we get a free energy that is a function of just the
rCDW OPs:

frCDW + frSDW

��
S↵=S⇤

↵
=

✓
1

2GrCDW
+K1

◆X

↵

N2
↵

+
K2

4
|s|2 (n2n3N1 + cyc. perms.) +K2N1N2N3

+K4

 
X

↵

N2
↵

!2

+ (K3 � 2K4)
X

↵<�

N2
↵N

2
� . (17)

For K3�2K4 < 0, all terms prefer the 3Q+ rCDW state,
so the system can develop a rCDW state.

V. EXTENSIONS AND EXPERIMENTAL
IMPLICATIONS

In this section, we discuss various aspects of the dif-
ferent CDW phases, and how they may be di↵erentiated
experimentally.

A. Real space r/iCDW patterns

It is interesting to consider the real space patterns
of charges and currents associated with the rCDW and
iCDW order parameters.

Our continuum model does not carry any details of the
lattice, so we rely on symmetry information provided by
DFT calculations [58]. Importantly, as the saddle point
band at the three M points are even under inversion,
it can be shown that among the d-orbitals of vanadium
atoms, only the ↵-th vanadium atom in the unit cell con-
tributes to the Bloch state at M↵ (see App. A). Further-
more, the DFT calculation shows that the saddle points
consist mostly of d-orbitals of vanadium atoms. Moti-
vated by these observations, we consider nearest neigh-
bor hopping on the Kagomé lattice as the minimal tight
binding model that should capture the essential physics
from fermions near the saddle points. For convenience,
the lattice coordinate for the three sublattice is expressed
as r↵ = R+�↵, where R is the coordinate for a unit cell,
whose origin is taken at the center of the triangular pla-
quette with the green sublattice facing to the left in Fig.
1(a). �1 = (� 1

2
p
3
, 0), �2 = ( 1

4
p
3
, 1
4 ) and �3 = ( 1

4
p
3
,� 1

4 ).

The tight-binding Hamiltonian reads

Ĥ0 = t1
X

hr↵,r↵+e�i

d†r↵
dr↵+e� + d†r↵+e�

dr↵ , (18)

where hr↵, r↵+e�i is the NN bond and e is defined such
that r� = r↵ + e� where {�,↵, �} is a permutation of

{1, 2, 3}. This gives e1 = 1
2{�1, 0}, e2 = 1

2{�
p
3
2 , 1

2} and

e3 = 1
2{

p
3
2 , 1

2}.

Due to the one-to-one correspondence between patch
labelM↵ and sublattice label V↵ of vanadium atoms, the
real space fermions on vanadium atoms can be expressed
as

dr↵ =
1p
N

X

k

eik·Rd↵,k ⇡ 1p
N

X

|q|<⇤

eiM↵·Rc↵q, (19)

where c↵q denotes the saddle point fermion near M↵

as defined in the continuous model (Eq. (1)). As both
rCDW and iCDW order parameters are condensates of
inter-patch fermion density operators, the associated real
space order must be a bond order on the Kagomé lat-
tice. For simplicity, we will consider only nearest neigh-
bor (NN) bond order as an example.

1. rCDW pattern

The rCDW order parameter is time-reversal even, and
contribute to bond density modulation as

h�⇢̂r↵r↵+e� i = h�⇢̂r↵r0
�
i = Re

⇥
hd†r↵

dr↵+e� i
⇤

=
N↵�

GrCDW
cos(M↵ ·R�M� ·R0), (20)

where r0� = r↵+e� = R0+�� with � 6= ↵ 6= �. In Fig. 7,
the rCDW charge bond density modulation is shown for
the 3Q± and 1Q rCDW states.

(a) (b) (c)

FIG. 7. Real space rCDW bond order pattern of the 3Q±
and 1Q configurations. Configurations in the 3Q± classes
are related by translation. Configurations in the 1Q class are
related by translation and a three-fold rotation. (a) Bond
ordering corresponding to the 3Q+ rCDW class. The bond
ordering forms hexagonal and triangular plaquettes. (b) Bond
ordering corresponding to the 3Q� rCDW class. The bond
ordering forms a ‘star-of-David’ pattern. (c) Bond ordering
pattern corresponding to the 1Q rCDW class. The pattern
has alternating bond strength along one direction and uniform
strength in the other two bond directions.

2. iCDW pattern

The iCDW order parameter breaks time-reversal sym-
metry and corresponds to bond current in real space.
Note, that the current operator is well defined only when

3Q+ 3Q- 1Q

primarily bond order (due to 
compatibility irrep of Ma points with 

site irreps)

1st order transition in MFT
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Complex charge density waves at Van Hove singularity on hexagonal lattices:

Haldane-model phase diagram and potential realization in kagome metals AV3Sb5
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We analyze how the real and imaginary charge density waves interplay at the Van Hove singularity
on the hexagonal lattices. A phenomenological Ginzburg-Landau analysis indicates the formation
of complex orders at all three momenta under a total phase condition. These complex orders break
the rotation symmetry universally, since di↵erent complex phases are generally carried at the three
momenta. A rich Haldane-model phase diagram of 3Q complex charge density waves is mapped
out, where the trivial and Chern insulator phases are manifest. These phases are deformations
of the purely real and imaginary orders, which exhibit trivial site and/or bond density and chiral
flux orders, respectively. The gapless phase boundary may host a Dirac semimetal and an exotic
single-Dirac-point semimetal. We further show that the theoretical model o↵ers transparent inter-
pretations of experimental observations in the kagome metals AV3Sb5 with A = K,Rb,Cs. The
topological charge density waves may be identified with the complex orders in the Chern insulator
phase. Meanwhile, the lower-temperature symmetry-breaking phenomena may be interpreted as the
secondary orders from the complex order ground states. Our work sheds light on the nature of the
topological charge density waves in the kagome metals AV3Sb5, and may o↵er useful indications to
the experimentally observed charge orders in the future experiments.

I. INTRODUCTION

The studies of Fermi liquid instabilities on the hexag-
onal lattices has received enormous interest in the past
decade. While most of the interest are devoted to the
graphene with honeycomb lattice [1–7], the materials
with triangular [7–12] and kagome lattices [13–15] have
also been studied extensively. A particularly interesting
setup for such analyses is the doping to the Van Hove sin-
gularity [16]. At this doping, the Fermiology of the three
lattices become identical, with the caveat that the trans-
lation from lattice scale interactions to interaction con-
stants in momentum space is non-trivial on the kagome
lattice [14, 15]. The density of states is logarithmically
divergent at the M -point saddle points of dispersion en-
ergy, leading to the amplification of correlation e↵ects.
These saddle points define a hexagonal Fermi surface
with parallel edges, which further supports the Fermi
surface nesting at three finite momenta. The combina-
tion of these two singular structures can trigger various
types of Fermi liquid instabilities. It has been shown that
the d± id chiral superconductivity (SC) is the universal
leading weak-coupling instability at the Van Hove dop-
ing for repulsive interactions on triangular or honeycomb
lattices [2]. The spin density waves can also arise away
from the Van Hove doping, where the orders develop at
all three momenta. These ground states are known as
the 3Q states, which can realize the chiral noncoplanar
Chern insulator [8] and the uniaxial half-metal [3]. On
the other hand, it was shown that the charge density
waves (CDW) may develop from the sublattice interfer-
ence on the kagome lattices [14, 15]. The charge den-
sity waves at the M points with unconventional features
have also been studied in the transition metal dichalco-
genides [17–19]. More recently, the doping of graphene

with intercalation shows a flattening of dispersion energy
at the Van Hove doping [20], leading to the high-order
Van Hove singularity with power-law divergent density of
states [21]. This turns the phase diagram into the com-
petition between the d± id chiral superconductivity and
the ferromagnetism [22, 23].

While most of the works at the Van Hove singularity
have focused on the real orders in the particle-hole chan-
nels, the imaginary orders have not received as much in-
vestigation. The imaginary particle-hole orders at finite
momentum can realize staggered charge currents on the
lattice, which corresponds to the formation of intrinsic
staggered fluxes [24–26]. Such flux orders may break the
time-reversal symmetry spontaneously. The development
of orders at all three momenta can further trigger non-
trivial band topology in the ground states. For the imagi-
nary charge density waves, a Chern insulator can develop
from the 3Q chiral flux order [27, 28]. Meanwhile, a quan-
tum spin Hall insulator can arise from the 3Q uniaxial
spin flux order, which is a combination of two opposite
chiral flux orders at opposite spins [29]. Whether these
topological states can arise as the leading instability at
the Van Hove doping becomes an interesting topic to ex-
plore. It has been shown that the imaginary charge den-
sity wave is degenerate with the real spin density wave
with spin flavors Nf = 2, and is further dominant uni-
versally at larger number of flavors Nf � 4 [28, 30].
Meanwhile, the staggered currents have also been pro-
posed in a ⇡-flux triangular lattice [11], as well as in the
doped chiral spin liquid [31]. These observations indicate
the possibility of realizing the topological imaginary or-
ders in the systems with hexagonal lattices. A Ginzburg-
Landau analysis has been conducted to investigate how
the according d-wave order interplay with the real orders
[12]. However, the d-wave order has been treated as a
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Intertwining exotic quantum order and nontrivial topology is at the frontier of condensed matter 
physics1-18. A charge density wave (CDW) like order with orbital currents has been proposed as a 
powerful resource for topological states in the context of the quantum anomalous Hall effect5,6 and 
for the hidden matter in the pseudogap phase of cuprate superconductors7,8. However, the 
experimental realization of such topological charge order is challenging. Here we use high-resolution 
scanning tunnelling microscopy (STM) to discover a topological charge order in a kagome 
superconductor21-25 KV3Sb5. Through both lattice-sensitive topography and electronic-sensitive 
spectroscopic imaging, we observe a 2×2 superlattice, consistent with the star of David deformation 
in the underlying kagome lattice. Spectroscopically, an energy gap opens at the Fermi level, across 
which the charge modulation exhibits an intensity reversal, signaling a charge ordering. The strength 
of charge modulations further displays a clockwise or anticlockwise chiral anisotropy, which we 
demonstrate can be switched by an applied magnetic field. Our observations and theoretical analysis 
point to a topological charge order in the frustrated kagome lattice, which not only leads to a giant 
anomalous Hall effect, but can also be a strong precursor of unconventional superconductivity.  
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(a) (b)

FIG. 8. Real space iCDW (current) bond order pattern of
the (a) 1Q and (b) 3Q states. All 3Q configurations are re-
lated by translations or time-reversal (changing the sign of
the currents). Configurations in the 1Q class are related by
translation (i.e. reversing the current direction) and a three-
fold rotation. Note that the 1Q state is macroscopically time-
reversal symmetric, because it is invariant under the combina-
tion of time-reversal and translation. (a) Bond current in the
1Q class, with {�23,�31,�12} = �0{1, 0, 0}. (b) Bond current
from {�23,�31,�12} = �0{1, 1, 1}. The sign of �0 is taken as
negative here.

the charge is conserved, which is indeed the case in both
the high temperature disordered phase and iCDW phase.
As a result, in the equilibrium phase, the current opera-
tor must satisfy

X

r↵!r0
↵0

ĵr↵r0
↵0 = 0. (21)

By comparing the continuity equation and the equation
of motion for charge density, we find the current operator
on the NN bonds as (see App. E):

ĵr↵r0
↵0 = ĵr↵r↵+e��r0

↵0 ,r↵+e�
�↵ 6=�

=
ie

~ t1
⇣
d†r↵

dr↵+e� � d†r↵+e�
dr↵

⌘
, (22)

where t1 is the NN hopping defined in Eq. (18). From
Eq. (19), the bond current expectation value can be ex-
pressed in terms of iCDW order parameter as

hĵr↵r↵+e� i = hĵr↵r0
�
i

=i e t1 e
�i(M↵·R�M� ·R

0)

 
1

N
X

q

�
hc†↵,qc�,qi � hc†�,qc↵,qi

�
!

=
�2 e t1
GiCDW

e�i(M↵·R�M� ·R
0)�↵� , (23)

where again we used r0� = r↵+e� = R0+�� with � 6= ↵ 6=
�. From Eq. (23), the real space bond current pattern
from �23 are shown in Fig. 8 (a). The linear combinations
of them can form loop current, as an example, we show
the bond current pattern for {�23,�31,�12} = �0{1, 1, 1}
in Fig. 8 (b).

The primary order parameter for the iCDW is a loop
current. However, as was discussed in Sec. IVC, from the
form of the K2 coupling terms in Eq. (14), a 3Q iCDW

will also induce charge order. In particular we see that
a 3Q iCDW induces either a 3Q+ or 3Q� state depend-
ing upon the sign of K2. Notably, the charge order is
quadratic in the iCDW order parameter, N↵ ⇠ �2, which
could be detectable near the transition temperature.

B. Three-dimensional coupling

Here we extend the Landau theory to consider the im-
plications of coupling of CDW order parameters between
nearby layers, adding a layer index z = 0, 1, 2 · · · num-
bered beginning from the top layer. We assume this cou-
pling is weak, so can be approximated by the leading
terms linear in the order parameters in each layer, and
decays rapidly with the distance between layers. Hence,

f? =
1X

z=0

1X

�=1

(K?,�N↵,zN↵,z+� + L?,��↵,z�↵,z+�) .

(24)
We assume that all the inter-layer interactions are weak
compared to the intra-layer terms in the free energy,
so that the form of the order within each layer is es-
tablished by the latter, and the intra-layer terms serve
to select particular relative orientations of the di↵erent
symmetry-breaking states in nearby layers. Here we ex-
pect |K?,1| � |K?,�>1| and |L?,1| � |L?,�>1| so that
terms with � > 1 can be neglected unless they are re-
quired to break degeneracies.

1. Three-dimensional ground states

Now we discuss the resulting three-dimensional or-
dered structures. First consider the imaginary CDW,
within the 3Q phase. Within a given layer, �↵ may take
one of the values �↵ = |�0|(±1,±1,±1), where all 8 signs
are possible, and |�0| is fixed by single-layer energetics.
If L?,1 < 0, the minimum energy iCDW order param-
eter is identical in all layers, �↵,z = �↵. If instead,
L?,1 > 0, the minimum energy configuration is “antifer-
romagnetic”, �↵,z = (�1)z�↵. The two cases above cor-
respond to an ordering wavevector with the z-component
kz = 0, 1

2 , in lattice units. Note that kz = 1/2 is the
wavevector for the current order, but the induced real
CDW order would have qz = 0 in both cases.
Now consider the real CDW, in either the 3Q+ or 3Q�

states. Within a single layer, N↵ may take just four val-
ues, with N↵ = N0n↵, with n2

↵ = 1 and n1n2n3 = 1.
For K?,1 < 0, we again obtain a “ferromagnetic” state,
with N↵,z = N↵. For K?,1 > 0, however, the situa-
tion is distinct from the iCDW case, because an overall
sign change in N↵ is not permitted. Instead, for a given
state n↵,z, the inter-layer coupling equally favors n↵,z+1

in any of the three states not equal to n↵,z. For N lay-
ers, the total degeneracy of ground states, consider just
the K?,1 interaction, is 4 ⇥ 3N�1 , a macroscopic de-
generacy including states with arbitrary wavevectors kz.

3Q iCDW1Q iCDW
macroscopically breaks TR 
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bandwidth of the saddle point band and � represents the
degree of nesting. Under this parametrization, a/b � 1
for � � 0 and a/b < 1 for � < 0. In particular, a/b = 3
(perfect nesting) for � = 1.

For di↵erent values of GrCDW and �, we generate a
phase diagram in the T � µ plane. The results shown
in Fig. 6 are representative samples of the the entire
parameter space where the continuum model holds—
kBT , µ ,GrCDW ⌧ t⇤2. We see that when the system
is doped to the saddle point (µ = 0) or below it, only
the 3Q+ rCDW forms. As you dope the system above
the saddle point, 1Q and/or 3Q� rCDW regions can
emerge. In addition, for � = 1.6, the 1Q rCDW region is
small and vanishes for su�ciently small GrCDW as seen
in Figs. 6(c), 6(f). Similarly, at perfect nesting and more
generally � ⇠ 1, the 3Q� rCDW region vanishes for suf-
ficiently small GrCDW as seen in Fig. 6(b). Clearly, the
3Q+ rCDW region is largest in all phase diagrams which
is consistent with the Landau theory discussed above.

C. iCDW-rCDW mean field theory

Now, we consider how a fundamental iCDW order can
induce subsidiary rCDW order. To do so, we consider
a iCDW-rCDW coupled mean field theory. We are par-
ticularly interested in the regime, motivated by the RG
results for phases II and IV, in which iCDW and rCDW
are close in energy and can compete.

It is convenient to express Eq. (9) in terms N↵ and �↵:

fCDW = r�

3X

↵=1

�2
↵ + rN

3X

↵=1

N2
↵

+K2 (N1N2N3 � �2�3N1 � �1�3N2 � �2�1N3)

+K4

 
3X

↵=1

�2
↵ +N2

↵

!2

+ (K3 � 2K4)
X

↵<�

(�2
↵ +N2

↵)(�
2
� +N2

�) +O(�6, N5).

(14)

Recall that r� =
⇣

1
2GiCDW

+K1

⌘
, rN =

⇣
1

2GrCDW
+K1

⌘
.

We assume GiCDW > GrCDW > 0, so that iCDW is the
leading instability. Note that time-reversal symmetry
forbids the term cubic in �, i.e. �1�2�3. As a result, the
order parameter manifold for �↵ alone has cubic symme-
try Oh. In addition, the 3Q± classes which were distinct
for the case of rCDW are now related under time-reversal
symmetry and part of the larger 3Q class which is defined
as the union of the 3Q± classes. Close to and below the
transition temperature for iCDW, the iCDW-rCDW cou-
pling can be treated as a perturbation.

First, we consider the iCDW Landau theory. The or-
der parameter manifold for �↵ is determined by quar-
tic terms proportional to K3 and K4. The first term
K4(

P3
↵=1 �

2
↵)

2 is positive definite and isotropic, so the

selection of the ground state configuration is determined
by the term (K3 � 2K4)

P
↵<� �

2
↵�

2
� . Specifically, (i)

when K3 > 2K4, the 1Q iCDW state is favored, (ii)
when K3 = 2K4, the �↵ ground state configuration is
degenerate at quartic order, and requires higher order
terms to break the degeneracy, (iii) when K3 < 2K4,
the 3Q iCDW is favored. From the asymptotic solu-
tion shown in Fig. 5 at µ/t⇤2 = 0.01, we see that when
kBTc/t⇤2 . 0.01, and the 1Q iCDW is stable. When
kBT/t⇤2 & 0.01, K3 � 2K4 < 0. Thus 3Q iCDW de-
velops if Tc sits in this range of temperature, but it may
become unstable to 1Q iCDW as temperature lowers. On
the other hand, when µ ⌧ kBT , we find K3�2K4 < 0 in
the low temperature regime when kBT/t⇤2 < 0.025 (see
App. D). Thus 3Q iCDW should be stable at µ ⇠ 0. This
transition is a continuous phase transition in contrast to
the rCDW case because of the absence of a third-order
term. The real space pattern for 1Q and 3Q iCDW orders
are presented in Sec. VA2.

Next, we substitute the iCDW order parameter in
Eq. (14) with the iCDW saddle point solution, |�↵| = �⇤,
and obtain the free energy for rCDW OPs. For 1Q
iCDW, no rCDW can be induced. For 3Q iCDW, as the
cubic term K2 contains term linear in N↵ through cou-
pling to two iCDW OPs at another two momenta, consid-
ering up to quadratic term in N , we find {N1, N2, N3} =
N0{1,±1,±1} up to any permutations of the signs be-

tween N↵, where N0 ⇠ K2�
⇤2

(T�TrCDW) . Here, T � TrCDW ⇠⇣
1

2GrCDW
+K1

⌘
> 0. So the sign of N0 is determined by

the sign of K2. Since K2 < 0 for µ/T . 2.14, N0 < 0, the
induced rCDW order must be the 3Q� one. As temper-
ature further lowers to T < TrCDW, the quartic term in
N↵ should be included so that the free energy is stable.
We checked that the rCDW order remains the 3Q� one
for K2 < 0 and vice versa.

D. rSDW-rCDW Mean-field theory

In phase III of the RG phase diagram, the rSDW is the
leading density wave instability. Here, we consider how
rCDW order can emerge as a subsidiary order through
rSDW-rCDW coupling. By rewriting the full interaction,
Eq. (3), using the rSDW operators the rSDW interaction
term is

HrSDW = �NGrSDW

2

X

↵

⇢̂rS,↵ · ⇢̂rS,↵, (15)

where ⇢̂rS,↵ = |✏↵�� |

2N

P
|q|<⇤ c†�q

�
2 c�q is the spin density

operator. Assuming the interaction in rCDW channel is
also attractive, but much weaker than that of rSDW, we
can decouple the interactions in the rSDW and rCDW
channel using a Hubbard-Stratonovich transformation,
integrate out the Fermionic degrees of freedom, and ex-
pand the resulting mean field free energy to fourth order
in the rSDW and rCDW order parameters. This gives

3Q iCDW induces 3Q rCDW

no cubic term: 3Q and 1Q 
possible even near Tc

Does it induce rCDW?

3Q iCDW induces rCDW
Conceivably iCDW order may be “hidden” behind rCDW
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Giant, unconventional anomalous Hall effect 
in the metallic frustrated magnet candidate, KV3Sb5
Shuo-Ying Yang1*, Yaojia Wang1*, Brenden R. Ortiz2, Defa Liu1, Jacob Gayles3,4, Elena Derunova1, 
Rafael Gonzalez-Hernandez5,6, Libor Šmejkal6,7,8, Yulin Chen9, Stuart S. P. Parkin1,  
Stephen D. Wilson2, Eric S. Toberer10, Tyrel McQueen11, Mazhar N. Ali1†

The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive 
regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, 
an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without 
report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω−1 cm−1 with an anomalous 
Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows 
enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly aris-
ing from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This 
allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental 
questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic 
frustrated magnets.

INTRODUCTION
The electronic anomalous Hall effect (AHE), where charge carriers 
acquire a velocity component orthogonal to an applied electric field 
without an external magnetic field, is one of the most fundamental 
and widely studied phenomena in physics. Since its discovery more 
than a century ago, the AHE has been extensively studied both 
theoretically and experimentally (1). Historically, spontaneous AHEs 
have been explored in materials with internally broken time-reversal 
symmetry (TRS), due to ferro- or ferrimagnetic ordering (2–5). Re-
cently, there has been a surge of interest in the exploration of non-
spontaneous AHEs, which require the application of an external 
magnetic field to break the TRS. The resulting Hall response is not 
commensurate with the magnitude of the applied field, thus making 
it distinct from the ordinary Hall effect (OHE). Such a nonsponta-
neous AHE has been seen in nonmagnetic ZrTe5 (6) and in dilute 
magnetically doped Kondo systems (7). Large AHEs can arise from 
a variety of effects, and a particularly interesting limit to explore is 
when the anomalous Hall angle (AHA) approaches 90°; one charac-
teristic of the intrinsic quantum AHE observed in TRS breaking 
topological insulators (8–10). In these insulators, the anomalous Hall 
conductivity (sAHE) becomes modulated by the conductance quantum, 
while the longitudinal conductivity (sxx) approaches zero, resulting 
in the AHA (tan−1(   σ  AHE   _  σ  xx     ))approaching 90° (11, 12).

The AHE can be broadly divided into two categories: intrinsic 
and extrinsic (1). The intrinsic AHE is governed by the electronic 
structure of a material that causes an electron to acquire a transverse 
momentum as it travels in-between scattering events (2, 13–15). 

This is the dominant mechanism in topological materials like Co3Sn2S2 
and Co2MnGa, which have AHEs on the order of 1000 Ω−1cm−1 
(16–18). The extrinsic AHEs, on the other hand, are dependent on 
electrons scattering off of sudden changes in the periodic potential 
of a crystal, caused by structural defects or chemical and magnetic 
impurities (3, 4, 19). They can be further categorized into the “dirty 
regime” (low conductivity, small scattering time, t) (19, 20) and the 
“clean regime” (high conductivity, large scattering time) (3, 4), which 
is dominated by skew scattering and is the focus of this work.

Much effort has been dedicated to understanding the different 
mechanisms that can give rise to skew scattering AHEs, as illustrated 
in Fig. 1A. In clean ferromagnets with spontaneously ordered mag-
netic moments, such as Fe, an AHE can be induced by electrons 
deflecting transversely by nonmagnetic impurities (21–23). In para-
magnetic systems, such as ZnO/MnZnO, spin-dependent electron 
scattering on localized magnetic moments can give rise to an AHE 
(24). Recently, scattering off of spin clusters, local groups of coupled 
spins, has been proposed: tilted magnetic clusters, like magnetic 
atoms in a Kagome net, can generate an enhanced skew scattering 
potential (25) and thus a large AHE. Triangular materials, like those 
often explored as geometrically frustrated magnets and spin liquid 
candidates, as well as other types of cluster magnets, are particularly 
likely to exhibit this type of AHE (25–28). However, the necessity of 
a combination of high conductivity in a spin-cluster lattice has con-
tributed to its lack of experimental observation.

One avenue for realizing this is by introducing electronic topology 
into magnetically frustrated systems. The electronic topology can 
generate a spin-orbit field that couples to magnetic fluctuations (for 
example, in a tiled spin cluster lattice), which can act analogously to 
impurity centers, a mechanism that is fundamentally distinct from 
the Berry phase mechanisms (25). This is advantageous for allowing 
cleaner crystals, without chemical disorder or atomic impurities, which 
have very high conductivities. The coupling of magnetic fluctuations 
and Dirac quasiparticles generates a novel field of study, previously 
unconsidered, for skew scattering. Topological frustrated magnets, 
which can host both magnetic fluctuations and Dirac quasiparticles, 
are highly sought after class of compounds. Metallic materials with 
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lattice of vanadium coordinated by antimony in distorted octahedra 
with potassium intercalated between layers. Previous work by Ortiz et al. 
(33) found that the compound displays paramagnetic behavior at 
high temperatures, before undergoing a transition at 80 K to either 
a dilute trimerized state from orbital ordering effects or a highly 
frustrated state with localized moments. Considering the vanadium 
Kagome net, geometrical frustration of the magnetic sublattice is 
expected. DFT + U calculations carried out by Ortiz et al. (33) com-
paring disordered AFM and ferrimagnetic ordering also support this 
expectation. Transport experiments on those same crystals were carried 
out here on a series of KV3Sb5 nanoflakes of different thicknesses. 
Figure 1C shows the typical temperature dependence of rxx for a 
105-nm-thick device (see the Supplementary Materials for fabrication 
information); with decreasing temperature, a kink is visible in rxx around 
80 K, corresponding to the known magnetization and heat capacity 
anomaly (33). At low temperature, the rxx reaches ≈1.5 µΩ cm, 
which is comparable to that of high purity bulk Bismuth (35). The 
magnetoresistance (MR) at various temperatures is shown in Fig. 1D, 
with Shubnikov de Hass (SdH) oscillations clearly visible above 4 T. 
Below 3 T, the MR is linear, while at higher field, it adopts a standard 
quadratic dependence with m0H (m0H is the applied magnetic field; 
Fig. 1D, inset). Fitting the quadratic field dependence, the average 
carrier mobility at 5 K is extracted to be ≈1000 cm2 V−1 s−1. The fast 
Fourier transforms (FFTs) below 35 K reveal two identifiable periods 
at 34.6 and 148.9 T, as shown in Fig. 1E. Tracking the temperature 
dependence of the FFT amplitude, the Lifshitz-Kosevich fit yields 
an effective mass of 0.125 me for carriers related to the 34.6 T orbit. 
Such a low effective mass corresponds well with the highly dispersive 
Dirac bands near the Fermi level. Angle-dependent MR and SdH 
oscillation analysis (see fig. S2) shows the 34.6 T peak deviates from 
the 1/cos(q) line below ≈ 20°, implying that the 34.6 T pocket is not 
strictly two dimensional.

The SdH oscillations are also clearly visible in the Hall response 
as shown in Fig. 2A, when the current is applied in the ab plane and 
m0H is applied along the c axis. In the high-field region (above 10 T) 
and below 15 K, there is a sudden change of habit resulting in a 
field-independent Hall response; this may correspond to a spin flop 
or other magnetic transition, which changes symmetry and modifies 
the Fermi surface. Future investigations into the rich high-field 
magnetic and electronic properties of KV3Sb5 are necessary to 
elucidate the cause of this behavior.

In the low-field region, highlighted by the blue shading in Fig. 2A, 
an antisymmetric sideways “S” shape is observed, which is a charac-
teristic of either an AHE or a two-band OHE. Below 35 K, rxy exhibits 
a second broad hump centered around 7 T, but as the temperature 
is increased, this hump is gradually lost and a one band linear field 
dependence is recovered (Fig. 2B, inset). The S-shaped Hall resistivity 
feature, however, persists throughout this changeover and remains 
visible at higher temperature where the Hall resistivity appears to be 
linear. This indicates that the high-field behavior of the Hall effect is 
related to the two-band OHE and that the low-field S shape is related 
to an AHE. Within the one-band temperature range, the electron 
concentrations (ne) and mobilities (me) are extracted from linear 
fitting of the OHE and shown in Fig. 2B (the simultaneous fitting of 
the two-band model with MR and Hall is not possible due to the 
linear MR behavior in this regime). As the temperature is lowered, 
me monotonically increases, while ne shows a minimum at around 
65 K, which may be related to the magnetic transition mentioned 
above. Figure 2C shows the extracted   r xy  AHE   taken by subtracting the 
local linear OHE background. The magnitude of the AHE mono-
tonically decreases with increasing temperature until it is lost at 
around 50 K. To precisely extract the AHC (  s xy  AHE  ) when rxy < rxx 
with no approximation, we first obtained the Hall conductivity by 
inverting the resistivity matrix, sxy = −rxy/(rxx2 + rxy2). Afterward, 
the local linear ordinary Hall conductivity background is subtracted, 
leaving the   s xy  AHE  , as shown in Fig. 2C (inset).

To further confirm the AHE nature of the low-field anomaly, we 
carried out a detailed angle-dependent measurements. Figure 3A shows 
the sAHE dependence on the angle of m0H relative to the applied 
electric field, and the inset shows sAHE against the cos(q). The AHC 
is angle independent until m0H is tilted away from the z axis by about 
30°, after which it rapidly decreases until it reaches 0 at m0H∥E. The 
fact that sAHE does not linearly scale with the out-of-plane component 
of m0H solidifies its AHE origin and that the AHE extraction is robust: 
If the OHE was not properly subtracted, then the angle-dependent 
behavior would be skewed toward the expected linear response. 
Furthermore, as expected from a real Hall response, the sign of the 
AHE flips when rotated past 90° (see fig. S3). The extracted sAHE for 
several devices with thicknesses ranging from 30 to 128 nm is plotted 
against each device’s   s xx  2    (which was varied by changing the tem-
perature) in Fig. 3B. The skew scattering and intrinsic components 
of the AHE can be fitted to   σ  AHE   = α  σ xx0  −1    σ xx  2   + b , where a is the 

Fig. 2. Hall effects in KV3Sb5. (A) The Hall resistivity of KV3Sb5 with the current applied in the ab plane and the magnetic field applied along the c axis. The AHE shows 
up as antisymmetric S shape in the low-field region for all temperature below 50 K. At low temperatures and high-field regime, the Hall resistivity exhibits a typical two-
band behavior. (B) Extracted electron carrier concentration and mobility in the one-band regime. Inset: The Hall response of KV3Sb5 above 75 K. (C) Extracted   ρ xy  AHE   taken by 
subtracting the local linear ordinary Hall background at various temperatures. The inset shows the converted   σ xy  AHE   at various temperatures by inverting the resistivity tensor.
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Figure3. (a) and (b): Field dependence of Hall resistivity at various temperatures with magnetic 
field up to 14 T. The gray area represents the AHE in the low-field region. (c) and (d): Extracted 
 ௫௬୅ୌ୉ �by subtracting the local linear ordinary Hall background at various temperatures.  AHEߩ
spontaneously emerges below T*. (e): Extracted electron carrier concentration and mobility at 
high temperature by using the linear fitting of the ordinary Hall conductivity. ne shows a 
minimum around T*. 

Concurrence of anomalous Hall effect and charge density wave in a 
superconducting topological kagome metal 

F. H. Yu1, T. Wu1, Z. Y. Wang1, B. Lei1, W. Z. Zhuo1, J. J. Ying1*, and X. H. Chen1,2,3† 

1Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key 
Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, 
Hefei, Anhui 230026, China 
2CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China 
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People’s Republic of 
China 

*E-mail: yingjj@ustc.edu.cn 
†E-mail: chenxh@ustc.edu.cn 
 

As one of the most fundamental physical phenomena, the anomalous Hall effect (AHE) 
typically occurs in ferromagnetic materials but is not expected in the conventional 
superconductors. Here, we have observed a giant AHE in kagome superconductor CsV3Sb5 

with transition temperature (Tc) of 2.7 K. The anomalous Hall conductivity reaches up to 2.1�
104 ɏ-1 cm-1 which is larger than those observed in most of the ferromagnetic metals. 
Strikingly, the emergence of AHE exactly follows the higher-temperature charge-density-wave 
(CDW) transition with TCDW ~ 94 K, indicating a strong correlation between the CDW state and 
AHE. The origin for AHE is attributed to enhanced skew scattering in CDW state and large 
Berry curvature arose from the kagome lattice. These discoveries make CsV3Sb5 as an ideal 
platform to study the interplay among nontrivial band topology, CDW and unconventional 
superconductivity. 

 

A kagome lattice, representing a two-dimensional network with corner-sharing triangles, 
provides a fertile ground to study the frustrated, novel correlated and topological electronic 
states owing to its unusual lattice geometry[1-3]. In general, kagome lattice naturally possesses 
Dirac dispersion and flat bands that promote electronic correlation effect [4]. Thus, in principle, 
kagome lattice can exhibit a large variety of electronic instabilities. Many exotic quantum 
phenomena have been observed in magnetic kagome metals, including giant anomalous Hall 
effect (AHE) [5-12], chiral edge state[13,14], and topological surface Fermi arcs[15]. Up to now, 
exploring exotic properties in kagome lattice remains quite challenging, particularly for multiple 
electronic orders.  

Recently, a new family of quasi-two-dimensional kagome metals AV3Sb5 (A = K, Rb, Cs) have 
attracted tremendous attentions[16]. These materials crystallize in the P6/mmm space group 
with ideal kagome nets of V atoms which are coordinated by Sb atoms. The kagome layers are 
sandwiched by extra antimonene layers (Sb2) and Cs layers as shown in Figure 1(a).The 
resistivity of�AV3Sb5 family exhibits anomalies at Tи ranged from 80 K to 110 K, which are 
ascribed to the formation of charge density wave (CDW) order[16,17]. The observation of 
superconductivity in the stoichiometric AV3Sb5 with kagome lattice [18-20] makes this family as 
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Figure4. (a): The ߩ௫௬୅ୌ୉ as a function of temperature for CsV3Sb5 and K1-xV3Sb5. The data of K1-

xV3Sb5 is taken from Ref.[22]. (b): Scaling behavior of magnetoresistance at 14T with ʍAHE for 
CsV3Sb5. 

Anomalous Hall Effect



Chern physics?

Nested Fermi surface + iCDW = Chern band
Y-P Lin + R. Nandkishore, 2021 and probably elsewhere?
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Intertwining exotic quantum order and nontrivial topology is at the frontier of condensed matter 
physics1-18. A charge density wave (CDW) like order with orbital currents has been proposed as a 
powerful resource for topological states in the context of the quantum anomalous Hall effect5,6 and 
for the hidden matter in the pseudogap phase of cuprate superconductors7,8. However, the 
experimental realization of such topological charge order is challenging. Here we use high-resolution 
scanning tunnelling microscopy (STM) to discover a topological charge order in a kagome 
superconductor21-25 KV3Sb5. Through both lattice-sensitive topography and electronic-sensitive 
spectroscopic imaging, we observe a 2×2 superlattice, consistent with the star of David deformation 
in the underlying kagome lattice. Spectroscopically, an energy gap opens at the Fermi level, across 
which the charge modulation exhibits an intensity reversal, signaling a charge ordering. The strength 
of charge modulations further displays a clockwise or anticlockwise chiral anisotropy, which we 
demonstrate can be switched by an applied magnetic field. Our observations and theoretical analysis 
point to a topological charge order in the frustrated kagome lattice, which not only leads to a giant 
anomalous Hall effect, but can also be a strong precursor of unconventional superconductivity.  
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Fig. 3 Magnetic field tunable chirality of the charge modulation. a, b, c, Spectroscopic 2×2 vector peaks 
taken at B=0T, -2T, +2T, respectively. The top and bottom panels are 3D and 2D presentations of the data.  
The height of the three pairs of vector peaks is marked with arbitrary units for each data. The chirality can 
be defined as the counting direction (clockwise or anticlockwise) from the lowest to highest pair vector 
peaks. d, e, Inverse Fourier transform of the vector peaks at B=+2T and -2T, respectively. The circles mark 
the modulation intensity anisotropy, which show opposite chiralities for opposite fields. f, Illustration of 
the chiral charge modulation in kagome lattice. All the data are taken on the Sb surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Claim: “chiral charge order: 
• 3Q state has 3 different 

amplitudes Na>Nb>Nc  
• Order is switched by applied 

field

Comments: 
• First statement not related to TR 
• Peak heights are approximately 2-fold symmetric: 2 

large and 1 small 
• Any change in charge order odd in field and achieved 

with such small fields is remarkable! 



rSDW 

This is the favored DW for purely repulsive interactions

<latexit sha1_base64="L481O6J5xKPVdR5+zS5f/1NaXDI="></latexit>

Sa ⇠ c†b↵�↵�cc� Generally breaks TR
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(g) (h) (i)

FIG. 6. rCDW phase diagrams calculated in the kBT–µ plane. G̃rCDW = GrCDW/t⇤2 is defined as the dimensionless rCDW
strength. � parametrizes nesting as defined in Eq. (13). The phase diagrams correspond to the case t, � > 0 (a, b > 0 and a/b >
1). The phase diagrams for t, � < 0 (a, b > 0 and a/b < 1) are related to these phase diagrams under the exchange 3Q+ $ 3Q�
and reflection in the µ = 0 axis.

us the rSDW free energy (which may be added to the
rCDW free energy in Eq. (12)):

frSDW =

✓
1

2GrSDW
+

K1

4

◆X

↵

|S↵|2

+
K2

4
(N1S2 · S3 +N2S3 · S1 +N3S1 · S2)

+
K3

16

X

↵<�

|S↵|2|S� |2 +
K4

16

X

↵

|S↵|4+

+K5

X

↵<�

|S↵ · S� |2 +K6 (S1 · S2 ⇥ S3)
2 + · · · .

(16)

Here K5,K6 are new symmetry-allowed coe�cients. The
important aspect of this Landau theory is the third-order
term which couples the rSDW and rCDW order parame-
ters. This term is allowed by symmetry since it is invari-
ant under time-reversal and lattice translation symmetry.

Close to the transition temperature Tc for the rSDW
order, the rSDW-rCDW coupling term can be treated as
a perturbation and we can first solve the rSDW Landau
theory. Like the iCDW OPs, the 3Q+ and 3Q� classes
are related under time-reversal symmetry so we only need
to consider the 3Q and 1Q rSDW classes. This Landau
theory has previously been studied in Ref. [47]. For
chemical potential su�ciently close to the saddle point,
the solution to the SDW Landau theory is a uniaxial
3Q rSDW phase where all three rSDW order parameters

Landau theory

rSDW can induce 3Q rCDW
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Sa = SCollinear 3Q SDW: generates 3Q rCDW

Tetrahedral 3Q state:
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Sa = Sx̂a does not induce rCDW

but no Berry curvature 

but has Berry curvature I. Martin + C. Batista, 2008



So to summarize
Observed rCDW order could be primary or induced by iCDW or 
rSDW.  How do we differentiate?

•Measure spontaneous local moments in iCDW/rSDW 
•Measure macroscopic TR breaking in iCDW state  
•Simpler tests arise from 3d effects.  These tests can 

already be compared to existing experiments and favor 
primary rCDW order

moments may be tiny

may be spoiled by domains



3d order
Assumption: inter-layer coupling is weak compared to 
intra-layer interactions, and generally decays with 
distance in c direction 

Inter-layer free energy:
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rapidly decreasing with δ
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�a,z = ±�a,z+1
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Sa,z = ±Sa,z+1

This is allowed because of TR.
Primary iCDW/rSDW order has kz=0,½

Induced rCDW ~ (ϕ/S)^2 order has kz=0



3d order
Assumption: inter-layer coupling is weak compared to 
intra-layer interactions, and generally decays with 
distance in c direction 

Inter-layer free energy:
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(K?,�Na,zNa,z+� + L?,��a,z�a,z+� + J?,�Sa,z · Sa,z+�)

rapidly decreasing with δ

If K⟂,1>0, want Na,z=-Na,z+1 but this cannot be satisfied

Single-layer minima have N1N2N3 fixed (= +1 for example)

Inter-layer correlation forces only Na,z ≠ Na,z+1 for some a. 



3d order
Assumption: inter-layer coupling is weak compared to 
intra-layer interactions, and generally decays with 
distance in c direction 

Inter-layer free energy:
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rapidly decreasing with δ

inter-layer displacement in 
3 possible directions



3d order
Mapping to Potts model:

12

We must therefore consider further neighbor interactions.
The problem can be mapped to a 4-state Potts model, by
defining the four allowed configurations of N↵ in a single
layer as � = 1 · · · 4. The interaction energy becomes

f? =
1X

z=0

1X

�=1

K?,�N
2
0

�
4��z,�z+� � 1

�
, (25)

which illustrates the S4 permutation symmetry of a Potts
model. This is a 4-state Potts chain with competing
further-neighbor interactions, which has a rich statistical
mechanics for general couplings, similar to that of the
ANNNI model, a paradigm for devil’s staircases, com-
mensurate and incommensurate phases, and transitions
between them. Here because each Potts spin represents
an entire 2d layer, the energies involved are proportional
to the area of a layer, and hence much larger than kBT .
Therefore, we are interested only in the ground states
of the Potts chain. In this limit, the ground states are
generally commensurate, but can have very large unit
cells (in the z direction), and the Devil’s staircase can
arise. We limit our discussion to only the simplest cases,
and assume |K?,�| � |K?,�+1| as expected on grounds
of locality.

The simplest situation is K?,2 < 0, in which case sec-
ond neighbor layers prefer to be parallel. We have then
alternating states in successive layers, �z = �1 for z even
and �z = �2 for z odd, with �1 6= �2. In terms of the

rCDW vector,, n↵,z = n(1)
↵ for z even and n↵,z = n(2)

↵ for
z odd, such that n(1) · n(2) = �1. This corresponds to
the wavevector kz = 1/2 in lattice units. Note that the
three-dimensional degeneracy of this state is 4⇥ 3 = 12.

If K?,2 > 0, then we require both nearest neighbor
and second neighbor Potts spins to di↵er in the ground
state. After choosing the first layer, there are 3 choices
for the second layer, and then 2 choices for the third
layer, which must be distinct from the first two lay-
ers. This implies the smallest possible periodicity of the
ground state is 3. It may, however, be larger. Indeed
for the fourth layer, there are still 2 choices remaining,
and the ground state is not determined. To fix this de-
generacy, we may yet consider the third neighbor cou-
pling. If K?,3 < 0, then we favor a return to the origi-
nal state. The entire configuration becomes determined,
with a periodicity of 3, and a representative sequence in
Potts variables like �z = 1, 2, 3, 1, 2, 3, 1, 2, 3 · · · . These
configurations correspond to a “chiral” ordering of the
layers, consistent with a 3-fold screw axis. Alterna-
tively, if K?,3 > 0, then we obtain a four layer pe-
riodicity, �z = 1, 2, 3, 4, 1, 2, 3, 4, · · · . These two situa-
tions have smaller ordering wavevectors in the z direc-
tion, kz = 1/3, 1/4, respectively. Note that the relatively
simple results quoted here are the result of assuming a
strict hierarchy of interactions, with couplings decaying
rapidly in strength with the separation of layers. Oth-
erwise much more complex states may arise in the Potts
chain.

We conclude that a distinct di↵erence between the

iCDW and rCDW is the presence of periodicities larger
than 2 in the c direction. Appearance of such a periodic-
ity (i.e. kz = 1/3, 1/4) would provide clear experimental
evidence in favor of the real over the imaginary CDW.

2. Rotational symmetry breaking

In the previous discussion, we determined the relative
ordering between layers assuming the order parameter
within each layer is rigid. Now we consider a higher order
e↵ect: the back-influence of the inter-layer interaction on
the order parameter within a single layer. In particular,
in the case of rCDW order, this leads to a breaking of C3

rotational symmetry within a given layer. This can be
understood as follows. All 4 of the 2d ordered states in
the 3Q+ or 3Q� states preserve C3 symmetry around the
centers of one of the four hexagons within the quadrupled
unit cell, but not around the other three. In the states
with kz > 0, the centers of neighboring layers are not
aligned. Consequently there is no rotation axis which
preserves all layers. In the chiral kz = 1/3 states, there
is instead a screw axis, which preserves macroscopic C3

symmetry of the crystal in the bulk. This symmetry is
however broken at the surface. In the states with kz =
1/2, 1/4, there is not even macroscopic C3 symmetry.

In all cases, if one observes the order within a single
layer, its neighbors will influence its order and lower the
symmetry. The situation is simplest for the top layer.
Assume the system develops long-range order, and there-
fore we may treat the inter-layer interaction in a mean
field sense. We therefore replace the coupling to the sec-
ond layer from the top (the strongest such coupling) by
a term of the form

f?,0 = K?,1hN↵,1iN↵,0. (26)

This term appears as a “field” on the order parameter
in the top layer (z = 0). In for example the kz = 1/2
phase, we may take hN↵,1i = N0(1, 1, 1). Then this con-
figurations in the first layer are “pushed” away from the
(1, 1, 1) direction. For example, if the top layer chooses
the (1, 1̄, 1̄) state, the inter-layer coupling will shift it to
the form N↵,0 = N0(1��,�1��,�1��), with 0 < � ⌧ 1.
Note that |N1| < |N2| = |N3|. The consequence is that
the two dimensional Bragg peaks associated to density
oscillations in the top layer develop two unequal magni-
tudes. This is a sign of the rotational symmetry break-
ing. Indeed, one can define a two-dimensional vector
vz,z0 = �vz0,z

vz,z0 =
X

↵

hn↵,zn↵,z0ia↵, (27)

where a↵ are the 2d triangular Bravais lattice vectors
with a3 = �a1 � a2. The vector vz,z0 is oriented along
one of the three principle directions and selects this axis.

This rotational symmetry breaking e↵ect exists within
each layer in all the 3Q± rCDW phases except the uni-
form kz = 0 one. Rotational symmetry is also broken

<latexit sha1_base64="tzHR7N3pYATFLq4j11P2awCJ5O0="></latexit>

(111), (11̄1̄), (1̄11̄), (1̄1̄1) ! � = 1, 2, 3, 4

1d Potts chain

generally has complex even aperiodic ground states

When 
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|K?,1| � |K?,2| � |K?,3| · · ·
can show that ground states have kz=0,½,⅓,¼ 



3d order
Upshot: iCDW and rSDW should have kz=0 rCDW 
order 

A kz

Cs ¼
K ½

Rb

consistent with 
primary rCDW

½

Experiments (x-rays):
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Fig. 3 Magnetic field tunable chirality of the charge modulation. a, b, c, Spectroscopic 2×2 vector peaks 
taken at B=0T, -2T, +2T, respectively. The top and bottom panels are 3D and 2D presentations of the data.  
The height of the three pairs of vector peaks is marked with arbitrary units for each data. The chirality can 
be defined as the counting direction (clockwise or anticlockwise) from the lowest to highest pair vector 
peaks. d, e, Inverse Fourier transform of the vector peaks at B=+2T and -2T, respectively. The circles mark 
the modulation intensity anisotropy, which show opposite chiralities for opposite fields. f, Illustration of 
the chiral charge modulation in kagome lattice. All the data are taken on the Sb surface.  
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Can show charge peaks split into |Na|=|Nb|≠|Nc| 
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Figure 3. The anisotropy between inequivalent charge density wave (CDW) directions and 
its atomic-scale signature in spectroscopic maps. (a) STM topograph of approximately 10 nm 
square Sb surface (sample A), and (b) its associated Fourier transform (FT). A layout of the V-Sb 
atomic structure is marked in the upper left corner of (a) (V is denoted by red spheres and Sb by 
gray spheres). (c) The amplitude of different CDW peaks in the FTs of dI/dV(r,V) maps as a 
function of STM bias V. While the dispersion of Qa

2a0 and Qc
2a0 is nearly identical, the dispersion 

of Qb
2a0 is markedly different. (d) High-resolution dI/dV(r,V) maps at 0 mV, 2 mV, and 4 mV over 

the region in (a) (top row) and their associated FTs (bottom row). The three CDW peaks are 
enclosed by a triangle, a circle and a square marker in all panels, using different shades of blue. 
STM setup conditions: (a) Iset = 150 pA, Vsample = 10 mV, Vexc = 10 meV, B = 0 T; (c) Iset = 400 
pA, Vsample = 20 mV, Vexc = 1 meV, B = 0 T; (d) Iset = 150 pA, Vsample = 10 mV, Vexc = 1 meV, B = 
0 T. 
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Bulk rotational symmetry 
breaking

Only way to prevent bulk rotational 
symmetry breaking is to have a screw axis

kz=0,½,⅓,¼ 

break C3 symmetry in bulk
(applies to all 3 materials)
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Giant, unconventional anomalous Hall effect 
in the metallic frustrated magnet candidate, KV3Sb5
Shuo-Ying Yang1*, Yaojia Wang1*, Brenden R. Ortiz2, Defa Liu1, Jacob Gayles3,4, Elena Derunova1, 
Rafael Gonzalez-Hernandez5,6, Libor Šmejkal6,7,8, Yulin Chen9, Stuart S. P. Parkin1,  
Stephen D. Wilson2, Eric S. Toberer10, Tyrel McQueen11, Mazhar N. Ali1†

The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive 
regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, 
an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without 
report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω−1 cm−1 with an anomalous 
Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows 
enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly aris-
ing from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This 
allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental 
questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic 
frustrated magnets.

INTRODUCTION
The electronic anomalous Hall effect (AHE), where charge carriers 
acquire a velocity component orthogonal to an applied electric field 
without an external magnetic field, is one of the most fundamental 
and widely studied phenomena in physics. Since its discovery more 
than a century ago, the AHE has been extensively studied both 
theoretically and experimentally (1). Historically, spontaneous AHEs 
have been explored in materials with internally broken time-reversal 
symmetry (TRS), due to ferro- or ferrimagnetic ordering (2–5). Re-
cently, there has been a surge of interest in the exploration of non-
spontaneous AHEs, which require the application of an external 
magnetic field to break the TRS. The resulting Hall response is not 
commensurate with the magnitude of the applied field, thus making 
it distinct from the ordinary Hall effect (OHE). Such a nonsponta-
neous AHE has been seen in nonmagnetic ZrTe5 (6) and in dilute 
magnetically doped Kondo systems (7). Large AHEs can arise from 
a variety of effects, and a particularly interesting limit to explore is 
when the anomalous Hall angle (AHA) approaches 90°; one charac-
teristic of the intrinsic quantum AHE observed in TRS breaking 
topological insulators (8–10). In these insulators, the anomalous Hall 
conductivity (sAHE) becomes modulated by the conductance quantum, 
while the longitudinal conductivity (sxx) approaches zero, resulting 
in the AHA (tan−1(   σ  AHE   _  σ  xx     ))approaching 90° (11, 12).

The AHE can be broadly divided into two categories: intrinsic 
and extrinsic (1). The intrinsic AHE is governed by the electronic 
structure of a material that causes an electron to acquire a transverse 
momentum as it travels in-between scattering events (2, 13–15). 

This is the dominant mechanism in topological materials like Co3Sn2S2 
and Co2MnGa, which have AHEs on the order of 1000 Ω−1cm−1 
(16–18). The extrinsic AHEs, on the other hand, are dependent on 
electrons scattering off of sudden changes in the periodic potential 
of a crystal, caused by structural defects or chemical and magnetic 
impurities (3, 4, 19). They can be further categorized into the “dirty 
regime” (low conductivity, small scattering time, t) (19, 20) and the 
“clean regime” (high conductivity, large scattering time) (3, 4), which 
is dominated by skew scattering and is the focus of this work.

Much effort has been dedicated to understanding the different 
mechanisms that can give rise to skew scattering AHEs, as illustrated 
in Fig. 1A. In clean ferromagnets with spontaneously ordered mag-
netic moments, such as Fe, an AHE can be induced by electrons 
deflecting transversely by nonmagnetic impurities (21–23). In para-
magnetic systems, such as ZnO/MnZnO, spin-dependent electron 
scattering on localized magnetic moments can give rise to an AHE 
(24). Recently, scattering off of spin clusters, local groups of coupled 
spins, has been proposed: tilted magnetic clusters, like magnetic 
atoms in a Kagome net, can generate an enhanced skew scattering 
potential (25) and thus a large AHE. Triangular materials, like those 
often explored as geometrically frustrated magnets and spin liquid 
candidates, as well as other types of cluster magnets, are particularly 
likely to exhibit this type of AHE (25–28). However, the necessity of 
a combination of high conductivity in a spin-cluster lattice has con-
tributed to its lack of experimental observation.

One avenue for realizing this is by introducing electronic topology 
into magnetically frustrated systems. The electronic topology can 
generate a spin-orbit field that couples to magnetic fluctuations (for 
example, in a tiled spin cluster lattice), which can act analogously to 
impurity centers, a mechanism that is fundamentally distinct from 
the Berry phase mechanisms (25). This is advantageous for allowing 
cleaner crystals, without chemical disorder or atomic impurities, which 
have very high conductivities. The coupling of magnetic fluctuations 
and Dirac quasiparticles generates a novel field of study, previously 
unconsidered, for skew scattering. Topological frustrated magnets, 
which can host both magnetic fluctuations and Dirac quasiparticles, 
are highly sought after class of compounds. Metallic materials with 
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lattice of vanadium coordinated by antimony in distorted octahedra 
with potassium intercalated between layers. Previous work by Ortiz et al. 
(33) found that the compound displays paramagnetic behavior at 
high temperatures, before undergoing a transition at 80 K to either 
a dilute trimerized state from orbital ordering effects or a highly 
frustrated state with localized moments. Considering the vanadium 
Kagome net, geometrical frustration of the magnetic sublattice is 
expected. DFT + U calculations carried out by Ortiz et al. (33) com-
paring disordered AFM and ferrimagnetic ordering also support this 
expectation. Transport experiments on those same crystals were carried 
out here on a series of KV3Sb5 nanoflakes of different thicknesses. 
Figure 1C shows the typical temperature dependence of rxx for a 
105-nm-thick device (see the Supplementary Materials for fabrication 
information); with decreasing temperature, a kink is visible in rxx around 
80 K, corresponding to the known magnetization and heat capacity 
anomaly (33). At low temperature, the rxx reaches ≈1.5 µΩ cm, 
which is comparable to that of high purity bulk Bismuth (35). The 
magnetoresistance (MR) at various temperatures is shown in Fig. 1D, 
with Shubnikov de Hass (SdH) oscillations clearly visible above 4 T. 
Below 3 T, the MR is linear, while at higher field, it adopts a standard 
quadratic dependence with m0H (m0H is the applied magnetic field; 
Fig. 1D, inset). Fitting the quadratic field dependence, the average 
carrier mobility at 5 K is extracted to be ≈1000 cm2 V−1 s−1. The fast 
Fourier transforms (FFTs) below 35 K reveal two identifiable periods 
at 34.6 and 148.9 T, as shown in Fig. 1E. Tracking the temperature 
dependence of the FFT amplitude, the Lifshitz-Kosevich fit yields 
an effective mass of 0.125 me for carriers related to the 34.6 T orbit. 
Such a low effective mass corresponds well with the highly dispersive 
Dirac bands near the Fermi level. Angle-dependent MR and SdH 
oscillation analysis (see fig. S2) shows the 34.6 T peak deviates from 
the 1/cos(q) line below ≈ 20°, implying that the 34.6 T pocket is not 
strictly two dimensional.

The SdH oscillations are also clearly visible in the Hall response 
as shown in Fig. 2A, when the current is applied in the ab plane and 
m0H is applied along the c axis. In the high-field region (above 10 T) 
and below 15 K, there is a sudden change of habit resulting in a 
field-independent Hall response; this may correspond to a spin flop 
or other magnetic transition, which changes symmetry and modifies 
the Fermi surface. Future investigations into the rich high-field 
magnetic and electronic properties of KV3Sb5 are necessary to 
elucidate the cause of this behavior.

In the low-field region, highlighted by the blue shading in Fig. 2A, 
an antisymmetric sideways “S” shape is observed, which is a charac-
teristic of either an AHE or a two-band OHE. Below 35 K, rxy exhibits 
a second broad hump centered around 7 T, but as the temperature 
is increased, this hump is gradually lost and a one band linear field 
dependence is recovered (Fig. 2B, inset). The S-shaped Hall resistivity 
feature, however, persists throughout this changeover and remains 
visible at higher temperature where the Hall resistivity appears to be 
linear. This indicates that the high-field behavior of the Hall effect is 
related to the two-band OHE and that the low-field S shape is related 
to an AHE. Within the one-band temperature range, the electron 
concentrations (ne) and mobilities (me) are extracted from linear 
fitting of the OHE and shown in Fig. 2B (the simultaneous fitting of 
the two-band model with MR and Hall is not possible due to the 
linear MR behavior in this regime). As the temperature is lowered, 
me monotonically increases, while ne shows a minimum at around 
65 K, which may be related to the magnetic transition mentioned 
above. Figure 2C shows the extracted   r xy  AHE   taken by subtracting the 
local linear OHE background. The magnitude of the AHE mono-
tonically decreases with increasing temperature until it is lost at 
around 50 K. To precisely extract the AHC (  s xy  AHE  ) when rxy < rxx 
with no approximation, we first obtained the Hall conductivity by 
inverting the resistivity matrix, sxy = −rxy/(rxx2 + rxy2). Afterward, 
the local linear ordinary Hall conductivity background is subtracted, 
leaving the   s xy  AHE  , as shown in Fig. 2C (inset).

To further confirm the AHE nature of the low-field anomaly, we 
carried out a detailed angle-dependent measurements. Figure 3A shows 
the sAHE dependence on the angle of m0H relative to the applied 
electric field, and the inset shows sAHE against the cos(q). The AHC 
is angle independent until m0H is tilted away from the z axis by about 
30°, after which it rapidly decreases until it reaches 0 at m0H∥E. The 
fact that sAHE does not linearly scale with the out-of-plane component 
of m0H solidifies its AHE origin and that the AHE extraction is robust: 
If the OHE was not properly subtracted, then the angle-dependent 
behavior would be skewed toward the expected linear response. 
Furthermore, as expected from a real Hall response, the sign of the 
AHE flips when rotated past 90° (see fig. S3). The extracted sAHE for 
several devices with thicknesses ranging from 30 to 128 nm is plotted 
against each device’s   s xx  2    (which was varied by changing the tem-
perature) in Fig. 3B. The skew scattering and intrinsic components 
of the AHE can be fitted to   σ  AHE   = α  σ xx0  −1    σ xx  2   + b , where a is the 

Fig. 2. Hall effects in KV3Sb5. (A) The Hall resistivity of KV3Sb5 with the current applied in the ab plane and the magnetic field applied along the c axis. The AHE shows 
up as antisymmetric S shape in the low-field region for all temperature below 50 K. At low temperatures and high-field regime, the Hall resistivity exhibits a typical two-
band behavior. (B) Extracted electron carrier concentration and mobility in the one-band regime. Inset: The Hall response of KV3Sb5 above 75 K. (C) Extracted   ρ xy  AHE   taken by 
subtracting the local linear ordinary Hall background at various temperatures. The inset shows the converted   σ xy  AHE   at various temperatures by inverting the resistivity tensor.
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Figure3. (a) and (b): Field dependence of Hall resistivity at various temperatures with magnetic 
field up to 14 T. The gray area represents the AHE in the low-field region. (c) and (d): Extracted 
 ௫௬୅ୌ୉ �by subtracting the local linear ordinary Hall background at various temperatures.  AHEߩ
spontaneously emerges below T*. (e): Extracted electron carrier concentration and mobility at 
high temperature by using the linear fitting of the ordinary Hall conductivity. ne shows a 
minimum around T*. 

Concurrence of anomalous Hall effect and charge density wave in a 
superconducting topological kagome metal 
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As one of the most fundamental physical phenomena, the anomalous Hall effect (AHE) 
typically occurs in ferromagnetic materials but is not expected in the conventional 
superconductors. Here, we have observed a giant AHE in kagome superconductor CsV3Sb5 

with transition temperature (Tc) of 2.7 K. The anomalous Hall conductivity reaches up to 2.1�
104 ɏ-1 cm-1 which is larger than those observed in most of the ferromagnetic metals. 
Strikingly, the emergence of AHE exactly follows the higher-temperature charge-density-wave 
(CDW) transition with TCDW ~ 94 K, indicating a strong correlation between the CDW state and 
AHE. The origin for AHE is attributed to enhanced skew scattering in CDW state and large 
Berry curvature arose from the kagome lattice. These discoveries make CsV3Sb5 as an ideal 
platform to study the interplay among nontrivial band topology, CDW and unconventional 
superconductivity. 

 

A kagome lattice, representing a two-dimensional network with corner-sharing triangles, 
provides a fertile ground to study the frustrated, novel correlated and topological electronic 
states owing to its unusual lattice geometry[1-3]. In general, kagome lattice naturally possesses 
Dirac dispersion and flat bands that promote electronic correlation effect [4]. Thus, in principle, 
kagome lattice can exhibit a large variety of electronic instabilities. Many exotic quantum 
phenomena have been observed in magnetic kagome metals, including giant anomalous Hall 
effect (AHE) [5-12], chiral edge state[13,14], and topological surface Fermi arcs[15]. Up to now, 
exploring exotic properties in kagome lattice remains quite challenging, particularly for multiple 
electronic orders.  

Recently, a new family of quasi-two-dimensional kagome metals AV3Sb5 (A = K, Rb, Cs) have 
attracted tremendous attentions[16]. These materials crystallize in the P6/mmm space group 
with ideal kagome nets of V atoms which are coordinated by Sb atoms. The kagome layers are 
sandwiched by extra antimonene layers (Sb2) and Cs layers as shown in Figure 1(a).The 
resistivity of�AV3Sb5 family exhibits anomalies at Tи ranged from 80 K to 110 K, which are 
ascribed to the formation of charge density wave (CDW) order[16,17]. The observation of 
superconductivity in the stoichiometric AV3Sb5 with kagome lattice [18-20] makes this family as 

arXiv:2102.10987

KV3Sb5

CsV3Sb5

 

Figure4. (a): The ߩ௫௬୅ୌ୉ as a function of temperature for CsV3Sb5 and K1-xV3Sb5. The data of K1-

xV3Sb5 is taken from Ref.[22]. (b): Scaling behavior of magnetoresistance at 14T with ʍAHE for 
CsV3Sb5. 

•Extraneous origin  
•TRS breaking order emerges at Tc’ < Tc 
•TRS breaking induced by applied field

All these aspects seem to strongly support primary rCDW order
And yet…
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and triangular (t) plaquette. In unit of Bohr magne-

ton µB = e~
2me

, we have m ⇠ IeÂ = � 2t1
GiCDW

�0

Ry
Â

a2
b
µB ,

where Ry = mee
4

32⇡2✏20~2 ⇡ 13.6eV is the Rydberg energy,

rb = 4⇡✏0~
mee2

⇡ 5.29 ⇥ 10�11m is the Bohr radius. In Ie,

the factor 2t1
GiCDW

is dimensionless and scales with the

polarization bubble ⇠ ln2(t⇤2/Tc) ⇠ O(1), the order
parameter (in unit of energy) at low temperature can
be approximated as �0 ⇠ kBTc, where Tc is the tran-
sition temperature for iCDW order. This gives mh,1 ⇡
�0.047 sgn (�0)µB ẑ,mt,1 ⇡ 0.008 sgn (�0)µB ẑ, where we
take 2t1/GiCDW = 1. We also note that similar analy-
sis has been done in the literature for cuprates [67] and
iron-pnictides [68].

Next, we discuss the uniform magnetization induced
by the iCDW order. On the symmetry ground, uniform
magnetization requires iCDW order at all three momenta
M nonzero. Otherwise, the system is invariant under the
anti-unitary symmetry composed of time reversal and
translation, which forbids any uniform magnetization.
In general, the magnetic field couples to the electrons
through both the minimal coupling and the Zeeman cou-
pling. Here, we consider the orbital magnetization con-
tribution for the 3Q± iCDW order. Following [69], the
orbital magnetization in terms of the Bloch wave function
reads,

Mz
orb =

e

2~
X

n,q

Im
h
h@qun,q|⇥ (✏n,q � ĤMF(q))|@qun,qi

i
fn,q, (28)

where ĤMF(q) is the mean field Hamiltonian one can
infer from Eq. (8), fn,q = f(✏n,q � µ) is the equilibrium
Fermi distribution function.

For simplicity, we consider the perfect nesting case
when the Fermi energy in the disordered phase is at the
van-hove point, this gives 1/3 filling in the patch model.
When the 3Q iCDW order is present, the triple degener-
ate bands at the M points are fully gapped, and only the
lowest band is filled. Noting that the unit of the sum-
mand in Eq. (28) is ~2

2me
(coming from the kinetic energy),

for a filled band, the summand must be expressed as a
function of the only dimensionless parameter in the ex-
pression, which reads ✏̃ = ~2q2/(2me), i.e. the summand
(after averaging over the angular direction in q) must be

expressed as ⇠ ~2

2me
F(✏̃). This means physically that for

electrons within an energy of order the gap �, the typ-
ical orbital moment is an order one fraction of a Bohr
magneton.

The orbital magnetization can be expressed as

Mz
orb =

e~
2me

N �0

~2/(2mea20)

p
3

2⇡

"Z ⇤

0
d✏̃F(✏̃)

#

= NµB
�0

Ry

✓
a0
ab

◆2 p
3

2⇡
IF , (29)

where N is the number of unit cells, IF =
R ⇤
0 d✏̃F(✏̃) is

the value of the integral, which is bounded and can be
computed numerically as IF ⇡ �0.87. Again approxi-
mating �0 ⇠ kBTc, the orbital magnetization per unit
cell is Mz

orb/N ⇠ �0.017 sgn(�0)µB .
This orbital magnetization is small but the smallness

is primarily due to the small number of electrons within
the region near the energy gap. As remarked above, for
a typical electron within this region, the orbital moment
is a substantial fraction of µB . This suggests that the
iCDW state may be favored by the application of a mag-
netic field.
We consider therefore how an rCDW state may be con-

verted into an iCDW state by such a field, assuming the
energy of the iCDW state is not too much higher than
that of the rCDW in zero field. For simplicity we con-
sider low temperature, where the above estimate is valid
(near Tc, the orbital magnetization will be proportional
to �3, and greatly suppressed). In general, a magnetic
field breaks time-reversal, so will always induce some
iCDW component if the rCDW is present. We thus take
�↵ = N↵ + i�↵ = |�|ei✓ (assuming a 3Q+ state), and
express the energy in terms of |�| and ✓. A simplified
form for the energy density is

E = �m|�|2 (1 + � cos ✓)� µhm|�| sin ✓, (30)

where m is the mass scale for the saddle points, h is the
magnetic field (in the z direction), µ is a typical orbital
moment for the iCDW electrons, and is a fraction of µB .
The first term is the condensation energy of the CDW,
and the second term is the dipole energy associated with
the orbital magnetization. The parameter � > 0 de-
scribes the energetic preference for rCDW over iCDW
order in zero field (as well as the preference for 3Q+ over
3Q- order). When the competition between the two is
close, � ⌧ 1. Minimizing over ✓, we obtain

tan ✓ =
µh

�|�| . (31)

We see that the rCDW smoothly evolves into an iCDW
with applied field, and this occurs on a scale which can
be a small fraction of the gap, if � ⌧ 1. We note that
the energy density in Eq. (30) is simplified, and does
not capture topological physics relevant to the perfect
nesting situation when the system is doped exactly to
the saddle point filling. In this case, the system is a
trivial insulator for ✓ = 0, and a Chern insulator for ✓ =
⇡/2, and hence there must be a topological transition,
associated gap closing, and non-analyticity of the energy
at some intermediate angle. However, we expect this
distinction to be washed out away from perfect nesting
and for generic filling.

VI. SUMMARY

In this paper, we have discussed various mechanisms
to induce charge density wave order in kagomé metals,
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and triangular (t) plaquette. In unit of Bohr magne-

ton µB = e~
2me

, we have m ⇠ IeÂ = � 2t1
GiCDW

�0

Ry
Â

a2
b
µB ,

where Ry = mee
4

32⇡2✏20~2 ⇡ 13.6eV is the Rydberg energy,

rb = 4⇡✏0~
mee2

⇡ 5.29 ⇥ 10�11m is the Bohr radius. In Ie,

the factor 2t1
GiCDW

is dimensionless and scales with the

polarization bubble ⇠ ln2(t⇤2/Tc) ⇠ O(1), the order
parameter (in unit of energy) at low temperature can
be approximated as �0 ⇠ kBTc, where Tc is the tran-
sition temperature for iCDW order. This gives mh,1 ⇡
�0.047 sgn (�0)µB ẑ,mt,1 ⇡ 0.008 sgn (�0)µB ẑ, where we
take 2t1/GiCDW = 1. We also note that similar analy-
sis has been done in the literature for cuprates [67] and
iron-pnictides [68].

Next, we discuss the uniform magnetization induced
by the iCDW order. On the symmetry ground, uniform
magnetization requires iCDW order at all three momenta
M nonzero. Otherwise, the system is invariant under the
anti-unitary symmetry composed of time reversal and
translation, which forbids any uniform magnetization.
In general, the magnetic field couples to the electrons
through both the minimal coupling and the Zeeman cou-
pling. Here, we consider the orbital magnetization con-
tribution for the 3Q± iCDW order. Following [69], the
orbital magnetization in terms of the Bloch wave function
reads,

Mz
orb =

e

2~
X

n,q

Im
h
h@qun,q|⇥ (✏n,q � ĤMF(q))|@qun,qi

i
fn,q, (28)

where ĤMF(q) is the mean field Hamiltonian one can
infer from Eq. (8), fn,q = f(✏n,q � µ) is the equilibrium
Fermi distribution function.

For simplicity, we consider the perfect nesting case
when the Fermi energy in the disordered phase is at the
van-hove point, this gives 1/3 filling in the patch model.
When the 3Q iCDW order is present, the triple degener-
ate bands at the M points are fully gapped, and only the
lowest band is filled. Noting that the unit of the sum-
mand in Eq. (28) is ~2

2me
(coming from the kinetic energy),

for a filled band, the summand must be expressed as a
function of the only dimensionless parameter in the ex-
pression, which reads ✏̃ = ~2q2/(2me), i.e. the summand
(after averaging over the angular direction in q) must be

expressed as ⇠ ~2

2me
F(✏̃). This means physically that for

electrons within an energy of order the gap �, the typ-
ical orbital moment is an order one fraction of a Bohr
magneton.

The orbital magnetization can be expressed as

Mz
orb =

e~
2me

N �0

~2/(2mea20)

p
3

2⇡

"Z ⇤

0
d✏̃F(✏̃)

#

= NµB
�0

Ry

✓
a0
ab

◆2 p
3

2⇡
IF , (29)

where N is the number of unit cells, IF =
R ⇤
0 d✏̃F(✏̃) is

the value of the integral, which is bounded and can be
computed numerically as IF ⇡ �0.87. Again approxi-
mating �0 ⇠ kBTc, the orbital magnetization per unit
cell is Mz

orb/N ⇠ �0.017 sgn(�0)µB .
This orbital magnetization is small but the smallness

is primarily due to the small number of electrons within
the region near the energy gap. As remarked above, for
a typical electron within this region, the orbital moment
is a substantial fraction of µB . This suggests that the
iCDW state may be favored by the application of a mag-
netic field.
We consider therefore how an rCDW state may be con-

verted into an iCDW state by such a field, assuming the
energy of the iCDW state is not too much higher than
that of the rCDW in zero field. For simplicity we con-
sider low temperature, where the above estimate is valid
(near Tc, the orbital magnetization will be proportional
to �3, and greatly suppressed). In general, a magnetic
field breaks time-reversal, so will always induce some
iCDW component if the rCDW is present. We thus take
�↵ = N↵ + i�↵ = |�|ei✓ (assuming a 3Q+ state), and
express the energy in terms of |�| and ✓. A simplified
form for the energy density is

E = �m|�|2 (1 + � cos ✓)� µhm|�| sin ✓, (30)

where m is the mass scale for the saddle points, h is the
magnetic field (in the z direction), µ is a typical orbital
moment for the iCDW electrons, and is a fraction of µB .
The first term is the condensation energy of the CDW,
and the second term is the dipole energy associated with
the orbital magnetization. The parameter � > 0 de-
scribes the energetic preference for rCDW over iCDW
order in zero field (as well as the preference for 3Q+ over
3Q- order). When the competition between the two is
close, � ⌧ 1. Minimizing over ✓, we obtain

tan ✓ =
µh

�|�| . (31)

We see that the rCDW smoothly evolves into an iCDW
with applied field, and this occurs on a scale which can
be a small fraction of the gap, if � ⌧ 1. We note that
the energy density in Eq. (30) is simplified, and does
not capture topological physics relevant to the perfect
nesting situation when the system is doped exactly to
the saddle point filling. In this case, the system is a
trivial insulator for ✓ = 0, and a Chern insulator for ✓ =
⇡/2, and hence there must be a topological transition,
associated gap closing, and non-analyticity of the energy
at some intermediate angle. However, we expect this
distinction to be washed out away from perfect nesting
and for generic filling.

VI. SUMMARY

In this paper, we have discussed various mechanisms
to induce charge density wave order in kagomé metals,

difference of condensation 
energies of rCDW and iCDW

an obviously oversimplified theory

Could iCDW may be induced by modest fields?



Summary
• AV3Sb5 kagomé metals may realize van Hove scenario of electronic instabilities 

• Substantial evidence for primary 3Q real CDW order 

• Tantalizing hints of topology and time-reversal symmetry breaking 

• Q: is the mechanism for CDW really electronic?  

• We believe e-ph coupling helps to stabilize the CDW.  Calculation shows 
that coupling to M-point optical moes provides suitable attractive channels.   

• Q: What does this all imply for superconductivity at lower T?  

• Not clear.  Current experimental studies are quite controversial.  Presumably 
a good understanding of the normal state will help.


