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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Energetics: triangle
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Electronic states at DWs

textures, a local conductivity approximation is adequate:
JðrÞ ¼ σ½K̂ðrÞ%EðrÞ. From this relation and Eq. (6), the
electrostatic potential ΨðrÞ can be determined for an
arbitrary texture K̂ðrÞ. For example, in the yz plane, the
electrostatic potential Ψðz; yÞ may be expanded as
Ψðz; yÞ ≈ −zE0 þ E0ϕðz; yÞ, and ϕðz; yÞ is determined by

∂2
zϕðz; yÞ þ

σyy
σzz

∂2
yϕðz; yÞ ¼ ∂yθHðz; yÞ; ð7Þ

where E0 is the constant electric field, θHðz; yÞ ¼
σyzðz; yÞ=σzz, and σyz is proportional to K̂x as shown in
Eq. (6). Through inversion, it should be possible to image
the magnetic domain structure purely through a spatially
resolved electrostatic measurement.
In the full quantum treatment, the electronic structure is

nontrivially modified by magnetic textures. The new feature
here is the appearance of Fermi arcs at domain walls. This is
because a domain wall acts as a sort of internal surface, at
which Fermi arc states carry chiral currents, similar to
ordinary surfaces. Without loss of generality consider a
minimal energy domain wall between the βþ and γ−

domains, which haveK at'30° from the y axis. The domains
have Weyl points in the kz ¼ 0 plane, with chiralities that
differ in the two domains. Distinct electronic properties thus
occur when this domain wall is in an xy, xz, or yz plane of
the crystal.
Figure 4(a) shows the surface spectral functions of the βþ

domain for a [100] surface. There are three Fermi arcs
connecting the two projectedWeyl nodes, which are closer to
the origin. Figure 4(b) shows the spectral function at the
interface of the βþ and γ− domainswith the same orientation.
It shows double the Fermi arcs found at the interface, i.e., six
instead of three (see Supplemental Material [29] for more
details).
We make two proposals to detect the presence of the

domain-wall Fermi arcs. First, the in-plane transport within
a domain wall may exhibit its own anomalous Hall effect.
We checked that this indeed occurs for a βþ − γ− wall with
zx orientation, by calculating σzx for a supercell with two
domain walls spread over 30 primitive cells. We find σzx ¼
0.044 for the supercell, about two times larger than the bulk

value of 0.023 found for the same cell with a single βþ or γ−

domain.This enhancement is expectedwhenever K̂ is normal
to the wall in its interior. Second, domain wall bound states
can manifest as an intrinsic resistance across the wall, since
they take away from the weight of continuum states that are
strongly transmitted and hence contribute to conductance.
We verified such a decreased conductance normal to thewall
for all domain wall orientations in numerical studies (see
Supplemental Material [29]).
While we focus on the domain walls, it is worth noting

that the Z6 vortex lines may have their own electronic
states. Using the tight-binding model introduced above,
we have numerically constructed a 40 × 40 × 1 supercell
including six domains, which are merged at a vortex line.
The energy dependence of the local density of states (DOS)
at the vortex line is shown in Fig. 5(a), where the red (blue)
line indicates the DOS in the presence (absence) of the
vortex line. There are two distinct peaks of DOS that seem
to be contributed by the vortex line: one at energy E ∼ 4,
and the other extending from -1.3 to 0.2. Figure 5(b) further
shows the local DOS distribution in the supercell at E ¼
−1.15 in the presence of a vortex line, which indicates a
sharp peak localized at the vortex line. Such quasibound
states at the vortex line may be a consequence of the chiral
magnetic field emerging from the winding of the XY spins
around the Z6 vortex line [31].
Current-driven domain wall dynamics.—Let us now

consider the feedback of the conduction electrons on the
spin texture. Given that the primary order parameter of the
antiferromagnet is not the magnetization, it is unclear how
consideration of the spin-transfer torque [32] applies here.
Instead, we take a symmetry-based approach and ask how
the current jmay appear as a force in the equation of motion
for the easy spin angle θ, Eq. (4). The result (see
Supplemental Material [29]) is that the force takes the form

fðjÞ ¼ −
X

a

ðpaja∂aθ þ q1j · ∂zK̂ þ q2jz∇ · K̂Þ: ð8Þ

Here px ¼ py, pz, q1, and q2 are constants. Various
arguments (see Supplemental Material [29]) suggest that
q1 and q2, which tend to drive the domain wall along the

FIG. 4. (a) The surface Fermi arcs of the βþ domain with the
surface normal vector x̂. (b) The domain wall Fermi arcs with
the domain wall in the yz plane. The white dots indicate the
projection of Weyl nodes into the folded surface Brillouin zone.

FIG. 5. (a) The energy dependence of the local DOS at the
vortex line. (b) The local DOS at energy E ¼ −1.15t0 distributed
in real space with a vortex line located at the origin.
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Theoretically: domain walls host bound/topological modes 

Reality check?

J. Liu + L.B., 2017

Many other calculations 



Planar Hall effect

the bulk magnetization monitors the gradual enhancement
produced by the smooth occupation of the center of the sample.

We used the Hall sensors to look for an off-diagonal magnetic
response, namely a finite magnetic field perpendicular to the
applied field. The mutual configuration of the sample, the
magnetic field and the Hall sensors for quantifying longitudinal
and transverse magnetization (TM) are shown in [inset (e)] and
[inset (f)]. The obtained data at room temperature is shown in
Fig. 2e, f. The transverse response is restricted to regime II and
has symmetric and asymmetric components.

Chiral domain walls. A spin texture for domain walls (see Sup-
plemental material in ref. 23), which would explain our results, is
sketched in Fig. 3. One domain (oriented along θ= π) is located
at the center and another domain with opposite polarity (θ= 0)
at the periphery. [In the convention used here23, θ is the angle
between the x-axis and a pair of parallel spins of the unit cell]. In
the (more or less thick) wall separating these two domains, spins
rotate smoothly and concomitantly in the x–y plane. The texture

along x-axis is such that at the center of the domain wall,
the adopted configuration has an orientation perpendicular to the
two domains. Figure 3b shows different versions of the same
structure with a narrower wall. One can see that the two possible
configurations are +π/2 and −π/2. This would correspond to an
either clockwise or anticlockwise rotation of spins depending on
the specific domain configuration at the center and the periphery.
Note that domain walls of this type, with in-plane rotation of two
possible signs, follow directly from the hierarchy of scales dis-
cussed in ref. 23, in which the Dzyaloshinskii–Moriya interaction
is much stronger than an in-plane twofold anisotropy. The origin
of the twofold anisotropy will be discussed in future work.

We note that a study using Magneto-Optical Kerr Effect
microscopy16 detected oppositely aligned domains in the multi-
domain regime at small magnetic fields. The domains were found to
extend over tens of microns. However, the fine structure of the walls
separating these domains23 could not be resolved in this study.

Such a texture would provide a natural explanation for the TM
and the planar Hall effect observed in regime II. The in-plane tilt of
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Fig. 1 Room-temperature anomalous transverse response. a Experimental configuration for measuring Hall effect in sample #5 with square cross-section.
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xz ), extracted by subtracting magnetization
and Hall hysteresis loops, see Supplementary Note 4. e Experimental configuration for measuring Nernst effect in sample #15 with rectangular cross-
section. The temperature gradient is applied along the z-axis, the magnetic field is applied either along x-axis or y-axis. The electric field is always measured
along the x-axis. f Anomalous Nernst effect (SANExz ) with the magnetic field along the y-axis, extracted from Ex. g Planar Nernst effect (SPNExz ) measured with
the magnetic field along x-axis, extracted from Ex. h Topological Nernst effect (STNExz ) extracted by subtracting magnetization and Nernst hysteresis loops,
see Supplementary Note 4. The larger width of the hysteresis loop in the Nernst measurements is due to the larger aspect ratio of the sample (See Fig. 2b)
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Planar Hall effect

the bulk magnetization monitors the gradual enhancement
produced by the smooth occupation of the center of the sample.

We used the Hall sensors to look for an off-diagonal magnetic
response, namely a finite magnetic field perpendicular to the
applied field. The mutual configuration of the sample, the
magnetic field and the Hall sensors for quantifying longitudinal
and transverse magnetization (TM) are shown in [inset (e)] and
[inset (f)]. The obtained data at room temperature is shown in
Fig. 2e, f. The transverse response is restricted to regime II and
has symmetric and asymmetric components.

Chiral domain walls. A spin texture for domain walls (see Sup-
plemental material in ref. 23), which would explain our results, is
sketched in Fig. 3. One domain (oriented along θ= π) is located
at the center and another domain with opposite polarity (θ= 0)
at the periphery. [In the convention used here23, θ is the angle
between the x-axis and a pair of parallel spins of the unit cell]. In
the (more or less thick) wall separating these two domains, spins
rotate smoothly and concomitantly in the x–y plane. The texture

along x-axis is such that at the center of the domain wall,
the adopted configuration has an orientation perpendicular to the
two domains. Figure 3b shows different versions of the same
structure with a narrower wall. One can see that the two possible
configurations are +π/2 and −π/2. This would correspond to an
either clockwise or anticlockwise rotation of spins depending on
the specific domain configuration at the center and the periphery.
Note that domain walls of this type, with in-plane rotation of two
possible signs, follow directly from the hierarchy of scales dis-
cussed in ref. 23, in which the Dzyaloshinskii–Moriya interaction
is much stronger than an in-plane twofold anisotropy. The origin
of the twofold anisotropy will be discussed in future work.

We note that a study using Magneto-Optical Kerr Effect
microscopy16 detected oppositely aligned domains in the multi-
domain regime at small magnetic fields. The domains were found to
extend over tens of microns. However, the fine structure of the walls
separating these domains23 could not be resolved in this study.

Such a texture would provide a natural explanation for the TM
and the planar Hall effect observed in regime II. The in-plane tilt of
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xz ), extracted from Ex. c Planar Hall resistivity (ρPHE
yz ), extracted from Ey. d Topological Hall resistivity (ρTHE

xz ), extracted by subtracting magnetization
and Hall hysteresis loops, see Supplementary Note 4. e Experimental configuration for measuring Nernst effect in sample #15 with rectangular cross-
section. The temperature gradient is applied along the z-axis, the magnetic field is applied either along x-axis or y-axis. The electric field is always measured
along the x-axis. f Anomalous Nernst effect (SANExz ) with the magnetic field along the y-axis, extracted from Ex. g Planar Nernst effect (SPNExz ) measured with
the magnetic field along x-axis, extracted from Ex. h Topological Nernst effect (STNExz ) extracted by subtracting magnetization and Nernst hysteresis loops,
see Supplementary Note 4. The larger width of the hysteresis loop in the Nernst measurements is due to the larger aspect ratio of the sample (See Fig. 2b)
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6 domains or 2 domains?

LETTERS NATURE PHOTONICS

As discussed above, the symmetry considerations show that switch-
ing of the magnetic octupole domains with a triangular spin tex-
ture can flip the sign of σij(ω) and consequently the Kerr angle θK. 
Particularly in B || ̄ ̄[2110], one of the three moments of a Mn triangle 
aligns with the field, with the other two at ± 120° away (Fig. 1a). The 
grey and black regions are therefore interpreted as the domains in 
which the Mn spin collinear with the field (the magnetic octupo-
lar axis) points either along the positive or negative ̄ ̄[2110] direc-
tion (Fig. 4i). Provided that the in-plane Mn moments have an easy 
axis along ̄ ̄[2110], Mn3Sn may have six types of domain, in principle 
corresponding to six equivalent axes to ̄ ̄2110  in the (0001) plane. 
However, a clear square shape observed in our MOKE hysteresis 
loop, AHE and magnetization measurements for B || ̄ ̄[2110] (Figs. 1 

and 2) suggests that the field cycle only stabilizes the two types of 
cluster magnetic octupole domain shown in Fig. 4i. Indeed, only 
two distinct regions with different colours are found in Fig. 4b,c,f,g.

Generally, in ferromagnets, two fundamental processes in the 
magnetization reversal are known: (1) reversal by domain nucle-
ation and domain wall propagation; and (2) reversal by coherent 
rotation. Our series of domain images indicates the former mecha-
nism, although the coarse resolution hinders observation of nucle-
ation itself. At the highest field of B =  18.4 mT (Fig. 4d), the view 
of the entire region (25 μ m ×  50 μ m) reflects an oppositely aligned 
domain, in contrast to the initial domain configuration (Fig. 4a). 
Similar evolution of the domain images is obtained for the field-
increasing and -decreasing processes (Fig. 4). Interestingly, the 
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The magneto-optical Kerr effect (MOKE) has been intensively 
studied in a variety of ferro- and ferrimagnetic materials as a 
powerful probe for electronic and magnetic properties1–3 and 
for magneto-optical technologies4. The MOKE can be addi-
tionally useful for the investigation of the antiferromagnetic 
(AF) state, although thus far limited to insulators5–9. Here, we 
report the first observation of the MOKE in an AF metal. In par-
ticular, we find that the non-collinear AF metal Mn3Sn (ref. 10)  
exhibits a large zero-field Kerr rotation angle of 20 mdeg at 
room temperature, comparable to ferromagnetic metals. Our 
first-principles calculations clarify that ferroic ordering of 
magnetic octupoles11 produces a large MOKE even in its fully 
compensated AF state. This large MOKE further allows imag-
ing of the magnetic octupole domains and their reversal. The 
observation of a large MOKE in an AF metal will open new ave-
nues for the study of domain dynamics as well as spintronics 
using antiferromagnets12–16.

The magneto-optical (MO) Kerr and Faraday effects in ferro- 
and ferrimagnets arise from the combined effects of band exchange 
splitting and spin–orbit interactions (SOIs)1,17,18 and are powerful 
probes of the local magnetization in such materials. In the case 
of antiferromagnets (AFMs), observation of the MOKE has been 
restricted to a certain class of insulators (for example, orthoferrites 
and iron borate)5–8,16,19–21, which have weak ferromagnetism due to 
canting of the otherwise collinear Néel order. In the fully compen-
sated collinear AFMs, where the MOKE is usually absent, quadratic 
MO effects such as the Voigt effect can be useful to determine the 
Néel vector22.

On the other hand, recent theoretical and experimental progress 
has revealed that systems such as certain spin liquids and non-col-
linear antiferromagnets may exhibit a large Hall response in zero 
applied magnetic field (anomalous Hall effect or AHE) despite a 
vanishing magnetization10,23–26. Because the AHE has the same sym-
metry requirements as the MOKE27, it is possible that the same class 
of antiferromagnets may exhibit a Kerr rotation. Thus, the recent 
experimental discovery of a large AHE in the non-collinear antifer-

romagnet Mn3Sn as well as its soft response to a magnetic field10 give 
promise for a potentially large MOKE character.

Mn3Sn is a hexagonal AFM (space group P63/mmc)28, which 
has the ABAB stacking sequence of the (0001) plane consisting of 
a kagome lattice of Mn magnetic moments. Below the Néel tem-
perature TN ≈  430 K, the combination of inter-site antiferromagnetic 
(AF) and Dzyaloshinskii–Moriya (DM) interactions leads to an 
inverse triangular spin structure, namely, a 120° spin structure with 
a uniform negative vector chirality of the in-plane Mn moments 
because of geometrical frustration (Fig. 1a)10,28,29. Significantly, this 
three-sublattice AF state on the kagome bilayers can be viewed as 
ferroic ordering of cluster magnetic octupoles (Fig. 1a)11. In addi-
tion to this dominant order parameter, the moments cant slightly 
in the plane to produce a small net ferromagnetic (FM) moment 
of ~0.002 μB/Mn along the local easy axis in the (0001) plane, for 
example, ̄ ̄[2110] and ̄[0110]10. This small moment, which corre-
sponds to less than 10−3 of the local Mn moment, is theoretically 
understood to result from the competition between the DM interac-
tion and single-ion anisotropy30. Although, as we discuss below, the 
subdominant FM order is not responsible for the AHE and MOKE, 
it is essential (together with concomitant weak in-plane anisotropy) 
for magnetic field control of the AF spin structure. This control is 
demonstrated, for example, by the ability to reverse the sign of the 
AHE by application of a small applied field of B ≈  15 mT within the 
(0001) plane, which is sufficient to reverse the direction of the Mn 
moments10.

Before presenting the main MOKE results, we shall first discuss 
the AHE and magnetization curve. In this study, we used as-grown 
single crystals with the composition of Mn3.06Sn0.94 (see Methods) 
and confirmed no magnetic transition above 50 K (ref. 10). Figure 
1c,d provides the field dependence of the Hall resistivity ρH(B) 
and magnetization M(B) for B || ̄ ̄[2110] at room temperature (RT), 
respectively (see Methods). The observed ρH(B =  0) =  3.1 μ Ω  cm is 
large and equivalent to the size of the ordinary Hall effect under 
an external field of ~100 T estimated using the Hall coefficient of 
R0 ≈  0.03 μ Ω  cm T−1 (ref. 10). This sizable ρH(B =  0) with vanishingly 
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We theoretically study the interplay between bulk Weyl electrons and magnetic topological defects,
including magnetic domains, domain walls, and Z6 vortex lines, in the antiferromagnetic Weyl semimetals
Mn3Sn and Mn3Ge with negative vector chirality. We argue that these materials possess a hierarchy of
energy scales, which allows a description of the spin structure and spin dynamics using an XY model with
Z6 anisotropy. We propose a dynamical equation of motion for the XY order parameter, which implies
the presence of Z6 vortex lines, the double-domain pattern in the presence of magnetic fields, and the
ability to control domains with current. We also introduce a minimal electronic model that allows efficient
calculation of the electronic structure in the antiferromagnetic configuration, unveiling Fermi arcs at
domain walls, and sharp quasibound states at Z6 vortices. Moreover, we have shown how these materials
may allow electronic-based imaging of antiferromagnetic microstructure, and propose a possible device
based on the domain-dependent anomalous Hall effect.
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The anomalous Hall effect (AHE) [1,2] has been a
nucleation center for geometry and topology in the physics
of solids. The concepts of Berry curvatures and topology
unveil broad applications to electronic systems in the form
of topological insulators, superconductors [3,4], and semi-
metals with topological Weyl (and other) fermion excita-
tions [5–18]. The AHE reappears as one of the key
emergent properties of topological semimetals.
The dissipationless nature of the AHE also makes it

interesting for applications. Antiferromagnetic realizations
of AHE may be of practical interest for the sake of
miniaturization, but the microscopic magnetic structure,
the spin dynamics, and the AHE of antiferromagnets are
relatively uninvestigated. Here we attack these issues in the
family of noncollinear antiferromagnets including Mn3Sn
and Mn3Ge, for which a strong AHE was predicted and
then experimentally verified to exist [19–22]. First princi-
ples calculations further indicate that in Mn3Sn and Mn3Ge
there are Weyl nodes around the Fermi level [23,24]. We
argue that these materials possess a hierarchy of energy
scales that permits a description of the microstructure and
spin dynamics as an XY model with Z6 anisotropy. We
propose a dynamical equation of motion for the XY order
parameter, which implies a rich domain structure, the
presence of Z6 vortex lines, and the ability to control
domains with current. We further introduce a minimal
electronic model that allows efficient calculation of the
electronic structure in a textured antiferromagnetic con-
figuration, unveiling Fermi arcs at domain walls, and
quasibound states at Z6 vortices. We show how these
materials may allow electronic-based imaging of antifer-
romagnetic microstructure and propose a possible device
based on domain-dependent AHE.

Symmetry and the microscopic spin model.—The Mn3Sn-
class material crystallizes in hexagonal lattice structure with
space group P63=mmc as shown in Figs. 1(a) and 1(b).
Taking Mn3Sn as an example, each Mn4þ ion has a large
classical spin ∼2–3 μB[25,26] forming a layered kagomé
lattice. The system orders antiferromagnetically in a 120°
noncollinear structure as shown in Fig. 1(c), with the Neel
temperature TN ≈ 420 K [25–28]. This may be understood
from the hierarchy of interactions typical for 3d transition
metal ions: Heisenberg exchange is largest, followed by

FIG. 1. (a) The lattice structure of Mn3Sn from a top view, and
(b) a side view. The thick dashed lines with brown, red, and blue
colors indicate different hopping processes of the tight-binding
model introduced in the text. The gray dashed lines in (a) indicate
the easy axes. (c) The six magnetic domains. (d) Schematic
illustration of the Z6 vortex lines.
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Planar Hall effect

the bulk magnetization monitors the gradual enhancement
produced by the smooth occupation of the center of the sample.

We used the Hall sensors to look for an off-diagonal magnetic
response, namely a finite magnetic field perpendicular to the
applied field. The mutual configuration of the sample, the
magnetic field and the Hall sensors for quantifying longitudinal
and transverse magnetization (TM) are shown in [inset (e)] and
[inset (f)]. The obtained data at room temperature is shown in
Fig. 2e, f. The transverse response is restricted to regime II and
has symmetric and asymmetric components.

Chiral domain walls. A spin texture for domain walls (see Sup-
plemental material in ref. 23), which would explain our results, is
sketched in Fig. 3. One domain (oriented along θ= π) is located
at the center and another domain with opposite polarity (θ= 0)
at the periphery. [In the convention used here23, θ is the angle
between the x-axis and a pair of parallel spins of the unit cell]. In
the (more or less thick) wall separating these two domains, spins
rotate smoothly and concomitantly in the x–y plane. The texture

along x-axis is such that at the center of the domain wall,
the adopted configuration has an orientation perpendicular to the
two domains. Figure 3b shows different versions of the same
structure with a narrower wall. One can see that the two possible
configurations are +π/2 and −π/2. This would correspond to an
either clockwise or anticlockwise rotation of spins depending on
the specific domain configuration at the center and the periphery.
Note that domain walls of this type, with in-plane rotation of two
possible signs, follow directly from the hierarchy of scales dis-
cussed in ref. 23, in which the Dzyaloshinskii–Moriya interaction
is much stronger than an in-plane twofold anisotropy. The origin
of the twofold anisotropy will be discussed in future work.

We note that a study using Magneto-Optical Kerr Effect
microscopy16 detected oppositely aligned domains in the multi-
domain regime at small magnetic fields. The domains were found to
extend over tens of microns. However, the fine structure of the walls
separating these domains23 could not be resolved in this study.

Such a texture would provide a natural explanation for the TM
and the planar Hall effect observed in regime II. The in-plane tilt of
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Fig. 1 Room-temperature anomalous transverse response. a Experimental configuration for measuring Hall effect in sample #5 with square cross-section.
Charge current is applied along the z-axis and the magnetic field along the y-axis. Two pairs of electrodes measure Ex and Ey. b Anomalous Hall resistivity
(ρAHE

xz ), extracted from Ex. c Planar Hall resistivity (ρPHE
yz ), extracted from Ey. d Topological Hall resistivity (ρTHE

xz ), extracted by subtracting magnetization
and Hall hysteresis loops, see Supplementary Note 4. e Experimental configuration for measuring Nernst effect in sample #15 with rectangular cross-
section. The temperature gradient is applied along the z-axis, the magnetic field is applied either along x-axis or y-axis. The electric field is always measured
along the x-axis. f Anomalous Nernst effect (SANExz ) with the magnetic field along the y-axis, extracted from Ex. g Planar Nernst effect (SPNExz ) measured with
the magnetic field along x-axis, extracted from Ex. h Topological Nernst effect (STNExz ) extracted by subtracting magnetization and Nernst hysteresis loops,
see Supplementary Note 4. The larger width of the hysteresis loop in the Nernst measurements is due to the larger aspect ratio of the sample (See Fig. 2b)
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Chiral domain walls of Mn3Sn and their memory
Xiaokang Li1,2, Clément Collignon2,3, Liangcai Xu1, Huakun Zuo1, Antonella Cavanna 4, Ulf Gennser 4,
Dominique Mailly4, Benoît Fauqué3, Leon Balents5, Zengwei Zhu 1 & Kamran Behnia2,6

Magnetic domain walls are topological solitons whose internal structure is set by competing

energies which sculpt them. In common ferromagnets, domain walls are known to be of

either Bloch or Néel types. Little is established in the case of Mn3Sn, a triangular antiferro-

magnet with a large room-temperature anomalous Hall effect, where domain nucleation is

triggered by a well-defined threshold magnetic field. Here, we show that the domain walls of

this system generate an additional contribution to the Hall conductivity tensor and a trans-

verse magnetization. The former is an electric field lying in the same plane with the magnetic

field and electric current and therefore a planar Hall effect. We demonstrate that in-plane

rotation of spins inside the domain wall would explain both observations and the clockwise or

anticlockwise chirality of the walls depends on the history of the field orientation and can be

controlled.
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[Rotation inside DWs or in 
metastable domains?]



6 domains or 2 domains?

Torque suggests some other source of 
two-fold anisotropy contributes.  

T. Duan et al  Appl. Phys. Lett. 107, 082403 (2015)

Indicates breaking of lattice C3 symmetry
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Outline

• This talk: Back in 2019 I had in mind some general 
discussion but now I decided to just discuss two aspects 
of anomalous Hall physics in topological magnetsMain 
classes 

• Planar Hall effect in Mn3Sn, what it tells us about domain 
walls, and what is still unclear 

• Control of valley ferromagnetic domains in twisted 
bilayer graphene
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Continuum model

approximate single layer as Dirac cone
no mixing from one valley to the other 
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Quantum Anomalous Hall Effect

This is just the appearance of QHE in zero magnetic field by 
spontaneous breaking of time-reversal symmetry 

Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau

REPORTS

1State Key Laboratory of Low-Dimensional Quantum Physics,
Department of Physics, Tsinghua University, Beijing 100084,
China. 2Beijing National Laboratory for Condensed Matter
Physics, Institute of Physics, The Chinese Academy of Sciences,
Beijing 100190, China. 3Department of Physics, Stanford Uni-
versity, Stanford, CA 94305–4045, USA.
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Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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levels nor an external magnetic field. This type
of QHE induced by spontaneous magnetization
is considered the quantized version of the con-
ventional (nonquantized) anomalous Hall effect
(AHE) discovered in 1881 (16). The quantized
Hall conductance is directly given by a topo-
logical characteristic of the band structure called
the first Chern number. Such insulators are called
Chern insulators.

One way to realize a Chern insulator is to start
from a time-reversal-invariant TI. These mate-
rials, whose topological properties are induced
by spin-orbit coupling, were experimentally re-
alized soon after the theoretical predictions in
both 2D and 3D systems (12, 13). Breaking the
TRS of a suitable TI (17) by introducing ferro-
magnetism can naturally lead to the quantum
anomalous Hall (QAH) effect (6–9, 11). By tuning
the Fermi level of the sample around the mag-
netically induced energy gap in the density of states,
one is expected to observe a plateau of Hall
conductance (sxy) of e

2/h and a vanishing lon-
gitudinal conductance (sxx) even at zero mag-
netic field [figure 14 of (7) and Fig. 1, A and B].

The QAH effect has been predicted to occur
by Mn doping of the 2D TI realized in HgTe
quantum wells (8); however, an external mag-
netic field was still required to align the Mn mo-
ments in order to realize the QAH effect (18). As
proposed in (9), due to the van Vleck mechanism
doping the Bi2Te3 family TIs with isovalent 3d
magnetic ions can lead to a ferromagnetic insu-
lator ground state and, for thin film systems, this
will further induce the QAH effect if the mag-
netic exchange field is perpendicular to the plane
and overcomes the semiconductor gap. Here, we
investigate thin films of Cr0.15(Bi0.1Sb0.9)1.85Te3
(19, 20) with a thickness of 5 quintuple layers
(QL), which are grown on dielectric SrTiO3 (111)
substrates by molecular beam epitaxy (MBE)
(20, 21) (fig. S1). With this composition, the
film is nearly charge neutral so that the chem-
ical potential can be fine-tuned to the electron- or
hole-conductive regime by a positive or nega-
tive gate voltage, respectively, applied on the
backside of the SrTiO3 substrate (20). The films
are manually cut into a Hall bar configuration
(Fig. 1C) for transport measurements. Varying
the width (from 50 mm to 200 mm) and the as-
pect ratio (from 1:1 to 2:1) of the Hall bar does
not influence the result. Figure 1D displays a
series of measurements, taken at different tem-
peratures, of the Hall resistance (ryx) of the sam-
ple in Fig. 1C, as a function of the magnetic field
(m0H). At high temperatures, ryx exhibits linear
magnetic field dependence due to the ordi-
nary Hall effect (OHE). The film mobility is
~760 cm2/Vs, as estimated from the measured
longitudinal sheet resistance (rxx) and the carrier
density determined from the OHE. The value is
much enhanced compared with the samples in
our previous study (20, 21), but still much lower
than that necessary for QHE (2, 3). With decreas-
ing temperature, ryx develops a hysteresis loop
characteristic of the AHE, induced by the ferro-

magnetic order in the film (22). The square-shaped
loop with large coercivity (Hc = 970 Oersted at
1.5 K) indicates a long-range ferromagnetic or-
der with out-of-plane magnetic anisotropy. The
Curie temperature is estimated to be ~15 K (Fig.
1D, inset) from the temperature dependence of
the zero field ryx that reflects spontaneous mag-
netization of the film.

Figure 2, A and C, shows the magnetic field
dependence of ryx and rxx, respectively, mea-
sured at T = 30 mK at different bottom-gate
voltages (Vgs). The shape and coercivity of the
ryx hysteresis loops (Fig. 2A) vary little with Vg,
thanks to the robust ferromagnetism probably

mediated by the van Vleck mechanism (9, 20).
In the magnetized states, ryx is nearly indepen-
dent of the magnetic field, suggesting perfect
ferromagnetic ordering and charge neutrality of
the sample. On the other hand, the AH resist-
ance (height of the loops) changes dramatically
with Vg, with a maximum value of h/e2 around
Vg = –1.5 V. The magnetoresistance (MR) curves
(Fig. 2C) exhibit the typical shape for a ferro-
magnetic material: two sharp symmetric peaks
at the coercive fields.

The Vg dependences of ryx and rxx at zero
field [labeled ryx(0) and rxx(0), respectively] are
plotted in Fig. 2B. The most important obser-

30 mK 30 mK

A B

V  = Vgg
0 V  = Vgg

0

Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field
dependence of ryx at Vg0. (B) Magnetic field dependence of rxx at Vg0. The blue and red lines in (A) and
(B) indicate the data taken with increasing and decreasing fields, respectively.

30 mK

30 mK

30 mK

30 mK

A B

C D

Fig. 2. The QAH effect measured at 30 mK. (A) Magnetic field dependence of ryx at different Vgs.
(B) Dependence of ryx(0) (empty blue squares) and rxx(0) (empty red circles) on Vg. (C) Magnetic field
dependence of rxx at different Vgs. (D) Dependence of sxy(0) (empty blue squares) and sxx(0) (empty
red circles) on Vg. The vertical purple dashed-dotted lines in (B) and (D) indicate the Vg for Vg0. A
complete set of the data is shown in fig. S3.
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Cr-doped (Bi/Sb)2Te3



QAHE in graphene

expected because flipping individual domains
or moving domain walls in a magnet is usually
thermally activated (22).
The Hall signal appears to be the sum of two

parts: an anomalous component that reflects the
sample magnetization (23), and a conventional
component linear in field with a Hall slope RH

(Fig. 2B) [see (17) for how we separate these two
components]. Unlike the coercive field, the mag-
nitude of the residual AH resistance at zero field,
which we denote by RAH

yx , does not vary mono-
tonically with temperature:RAH

yx rises slightly with
increasing T up to 2.8 K before rapidly falling to
zero by 5 K (Fig. 2, C and D).
Although the hysteresis is observable over a

wide range of displacement fields (17), it only
emerges in a narrow range of densities near 3

4=
filling of the mBZ.RAH

yx displays a sharp peak as a
function of n/ns, reaching 6.6 kilohms for n/ns =
0.758 with a full width at half maximum of
0.04ns (Fig. 2B). These measurements were
made along a trajectory for which D changes
by ~10% coincident with the primary intended
change in n (17). In a separate measurement,
we observed hysteresis loops with RAH

yx up to
10.4 kilohms (fig. S7B).

The gate-voltage dependence of the conven-
tional linearHall slopeRH (17) appears typical for
a transition from p-type– to n-type–dominated
conduction in a semimetal or small-gap semicon-
ductor, with jRHj rising when approaching the
transition from either side, then turning over and
crossing through zero (Fig. 2B). Recent studies
of near-magic-angle TBG have reported high re-
sistance at 3 4= filling (6, 7) (compare with Fig. 1),
suggesting that spin and valley symmetries are
spontaneously broken, resulting in a low density
of states (or a gap) at this filling. Our results sim-
ilarly indicate a possible correlated insulating
state, here with an AH effect in a narrow range
of densities around this same filling.
The presence of a giant AH effect in an ap-

parent insulator is reminiscent of a ferromag-
netic topological insulator approaching a Chern
insulator state (24–26), where it would exhibit a
quantum AH (QAH) effect: longitudinal resistiv-

ity rxx approaches zero and Hall resistivity ryx is
quantized to h/Ce2 (27, 28), where h is Planck’s
constant, e is the electron charge, and C is the
Chern number arising from the Berry curvature
of the filled bands (C = ±1 in presently available
QAH materials). Chiral edge modes associated
with a quantized Hall system manifest in non-
local transport measurements (29, 30). In an ideal
QAH system described by the Büttiker edge state
model (31), floating metallic contacts equilibrate
with the chiral edge states that propagate into
them. Clearly, our results are not those of an
ideal QAH system. Dissipation can cause devia-
tions from the ideal behavior, while still giving
results differing from classical diffusive trans-
port. Below, we present and analyze our exper-
imental evidence for nonlocal transport in the
magnetic state.
The three-terminal resistance R54,14, where

Rij,k‘ = Vk‘ /Iij and Vk‘ is the voltage between

Sharpe et al., Science 365, 605–608 (2019) 9 August 2019 2 of 4
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Fig. 1. Correlated states in near-magic-angle
TBG. (A) Longitudinal resistance Rxx of the
TBG device (measured between contacts
separated by 2.15 squares) as a function of
carrier density n (shown on the top axis) and
perpendicular displacement field D (left axis),
which are tuned by the top- and back-gate
voltages, at 2.1 K. n is mapped to a filling
factor relative to the superlattice density ns,
corresponding to four electrons per moiré unit
cell, shown on the bottom axis. (Inset) Optical
micrograph of the completed device showing the
top-gated Hall bar region (gold), electrical
contacts (gold), regions of the heterostructure
that have been etched to remove the TBG
(green), and regions of the heterostructure that
have not been etched (brown). Scale bar, 5 mm.
(B) Line cut of Rxx with respect to n taken at
D/D0 = −0.22 V/nm showing the resistance peaks
at full filling of the superlattice and additional
peaks likely corresponding to correlated states
emerging at intermediate fillings.
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Fig. 2. Emergent ferromagnetism near three-quarters filling. (A) Magnetic field dependence of
the longitudinal resistance Rxx (upper panel) and Hall resistance Ryx (lower panel) with n/ns = 0.746
and D/D0 = −0.62 V/nm at 30 mK, demonstrating a hysteretic AH effect resulting from emergent
magnetic order. The solid and dashed lines correspond to measurements taken while sweeping the
magnetic field B up and down, respectively. (B) Zero-field AH resistance RAH

yx (red) and ordinary Hall
slope RH (blue) as a function of n/ns for D/D0 ≈ −0.6 V/nm. RAH

yx is peaked sharply with a maximum
around n/ns = 0.758, coincident with RH changing sign. These parameters are extracted from line fits
of Ryx versus B on the upward and downward sweeping traces in a region where the B-dependence
appears dominated by the ordinary Hall effect (17). The error bars reflect fitting parameter
uncertainty along with the effect of varying the fitting window and are omitted when smaller than the
marker. (C) Temperature dependence of Ryx versus B at D/D0 = −0.62 V/nm and n/ns = 0.746
between 46 mK and 5.0 K, showing the hysteresis loop closing with increasing temperature.
Successive curves are offset vertically by 20 kilohms for clarity. (D) Coercive field and AH resistance
(extracted using the same fitting procedure as above) plotted as a function of temperature from
the same data partially shown in (C). Data in Fig. 2 were taken during a separate cooldown from that
of the data in the rest of the figures but show representative behavior (17).
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FIG. 2. Temperature dependence of the quantum anomalous Hall effect. (A) Rxy and (B) Rxx as a function of B measured at various
temperatures for n = 2.37⇥1012 cm�2. Rxx and Rxy mixing was corrected using contact symmetrization[29]. (C) Temperature dependence
of the field-training symmetrized resistance R̄xy at B = 0, as described in the main text. The Curie was determined to be TC ⇡ 7.5(.5) K
using an Arrott plot analysis (see Fig. S12. The inset shows detailed low-temperature dependence of R̄xy at B = 0. Error bars are the
standard error derived from 11 consecutive measurements. R̄xy saturates below ⇡ 3 K to a value of (1.0010 ± 0.0002) ⇥ h

e2
, determined

by averaging the points between 2 and 2.7 K. (D) Arrhenius plots of field training symmetrized resistances R̄xx and �R̄xy = h/e2 � R̄xy .
Dotted lines denote representative activation fits. Systematic treatment of uncertainty arising from the absence of a single activated regime
gives � = 31± 11 K and 26± 4 K for R̄xx and �R̄xy , respectively[29].

the quantum oscillations are highly anomalous, with hole-like 1

quantum oscillations originating at ⌫ = 2, again in contrast 2

to all prior reports[23–26]. Additional Landau fan features 3

also appear consistent with hBN alignment of 0.6�(Fig. S11); 4

however, twist angle variations within the tBLG itself pre- 5

clude unambiguous determination of the hBN-tBLG twist an- 6

gle. While no detailed theory for these observations is avail- 7

able, the extreme sensitivity of the detailed structure of the 8

flat bands to model parameters, combined with observations 9

that hBN substrates can produce energy gaps as large as 30 10

meV in monolayer graphene[34], point to the role of the sub- 11

strate in tipping the balance between competing many-body 12

ground states at ⌫ = 3 in favor of the QAH state. Taken to- 13

gether, these observations suggest that hBN aligned samples 14

constitute a different class of tBLG devices with distinct phe- 15

nomenology. 16

Figs. 2A and B show the temperature dependence of major 17

hysteresis loops in Rxx and Rxy , respectively. As T increases, 18

we observe both a departure from resistance quantization and 19

a suppression of hysteresis, with the Hall effect showing linear 20

behavior in field by T = 12 K. In our measurements, we ob- 21

serve resistance offsets of ⇠ 1 k⌦ from the ideal value, which 22

vanish when resistance is symmetrized or antisymmetrized 23

with respect to magnetic field (or, for B ⇡ 0, with respect 24

to field training). For quantitative analysis of the T -dependent 25

data, we thus study field-training symmetrized resistances, de- 26

noted R̄xy and R̄xx. Figure 2C shows R̄xy(0). Finite hys- 27

teresis is observed up to temperatures of 8K (Fig .2C), con- 28

sistent with the Curie temperature TC ⇡ 7.5 K determined 29

from an Arrott plot ( Fig. S12). At low temperatures, R̄xy is 30

quantized to (1.001± 0.0002)⇥ h

e2
, remaining quantized up 31

to T = 3 K before detectable deviation is observed.R̄xy re- 32

mains quantized up to T ⇡ 3 K, with the average value of 33

(1.0010± 0.0002)⇥ h

e2
between 2 and 2.7 K. 34

To quantitatively assess the energy scales associated with 35

the QAH state, we measure the activation energy at low tem- 36

perature. Fig. 2D shows both the measured R̄xx and the devi- 37

ation from quantization of the Hall resistance, �R̄xy = h/e2� 38

R̄xy , on an Arrhenius plot. We assume that the Hall conduc- 39

tivity �xy is approximately T -independent and the longitudi- 40

nal conductivity �xx ⇠ e��/(2T ), where � is the energy cost 41

of creating and separating a particle-antiparticle excitation of 42

the QAH state. Within this picture, inverting the conductivity 43

tensor gives �Rxy ⇠ e��/(T ) while Rxx ⇠ e��/(2T )[29]. 44
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Origin of QAHE?
•Underlying Dirac fermions of graphene have large incipient 

Berry curvature  
•Curvature is realized by breaking C2T symmetry

To illustrate this important point, we present the argument in
a form that does not depend on detailed knowledge of the reg-
istration within each of the domains. Of course, in practice the
registration types (and hence the asymmetry signs) arise from
general energetic and geometric constraints which can be easily
accounted for (27). As an example, we consider three possible
registrations: (i) site A in hBN aligned with site A in graphene
and site B in hBN with site B in graphene; (ii) site A in hBN
aligned with site B in graphene and site B in hBN with H (hol-
low) in graphene; and (iii) A in hBN aligned with site B in
graphene whereas site B in hBN aligned with site A in graphene.
Configurations (i) and (iii) cost the same energy, but have a

different energy than (ii). Importantly, lateral sliding of a cell
with configuration (i) cannot generate configuration (iii) because
it would require a lattice rotation. At the same time, whereas
lateral sliding of a cell with configuration (i) can generate con-
figuration (ii), it costs a different energy. As a result, stacking
frustration between neighboring cells cannot occur, locking the
registration between all hexagonal cells to yield a constant global
gap, Δg.
Next, we note that imperfect registration around the domain

boundaries yields a weaker coupling between G and hBN
[strained graphene sheet buckles (16) increasing the G-to-hBN
distance]. Reduction in sublattice-asymmetric potential Δg,0 can
be modeled as

ΔðrÞ=Δg,0 + δm½GðrÞ * FðrÞ$, sgn  δm=−sgn Δg,0, [3]

where FðrÞ describes the unit cell of the pattern of domain walls,
GðrÞ=

P
n,l∈Zδðr− na1 − la2Þ is the superlattice form factor (a1,2

are superlattice basis vectors), and * indicates convolution. The
relative sign sgn  δm=−sgn Δg accounts for the weaker coupling
between G and hBN at the domain boundaries.
Because we are interested in bandstructure reconstruction in

the lowest minibands, we expand ΔðrÞ into lowest harmonics
yielding Eq. 2 with

Δg =Δg,0 + δm~Fq=0, m3 = 2δm~Fq=bj , [4]

where ~FðqÞ= 1=A
R
d2rFðrÞeiq · r is the form factor, bj are the re-

ciprocal superlattice vectors, and A is the area of superlattice
unit cell. Crucially, the sign of the form factor F determines the
sign of m3. Choosing a symmetric FðrÞ, with origin at the center
of a hexagonal domain (pictured in Fig. 1A, x̂ and ŷ are the
horizontal and vertical directions) and δ-functions along the hex-
agonal domain walls, we obtain the form factor

~FðqÞ= 2w
A
X3

j=1

sin
!
d
2
qi · x̂

"

qi · x̂
cos

 ffiffiffi
3

p
d

2
qi · ŷ

!

. [5]

Here d and w are the domain wall length and width, and
qi =RðθjÞq, where RðθjÞ are the 2× 2 rotation matrices with
θ1 = 0, θ2 = π=3, and θ3 = 2π=3.
Evaluating Eq. 5 gives ~Fq=0 = 3ζ> 0 and ~Fq=bj =−9

ffiffiffi
3

p
ζ=4π< 0,

where ζ=wd=A> 0. Comparing with Eq. 2, we find the relation
between signs of m3 and Δg:

sgn m3 =−sgnðδmÞ= sgn
$
Δg

%
. [6]

As we will see, this leads to a nontrivial topological class Cv =±1
in the lowest minibands (Fig. 3A).
The incommensurate case (moiré superlattice) differs from

the commensurate case in two important ways. One is that the
G-to-hBN coupling is dominated by the modulational part
ΔðrÞ=m3

P3
j=1cosðbj · rÞ arising from the moiré pattern. The

other is that the global gap parameter Δg is zero in the bare

Hamiltonian; however, a nonzero Δg value is generated pertur-
batively in m3, with the Δg sign the opposite of the m3 sign. The
analysis is particularly simple for the long-period moiré patterns
arising for rigid G and hBN stackings at small twist angles, as
shown in Fig. 1B.
Of course, one m3 harmonic cannot produce an average global

gap at DP because it is sign-changing, heibxi= 0. However, a
combination of three different harmonics can open up a gap
(14). This can be seen from a perturbation analysis of the
Hamiltonian [2] which we write as H =H0 +V , where H0 = vσ · p,
V = σ3m3

P3
j=1cosðbj · rÞ. Perturbation theory in V yields a term

describing a global gap at a third order in V via

δH =V
1

e−H0
V

1
e−H0

V . [7]

Choosing triplets of harmonics with bi + bj + bk = 0, third-order
perturbation theory in m3 yields a gap

Δg =
X

±bi ,±bk

m3σ3
2

1
vσ · bi

m3σ3
2

1
vσ · bk

m3

2
=−

3m3
3

4ðvjbjÞ2
, [8]

where the minus sign results from the anticommutation relations
½σ1, σ3$+ = 0, ½σ2, σ3$+ = 0. Importantly, this analysis predicts a re-
lation between signs

sgn
$
Δg

%
=−sgnðm3Þ, [9]

which is opposite to the relation found for the commensurate
case, Eq. 6. Whereas the gap size obtained at a third order of
perturbation theory in a noninteracting system is small, electron
interaction effects are expected to produce an enhancement and

A B

DC

Fig. 3. (A and B) Berry curvature distribution, ΩðkÞ, in the lowest conduction
band (labeled “1” in Fig. 2B) obtained from the Hamiltonian in Eq. 2. Two
choices of signs, (A) sgnðΔgÞ= sgnðm3Þ and (B) sgnðΔgÞ=−sgnðm3Þ, yield
Cv =−1 and Cv = 0, respectively. The hot spots of ΩðkÞ at DP (point ~Γ) and SBZ
corners ~K, ~K′ correspond to gap opening and avoided band crossing regions.
The central hot spot carries a net Berry flux π, whereas the corner hot spots
carry a net flux ±π=2 (see the text). Parameters used: m3 = 20 meV,
e0 = Zvjbj= 300 meV, Δg =m3 in A; Δg =−m3 in B. (C and D) Valley Hall con-
ductivity, σvxy (Eq. 14), vs. carrier density for the two minibands above and
below DP: σvxy changes sign for topological bands (C) but keeps the same sign
for nontopological bands (D) (n0 is the density needed to fill the first miniband,
other parameter values are the same as in A and B).
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Topological Bloch bands in graphene superlattices
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We outline a designer approach to endow widely available plain
materials with topological properties by stacking them atop other
nontopological materials. The approach is illustrated with a model
system comprising graphene stacked atop hexagonal boron
nitride. In this case, the Berry curvature of the electron Bloch bands
is highly sensitive to the stacking configuration. As a result, electron
topology can be controlled by crystal axes alignment, granting a
practical route to designer topological materials. Berry curvature
manifests itself in transport via the valley Hall effect and long-range
chargeless valley currents. The nonlocal electrical response mediated
by such currents provides diagnostics for band topology.

topological bands | graphene | van der Waals heterostructure

Electronic states in topological materials possess unique
properties including a Hall effect without an applied mag-

netic field (1–3) and topologically protected edge states (4, 5).
Accessing nontrivial electron topology depends on identifying
materials in which symmetry and interactions produce topolog-
ical Bloch bands. Such bands can only arise when multiple re-
quirements, such as a multiband structure with a Berry phase and
suitable symmetry, are fulfilled. As a result, topological bands
are found in only a handful of exotic materials in which good
transport properties are often lacking. Formulating practical
methods for transforming widely available materials with a rea-
sonably high carrier mobility (such as silicon or graphene) into a
topological phase remains a grand challenge.
Here, we lay out an approach for engineering designer

topological materials out of stacks of generic materials—
“Chernburgers.” Our scheme naturally produces (i) topological
bands with different Chern invariant values, and (ii) tunable
topological transitions. As an illustration, we analyze graphene
on hexagonal boron–nitride heterostructures (G/hBN), where
broken inversion symmetry is expected to generate Berry cur-
vature (6, 7), a key ingredient of topological materials. Indeed,
recently valley currents have been demonstrated in a G/hBN
system (8) signaling the presence of Berry curvature (6). As we
will show, Berry curvature in G/hBN can be molded by stacking
configuration, leading to a large variability in properties.
Transitions between different topological states can be induced
by a slight change in stacking angle.
Topological bands in G/hBN arise separately for valley K and

valley K′. Graphene bandstructure reconstruction due to the
coupling to hBN produces superlattice minibands (9–14), with
Berry curvature ΩðkÞ developing near avoided crossings. The
minibands for each valley possess a valley Chern number

Cv =
1
2π

Z

k∈SBZ

d2kΩðkÞ, [1]

where the integral is taken over the entire superlattice Brillouin
zone (SBZ) in one valley (K or K′). As discussed below, for
commensurate stackings (Fig. 1A) Cv =±1 for the lowest mini-
bands. In contrast, for incommensurate moiré superlattice struc-
tures (Fig. 1B), the invariant [1] vanishes in these minibands,
Cv = 0. The difference in the behavior for these configurations
arises from the difference in sign of the contributions to Berry

curvature from regions near SBZ center ~Γ (the Dirac point,
hereafter denoted DP) and corners ~K, ~K′ (Fig. 2). We will see
that these contributions add in the commensurate case but sub-
tract for the incommensurate case, yielding topological and non-
topological bands, respectively (Fig. 1).
Interestingly, the conditions for both topological and non-

topological bands are met by currently available systems. Indeed,
both commensurate and incommensurate stackings have been
recently identified in G/hBN by scanning probe microscopy (15,
16). Further, the commensurate–incommensurate transition can
be controlled by twist angle between G and hBN, providing a
practical route in which to tailor electron topology via a tunable
structural transition.
We note that time-reversal (TR) symmetry requires that ΩðkÞ

in K and K ′ valleys have opposite signs. As a result, the total
Chern invariant always vanishes, CvðKÞ+ CvðK′Þ= 0. However,
the weakness of intervalley scattering (17, 18) can enable long-
range topological currents in individual valleys. As we will see,
the nonlocal electrical signals mediated by such currents can
provide diagnostics for valley band topology.
We also note that topological bands in graphene are some-

times presumed either impossible or impractical. Indeed, a
connection between K and K ′ bands at high energies, whenever
present, renders valley-specific topological invariants ill-defined
(19, 20). Proposals relying on large spin–orbit coupling (21, 22)
are also sensitive to disorder; proposals in other systems such as
optical flux lattices (23) suffer from similar implementation pit-
falls. Our scheme circumvents these difficulties by exploiting
Bragg scattering in the G/hBN superlattice to create energy gaps
above and below the K and K′ Dirac points (Fig. 2). The Dirac
points, sandwiched between these gaps, are no longer connected
in a single band; the resulting minibands possess well-defined
topological invariants.

Minimal Model for Superlattice Bands
Modeling the superlattice bandstructure is greatly facilitated by
several aspects of the G/hBN system. First is the long-wavelength
character of superlattice periodicity, which results from nearly
identical periods of graphene and hBN crystal structure. For

Significance

A family of designer topological materials is introduced, com-
prising stacks of two-dimensional materials which by them-
selves are not topological, such as graphene. Previously, topo-
logical bands in graphene were presumed either impossible or
impractical. The designer approach turns graphene into a ro-
bust platform with which a host of topological behavior can be
realized and explored.
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No interactions needed - just coupling to hBN - to generate 
Dirac mass and form valley Chern bands  



Valley ferromagnetism

Valley polarization
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� = nK � nK0

Orbital magnetization

6. Transport

packet. So this term is the natural group velocity of a wave in a dispersive
medium. There is only one subtlety in that term: the band energy enk has
been replaced by ẽnk, which indicates the slight modification:

(121) ẽnk = en(k)� B · mnk.

Here mnk is a quantity associated with the Bloch states, and can be interpreted
as an orbital magnetic moment. It is due to rotational motion of charge inside
the spatial extent of a wavepacket. It has a slightly complicated form but can
be calculated if the Bloch functions are known,

(122) mµ(k) =
�ie

2
eµnl

⌧
∂unk
∂kn

|(Hk � enk)|
∂unk
∂kl

�
.

In this expression, Hk is the Bloch Hamiltonian from Eq. (79), and we used
the notation that

(123) hun0k0 |O|unki ⌘
Z

p.u.c.

u⇤
n0k0(x)Ounk(x).

Note the integral is just over a single primitive unit cell, and we use the nor-
malization convention

(124) hunk|unki =
Z

p.u.c.

|unk(x)|2 = 1.

These definitions are implied any time we write a bra-ket expression with a
unk inside the bras and kets. Eq. (122) looks a little involved but we will at
least get a bit more insight into it shortly.

Berry curvature and anomalous velocity

The second term in the first line of Eq. (119) is novel, and is called the anoma-
lous velocity. It has a striking similarity to the Lorentz force term in the second
line, but it is “dual”: momentum and position have exchanged their roles in
the anomalous velocity. The quantity which plays the role of the magnetic
field is called the Berry curvature,

(125) Wµ
nk = ieµnl

⌧
∂unk
∂kn

|∂unk
∂kl

�
.

The Berry curvature is a fundamental quantity not only in band structure
but in any quantum mechanics problem which depends upon at least two
parameters. We will illustrate how it arises through the specific example of the
Bloch hamiltonian Hk, which depends upon k as a parameter. The eigenstates
are just the periodic parts of the Bloch functions, and we will use bra-ket
notations as in the previous two equations,

(126) Hk|unki = enk|unki.

46

Hall conductivity
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Z
d2k nF (✏nk)⌦n(k)
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Valley ferromagnetism

interactions

Differences from normal FMs: 
• Two dimensional 
• Dominant orbital moment 
• Extreme Ising anisotropy 
• Large Hall angle at low T



Current control

terminals k and ‘ when a current Iij flows from
terminal i to j, is shown in Fig. 3A for two values
of n/ns. When the density is tuned away from the
center of themagnetic regime,R54,14 is ~5 kilohms
and nearly independent of the applied field. We
ascribe this behavior to diffusive bulk transport
and a finite contact resistance to ground. By con-
trast, at the center of the magnetic regime, we
observe a hysteresis loopwithR↓

54;14 ¼ 3:3 kilohms
and R↑

54;14 ¼ 9:1 kilohms, where R↑ð↓Þ
ij;k‘ are the

remanent resistances at zero field after the sam-
ple has been magnetized by an upward (down-
ward) applied field [more precisely defined in
(17) in the discussion of calculating RAH

yx ]. The
difference jR↑

54;14 $ R↓
54;14j is largest near the

peak inRAH
yx shown in Fig. 2B. For a QAH effect,

we would expect R54;14 to be either 0 or h/Ce2

(25,813 ohms for C = 1). Although the difference
jR↑

54;14 $ R↓
54;14j ¼ 5:8 kilohms is smaller than

the ideal C = 1 QAH case by a factor of 4, it could
be consistent with a QAH state in combination
with other dissipative transportmechanisms or a
complex network of domain walls (in addition to
contact resistance). These three-terminal mea-
surements alone cannot rule out diffusive bulk
transport with a very large (anomalous) Hall co-
efficient, but four-terminal measurements sug-
gest this is unlikely.

In contrast to the three-terminal case, four-
terminal nonlocal resistances where the voltage
is measured far from the current path are expo-
nentially small in the case of homogeneous dif-
fusive conduction (32). Forn/ns = 0.725, away from
the peak in RAH

yx , the measured R54,12 = 10 ohms
(Fig. 3B) is indeed small. In the magnetic regime
at n/ns = 0.749, however, the four-terminal re-
sistance is two orders of magnitude larger than
the 3 ohms expected from homogeneous bulk con-
duction, with a hysteresis loop yieldingR↓

54;12 ¼
42 ohms and R↑

54;12 ¼ 240 ohms. Although this
four-terminal resistance would be zero in an ideal
QAH state with pure chiral edge conduction, the
presence of additional conduction paths, such as
extra nonchiral edge states (33), parallel bulk con-
duction, or transport along magnetic domain
walls (34, 35), can result in large, hysteretic non-
local resistances [we elaborate on this discussion
in (17)].
We find that the n/ns = 3

4= state is extremely
sensitive to the direction of an applied current.
All of the measurements described above were
performedwith a 5 nA RMS ac bias current, but
we observed curious behavior when we added a
dc bias Idc to this small ac signal. Sweeping Idc
between±75 nAwithB= 0 (Fig. 4), we found that
the differential Hall resistance dVyx/dI follows a
hysteresis loop reminiscent of its magnetic field
dependence. This loop was very repeatable after
a slight deviation from the first trace (black trace,
Fig. 4), for which Idc was ramped from 0 to
−75 nA after first magnetizing the sample in a
−500mT field. Additional details about the nature
of the jumps in differential resistance and the
effect of external magnetic field on the hysteresis
loops are presented in (17).
The switching of dVyx/dI clearly demonstrates

that, like the external magnetic field, the applied
dc biasmodifies themagnetization. This phenom-

enon might be similar to switching in other
ferromagnetic materials, in which spin-transfer
or spin-orbit torques can influence the magneti-
zation. However, the current necessary to flip the
moment appears to be very small (36). It has also
been proposed that a current could efficiently
drive domainwallmotion in aQAH systemowing
to quantum interference effects from the edge
states (37).
Our observation of a large hysteretic AH effect

establishes a ferromagnetic moment associated
with the apparent 3 4= correlated insulating state.
Specifically, we suggest that this state is a Chern
insulator, with the AH effect arising intrinsically
from Berry curvature in the band structure. Ex-
trinsic mechanisms for AH, based on scattering
rather than band topology, cannot contribute to
the Hall resistance of an insulator (23), yet the
measured RAH

yx is largest at an apparent insulat-
ing state. Furthermore, our measurements yield
a Hall angle ryx/rxx up to 1.4, almost an order of
magnitude larger than any other reported AH
(38), apart from magnetic topological insulators
exhibiting a QAH effect (here, we convert our
measured resistances to resistivities, which we
approximate as spatially homogeneous). With
ryx ≲ 0:4h=e2 and rxx ≈ 0:3h=e2, the present de-
vice is not an ideal Chern insulator. Yet after early
magnetically doped topological insulators showed
comparable values (39–41), growth improvements
in those materials soon yielded QAH (24–26). If
the present device is a nascent Chern insulator,
the largest measured RAH

yx ≈ h=2:5e2 limits the
possible Chern number to C = 1 or 2.
In combination with nonlocal transport that

appears incompatible with homogeneous bulk
conduction, the sheer magnitudes of the Hall
and longitudinal resistances suggest a picture
of chiral edge modes in combination with a
poorly conducting bulk or a network of magnetic
domain walls resulting from inhomogeneity [see
(17) for additional discussion]. These possibilities
can be directly explored in future experiments
using spatially resolved magnetometry to search
for domains and transport in a Corbino geome-
try to measure bulk conduction independent of
chiral edgemodes if domainwalls can be removed.
Achieving a Chern insulator state by definition

requires opening a topologically nontrivial gap.
The low-energy flat minibands in magic-angle
TBG are empirically isolated from higher order
bands (4), which is expected when taking into
account mutual relaxation of the two layers’ lat-
tices (3). The low energy conduction and valence
minibands have been variously predicted tomeet
at Dirac points at the CNP, whichmay (42, 43) or
may not (44, 45) be symmetry protected. The ro-
tational alignment of the TBG to one of the hBN
cladding layers in our device could thus be key to
the observed AH effect: the associated periodic
moiré potential should, on average, break A-B
sublattice symmetry, opening or enhancing a
gap at the mini-Dirac points. A gap associated
with such symmetry breaking has been seen
(19, 46, 47) and explained (48–50) in heterostruc-
tures of monolayer or Bernal-stacked bilayer
graphene aligned with hBN. At 3 4= filling of the
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Fig. 3. Nonlocal resistances providing
evidence of chiral edge states. (A and B) Three-
and four-terminal nonlocal resistances R54,14

(A) and R54,12 (B), measured at 2.1 K with
D/D0 = −0.22 V/nm on upward and downward
sweeps of the magnetic field (solid and dashed
traces, respectively). For n/ns = 0.725 (blue)
away from the peak in AH resistance RAH

yx , the
nonlocal resistances are consistent with diffusive
bulk transport. However, with n/ns = 0.749 (red)
in the magnetic regime where RAH

yx is maximal,
large, hysteretic nonlocal resistances suggest
chiral edge states are present. (Insets) Sche-
matics of the respective measurement configu-
rations. Green arrows in the upper inset represent
the apparent edge state chirality for positive
magnetization, whereas in the lower inset they
reflect negative magnetization.

dc
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Fig. 4. Current-driven switching of the magne-
tization. Differential Hall resistance dVyx/dI
measured with a 5 nA ac bias as a function of an
applied dc bias Idc at 2.1 K with D/D0 = −0.22 V/nm
and n/ns = 0.749. After magnetizing the sample
in a −500 mT field and returning to B = 0, Idc was
swept from 0 to −75 nA (black trace), resulting
in dVyx/dI changing sign. Two successive loops
in Idc between ±75 nA demonstrate reversible
and repeatable switching of the differential
Hall resistance (red and blue, with solid and
dashed traces corresponding to opposite sweep
directions). Note that dVyx/dI is plotted against
−Idc for better comparison with magnetic field
hysteresis loops.
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How does the current couple?

Topological spintronics in a pure orbital ferromagnet



Quantized regime

• no dissipation, only edge state transport 
• Charge of each edge is separately conserved

✤Can view current-carrying state as quasi-equilibrium ensemble 
where current determines edge occupation

Can formulate F(I,M)

⇢xx ⌧ ⇢xy
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A schematic of the mechanism of domain selection is shown in Fig. S17. For simplicity of illustration we assume one edge is1

much “sharper” than the other, which means that its dispersion is much steeper than the other “smooth” edge. The sharp edge2

with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport because electrons move faster on this edge. This3

allows us to draw a picture of the dispersion just near one edge. In the figure, the edge dispersion is shown in black for one sign of4

the magnetization/Hall conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal5

copies, so are reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and6

down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for M < 0. Focus7

on the positive current case I > 0. We seek to find the energy difference for fixed current but opposite domains. Consider first8

the M > 0 domain. The positive current raises the Fermi level, populating additional states. The total energy of those states is9

the integral over the domain of added states of the single particle energy of those states: this defines the gray shaded area under10

the black dispersion curve and above the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the11

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area12

above the blue curve and below the k axis for k > 0, ✏ < 0 is the energy cost for creating these hole states. One can see that the13

blue area is not equal to the gray area, and that the inequality is due to the curvature of the dispersion. The difference in the two14

areas is the energy difference the two domains due to the non-equilibrium current.15

M > 0M < 0

k

✏

FIG. S17. Schematic illustration of an asymmetric “fast” edge and the population changes at this edge due to a current I > 0 for positive and
negative domains, shown in black and blue. The dashed lines show the Fermi energy for the two cases in the presence of the current. The
difference of the two shaded areas is the energy difference between the two domains due to the current (see text).

Estimates of effect magnitude in tBLG16

To make an estimate of the magnitude of these effects, we use the same “fast edge” approximation to simplify to a single17

velocity and mass parameter. Then the cubic term in the free energy is18

F ⇠ (2⇡)3

3⇡

~2sign(v)
me3v3

LI3. (S10)

Here we restored the dependence on ~. The contribution the current to the free energy is enhanced by decreases in the edge19

mass and velocity, which are determined by non-universal edge physics. The free energy is particularly sensitive to v and I , since20

both appear cubed, which renders making precise estimates difficult. Nonetheless, to show consistency, we take v = 5⇥104 m/s21

(a typical literature value for magic angle tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which22

is the order of the switching currents at low temperature (since the theory has been carried at T = 0). This gives an energy23

F = 4.0 meV, which is similar to the magnetostatic energy assuming an orbital moment per electron of a few Bohr magnetons.24

Uncertainties in the edge properties as well as thermal renormalizations not taken into account here make it hard to make a more25

quantitative comparison at present. These are interesting subjects for future work.26

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH device with gate defined edges. In such a27

device, one could systematically vary the sharpness and symmetry of the edge potential to probe which effects are most relevant28

to critical switching currents.29

�F ⇠ ~2
me3v3

LI3
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Current Driven Magnetization Reversal in Orbital Chern Insulators

Chunli Huang, Nemin Wei, and Allan H. MacDonald
Department of Physics, University of Texas at Austin, Austin TX 78712

(Dated: September 22, 2020)

Graphene multilayers with flat moiré minibands can exhibit the quantized anomalous Hall e↵ect
due to the combined influence of spontaneous valley polarization and topologically non-trival valley-
projected bands. The sign of the Hall e↵ect in these Chern insulators can be reversed either by
applying an external magnetic field, or by driving a transport current through the system. We
propose a current-driven mechanism whereby reversal occurs along lines in the (current I, magnetic-
field B) control parameter space with slope dI/dB = (e/h)MAM (1 � �2)/�, where M is the
magnetization, AM is the moiré unit cell area, and � < 1 is the ratio of the chemical potential
di↵erence between valleys along a domain wall to the electrical bias eV .

Introduction:— Magnetism in solid state system is pro-
duced by both spin and orbital electronic angular mo-
mentum, but the two constituents normally have a decid-
edly asymmetric relationship in which spins order spon-
taneously and orbital magnetism is induced parasitically
by spin-orbit interactions. Current control of ordered
spins is now routine in spintronics [1–4]. The recent dis-
covery [5, 6] of spontaneous orbital order manifested by
a quantum anomalous Hall e↵ect in graphene moiré su-
perlattice systems, and of current driven magnetization
reversal in those systems, is the first demonstration of,
an influence of a transport current on orbital magnetism.
In this Letter we propose an experimentally testable ex-
planation for this e↵ect.

The quantum anomalous Hall e↵ect, a property of in-
sulators whose occupied bands carry a net Chern number,
is common in graphene moiré superlattice systems [5–9]
when the minibands are flat and the moiré band filling
factor ⌫ = neAM is close to an odd integer. (Here ne is
the carrier density and AM is the moiré unit cell area.)
In magic angle twisted bilayer graphene [10] (MATBG),
for example, the intriguing family of strongly correlated
states in the �4 < ⌫ < 4 flat-band regime includes super-
conductors and Mott insulators[11–14], and also a Chern
insulator state with a Hall resistance close [5, 6] to the
von Klitzing constant. The quantized Hall conductance
appears at ⌫ = 3 when the graphene bilayer is aligned
with an adjacent hexagonal boron nitride layer, but un-
like the case of magnetized topological insulators [15–
17], cannot be a consequence of spin-order plus spin-
orbit coupling since the latter is negligible in pristine
graphene. The Chern insulator is instead thought to
be a combined consequence of the non-trivial topology
of moiré minibands in graphene multilayers [18–26] and
momentum-space condensation [27–29] in the form of
spontaneous valley polarization. Indeed, Hartree-Fock
calculations [25, 30] predict that odd integer ⌫ insula-
tors in graphene multilayers are very often Chern insu-
lators. We refer to these states as orbital Chern insula-
tors (OCIs) although they break time reversal symmetry
in both spin and orbital degrees of freedom, because the
main observable - the anomalous Hall e↵ect - is of orbital

origin, and because spin-order cannot be maintained at
finite temperature when spin-orbit interactions are neg-
ligible. We therefore drop the spin-degree of freedom
from the following discussion. The properties of OCIs
are quite distinct[31] from those of spin Chern insulators
[17]. From a statistical physics point of view, an OCI is
an Ising ferromagnet in which the total Chern number of
the occupied bands C± = ±C can be viewed as an order
parameter.

Experiments have shown that the Hall conductance of
an OCI can be switched between +Ce2/h and �Ce2/h,
signaling a complete reversal of orbital magnetization
[5, 6], by applying either an external magnetic field
B and/or an electrical bias voltage V . The magneti-
zation reversal mechanisms in conventional spin ferro-
magnets are relatively well established [32–34], and in-
volve a combination of Stoner-Wohlfarth single domain
switching and domain-wall depinning, driven by a com-
bination of spin-transfer torques, spin-orbit torques, and
magnetic fields. Consensus has however not yet been
reached on the microscopics of orbital-magnetization re-
versal, although some interesting proposals have been
put forward [6, 35, 36]. Here we analyze the case of
current driven reversal in an OCI with a bulk that is
perfectly insulating so that gapless charge excitations
are present only at the sample edge and along domain
walls. We find that both magnetic fields B and trans-
port bias voltages V apply pressure to domain walls and
predict that switching occurs along a line in the (current
I, magnetic-field B) control parameter space with slope
dI/dB = (e/h)MAM (1��2)/�, where M is the magne-
tization, AM is the moiré unit cell area, and � < 1 is the
ratio of the chemical potential di↵erence between valleys
along a domain wall to the electrical bias voltage. In the
following we first argue that moiré superlattice OCIs are
described by an O(3) field theory in which the vector or-
der parameter characterizes the local valley polarization
direction. This property allows domain pinning to be
analyzed using conventional Landau-Lifshitz equations.

Valley-pseudospins in MATBG:— The valley-
projected ⇡-bands of twisted bilayer graphene are
described by a low-energy continuum model [10] in
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Dissipative Regime

A fully non-equilibrium problem, bulk 2d physics



Magneto-electric effect

strain but in the presence of the staggered potential which is set to
be Δ ¼ 17 meV, the distribution of the orbital magnetic moment
in the mini-Brillouin zone is shown in Fig. 2a. It respects the C3

symmetry as mz
s;ξ;ν qð Þ ¼ mz

s;ξ;ν R̂2π
3
q

! "
. The orbital magnetic

moments are particularly large around Km
ξ and Γm in the mini-

Brillouin zone, where the flat band hybridizes with adjacent
bands. The strength of the orbital magnetic moments can reach
about 30μb with μb ¼ e_

2me
the Bohr magneton. In the presence of

strain, the C3z symmetry of mz is broken as shown in Fig. 2b. If
time-reversal symmetry is preserved, the orbital magnetic
moment has the constraint mz

s;þ;ν qð Þ ¼ %mz
s;%;ν %qð Þ, so that no

net magnetization is allowed. However, due to the C3 symmetry
breaking, applying a current would create an imbalance in the
magnetic moment distribution and thus a net out-of-plane
magnetization40 as demonstrated in the next section.

Magnetoelectric response in TBG. In quasi-two-dimensional
materials with finite magnetoelectric response, the electric field
induced magnetization can be described as

Mi ¼
X

i;j

αijEj; ð7Þ

with i; j ¼ x; y, and αij the magnetoelectric susceptibility. As
shown in refs. 40,41, the general forms of the components of the
magnetoelectric susceptibility tensor αij can be determined by the
crystal symmetry of the material. The general forms of αij for
point groups D6, C3, and C1 which are relevant to TBG are shown
in Table 1. It is clear from Table 1 that it is possible to generate an
out-of-plane magnetization by in-plane electric fields only if the
crystal point group symmetry is reduced to C1.

To calculate αij for TBG, we can use the linear response theory
which gives47,48

αij ¼ %τ
e
_

Z

q

X
s;ξ;ν

Mi
s;ξ;ν qð Þvjs;ξ;ν qð Þf 0ðEs;ξ;νÞ; ð8Þ

where
R
q &

1
2πð Þ2
R
BZ dq, f Eð Þ is the Fermi Dirac distribution

function, v j
s;ξ;ν ¼ ∂qjEs;ξ;ν qð Þ is the group velocity, τ is the

effective scattering time, and the total magnetic moment
Ms;ξ;ν qð Þ ¼ ms;ξ;ν qð Þ þ Ss;ξ;ν qð Þ is composed of both the orbital
magnetic moment ms;ξ;ν qð Þ and the spin magnetic moment
Ss;ξ;ν ¼ hus;ξ;νðqÞj 12 gμbσjus;ξ;νðqÞi with the Lande g factor g ¼ 2.

To be specific, we apply a uniaxial strain with ε ¼ 0:1% along
the zig-zag edge direction of the bottom layer graphene. The

orbital magnetization in the Brillouin zone in the presence of
strain is shown in Fig. 2b. The resultant magnetoelectric
susceptibility can then be evaluated assuming the electron
scattering time to be τ ¼ 10 ps49. For the conduction band
ν ¼ c, the magnetoelectric susceptibility αzx; αzy is shown in
Fig. 3a as a function of the Fermi energy, where the Cartesian
coordinate is set to have the x-axis along the angular bisector
between the two zig-zag directions of the top and bottom
graphene layers. The magnetoelectric susceptibility is maximized
near the energy with the largest density of states. Interestingly,
αzx; αzy are still very large even when the density of states is very
low. This is because the orbital magnetizations carried by the
Bloch states near Γm are very large as a result of the Berry
curvatures of the flat bands. This allows a large magnetization to
be induced by a small current. As shown in the Supplementary
Fig. 2, the current-induced orbital magnetization can be even
stronger when strain is increased.

Assuming an external electric field of 104 V/m, we obtain the
out-of-plane magnetization under different electric field direc-
tions as shown in Fig. 3b, where the increasing radius in the polar
plot denotes the Fermi energy increases from the conduction
band bottom to the top. The magnetization can reach
0:02 μb=nm

2, 1–2 orders larger than in the largest Rashba
spin–orbit coupling materials such as Au (111) surfaces and
Bi/Ag bilayers50,51. The current-induced magnetization is aniso-
tropic with respect to the direction of the current and it switches
sign under reversal of the electric field. It is important to note that
the current-induced magnetization discussed here can appear at a
general filling factor even absent spontaneous ferromagnetism in
the sample. This current-induced magnetization should be
observable experimentally through optical Kerr effects as in the
case of transition metal dichalcogenides52.

Current-induced magnetization switching in TBG. TBG in the
non-interacting limit possess valley and spin degeneracy for each
flat band1–3,7,11,18,19. However, near the magic angles, the narrow
band width at the Fermi level magnifies the role of interactions,
and interaction-driven spontaneous symmetry breaking is
observed experimentally37,38. Specifically, at 3/4 filling of the
conduction band in hBN-aligned TBG with inter-graphene twist
angle 1:20' (ref. 37) a giant anomalous Hall effect of order h=e2

has been reported; and for TBG with twist angle 1:15'38, quan-
tized anomalous Hall effect has been reported, in both cases at
zero external magnetic field. Hysteresis in the Hall conductance
under out-of-plane magnetic fields suggests spontaneous ferro-
magnetism with out-of-plane magnetization.

The presence of net magnetization as revealed by anomalous
Hall resistance37,38 indicates that the spin and/or valley
degeneracies are lifted, possibly by interactions7,24–27. As a result,
there are four bands (which originated from the fourfold
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Fig. 2 The orbital magnetic moments of the Bloch electrons. a The orbital
magnetic moments carried by the Bloch electrons in the mini-Brillouin zone
with no strain. b The orbital magnetic moments of the electrons when a
uniaxial strain characterized by ε ¼ 0:1% is introduced. The staggered
potential is set to be Δ ¼ 17 meV in both cases. In b, C3 symmetry is broken
and the Brillouin zone is deformed.

Table 1 Magnetoelectric susceptibility pseudotensor α for
D6, C3, and C1 point group.

Point group α Point group α

D6
αk 0 0
0 αk 0
0 0 αzz

0

@

1

A
C3

αk !α! 0
α! αk 0
0 0 αzz

0

@

1

A

C1
αxx αxy αxz
αyx αyy αyz
αzx αzy αzz

0

@

1

A

αij with i; j ¼ x; y; z are in general the elements in α. In D6 and C3, αxx ¼ αyy is denoted as
αk ¼ αxx ¼ αyy . In C3, the antisymmetric off diagonal element is denoted as α! ¼ !αxy ¼ αyx .
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strain but in the presence of the staggered potential which is set to
be Δ ¼ 17 meV, the distribution of the orbital magnetic moment
in the mini-Brillouin zone is shown in Fig. 2a. It respects the C3

symmetry as mz
s;ξ;ν qð Þ ¼ mz

s;ξ;ν R̂2π
3
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. The orbital magnetic

moments are particularly large around Km
ξ and Γm in the mini-

Brillouin zone, where the flat band hybridizes with adjacent
bands. The strength of the orbital magnetic moments can reach
about 30μb with μb ¼ e_

2me
the Bohr magneton. In the presence of

strain, the C3z symmetry of mz is broken as shown in Fig. 2b. If
time-reversal symmetry is preserved, the orbital magnetic
moment has the constraint mz

s;þ;ν qð Þ ¼ %mz
s;%;ν %qð Þ, so that no

net magnetization is allowed. However, due to the C3 symmetry
breaking, applying a current would create an imbalance in the
magnetic moment distribution and thus a net out-of-plane
magnetization40 as demonstrated in the next section.

Magnetoelectric response in TBG. In quasi-two-dimensional
materials with finite magnetoelectric response, the electric field
induced magnetization can be described as

Mi ¼
X

i;j

αijEj; ð7Þ

with i; j ¼ x; y, and αij the magnetoelectric susceptibility. As
shown in refs. 40,41, the general forms of the components of the
magnetoelectric susceptibility tensor αij can be determined by the
crystal symmetry of the material. The general forms of αij for
point groups D6, C3, and C1 which are relevant to TBG are shown
in Table 1. It is clear from Table 1 that it is possible to generate an
out-of-plane magnetization by in-plane electric fields only if the
crystal point group symmetry is reduced to C1.

To calculate αij for TBG, we can use the linear response theory
which gives47,48
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BZ dq, f Eð Þ is the Fermi Dirac distribution

function, v j
s;ξ;ν ¼ ∂qjEs;ξ;ν qð Þ is the group velocity, τ is the

effective scattering time, and the total magnetic moment
Ms;ξ;ν qð Þ ¼ ms;ξ;ν qð Þ þ Ss;ξ;ν qð Þ is composed of both the orbital
magnetic moment ms;ξ;ν qð Þ and the spin magnetic moment
Ss;ξ;ν ¼ hus;ξ;νðqÞj 12 gμbσjus;ξ;νðqÞi with the Lande g factor g ¼ 2.

To be specific, we apply a uniaxial strain with ε ¼ 0:1% along
the zig-zag edge direction of the bottom layer graphene. The

orbital magnetization in the Brillouin zone in the presence of
strain is shown in Fig. 2b. The resultant magnetoelectric
susceptibility can then be evaluated assuming the electron
scattering time to be τ ¼ 10 ps49. For the conduction band
ν ¼ c, the magnetoelectric susceptibility αzx; αzy is shown in
Fig. 3a as a function of the Fermi energy, where the Cartesian
coordinate is set to have the x-axis along the angular bisector
between the two zig-zag directions of the top and bottom
graphene layers. The magnetoelectric susceptibility is maximized
near the energy with the largest density of states. Interestingly,
αzx; αzy are still very large even when the density of states is very
low. This is because the orbital magnetizations carried by the
Bloch states near Γm are very large as a result of the Berry
curvatures of the flat bands. This allows a large magnetization to
be induced by a small current. As shown in the Supplementary
Fig. 2, the current-induced orbital magnetization can be even
stronger when strain is increased.

Assuming an external electric field of 104 V/m, we obtain the
out-of-plane magnetization under different electric field direc-
tions as shown in Fig. 3b, where the increasing radius in the polar
plot denotes the Fermi energy increases from the conduction
band bottom to the top. The magnetization can reach
0:02 μb=nm

2, 1–2 orders larger than in the largest Rashba
spin–orbit coupling materials such as Au (111) surfaces and
Bi/Ag bilayers50,51. The current-induced magnetization is aniso-
tropic with respect to the direction of the current and it switches
sign under reversal of the electric field. It is important to note that
the current-induced magnetization discussed here can appear at a
general filling factor even absent spontaneous ferromagnetism in
the sample. This current-induced magnetization should be
observable experimentally through optical Kerr effects as in the
case of transition metal dichalcogenides52.

Current-induced magnetization switching in TBG. TBG in the
non-interacting limit possess valley and spin degeneracy for each
flat band1–3,7,11,18,19. However, near the magic angles, the narrow
band width at the Fermi level magnifies the role of interactions,
and interaction-driven spontaneous symmetry breaking is
observed experimentally37,38. Specifically, at 3/4 filling of the
conduction band in hBN-aligned TBG with inter-graphene twist
angle 1:20' (ref. 37) a giant anomalous Hall effect of order h=e2

has been reported; and for TBG with twist angle 1:15'38, quan-
tized anomalous Hall effect has been reported, in both cases at
zero external magnetic field. Hysteresis in the Hall conductance
under out-of-plane magnetic fields suggests spontaneous ferro-
magnetism with out-of-plane magnetization.

The presence of net magnetization as revealed by anomalous
Hall resistance37,38 indicates that the spin and/or valley
degeneracies are lifted, possibly by interactions7,24–27. As a result,
there are four bands (which originated from the fourfold
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Fig. 2 The orbital magnetic moments of the Bloch electrons. a The orbital
magnetic moments carried by the Bloch electrons in the mini-Brillouin zone
with no strain. b The orbital magnetic moments of the electrons when a
uniaxial strain characterized by ε ¼ 0:1% is introduced. The staggered
potential is set to be Δ ¼ 17 meV in both cases. In b, C3 symmetry is broken
and the Brillouin zone is deformed.

Table 1 Magnetoelectric susceptibility pseudotensor α for
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Giant orbital magnetoelectric effect and
current-induced magnetization switching
in twisted bilayer graphene
Wen-Yu He 1✉, David Goldhaber-Gordon2,3 & K. T. Law 1✉

Recently, quantum anomalous Hall effect with spontaneous ferromagnetism was observed in

twisted bilayer graphenes (TBG) near 3/4 filling. Importantly, it was observed that an

extremely small current can switch the direction of the magnetization. This offers the pro-

spect of realizing low energy dissipation magnetic memories. However, the mechanism of the

current-driven magnetization switching is poorly understood as the charge currents in gra-

phenes are generally believed to be non-magnetic. In this work, we demonstrate that in TBG,

the twisting and substrate induced symmetry breaking allow an out of plane orbital mag-

netization to be generated by a charge current. Moreover, the large Berry curvatures of the

flat bands give the Bloch electrons large orbital magnetic moments so that a small current

can generate a large orbital magnetization. We further demonstrate how the charge current

can switch the magnetization of the ferromagnetic TBG near 3/4 filling as observed in the

experiments.
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strain but in the presence of the staggered potential which is set to
be Δ ¼ 17 meV, the distribution of the orbital magnetic moment
in the mini-Brillouin zone is shown in Fig. 2a. It respects the C3

symmetry as mz
s;ξ;ν qð Þ ¼ mz

s;ξ;ν R̂2π
3
q

! "
. The orbital magnetic

moments are particularly large around Km
ξ and Γm in the mini-

Brillouin zone, where the flat band hybridizes with adjacent
bands. The strength of the orbital magnetic moments can reach
about 30μb with μb ¼ e_

2me
the Bohr magneton. In the presence of

strain, the C3z symmetry of mz is broken as shown in Fig. 2b. If
time-reversal symmetry is preserved, the orbital magnetic
moment has the constraint mz

s;þ;ν qð Þ ¼ %mz
s;%;ν %qð Þ, so that no

net magnetization is allowed. However, due to the C3 symmetry
breaking, applying a current would create an imbalance in the
magnetic moment distribution and thus a net out-of-plane
magnetization40 as demonstrated in the next section.

Magnetoelectric response in TBG. In quasi-two-dimensional
materials with finite magnetoelectric response, the electric field
induced magnetization can be described as

Mi ¼
X

i;j

αijEj; ð7Þ

with i; j ¼ x; y, and αij the magnetoelectric susceptibility. As
shown in refs. 40,41, the general forms of the components of the
magnetoelectric susceptibility tensor αij can be determined by the
crystal symmetry of the material. The general forms of αij for
point groups D6, C3, and C1 which are relevant to TBG are shown
in Table 1. It is clear from Table 1 that it is possible to generate an
out-of-plane magnetization by in-plane electric fields only if the
crystal point group symmetry is reduced to C1.

To calculate αij for TBG, we can use the linear response theory
which gives47,48

αij ¼ %τ
e
_

Z

q

X
s;ξ;ν

Mi
s;ξ;ν qð Þvjs;ξ;ν qð Þf 0ðEs;ξ;νÞ; ð8Þ

where
R
q &

1
2πð Þ2
R
BZ dq, f Eð Þ is the Fermi Dirac distribution

function, v j
s;ξ;ν ¼ ∂qjEs;ξ;ν qð Þ is the group velocity, τ is the

effective scattering time, and the total magnetic moment
Ms;ξ;ν qð Þ ¼ ms;ξ;ν qð Þ þ Ss;ξ;ν qð Þ is composed of both the orbital
magnetic moment ms;ξ;ν qð Þ and the spin magnetic moment
Ss;ξ;ν ¼ hus;ξ;νðqÞj 12 gμbσjus;ξ;νðqÞi with the Lande g factor g ¼ 2.

To be specific, we apply a uniaxial strain with ε ¼ 0:1% along
the zig-zag edge direction of the bottom layer graphene. The

orbital magnetization in the Brillouin zone in the presence of
strain is shown in Fig. 2b. The resultant magnetoelectric
susceptibility can then be evaluated assuming the electron
scattering time to be τ ¼ 10 ps49. For the conduction band
ν ¼ c, the magnetoelectric susceptibility αzx; αzy is shown in
Fig. 3a as a function of the Fermi energy, where the Cartesian
coordinate is set to have the x-axis along the angular bisector
between the two zig-zag directions of the top and bottom
graphene layers. The magnetoelectric susceptibility is maximized
near the energy with the largest density of states. Interestingly,
αzx; αzy are still very large even when the density of states is very
low. This is because the orbital magnetizations carried by the
Bloch states near Γm are very large as a result of the Berry
curvatures of the flat bands. This allows a large magnetization to
be induced by a small current. As shown in the Supplementary
Fig. 2, the current-induced orbital magnetization can be even
stronger when strain is increased.

Assuming an external electric field of 104 V/m, we obtain the
out-of-plane magnetization under different electric field direc-
tions as shown in Fig. 3b, where the increasing radius in the polar
plot denotes the Fermi energy increases from the conduction
band bottom to the top. The magnetization can reach
0:02 μb=nm

2, 1–2 orders larger than in the largest Rashba
spin–orbit coupling materials such as Au (111) surfaces and
Bi/Ag bilayers50,51. The current-induced magnetization is aniso-
tropic with respect to the direction of the current and it switches
sign under reversal of the electric field. It is important to note that
the current-induced magnetization discussed here can appear at a
general filling factor even absent spontaneous ferromagnetism in
the sample. This current-induced magnetization should be
observable experimentally through optical Kerr effects as in the
case of transition metal dichalcogenides52.

Current-induced magnetization switching in TBG. TBG in the
non-interacting limit possess valley and spin degeneracy for each
flat band1–3,7,11,18,19. However, near the magic angles, the narrow
band width at the Fermi level magnifies the role of interactions,
and interaction-driven spontaneous symmetry breaking is
observed experimentally37,38. Specifically, at 3/4 filling of the
conduction band in hBN-aligned TBG with inter-graphene twist
angle 1:20' (ref. 37) a giant anomalous Hall effect of order h=e2

has been reported; and for TBG with twist angle 1:15'38, quan-
tized anomalous Hall effect has been reported, in both cases at
zero external magnetic field. Hysteresis in the Hall conductance
under out-of-plane magnetic fields suggests spontaneous ferro-
magnetism with out-of-plane magnetization.

The presence of net magnetization as revealed by anomalous
Hall resistance37,38 indicates that the spin and/or valley
degeneracies are lifted, possibly by interactions7,24–27. As a result,
there are four bands (which originated from the fourfold
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Fig. 2 The orbital magnetic moments of the Bloch electrons. a The orbital
magnetic moments carried by the Bloch electrons in the mini-Brillouin zone
with no strain. b The orbital magnetic moments of the electrons when a
uniaxial strain characterized by ε ¼ 0:1% is introduced. The staggered
potential is set to be Δ ¼ 17 meV in both cases. In b, C3 symmetry is broken
and the Brillouin zone is deformed.

Table 1 Magnetoelectric susceptibility pseudotensor α for
D6, C3, and C1 point group.

Point group α Point group α

D6
αk 0 0
0 αk 0
0 0 αzz

0

@

1

A
C3

αk !α! 0
α! αk 0
0 0 αzz

0

@

1

A

C1
αxx αxy αxz
αyx αyy αyz
αzx αzy αzz

0

@

1

A

αij with i; j ¼ x; y; z are in general the elements in α. In D6 and C3, αxx ¼ αyy is denoted as
αk ¼ αxx ¼ αyy . In C3, the antisymmetric off diagonal element is denoted as α! ¼ !αxy ¼ αyx .
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magnetic field Bz , the magnetization switches sign at the coercive

magnetic field Bc ¼
4a0
3

ffiffiffiffiffi
a0
6b0

q
. Note that a0 and b0 can be obtained

once Mz and χzz are calculated using the continuum model
introduced previously with the energy of the bands shifted by μs;ξ .
Given μs;ξ , the total magnetization Mz and the magnetic
susceptibility χzz can be evaluated as

Mz ¼
Z

q

X

s;ξ

Mz
s;ξ;c qð Þf Ec ξqð Þ $ μs;ξ

h i
; ð10Þ

χzz ¼ $
Z

q

X

s;ξ

Mz
s;ξ;c qð Þ

h i2
f 0 Ec ξqð Þ $ μs;ξ
h i

; ð11Þ

whereMz
s;ξ;c is the z-component of the total magnetic moment of a

Bloch wavefunction of the flat bands. In the partially polarized
state shown in Fig. 4b with fμ";$; μ";þ; μ#;$; μ#;þg ¼ f$0:01;
2:4; 20; 22:4g meV, we find that a0 ¼ 4 ´ 10$3 μ$2

b eVnm2,
b0 ¼ 5:65 ´ 103 μ$4

b eV nm6 and the coercive magnetic field
Bc ¼ 31:8 mT.

To understand the coupling between the electric field and the
magnetic field, we note that the total magnetization Mz is
changed to Mz þ δMz where δMz ¼ αzxEx þ αzyEy is the
magnetization induced by the current. As a result, the Landau
free energy in the presence of an electric field can be written as

F ¼ $ a0 Mz þ δMzð Þ2 þ b0 Mz þ δMzð Þ4

&$ a0M
2
z þ b0M

4
z $ 2a0MzðαzxEx þ αzyEyÞ;

ð12Þ

which clearly shows that the magnetization of the sample couples
to the electric field. Figure 4c depicts the free energy landscape as
a function of magnetization changes for different electric field
strength, using realistic parameters. By assuming the current is
passed in the y-direction and by calculating αzy , the resulting
hysteresis loop of magnetization as a function of electric field is
determined. The minimal electric field needed to switch the
magnetization is estimated to be about 113 V/m. In a recent
experiment37, the longitudinal resistance is measured to be Rxx ¼
10 kΩ and the length between the contacting leads is estimated to
be 5 μm. As a result, the coercive electric field at Ec ¼ 113 V/m
gives the coercive DC current Ic ¼ 57 nA, which matches well
with the experimental values of 30$ 40 nA37. Since many of the
details such as the strain, the band structure of the sample, the
shifts of the polarized bands, etc. will affect the coercive current,
the specific value of the coercive electric field calculated here can
only be a rough estimation.

Discussion
In the above sections, using a continuum model of TBG and
incorporating the effects of sublattice symmetry breaking and
strain, the magnetoelectric response was calculated. Here, we
would like to emphasize that the analysis based on symmetry is
very general. The exact form of the strain is not important. The
breaking of the D6 symmetry can come from other sources such
as spatial inhomogeneity in the chemical potential or twist
angles. The detailed source of symmetry breaking will not affect
our conclusion that currents can induce magnetization in TBG.
Moreover, the current-induced magnetization effect can appear
even when the system itself is not ferromagnetic (for example,
in the absence of valley polarization). Therefore, we expect
that other materials with low crystal symmetries such as
twisted bilayer-bilayer graphene53–55, twisted hBN-graphene
heterostructure56,57, twisted transition metal dichacolgenides58,
and gapped bilayer graphene59 with strain will exhibit
similar magnetoelectric effects, although the magnitude of the

magnetoelectric response will depend on the details of the
materials. The current-induced orbital magnetization predicted
can be tested by magneto-optical Kerr effect in experiments52.

Another important point is that in the experimental regime
where current-induced magnetization switching is demonstrated,
the Hall resistance Rxy is not quantized and the longitudinal
resistance Rxx is finite37,38. The currents can flow between
domains with different magnetization. As the symmetry of the
problem is still C1 even including the domains, the bulk currents
can carry out-of-plane magnetization and switch the magnetiza-
tion of the domains. However, a calculation incorporating
domains is beyond the scope of the current study.

Our picture of current-induced magnetic switching does not
apply directly to quantum anomalous Hall states with an insu-
lating bulk when the current is carried by the edge states only. To
obtain the current-induced magnetization, we assumed that the
scattering time (τ) in the system is finite as shown in Eq. (8). This
assumption does not apply to chiral edge states. Serlin et al.38
argued that even edge states which do not carry net magnetiza-
tion can also switch the direction of the magnetic domains, giving
an effect proportional to I3 where I is the current carried by the
edge states. In contrast, in the present work, the magnetoelectric
effect of the bulk currents couples the electric field linearly to the
magnetization as shown in Eq. (12).

It is also worth noting that the current-induced magnetization
in TBG is purely orbital in nature. It is different from the mag-
netoelectric effect induced by spin–orbit coupling in non-
centrosymmetric materials60,61 studied previously. It is also
interesting to note that the orbital magnetization can be strongly
affected by strain. In this work, we only discussed the strain
induced naturally by the hBN substrate. Experimentally, one can
induce a much larger strain on the TBG artificially. In this case,
the current-induced magnetization could be further enhanced.
The orbital magnetization of some of the Bloch states in the
Brillouin zone can even reach a hundred Bohr magnetons with
moderate strain as shown in the Supplementary Fig. 1. In this
case, even larger orbital magnetoelectric effects could be realized
in TBG.

Methods
Interlayer coupling Hamiltonian for the TBG. In the continuum model
description1–3, the state at q from one layer will couple with the state at q0 from the
other layer if q$ q0 matches qb, qtr , or qtl, so the interlayer coupling Hamiltonian
reads

Hint ¼
X

q;q0 ;s;ξ

ayt;s;ξ qð Þ Tξqb
δq0$q;ξqb

þ Tξqtr
δq0$q;ξqtr

þ Tξqtl
δq0$q;ξqtl

h i
ab;s;ξ q0ð Þ þ h:c:;

ð13Þ

with the tunneling matrix

Tqb
¼ 1

3
t?

1 1

1 1

" #
; ð14Þ

Tqtr
¼ 1

3
t?

1 ei
2π
3

e$i2π3 1

 !

; ð15Þ

Tqtl
¼ 1

3
t?

1 e$i2π3

ei
2π
3 1

 !

: ð16Þ

In the presence of uniaxial strain E in the bottom layer graphene, the reciprocal
vectors are deformed as qb ! ~qb, qtr ! ~qtr , qtl ! ~qtl and the tunneling matrix are
modified as Tqb

! ~T~qb
, Tqtr

! ~T~qtr
, Tqtl

! ~T~qtl
, where the detailed forms are

presented in the Supplementary Note 1.

The Hamiltonian matrix for TBG coupled with hBN substrate. The Hamiltonian
for the TBG on a hBN substrate reads

H ¼
X

q;s;ξ

Ay
s;ξ qð Þhξ qð ÞAs;ξ qð Þ; ð17Þ
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FIG. 3. Impurity scattering between two Fermi pockets.

III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:

@tf
(s)
k + v(s)

k · @xf
(s)
k + eE · @kf

(s)
k =

X

s0=±

Z
d�0

W
(ss0)
kk0

⇣
f
(s0)
k0 � f

(s)
k

⌘
�(✏(s

0)
k0 � ✏

(s)
k ) = I

(s)
intra[fk] + I

(s)
inter[fk] (7)

The integration in the collision integral is defined as

d�0 = d2k0

(2⇡)2 . Both the intra-valley scattering, W
(++)
kk0

and W
(��)
kk0 , as well as the inter-valley ones, W

(�+)
kk0

and W
(+�)
kk0 , are included. TRS requires that W

(++)
kk0 =

W
(��)
k0k and W

(�+)
kk0 = W

(+�)
k0k . Here, the detailed balance

is assumed, which follows from the first Born approxima-
tion.
We look for the static solution of the SBE, Eq. (7),

within the linear response. The distribution functions
can be conveniently parameterized by the harmonic co-
e�cients as:

f
(s)
k = f0 + x

(s)
0

@f0

@✏
+
X

n

x
(s)
n cosn✓k

@f0

@✏
+
X

n

y
(s)
n sinn✓k

@f0

@✏
, (8)

where f0 is the equilibrium Fermi distribution function,
the angle ✓k for s = ± valleys are defined as shown in

Fig. 3. The harmonic coe�cients, x(s)
i and y

(s)
i , are pro-

portional to the bias electric field E within linear re-
sponse. The valley density di↵erence is determined by:

�n0 =n
(+)

� n
(�) =

Z
d�

⇣
f
(+)
k � f

(�)
k

⌘

=� ⌫

⇣
x
(+)
0 � x

(�)
0

⌘
, (9)

where ⌫ is the density of states at the Fermi level. Notice
that the simplification to the second line of Eq. (9) is a
result of the assumed circular Fermi pockets, see Fig. 3.

Before presenting the solution of the Boltzmann equa-
tion, we point out that the inter-valley scattering plays a
central role here. Namely, to obtain nonzero valley den-

sity di↵erence, �n0, the inter-valley scattering rate needs
careful analysis. In particular, a constant inter-valley
scattering rate cannot generate a nonzero valley density
di↵erence in the static limit. To see this point, one can in-
tegrate the SBE, Eq. (7), over the full Brillouin zone. The
result is the continuity equation for the valley densities:
@tn

(±)
�r · j(±) = �

�
n
(±)

� n
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0. The inter-valley
scattering time is defined as ⌧

0�1 = ⌫W
inter, where the

inter-valley scattering rate is assumed to be a constant,
W
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equation,
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Following the reasoning above, we consider the inter-
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FIG. 3. Impurity scattering between two Fermi pockets.

III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:
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The integration in the collision integral is defined as
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k0k . Here, the detailed balance

is assumed, which follows from the first Born approxima-
tion.
We look for the static solution of the SBE, Eq. (7),

within the linear response. The distribution functions
can be conveniently parameterized by the harmonic co-
e�cients as:
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where f0 is the equilibrium Fermi distribution function,
the angle ✓k for s = ± valleys are defined as shown in

Fig. 3. The harmonic coe�cients, x(s)
i and y

(s)
i , are pro-

portional to the bias electric field E within linear re-
sponse. The valley density di↵erence is determined by:
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where ⌫ is the density of states at the Fermi level. Notice
that the simplification to the second line of Eq. (9) is a
result of the assumed circular Fermi pockets, see Fig. 3.

Before presenting the solution of the Boltzmann equa-
tion, we point out that the inter-valley scattering plays a
central role here. Namely, to obtain nonzero valley den-

sity di↵erence, �n0, the inter-valley scattering rate needs
careful analysis. In particular, a constant inter-valley
scattering rate cannot generate a nonzero valley density
di↵erence in the static limit. To see this point, one can in-
tegrate the SBE, Eq. (7), over the full Brillouin zone. The
result is the continuity equation for the valley densities:
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FIG. 3. Impurity scattering between two Fermi pockets.

III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:
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where f0 is the equilibrium Fermi distribution function,
the angle ✓k for s = ± valleys are defined as shown in
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where ⌫ is the density of states at the Fermi level. Notice
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valley scattering rate given by:
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0
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(10)

which explicitly breaks the rotational symmetry. The

dimensionless parameters a(0)1 and b
(0)
1 are closely related

to the mechanisms of breaking rotational symmetry.
For demonstration purpose, we make two additional

simplifications. First, we assume the intra-valley scatter-
ing is constant,

W
(++)
kk0 = W

(��)
kk0 =

1

⌫⌧
, (11)

where ⌫ and ⌧ are the density of states and the intra-
valley scattering time, respectively. Second, the Fermi
surfaces are assumed to be circular. Indeed, given the
inter-valley scattering rate in Eq. (10), the detailed form
of the intra-valley scattering and the Fermi surface geom-
etry are expected to play a secondary role on the genera-
tion of valley polarization. They will not a↵ect whether
a valley density di↵erence can be generated by external
bias or not. They only a↵ect the magnitude of the valley
density di↵erence. Thus, for simplicity and demonstra-
tion purpose, we assume a constant intra-valley scatter-
ing rate and circular Fermi surface.

The solution to Eq. (7) is physically intuitive in the
limit that the intra-valley scattering time (⌧) is much
shorter than the inter-valley one (⌧ 0).

At the leading order in ⌧/⌧
0, the static solution satisfies

the SBE with only the intra-valley scattering,
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The harmonic expansion coe�cients of the distribution
function are
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where ⌧ is the intra-valley scattering time, vF is the Fermi

velocity defined from v(s)
kF

= s vF(cos ✓k, sin ✓k). Note
that without inter-valley scattering, there is no constraint

on x
(s)
0 from the SBE because the number density of each

valley should be conserved separately.
On the other hand, the static valley density di↵erence

can be determined by solving 0 = I
(s)
inter[fk]:
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(14)

This equation states a balance between the inter-valley
relaxation process (the first two terms) and a “source”
(the last term in parentheses) that generates the valley
density di↵erence. The “source” originates from the in-
terplay between the nonequilibrium distribution function
from Eq. (13) and the rotation symmetry breaking inter-
valley scattering rate, Eq. (10).

FIG. 4. The valley density di↵erence, �n0, as a function of
the ratio of the inter- and intra valley scattering time, ⌧ 0/⌧ .
The density is normalized to the value of Eq. (15).

Solving Eq. (14), we found that the valley density dif-
ference �n0 is given by:

�n0 = n
(+)

� n
(�) = 1

2⌫vF⌧ [eEx (a1 + a
0
1) + eEy (b1 + b

0
1)]

or equivalently expressed in terms of the current density
j = �E:

�n0 =
1

2hvF

h

e2
[ejx (a1 + a

0
1) + ejy (b1 + b

0
1)] (15)

Notice the bulk longitudinal conductivity � is related to
the intra-valley scattering rate ⌧ through � = 2 e2

h h⌫D,
where D = 1

2v
2
F⌧ is the two dimensional di↵usion con-

stant and the prefactor of 2 accounts for the two valleys.
The simplified model presented in this subsection can

be solved exactly. The valley density di↵erence at a gen-
eral ratio of inter- and intra-valley scattering time, ⌧ 0/⌧ ,
is shown in Fig. 4. Indeed, when the inter-valley scat-
tering time is much longer than the intra-valley one, the
valley density di↵erence saturates to a value given by
Eq. (15). On the other hand, �n0 decreases with de-
creasing inter-valley scattering time. �n0 vanishes when
the inter-valley relaxation time ⌧

0 goes to zero.
As has been emphasized, the inter-valley scattering is

essential to have the current induced valley density dif-
ference, because it is the channel to exchange electrons
between the two valleys. Without inter-valley scattering,
the electron density within each valley is exactly con-
served.
The valley density di↵erence in Eq. (15) is determined

by the first harmonic of the inter-valley scattering rate,
which explicitly breaks the discrete rotation symmetry
of the system to C1z. In the next section, we determine
the coe�cients a1, a01, b1, b

0
1 in Eq. (10) from microscopic

modeling of h-BN aligned TBG with C1z symmetry.
Lastly, the valley density di↵erence is proportional to

the current, Eq. (15), as we restricted ourselves to the
linear response. By reversing the current direction, the
valley density di↵erence is also reversed. So is the valley
polarization, see Eq. (5). Therefore, we conclude that
with the broken rotational symmetry, the valley polar-
ization can be controlled by a DC current.
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where ⌫ and ⌧ are the density of states and the intra-
valley scattering time, respectively. Second, the Fermi
surfaces are assumed to be circular. Indeed, given the
inter-valley scattering rate in Eq. (10), the detailed form
of the intra-valley scattering and the Fermi surface geom-
etry are expected to play a secondary role on the genera-
tion of valley polarization. They will not a↵ect whether
a valley density di↵erence can be generated by external
bias or not. They only a↵ect the magnitude of the valley
density di↵erence. Thus, for simplicity and demonstra-
tion purpose, we assume a constant intra-valley scatter-
ing rate and circular Fermi surface.
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relaxation process (the first two terms) and a “source”
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valley scattering rate, Eq. (10).

FIG. 4. The valley density di↵erence, �n0, as a function of
the ratio of the inter- and intra valley scattering time, ⌧ 0/⌧ .
The density is normalized to the value of Eq. (15).

Solving Eq. (14), we found that the valley density dif-
ference �n0 is given by:

�n0 = n
(+)

� n
(�) = 1

2⌫vF⌧ [eEx (a1 + a
0
1) + eEy (b1 + b

0
1)]

or equivalently expressed in terms of the current density
j = �E:

�n0 =
1

2hvF

h

e2
[ejx (a1 + a

0
1) + ejy (b1 + b

0
1)] (15)

Notice the bulk longitudinal conductivity � is related to
the intra-valley scattering rate ⌧ through � = 2 e2
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stant and the prefactor of 2 accounts for the two valleys.
The simplified model presented in this subsection can

be solved exactly. The valley density di↵erence at a gen-
eral ratio of inter- and intra-valley scattering time, ⌧ 0/⌧ ,
is shown in Fig. 4. Indeed, when the inter-valley scat-
tering time is much longer than the intra-valley one, the
valley density di↵erence saturates to a value given by
Eq. (15). On the other hand, �n0 decreases with de-
creasing inter-valley scattering time. �n0 vanishes when
the inter-valley relaxation time ⌧

0 goes to zero.
As has been emphasized, the inter-valley scattering is

essential to have the current induced valley density dif-
ference, because it is the channel to exchange electrons
between the two valleys. Without inter-valley scattering,
the electron density within each valley is exactly con-
served.
The valley density di↵erence in Eq. (15) is determined

by the first harmonic of the inter-valley scattering rate,
which explicitly breaks the discrete rotation symmetry
of the system to C1z. In the next section, we determine
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modeling of h-BN aligned TBG with C1z symmetry.
Lastly, the valley density di↵erence is proportional to

the current, Eq. (15), as we restricted ourselves to the
linear response. By reversing the current direction, the
valley density di↵erence is also reversed. So is the valley
polarization, see Eq. (5). Therefore, we conclude that
with the broken rotational symmetry, the valley polar-
ization can be controlled by a DC current.
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Result
Rough estimate

This is the “bare” response just from quasiparticle physics.  Should 
be included in a TDGL-like formulation as a force, to take into 
account both QP physics and interactions.

Keldysh result:

n.b. result is parametrically larger than ME one near Tc
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FIG. 6. The valley density di↵erence generated by a DC cur-
rent in TBG under strain field. The density is normalized

to 3t2/4
1+3t2/4

1
hvF

h
e2
ej. The dotted line are obtained from the

numerical calculation. The dashed lines correspond to the
analytical expression of Eq. (19) for comparison. The param-
eters are chosen as ✓w = 1.03�, � = 17.20�, q/m = 0.1 and
k/m = 0.005.

As discussed in the previous subsection, the intra-
valley scattering only plays a secondary role in the gener-
ation of valley density di↵erence under a bias DC current.
Hence, we assume the intra-valley scattering is domi-
nated by the scattering within each Fermi pocket with
a constant relaxation time, ⌧ .

Meanwhile, the inter-valley scattering requires more
careful examination to obtain the coe�cients a1, a01, b1, b

0
1

in Eq. (10). There are several processes as shown in
Fig. 5. With a simple on-site disorder, it turns out
that the scattering between the two valleys in the same
graphene layer does not break C3z and generate non-
zero a1, a

0
1, b1, b

0
1 since we neglected the anisotropy of the

Dirac spectrum. Thus, the scattering rates between the
two valleys of the same graphene layer are taken to be
constant, (⌫⌧ 0)�1, as indicated by the green arrows in
Fig. 5. At the same time, the scattering rates between the
two valleys in di↵erent layers may break rotation symme-
try through the process as indicated by the red arrows
in Fig. 5. It is directly related to the shift of the Dirac
points due to strain as well as the coherent inter-layer
tunneling. As in Fig. 5, the scattering rates of such pro-
cesses are parameterized by ⇠ (⌫⌧ 0)�1

t
2, where t is a

dimensionless perturbation parameter for the inter-layer
tunneling, Eq. (B13).

After fitting the scattering rates into the semi-classical
Boltzmann equation introduced in the previous subsec-
tion, we obtain the valley density di↵erence generated by
DC current. The main result is summarized in Fig. 6,
where without loss of generality, only one graphene layer
is strained (see Appendix B for more details of the cal-
culation).

When the strain strength is zero, C3z is restored and
the valley density di↵erence is identically zero. For
nonzero strain strength, the valley density di↵erence start

to develop non-vanishing value as expected from the
breaking of C3 symmetry. At small strain strength, the
valley density di↵erence is linear in the strain strength:

�n0 = 6(1 + ⌫✏)
k

m

✏

✓w
sin (2�+ ✓j) (19)

in unit of 3t2/4
1+3t2/4

1
hvF

h
e2 ej, where ✓j is the angle of the

current, � is the angle of uniaxial strain as defined in
Eq. (16). The small numerical value in Fig. 6 is a result of
the low doping assumption, where k/m is a small param-
eter. The result is further suppressed by the inter-layer
tunneling t

2, which is assumed to be small to introduce
the inter-layer tunneling perturbatively.
Even though our result, Fig. 6 and Eq. (19), was ob-

tained with a set of very specific assumptions (weak
inter-layer coupling and low doping level), some implica-
tions about the real samples can be made. In the actual
sample, there are several comparable scale: moire band
width, inter-layer coupling and the mass gap[13, 15].
Therefore, the dimensionless parameter t

2 is not small.
In addition, the phenomenon of current switching of val-
ley polarization is observed at three quarters of filling.
Thus, it is reasonable to expect that the small factor
of k/m in Eq. (19) is lifted and is on the order of O(1).
Therefore, we conclude that the actual valley density dif-
ference can be parameterized as:
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with a numerical coe�cient on the order of O(1). Based
on the argument above, one may roughly estimate that
a small DC current (⇠ 10�3A/m) could generate a large
valley density di↵erence on the order of 1011m�2. This is
comparable to the e↵ect of magnetic field (⇠ ⌫µBB and
B ⇠ 10 mT with µB being the Bohr magneton)[1].

IV. SUMMARY AND DISCUSSION

In this work, we proposed a mechanism in the dissipa-
tive regime for DC current switching of valley polariza-
tion. First, the dynamics of valley polarization order pa-
rameter (VPOP) under a bias electric field near its Curie-
Weiss temperature Tc is obtained within the nonequilib-
rium Keldysh formalism. From the steady state solu-
tion of the VPOP, we point out that by sweeping the
DC current, and thus varying the current generated val-
ley density di↵erence, the VPOP undergoes a first order
phase transition. Consequently, the system observes a
hysteresis curve in the Hall conductance, which explains
the experimental finding in Refs. [1, 2]. The current gen-
erated valley density di↵erence takes the generic form of
Eq. (6) and we repeat here
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We solve the semi-classical Boltzmann equation, and
point out that a proper form of inter-valley scattering

7

FIG. 6. The valley density di↵erence generated by a DC cur-
rent in TBG under strain field. The density is normalized

to 3t2/4
1+3t2/4

1
hvF

h
e2
ej. The dotted line are obtained from the

numerical calculation. The dashed lines correspond to the
analytical expression of Eq. (19) for comparison. The param-
eters are chosen as ✓w = 1.03�, � = 17.20�, q/m = 0.1 and
k/m = 0.005.

As discussed in the previous subsection, the intra-
valley scattering only plays a secondary role in the gener-
ation of valley density di↵erence under a bias DC current.
Hence, we assume the intra-valley scattering is domi-
nated by the scattering within each Fermi pocket with
a constant relaxation time, ⌧ .

Meanwhile, the inter-valley scattering requires more
careful examination to obtain the coe�cients a1, a01, b1, b

0
1

in Eq. (10). There are several processes as shown in
Fig. 5. With a simple on-site disorder, it turns out
that the scattering between the two valleys in the same
graphene layer does not break C3z and generate non-
zero a1, a

0
1, b1, b

0
1 since we neglected the anisotropy of the

Dirac spectrum. Thus, the scattering rates between the
two valleys of the same graphene layer are taken to be
constant, (⌫⌧ 0)�1, as indicated by the green arrows in
Fig. 5. At the same time, the scattering rates between the
two valleys in di↵erent layers may break rotation symme-
try through the process as indicated by the red arrows
in Fig. 5. It is directly related to the shift of the Dirac
points due to strain as well as the coherent inter-layer
tunneling. As in Fig. 5, the scattering rates of such pro-
cesses are parameterized by ⇠ (⌫⌧ 0)�1

t
2, where t is a

dimensionless perturbation parameter for the inter-layer
tunneling, Eq. (B13).

After fitting the scattering rates into the semi-classical
Boltzmann equation introduced in the previous subsec-
tion, we obtain the valley density di↵erence generated by
DC current. The main result is summarized in Fig. 6,
where without loss of generality, only one graphene layer
is strained (see Appendix B for more details of the cal-
culation).

When the strain strength is zero, C3z is restored and
the valley density di↵erence is identically zero. For
nonzero strain strength, the valley density di↵erence start

to develop non-vanishing value as expected from the
breaking of C3 symmetry. At small strain strength, the
valley density di↵erence is linear in the strain strength:

�n0 = 6(1 + ⌫✏)
k

m

✏

✓w
sin (2�+ ✓j) (19)

in unit of 3t2/4
1+3t2/4

1
hvF

h
e2 ej, where ✓j is the angle of the

current, � is the angle of uniaxial strain as defined in
Eq. (16). The small numerical value in Fig. 6 is a result of
the low doping assumption, where k/m is a small param-
eter. The result is further suppressed by the inter-layer
tunneling t

2, which is assumed to be small to introduce
the inter-layer tunneling perturbatively.
Even though our result, Fig. 6 and Eq. (19), was ob-

tained with a set of very specific assumptions (weak
inter-layer coupling and low doping level), some implica-
tions about the real samples can be made. In the actual
sample, there are several comparable scale: moire band
width, inter-layer coupling and the mass gap[13, 15].
Therefore, the dimensionless parameter t

2 is not small.
In addition, the phenomenon of current switching of val-
ley polarization is observed at three quarters of filling.
Thus, it is reasonable to expect that the small factor
of k/m in Eq. (19) is lifted and is on the order of O(1).
Therefore, we conclude that the actual valley density dif-
ference can be parameterized as:

�n0 /
✏

✓w

1

hvF

h

e2
ej (20)

with a numerical coe�cient on the order of O(1). Based
on the argument above, one may roughly estimate that
a small DC current (⇠ 10�3A/m) could generate a large
valley density di↵erence on the order of 1011m�2. This is
comparable to the e↵ect of magnetic field (⇠ ⌫µBB and
B ⇠ 10 mT with µB being the Bohr magneton)[1].

IV. SUMMARY AND DISCUSSION

In this work, we proposed a mechanism in the dissipa-
tive regime for DC current switching of valley polariza-
tion. First, the dynamics of valley polarization order pa-
rameter (VPOP) under a bias electric field near its Curie-
Weiss temperature Tc is obtained within the nonequilib-
rium Keldysh formalism. From the steady state solu-
tion of the VPOP, we point out that by sweeping the
DC current, and thus varying the current generated val-
ley density di↵erence, the VPOP undergoes a first order
phase transition. Consequently, the system observes a
hysteresis curve in the Hall conductance, which explains
the experimental finding in Refs. [1, 2]. The current gen-
erated valley density di↵erence takes the generic form of
Eq. (6) and we repeat here

�n0 '
1

evF
j · �✏. (21)

We solve the semi-classical Boltzmann equation, and
point out that a proper form of inter-valley scattering

X. Ying, M. Ye, LB, arXiv:2101.01790

3

where U is the interaction strength that we approximate
as a constant, and n

(±) is the electron density of the ±

valleys. This is a caricature of the inter-valley compo-
nent of the Coulomb interaction. The inclusion of weak
intravalley interaction does not change the essential fea-
tures reported in the rest of the article, even though cer-
tain nonuniversal quantities such as Tc may be altered.
In addition, the long range Coulomb interaction is ne-
glected. This is because the valley polarization order
parameter is charge neutral and there is no long range
force between separated domains. Thus, we expect that
the precise form of the interaction is not important, so
long as the symmetries of the problem (time-reversal and
valley conservation) are respected, as we will be primar-
ily interested in low energy quantities in the vicinity of
the Curie point. At strong interaction U > Uc, the valley
polarization develops spontaneously at low temperature.
The critical interaction Uc can be estimated to be the
inverse of the density of states at Fermi level according
to the Stoner criteria, i.e. Uc ⇠ ⌫

�142.
Note that the spin degrees of freedom are ignored in

our study. As discussed in the Introduction, the AHE
requires only valley and not spin polarization. Further-
more, in the vicinity of the Curie point, there is unlikely
to be substantial spin polarization, since with SU(2) spin
symmetry the Mermin-Wagner theorem43 prohibits any
T > 0 order, and SU(2) spin symmetry is broken ex-
tremely weakly by tiny spin-orbit and dipolar e↵ects.

II.2. Steady State Solution of the Valley
Polarization Order Parameter

We now obtain the EoM of the VPOP using the non-
equilibrium Keldysh approach. Details of the deriva-
tions are given in App. A. It is essential to introduce
a proper scattering mechanism in order to establish a
steady state subject to an electric field. We consider
short ranged disorder described by an impurity potential
V

imp(x), which induces both intra- and inter-valley scat-
tering [see Eq. (A10)]. Such short ranged impurities may
result from vacancy disorder44.

Near the transition temperature (T ⇠ Tc), the EoM
can be expressed as an expansion in powers of the VPOP
�v. It takes the form

↵2(!, q)�v + ↵4�
3
v +�n0 = 0, (3)

which should be regarded as somewhat symbolic, with
the time and space dependence expressed in the first term
in Fourier space, while the second and third terms may be
considered approximately local. To the leading order in
|T�Tc| and external bias electric field, quadratic terms ⇠
↵3�2

v can be ignored (they vanish in equilibrium without
any symmetry breaking field). In the static limit for the
homogeneous order parameter, i.e. ! = 0 and then q !

0, this reduces to the standard expression that mimics
the 1st order Ising phase transition in an external field,
i.e.

(r � rc)�v � ↵4�
3
v = �n0, (4)

�n0/nc

�
v

0

FIG. 2. Hysteresis curve for valley polarization �v upon tun-
ing the valley density di↵erence �n0 at T < Tc. The coercive

valley density di↵erence is nc = �2↵4

⇣
r�rc
3↵4

⌘3/2
.

where �n0 is the valley density di↵erence that would
be induced by the bias electric field in the absence
of interactions (and hence is smooth near Tc because
the transition is induced by interactions). The quan-
tity (r � rc) = �↵2(0, 0) ⇠ (T/Tc � 1)42 changes sign
across the equilibrium transition. The cubic coe�cient
�↵4 ⇠ |⌫

00(✏F )|U3 is positive definite, corresponding to
a bounded equilibrium free energy, and ensures the sta-
bility of the state across the transition. By construction,
the VPOP describes the expectation value of the valley
density di↵erence, �v =

�
hn

(+)
i � hn

(�)
i
�
(see App. A).

Keep in mind that �n0 is valley density di↵erence in-
duced by the external bias field alone without interac-
tions, while the VPOP �v describes the valley density
di↵erence with both the external bias field and interac-
tions taken into account.

Without the bias electric field, �n0 = 0, Eq. (4) de-
scribes spontaneous Z2 symmetry breaking in equilib-

rium when T < Tc [(r� rc) < 0], with �v = ±

q
|
(r�rc)

↵4
|.

Non-zero �n0 explicitly breaks the Z2 symmetry, and se-
lects the + or � VPOP, when �n0 is positive or negative,
respectively. By tuning �n0, one recovers the hysteresis
curve, Fig. 2. The coercive valley density di↵erence is

given by nc = �2↵4

⇣
r�rc
3↵4

⌘3/2
.

To address how the external bias electric field controls
the valley polarization, we discuss below how �n0 de-
pends upon the bias electric field E, or equivalently the
current density j. Importantly, breaking lattice rota-
tional symmetry is necessary to generate any valley den-
sity di↵erence by the current j. This is because the bias
electric field and current, E and j, are vectors in 2D. To
make a non-zero scalar, �n0, another vector is needed.
This means that there is a particular direction in the
sample. Thus, the (discrete) rotational symmetry has to
be broken.

Moreover, by dimensional analysis, one can easily show
that the valley density di↵erence generated by an applied

3
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pends upon the bias electric field E, or equivalently the
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tional symmetry is necessary to generate any valley den-
sity di↵erence by the current j. This is because the bias
electric field and current, E and j, are vectors in 2D. To
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sample. Thus, the (discrete) rotational symmetry has to
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FIG. 3. Impurity scattering between two Fermi pockets.

III. CURRENT INDUCED VALLEY DENSITY
DIFFERENCE

In this section, we employ the semi-classical Boltzmann
equation to demonstrate how a DC current may induce
a valley density di↵erence �n0 for models without rota-

tional symmetry, and estimate the dimensionless coe�-
cient �✏ for TBG aligned with h-BN.

III.1. Toy Model and the Semi-classical Formalism

In this subsection, we demonstrate the e↵ect of the
inter-valley scatterings on the current induced valley den-
sity di↵erence �n0 by solving the semi-classical Boltz-
mann equation (SBE). We simplify the Fermi surface
at each valley as a circular Fermi pocket as shown in
Fig. 3, and will argue later that this simplification doesn’t
change the finding qualitatively. Note that only time
reversal symmetry is present for the TBG system rele-
vant to our study, which imposes ✏

s(k) = ✏
s̄(�k) and

vs(k) = �vs̄(�k), where s = ± is the valley index with
s 6= s̄.

The SBE with the presence of a bias electric field E is
given by[8, 12]:

@tf
(s)
k + v(s)

k · @xf
(s)
k + eE · @kf

(s)
k =

X

s0=±

Z
d�0

W
(ss0)
kk0

⇣
f
(s0)
k0 � f

(s)
k

⌘
�(✏(s

0)
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(s)
k ) = I

(s)
intra[fk] + I

(s)
inter[fk] (7)

The integration in the collision integral is defined as

d�0 = d2k0

(2⇡)2 . Both the intra-valley scattering, W
(++)
kk0

and W
(��)
kk0 , as well as the inter-valley ones, W

(�+)
kk0

and W
(+�)
kk0 , are included. TRS requires that W

(++)
kk0 =

W
(��)
k0k and W

(�+)
kk0 = W

(+�)
k0k . Here, the detailed balance

is assumed, which follows from the first Born approxima-
tion.
We look for the static solution of the SBE, Eq. (7),

within the linear response. The distribution functions
can be conveniently parameterized by the harmonic co-
e�cients as:

f
(s)
k = f0 + x

(s)
0

@f0
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n sinn✓k
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, (8)

where f0 is the equilibrium Fermi distribution function,
the angle ✓k for s = ± valleys are defined as shown in

Fig. 3. The harmonic coe�cients, x(s)
i and y

(s)
i , are pro-

portional to the bias electric field E within linear re-
sponse. The valley density di↵erence is determined by:

�n0 =n
(+)

� n
(�) =

Z
d�

⇣
f
(+)
k � f

(�)
k

⌘

=� ⌫

⇣
x
(+)
0 � x

(�)
0

⌘
, (9)

where ⌫ is the density of states at the Fermi level. Notice
that the simplification to the second line of Eq. (9) is a
result of the assumed circular Fermi pockets, see Fig. 3.

Before presenting the solution of the Boltzmann equa-
tion, we point out that the inter-valley scattering plays a
central role here. Namely, to obtain nonzero valley den-

sity di↵erence, �n0, the inter-valley scattering rate needs
careful analysis. In particular, a constant inter-valley
scattering rate cannot generate a nonzero valley density
di↵erence in the static limit. To see this point, one can in-
tegrate the SBE, Eq. (7), over the full Brillouin zone. The
result is the continuity equation for the valley densities:
@tn

(±)
�r · j(±) = �

�
n
(±)

� n
(⌥)

�
/⌧

0. The inter-valley
scattering time is defined as ⌧

0�1 = ⌫W
inter, where the

inter-valley scattering rate is assumed to be a constant,
W

inter.
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As

::::
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can

::::::
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:::
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:::::
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:::::
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:::::
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::::
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:::
the

:::::::::
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:::::::::
equation,
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density
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Following the reasoning above, we consider the inter-

the bulk magnetization monitors the gradual enhancement
produced by the smooth occupation of the center of the sample.

We used the Hall sensors to look for an off-diagonal magnetic
response, namely a finite magnetic field perpendicular to the
applied field. The mutual configuration of the sample, the
magnetic field and the Hall sensors for quantifying longitudinal
and transverse magnetization (TM) are shown in [inset (e)] and
[inset (f)]. The obtained data at room temperature is shown in
Fig. 2e, f. The transverse response is restricted to regime II and
has symmetric and asymmetric components.

Chiral domain walls. A spin texture for domain walls (see Sup-
plemental material in ref. 23), which would explain our results, is
sketched in Fig. 3. One domain (oriented along θ= π) is located
at the center and another domain with opposite polarity (θ= 0)
at the periphery. [In the convention used here23, θ is the angle
between the x-axis and a pair of parallel spins of the unit cell]. In
the (more or less thick) wall separating these two domains, spins
rotate smoothly and concomitantly in the x–y plane. The texture

along x-axis is such that at the center of the domain wall,
the adopted configuration has an orientation perpendicular to the
two domains. Figure 3b shows different versions of the same
structure with a narrower wall. One can see that the two possible
configurations are +π/2 and −π/2. This would correspond to an
either clockwise or anticlockwise rotation of spins depending on
the specific domain configuration at the center and the periphery.
Note that domain walls of this type, with in-plane rotation of two
possible signs, follow directly from the hierarchy of scales dis-
cussed in ref. 23, in which the Dzyaloshinskii–Moriya interaction
is much stronger than an in-plane twofold anisotropy. The origin
of the twofold anisotropy will be discussed in future work.

We note that a study using Magneto-Optical Kerr Effect
microscopy16 detected oppositely aligned domains in the multi-
domain regime at small magnetic fields. The domains were found to
extend over tens of microns. However, the fine structure of the walls
separating these domains23 could not be resolved in this study.

Such a texture would provide a natural explanation for the TM
and the planar Hall effect observed in regime II. The in-plane tilt of
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Fig. 1 Room-temperature anomalous transverse response. a Experimental configuration for measuring Hall effect in sample #5 with square cross-section.
Charge current is applied along the z-axis and the magnetic field along the y-axis. Two pairs of electrodes measure Ex and Ey. b Anomalous Hall resistivity
(ρAHE

xz ), extracted from Ex. c Planar Hall resistivity (ρPHE
yz ), extracted from Ey. d Topological Hall resistivity (ρTHE

xz ), extracted by subtracting magnetization
and Hall hysteresis loops, see Supplementary Note 4. e Experimental configuration for measuring Nernst effect in sample #15 with rectangular cross-
section. The temperature gradient is applied along the z-axis, the magnetic field is applied either along x-axis or y-axis. The electric field is always measured
along the x-axis. f Anomalous Nernst effect (SANExz ) with the magnetic field along the y-axis, extracted from Ex. g Planar Nernst effect (SPNExz ) measured with
the magnetic field along x-axis, extracted from Ex. h Topological Nernst effect (STNExz ) extracted by subtracting magnetization and Nernst hysteresis loops,
see Supplementary Note 4. The larger width of the hysteresis loop in the Nernst measurements is due to the larger aspect ratio of the sample (See Fig. 2b)
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A schematic of the mechanism of domain selection is shown in Fig. S17. For simplicity of illustration we assume one edge is1

much “sharper” than the other, which means that its dispersion is much steeper than the other “smooth” edge. The sharp edge2

with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport because electrons move faster on this edge. This3

allows us to draw a picture of the dispersion just near one edge. In the figure, the edge dispersion is shown in black for one sign of4

the magnetization/Hall conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal5

copies, so are reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and6

down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for M < 0. Focus7

on the positive current case I > 0. We seek to find the energy difference for fixed current but opposite domains. Consider first8

the M > 0 domain. The positive current raises the Fermi level, populating additional states. The total energy of those states is9

the integral over the domain of added states of the single particle energy of those states: this defines the gray shaded area under10

the black dispersion curve and above the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the11

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area12

above the blue curve and below the k axis for k > 0, ✏ < 0 is the energy cost for creating these hole states. One can see that the13

blue area is not equal to the gray area, and that the inequality is due to the curvature of the dispersion. The difference in the two14

areas is the energy difference the two domains due to the non-equilibrium current.15

M > 0M < 0

k

✏

FIG. S17. Schematic illustration of an asymmetric “fast” edge and the population changes at this edge due to a current I > 0 for positive and
negative domains, shown in black and blue. The dashed lines show the Fermi energy for the two cases in the presence of the current. The
difference of the two shaded areas is the energy difference between the two domains due to the current (see text).

Estimates of effect magnitude in tBLG16

To make an estimate of the magnitude of these effects, we use the same “fast edge” approximation to simplify to a single17

velocity and mass parameter. Then the cubic term in the free energy is18
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Here we restored the dependence on ~. The contribution the current to the free energy is enhanced by decreases in the edge19

mass and velocity, which are determined by non-universal edge physics. The free energy is particularly sensitive to v and I , since20

both appear cubed, which renders making precise estimates difficult. Nonetheless, to show consistency, we take v = 5⇥104 m/s21

(a typical literature value for magic angle tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which22

is the order of the switching currents at low temperature (since the theory has been carried at T = 0). This gives an energy23

F = 4.0 meV, which is similar to the magnetostatic energy assuming an orbital moment per electron of a few Bohr magnetons.24

Uncertainties in the edge properties as well as thermal renormalizations not taken into account here make it hard to make a more25

quantitative comparison at present. These are interesting subjects for future work.26

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH device with gate defined edges. In such a27

device, one could systematically vary the sharpness and symmetry of the edge potential to probe which effects are most relevant28

to critical switching currents.29
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