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Outline
• A bit about quasiparticles and spin liquids 

• Dynamical susceptibility of a spinon Fermi surface in a 
small Zeeman field 

• Interactions induce a gap between two “optical” 
modes 

• Dynamical susceptibility of 1d spin chains 

• Similar effect at low fields, new effects at high fields



Quasiparticles
• Fundamental excitations of a many body ground state 

• Behave like particles: single quasiparticle is long-lived

(c) RD Mattuck



Quasiparticles
• Fundamental excitations of a many body ground state 

• Behave like particles: single quasiparticle is long-lived 

• Example: semiconductor

6.4. Quasiparticles and the self energy

mentum. Pictorially,
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Similarly, for the exact one quasiparticle state will be a superposition of the
bare one electron state, plus ones with additional electron hole pairs of zero
net momentum:
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One can see in both these cases that for the free system, the terms beyond
the first would require additional energy to create, e.g. to make the vertical
transition shown by an arrow in the last term in Eq. (188). This means that
the coefficients of these terms have a non-zero dominator of this additional
energy.

For higher energy states, for example an electron in a highly excited band
of the free system, nature is not so kind. Such a single particle state typically
has the same energy and momentum as many multiple particle states (with
more than one excited electron and hole). This degeneracy makes perturba-
tion theory problematic, and the original particle state may “merge” into the
continuum and become imperfectly defined with interactions. Another way of
thinking about this merging is that the (high energy) electron can decay into
a lower energy electron state by emitting one or more electron-hole pairs. For
an insulator, such decay is forbidden just by energy conservation for the low-
est energy electrons and holes. If we move from insulators to gapless systems
like semi-metals or metals, then even for low energy electrons near the Fermi
energy, decay is possible, and the situation is subtle.

We can try to see Landau’s adiabatic approximation in action by studying
the electron spectral function, r(w). From Eq. (179), we can take the zero
temperature limit to obtain

(189) r(w, T = 0) =

(
Ân

��hn|c†
k|0i

��2 2pd(w � En + E0) w > 0
Âm

��hm|ck|0i
��2 2pd(w � E0 + Em) w < 0

.

You can see from here that for w > 0, the spectral function has contributions
from “electron” excitations, i.e. states |ni with one more electron than the
ground state |0i and a quasi-momentum larger by k than the ground state.
For w < 0, it instead detects “hole” excitations with one less electron than
the ground state. The total charge and momentum of the states |ni and |mi
is fixed by symmetry, but otherwise any state with these quantum numbers
may contribute to the sums.

Following Landau’s arguments, we can think of each of the low energy
contributions |ni to the electron sum as an exact eigenstate obtained by adi-
abatic continuation of some eigenstate of the free electron system, and |0i as
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6. Path integral methods

the exact ground state which is an adiabatic continuation fo the free one. In
the case of an insulator, as we discussed, the low energy quasiparticle states
have nothing to mix with, and thus are protected from decay. The first term
in the spectral function is therefore

(190) r(w > 0) =
���hk|c†

k|0i
���
2

2pd(w � ek) + · · ·

Thus we expect the d-function we found for the free case, Eq. (185), remains,
but with in general a reduced coefficient. The energy will also be shifted to
some renormalized dispersion. Higher energy |ni may not be adiabatically con-
tinuous from the corresponding free states, but descend from them nonethe-
less. These higher terms, which give the · · · in Eq. (190), generally give con-
tinuum contributions to the spectral function, for example from states of two
fully interacting electrons plus a hole, etc.

Let us check this understanding by calculating the spectral function in
perturbation theory. The strategy is to use the path integral approach, which
naturally calculates the imaginary time Green’s function, and then obtain the
retarded correlation function and hence r(w) by analytic continuation. The
methodology is very similar to what you should already have done for bosons
in physics 217a. Suppose the quadratic Hamiltonian is diagonalized,

(191) H0 = Â
n,k

enkc†
nkcnk.

A general four-fermion interaction U respecting translational symmetry is
then

(192)

H0 =
1

2V Â
n1···n4

Â
k1···k4

Un1n2n3n4(k1k2k3k4)c†
n1k1

c†
n2k2

cn3k3
cn4k4

dk1+k2,k3+k4 .

In the path integral action, this becomes

(193) S0 = Â
n,k,wn

c̄nk(wn) (�iwn + enk) cnk(wn),

and

(194) S0 =
1

2bV Â
1···4

U(1234)c̄1 c̄2c3c4 d1+2,3+4,

where we introduced some (hopefully self-explanatory) notation to keep the
latter equation brief.

We are going to calculate the Green’s function,

(195) G(k, iwn) = hcnk(wn)c̄nk(wn)i ,

(c.f. Eq. (181) for a single band), perturbatively in S0, by just expanding the
integrand of the path integral order by order in S0, which generates standard
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Adiabatic continuity



Quasiparticles
• Fundamental excitations of a many body ground state 

• Behave like particles: single quasiparticle is long-lived 

• Example: semiconductoran exact one-quasiparticle state but also with exact 3-quasiparticle states.4

m

3m

k

w

Figure 3: Schematic intensity plot of spectral function for the scalar field the-
ory in the paramagnetic phase. At zero momentum, a delta-function quasipar-
ticle peak appears at w = m, and the three-quasiparticle continuum appears
for w � 3m.

6 Bosons, superfluidity, etc.
Lecture 10 (1h 15mins)
February 7th, 2019Up to now we focused on the situation of a discrete (Ising) symmetry, in

which, except if one tunes to a QCP, the system is gapped and the ground
state is “strictly” product-like: we expect that the area law of entanglement
entropy is obeyed with corrections that become exponentially small in the size
of the subregion defining the partition, when this is taken large. A gap to all
excitations is rather generic in the situation of discrete symmetry (though we
will eventually encounter exceptions). However, in the presence of continuous
symmetry, excitations with arbitrarily low energy can emerge, as we will see.
This goes along with the phenomena of spontaneously broken continuous
symmetry. This abstract concept underlies the physical phenomena of Bose-
Einstein condensation and superfluidity.

6.1 Second quantization, coherent states, and coherent state path integral

Second quantization

We need to set up a bit of formalism. Hopefully you are already familiar with
some of it. The most basic is second quantization. I quickly review it here,
without proving the statements. You can find them all over. For a system of
particles, we learn in elementary quantum mechanics how to write a many-
electron Schrödinger equation. We introduce N coordinates xi and momenta

4It has zero overlap with exact two-quasiparticle states because quasiparticles carry the Ising
parity, and so only odd parity states mix with odd parity states.
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2 quasi-electrons+1quasi-hole

1-e spectral function
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Quasiparticles
• Fundamental excitations of a many body ground state 

• Behave like particles: single quasiparticle is long-lived 

• Example: metal

A(ω)

ω

Width ~ ε^2

1-e spectral function

ε

Quasi electron decay 
rate is much smaller 

than its energy

Fermi Liquid



Quasiparticles
• Spin wave: bosonic quasiparticle in a magnet

!(k) ⇡ �� 2t cos kxa� · · ·

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

|fi = S+
k |ii



Exotic quasiparticles
• Fractional/non-local quasiparticles can be emergent 

• 1d domain walls (Ising AF, SSH model) 

• Laughlin QPs 

• Spinon in 2d spin liquid



Exotic quasiparticles
• Fractional/non-local quasiparticles can be emergent 

• Still long-lived when isolated 

• Not adiabatically connected to any bare particle 

• Any local operator creates at least 2 of them at a time

There is no “ARPES” for these quasiparticles



Interactions
• Even though quasiparticles are long-lived, they interact 

• e.g. Semiconductor electron gas 

• e.g. Fermi liquid

H =
X

i

p
2
i

2m⇤ +
1

2

X

i<j

e
2

"|ri � rj |
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X

k

✏knk +
1

2V

X

k,k0

fk,k0nknk0
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Landau parameters affect 2-
particle responses, e.g. 

compressibility, susceptibility



Exotic quasiparticles
• Fractional/non-local quasiparticles can be emergent 

• 1d domain walls (Ising AF, SSH model) 

• Laughlin QPs 

• Spinon in 2d spin liquid



Quantum Spin Liquid

Phil Anderson, 1973



 





 = +...

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)

Resonating Valence Bond state



Gutzwiller Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · ·

| 0i =
Y

k2FS

c†k"c
†
k#|0i

=

“partons”
“spinons”



Gutzwiller Construction

• Project out any components with 
empty or doubly occupied sites

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



Gutzwiller Construction

• Can build many QSL states by 
choosing different free fermion states

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



• Topological QSLs 

• U(1) QSL 

• Dirac QSLs 

• Spinon Fermi surface

Classes of QSLs
anyons, 
spinons 

compact U(1)

QED3

non-Fermi 
liquid “spin 

metal”



Spinon Fermi surface

• The most gapless/highly 
entangled QSL state 

• Like a “metal” of neutral 
fermions w/ a U(1) gauge field 

• Prototype “non-Fermi liquid” 
state of great theoretical 
interest

| i =
Y

i

n̂i(2� n̂i)
Y

k<kF

c†k"c
†
k#|0i

<latexit sha1_base64="kounsTF95ymt5JBqdYEXky/lS2M="></latexit>



Spinon Fermi surface

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t

t'

t

a cb
X

ET

S

S

S

S
S

S

S

S

Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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each other in a way that the Ni ion in one layer is projected
towards the center of the triangle formed by the Ni ions in
the adjacent layers along the c axis, as shown in Fig. 1(h).
The instability of the 6H-A phase should arise from the
fact that high pressures tend to reduce the Sb5þ-Sb5þ

distance and therefore partially relieve strong electrostatic
repulsion by exchanging Ni with one of the Sb atoms.
Battle et al. reported a similar structure for the 6H-B phase
[26], but with no physical characterization.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure. This
3C phase was obtained under 9 GPa and at a temperature of
1000 "C kept for 30 min. Its XRD pattern [Fig. 1(c)] is best
described as a double perovskite in a Ba2MM0O6 model
with the cubic space group Fm3m having a lattice parame-

ter a ¼ 8:1552ð2Þ !A. The refinement shows a full-ordered
arrangement of Ni2=3Sb1=3 and Sb atoms at the M and M0

sites [Fig. 1(f)], respectively. Therefore the Ni2=3Sb1=3
sites form a network of edge-shared tetrahedra, as shown
in Fig. 1(i). Instead of adopting a primitive perovskite
structure in which the Ni2þ and Sb5þ ions are randomly
distributed, the preferred double-perovskite structure
should be attributed to the large difference in charges
between the Ni2þ and the Sb5þ ions.

All three samples are insulators with the room tempera-
ture resistance higher than 20 M". The dc magnetic sus-
ceptibility [!ðTÞ, Fig. 2] for all three compounds was
measured under a fieldH ¼ 5000 Oe. For each compound,
one does not observe any difference between the data
measured under zero-field-cooled and that measured
under field-cooled conditions. The 6H-A sample exhibits

a cusplike anomaly at the antiferromagnetic ordering tem-
perature TN ¼ 13:5 K, as previously reported [25]. On the
other hand, neither the 6H-B nor the 3C phase show any
sign of long-range magnetic order down to 2 K. For the
6H-B phase, we have subtracted the Curie contribution
provided by 1.7% Ni2þ of orphan spins from the as-
measured data. This percentage of Ni2þ orphan spins was
calculated from fitting the specific-heat data [27]. After this
subtraction, !ðTÞ for the 6H-B phase (open squares in
Fig. 2) basically saturates below 25 K with a saturation
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FIG. 2 (color online). (a) Temperature dependencies of the dc
magnetic susceptibility (!) for the Ba3NiSb2O9 polytypes. Inset:
Temperature dependencies of 1=!. The solid lines on 1=! data
represent Curie-Weiss fits. For 6H-B phase, ! (open squares) is
obtained by subtracting 1.7% Ni2þ orphan spin’s contribution
(crosses) from the as-measured data (solid squares).

10000

0

In
te

ns
ity

 (
co

un
ts

)

12010080604020
2 (Deg)

5000

0

5000

0

9GPa, 1000°C
3C: Fm-3m

3GPa, 600°C
6H-B: P63mc

  As-Sintered
6H-A: P63/mmc

Ni2/3Sb1/3

Ni2/3Sb1/3

(a)

(b)

(c)

(d)

(e)

(f)

(i)

(g)

(h)

FIG. 1 (color online). Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b) 6H-B, and (c) 3C. Solid
curves are the best fits obtained from Rietveld refinements using FULLPROF. Schematic crystal structures for the Ba3NiSb2O9

polytypes: (d) 6H-A, (e) 6H-B, and (f) 3C; red octahedra represent Sb(M0) sites, and blue octahedra represent Ni2=3Sb1=3ðMÞ sites.
Magnetic lattices composed of Ni2þ ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.

PRL 107, 197204 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 NOVEMBER 2011

197204-2

Ba3NiSb2O9

Na4Ir3O8

1T-TaS2

k-ET

dmit



Organics
• NMR

!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.
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Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.

NATURE PHYSICS | VOL 6 | SEPTEMBER 2010 | www.nature.com/naturephysics 675

a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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• Specific heat
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Figure 2 Low-temperature heat capacities of �-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇥-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of ⇤-(BEDT-TTF)2Cu2(CN)3 and other
⇤-type BEDT-TTF salts. ⇤-(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
⇤-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇥-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the ⇤-type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
⇤-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the ⇥ term),
even in the insulating salt. The magnitude of ⇥ is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite ⇥ term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the ⇥
term in the present insulating state is intrinsic.

The well known Mott insulators ⇤-(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇥-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing ⇥ value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A ⇥ value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

is observed around 3 K. This corresponds to the kink of 1/T1 in
13C NMR in the same temper-

ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind

of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are

separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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• Thermal conductivity

Y. Shimizu et al, 2003 T. Itou et al, 2008,2010

no magnetic order

S. Yamashita et al, 2008

Sommerfeld law

M. Yamashita et al, 2010
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Structure Factor
• Inelastic neutron scattering 

• Naïve approach  

• Structure factor basically measures 2-particle DOS
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Structure Factor
• Structure factor just two-particle continuum?



Structure Factor
• Structure factor just two-particle continuum?

Now: identify a clear measure of 
spinon interactions revealed in a 

(weak) applied Zeeman field.  
There are qualitative differences 

from free quasiparticles.



Effective field theory

• Spinon Fermi surface: “uniform RVB”

2

tiplier Ai0, which takes the role of the time-component of
a gauge field, i.e. scalar potential. Microscopic exchange
interactions, which are quadratic in spins, and are there-
fore quartic in fermions, are decoupled to introduce new
link fields whose phases act as the spatial components of
the corresponding gauge fields A, i.e. the vector poten-
tial.

To describe the universal low energy physics, it is ap-
propriate to consider “coarse-grained” fields  

↵
, 

†
↵
de-

scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
at the spinon Fermi surface, the longitudinal scalar po-
tential is screened and the time component A0 can then
be integrated out to mediate a short-range repulsive in-
teraction u between like charges. Therefore we consider
the Euclidean action S = S + SA + Su, where [22–24]
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Here x = (⌧,x) is the space-time coordinate, q = (!n, q)
is the three-momentum,  ↵ is a two-component spinor,
with spin indices ↵,� =", # that are suppressed when
possible, !B describes static magnetic field B = Bẑ

and includes the g-factor as well as the Bohr magneton.
The gauge dynamics is derived in the Coulomb gauge
r·A = 0 withA(q) = iẑ⇥q̂A(q). The gauge action SA is
generated by spinons and � = 2n̄/kF and � = 1/(24⇡m)
represent Landau damping and diamagnetic susceptibil-
ity of non-interacting spinon gas, correspondingly (m is
the spinon mass, n̄ is the spinon density and kF is the
Fermi momentum of non-magnetized system).

We proceed with the assumption of SU(2) symmetry,
a good first approximation for many spin liquid materi-
als, and address the e↵ect of its violations in the latter
part of the paper. Previous investigations focused on the
transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-
liquid physics. For example, one finds a self-energy vary-
ing with frequency as !2/3, and a singular contribution
to the specific heat cv ⇠ T

2/3 [22, 23]. However, notably,
the transverse gauge field has negligible e↵ects on the
hydrodynamic long-wavelength collective response [24].
Here, we instead focus on the short-range repulsion u,
which produces an exchange field that dramatically al-
ters the behavior in the presence of an external Zeeman
magnetic field giving rise to finite magnetization. Gauge
fluctuations play a subsidiary role which we also include.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully

determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [25] dictates that the
only response at q = 0, X
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= 2M�(! � 2!B), sign!
where M = (n̄" � n̄#)/2 is the magnetization and !B is
the spinon Zeeman energy. For free fermions, the delta
function is precisely at the corner of the spinon particle-
hole continuum (also known as the two-spinon contin-
uum). However, the contact exchange interaction shifts
up the particle-hole continuum, at small momentum q,
away from the Zeeman energy 2!B to 2!B + 2uM . This
is seen by the trivial Hartree self-energy
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where we use a zig-zag line to diagrammatically repre-
sent the local u interaction, � ="= 1 and � =#= �1,
and n̄� is the expectation value of spin-� spinon density
in the presence of magnetic field. Consequently, for the
Larmor theorem to be obeyed, there must be a collective

transverse spin mode at small momenta.

This collective spin mode is most conveniently de-
scribed by the Random Phase Approximation (RPA),
which corresponds to a standard resummation of particle-
hole ladder diagrams [26]. For the particular case of a
momentum-independent contact interaction, one has
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tibility bubble, calculated using these functions. We will
however use the second line in Eq. (4) to later define the
RPA approximation even when gauge field corrections
(but not the local interaction u) are included in �±. For
the moment, we simply evaluate the bare susceptibility,
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Here !n, kn are bosonic and fermionic Matsubara fre-
quencies, respectively. A simple calculation, followed by
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tiplier Ai0, which takes the role of the time-component of
a gauge field, i.e. scalar potential. Microscopic exchange
interactions, which are quadratic in spins, and are there-
fore quartic in fermions, are decoupled to introduce new
link fields whose phases act as the spatial components of
the corresponding gauge fields A, i.e. the vector poten-
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scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
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The search for the enigmatic spin liquid state has
switched into high gear in recent years. Dramatic the-
oretical (Kitaev model [1, 2] and spin liquid in tri-
angular lattice antiferromagnet [3]) and experimental
(YbMgGaO4 [4, 5] and ↵-RuCl3 [6]) developments leave
no doubt of the eventual success of this enterprise. To
push this to the next stage, it is incumbent upon the com-
munity to identify specific experimental signatures that
evince the unique aspects of these states. In this paper,
we address one of the most important measurable quanti-
ties in the two dimensional U(1) QSL with a spinon Fermi
surface. This is a priori the most exotic two dimensional
QSL state, and yet one which has repeatedly been advo-
cated for in both theory and experiment. Specifically, we
study the dynamical susceptibility of the q-component of
the spin operator Sa

q (a = x, y, z)

�±(q,!) = i

Z 1

0
dth[S†

q(t), S
�
�q(0)]iei!t (1)

which is an extremely information-rich quantity, and is
accessible through inelastic neutron scattering [7], ESR
[8, 9], and RIXS [10]. A demonstration of distinctive
features in it would be a major advance in the connection
of theory and experiment in this unique phase of matter.

We recapitulate the derivation of the theory of the
spinon Fermi surface phase [11, 12]. One introduces
Abrikosov fermions by rewriting the spin operator
Si =

1
2c

†
i↵�↵�ci� , where ci↵, c

†
i↵ are canonical fermionic

spinors on site i with spin-1/2 index ↵ (repeated spin
indices are summed). This is a faithful representation
provided the constraint c†i↵ci↵ = 1 is imposed – this con-
straint induces a gauge symmetry. In a path integral rep-
resentation, the constraint is enforced by a Lagrange mul-
tiplier Ai0, which takes the role of the time-component of
a gauge field, i.e. scalar potential. Microscopic exchange
interactions, which are quadratic in spins are hence quar-
tic in fermions are decoupled to introduce new link fields
whose phases act as the spatial components of the corre-
sponding gauge fields A, i.e. the vector potential.

To describe the universal low energy physics, it is ap-
propriate to consider “coarse-grained” fields  ↵, 

†
↵ de-

scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
at the spinon Fermi surface, the longitudinal scalar po-
tential is screened and the time component A0 can then

be integrated out to mediate a short-range repulsive in-
teractions between like charges. Therefore we consider
the Euclidian action S = S + SA + Su, where [11–13]

S =

Z
d⌧d2r †
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2m
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d!nd2q

(2⇡)3
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Su =

Z
d⌧d2r u  †

"(r, ⌧) "(r, ⌧) 
†
#(r, ⌧) #(r, ⌧). (2)

Here ↵,� =", # are spin indices, !B describes static mag-
netic field B = Bẑ and includes g-factor as well as Bohr
magneton. Gauge dynamics is derived in the Coulomb
gauge r · A = 0 and µ, ⌫ = x, y run over spatial in-
dices. Gauge action SA is generated by spinons and � =
2n̄/kF and � = 1/(24⇡m) represent Landau damping
and diamagnetic susceptibility of non-interacting spinon
gas, correspondingly (m is the spinon mass, n̄ is the
spinon density and kF is the Fermi momentum of non-
magnetized system).
Action of the screened temporal component A0

of the gauge 3-vector (A0,A) is given by SA0 ⇡
�m
4⇡

R d!nd
2q

(2⇡)3 |A0(q,!n)|2. Integrating it out generates

local repulsion term Su in (2) which describes spinon
density-density interactions of a contact kind. By the ex-
clusion principle it is characterized by a single parameter
u > 0. Note that in principle the u-term also accounts
for other short-ranged contributions which are allowed
by SU(2) spin-rotational symmetry.
We proceed with the assumption of SU(2) symmetry,

a good first approximation for many spin liquid mate-
rials and address the e↵ect of its violations in the latter
part of this paper. Previous investigations focused on the
transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-
liquid physics. For example, one finds a self-energy vary-
ing with frequency as !2/3, and a singular contribution
to the specific heat cv ⇠ T 2/3. However, notably, the
transverse gauge field has negligible e↵ects on the hydro-
dynamic long-wavelength collective response [13]. Here,
we instead focus on the short-range repulsion, which pro-
duces an exchange field that dramatically alters the be-
havior in the presence of an external Zeeman magnetic
field/finite magnetization.
The fractionalization of triplet excitations into pairs

of spinons is a fundamental aspect of a quantum spin
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Interaction

Larmor theorem: q=0 
excitation must be at EZ 

3

outside the particle-hole continuum, leaving it with no
decay channel. However, in the U(1) spin liquid, there
is an additional branch of low energy excitations due to
the gauge field, dispersing as ! ⇠ k3. The very flat dis-
persion of the gauge excitations suggests it may act as a
momentum sink, so that, for example, an excitation con-
sisting of a particle-hole pair plus a gauge quantum may
exist in the “forbidden” region where the bare particle-
hole continuum vanishes and the spin wave mode lives. It
is therefore critical to understand the e↵ect of the gauge
interactions upon the dynamical susceptibility.

To this end, we consider the dressing of the particle-
hole bubble �0 by gauge propagators. Guided by the
above thinking, we expect that it is su�cient to consider
all diagrams with a single gauge propagator. This in-
volves two diagrams with self-energy contributions, and
a third which constitutes a vertex renormalization (see
Fig. 3). In the following, we denote this dressed by gauge
field fluctuations correction to the transverse susceptibil-
ity as �1

±(q,!). As shown by Kim et al. [13] for similar
diagrams for the density correlations and optical conduc-
tivity, there are important cancellations between self en-
ergy and vertex corrections, which are needed to obtain
the proper long wavelength behavior of �1. We find

�1
±(q, i!n) = �c̃

⌫0vF �1/3

�4/3

!7/3
n (vF q)2(i!n � 2!B � uM)

[(i!n � 2!B � uM)2 � v2F q
2]5/2

(9)
Therefore, indeed, the dressed bubble has a non-zero
imaginary part =�1

± in the previously kinematically for-
bidden region below the particle-hole continuum. This
is a new continuum weight. However, the weight in
this new continuum contribution vanishes quadratically
in momentum as q = 0 is approached. This is an im-
portant check on the calculations, since the Larmor the-
orem still applies to the full theory with the gauge field,
which implies that precisely at zero momentum, there
can be no new contributions. The frequency dependence
is, however, non-trivial. What are the implications for
the spin collective mode? We evaluate this by using the
RPA formula of Eq. (3), but replacing �0

± by �0
± + �1

±,
the susceptibility dressed by gauge fluctuations. With
this approximation, we see that the q2 dependence of
=�̃1

±(q,! ⇡ 2!B) / (2!B)7/3v2F q
2/(uM)4 is su�cient

to ensure that the width (in energy) of the collective
spin mode becomes narrow compared to its frequency at
small momentum: this is the standard criteria for sharp-
ness and observability of a collective excitation. The fi-
nal result for the dynamical susceptibility is summarized
in Fig. ??. Away from the zero momentum axis there
is always non-zero continuum weight, which is the sum
of several distinct contributions. Inside this continuum,
the spin collective mode appears as a resonance which is
asymptotically sharp at small momentum.

The above results apply to the case in which SU(2) spin
rotation symmetry is broken only by the applied Zeeman
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FIG. 1. Dyson equation for the spinon Green’s function.
Thick (thin) line denotes renormalized (bare) Green’s func-
tion with spin � =", #. Zigzag (magenta) lines denote lo-
cal repulsion u. The tadpole diagram represents self-energy
⌃� = un̄��.
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FIG. 2. Ladder series for the transverse susceptibility. Zigzag
(magenta) lines denote local repulsion u. The bare bubble
diagram is �0

±. Open circle denotes spin-flipping vertex.

field. Breaking of the SU(2) invariance by anisotropies in-
validates the Larmor theorem and causes a shift and more
importantly a broadening of the spin collective mode even
at zero momentum. This is of particular importance for
electron spin resonance, which has high energy resolu-
tion but measures directly at zero momentum only. The
way in which the resonance is broadened depends in de-
tail on the nature of the anisotropy, the orientation of
the applied magnetic field, etc., so it is not possible to
give a single general result. Instead, we provide one (or
two?) example(s) of this physics. In particular we con-
sider the influence of a Dzyaloshinskii-Moriya interaction
in the spin system, which is typically the dominant form
of anisotropy for weakly spin-orbit coupled systems, pro-
vided it is symmetry allowed by the lattice.
OS: we may also use figure 4 below.
Go back and recapitulate our earlier calcula-

tions. DM manifests as a Rashba-like term for

the spinons. We obtain a complete scaling func-

tion in a certain limit...

Can we include some simplistic discussion for

XXZ exchange anisotropy?

Physical implications – need ESR and inelastic neu-
tron scattering at small q and finite magnetic field. Has
been recently done in YbMgGaO4 - no separate from PH
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bility. Wavy (blue) lines denote gauge field propagator.
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liquid. This is expected to give rise to two-particle con-
tinuum contributions to the dynamical structure factor,
which appear more characteristic of a weakly correlated
metal than a strongly correlated Mott insulator. When
treated as non-interacting fermions, this continuum has
a characteristic shape at small frequency and wavevector
in the presence of an applied Zeeman magnetic field, as
discussed in [14]. In particular, there is non-zero spec-
tral weight in a wedge-shaped region which terminates
at a single point along the energy axis at zero momen-
tum. The purpose of the present work is to determine
the modification of this spectrum by spinon interactions
and gauge fluctuations.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully
determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [15] dictates that the
only response at q = 0, �00

? ⇠ M�(!� 2!B), where M is
the magnetization and !B is the spinon Zeeman energy.
For free fermions, the delta function is precisely at the
corner of the spinon particle-hole continuum (also known
as the two-spinon continuum). However, the contact ex-
change interaction shifts up the particle-hole continuum,
at small momentum q, away from the Zeeman energy
2!B to 2!B + uM . This is seen by the trivial Hartree
self-energy ⌃" = un̄#, ⌃# = un̄", where n̄� is the expec-
tation value of spin-� spinon density in the presence of
magnetic field, see Fig. 1. Consequently, for the Larmor
theorem to be obeyed, there must be a collective trans-

verse spin mode at small momenta.

Indeed, this physics is not unique to spin liquids but
applies to paramagnetic metals. Historically, the Silin
spin wave mode was predicted for non-ferromagnetic met-
als by Silin in 1958 within Landau Fermi liquid theory
[16–19], and observed via conduction electron spin res-
onance (CESR) in 1967 [20]. Detailed theory, derived
within Landau Fermi-liquid framework [21] (k-dependent
g-factor [22]), is analogous to the more well-known zero
sound, albeit in the spin rather than density channel.
Unlike zero sound, an external magnetic field is required
in order to shift the particle-hole continuum up along
the energy axis to allow for the undamped collective spin
wave to appear in the triangle-shaped window below it.
The spin wave mode is most conveniently described by
the Random Phase Approximation (RPA), which corre-
sponds to a standard resummation of particle-hole lad-
der diagrams. For the particular case of a momentum-
independent contact interaction, one has (see Fig. 2)

�(q, i!n) =
�0(q, i!n)

1 + u�0(q, i!n)
, (3)

where �0(q, i!n) is the bare susceptibility bubble, cal-
culated using the spinon Green’s functions including the

Hartree shift. For the susceptibility transverse to the field

�0
±(q, i!n) =

1

�V

X

kn,k

1

ikn � ✏k + !B � gn̄#

⇥ 1

ikn + i!n � ✏k+q � !B � gn̄"
. (4)

Here !n, kn are bosonic and fermionic Matsubara fre-
quencies, respectively. Simple calculation, followed by
the analytical continuation i!n ! ! + i0, gives

<�0
±(q,!) =

Msign(! � 2!B � uM)p
(! � 2!B � uM)2 � v2F q

2
,

=�0
±(q,!) =

�Mp
v2F q

2 � (! � 2!B � uM)2
, (5)

where M = n̄" � n̄# is (twice) the magnetization, and
square-roots are defined when their arguments are posi-
tive. The real/imaginary spin susceptibility describes do-
mains outside/inside two-spinon continuum in the (q,!)
plane, correspondingly. At q = 0

�0
±(q = 0,!) =

M

! � 2!B � uM + i0
, (6)

and therefore =�0
±(q = 0,!) ⇠ �(! � 2!B � uM): the

position of the two-spinon continuum renormalized by
the interaction shift. However, inserting (6) in the RPA
formula (3) one finds that the RPA successfully recovers
Larmor theorem at zero momentum for the interacting
SU(2)-invariant system,

�±(q = 0, i!n) =
M

! � 2!B + i0
. (7)

Therefore the contribution at q = 0 is solely from the
collective mode, with no spectral weight from the contin-
uum at 2!B+uM . Dispersion of the collective spin mode
is obtained with the help of (5) and =� = =�0/[(1 +
u<�0)2 + (u=�0)2],

!swave(q) = 2!B + uM �
q

u2M2 + v2F q
2. (8)

For small q ⌧ uM/vF the collective mode is dispersing
downward quadratically ! ⇡ 2!B�(vF q)2/(2uM), while
in the opposite limit q � uM/vF it approaches the low
boundary of the two-spinon continuum, ! ⇡ 2!B+uM�
vF q. Retaining quadratic in q terms in (4) will lead to
the termination of the collective mode at some qmax at
which the spin wave enters the two-spinon continuum.

The above discussion is identical to that for a conven-
tional Fermi liquid, and indeed the observation [20] of
the Silin mode in 1967, which occurred soon after the
detection of the zero sound in He3 [23], was considered
to be one of the first proofs of the validity of the Landau
theory of Fermi-liquids [24]. In the Fermi liquid case,
the sharpness of the mode is established by its falling
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outside the particle-hole continuum, leaving it with no
decay channel. However, in the U(1) spin liquid, there
is an additional branch of low energy excitations due to
the gauge field, dispersing as ! ⇠ k3. The very flat dis-
persion of the gauge excitations suggests it may act as a
momentum sink, so that, for example, an excitation con-
sisting of a particle-hole pair plus a gauge quantum may
exist in the “forbidden” region where the bare particle-
hole continuum vanishes and the spin wave mode lives. It
is therefore critical to understand the e↵ect of the gauge
interactions upon the dynamical susceptibility.

To this end, we consider the dressing of the particle-
hole bubble �0 by gauge propagators. Guided by the
above thinking, we expect that it is su�cient to consider
all diagrams with a single gauge propagator. This in-
volves two diagrams with self-energy contributions, and
a third which constitutes a vertex renormalization (see
Fig. 3). In the following, we denote this dressed by gauge
field fluctuations correction to the transverse susceptibil-
ity as �1

±(q,!). As shown by Kim et al. [13] for similar
diagrams for the density correlations and optical conduc-
tivity, there are important cancellations between self en-
ergy and vertex corrections, which are needed to obtain
the proper long wavelength behavior of �1. We find

�1
±(q, i!n) = �c̃

⌫0vF �1/3

�4/3

!7/3
n (vF q)2(i!n � 2!B � uM)

[(i!n � 2!B � uM)2 � v2F q
2]5/2

(9)
Therefore, indeed, the dressed bubble has a non-zero
imaginary part =�1

± in the previously kinematically for-
bidden region below the particle-hole continuum. This
is a new continuum weight. However, the weight in
this new continuum contribution vanishes quadratically
in momentum as q = 0 is approached. This is an im-
portant check on the calculations, since the Larmor the-
orem still applies to the full theory with the gauge field,
which implies that precisely at zero momentum, there
can be no new contributions. The frequency dependence
is, however, non-trivial. What are the implications for
the spin collective mode? We evaluate this by using the
RPA formula of Eq. (3), but replacing �0

± by �0
± + �1

±,
the susceptibility dressed by gauge fluctuations. With
this approximation, we see that the q2 dependence of
=�̃1

±(q,! ⇡ 2!B) / (2!B)7/3v2F q
2/(uM)4 is su�cient

to ensure that the width (in energy) of the collective
spin mode becomes narrow compared to its frequency at
small momentum: this is the standard criteria for sharp-
ness and observability of a collective excitation. The fi-
nal result for the dynamical susceptibility is summarized
in Fig. ??. Away from the zero momentum axis there
is always non-zero continuum weight, which is the sum
of several distinct contributions. Inside this continuum,
the spin collective mode appears as a resonance which is
asymptotically sharp at small momentum.

The above results apply to the case in which SU(2) spin
rotation symmetry is broken only by the applied Zeeman

=
� �

+
� �

��

FIG. 1. Dyson equation for the spinon Green’s function.
Thick (thin) line denotes renormalized (bare) Green’s func-
tion with spin � =", #. Zigzag (magenta) lines denote lo-
cal repulsion u. The tadpole diagram represents self-energy
⌃� = un̄��.
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FIG. 2. Ladder series for the transverse susceptibility. Zigzag
(magenta) lines denote local repulsion u. The bare bubble
diagram is �0

±. Open circle denotes spin-flipping vertex.

field. Breaking of the SU(2) invariance by anisotropies in-
validates the Larmor theorem and causes a shift and more
importantly a broadening of the spin collective mode even
at zero momentum. This is of particular importance for
electron spin resonance, which has high energy resolu-
tion but measures directly at zero momentum only. The
way in which the resonance is broadened depends in de-
tail on the nature of the anisotropy, the orientation of
the applied magnetic field, etc., so it is not possible to
give a single general result. Instead, we provide one (or
two?) example(s) of this physics. In particular we con-
sider the influence of a Dzyaloshinskii-Moriya interaction
in the spin system, which is typically the dominant form
of anisotropy for weakly spin-orbit coupled systems, pro-
vided it is symmetry allowed by the lattice.
OS: we may also use figure 4 below.
Go back and recapitulate our earlier calcula-

tions. DM manifests as a Rashba-like term for

the spinons. We obtain a complete scaling func-

tion in a certain limit...

Can we include some simplistic discussion for

XXZ exchange anisotropy?

Physical implications – need ESR and inelastic neu-
tron scattering at small q and finite magnetic field. Has
been recently done in YbMgGaO4 - no separate from PH
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liquid. This is expected to give rise to two-particle con-
tinuum contributions to the dynamical structure factor,
which appear more characteristic of a weakly correlated
metal than a strongly correlated Mott insulator. When
treated as non-interacting fermions, this continuum has
a characteristic shape at small frequency and wavevector
in the presence of an applied Zeeman magnetic field, as
discussed in [14]. In particular, there is non-zero spec-
tral weight in a wedge-shaped region which terminates
at a single point along the energy axis at zero momen-
tum. The purpose of the present work is to determine
the modification of this spectrum by spinon interactions
and gauge fluctuations.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully
determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [15] dictates that the
only response at q = 0, �00

? ⇠ M�(!� 2!B), where M is
the magnetization and !B is the spinon Zeeman energy.
For free fermions, the delta function is precisely at the
corner of the spinon particle-hole continuum (also known
as the two-spinon continuum). However, the contact ex-
change interaction shifts up the particle-hole continuum,
at small momentum q, away from the Zeeman energy
2!B to 2!B + uM . This is seen by the trivial Hartree
self-energy ⌃" = un̄#, ⌃# = un̄", where n̄� is the expec-
tation value of spin-� spinon density in the presence of
magnetic field, see Fig. 1. Consequently, for the Larmor
theorem to be obeyed, there must be a collective trans-

verse spin mode at small momenta.

Indeed, this physics is not unique to spin liquids but
applies to paramagnetic metals. Historically, the Silin
spin wave mode was predicted for non-ferromagnetic met-
als by Silin in 1958 within Landau Fermi liquid theory
[16–19], and observed via conduction electron spin res-
onance (CESR) in 1967 [20]. Detailed theory, derived
within Landau Fermi-liquid framework [21] (k-dependent
g-factor [22]), is analogous to the more well-known zero
sound, albeit in the spin rather than density channel.
Unlike zero sound, an external magnetic field is required
in order to shift the particle-hole continuum up along
the energy axis to allow for the undamped collective spin
wave to appear in the triangle-shaped window below it.
The spin wave mode is most conveniently described by
the Random Phase Approximation (RPA), which corre-
sponds to a standard resummation of particle-hole lad-
der diagrams. For the particular case of a momentum-
independent contact interaction, one has (see Fig. 2)

�(q, i!n) =
�0(q, i!n)

1 + u�0(q, i!n)
, (3)

where �0(q, i!n) is the bare susceptibility bubble, cal-
culated using the spinon Green’s functions including the

Hartree shift. For the susceptibility transverse to the field

�0
±(q, i!n) =

1

�V

X

kn,k

1

ikn � ✏k + !B � gn̄#

⇥ 1

ikn + i!n � ✏k+q � !B � gn̄"
. (4)

Here !n, kn are bosonic and fermionic Matsubara fre-
quencies, respectively. Simple calculation, followed by
the analytical continuation i!n ! ! + i0, gives

<�0
±(q,!) =

Msign(! � 2!B � uM)p
(! � 2!B � uM)2 � v2F q

2
,

=�0
±(q,!) =

�Mp
v2F q

2 � (! � 2!B � uM)2
, (5)

where M = n̄" � n̄# is (twice) the magnetization, and
square-roots are defined when their arguments are posi-
tive. The real/imaginary spin susceptibility describes do-
mains outside/inside two-spinon continuum in the (q,!)
plane, correspondingly. At q = 0

�0
±(q = 0,!) =

M

! � 2!B � uM + i0
, (6)

and therefore =�0
±(q = 0,!) ⇠ �(! � 2!B � uM): the

position of the two-spinon continuum renormalized by
the interaction shift. However, inserting (6) in the RPA
formula (3) one finds that the RPA successfully recovers
Larmor theorem at zero momentum for the interacting
SU(2)-invariant system,

�±(q = 0, i!n) =
M

! � 2!B + i0
. (7)

Therefore the contribution at q = 0 is solely from the
collective mode, with no spectral weight from the contin-
uum at 2!B+uM . Dispersion of the collective spin mode
is obtained with the help of (5) and =� = =�0/[(1 +
u<�0)2 + (u=�0)2],

!swave(q) = 2!B + uM �
q

u2M2 + v2F q
2. (8)

For small q ⌧ uM/vF the collective mode is dispersing
downward quadratically ! ⇡ 2!B�(vF q)2/(2uM), while
in the opposite limit q � uM/vF it approaches the low
boundary of the two-spinon continuum, ! ⇡ 2!B+uM�
vF q. Retaining quadratic in q terms in (4) will lead to
the termination of the collective mode at some qmax at
which the spin wave enters the two-spinon continuum.

The above discussion is identical to that for a conven-
tional Fermi liquid, and indeed the observation [20] of
the Silin mode in 1967, which occurred soon after the
detection of the zero sound in He3 [23], was considered
to be one of the first proofs of the validity of the Landau
theory of Fermi-liquids [24]. In the Fermi liquid case,
the sharpness of the mode is established by its falling

RPA
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q
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Does this smear out all the Fermi liquid structure?

Simple picture:
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outside the particle-hole continuum, leaving it with no
decay channel. However, in the U(1) spin liquid, there
is an additional branch of low energy excitations due to
the gauge field, dispersing as ! ⇠ k3. The very flat dis-
persion of the gauge excitations suggests it may act as a
momentum sink, so that, for example, an excitation con-
sisting of a particle-hole pair plus a gauge quantum may
exist in the “forbidden” region where the bare particle-
hole continuum vanishes and the spin wave mode lives. It
is therefore critical to understand the e↵ect of the gauge
interactions upon the dynamical susceptibility.

To this end, we consider the dressing of the particle-
hole bubble �0 by gauge propagators. Guided by the
above thinking, we expect that it is su�cient to consider
all diagrams with a single gauge propagator. This in-
volves two diagrams with self-energy contributions, and
a third which constitutes a vertex renormalization (see
Fig. 3). In the following, we denote this dressed by gauge
field fluctuations correction to the transverse susceptibil-
ity as �1

±(q,!). As shown by Kim et al. [13] for similar
diagrams for the density correlations and optical conduc-
tivity, there are important cancellations between self en-
ergy and vertex corrections, which are needed to obtain
the proper long wavelength behavior of �1. We find

�1
±(q, i!n) = �c̃

⌫0vF �1/3

�4/3

!7/3
n (vF q)2(i!n � 2!B � uM)

[(i!n � 2!B � uM)2 � v2F q
2]5/2

(9)
Therefore, indeed, the dressed bubble has a non-zero
imaginary part =�1

± in the previously kinematically for-
bidden region below the particle-hole continuum. This
is a new continuum weight. However, the weight in
this new continuum contribution vanishes quadratically
in momentum as q = 0 is approached. This is an im-
portant check on the calculations, since the Larmor the-
orem still applies to the full theory with the gauge field,
which implies that precisely at zero momentum, there
can be no new contributions. The frequency dependence
is, however, non-trivial. What are the implications for
the spin collective mode? We evaluate this by using the
RPA formula of Eq. (3), but replacing �0

± by �0
± + �1

±,
the susceptibility dressed by gauge fluctuations. With
this approximation, we see that the q2 dependence of
=�̃1

±(q,! ⇡ 2!B) / (2!B)7/3v2F q
2/(uM)4 is su�cient

to ensure that the width (in energy) of the collective
spin mode becomes narrow compared to its frequency at
small momentum: this is the standard criteria for sharp-
ness and observability of a collective excitation. The fi-
nal result for the dynamical susceptibility is summarized
in Fig. ??. Away from the zero momentum axis there
is always non-zero continuum weight, which is the sum
of several distinct contributions. Inside this continuum,
the spin collective mode appears as a resonance which is
asymptotically sharp at small momentum.

The above results apply to the case in which SU(2) spin
rotation symmetry is broken only by the applied Zeeman

=
� �

+
� �

��

FIG. 1. Dyson equation for the spinon Green’s function.
Thick (thin) line denotes renormalized (bare) Green’s func-
tion with spin � =", #. Zigzag (magenta) lines denote lo-
cal repulsion u. The tadpole diagram represents self-energy
⌃� = un̄��.

+ + +...Eq.(3)=

"

#

"

#

"

#

FIG. 2. Ladder series for the transverse susceptibility. Zigzag
(magenta) lines denote local repulsion u. The bare bubble
diagram is �0

±. Open circle denotes spin-flipping vertex.

field. Breaking of the SU(2) invariance by anisotropies in-
validates the Larmor theorem and causes a shift and more
importantly a broadening of the spin collective mode even
at zero momentum. This is of particular importance for
electron spin resonance, which has high energy resolu-
tion but measures directly at zero momentum only. The
way in which the resonance is broadened depends in de-
tail on the nature of the anisotropy, the orientation of
the applied magnetic field, etc., so it is not possible to
give a single general result. Instead, we provide one (or
two?) example(s) of this physics. In particular we con-
sider the influence of a Dzyaloshinskii-Moriya interaction
in the spin system, which is typically the dominant form
of anisotropy for weakly spin-orbit coupled systems, pro-
vided it is symmetry allowed by the lattice.
OS: we may also use figure 4 below.
Go back and recapitulate our earlier calcula-

tions. DM manifests as a Rashba-like term for

the spinons. We obtain a complete scaling func-

tion in a certain limit...

Can we include some simplistic discussion for

XXZ exchange anisotropy?

Physical implications – need ESR and inelastic neu-
tron scattering at small q and finite magnetic field. Has
been recently done in YbMgGaO4 - no separate from PH

+ +Eq.(9)=

"

#

"

#

"

#

FIG. 3. Leading gauge field corrections �1
± to the suscepti-

bility. Wavy (blue) lines denote gauge field propagator.

Actual calculation:

4

FIG. 4. Magnetic excitation spectrum of an interacting U(1)
spin liquid with spinon Fermi surface.

continuum excitations seen. Why?!
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Supplementary Material

Gauge field corrections to the bubble

In the main text, we show that coupling to the gauge field induces spectral weight outside the region of the particle-
hole continuum of the free fermion theory. On physical grounds, this is expected because in addition to the fermionic
“quasiparticles” (we use quotes because they are not gauge invariant and have a non-Fermi liquid self-energy) the
system possesses collective gauge excitations with a very soft dispersion relation ! ⇠ k3. By creating a particle-hole
pair and a photon, one may shunt enough of the total momentum of the excitation in to the photon to bring the
remainder into the kinematically allowed region for particle-hole pairs, and because the energy of the photon is so
small, this should be possible at just about any energy. With this picture in mind, we seek contributions to the
dynamical spin structure factor with a single gauge field propagator, because “cutting” this line corresponds to a
single excited photon excitation. With a single gauge propagator, there are three diagrams, as shown in Fig. ??. In
the first and second contributions, ⇧1(q,!n) and ⇧2(q,!n), the gauge line does not cross the particle-hole bubble,
so the gauge field acts here as a self-energy correction to one of the two fermion lines. In the third diagram, the
gauge line crosses the bubble, so this is not a self-energy term but instead a vertex correction. Care must be taken to
combine all three terms because, as shown by Kim et al[13], there are important cancellations between them which
are required to maintain gauge invariance and avoid unphysical results at low frequency and momentum.

c.f.

Im�± ⇠ q2!7/3
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One dimension
• New results: these ideas apply to one dimensional spin 

chains in low magnetic fields and can be tested there! 

• Bonus: we also will find signatures of interacting 
magnons in the high field regime



One dimension
• J1-J2 Chain 

• Phase diagram for B=0

H =
X

i

h
J1

~Si · ~Si+1 + J2
~Si · ~Si+2 �BS

z
i

i
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Gapless phase
• Wess-Zumino-Witten SU(2)1 CFT 

• Many representations:  

• matrix non-linear sigma model 

• free masses scalar field theory (abelian bosonization) 

• Sugarawa (current algebra) form 

• Free fermions (most useful today)



Fermion representation
• Spins 

• Hamiltonian H = H0 + V 

• Fermions contain decoupled charge mode which does not 
affect spin operators or correlations (spin-charge separation)

~Si ⇠ ~JR(xi) + ~JL(xi) + (�1)i ~N(xi)

<latexit sha1_base64="F/Q8Fdk+3aFtzRJjvxiP/NQUWLw="></latexit>

~JR/L = 1
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†
R/L~�  R/L
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change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by

H =
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. In the isotropic case, � = 1, and for B =

0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.

We study the transverse component �(k,!) =
S

+�(k,!) of the dynamical correlations at zero temper-
ature, namely
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
2 

†
R
~� 

R
, where  R

denotes two-component spinor  R = ( R", R#)T (and
similarly for  L). The low energy Hamiltonian is given
by H = H0 + V , where H0 corresponds to the non-
interacting part

H0 = v

Z
dx

⇣
 
†
R
(�i@x) 

R
+  

†
L
(i@x) 

L

⌘
(3)

(here v is the Fermi velocity), and V is the backscattering
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The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents

HB = �B

Z
dxM, M = J

z

R
+ J

z

L
. (5)

In the renormalization group framework, a non-zero B

or M provides a length scale (/ 1/M) which cuts o↵
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change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by
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0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
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, where  R

denotes two-component spinor  R = ( R", R#)T (and
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The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents
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change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by
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0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
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, where  R

denotes two-component spinor  R = ( R", R#)T (and
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The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents
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change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.
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of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
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0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J
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1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
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(here v is the Fermi velocity), and V is the backscattering
interaction
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The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents

HB = �B

Z
dxM, M = J

z

R
+ J

z

L
. (5)

In the renormalization group framework, a non-zero B

or M provides a length scale (/ 1/M) which cuts o↵

2

change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by

H =
X
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where ~Si is a spin-1/2 operator on site i. We allow for

anisotropic interactions and denote
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. In the isotropic case, � = 1, and for B =

0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.

We study the transverse component �(k,!) =
S

+�(k,!) of the dynamical correlations at zero temper-
ature, namely
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
2 

†
R
~� 

R
, where  R

denotes two-component spinor  R = ( R", R#)T (and
similarly for  L). The low energy Hamiltonian is given
by H = H0 + V , where H0 corresponds to the non-
interacting part

H0 = v

Z
dx

⇣
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⌘
(3)

(here v is the Fermi velocity), and V is the backscattering
interaction
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(4)
The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents

HB = �B

Z
dxM, M = J

z

R
+ J

z

L
. (5)

In the renormalization group framework, a non-zero B

or M provides a length scale (/ 1/M) which cuts o↵

• Renormalization group
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d`
= �g2
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change coupling J2. As is well-known, increasing an-
tiferromagnetic J2 reduces g continuously until it van-
ishes, which signal the transition at zero field to a dimer-
ized phase. MPS calculations compare excellently with
the theoretical predictions as both g and M are in-
dependently varied. In the large M regime, magnon-
magnon interactions are tuned by introducing magnetic
anisotropy of the XXZ form. For the isotropic Heisen-
berg limit they are large and order one, while magnons
do not interact in the XX case. We confirm numeri-
cally the theoretically-predicted behavior of the higher
excitation branch with varying anisotropy and other pa-
rameters. Note that none of these results are related to
integrability, and are instead rather universal features of
strongly interacting quasiparticles.

[LB: I propose we move the next paragraph to the end
of the paper:] Recent progress in observing Bethe string
solutions using high-resolution terahertz spectroscopy [8]
as well as their dispersion using inelasitc neutron scatter-
ing [9] in the 1D Heisenberg-Ising spin-chain compound
SrCo2V2O8 despite their low spectral weight, as well as
earlier neutron scattering studies in presence of finite
field [10, 11] indicate that signatures of interactions in an-
tiferromagnetic chains discussed in this work are within
reach of experimental capability. Furthermore, presence
of bound states in the system can be seen in dynamics
following a quantum quench as proposed in Ref. [12] and
confirmed in cold atom experiments [13].

Model- We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling, J2, in longitudinal Zeeman
field, B. The Hamiltonian of the system is given by

H =
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. In the isotropic case, � = 1, and for B =

0, the system undergoes a phase transition at J2 = J2,c ⇡
0.241J1, between a gapless and a dimerized phase [14, 15].
In the following we will consider the regime J2 < J2,c

in which the system remains gapless. We will consider
both the low and high Zeeman field regimes. In the high
field regime, the field B remains below saturation value
Bsat = (1 + �)J1.

We study the transverse component �(k,!) =
S

+�(k,!) of the dynamical correlations at zero temper-
ature, namely
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where |0i denotes the ground state of the system.

Numerical calculations are carried out using ma-
trix product state (MPS)-based techniques [16], em-
ploying the ITensor library [17]. To obtain the spec-
tral function (2) we first obtain the ground state of
the system using density matrix renormalization group
(DMRG) [18]. We then perform time evolution up to
times tmax = 80J

�1
1 using time evolving block decima-

tion (TEBD) [19]. Our analysis is done on finite systems
of length L = 400 sites with open boundary conditions
(see SM for further details).
Low magnetization – [OS: Refs + few sentences? ] In

the discussion below we focus on the isotropic case. i.e.
� = 1. The low energy e↵ective description of the J1�J2

chain is given by an SU(2)1 Wess-Zumino-Witten con-
formal field theory. We denote the right/left moving
fermionic spinons which constitute the low energy the-
ory by  R/L,s, where s =", # is the spin. The respec-

tive spin current is given by ~JR = 1
2 

†
R
~� 

R
, where  R

denotes two-component spinor  R = ( R", R#)T (and
similarly for  L). The low energy Hamiltonian is given
by H = H0 + V , where H0 corresponds to the non-
interacting part
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Z
dx
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(here v is the Fermi velocity), and V is the backscattering
interaction
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The Hamiltonian H0 + V appears as an interacting
fermion problem for the spinons, an approach we will
follow below. Here we note that in a standard bosoniza-
tion framework g gives rise to a non-linear cosine term
and depending on the sign of the coupling g can drive
the system into a gapped phase. In a renormalization
group treatment, g > 0 is marginally irrelevant and flows
slowly to zero at low energies. Consequently the gapless
critical phase remains stable, but non-zero backscattering
induces subtle logarithmic modifications to the temper-
ature dependence of thermodynamic quantities such as
susceptibility and specific heat[LB: ref? ]. For g < 0, the
interaction becomes marginally relevant, and a spin gap
opens as the system is driven into the dimerized phase.
The bare value of g depends on J2 and changes sign at
the critical value J2,c ⇡ 0.241 [15].

As we now show, the consequences of the non-zero g >

0 are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M , which is
the sum of the right and left spin currents

HB = �B

Z
dxM, M = J

z

R
+ J
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. (5)

In the renormalization group framework, a non-zero B

or M provides a length scale (/ 1/M) which cuts o↵
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the flow of g toward zero and moreover distinguishes the
e↵ects of the diagonal and spin flip components of the
interactions in Eq. (4). Consequently, we must consider
them separately and carefully. First let us take g = 0 and
introduce the Zeeman field B. In the spinon framework,
the Zeeman field simply induces a spin splitting of the
two spinon bands. The dynamical susceptibility is them
simply

�0(k, !) =
M

! � B � vk
+

M

! � B + vk
�!
k!0

2M

! � B
. (6)

[LB: should I be trying to put proper i✏ factors here? ]
There are two branches with linear dispersion and con-
stant spectral weight, as shown by the dashed lines in
Fig. 1. Note that the form at k = 0 is more robust than
for k > 0, and is in fact exact provided the Hamiltonian
in the absence of Zeeman field has SU(2) symmetry. This
“Larmor theorem”[20] follows simply by the fact that in
this case [S+

tot, H] = BS
+
tot, where S

z

tot =
P

i
S

z

i
[LB:

check sign].
Now consider the interaction g. The diagonal J

z

R
J

z

L

term in Eq. (4) leads for M > 0 to a simple increase
of the spin splitting of the spinon bands by the energy
�! = gM . Consequently the full spin splitting is B+gM

and näıvely the poles in Eq. (6) would be shifted verti-
cally to B + gM ± vk. This clearly violates the Larmor
theorem. The contradiction is resolved by including the
spin flip part of the interaction, which results in the for-
mation of a bound state between the particle and hole
(exciton) created by the spin operator S

+. The two ef-
fects together are captured by a Random Phase Approx-
imation summation of ladder diagrams for the suscepti-
bility, as described in the SM, leading to the result

�(k, !) = M

✓
A1(k)

! � !1(k)
+

A2(k)

! � !2(k)

◆
, (7)

A1(2)(k) = 1 ± gM/2p
g2M2/4 + v2k2

,

!1(2)(k) = B + gM/2 ⌥
p

g2M2/4 + v2k2.

This is plotted schematically in Fig. 1. The downward
branch !1(k) has finite residue which approaches 2M

for k ! 0 and !1(k) ! B, satisfying the Larmor the-
orem. The spectral weight of the upward branch !2(k)
vanishes quadratically A2(k) ⇡ v

2
k

2 for k ! 0, when
!2(k) ! B + gM . Both branches scale linearly with
vk for su�ciently large momenta vk � gM/2. Although
this is not captured by Eq. (7), a more rigorous derivation
shows that when the downward mode reaches zero energy
its intensity vanishes, as we show in the SM. For any fi-
nite g 6= 0 there is a finite gap �! ⌘ !2(k = 0)�!1(k =
0) = gM .

We now compare our analytical analysis to numeri-
cal results, which are consistent with earlier studies of
the Heisenberg chain[3, 5–7]. These works observed a fi-
nite gap Heisenberg, but did not address its origin and

FIG. 1: Transverse susceptibility �±(k,!) obtained in the
small k, and low magnetization regime. (a) The dispersion
!1(2)(k) is given by the red (blue) solid line for gM/B = 1/2
and red (blue) dashed line for g = 0. (b) The intensity of
the lower (upper) branch A1(2) is the red (blue) solid line for
gM/B = 1/2 and red (blue) dashed line for g = 0.

systematics. The dynamical correlations obtained nu-
merically are shown seen in Fig. 2. Since the spectral
weight of the upper branch vanishes at k = 0, to obtain
the gap �! we extract the dispersion at small momenta
(see Fig. 2(b,d)), fitting the two branches to the form ex-
pected from Eq. (7), and extrapolating to k = 0. The re-
sulting gap versus magnetization, as J2 is varied, is shown
in Fig. 3(a). We account for higher order M

2 corrections
to the leading linear gM behavior of the gap. Thus fitting
the curves shown in Fig. 3 to the form �! = gM +↵M

2,
we extract g(J2) which is plotted in Fig. 3(b). Addi-
tional data for ferromagnetic J2 < 0, which enhances g

beyond that of the nearest-neighbor limit, is given in the
SM. Extrapolating g(J2) to zero, we find that g vanishes
at J2/J1 = 0.239 ± 0.005 in agreement with the criti-
cal value J2,c/J1 ⇡ 0.241 up to numerical uncertainties.
Fixed momentum cuts of the �(k, !) (Fig. 2b,d) show
that, as predicted by Eq. (7), the spectral weight of the
upper branch is suppressed at small k for the Heisen-
berg case (the generic situation), while the two branches
have approximately equal weight in the free spinon limit
(J2 ⇡ J2,c).

[LB: I would recommend we put all experimental dis-
cussion at the end ] [Mention neutron scattering ex-
periement on CuPzN [11] here again? Or maybe in the
discussion? Not sure if we have something very definitive
to say about it.]

High magnetization – We next consider the limit of
a nearly polarized chain with low density of down spins,
i.e. when the field is close to saturation value Bsat = (1+
�)J1. In this limit it is useful to consider the mapping of
spins to spinless fermions defined by S

�
i

=
Q

j<i
(�1)njc

†
i

and S
z = 1/2 � ni, where c

†
i

denotes the fermionic cre-

ation operator on site i and ni = c
†
i
c
i
. We focus on the

case with J2 = 0 first. The Hamiltonian in Eq. (1) maps
to

H =
X

i

J1

2

⇣
c
†
i
c
i+1 + h.c.

⌘
+ J1�nini+1 + (B � J1�)ni.

(8)
[LB: Sorry out of time now. edits stop here.]
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the flow of g toward zero and moreover distinguishes the
e↵ects of the diagonal and spin flip components of the
interactions in Eq. (4). Consequently, we must consider
them separately and carefully. First let us take g = 0 and
introduce the Zeeman field B. In the spinon framework,
the Zeeman field simply induces a spin splitting of the
two spinon bands. The dynamical susceptibility is them
simply
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There are two branches with linear dispersion and con-
stant spectral weight, as shown by the dashed lines in
Fig. 1. Note that the form at k = 0 is more robust than
for k > 0, and is in fact exact provided the Hamiltonian
in the absence of Zeeman field has SU(2) symmetry. This
“Larmor theorem”[20] follows simply by the fact that in
this case [S+
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Now consider the interaction g. The diagonal J
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term in Eq. (4) leads for M > 0 to a simple increase
of the spin splitting of the spinon bands by the energy
�! = gM . Consequently the full spin splitting is B+gM

and näıvely the poles in Eq. (6) would be shifted verti-
cally to B + gM ± vk. This clearly violates the Larmor
theorem. The contradiction is resolved by including the
spin flip part of the interaction, which results in the for-
mation of a bound state between the particle and hole
(exciton) created by the spin operator S

+. The two ef-
fects together are captured by a Random Phase Approx-
imation summation of ladder diagrams for the suscepti-
bility, as described in the SM, leading to the result
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branch !1(k) has finite residue which approaches 2M

for k ! 0 and !1(k) ! B, satisfying the Larmor the-
orem. The spectral weight of the upward branch !2(k)
vanishes quadratically A2(k) ⇡ v

2
k

2 for k ! 0, when
!2(k) ! B + gM . Both branches scale linearly with
vk for su�ciently large momenta vk � gM/2. Although
this is not captured by Eq. (7), a more rigorous derivation
shows that when the downward mode reaches zero energy
its intensity vanishes, as we show in the SM. For any fi-
nite g 6= 0 there is a finite gap �! ⌘ !2(k = 0)�!1(k =
0) = gM .

We now compare our analytical analysis to numeri-
cal results, which are consistent with earlier studies of
the Heisenberg chain[3, 5–7]. These works observed a fi-
nite gap Heisenberg, but did not address its origin and

FIG. 1: Transverse susceptibility �±(k,!) obtained in the
small k, and low magnetization regime. (a) The dispersion
!1(2)(k) is given by the red (blue) solid line for gM/B = 1/2
and red (blue) dashed line for g = 0. (b) The intensity of
the lower (upper) branch A1(2) is the red (blue) solid line for
gM/B = 1/2 and red (blue) dashed line for g = 0.

systematics. The dynamical correlations obtained nu-
merically are shown seen in Fig. 2. Since the spectral
weight of the upper branch vanishes at k = 0, to obtain
the gap �! we extract the dispersion at small momenta
(see Fig. 2(b,d)), fitting the two branches to the form ex-
pected from Eq. (7), and extrapolating to k = 0. The re-
sulting gap versus magnetization, as J2 is varied, is shown
in Fig. 3(a). We account for higher order M

2 corrections
to the leading linear gM behavior of the gap. Thus fitting
the curves shown in Fig. 3 to the form �! = gM +↵M

2,
we extract g(J2) which is plotted in Fig. 3(b). Addi-
tional data for ferromagnetic J2 < 0, which enhances g

beyond that of the nearest-neighbor limit, is given in the
SM. Extrapolating g(J2) to zero, we find that g vanishes
at J2/J1 = 0.239 ± 0.005 in agreement with the criti-
cal value J2,c/J1 ⇡ 0.241 up to numerical uncertainties.
Fixed momentum cuts of the �(k, !) (Fig. 2b,d) show
that, as predicted by Eq. (7), the spectral weight of the
upper branch is suppressed at small k for the Heisen-
berg case (the generic situation), while the two branches
have approximately equal weight in the free spinon limit
(J2 ⇡ J2,c).
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Simulations
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large M at 
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M

J2



Higher Magnetization

0 º/2 º

k

0

1

2

3

4

!
/J

1

0

200

400

0 º
2

4

0

50

0 º/2 º

k

0

1

2

3

4

!
/J

1

0

200

400

0 º
2

4

0

50

M/Ms=.9

J2=0

J2=.45

•k=0 gap persistent 
•Lower mode has most of 
weight and slightly split 

•Upper mode with small 
weight



Higher Magnetization
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•Lower mode(s) clearly 
descend from single magnon 
of the ferromagnet 

•Upper mode: spectral weight 
transfer to large energy upon 
small “doping” with spin flips



Picture
• Spin flip gas

~Tonks gas



Picture
• Spin flip S�

i ⇠ c†i
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Extra particle can be ~free or bind to one 
of the existing particles if they interact!



Bound state
• Two magnons 

• Easy to show there is a bound state outside the two-
magnon continuum 

• Approximation: finite system with one spin flip in box of 
size 1/(density of spin flips)

4

(a) (b)

(c) (d)

FIG. 2: Dynamical correlations S+�(k,!) obtained numer-
ically for Zeeman field of B/J1 = 1. (a-b) J2 = 0, (c-d)
J2/J1 = 0.24. In (a,c) the red dashed line indicates a fit
to the analytic expression in Eq. (7) valid in the vicinity of
k = 0. In (b,d) cuts of the dynamical correlations are shown
for fixed values of k.

(a) (b)

FIG. 3: (a) The splitting at k = 0 as function of the mag-
netization for di↵erent values of J2 (b) The backscattering
interaction g, extracted from �! vs M in (a).

At saturation field B = Bsat, the chain is fully polar-
ized and the transverse correlations feature a sharp cosine
mode at ! = J1(1 + cos k) as can be seen in Fig. 4(a).
In the isotropic case, i.e. for � = 1, as the field is low-
ered and the density of spin down particles increases,
we observe a splitting of the cosine mode as well as an
appearance of a new mode at higher energies ! > 2J1

(see Fig. 4(b)). To understand this response it is useful
to compare to the limit of � = 0, i.e. when the spin-
less fermions are non-interacting. The dynamical corre-
lations obtained in this limit are plotted in Fig. 4(c). It
can be seen that the low energy response at ! < 2J1 is
not altered significantly. Indeed, as we show in the SM,
the splitting of the lower mode can be understood in the
non-interacting limit as originating from single particle
excitations above the Fermi sea [25]. The mode at higher
energies however is completely gone for � = 0, indicating
that its presence comes purely from interaction e↵ects. In
fact, for the Heisenberg chain, it is known that this mode
comes from Bethe ansatz string solutions, which can be
identified as two-magnon bound states close to satura-

tion field [2, 3]. Here, we go beyond the integrable limit
analyzing bound state solutions for finite J2, and clari-
fying how their presence in the system is revealed in the
transverse correlations.

To examine two-particle bound state solutions we con-
sider a state with two down spins

|2Ki =
X

m,n

 m,nS
�
m

S
�
n
|0i ,  m,n / e

iK
m+n

2 f(m � n)

(9)
where |0i corresponds to the fully polarized state. Due
to translational invariance the two particle wavefunction
 m,n can be written as above, with K denoting the center
of mass momentum of the pair of magnons. Looking for
eigenstates of the Hamiltonian (1) of the form above,
leads to an e↵ective Schrodinger equation for f(m � n).
Requiring a bound solution for f we can check that such
a solution exists for a given K and obtain its energy. For
J2 = 0 the dispersion of the bound state can be easily
obtained analytically and is given by ✏2(K, J2 = 0) =
2B�J1 sin2(K/2) [1], while for finite J2 we calculate the
dispersion numerically (see SM).

To understand how the two-magnon bound states are
revealed in the transverse correlations, consider for sim-
plicity the limit of a single down spin in the otherwise
polarized ground state. Note that since the minimum
of the single magnon dispersion is at momentum ⇡ for
J1 > 0 and J2/J1 < 1/4, the magnon present in the
ground state will occupy that momentum. We can thus
denote the ground state in this case as |1⇡i. Calculat-
ing the transverse susceptibility (2), we expect the ma-

trix element
���
D
2

K

���S�
k

��1
⇡

↵��� / �K,k+⇡, or equivalently,

we expect the response at momentum k to be at energy
! = ✏2(k + ⇡) (see SM for a more explicit calculation
of the matrix element). Plotting the expected dispersion
due to the two-magnon bound state on top of the dy-
namical correlations obtained numerically (dashed line
in Figs. 4(b,d)) we find an excellent agreement between
the two. The intensity of this mode depends on the den-
sity of down spins in the ground state, and hence vanishes
as 1/2 � M (see SM for additional numerical results for
di↵erent values of M).

Note that as opposed to the low-magnetization regime,
where the splitting between the modes at k = 0 van-
ishes at J2 ! J2,c, in the high-magnetization regime
the splitting between the modes remains finite. In fact,
�! = J1 � 3J2 + J

2
2/(J1 � J2) is determined by the two-

magnon bound state at K = ⇡ [21, 22] (see SM for de-
tails). This highlights the fact that the nature and the
origin of the high energy mode in the low and high mag-
netization regimes is very di↵erent. While in the low-
magnetization regime the high energy mode describes a
continuum of excitations and the low energy mode is a
sharp collective excitation of spinons [23], in the high
magnetization regime the situation is reversed - the low
energy modes in the response form a continuum of psi-

 m,n = eiK(m+n
2 )f(m� n)

<latexit sha1_base64="abz8OCSVouUNG6oW5OHdVPSXcvg="></latexit>

hS+
k �(! �H)S�

k in ⇠ h1⇡|S+
k �(! �H)S�

k |1⇡iL=1/n
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⇠ · · ·+ |h2⇡+K |S�
k |1⇡i|2L=1/n�(! � ✏2(k + ⇡))
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2-magnon bound state appears with weight ~ n ~ Ms-M



Bound state
• Check
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Red dashed line = calculated bound state energy

c.f. Bethe ansatz 
“strings”



Bound state
• Check

Red dashed line = calculated bound state energy

But not related 
to integrability
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Extremely general phenomena of 
spectral weight transfer in low 

density correlated systems



Bound state
• Check: does it really come from magnon interactions? 

• XX model (equivalent to free fermions)

Bound state 
entirely absent
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Also see that lower mode 
splitting is not an interaction 
effect.  It arises from Jordan-

Wigner string



Summary
• We identified simple spectral signatures of quasiparticle 

interactions (spinons or magnons) in 1d chains and 2d 
spin liquids 

• Experiments??  Maybe one of you can be the first!


