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Quantum Spin Liquid



Quantum non-locality
| i = 1p

2
(|"#i � |#"i)EPR

??where is the information??
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Schrödinger’s Cat
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Schrödinger’s Cat

UNSTABLE to decoherence - uncontrolled 
entanglement with the environment





Strange Stuff

Phil Anderson, 1973
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Strange Stuff

Phil Anderson, 1973



 





 = +...

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)

Two features: 1. Spin-zero pairs 
2. Massive superposition



When do we expect 
RVB?

• Compare singlet energy to ordered energy:

 





versus

The competitionSinglets

caveats:
Neglects superposition Neglects zero point fluctuations



When do we expect 
RVB?

• Compare singlet energy to ordered energy:
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angular factor

Coordination number

• Favorable for small S, small z, small x (frustration)



Ordinary (local) Matter
We can consistently 

assign local properties 
(elastic moduli, etc.) 
and obtain all large-

scale properties

•Measurements far away do not affect one 
another 

•From local measurements we can deduce the 
global state

To understand what is strange about spin liquids, we should understand



Ordinary (local) Matter

| i = ⌦A| iA
Ground state is “essentially” 

a product state

no entanglement 
between blocks

Hamiltonian is local

H =
X

x

H(x) H(x) has local support near x



“Essentially” a product state?

| i = ⌦A| iA

phase space

• Adiabatic continuity

n.b. This is not true for gapless fermi systems



“Essentially” a product state?

• Entanglement scaling

⇢A = TrĀ| ih |

S(A) ⇠ �Ld�1 area law 

A

satisfied with exponentially small corrections

S(A) = �TrA (⇢A ln ⇢A)



Best example: ordered 
magnet

Hamiltonian H =
X

(ij)

JijSi · Sj
exchange is short-

range: local

ordered state | i ⇡
O

i

|Si · n̂i = +Si

block is a single 
spin



Quasiparticles
excited states ~ excited 

levels of one block

•local excitation can be created 
with operators in one block 

•localized excitation has 
discrete spectrum with non-
zero gap, and plane wave 
forms sharp band  

•quantum numbers consistent 
with finite system: no 
emergent or fractional 
quantum numbers



Spin wave

!(k) ⇡ �� 2t cos kxa� · · ·

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

|fi = S+
k |ii



Quantum spin liquid


 





 = +...

Entanglement -> non-local excitation

�

+ · · · = “spinon”

“quasiparticle” above a non-zero gap



Fractional quantum number

excitation with ΔS = 1/2 
not possible for any finite 

cluster of spins

always created in pairs by any 
local operator



No spin waves
• In a quantum spin liquid, the elementary spin 

excitations are fractional, S=1/2 spinons 

• Sharp peaks should be reduced or absent in 
the spin structure factor

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)



c.f. One dimension

A. Tennant et al, 2001

KCuF3



Anyons

spinon
“vison”

 ! � “mutual semions”



Topological phases

9.3. Anyons

Here, the diagram is different

(367)

e m

e m

= �

e m

e m

.

The # particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an # particle – behaves as a fermion! Basically if we make an
interchange of two #’s, we effectively wind a constituent e particle of one #
half-way around the m of the other # particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= �

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two e particles, described by some initial state |yiniti, such that, acting on
|yiniti, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = �1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = �1. We choose s1 and p1 to be adjacent,
comprising one # “particle”, and s2 and p2 to be adjacent, making up the
other # particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two # particles. We will do this by a sequence
of unitary transformations, so that

(369) |yfinali = U|yiniti,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single sz

i and sx
j operator to
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A. Kitaev

Anderson’s RVB state is thus an 
example of a “topological phase” - the 

best understood sort of QSL

X.-G. Wen

Understood and 
classified by anyons 
and their braiding 

rules in 2d



 =
X

Robustness arises from topology: a QSL is a 
stable phase of matter (at T=0)

Stability



Many kinds of QSLs


 





 = +...

For ~500 spins, there are more amplitudes than 
there are atoms in the visible universe!

Different choices of amplitudes can realize 
different QSL phases of matter.

# #’



Gutzwiller Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · ·

| 0i =
Y

k2FS

c†k"c
†
k#|0i

=

“partons”
“spinons”



Gutzwiller Construction

• Project out any components with 
empty or doubly occupied sites

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



Gutzwiller Construction

• Can build many QSL states by 
choosing different free fermion states

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”
“spinons”



Gutzwiller Construction

• Partons/spinons as quasiparticles

Two spinons but independent 
(before projection)

| 0i = P̂G

⇣
c†k↵cq� | 0i

⌘
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Applied to triangular lattice 
to compute S(q,w), 

F. Ferrari + F. Becca, 2019



• Topological QSLs 

• U(1) QSL 

• Dirac QSLs 

• Spinon Fermi surface

Classes of QSLs
projected 

superconductor

projected 3d band 
insulator

projected 
graphene

projected 
metal



• Topological QSLs 

• U(1) QSL 

• Dirac QSLs 

• Spinon Fermi surface

Classes of QSLs
anyonic 
spinons 

electric+magnetic 
monopoles, photon

strongly 
interacting 

Dirac fermions

non-Fermi 
liquid “spin 

metal”



• Topological QSLs 

• U(1) QSL 

• Dirac QSLs 

• Spinon Fermi surface

Classes of QSLs

These spin liquids are all different phases of matter, and 
are rather different from one another.  Like the 
corresponding unprojected states, their phenomenology 
can be quite distinct.  Too naive to look for a single 
identifying feature for all QSLs.



Strange stuff

where do we find it?



• Local moments: Curie-Weiss law at high T 

• Frustration parameter:  f = |ΘCW|/TN 

• Larger f >> 1 is better.  f = ∞ for true QSL

� ⇥ A

T ��CW

TTN

Spin liquid

��1

�CW |�CW |

Spin gas (paramagnet)
Spin solid (ordered)

Ramirez Plot



Materials criteria

• S=1/2 spins  

• Geometrical or exchange frustration 

• Significant charge fluctuations 

• Exotic interactions (c.f. Spin-orbit 
coupling) 



U/t

frustration

metal

AF insulator
QSL
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Where to look?



Top experimental 
platforms

Kitaev materials

Quantum spin icekagomé

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2
organics



Is there a gap? 
•  Specific heat 
•  NMR 1/T1 
•  Dynamic susceptibility 
•  T-dependence of 𝜒

A rough guide to 
experiments on QSLs

Does it order? 
•  NMR line splitting 
•  muSR oscillation 
•  thermodynamic 

transition via specific 
heat, susceptibility 

• Bragg peak in neutron/
x-ray

Delocalized 
excitations? 

• thermal conductivity 
• INS

Structure of 
excitations? 

•  E(k) from INS,RIXS 
•  optics, Raman

Exotica 
• Local measurements 
• thermal Hall 
• ARPES (on insulator!) 
• Proximity effects
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Kagomé antiferromagnet

H = J

X

hiji

Si · Sj + ...

V. Elser, 1989 + many many others

likely to be a QSL
Very large classical degeneracy 

Small z=4, x=1/2



S=1/2 kagomé AF
• Rather definitive evidence for QSL by 

DMRG
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C〉, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
〈C|"Si|C〉 = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)
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FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the
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Herbertsmithite
kagomé layers of Cu 

S=1/2 spins, separated 
by non-magnetic Zn

ZnCu3(OH)6Cl2

Heisenberg-like 
with J ~ 200K

this system remain important topics for further investiga-
tion. We also observe a small peak in the ac susceptibility
nearH ! 2 T at 50 mK which disappears upon warming to
705 mK. The overall susceptibility data indicate the ab-
sence of magnetic order or a spin gap down to 50 mK.

The specific heat C"T# of ZnCu3"OH#6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of a
few Kelvin and higher, the lattice contribution to the
specific heat (proportional to $T3) is the most significant
contribution, as shown in the inset. However, this contri-
bution diminishes at low temperatures, and below $5 K,
an additional contribution is clearly observed which arises
from the Cu spin system. Magnetic fields of a few Tesla can
significantly affect the low-T behavior, and fields of 10 T
and higher strongly suppress the specific heat below 3 K.
The difficulty in synthesizing an isostructural nonmagnetic
compound makes it hard to subtract the lattice contribution
precisely. However, the magnetic field dependence sug-
gests that the specific heat in zero applied field below 1 K is
predominately magnetic in origin. As a rough measure of
the spin entropy, the field-induced change in specific heat

below 3 K, obtained by subtracting the 14 T data from the
zero field data, accounts for about 5% of the total entropy
of the spin system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific heat
at low temperatures (T < 1 K) appears to be governed by a
power law with an exponent which is less than or equal to
1. In a 2D ordered magnet, magnon excitations would give
C$ T2. The kagomé-like compound SrCr8%xGa4&xO19
(SCGO) [18] and other 2D frustrated magnets [19] are
also observed to have C$ T2 even in the absence of
long-range order [20,21]. The behavior that we observe
in ZnCu3"OH#6Cl2 below 1 K stands in marked contrast.
We can fit our data to the power law C ! !T", though we
note that the exponent " is sensitive to the chosen range of
temperatures that are fit. The blue line in this figure repre-
sents a linear fit with " ! 1 over the temperature range
106 mK< T < 400 mK. The fitted value for ! is 240'
20 mJ=K2 Cu mole. If we include higher temperatures, the
red line represents a fit with " ! 2=3 over the temperature
range 106 mK< T < 600 mK. Extending the fitted range
to even higher temperatures can yield " values as low as
0.5.

Finally, inelastic neutron scattering measurements of the
low energy spin excitations were performed on deuterated
powder samples of ZnCu3"OD#6Cl2. High resolution mea-

 

FIG. 2 (color online). (a) The specific heat C"T# of
ZnCu3"OH#6Cl2 in various applied fields, measured using a
Physical Property Measurement System. Inset: C"T# plotted
over a wider temperature range in applied fields of 0 T (square)
and 14 T (star). (b) C"T# in zero field measured down to 106 mK.
The lines represent power law fits as described in the text.

 

FIG. 1 (color online). (a) The chemical transformation from
the pyrochlorelike lattice of Cu2"OH#3Cl to the kagomé layers of
ZnCu3"OH#6Cl2. (b) Magnetic diffraction scans of the two
systems at T ! 1:4 K (open) and 20 K (filled). The
Cu2"OH#3Cl data show magnetic Bragg peaks at Q ’ 0:70 and
Q ’ 0:92, which are absent for the ZnCu3"OH#6Cl2 data (which
have been shifted by 2300 counts=min for clarity). (c) Magnetic
susceptibility of ZnCu3"OH#6Cl2 measured using a SQUID
magnetometer plotted as 1=#, where mole refers to a formula
unit. The line denotes a Curie-Weiss fit. Inset: ac susceptibility
(at 654 Hz) at low temperatures measured at the NHMFL in
Tallahassee, FL.
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Theory
• What kind of QSL?

We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q$ð ~ri%~rjÞh ~Si $ ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si $ ð ~Sj & ~SkÞ $ ~Sl $ ð ~Sm & ~SnÞi, where the loops consid-
ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as
expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S! ¼
ð1% !Þ%1log2tr"

!, 0 ' !<1, where " is a subsystem
density matrix. Scaling is expected as S! ’ #c% $, where
# is an !-dependent constant. $, the topological entangle-
ment entropy, is independent of! [77–79] and depends only
on the total quantum dimensionD as $ ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S! for cylinders
of fixed c and extrapolate in L%1 to L ! 1; a linear
extrapolation in c ! 0 yields $. Results are 1D mapping
independent. We show intermediate values of ! (Fig. 6),
which all show a clearly finite value of $, with a value very
consistent with $ ¼ 1; large-! results agree. Small-!
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 4 (color online). Log-linear plots of the absolute value of
the Fig. 4(a) spin-spin and Fig. 4(b) dimer-dimer correlation
functions versus the distance x ¼ ji% jj for a XC12 [Fig. 4(a)]
and a YC8 [Fig. 4(b)] sample along one lattice axis with
exponential and power law fits. An x%4 line is shown as a guide
to the eye.
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
inverse lattice spacings with an empirical linear fit to the largest
cylinders, leading to a spin gap estimate of 0.13(1).
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FIG. 4. The transfer matrix spectrum in the Sz = 1 sec-
tor (roughly the triplet channel) for the kagome Heisenberg
model (a), (c), (e) and free fermion model (b), (d), (f). The
vertical axis is the inverse of correlation length 1/⇠, which
can be considered as the gap � of the excitations, up to a
pre-factor � = vs/⇠. The horizontal axis denotes (a), (b) the
twist angle ✓; (c), (d) momentum 2k1; (e), (f) momentum k2.
The cylinder we show here is the YC8-2 cylinder for both case,
and the truncation error of DMRG is around 2⇥ 10�6, which
corresponds to bond dimension m = 6000 for the kagome
Heisenberg model and m = 250 for the free fermion model.
For the kagome Heisenberg model, we also include a small
J2 = 0.05. (g) Three di↵erent types of particle-hole excita-
tions. The arrows represent the direction of the movement of
the discretized momentum under the twist boundary condi-
tions.

function of the twist angle ✓. We consider the Type II
YC8-2 geometry, and included a small J2 to stabilize the
adiabatic twist up to ✓ = ⇡ (the Appendix shows results
for other geometries). The three di↵erent colors label
three ‘bands:’ we observe that the momenta kS=1,j clus-
ter into three distinct groups, and we plot the largest
several ⇠S=1,j from each momenta group. The momen-
tum can be resolved into its lattice components k1, k2,
providing an alternative way to plot the data shown in

Figures 4c-f.

1. Interpretation as DSL

The KAH and free fermion spectra are remarkably sim-
ilar. The excitation spectrum can be understood based
on the free fermion ⇡-flux model. S

z = 1 excitations
arise from particle-hole excitations near the Dirac points;
a momentum p� q spin flip takes the form S

+(p� q) =
f
†
"(p)f#(q). The ⇡-flux state has two Dirac points at
Q = (⇡/2,⇡/2) and �Q = (�⇡/2,�⇡/2). We group the
particle-hole excitations into intra-valley forward (blue);
intra-valley backward (yellow); and inter-valley forward
(red), as illustrated in the cartoon 4(g) (inter-valley back-
ward scattering is higher in energy). The Dirac points are
avoided on the ✓ = 0 YC8-2 cylinder, as shown in Fig.
1(d), but as ✓ increases, the allowed momenta shift and
eventually pass through the Dirac point; the f" and f#
feel opposite flux, hence move oppositely. As can be seen
in the cartoon, this shift a↵ects the three modes in a
qualitatively di↵erent fashion. The dispersion of the red
mode follows a Dirac behavior and becomes gapless at
the twist angle ✓ = ±⇡. In terms of momenta, the gap-
less point occurs at (2k1, k2) = (0,⇡) as expected from
the displacement between Q and Q

0. The yellow mode
has a constant energy under the twist angle ✓. The blue
mode has similar response as the red mode, but remains
gapped when the system hits the Dirac points (✓ = ⇡).
The spectrum of the KAH and the ⇡-flux free fermion

model show surprisingly good agreement: (i) the red
mode has a linear sharp Dirac cone structure; (ii) the
yellow mode is almost flat; (iii) the modes occur with the
predicted momenta. The qualitative di↵erence between
two models is that the yellow and blue modes in the KAH
are lower compared with the free fermion model. It may
that even though the DSL theory should have an emer-
gent SU(4) symmetry in 2D, in the quasi-1D geometry
intra-valley interactions are stronger.
The existence of the renormalized flat yellow band also

explains the ‘kink’ in the ✓-dependence of the triplet gap
�S=1: for small ✓ it drops below the linear red band,
which then cross. This implies that gaps obtained in
previous DMRG studies, which all worked at ✓ = 0, were
probing the yellow intra-valley excitation. Since the yel-
low band is subject to strong interaction e↵ects, this may
relate to the non-observation of vF /Ly gap scaling on ac-
cessible cylinders.
We want to remark that within our DMRG simula-

tions the correlation spectrum of the KAH still has a
finite “gap” even at the Dirac point. This is a necessary
consequence of DMRG, since the finite bond dimension
m induces a finite correlation length. We find the ⇠ in-
crease with m, as expected for a DMRG simulation of a
critical system. In fact, a similar behavior is found also in
the free fermion model. The correlation length estimated
from DMRG (with m = 250 in Fig. 4) is finite even for
the gapless free fermion model with an infinite correlation

Y.-C. He et al: 
evidence for 
Dirac QSL
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FIG. 1: (color online) (a) The in-phase component of the ac
susceptibility, measured at 100 Hz with an oscillating field of
17 Oe. (b) A scaled plot of the ac susceptibility data measured
at nonzero applied field, plotted as χ′

acT
α with α = 0.66 on

the y axis and µBH/kBT on the x axis. Inset: A scaled plot
of the dc magnetization, showing MT−0.34 vs µBH/kBT .

adequate. It should also be pointed out that in herbert-
smithite the entire bulk susceptibility obeys this scaling
relation, while in CeCu5.9Au0.1 it is only the estimated lo-
cal contribution, χL(T ) = [χ(T )−1−χ(T = 0)−1]−1, that
obeys scaling. A susceptibility of this form will imply a
similar scaling in the bulk dc magnetization of the sam-
ple, with MTα−1 expressible as a function of H/T . As
a complementary measurement, such a scaling is shown
in the inset to Fig. 1(b). The dc magnetization was
measured up to µ0H = 14 T at temperatures ranging
from T = 1.8 K to 10 K, and is plotted as MT−0.34 vs
µBH/kBT .
The inelastic neutron scattering spectrum of herbert-

smithite was measured on the time-of-flight Disk Chop-
per Spectrometer (DCS) at the NIST Center for Neu-
tron Research. A deuterated powder sample of mass
7.5 g was measured using a dilution refrigerator with
an incident neutron wavelength of 5 Å. Measurements
were taken at six different temperatures, with roughly
logarithmic spacing, ranging from 77 mK to 42 K. The
scattering data were integrated over a wide range of mo-
mentum transfers, 0.5 ≤ Q ≤ 1.9 Å−1, to give a mea-
sure of the local response. The momentum integrated
dynamic scattering structure factor, S(ω), is shown in
Fig. 2(a). Similar to previous reports on the neutron scat-
tering spectrum of herbertsmithite[11], the data show a

broad inelastic spectrum with no discernable spin gap
and only a weak temperature dependence for positive
energy transfer scattering. The negative energy trans-
fer scattering intensity is suppressed at low temperatures
due to detailed balance. The imaginary part of the dy-
namic susceptibility is related to the scattering struc-
ture factor through the fluctuation-dissipation theorem,
χ′′(ω) = S(ω)(1 − e−h̄ω/kBT ). The dynamic suscepti-
bility can then be determined in a manner similar to
that used previously[11]. For the two lowest tempera-
tures measured, detailed balance considerations will ef-
fectively suppress scattering at negative energy transfer
for values of |h̄ω| ≥ 0.15 meV. Thus these data sets are
averaged together and treated as background. This back-
ground is subtracted from the T = 42 K data, for which
the detailed balance suppression is not pronounced below
|h̄ω| = 2 meV. From this, χ′′(ω; T = 42 K) is calculated
for negative ω, and the values for positive ω are easily de-
termined from the fact that χ′′(ω) is an odd function of
ω. The dynamic susceptibility at the other temperatures
is calculated by determining the difference in scattering
intensity relative to the T = 42 K data set. It is rea-
sonably assumed that the elastic incoherent scattering
and any other background scattering are effectively tem-
perature independent. The calculated values of χ′′(ω)
at all measured temperatures are shown in Fig. 2(b).
The T = 42 K scattering data and χ′′(ω) were fit to
smooth functions for use in calculating the susceptibility
at other temperatures so that statistical errors would not
be propagated throughout the data; the smooth function
of χ′′(ω; T = 42 K) used in the calculation is also shown
in the figure.

The resulting values for χ′′(ω) follow a similar scaling
relation as the ac susceptibility, where the ratio h̄ω/kBT
replaces µBH/kBT . In Fig. 3 we show χ′′(ω)T 0.66 on the
y axis and the unitless ratio h̄ω/kBT on the x axis. The
scaled data collapse fairly well onto a single curve over
almost four decades of h̄ω/kBT . Here we have used the
same exponent α = 0.66 that was observed in the scal-
ing of the ac susceptibility. However, the error bars on
the data allow for a wider range of exponents (α = 0.55
to 0.75) with reasonable scaling behavior. The collapse
of the χ′′(ω) data is again reminiscent of the behav-
ior observed in certain heavy-fermion metals, including
the shape of the functional form of the scaling function.
Let us assume that χ′′(ω)Tα ∝ F (ω/T ). The heavy-
fermion metal CeCu5.9Au0.1 displays a scaling[21, 22]
that could be fit to the functional form F (ω/T ) =
sin[α tan−1(ω/T )]/[(ω/T )2 + 1]α/2. A fit to this func-
tional form is shown as a dashed blue line in Fig. 3. This
simple form does not fit the herbertsmithite data well for
low values of ω/T . Other heavy-fermion metals[23, 24],
display a scaling relation that can be fit to the functional
form F (ω/T ) = (T/ω)αtanh(ω/βT ); this functional form
is similar to that used to fit the dynamic susceptibility in
La1.96Sr0.04CuO4[25]. This functional form fits our data

Lots of early evidence 
for gaplessness

Helton et al, 2010
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FIG. 1: (color online) (a) The chemical transformation from
the pyrochlorelike lattice of Cu2(OH)3Cl to the kagomé lay-
ers of ZnCu3(OH)6Cl2. (b) Magnetic diffraction scans of the
two systems at T = 1.4 K (open) and 20 K (filled). The
Cu2(OH)3Cl data show magnetic Bragg peaks at Q ! 0.70
and Q ! 0.92 which are absent for the ZnCu3(OH)6Cl2 data
(which have been shifted by 2300 cts/min for clarity). (c)
Magnetic susceptibility of ZnCu3(OH)6Cl2 measured using a
SQUID magnetometer plotted as 1/χ, where mole refers to a
formula unit. The line denotes a Curie-Weiss fit. Inset: ac
susceptibility (at 654 Hz) at low temperatures measured at
the NHMFL in Tallahassee, FL.

investigation. We also observe a small peak in the ac
susceptibility near H = 2 T at 50 mK which disappears
upon warming to 705 mK. The overall susceptibility
data indicate the absence of magnetic order or a spin
gap down to 50 mK.

The specific heat C(T ) of ZnCu3(OH)6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of
a few Kelvin and higher, the lattice contribution to the
specific heat (proportional to ∼ T 3) is the most signif-
icant contribution, as shown in the inset. However this
contribution diminishes at low temperatures, and below
∼ 5 K, an additional contribution is clearly observed
which arises from the Cu spin system. Magnetic fields
of a few Tesla can significantly affect the low-T behavior,
and fields of 10 Tesla and higher strongly suppress the
specific heat below 3 K. The difficulty in synthesizing an
isostructural nonmagnetic compound makes it hard to
subtract the lattice contribution precisely. However, the
magnetic field dependence suggests that the specific heat
in zero applied field below 1 K is predominately magnetic
in origin. As a rough measure of the spin entropy, the

FIG. 2: (color online) (a) The specific heat C(T ) of
ZnCu3(OH)6Cl2 in various applied fields, measured using a
Physical Properties Measurement System. Inset: C(T ) plot-
ted over a wider temperature range in applied fields of 0 T
(square) and 14 T (star). (b) C(T ) in zero field measured
down to 106 mK. The lines represent power law fits as de-
scribed in the text.

field-induced change in specific heat below 3 K, obtained
by subtracting the 14 T data from the zero field data,
accounts for about 5% of the total entropy of the spin
system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific
heat at low temperatures (T < 1 K) appears to be gov-
erned by a power law with an exponent which is less than
or equal to 1. In a 2D ordered magnet, magnon excita-
tions would give C ∼ T 2. The kagomé-like compound
SrCr8−xGa4+xO19 (SCGO)[18] and other 2D frustrated
magnets[19] are also observed to have C ∼ T 2 even in the
absence of long-range order[20, 21]. The behavior that we
observe in ZnCu3(OH)6Cl2 below 1 K stands in marked
contrast. We can fit our data to the power law C = γT α,
though we note that the exponent α is sensitive to the
chosen range of temperatures that are fit. The blue line in
this figure represents a linear fit with α = 1 over the tem-
perature range 106 mK < T < 400 mK. The fitted value
for γ is 240 ± 20 mJ/K2 Cu mole. If we include higher
temperatures, the red line represents a fit with α = 2/3
over the temperature range 106 mK < T < 600 mK. Ex-
tending the fitted range to even higher temperatures can
yield α values as low as 0.5.

Finally, inelastic neutron scattering measurements of
the low energy spin excitations were performed on deuter-

Helton et al, 2007
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FIG. 1: (color online) (a)-(d) Inelastic neutron data on Herbertsmithite in the (HK0) and (HHL) scattering planes at T = 2K
for !ω = 0.4 meV and !ω = 1.3 meV. The bright spots at (110) and (003) arise from structural Bragg peaks. The diffuse spots
at (100), (00 3

2
) and ( 1

2
1
2
0) are magnetic in origin. Note that the (00 3

2
) diffuse spot is particularly pronounced at 0.4 meV,

while the magnetic scattering at 1.3 meV is nearly independent of L. (e)-(f) Plots of the calculated S(Q) in the (HK0) and the
(HHL) planes, representing antiferromagnetically correlated nearest neighbor impurities on the interlayer sites, as described in
the text.

used and subtracted from the corresponding sample mea-
surements.
Prior inelastic neutron scattering measurements on sin-

gle crystals by some of us [13] revealed a continuum of
scattering consistent with fractionalized spinon excita-
tions. That study primarily focused on energy trans-
fers from about 0.75 meV to 11 meV [13]. The response
in the (HK0) plane above 1 meV forms a continuum,
consistent with a singlet form factor involving nearest
neighbor kagome spins. Below this energy, though, the
momentum pattern was found to feature broad spots
with maxima at (100) and equivalent positions. Here, we
have acquired new data in the (HK0) scattering plane
at !ω = 0.4 meV and 1.3 meV, as shown in Fig. 1(a)
and (c). The Q-dependence of the scattering at fixed
energy transfer shows a distinct rotation relative to the
high energy dimer-like pattern with maxima near (23

2
30)

to a low energy pattern with maxima at (100). One can
imagine various ways in which enhanced scattering at
(100) might emerge: for example, kagome spins with dy-
namical q = 0 correlations (as observed in iron jarosite
KFe3(OH)6(SO4)2 [14]) as well as a ferromagnetic ar-
rangement of impurity spins within the interlayers could
give rise to such peaks. However, it may be necessary
to go beyond 2D models, since the interaction pathways
between the interlayer Cu impurities would imply corre-
lations along the c-direction as well.

Therefore, we have performed additional measure-
ments in the (HHL) scattering plane which allow us to
probe both intralayer and interlayer correlations. These
measurements reveal that the lowest energy fluctuations
have short range correlations along all three crystallo-
graphic directions. As shown in Fig. 1(b), diffuse peaks
are seen at the (00 3

2 ) and (12
1
20) positions for !ω =

0.4 meV. This intensity emerges below an energy scale
of ∼0.8 meV where an enhanced dynamic magnetic re-
sponse was previously reported [12, 13]. The diffuse peak
at L = 3

2 has the same position along L as the magnetic
Bragg peaks in iron jarosite [15, 16] where long-range
order yields a magnetic cell that is doubled along the c-
axis [17]. In contrast, the scattering at a higher energy of
!ω = 1.3 meV (Fig. 1d) shows little variation along the
L-direction, consistent with quasi-two-dimensional cor-
relations as expected for intrinsic kagome spins. This
new observation establishes a clear dichotomy between
the low energy 3D excitations (below 0.8 meV) and the
higher energy 2D excitations. The explicit observation
of quasi-2D correlations confirms that the spin excita-
tions measured above 1 meV by Han et al. [13] essen-
tially derive from the two-dimensional physics of a single
kagome lattice. Moreover, the dichotomy implies that
the physics at low energies (such as effects of weakly
coupled impurities) quickly diminishes at the higher mea-
sured energies. Hence, it appears neutron scattering can

T-H Han et al, 2015

claim to separate 
impurity signal 
below 0.7meV

Single 
crystal NMR
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Fig. 4. Intrinsic spin susceptibility χkagome and spin excitation gap Δ .  (A) Temperature 

dependence of χkagome deduced from 17K(a*) observed at Main1 in Bext = 3.2 T || a*.  The red 

dashed curve represents a theoretical prediction based on high temperature series expansion (28) 

with J = 180 K, matched at 295 K, whereas the solid curve is a guide to the eye. (B) Temperature 

and field dependences of 17K(a*) at low temperatures, with a fit to 17K(a*)~ T ⋅exp(−Δ /T )  in the 

temperature range up to 4.2 K (solid curves) and 10 K (dashed curves).  (C) Main1 lineshapes at 

4.2 K in Bext = 3.2, 6.1, and 9 T || a* plotted as a function of the normalized frequency f / fo −1  

(= 17K(a*)).  (D) The spin excitation gap, Δ(Bext), deduced from (B) for the fitting range up to 4.2 

K (filled circles) and 10 K (crosses).  Dashed and doted lines are the best fits under the constraint 

of S =1  and S =1/ 2 , respectively, whereas the solid line represents the best free parameter fit. 
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and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 
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No S=0 singlets, but highly entangled.



Non-local excitations

Majorana Flux

In Kitaev’s model: 
• Majorana’s dispersion ~ K and Dirac-like 
• Fluxes are localized and gapped

" e,m



Non-Abelian Phase
• In an applied magnetic field, the 

Majoranas acquire a gap

8.2. Derivation of an effective Hamiltonian

What if the perturbation does not respect the time-reversal symmetry? We will now
show that the simplest perturbation of this kind

V ¼ "
X

j

ðhxrx
j þ hyr

y
j þ hzrz

jÞ; ð45Þ

does open a spectral gap. (Physically, the vector h = (hx,hy,hz) is an external magnetic field
acting on all spins.) For simplicity, we will assume that Jx = Jy = Jz = J.

Let us use the perturbation theory to construct an effective Hamiltonian Heff acting on
the vortex-free sector. One can easily see that H ð1Þ

eff ¼ 0. Although the second-order term
H ð2Þ

eff does not vanish, it preserves the time-reversal symmetry. Therefore, we must consider
the third-order term, which can be written as follows:

H ð3Þ
eff ¼ P0VG0

0ðE0ÞVG0
0ðE0ÞVP0;

where P0 is the projector onto the vortex-free sector, and G0
0 is the unperturbed Green

function with the vortex-free sector excluded. In principle, the Green function can be com-
puted for each gauge sector using the formula G0ðEÞ ¼ "i

R1
0 eiðE"H0þidÞtdt (where d is an

infinitely small number). For fixed values of the field variables ujk the unperturbed Ham-
iltonian may be represented in the form (18) and exponentiated implicitly by exponentiat-
ing the corresponding matrix A; the final result may be written as a normal-ordered
expansion up to the second order. However, it is a rather difficult calculation, so we will
use a qualitative argument instead.

Let us assume that all intermediate states involved in the calculation have energy
DE &j J j above the ground state. (Actually, DE ' 0:27 j J j for the lowest energy state
with two adjacent vortices, see Appendix A.) Then G0

0ðE0Þ can be replaced by
"ð1"P0Þ= j J j. The effective Hamiltonian becomes

H ð3Þ
eff & " hxhyhz

J 2

X

j;k;l

rx
jr

y
kr

z
l; ð46Þ

where the summation takes place over spin triples arranged as follows:

ð47Þ
Configuration (a) corresponds to the term rx

jr
y
kr

z
l ¼ "iDlûjlûklcjck (where Dl may be omit-

ted as we work in the physical subspace), or simply "icj ck in the standard gauge. Config-
uration (b) corresponds to a four-fermion term and therefore does not directly influence
the spectrum. Thus, we arrive at this effective Hamiltonian:

ð48Þ

26 A. Kitaev / Annals of Physics 321 (2006) 2–111

field induces a fermion mass, 
very similar to the Haldane 
model (except Majorana)

chiral Majorana edge mode

He = � iv

4

Z
dx ⌘@x⌘
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Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T

I =

Z 1

0

dq

2⇡
v2qf(vq) =

c⇡k2B
12~ T 2
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central charge c=1/2 

c.f. c=1 for both IQHE and FQHE abelian states

implies the existence of bulk non-abelian 
excitations (the fluxes, bound to MZMs)



Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T1

T2

I =
c⇡k2B
12~

�
T 2
1 � T 2

2

�
<latexit sha1_base64="c0IyHaokKD3ETnR3YOdWgM0yWqM="></latexit><latexit sha1_base64="c0IyHaokKD3ETnR3YOdWgM0yWqM="></latexit><latexit sha1_base64="c0IyHaokKD3ETnR3YOdWgM0yWqM="></latexit><latexit sha1_base64="c0IyHaokKD3ETnR3YOdWgM0yWqM=">AAACMnicbZDLSgMxFIYz9VbrrerSTbAIdWGZGQR1IZS60V2F3qDTDpk004ZmLiRnhDL0WXwJX8GtrnWnbn0I08tCW38I/PznHM7J58WCKzDNNyOzsrq2vpHdzG1t7+zu5fcPGipKJGV1GolItjyimOAhqwMHwVqxZCTwBGt6w5tJvfnApOJRWINRzDoB6Yfc55SAjtz81R2+xo4vCU0pdmKOh26la+NxatnOwCNyjB3BfCjWXKtrn9Vcu2s7kvcHcOrmC2bJnAovG2tuCmiuqpv/dHoRTQIWAhVEqbZlxtBJiQROBRvnnESxmNAh6bO2tiEJmOqk0y+O8YlOetiPpH4h4Gn6eyIlgVKjwNOdAYGBWqxNwn9rXrCwGfzLTsrDOAEW0tliPxEYIjzhh3tcMgpipA2hkuvbMR0QzQ805ZyGYi0iWDYNu2SZJev+vFCuzPFk0RE6RkVkoQtURreoiuqIokf0jF7Qq/FkvBsfxtesNWPMZw7RHxnfP3VbqDE=</latexit>

⇡ c⇡k2BT

6~ (T1 � T2)
<latexit sha1_base64="4Xc3jqA00fAmU7B0U9/JAJ+B+Bs="></latexit><latexit sha1_base64="4Xc3jqA00fAmU7B0U9/JAJ+B+Bs="></latexit><latexit sha1_base64="4Xc3jqA00fAmU7B0U9/JAJ+B+Bs="></latexit><latexit sha1_base64="4Xc3jqA00fAmU7B0U9/JAJ+B+Bs="></latexit>



Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T1

T2
H =

⇡ck2
B
T

6~
<latexit sha1_base64="Zq51TIbwIwd5kIJh9p4Zlbq3jYc=">AAACIHicbZDLSsNAFIYnXmu9RV26GSyiq5IUUTdCqZsuK/QGTQ0n00k7dJIMMxOhhD6CL+EruNW9O3GpS5/E6WWhrT8M/PznHM6ZLxCcKe04n9bK6tr6xmZuK7+9s7u3bx8cNlWSSkIbJOGJbAegKGcxbWimOW0LSSEKOG0Fw9tJvfVApWJJXNcjQbsR9GMWMgLaRL595g1BCPCr+AZ7oQSSeYJhgod+5b6E6+Ps0hsEIMe+XXCKzlR42bhzU0Bz1Xz72+slJI1orAkHpTquI3Q3A6kZ4XSc91JFBZAh9GnH2BgiqrrZ9ENjfGqSHg4TaV6s8TT9PZFBpNQoCkxnBHqgFmuT8N9aEC1s1uF1N2OxSDWNyWxxmHKsEzyhhXtMUqL5yBggkpnbMRmAwaQN07yB4i4iWDbNUtF1iu7dRaFcmePJoWN0gs6Ri65QGVVRDTUQQY/oGb2gV+vJerPerY9Z64o1nzlCf2R9/QDAmqJj</latexit><latexit sha1_base64="Zq51TIbwIwd5kIJh9p4Zlbq3jYc=">AAACIHicbZDLSsNAFIYnXmu9RV26GSyiq5IUUTdCqZsuK/QGTQ0n00k7dJIMMxOhhD6CL+EruNW9O3GpS5/E6WWhrT8M/PznHM6ZLxCcKe04n9bK6tr6xmZuK7+9s7u3bx8cNlWSSkIbJOGJbAegKGcxbWimOW0LSSEKOG0Fw9tJvfVApWJJXNcjQbsR9GMWMgLaRL595g1BCPCr+AZ7oQSSeYJhgod+5b6E6+Ps0hsEIMe+XXCKzlR42bhzU0Bz1Xz72+slJI1orAkHpTquI3Q3A6kZ4XSc91JFBZAh9GnH2BgiqrrZ9ENjfGqSHg4TaV6s8TT9PZFBpNQoCkxnBHqgFmuT8N9aEC1s1uF1N2OxSDWNyWxxmHKsEzyhhXtMUqL5yBggkpnbMRmAwaQN07yB4i4iWDbNUtF1iu7dRaFcmePJoWN0gs6Ri65QGVVRDTUQQY/oGb2gV+vJerPerY9Z64o1nzlCf2R9/QDAmqJj</latexit><latexit sha1_base64="Zq51TIbwIwd5kIJh9p4Zlbq3jYc=">AAACIHicbZDLSsNAFIYnXmu9RV26GSyiq5IUUTdCqZsuK/QGTQ0n00k7dJIMMxOhhD6CL+EruNW9O3GpS5/E6WWhrT8M/PznHM6ZLxCcKe04n9bK6tr6xmZuK7+9s7u3bx8cNlWSSkIbJOGJbAegKGcxbWimOW0LSSEKOG0Fw9tJvfVApWJJXNcjQbsR9GMWMgLaRL595g1BCPCr+AZ7oQSSeYJhgod+5b6E6+Ps0hsEIMe+XXCKzlR42bhzU0Bz1Xz72+slJI1orAkHpTquI3Q3A6kZ4XSc91JFBZAh9GnH2BgiqrrZ9ENjfGqSHg4TaV6s8TT9PZFBpNQoCkxnBHqgFmuT8N9aEC1s1uF1N2OxSDWNyWxxmHKsEzyhhXtMUqL5yBggkpnbMRmAwaQN07yB4i4iWDbNUtF1iu7dRaFcmePJoWN0gs6Ri65QGVVRDTUQQY/oGb2gV+vJerPerY9Z64o1nzlCf2R9/QDAmqJj</latexit><latexit sha1_base64="Zq51TIbwIwd5kIJh9p4Zlbq3jYc=">AAACIHicbZDLSsNAFIYnXmu9RV26GSyiq5IUUTdCqZsuK/QGTQ0n00k7dJIMMxOhhD6CL+EruNW9O3GpS5/E6WWhrT8M/PznHM6ZLxCcKe04n9bK6tr6xmZuK7+9s7u3bx8cNlWSSkIbJOGJbAegKGcxbWimOW0LSSEKOG0Fw9tJvfVApWJJXNcjQbsR9GMWMgLaRL595g1BCPCr+AZ7oQSSeYJhgod+5b6E6+Ps0hsEIMe+XXCKzlR42bhzU0Bz1Xz72+slJI1orAkHpTquI3Q3A6kZ4XSc91JFBZAh9GnH2BgiqrrZ9ENjfGqSHg4TaV6s8TT9PZFBpNQoCkxnBHqgFmuT8N9aEC1s1uF1N2OxSDWNyWxxmHKsEzyhhXtMUqL5yBggkpnbMRmAwaQN07yB4i4iWDbNUtF1iu7dRaFcmePJoWN0gs6Ri65QGVVRDTUQQY/oGb2gV+vJerPerY9Z64o1nzlCf2R9/QDAmqJj</latexit>

a universal prediction for chiral 
“Ising anyon” phase: agnostic to 

microscopic spin interactions
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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FIG. 2. Di↵use magnetic x-ray scattering intensities above TN. (a) Intensity plots in the HK plane measured at T = 17
K for selected azimuth angles summing ⇡-�0 and ⇡-⇡0 channels, sensitive to spin components parallel to ki and perpendicular
to the scattering plane, respectively. For example,  = 0� measures sum of correlations Sxx and Syy. The dashed hexagon
indicates the first Brillouin zone of the honeycomb net. (b) Spin-component-resolved equal-time correlations extracted from
(a). (c) Spin-component-integrated equal-time correlations extracted from (a). Peaks are located at Q = ±(0 1), ±(0.5 0.5),
and ±(0.5 -0.5). (d)  -dependence of the di↵use peak intensities for Sample#1 (open symbol) and #2 (closed symbol). Solid
lines show the calculated  -dependence for x-, y-, and z-zig-zag states shown in (e) for the ⇡-�0 and ⇡-⇡0 polarization channels
summed. (e) Zig-zag orders propagating along three equivalent directions. Blue zig-zag is the static structure, and green and
yellow zig-zags are generated by 120� rotation of the blue zig-zag.

orientation via the relation I / |kf ·S|2 for the �-⇡0 chan-
nel measured, where kf is the scattered x-ray wave vector
(Fig. 1b). Figure 1c shows the intensity variation as the
sample is rotated about the ordering wave vector Q = (0
1 3.5) by an azimuth angle  , which causes S to precess
around Q. Earlier studies14,16 have established that S is
constrained to lie in the ac plane, so this measurement
of I( ) determines the spin orientation by resolving the
tilting angle ⇥ of S with respect to the a axis. The best
fitting result with ⇥=44.3� indicates that the magnetic
easy axis is approximately half way in between the cubic
x and y axes (Fig. 1a). This static spin orientation is a
compromise among all anisotropic interactions present in
the system, and is strongly tied to the magnetic struc-
ture because of their bond-directional nature. To see this
point, consider, for example, the K term: in the zig-zag
structure propagating along b direction, where the spins
are antiferromagnetically aligned on the z-bond and fer-

romagnetically aligned on the x-bond and y-bond, a fer-
romagnetic (antiferromagnetic) K favors spins pointing
perpendicular to (along) the z-axis for a pair of spins on
the z-bond, and along (perpendicular to) the x-axis and
y-axis for the pairs on the x-bond and y-bond, respec-
tively.

The zig-zag order is one of the many magnetic states
(including the aforementioned spiral and non-coplanar
structures) that are classically degenerate in the pure
Kitaev limit30 and comprise the micro-states in the QSL
phase. Away from the pure Kitaev limit, depending on
their energy separations, signatures of other magnetic
states and their associated magnetic anisotropies may
become observable in the paramagnetic phase through
di↵use magnetic scattering. In particular, zig-zag orders
propagating in two other directions, ±120� rotated from
the static one, are expected for a honeycomb net with C3

symmetry. [The actual 3D crystal structure has only an

direct evidence for 
direction-dependent 
anisotropic exchange 
from diffuse magnetic 

x-ray scattering in 
Na2IrO3 (BJ Kim group)
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orientation via the relation I / |kf ·S|2 for the �-⇡0 chan-
nel measured, where kf is the scattered x-ray wave vector
(Fig. 1b). Figure 1c shows the intensity variation as the
sample is rotated about the ordering wave vector Q = (0
1 3.5) by an azimuth angle  , which causes S to precess
around Q. Earlier studies14,16 have established that S is
constrained to lie in the ac plane, so this measurement
of I( ) determines the spin orientation by resolving the
tilting angle ⇥ of S with respect to the a axis. The best
fitting result with ⇥=44.3� indicates that the magnetic
easy axis is approximately half way in between the cubic
x and y axes (Fig. 1a). This static spin orientation is a
compromise among all anisotropic interactions present in
the system, and is strongly tied to the magnetic struc-
ture because of their bond-directional nature. To see this
point, consider, for example, the K term: in the zig-zag
structure propagating along b direction, where the spins
are antiferromagnetically aligned on the z-bond and fer-

romagnetically aligned on the x-bond and y-bond, a fer-
romagnetic (antiferromagnetic) K favors spins pointing
perpendicular to (along) the z-axis for a pair of spins on
the z-bond, and along (perpendicular to) the x-axis and
y-axis for the pairs on the x-bond and y-bond, respec-
tively.

The zig-zag order is one of the many magnetic states
(including the aforementioned spiral and non-coplanar
structures) that are classically degenerate in the pure
Kitaev limit30 and comprise the micro-states in the QSL
phase. Away from the pure Kitaev limit, depending on
their energy separations, signatures of other magnetic
states and their associated magnetic anisotropies may
become observable in the paramagnetic phase through
di↵use magnetic scattering. In particular, zig-zag orders
propagating in two other directions, ±120� rotated from
the static one, are expected for a honeycomb net with C3

symmetry. [The actual 3D crystal structure has only an
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anisotropic exchange 
from diffuse magnetic 

x-ray scattering in 
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model (A. Banerjee et al) 
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of substantial Kitaev exchange 

in quite a few materials
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Fig. 4: Comparison of the scattering with Kitaev model calculations: (a) The data at Ei=40 
meV, T=10 K integrated over range E= [4.5,7.5] meV and L = [-2.5,2.5] and symmetrized along 
the (H,H) direction. (b) The expected scattering from an isotropic AF Kitaev model at an energy 

E =1.2 KJ, taking into account the neutron polarization and the Ru3+ form factors. (c) Plot of the 
non-symmetrized data (points with error bars) along (H,H,0) at T =10 K, integrated over the 

same L and E intervals as (a) as well as ] = [-√3/10,√3/10].   The solid red line is the calculated 
scattering for an AF Kitaev model with R = 2 as discussed in the text.  The solid violet line 
represents the corresponding unmodified AF Kitaev model, and the green line the FM Kitaev 
model.  Some of the scattering at larger Q near (H,H) = ±(1,1) is due to phonons. 
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 # (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

• But...they all order so far

H =
X

i,↵

KS
↵
i S

↵
i+↵ + J

X

hiji

~Si · ~Sj

zigzag ordered state 
has been observed in 
Na2IrO3 and 𝛼-RuCl3 ; 
incommensurate order 

in Li2IrO3 

due to additional interactions, 
e.g. Heisenberg
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Néel liquid zigzag FM liquid stripy Néel
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and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 # (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

• But...they all order so far

H =
X

i,↵

KS
↵
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↵
i+↵ + J

X
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~Si · ~Sj
due to additional interactions, 

e.g. Heisenberg

so far no QSL!
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for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
‖ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H‖ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H‖. Inset shows TN vs. H‖ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H‖ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H‖. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H‖ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

‖ ≈ 7T, TN for 45◦ vanishes
at around H‖ ≈ 6T. Although TN is not perfectly scaled
by H‖, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

‖ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
‖ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Fig. 3 | Half-integer thermal Hall conductance plateau. a–h, Thermal 
Hall conductivity κxy/T in a field tilted at θ = 60° (a–d) and 45° (e–h) 
plotted as a function of H⊥ (see inset of Fig. 2a). The top axes show the 
parallel field component, H∥. The right scales represent the 2D thermal 

Hall conductance, κ /Txy
2D , in units of π/ /k ħ( 6)( )B

2 . Violet dashed  
lines represent the half-integer thermal Hall conductance, 
κ / π/ / = /T k ħ[ ( 6) ( )] 1 2xy
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B
2 . Error bars represent one standard deviation.
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2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
‖ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H‖ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H‖. Inset shows TN vs. H‖ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H‖ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H‖. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H‖ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

‖ ≈ 7T, TN for 45◦ vanishes
at around H‖ ≈ 6T. Although TN is not perfectly scaled
by H‖, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

‖ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
‖ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-

** Not reproduced.  c.f. Ong talk?
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and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 
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Figure 1 | Spin-ice structure and emergence of monopoles. a, The
magnetic ions (Ho3+ or Dy3+) lie on the sites of the pyrochlore lattice and
are constrained to the bonds of the dual diamond lattice (dashed lines).
Local topological excitations 3 in–1 out or 3 out–1 in correspond to magnetic
monopoles with positive (blue sphere) or negative (red sphere) charges
respectively. b, The diamond lattice provides the skeleton for the network
of Dirac strings with the position of the monopole restricted to the vertices.
The orientation of the Dirac strings shows the direction of the local field
lines in H.

anArrhenius law ⌧ =⌧0 exp(2 Jeff/kBT ), as shownby the red curve in
Fig. 2. The timescale ⌧0 is fixed by fitting to the experimental time
at 4 K with Jeff = 1.11K, the value estimated for Dy2Ti207 (ref. 7).
2 Jeff is the energy cost of a single, free topological defect in the
nearest-neighbour approximation and is half that for a single spin
flip. The calculation fits the data over the low-temperature part
of the quasi-plateau region, where one expects a significant defect
concentration without any double defects (4-in or 4-out), and gives
surprisingly good qualitative agreement at lower temperature, as
the concentration decreases. Although still in the tunnelling regime,
the plateau region corresponds to high temperature for the effective
Ising system. Good agreement here provides a stringent test and any
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Figure 2 | Relaxation timescales ⌧ in Dy2Ti2O7: experiment and
simulation. The experimental data (crosses) are from Snyder et al.3. The
Arrhenius law (red line) represents the free diffusion of topological defects
in the nearest-neighbour model. The relaxation timescale of the Dirac
string network driven by Metropolis dynamics of magnetic monopoles has
been obtained for fixed chemical potential (pink filled triangles) and with µ

varying slowly to match the defect concentration in dipolar spin ice (blue
filled circles). The temperature scale is fixed without any free parameters.
Inset: The same data shown in the low-temperature region.

theory not fitting must be discarded. The above expression clearly
does a good job, enabling us to equate ⌧0 with the microscopic
tunnelling time. This test therefore already provides very strong
evidence for the fractionalization ofmagnetic charge2 and the diffu-
sion of unconfined particles.However, this (or any other) Arrhenius
function ultimately fails, underestimating the timescale at very low
temperature: although it is possible to fit the data reasonably below
2K by a single exponential function by varying the barrier height,
simultaneous agreement along the plateau and at lower temperature
is impossible. The role of the missing Coulomb interaction is there-
fore clear: although non-confining, it must considerably increase
the relaxation timescale by modifying the defect concentration and
slowing downdiffusion through the creation of locally boundpairs.

We have tested this idea by directly simulating a Coulomb gas of
magnetically charged particles (monopoles), in the grand canonical
ensemble, occupying the sites of the diamond lattice. The magnetic
charge is taken as qi = ±q. In the grand canonical ensemble, the
chemical potential is an independent variable, of which the value in
the correspondingmagnetic experiment is unknown. In a first series
of simulations, we have estimated it numerically by calculating
the difference between the Coulomb energy gained by creating
a pair of neighbouring magnetic monopoles and that required
to produce a pair of topological defects in the dipolar spin-ice
model, with parameters taken from ref. 7, giving a configurationally
averaged estimate µ/kB = 8.92K. In a second series of simulations,
µ was taken as the value required to reproduce the same defect
concentration as in a simulation of dipolar spin ice at temperature
T . Here, µ varied only by 3%, with the same mean value as
in the first series, showing that our procedure is consistent. The
chemical potential used is thus not a free parameter. As the
Coulomb interaction is long-ranged, we treat a finite system
using the Ewald summation method20,21. The monopoles hop
between nearest-neighbour sites through the Metropolis Monte
Carlo algorithm, giving diffusive dynamics, but with a further local
constraint: in the spin model a 3 in–1 out topological defect can
move at low energy cost by flipping one of the 3-in spins, the
direction of the out-spin being barred by an energy barrier of
8 Jeff. An isolated monopole can therefore hop to only 3 out of
4 of its nearest-neighbour sites, dictated by an oriented network
of constrained trajectories similar to the ensemble of classical

NATURE PHYSICS | VOL 5 | APRIL 2009 | www.nature.com/naturephysics 259
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et al, 2008



Quantum spin ice
H = HCSI + J±

X

hiji

�
S
+
i S

�
j + h.c.

�

X

loops
| i =

quantum dynamics creates 
superposition state

QSL which “simulates” 
quantum 

electrodynamics - 
vacuum fluctuations

M. Hermele, MPA Fisher, L.B., 2004;  
A. Banerjee et al, 2008 



Mapping to E+M
1. Degenerate perturbation theory

H0 =
Jzz

2

X

t

 
X

i2t

S
z
i

!2

<latexit sha1_base64="7P1JiC3jzL4h4b2ZvFMvs+Hv7AA="></latexit>

Sz
i

<latexit sha1_base64="s06O8mNYExF2yW84ahMcWB3eiw0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtyJoHZBG8uIXhJIzrC32UuW7O4du3tCPOJfsNXeTmz9L7b+EjfJFZo48GCYeY95TJhwpo3rfjmFpeWV1bXiemljc2t7p7y719Bxqgj1Scxj1QqxppxJ6htmOG0limIRctoMh1cTv/lAlWaxvDOjhAYC9yWLGMHGSv5tl90/dssVt+pOgRaJl5MK5Kh3y9+dXkxSQaUhHGvd9tzEBBlWhhFOx6VOqmmCyRD3adtSiQXVQTZ9doyOrNJDUazsSIOm6u+LDAutRyK0mwKbgZ73JuK/Xijmkk10HmRMJqmhksyCo5QjE6NJE6jHFCWGjyzBRDH7OyIDrDAxtq+SLcWbr2CRNE6q3mn14ua0UrvM6ynCARzCMXhwBjW4hjr4QIDBM7zAq/PkvDnvzsdsteDkN/vwB87nDxAOlVE=</latexit>

Sz
j

<latexit sha1_base64="IBgM9++HgtReplj/zlLV90KcWzs=">AAAB/HicbVC7SgNBFL0bXzG+opY2g0GwCrsSULugjWVENwkka5idzCZjZmaXmVkhLvEXbLW3E1v/xdYvcfIoNPHAhcM593IuJ0w408Z1v5zc0vLK6lp+vbCxubW9U9zdq+s4VYT6JOaxaoZYU84k9Q0znDYTRbEIOW2Eg8ux33igSrNY3pphQgOBe5JFjGBjJf+mc3/32CmW3LI7AVok3oyUYIZap/jd7sYkFVQawrHWLc9NTJBhZRjhdFRop5ommAxwj7YslVhQHWSTZ0foyCpdFMXKjjRoov6+yLDQeihCuymw6et5byz+64ViLtlEZ0HGZJIaKsk0OEo5MjEaN4G6TFFi+NASTBSzvyPSxwoTY/sq2FK8+QoWSf2k7FXK59eVUvViVk8eDuAQjsGDU6jCFdTABwIMnuEFXp0n5815dz6mqzlndrMPf+B8/gARpJVS</latexit>

H1 = J±
X

hiji

�
S
+
i S

�
j + h.c.

�

<latexit sha1_base64="4uY+aX+n8jLr1cy9Gr7CdCwRNFI="></latexit>

Sz
i = + 1

2

<latexit sha1_base64="tkULus339T0lHnIz4+l18bO+hK8=">AAACDHicbZDLSsNAFIYnXmu9Rbt0M1gEQShJKagLoejGZUV7gTaGyXTSDp2ZhJmJEENfwVdwq3t34tZ3cOuTOG2z0NYfDvz85xzO4QtiRpV2nC9raXlldW29sFHc3Nre2bX39lsqSiQmTRyxSHYCpAijgjQ11Yx0YkkQDxhpB6OrSb/9QKSikbjTaUw8jgaChhQjbSLfLt369P7x4qSnQ4lw5o6z6ti3y07FmQouGjc3ZZCr4dvfvX6EE06Exgwp1XWdWHsZkppiRsbFXqJIjPAIDUjXWIE4UV42fX4Mj0zSh2EkTQkNp+nvjQxxpVIemEmO9FDN9ybhv72Az13W4ZmXUREnmgg8OxwmDOoITsjAPpUEa5Yag7Ck5neIh8hQ0YZf0UBx5xEsmla14tYq5ze1cv0yx1MAB+AQHAMXnII6uAYN0AQYpOAZvIBX68l6s96tj9nokpXvlMAfWZ8/7ZubNQ==</latexit>

M. Hermele, MPA Fisher, L.B., 2004



Mapping to E+M
1. Degenerate perturbation theory

H0 =
Jzz

2

X

t

 
X

i2t

S
z
i

!2

<latexit sha1_base64="7P1JiC3jzL4h4b2ZvFMvs+Hv7AA="></latexit>

Sz
i

<latexit sha1_base64="s06O8mNYExF2yW84ahMcWB3eiw0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtyJoHZBG8uIXhJIzrC32UuW7O4du3tCPOJfsNXeTmz9L7b+EjfJFZo48GCYeY95TJhwpo3rfjmFpeWV1bXiemljc2t7p7y719Bxqgj1Scxj1QqxppxJ6htmOG0limIRctoMh1cTv/lAlWaxvDOjhAYC9yWLGMHGSv5tl90/dssVt+pOgRaJl5MK5Kh3y9+dXkxSQaUhHGvd9tzEBBlWhhFOx6VOqmmCyRD3adtSiQXVQTZ9doyOrNJDUazsSIOm6u+LDAutRyK0mwKbgZ73JuK/Xijmkk10HmRMJqmhksyCo5QjE6NJE6jHFCWGjyzBRDH7OyIDrDAxtq+SLcWbr2CRNE6q3mn14ua0UrvM6ynCARzCMXhwBjW4hjr4QIDBM7zAq/PkvDnvzsdsteDkN/vwB87nDxAOlVE=</latexit>

Sz
j

<latexit sha1_base64="IBgM9++HgtReplj/zlLV90KcWzs=">AAAB/HicbVC7SgNBFL0bXzG+opY2g0GwCrsSULugjWVENwkka5idzCZjZmaXmVkhLvEXbLW3E1v/xdYvcfIoNPHAhcM593IuJ0w408Z1v5zc0vLK6lp+vbCxubW9U9zdq+s4VYT6JOaxaoZYU84k9Q0znDYTRbEIOW2Eg8ux33igSrNY3pphQgOBe5JFjGBjJf+mc3/32CmW3LI7AVok3oyUYIZap/jd7sYkFVQawrHWLc9NTJBhZRjhdFRop5ommAxwj7YslVhQHWSTZ0foyCpdFMXKjjRoov6+yLDQeihCuymw6et5byz+64ViLtlEZ0HGZJIaKsk0OEo5MjEaN4G6TFFi+NASTBSzvyPSxwoTY/sq2FK8+QoWSf2k7FXK59eVUvViVk8eDuAQjsGDU6jCFdTABwIMnuEFXp0n5815dz6mqzlndrMPf+B8/gARpJVS</latexit>

H1 = J±
X

hiji

�
S
+
i S

�
j + h.c.

�

<latexit sha1_base64="4uY+aX+n8jLr1cy9Gr7CdCwRNFI=">AAACRnicbVBNSxxBFHyz+TKbr008emmyBAySYSYISQ4B0YsIgsGsCvY69PS+2W3t7hm634Qsw/4q/4R/wavecxOv9q57SNYUNBRV71GvK6+08pQkl1Hr0eMnT58tPW+/ePnq9ZvO23cHvqydxJ4sdemOcuFRK4s9UqTxqHIoTK7xMD/bmvqHv9B5VdqfNK6wb8TQqkJJQUHKOrvbWcq+s52MV4ZxX5us4VrYoUamTrmbsQnjGgta3c/UyRrbz05PPrE1xgl/kzPNKJbxhDs1HNHHrNNN4mQG9pCkc9KFOfayzhUflLI2aElq4f1xmlTUb4QjJUNwm9ceKyHPxBCPA7XCoO83s29P2IegDFhRuvAssZn690YjjPdjk4dJI2jkF72p+F8vNwvJVHztN8pWNaGV98FFrRmVbNopGyiHkvQ4ECGdCrczORJOSArNt0Mp6WIFD8nB5zhdj7/9WO9ubM7rWYIVeA+rkMIX2IBt2IMeSDiHS7iC6+gi+hPdRLf3o61ovrMM/6AFd0o2sD0=</latexit>

J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>

Excited tetrahedron
1. Act once with H1

Excited tetrahedron



Mapping to E+M
1. Degenerate perturbation theory

H0 =
Jzz

2

X

t

 
X

i2t

S
z
i

!2

<latexit sha1_base64="7P1JiC3jzL4h4b2ZvFMvs+Hv7AA="></latexit>

Sz
i

<latexit sha1_base64="s06O8mNYExF2yW84ahMcWB3eiw0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtyJoHZBG8uIXhJIzrC32UuW7O4du3tCPOJfsNXeTmz9L7b+EjfJFZo48GCYeY95TJhwpo3rfjmFpeWV1bXiemljc2t7p7y719Bxqgj1Scxj1QqxppxJ6htmOG0limIRctoMh1cTv/lAlWaxvDOjhAYC9yWLGMHGSv5tl90/dssVt+pOgRaJl5MK5Kh3y9+dXkxSQaUhHGvd9tzEBBlWhhFOx6VOqmmCyRD3adtSiQXVQTZ9doyOrNJDUazsSIOm6u+LDAutRyK0mwKbgZ73JuK/Xijmkk10HmRMJqmhksyCo5QjE6NJE6jHFCWGjyzBRDH7OyIDrDAxtq+SLcWbr2CRNE6q3mn14ua0UrvM6ynCARzCMXhwBjW4hjr4QIDBM7zAq/PkvDnvzsdsteDkN/vwB87nDxAOlVE=</latexit>

Sz
j

<latexit sha1_base64="IBgM9++HgtReplj/zlLV90KcWzs=">AAAB/HicbVC7SgNBFL0bXzG+opY2g0GwCrsSULugjWVENwkka5idzCZjZmaXmVkhLvEXbLW3E1v/xdYvcfIoNPHAhcM593IuJ0w408Z1v5zc0vLK6lp+vbCxubW9U9zdq+s4VYT6JOaxaoZYU84k9Q0znDYTRbEIOW2Eg8ux33igSrNY3pphQgOBe5JFjGBjJf+mc3/32CmW3LI7AVok3oyUYIZap/jd7sYkFVQawrHWLc9NTJBhZRjhdFRop5ommAxwj7YslVhQHWSTZ0foyCpdFMXKjjRoov6+yLDQeihCuymw6et5byz+64ViLtlEZ0HGZJIaKsk0OEo5MjEaN4G6TFFi+NASTBSzvyPSxwoTY/sq2FK8+QoWSf2k7FXK59eVUvViVk8eDuAQjsGDU6jCFdTABwIMnuEFXp0n5815dz6mqzlndrMPf+B8/gARpJVS</latexit>

H1 = J±
X

hiji

�
S
+
i S

�
j + h.c.

�

<latexit sha1_base64="4uY+aX+n8jLr1cy9Gr7CdCwRNFI="></latexit>

J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>

1. Act once with H1

2. Act twice with H1

Excited tetrahedron

Excited tetrahedron

J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>



Mapping to E+M
1. Degenerate perturbation theory

H0 =
Jzz

2

X

t

 
X

i2t

S
z
i

!2

<latexit sha1_base64="7P1JiC3jzL4h4b2ZvFMvs+Hv7AA="></latexit>

Sz
i

<latexit sha1_base64="s06O8mNYExF2yW84ahMcWB3eiw0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtyJoHZBG8uIXhJIzrC32UuW7O4du3tCPOJfsNXeTmz9L7b+EjfJFZo48GCYeY95TJhwpo3rfjmFpeWV1bXiemljc2t7p7y719Bxqgj1Scxj1QqxppxJ6htmOG0limIRctoMh1cTv/lAlWaxvDOjhAYC9yWLGMHGSv5tl90/dssVt+pOgRaJl5MK5Kh3y9+dXkxSQaUhHGvd9tzEBBlWhhFOx6VOqmmCyRD3adtSiQXVQTZ9doyOrNJDUazsSIOm6u+LDAutRyK0mwKbgZ73JuK/Xijmkk10HmRMJqmhksyCo5QjE6NJE6jHFCWGjyzBRDH7OyIDrDAxtq+SLcWbr2CRNE6q3mn14ua0UrvM6ynCARzCMXhwBjW4hjr4QIDBM7zAq/PkvDnvzsdsteDkN/vwB87nDxAOlVE=</latexit>

Sz
j

<latexit sha1_base64="IBgM9++HgtReplj/zlLV90KcWzs=">AAAB/HicbVC7SgNBFL0bXzG+opY2g0GwCrsSULugjWVENwkka5idzCZjZmaXmVkhLvEXbLW3E1v/xdYvcfIoNPHAhcM593IuJ0w408Z1v5zc0vLK6lp+vbCxubW9U9zdq+s4VYT6JOaxaoZYU84k9Q0znDYTRbEIOW2Eg8ux33igSrNY3pphQgOBe5JFjGBjJf+mc3/32CmW3LI7AVok3oyUYIZap/jd7sYkFVQawrHWLc9NTJBhZRjhdFRop5ommAxwj7YslVhQHWSTZ0foyCpdFMXKjjRoov6+yLDQeihCuymw6et5byz+64ViLtlEZ0HGZJIaKsk0OEo5MjEaN4G6TFFi+NASTBSzvyPSxwoTY/sq2FK8+QoWSf2k7FXK59eVUvViVk8eDuAQjsGDU6jCFdTABwIMnuEFXp0n5815dz6mqzlndrMPf+B8/gARpJVS</latexit>

H1 = J±
X

hiji

�
S
+
i S

�
j + h.c.

�

<latexit sha1_base64="4uY+aX+n8jLr1cy9Gr7CdCwRNFI="></latexit>

J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>

1. Act once with H1

2. Act twice with H1

3. Act thrice with H1
J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>

J±

<latexit sha1_base64="bg7+whoE6aC3yLQhMp7DU6Q75J0=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbcQqgpcEkiPsbfaSJbt7x+6eEI74F2y1txNb/4utv8RNcoUmDjwYZt5jHhMmnGnjul9OYW19Y3OruF3a2d3bPygfHrV0nCpCfRLzWHVCrClnkvqGGU47iaJYhJy2w/HNzG8/UqVZLB/MJKGBwEPJIkawsZJ/1+8lol+uuFV3DrRKvJxUIEezX/7uDWKSCioN4VjrrucmJsiwMoxwOi31Uk0TTMZ4SLuWSiyoDrL5s1N0ZpUBimJlRxo0V39fZFhoPRGh3RTYjPSyNxP/9UKxlGyiyyBjMkkNlWQRHKUcmRjNmkADpigxfGIJJorZ3xEZYYWJsX2VbCnecgWrpHVR9WrVq/tapXGd11OEEziFc/CgDg24hSb4QIDBM7zAq/PkvDnvzsditeDkN8fwB87nD/T/lUA=</latexit>

He↵ ⇠
J
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J2
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X
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S
+
1 S

�
2 S

+
3 S

�
4 S

+
5 S

�
6 + h.c.

�

<latexit sha1_base64="MjCFLAlKYmI0y7VcZ5rDetCODk4="></latexit>

“ring exchange”



Ring exchange

K ⇠
J3
±

J2
zz

<latexit sha1_base64="CcOo6qFa2N0rQVl4AijsCvm7SBY=">AAACGXicbZC7TsMwFIYdrqXcAowsFhUSU5WUSsBWwYJgKRK9SE0aOa7TWrWTyHaQ2igrL8ErsMLOhliZWHkS3DYDtPySpV//OUfn+PNjRqWyrC9jaXlldW29sFHc3Nre2TX39psySgQmDRyxSLR9JAmjIWkoqhhpx4Ig7jPS8odXk3rrgQhJo/BejWLictQPaUAxUjryTHgLHUk5dAKBcHrjOTHvnmbapONx1q1k0DNLVtmaCi4aOzclkKvumd9OL8IJJ6HCDEnZsa1YuSkSimJGsqKTSBIjPER90tE2RJxIN53+JIPHOunBIBL6hQpO098TKeJSjrivOzlSAzlfm4T/1nw+t1kF525KwzhRJMSzxUHCoIrgBBPsUUGwYiNtEBZU3w7xAGlGSsMsaij2PIJF06yU7Wr54q5aql3meArgEByBE2CDM1AD16AOGgCDR/AMXsCr8WS8Ge/Gx6x1ychnDsAfGZ8/timgbQ==</latexit>

Tunneling reconnects field lines

He↵ ⇠
J
3
±

J2
zz

X

h

�
S
+
1 S

�
2 S

+
3 S

�
4 S

+
5 S

�
6 + h.c.

�

<latexit sha1_base64="MjCFLAlKYmI0y7VcZ5rDetCODk4="></latexit>



Mapping to E+M
2. Introduce gauge fields

Sz
i = Eab

<latexit sha1_base64="vGP2a1rmQ4xGdQqWwH13Jc8wf/4=">AAACBXicbVDLSsNAFL2pr1pfVZduBovgqiRSUBdCUQSXFe0D2jRMppN26EwSZiZCDV37C251707c+h1u/RKnbRbaeuDC4Zx7OZfjx5wpbdtfVm5peWV1Lb9e2Njc2t4p7u41VJRIQusk4pFs+VhRzkJa10xz2oolxcLntOkPryZ+84FKxaLwXo9i6grcD1nACNZG6t55rPuILtC1l2J/7BVLdtmeAi0SJyMlyFDzit+dXkQSQUNNOFaq7dixdlMsNSOcjgudRNEYkyHu07ahIRZUuen06zE6MkoPBZE0E2o0VX9fpFgoNRK+2RRYD9S8NxH/9Xwxl6yDMzdlYZxoGpJZcJBwpCM0qQT1mKRE85EhmEhmfkdkgCUm2hRXMKU48xUsksZJ2amUz28rpeplVk8eDuAQjsGBU6jCDdSgDgQkPMMLvFpP1pv1bn3MVnNWdrMPf2B9/gD7DZiH</latexit>

a
b

i
S±
i = e±iAab
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“odd” lattice compact U(1) gauge theory
(means Aab is a 2𝜋 periodic phase)(means E is half integer)



Mapping to E+M
3. Deconfined phase
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Based on extensive study of lattice gauge theory, 
numerics, this is a qualitatively good approximation 

(gauge fields are the “right” choice of variables)

The rest is textbook E+M

B2
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Excitations

• fully coherent propagating monopoles 
= “spinons” (charges in gauge theory) 

• dual monopoles (dual charges) 

• artificial photon: a gapless protected 
collective excitation which is not a 
Goldstone mode



Artificial photon
• gapless, linear, non-Goldstone mode

Mapping to EM: Sz
i ⇠ E · n̂i
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• Linearly dispersion mode at Bragg point but vanishing weight at low energy 
• Completely robust to anisotropy, magnetic field, etc: does not arise from 

breaking any physical symmetry

K.Ross et al, 2011

Plot from O. Benton et al, 2012

Not yet observed -  
challenge is narrow 
bandwidth due to small 
exchange in candidate 
materials



Quantum spin ice
Realistic theory for 
quantum rare earth 

pyrochlores
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Possible application to 
Yb2Ti2O7, Pr2Zr2O7, 

others...

GENERIC QUANTUM SPIN ICE PHYSICAL REVIEW B 86, 104412 (2012)

Finally, to render the mean-field problem solvable, we
replace the constraint |!r| = 1 by the softened constraint
〈|!r|2〉 = 1, and implement the latter by including a Lagrange
multiplier term for each sublattice into the action S!.

Using this formulation, the mean-field Hamiltonian allows
one to calculate 〈HQED〉 [Eq. (11)] and minimize this varia-
tional energy. We found and compared several self-consistent
solutions of the gMFT equations, which are subsets of the
general Ansatz given above. First, we considered two limits
allowing for pairing, or A-B sublattice mixing, but not both,

(i) ξµ = 0, χ
A(B)
0 #= 0, χA(B)

µν #= 0, (30)

(ii) ξµ #= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both these
cases, we find that the minimum-energy solutions always have
either vanishing pairing/sublattice mixing (i.e., describe the
U (1) QSL) or exhibit spinon condensation.

However, both condensed solutions are unnatural, insofar
as once a single ! field is condensed, all the expectation
values χ

A/B
0 ,χ

A/B
i ,ξµ would be expected to be nonzero.

Guided by the above cases, we found a self-consistent Ansatz
where all these were allowed to be nonvanishing, with the
relations χA

0 = χB
0 ,

∑
µ #=ν γµνχ

B
µν =

∑
µ #=ν γ ∗

µνχ
A
µν #= 0 and

ξ0 = ξi = −ξj = −ξk #= 0, for {i,j,k} and permutation of
{1,2,3}. This more general Ansatz describes both condensed
and uncondensed states, and was found to capture all the
physical minimum-energy solutions.

2. Spinon condensation

In the gMFT scheme used here, Higgs phases in which
the single spinon field is condensed, 〈!r〉 #= 0, also occur.
This may appear surprising since the single spinon field was
not introduced explicitly as an order parameter [see Eqs. (13)
and (14)]. Instead, spinon condensation occurs, as discussed
in Ref. 15, via the same mechanism as does Bose-Einstein
condensation in the noninteracting Bose gas. In particular,
when a condensate is present, the Lagrange multiplier λ adjusts
itself self-consistently so that the minimum energy spinon state
lies, in the thermodynamic limit, at precisely zero energy.
For large but finite volume, a nonintensive part of the λ
leads to and controls the condensate, manifesting itself via
off-diagonal long-range order in the spinon Green’s function.
This is discussed in more detail in Appendix. Captured in this
way, spinon condensation does not introduce any additional
self-consistent variables, and only requires careful treatment
of any zero energy modes and the infinite volume limit. This
in turn means that the above Ansätze describe Higgs phases as
well, for appropriate values of parameters.

C. Gauge mean-field theory phase diagram

We minimized the variational energy using the above
Ansatz numerically (see Appendix for the formulation of the
variational energy). In fact, the self-consistent gMFT equations
are solved for any local minima of the variational energy, so
it is sufficient to search for the global minimum of the latter.
That determines the T = 0 phase diagram as a function of
J±/Jzz > 0 and J±±/Jzz (we assume Jzz > 0 throughout).
Note that by a canonical transformation, S± → ±iS±, we

U 1 QSL AFQ

noncoplanar FQ

Spin Ice

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

J J zz

J
J

zz

FIG. 3. Phase diagram of two dimensionless parameters J±/Jzz

vs J±±/Jzz. Four distinct phases exist: classical spin ice (at the origin),
U (1) QSL, AFQ, and FQ. (more details in the main context)

can always choose J±± > 0, without loss of generality. The
results are shown in Fig. 3.

The full phase diagram contains three distinct phases
in addition to the classical point corresponding to the
nearest-neighbor spin ice: a deconfined U (1) QSL phase
and two Higgs phases, corresponding to XY ferropseudospin
(antiferroquadrupolar) and antiferropseudospin (noncoplanar
ferroquadrupolar) orders. Unfortunately, the Z2 spin liquid
phase with nonzero pairing but a spinon gap is never
the minimum-energy solution. The QSL or Coulomb
phase occurs in the small J±,J±± region, consistent with
perturbative expectations. In this model, infinitesimal J±
and/or J±± interactions melt the classical spin ice, creating
a dynamical photon excitation and emergent quantum
electrodynamics. This phase is found to be more stable against
J±± than to Jz±, the latter having been studied already in
Ref. 15.

The Higgs or ordered phases merit some further description.
With increasing J±/Jzz but J±± = 0, the U (1) QSL phase
remains stable until J±

Jzz
|c ≈ 0.19, at which spinons start to

condense at a wave vector k0 ≡ 0 for both A and B sublattices.
This induces a classical XY order categorized in Table II and
has the ordering structure shown in Fig. 4(a). This phase has
already been obtained by a classical MF analysis,10 and in
gMFT for J±± = 0.15 From Eqs. (17) and (18), the spinon
condensate at k0 yields a ferroic ordering of the XY component
of pseudospins, for instance, given by

〈)Si〉 ≈
∣∣φk0

∣∣2
x̂i , (32)

for pseudospin on sublattice i. It spontaneously breaks the
threefold rotational symmetry while the twofold rotational
symmetries are preserved. This ferropseudospin ordering
structure is interpreted as an antiferroquadrupolar order for
Pr3+ case as is clear from Eq. (3) and the relation

∑3
i=0 x̂i = 0.

Namely, it produces an f -electron distribution shown in
Fig. 4(a). When J±± > 0 is sufficiently large and J± is small,
the QSL becomes unstable to a different Higgs phase, with
spinon condensation at k̃0 ≡ 2π (100) or the symmetry-related
points, on both A and B sublattices. Note that quantitatively
the QSL phase is wider in the J±± direction than in the J± one:

104412-7

Pr2Zr2O7

+ Many subsequent numerical 
and analytical works
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Kitaev materials

Quantum spin icekagomé

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2
organics



Organics

• Molecular materials which behave as 
effective triangular lattice S=1/2 
antiferromagnets with J ~ 250K 

• significant charge fluctuations

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t

t'

t

a cb
X

ET

S

S

S

S
S

S

S

S

Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.

170 Kanoda " Kato

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

11
.2

:1
67

-1
88

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

Sa
nt

a 
B

ar
ba

ra
 o

n 
09

/0
7/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.

κ-(ET)2X β’-Pd(dmit)2

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating
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Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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Organics

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so
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Figure 17

Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).
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Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Division of Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan

3CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
(Received 15 October 2004; revised manuscript received 6 April 2005; published 18 October 2005)

The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)

Crossover

(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max

(1/T1T)max

Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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Evidence for lack of static moments: f > 1000!

Y. Shimizu 
et al, 2003

!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.
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Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.

NATURE PHYSICS | VOL 6 | SEPTEMBER 2010 | www.nature.com/naturephysics 675

a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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• C ~ γT indicates gapless behavior with 
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Figure 2 Low-temperature heat capacities of �-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇥-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of ⇤-(BEDT-TTF)2Cu2(CN)3 and other
⇤-type BEDT-TTF salts. ⇤-(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
⇤-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇥-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the ⇤-type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
⇤-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the ⇥ term),
even in the insulating salt. The magnitude of ⇥ is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite ⇥ term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the ⇥
term in the present insulating state is intrinsic.

The well known Mott insulators ⇤-(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇥-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing ⇥ value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A ⇥ value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics
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is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-

ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind

of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are

separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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Low-temperature heat capacity (Cp) for EtMe3Sb and Et2Me2Sb salts. The main graph shows Cp T
!1 versus

T2 plots of the heat capacity. The inset shows a Cp T
!1 versus T2 plot around a broad hump structure for the

EtMe3Sb salt.
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κ-(ET)2Cu2(CN)3 β’-Pd(dmit)2
γCu ~ 0.7 !!
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Organics - Theory
• RVB/QSL state: 

• Motrunich, Lee+Lee: (2005) “uniform 
RVB” 

• It is described by a “Fermi sea” of 
spinons coupled to a U(1) gauge field

| i =
Y

i

n̂i(2� n̂i)
Y

k<kF
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†
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• The most gapless/highly entangled QSL state 
• Like a “metal” of neutral fermions w/ a U(1) 

gauge field 
• Prototype “non-Fermi liquid” state of great 

theoretical interest



Spinon Fermi surface

• Fermions w/ U(1) gauge field

2

tiplier Ai0, which takes the role of the time-component of
a gauge field, i.e. scalar potential. Microscopic exchange
interactions, which are quadratic in spins, and are there-
fore quartic in fermions, are decoupled to introduce new
link fields whose phases act as the spatial components of
the corresponding gauge fields A, i.e. the vector poten-
tial.

To describe the universal low energy physics, it is ap-
propriate to consider “coarse-grained” fields  

↵
, 

†
↵
de-

scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
at the spinon Fermi surface, the longitudinal scalar po-
tential is screened and the time component A0 can then
be integrated out to mediate a short-range repulsive in-
teraction u between like charges. Therefore we consider
the Euclidean action S = S + SA + Su, where [22–24]

S =

Z
d
3
x 
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⇣
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†
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†
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#
. (2)

Here x = (⌧,x) is the space-time coordinate, q = (!n, q)
is the three-momentum,  ↵ is a two-component spinor,
with spin indices ↵,� =", # that are suppressed when
possible, !B describes static magnetic field B = Bẑ

and includes the g-factor as well as the Bohr magneton.
The gauge dynamics is derived in the Coulomb gauge
r·A = 0 withA(q) = iẑ⇥q̂A(q). The gauge action SA is
generated by spinons and � = 2n̄/kF and � = 1/(24⇡m)
represent Landau damping and diamagnetic susceptibil-
ity of non-interacting spinon gas, correspondingly (m is
the spinon mass, n̄ is the spinon density and kF is the
Fermi momentum of non-magnetized system).

We proceed with the assumption of SU(2) symmetry,
a good first approximation for many spin liquid materi-
als, and address the e↵ect of its violations in the latter
part of the paper. Previous investigations focused on the
transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-
liquid physics. For example, one finds a self-energy vary-
ing with frequency as !2/3, and a singular contribution
to the specific heat cv ⇠ T

2/3 [22, 23]. However, notably,
the transverse gauge field has negligible e↵ects on the
hydrodynamic long-wavelength collective response [24].
Here, we instead focus on the short-range repulsion u,
which produces an exchange field that dramatically al-
ters the behavior in the presence of an external Zeeman
magnetic field giving rise to finite magnetization. Gauge
fluctuations play a subsidiary role which we also include.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully

determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [25] dictates that the
only response at q = 0, X

00
±

= 2M�(! � 2!B), sign!
where M = (n̄" � n̄#)/2 is the magnetization and !B is
the spinon Zeeman energy. For free fermions, the delta
function is precisely at the corner of the spinon particle-
hole continuum (also known as the two-spinon contin-
uum). However, the contact exchange interaction shifts
up the particle-hole continuum, at small momentum q,
away from the Zeeman energy 2!B to 2!B + 2uM . This
is seen by the trivial Hartree self-energy

⌃� =

��

= un̄�� = �uM� + un̄/2, (3)

where we use a zig-zag line to diagrammatically repre-
sent the local u interaction, � ="= 1 and � =#= �1,
and n̄� is the expectation value of spin-� spinon density
in the presence of magnetic field. Consequently, for the
Larmor theorem to be obeyed, there must be a collective

transverse spin mode at small momenta.

This collective spin mode is most conveniently de-
scribed by the Random Phase Approximation (RPA),
which corresponds to a standard resummation of particle-
hole ladder diagrams [26]. For the particular case of a
momentum-independent contact interaction, one has

X±(q, i!n) =

"

#
+

"

#
+

"

#
+ · · ·

=
�±(q, i!n)

1 + u�±(q, i!n)
, (4)

where the fermion lines correspond to the spinon Green’s
functions including the Hartree shift (3), and in this ap-
proximation �±(q, i!n) = �

0
±
(q, i!n) is the bare suscep-

tibility bubble, calculated using these functions. We will
however use the second line in Eq. (4) to later define the
RPA approximation even when gauge field corrections
(but not the local interaction u) are included in �±. For
the moment, we simply evaluate the bare susceptibility,

�
0
±
(q, i!n) =

1
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ikn � ✏k + !B � un̄#
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. (5)

Here !n, kn are bosonic and fermionic Matsubara fre-
quencies, respectively. A simple calculation, followed by
analytical continuation i!n ! ! + i0, gives
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Kinetic energy

Landau damping

Short-range repulsion (from a0)
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interactions, which are quadratic in spins, and are there-
fore quartic in fermions, are decoupled to introduce new
link fields whose phases act as the spatial components of
the corresponding gauge fields A, i.e. the vector poten-
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scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
at the spinon Fermi surface, the longitudinal scalar po-
tential is screened and the time component A0 can then
be integrated out to mediate a short-range repulsive in-
teraction u between like charges. Therefore we consider
the Euclidean action S = S + SA + Su, where [22–24]
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Here x = (⌧,x) is the space-time coordinate, q = (!n, q)
is the three-momentum,  ↵ is a two-component spinor,
with spin indices ↵,� =", # that are suppressed when
possible, !B describes static magnetic field B = Bẑ

and includes the g-factor as well as the Bohr magneton.
The gauge dynamics is derived in the Coulomb gauge
r·A = 0 withA(q) = iẑ⇥q̂A(q). The gauge action SA is
generated by spinons and � = 2n̄/kF and � = 1/(24⇡m)
represent Landau damping and diamagnetic susceptibil-
ity of non-interacting spinon gas, correspondingly (m is
the spinon mass, n̄ is the spinon density and kF is the
Fermi momentum of non-magnetized system).

We proceed with the assumption of SU(2) symmetry,
a good first approximation for many spin liquid materi-
als, and address the e↵ect of its violations in the latter
part of the paper. Previous investigations focused on the
transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-
liquid physics. For example, one finds a self-energy vary-
ing with frequency as !2/3, and a singular contribution
to the specific heat cv ⇠ T

2/3 [22, 23]. However, notably,
the transverse gauge field has negligible e↵ects on the
hydrodynamic long-wavelength collective response [24].
Here, we instead focus on the short-range repulsion u,
which produces an exchange field that dramatically al-
ters the behavior in the presence of an external Zeeman
magnetic field giving rise to finite magnetization. Gauge
fluctuations play a subsidiary role which we also include.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully

determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [25] dictates that the
only response at q = 0, X

00
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= 2M�(! � 2!B), sign!
where M = (n̄" � n̄#)/2 is the magnetization and !B is
the spinon Zeeman energy. For free fermions, the delta
function is precisely at the corner of the spinon particle-
hole continuum (also known as the two-spinon contin-
uum). However, the contact exchange interaction shifts
up the particle-hole continuum, at small momentum q,
away from the Zeeman energy 2!B to 2!B + 2uM . This
is seen by the trivial Hartree self-energy
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where we use a zig-zag line to diagrammatically repre-
sent the local u interaction, � ="= 1 and � =#= �1,
and n̄� is the expectation value of spin-� spinon density
in the presence of magnetic field. Consequently, for the
Larmor theorem to be obeyed, there must be a collective

transverse spin mode at small momenta.

This collective spin mode is most conveniently de-
scribed by the Random Phase Approximation (RPA),
which corresponds to a standard resummation of particle-
hole ladder diagrams [26]. For the particular case of a
momentum-independent contact interaction, one has
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Zeeman term
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Calculations based on effective field theory “uniform RVB”
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Spinon Fermi surface

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t

t'

t

a cb
X

ET

S

S

S

S
S

S

S

S

Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.

170 Kanoda " Kato

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

11
.2

:1
67

-1
88

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

Sa
nt

a 
B

ar
ba

ra
 o

n 
09

/0
7/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.

each other in a way that the Ni ion in one layer is projected
towards the center of the triangle formed by the Ni ions in
the adjacent layers along the c axis, as shown in Fig. 1(h).
The instability of the 6H-A phase should arise from the
fact that high pressures tend to reduce the Sb5þ-Sb5þ

distance and therefore partially relieve strong electrostatic
repulsion by exchanging Ni with one of the Sb atoms.
Battle et al. reported a similar structure for the 6H-B phase
[26], but with no physical characterization.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure. This
3C phase was obtained under 9 GPa and at a temperature of
1000 "C kept for 30 min. Its XRD pattern [Fig. 1(c)] is best
described as a double perovskite in a Ba2MM0O6 model
with the cubic space group Fm3m having a lattice parame-

ter a ¼ 8:1552ð2Þ !A. The refinement shows a full-ordered
arrangement of Ni2=3Sb1=3 and Sb atoms at the M and M0

sites [Fig. 1(f)], respectively. Therefore the Ni2=3Sb1=3
sites form a network of edge-shared tetrahedra, as shown
in Fig. 1(i). Instead of adopting a primitive perovskite
structure in which the Ni2þ and Sb5þ ions are randomly
distributed, the preferred double-perovskite structure
should be attributed to the large difference in charges
between the Ni2þ and the Sb5þ ions.

All three samples are insulators with the room tempera-
ture resistance higher than 20 M". The dc magnetic sus-
ceptibility [!ðTÞ, Fig. 2] for all three compounds was
measured under a fieldH ¼ 5000 Oe. For each compound,
one does not observe any difference between the data
measured under zero-field-cooled and that measured
under field-cooled conditions. The 6H-A sample exhibits

a cusplike anomaly at the antiferromagnetic ordering tem-
perature TN ¼ 13:5 K, as previously reported [25]. On the
other hand, neither the 6H-B nor the 3C phase show any
sign of long-range magnetic order down to 2 K. For the
6H-B phase, we have subtracted the Curie contribution
provided by 1.7% Ni2þ of orphan spins from the as-
measured data. This percentage of Ni2þ orphan spins was
calculated from fitting the specific-heat data [27]. After this
subtraction, !ðTÞ for the 6H-B phase (open squares in
Fig. 2) basically saturates below 25 K with a saturation
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FIG. 2 (color online). (a) Temperature dependencies of the dc
magnetic susceptibility (!) for the Ba3NiSb2O9 polytypes. Inset:
Temperature dependencies of 1=!. The solid lines on 1=! data
represent Curie-Weiss fits. For 6H-B phase, ! (open squares) is
obtained by subtracting 1.7% Ni2þ orphan spin’s contribution
(crosses) from the as-measured data (solid squares).
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FIG. 1 (color online). Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b) 6H-B, and (c) 3C. Solid
curves are the best fits obtained from Rietveld refinements using FULLPROF. Schematic crystal structures for the Ba3NiSb2O9

polytypes: (d) 6H-A, (e) 6H-B, and (f) 3C; red octahedra represent Sb(M0) sites, and blue octahedra represent Ni2=3Sb1=3ðMÞ sites.
Magnetic lattices composed of Ni2þ ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.
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Thermal conductivity
• Huge linear thermal 

conductivity indicates the 
gapless excitations are 
propagating 

• Consistent with spinon 
Fermi surface? 

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 μm 
≈1000 a !



9 years later…

Controversy!



Top experimental 
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Kitaev materials

Quantum spin icekagomé

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2
organics

This just scratches the surface: many 
more materials being studied



Frontiers
New phases 

• Fractons 
• Quenched disorder

Reality 
• New Materials! Maybe QSLs in VdW crystals? 
• Definitive experimental signatures 

• Thermal Hall? Non-linear spectroscopy? 
• Computational methods: less bias, reliability of 

variational methods, beyond ground states 

Fundamental problems 
• QSLs with strongly coupled 

matter-gauge theory 
• QCPs to/from QSL phases 
• Out of equilibrium 
• Doping - QSL induced SCivity?
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