

Quantum Spin Liquids

Leon Balents, KITP

PSSCMP 2020

Influenced by

Lucile Savary

SungBin Lee

Shigeki Onoda

Gang Chen

Oleg Starykh

Hong-Chen Jiang

Yi-Zhuang You

Xueyang Song

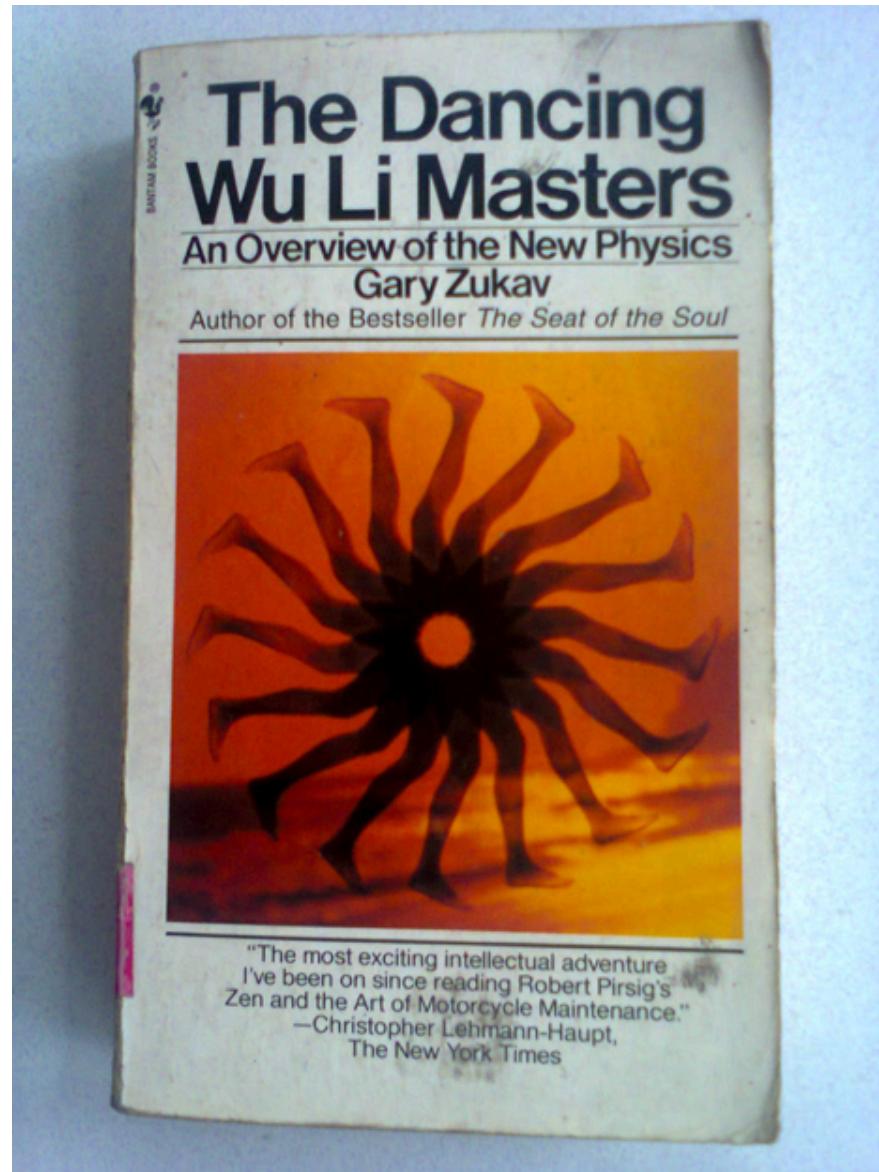
Jason Iaconis

Chunxiao Liu

Bruce Gaulin

Kate Ross

Quantum Spin Liquid

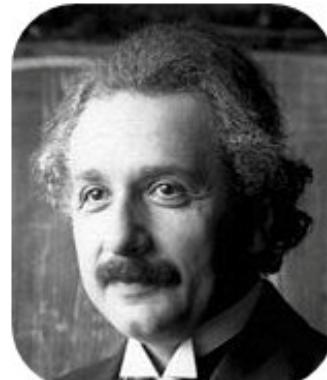


Quantum non-locality

EPR

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

??where is the information??

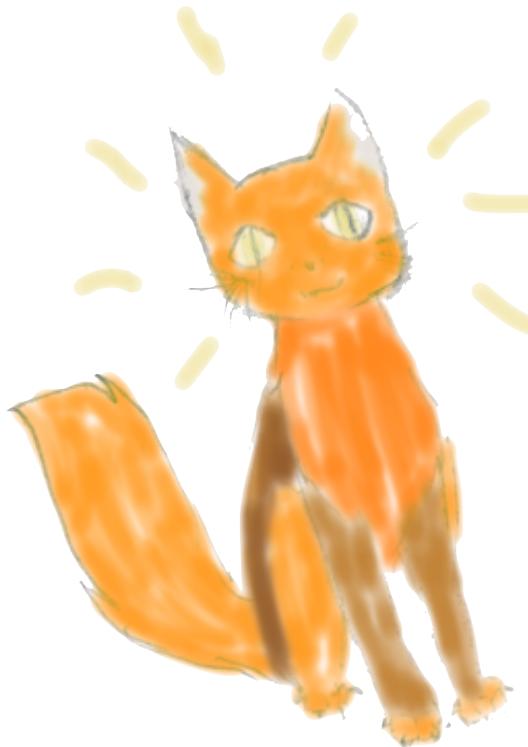


A. Einstein

B. Podolsky

N. Rosen

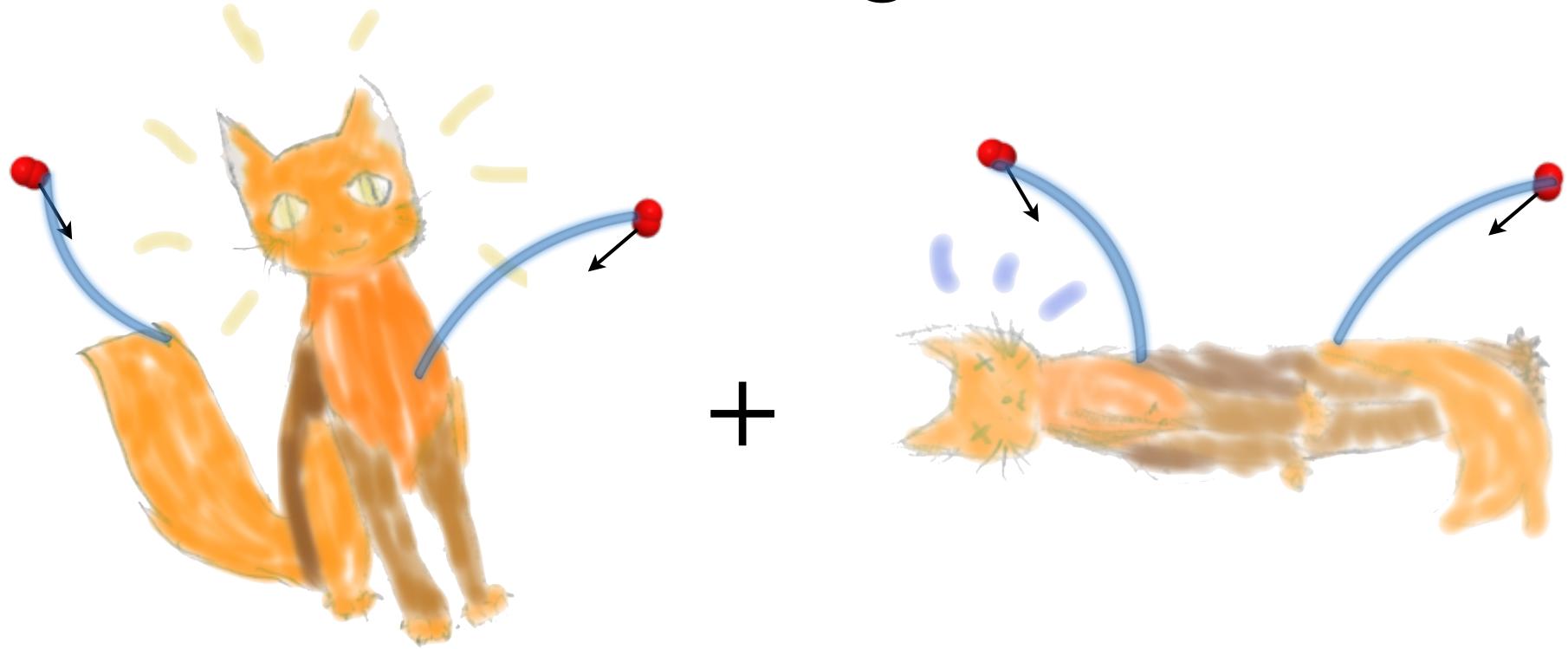
Schrödinger's Cat



+

© Megan Balents

Schrödinger's Cat



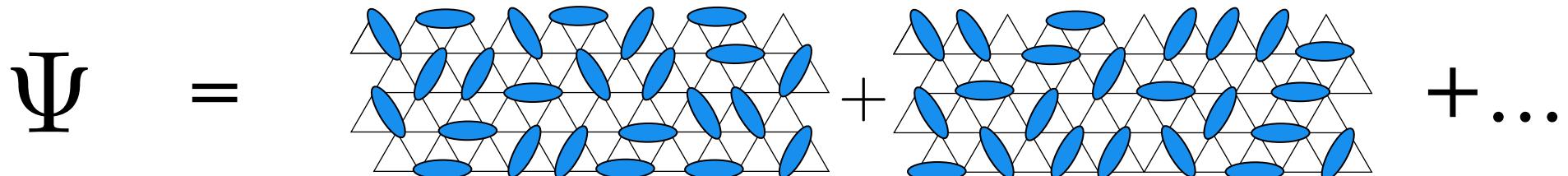
UNSTABLE to decoherence - uncontrolled entanglement with the environment

Strange Stuff

Phil Anderson, 1973

a “quantum liquid” of spins

$$\text{blue oval} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$



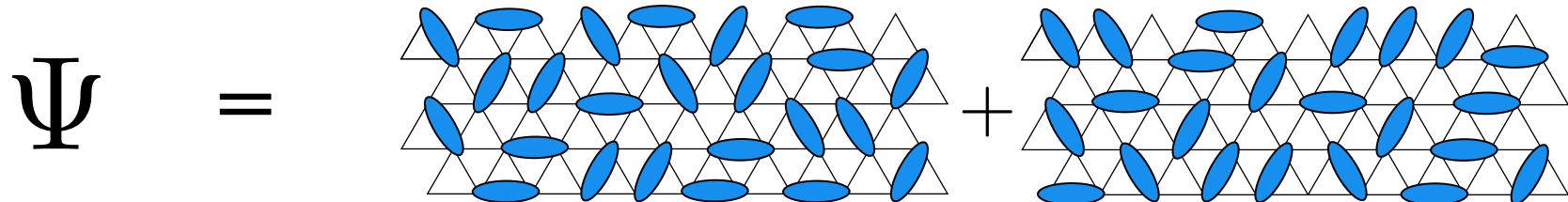
Resonating Valence Bond state

Strange Stuff

Phil Anderson, 1973

a “quantum liquid” of spins

$$\text{blue oval} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$



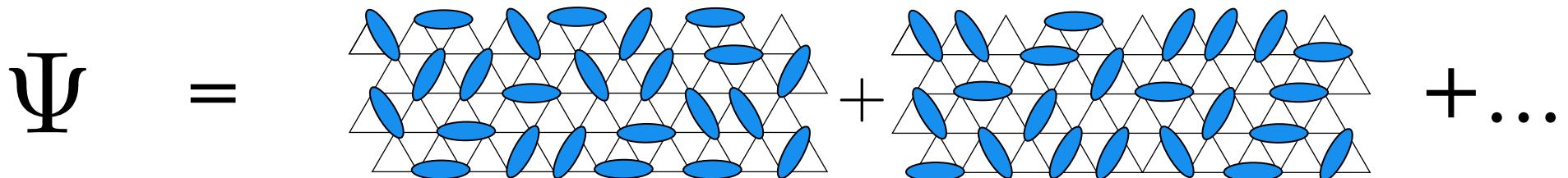
Resonating Valence Bond state

Strange Stuff

Phil Anderson, 1973

a “quantum liquid” of spins

$$\text{blue oval} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

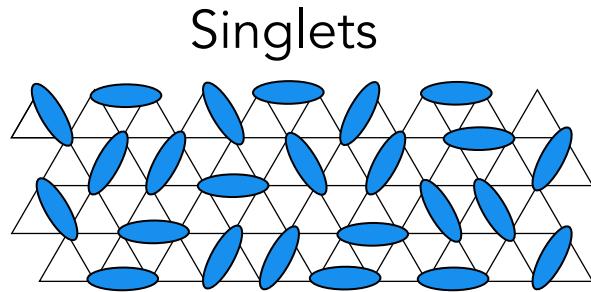
$$\Psi = \text{Diagram 1} + \text{Diagram 2} + \dots$$
A diagram representing the wavefunction Ψ as a sum of two components. Each component is a triangular lattice of sites, each containing a blue oval representing a spin. The first component (Diagram 1) shows a regular pattern of ovals. The second component (Diagram 2) shows a staggered pattern where ovals are only at specific lattice sites. The two diagrams are separated by a plus sign, followed by an ellipsis.

Two features:

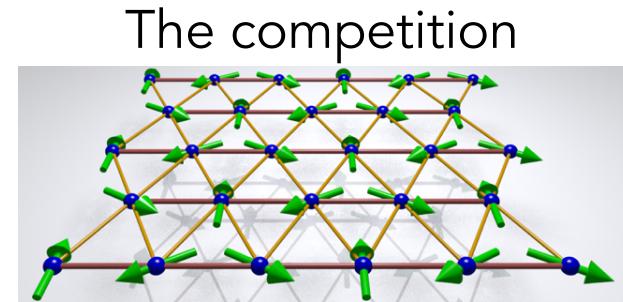
1. Spin-zero pairs
2. Massive superposition

When do we expect RVB?

- Compare singlet energy to ordered energy:



versus



caveats:

Neglects superposition

Neglects zero point fluctuations

When do we expect RVB?

- Compare singlet energy to ordered energy:

$$\vec{S}_i \cdot \vec{S}_j = \frac{1}{2} \left(\vec{S}_{\text{tot}}^2 - \vec{S}_i^2 - \vec{S}_j^2 \right)$$

$$\left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_{\text{AF}} = -S^2 x \quad \left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_{\text{singlet}} = -S(S+1)$$

When do we expect RVB?

- Compare singlet energy to ordered energy:

$$\vec{S}_i \cdot \vec{S}_j = \frac{1}{2} \left(\vec{S}_{\text{tot}}^2 - \vec{S}_i^2 - \vec{S}_j^2 \right)$$

$$\left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_{\text{AF}} = -S^2 x \quad \left\langle \vec{S}_i \cdot \vec{S}_j \right\rangle_{\text{singlet}} = -S(S+1)$$

$$E_{\text{AF}}/\text{bond} = -S^2 x$$

angular factor

$$E_{\text{singlet}}/\text{bond} = -S(S+1)f_{\text{singletbonds}}$$

$$= -\frac{1}{z}S(S+1)$$

Coordination number

- Favorable for small S , small z , small x (frustration)

To understand what is strange about spin liquids, we should understand

Ordinary (local) Matter

We can consistently assign local properties (elastic moduli, etc.) and obtain all large-scale properties

- Measurements far away do not affect one another
- From local measurements we can deduce the global state

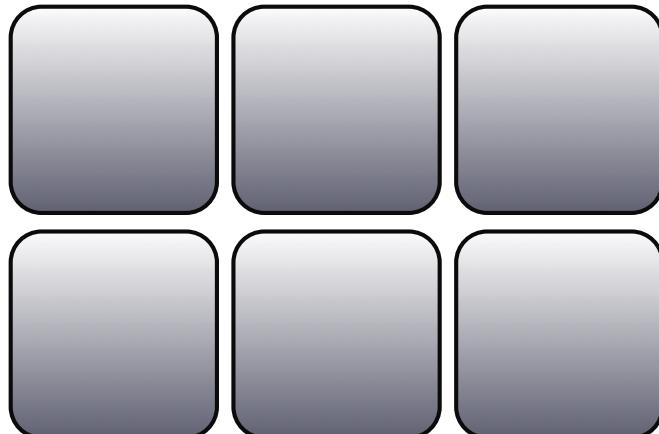
Ordinary (local) Matter

Hamiltonian is local

$$H = \sum_x \mathcal{H}(x) \quad \mathcal{H}(x) \text{ has local support near } x$$

Ground state is “essentially”
a product state

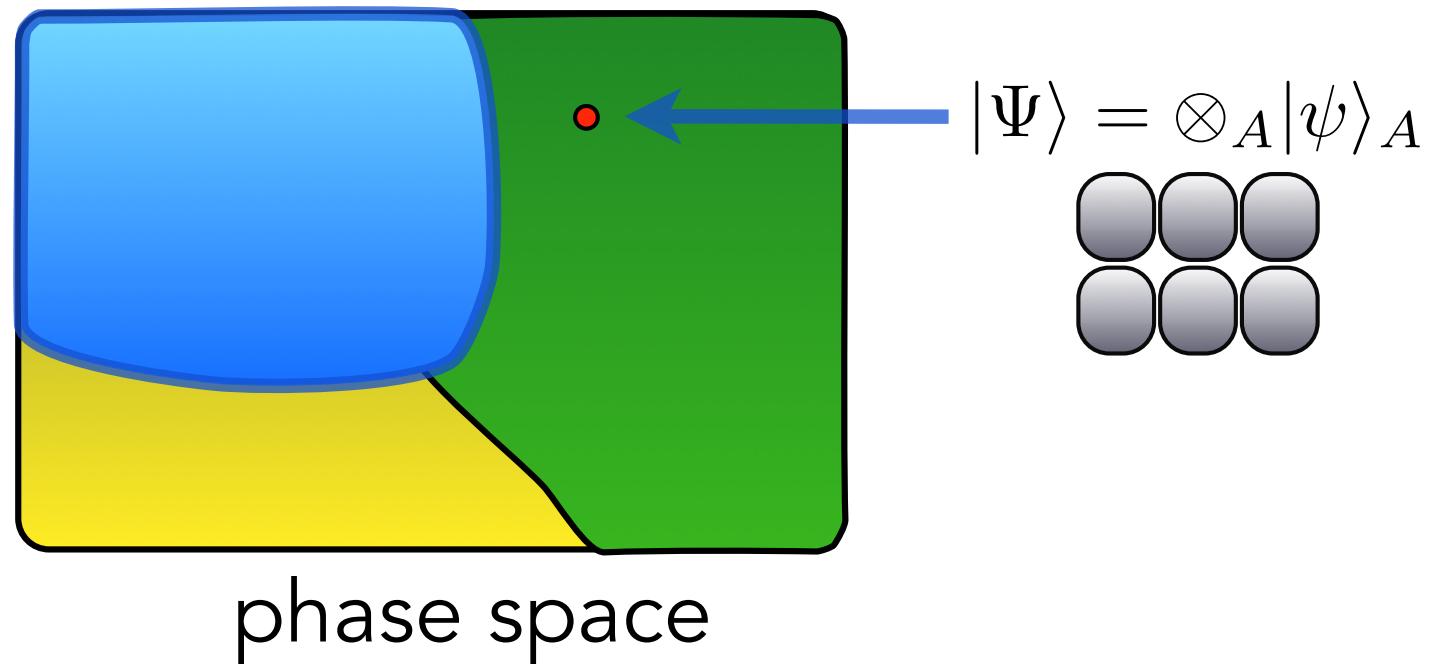
$$|\Psi\rangle = \otimes_A |\psi\rangle_A$$



no entanglement
between blocks

“Essentially” a product state?

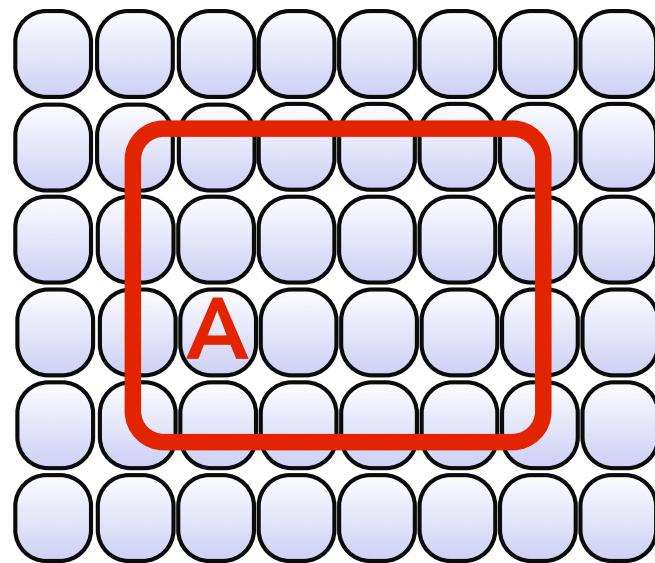
- Adiabatic continuity



n.b. This is not true for gapless fermi systems

“Essentially” a product state?

- Entanglement scaling



$$\rho_A = \text{Tr}_{\bar{A}} |\Psi\rangle\langle\Psi|$$

$$S(A) = -\text{Tr}_A (\rho_A \ln \rho_A)$$

$$S(A) \sim \sigma L^{d-1} \text{ area law}$$

satisfied with exponentially small corrections

Best example: ordered magnet

Hamiltonian

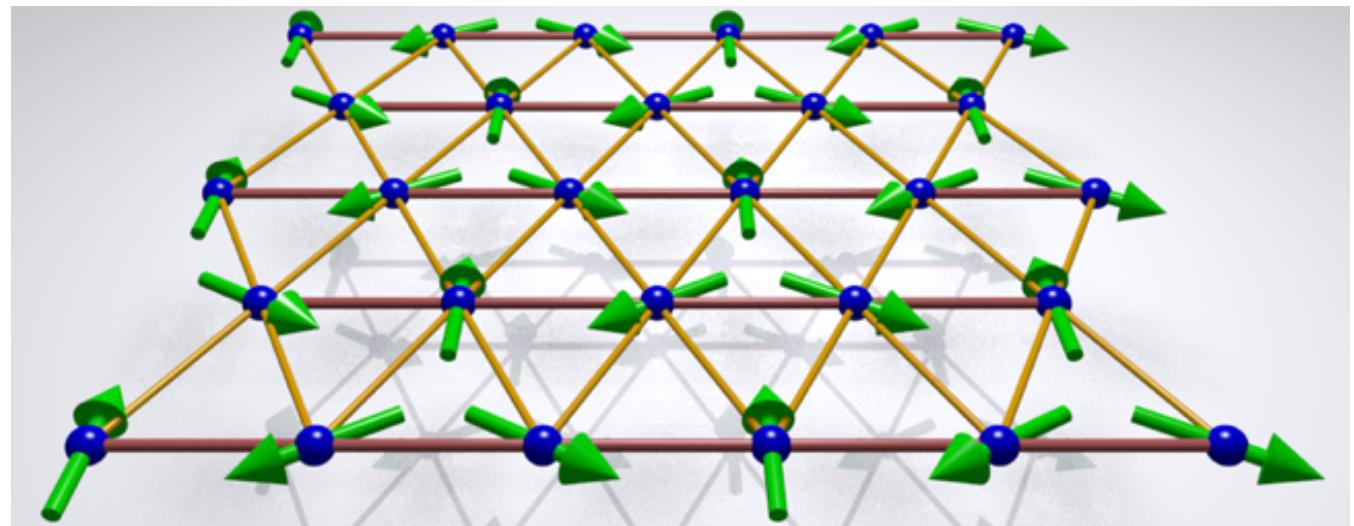
$$H = \sum_{(ij)} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

exchange is short-
range: local

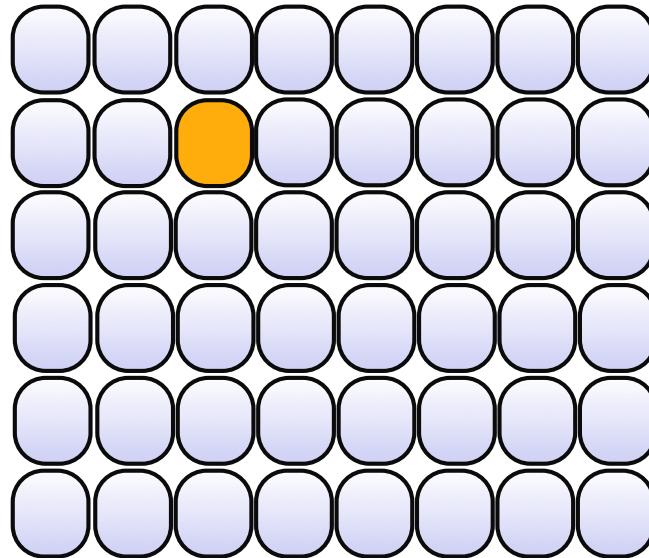
ordered state

$$|\Psi\rangle \approx \bigotimes_i |\mathbf{S}_i \cdot \hat{\mathbf{n}}_i = +S\rangle$$

block is a single
spin



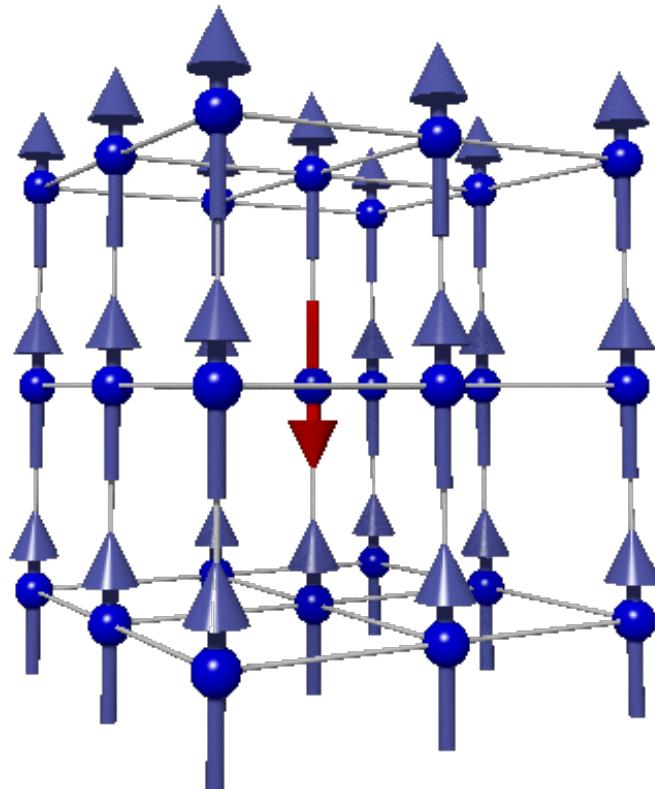
Quasiparticles



excited states \sim excited
levels of one block

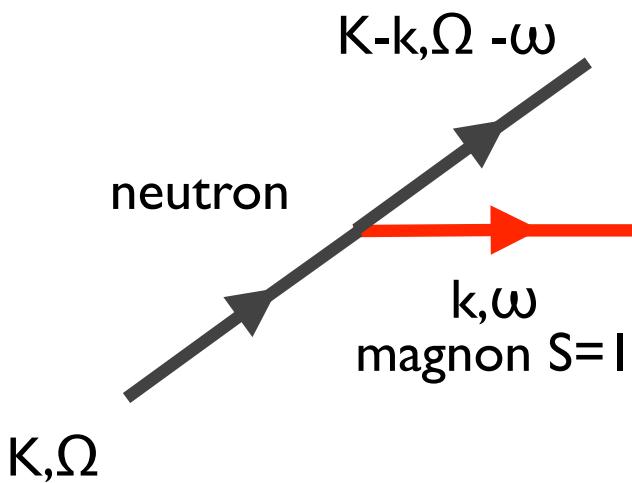
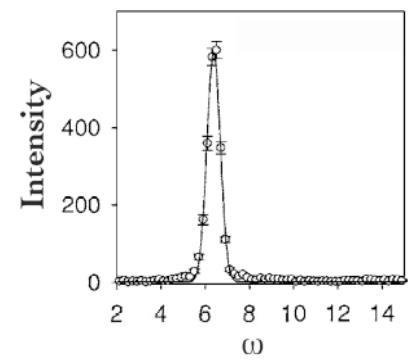
- local excitation can be created with operators in one block
- localized excitation has discrete spectrum with non-zero gap, and plane wave forms sharp band
- quantum numbers consistent with finite system: no emergent or fractional quantum numbers

Spin wave



$$\omega(k) \approx \Delta - 2t \cos k_x a - \dots$$

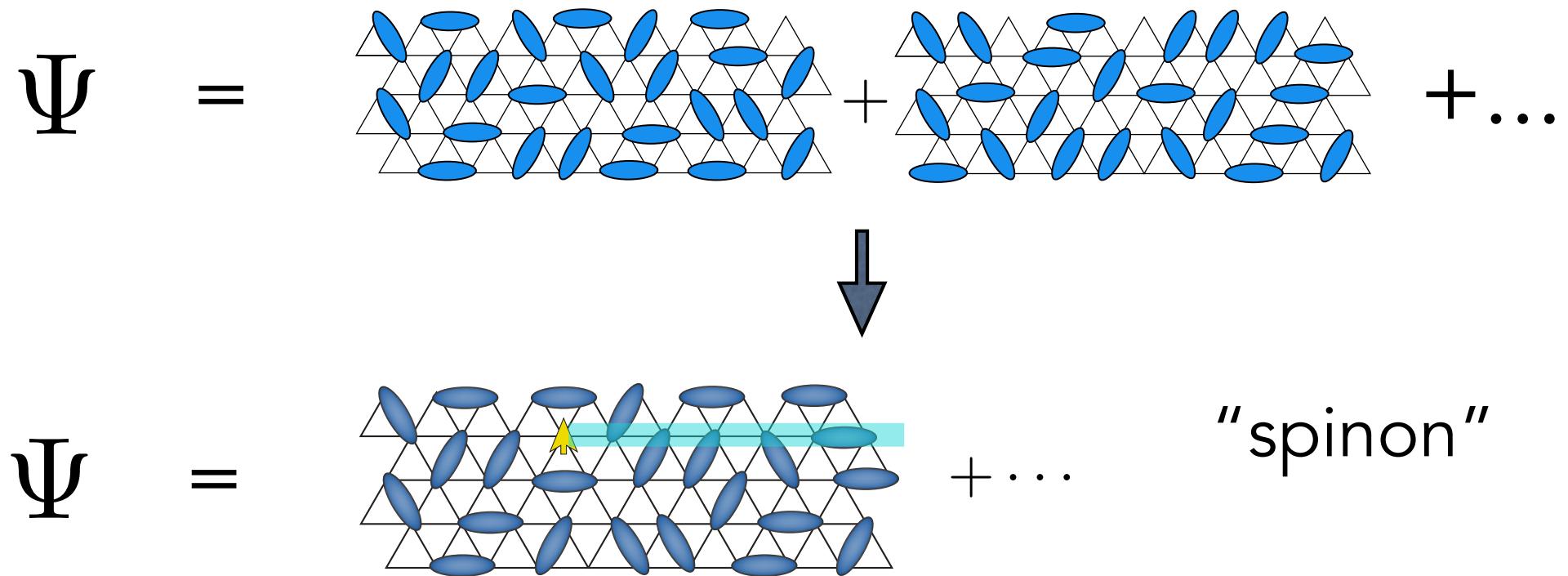
$$|f\rangle = S_k^+ |i\rangle$$



Line shape in Rb_2MnF_4

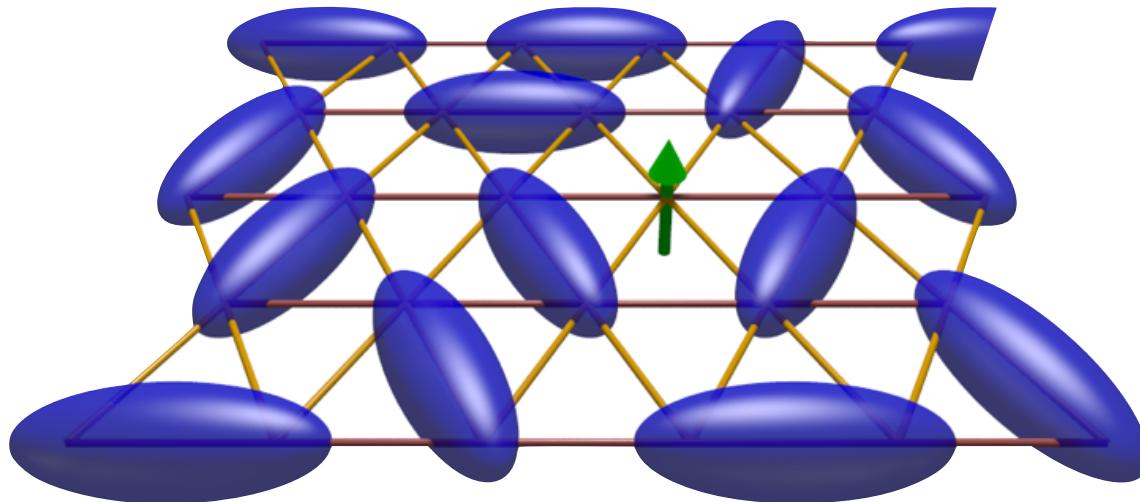
Quantum spin liquid

Entanglement -> non-local excitation



“quasiparticle” above a non-zero gap

Fractional quantum number

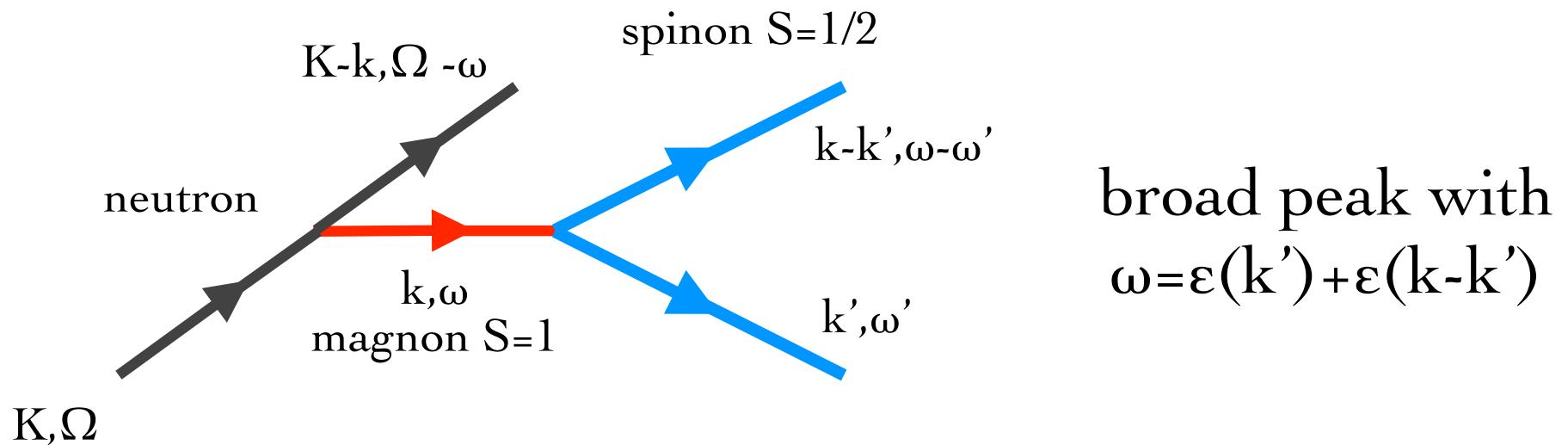


excitation with $\Delta S = 1/2$
not possible for any finite
cluster of spins

always created in pairs by any
local operator

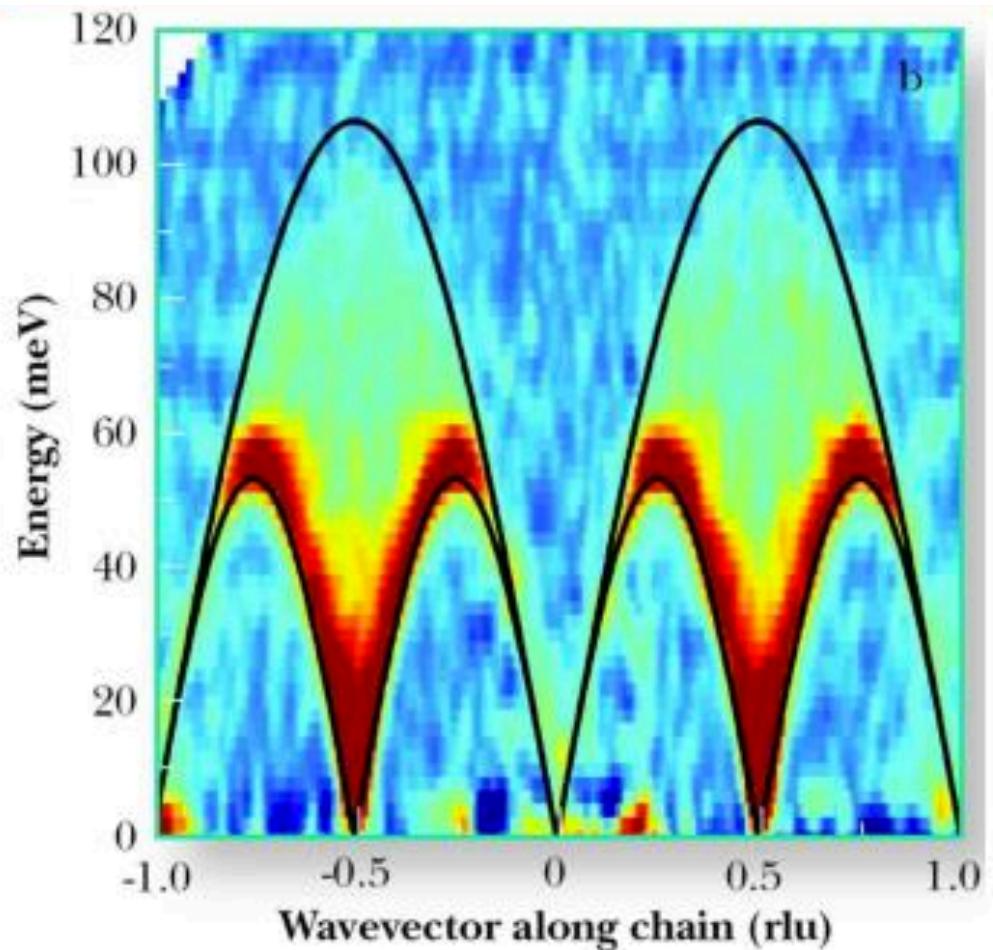
No spin waves

- In a quantum spin liquid, the elementary spin excitations are *fractional*, $S=1/2$ spinons



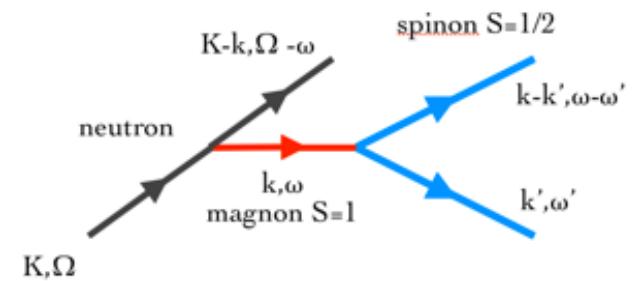
- Sharp peaks should be reduced or absent in the spin structure factor

c.f. One dimension

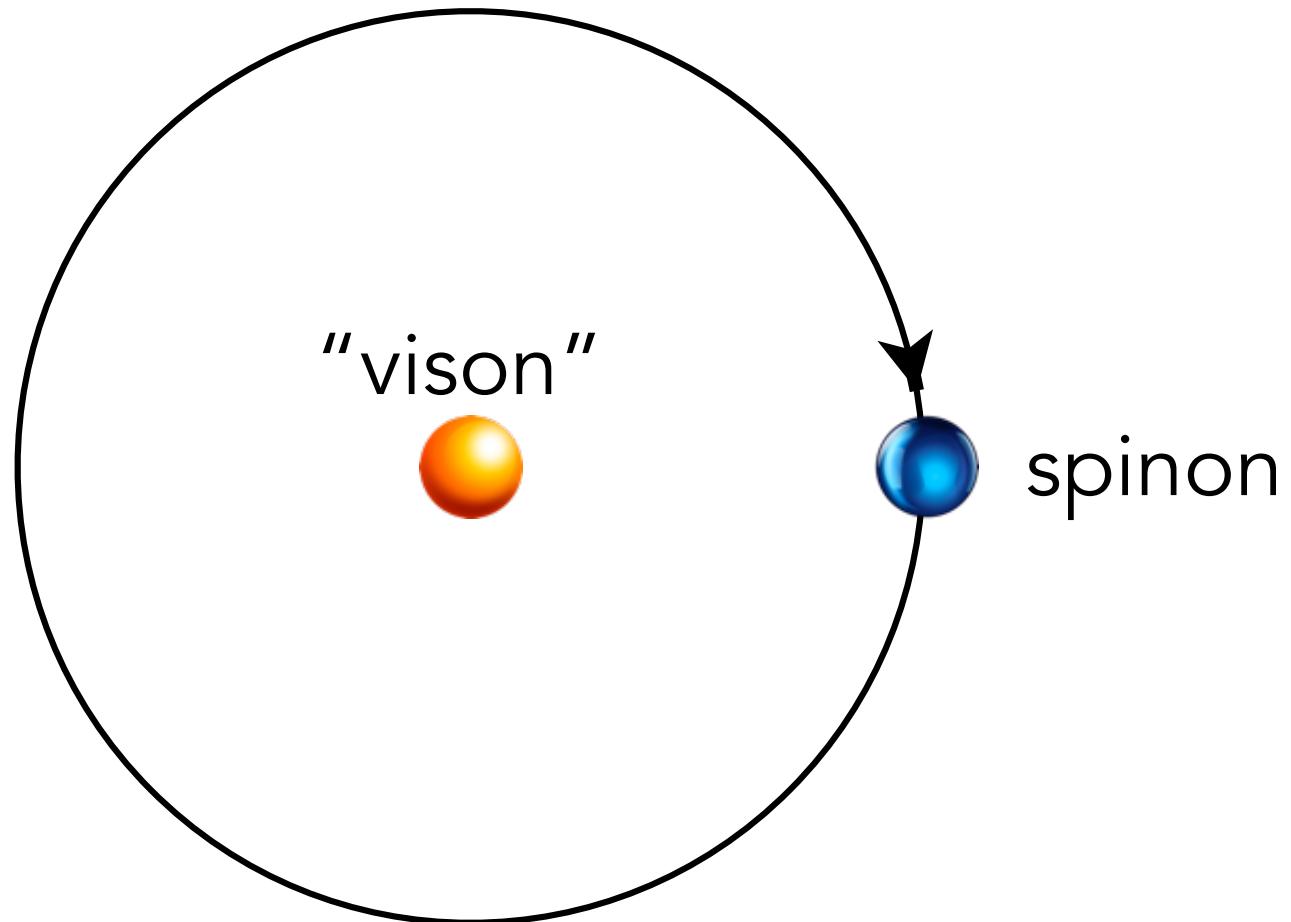


A. Tennant *et al*, 2001

KCuF_3



Anyons



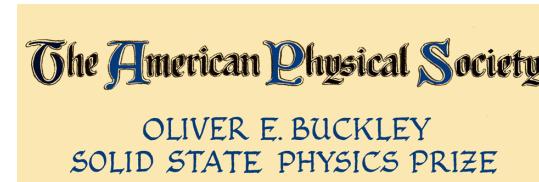
$$\Psi \rightarrow -\Psi$$

"mutual semions"

X.-G. Wen

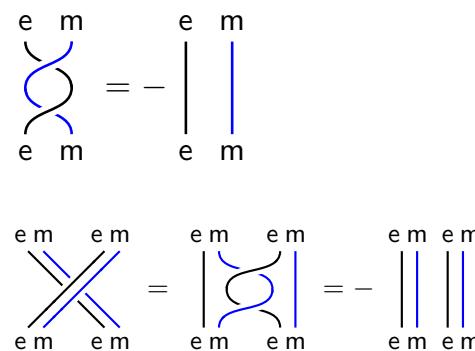
A. Kitaev

Topological phases



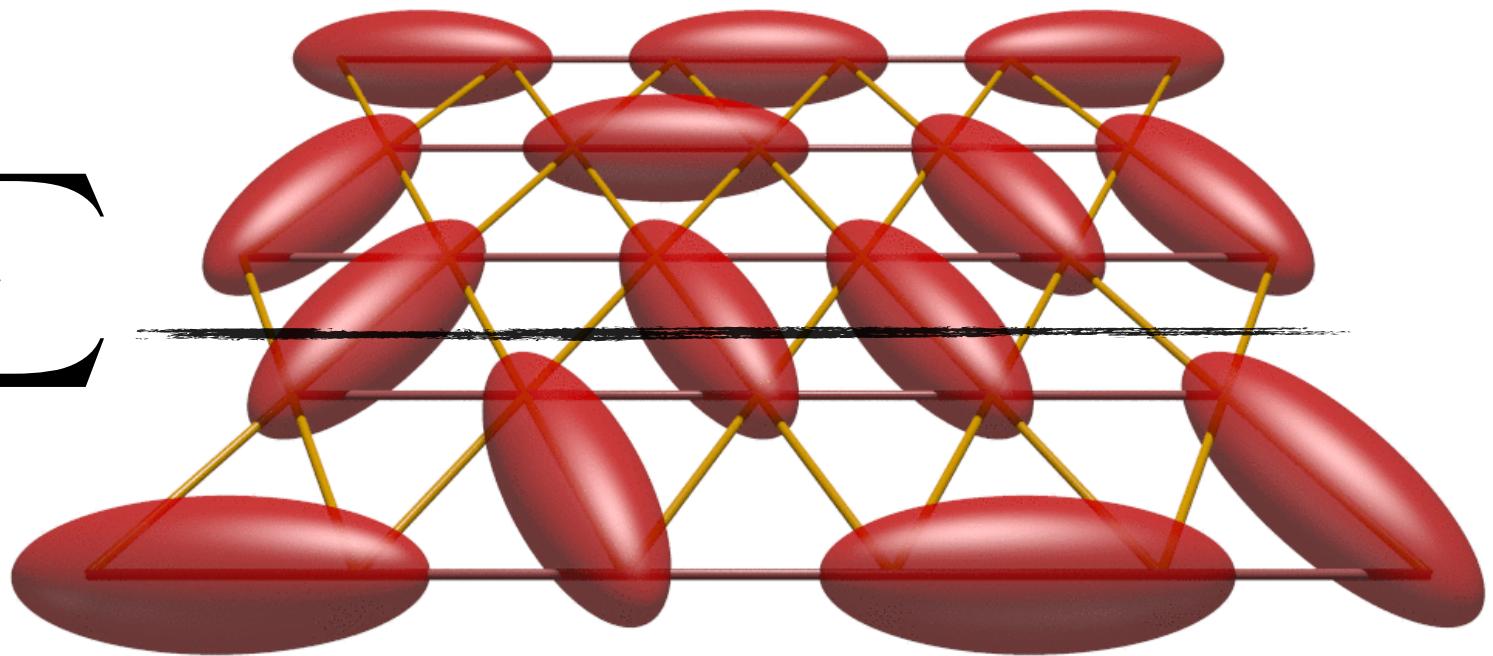
Anderson's RVB state is thus an example of a “topological phase” - the best understood sort of QSL

Understood and classified by anyons and their braiding rules in 2d



Stability

$$\Psi = \sum$$



Robustness arises from topology: a QSL is a stable phase of matter (at T=0)

Many kinds of QSLs

$$\Psi = \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins, with a red arrow pointing to it labeled '#'} \\ + \end{array} \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins, with a red arrow pointing to it labeled '#'} \\ + \dots \end{array}$$

For ~ 500 spins, there are more amplitudes than there are atoms in the visible universe!

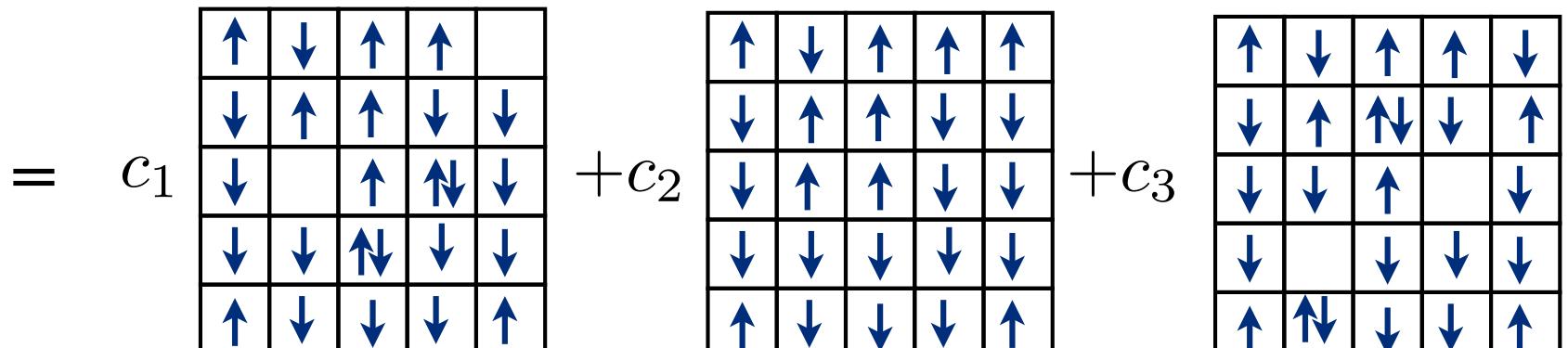
Different choices of amplitudes can realize different QSL phases of matter.

Gutzwiller Construction

- Construct QSL state from free fermi gas with spin, with 1 fermion per site ($S=0$)

$$|\Psi_0\rangle = \prod_{k \in FS} c_{k\uparrow}^\dagger c_{k\downarrow}^\dagger |0\rangle$$

“partons”
“spinons”

$$= c_1 \begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \\ \hline \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & & \uparrow & \uparrow \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \uparrow \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array} + c_2 \begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \uparrow \\ \hline \downarrow & \uparrow & \uparrow & \uparrow & \downarrow \\ \hline \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array} + c_3 \begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \downarrow \\ \hline \downarrow & \uparrow & \uparrow \downarrow & \downarrow & \uparrow \\ \hline \downarrow & \downarrow & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \uparrow \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array} + \dots$$


Gutzwiller Construction

- Project out any components with empty or doubly occupied sites

$$|\Psi\rangle = \hat{P}_G |\Psi_0\rangle$$

“partons”
“spinons”

$$= c_1 \cancel{\begin{array}{|c|c|c|c|c|} \hline & \uparrow & \downarrow & \uparrow & \uparrow \\ \hline & \downarrow & & \uparrow & \downarrow \\ \hline & \downarrow & \uparrow & \uparrow & \uparrow \\ \hline & \uparrow & \downarrow & \uparrow & \downarrow \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline & \uparrow & \downarrow & \downarrow & \downarrow \\ \hline \end{array}} + c_2 \begin{array}{|c|c|c|c|c|} \hline & \uparrow & \downarrow & \uparrow & \uparrow & \uparrow \\ \hline & \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline & \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline & \uparrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array} + c_3 \cancel{\begin{array}{|c|c|c|c|c|} \hline & \uparrow & \downarrow & \uparrow & \uparrow & \downarrow \\ \hline & \downarrow & \uparrow & \uparrow & \downarrow & \uparrow \\ \hline & \downarrow & \downarrow & \uparrow & \downarrow & \downarrow \\ \hline & \downarrow & \uparrow & \downarrow & \downarrow & \downarrow \\ \hline & \uparrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array}} + \dots$$

Gutzwiller Construction

- Can build many QSL states by choosing different free fermion states

$$|\Psi\rangle = \hat{P}_G |\Psi_0\rangle$$

“partons”
“spinons”

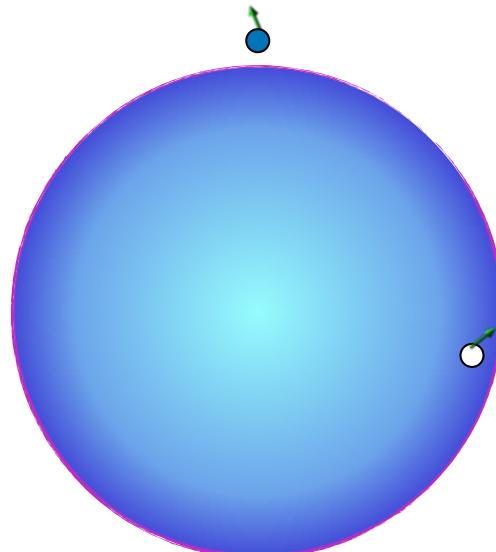
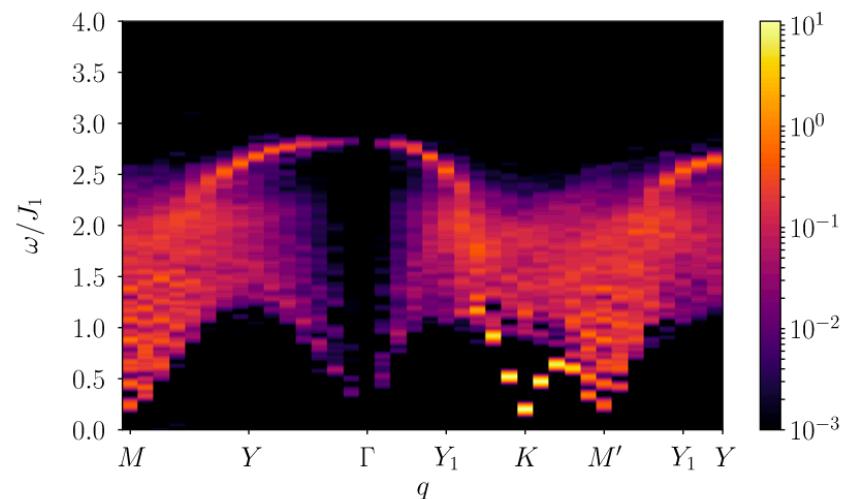
$$= c_1 \cancel{\begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \uparrow \\ \hline \downarrow & & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \hline \downarrow & \downarrow & \uparrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\ \hline \end{array}} + c_2 \begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \uparrow \\ \hline \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array} + c_3 \cancel{\begin{array}{|c|c|c|c|c|} \hline \uparrow & \downarrow & \uparrow & \uparrow & \downarrow \\ \hline \downarrow & \uparrow & \uparrow & \downarrow & \uparrow \\ \hline \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \uparrow & \downarrow & \downarrow & \uparrow \\ \hline \end{array}} + \dots$$

Gutzwiller Construction

- Partons/spinons as quasiparticles

$$|\Psi'\rangle = \hat{P}_G \left(c_{k\alpha}^\dagger c_{q\beta} |\Psi_0\rangle \right)$$

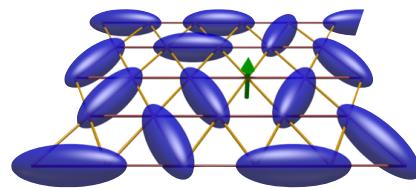
Two spinons but independent
(before projection)



Applied to triangular lattice
to compute $S(q, \omega)$,
F. Ferrari + F. Becca, 2019

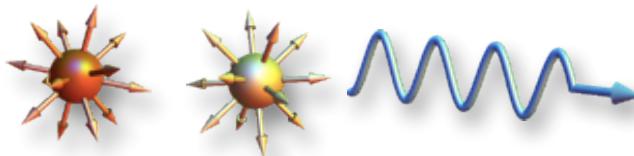
Classes of QSLs

- Topological QSLs



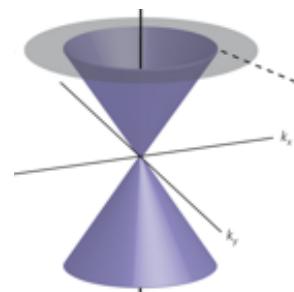
projected
superconductor

- $U(1)$ QSL



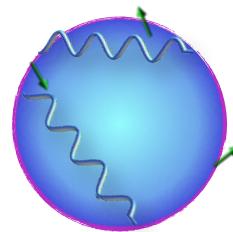
projected 3d band
insulator

- Dirac QSLs



projected
graphene

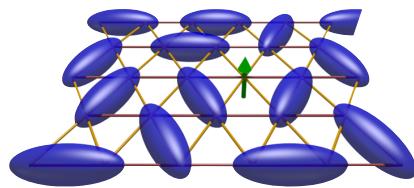
- Spinon Fermi surface



projected
metal

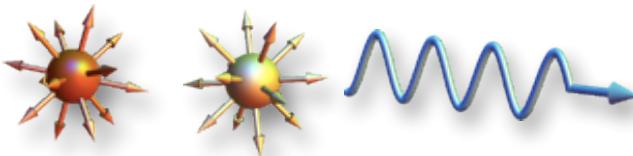
Classes of QSLs

- Topological QSLs



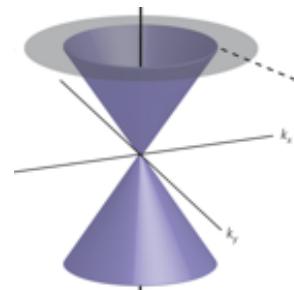
anyonic
spinons

- $U(1)$ QSL



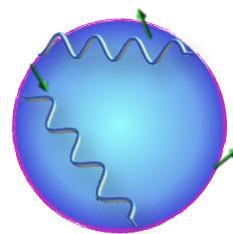
electric+magnetic
monopoles, photon

- Dirac QSLs



strongly
interacting
Dirac fermions

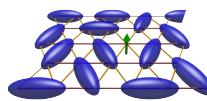
- Spinon Fermi surface



non-Fermi
liquid "spin
metal"

Classes of QSLs

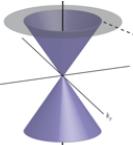
- Topological QSLs



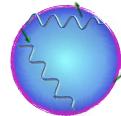
- U(1) QSL



- Dirac QSLs

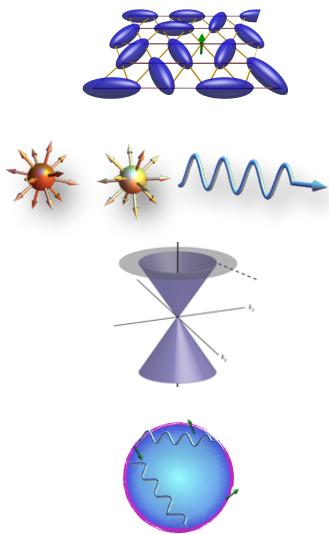


- Spinon Fermi surface



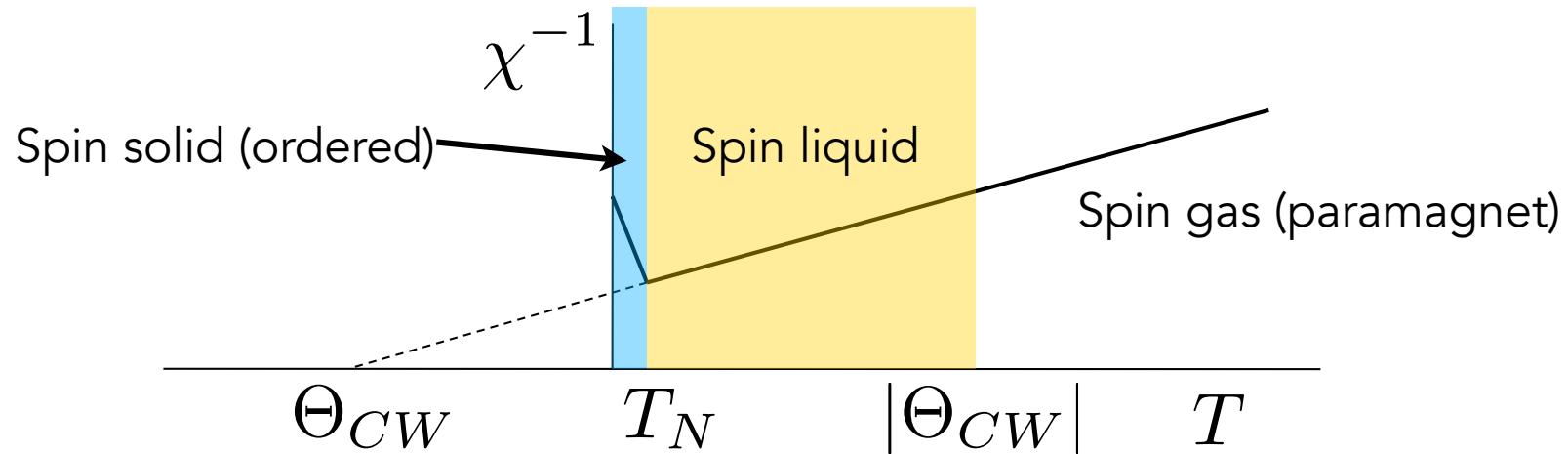
These spin liquids are all different phases of matter, and are rather different from one another. Like the corresponding unprojected states, their phenomenology can be quite distinct. Too naive to look for a single identifying feature for all QSLs.

Strange stuff



where do we find it?

Ramirez Plot

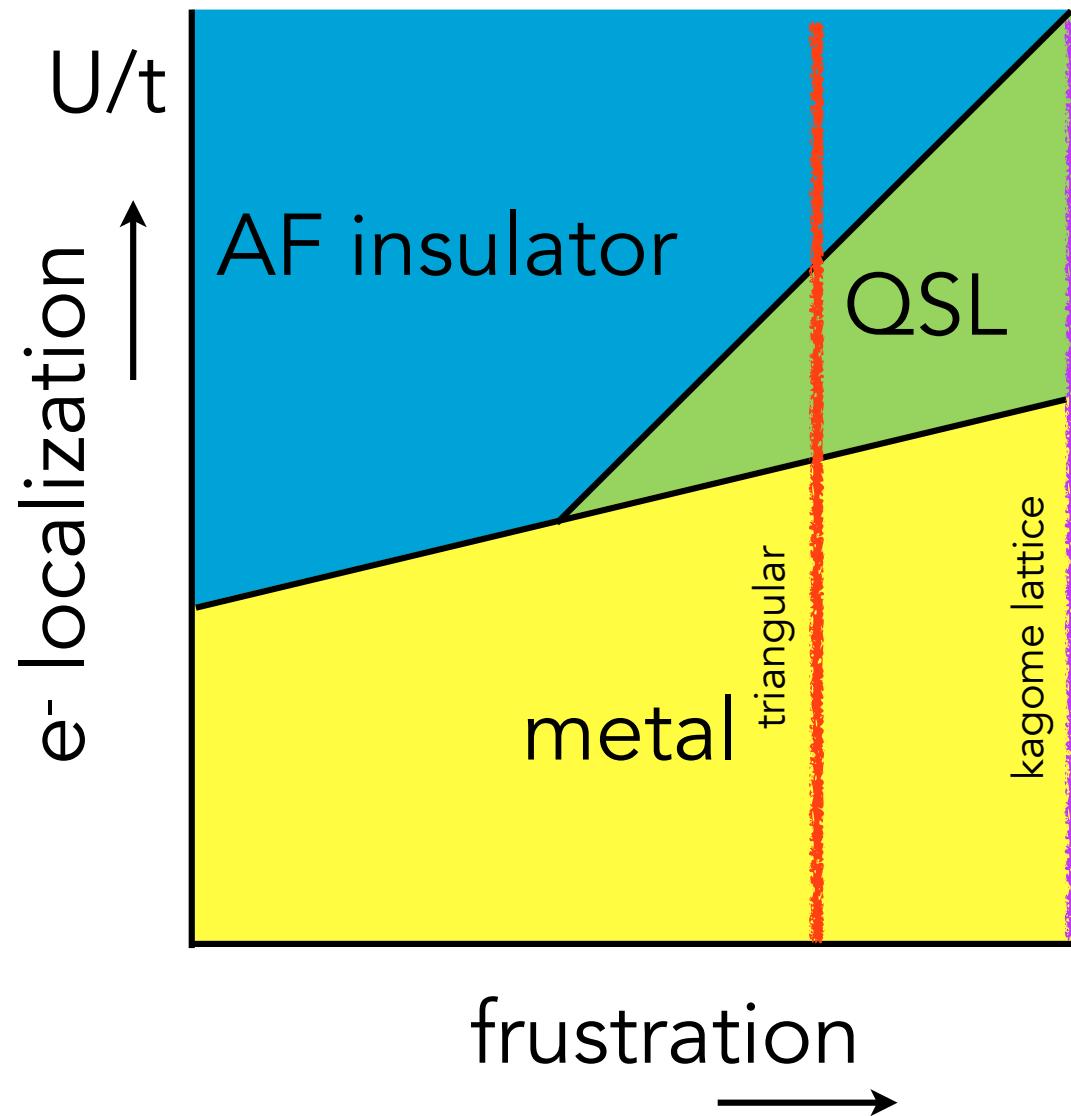


- Local moments: Curie-Weiss law at high T
$$\chi \sim \frac{A}{T - \Theta_{CW}}$$
- Frustration parameter: $f = |\Theta_{CW}|/T_N$
- Larger $f \gg 1$ is better. $f = \infty$ for true QSL

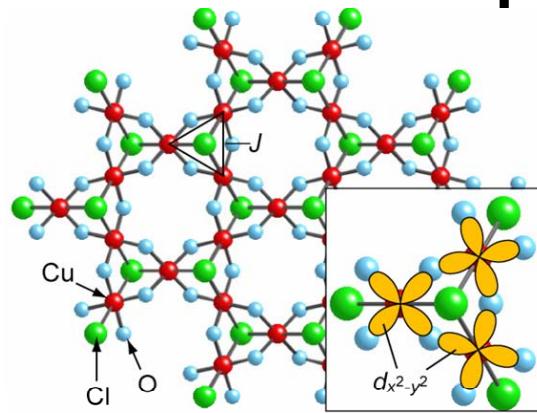
Materials criteria

- $S=1/2$ spins
- Geometrical or exchange frustration
- Significant charge fluctuations
- Exotic interactions (c.f. Spin-orbit coupling)

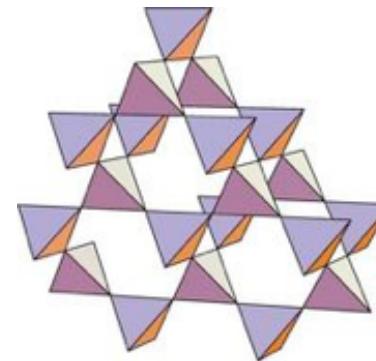
Where to look?



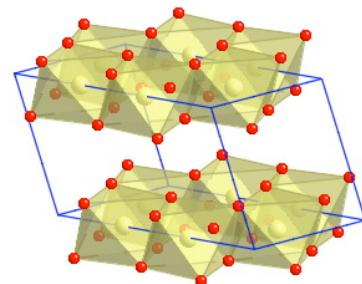
Top experimental platforms



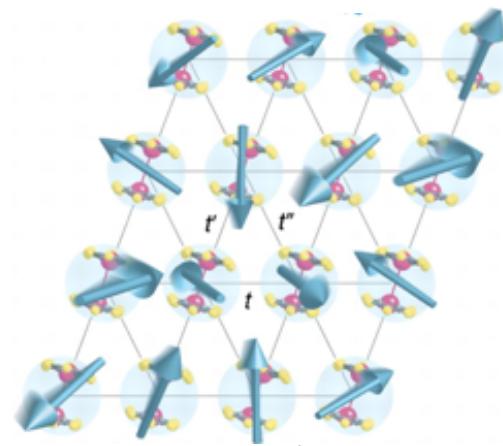
kagomé



Quantum spin ice



Kitaev materials



organics

A rough guide to experiments on QSLs

Does it order?

- NMR line splitting
- muSR oscillation
- thermodynamic transition via specific heat, susceptibility
- Bragg peak in neutron/ x-ray

Delocalized excitations?

- thermal conductivity
- INS

Is there a gap?

- Specific heat
- NMR $1/T_1$
- Dynamic susceptibility
- T-dependence of χ

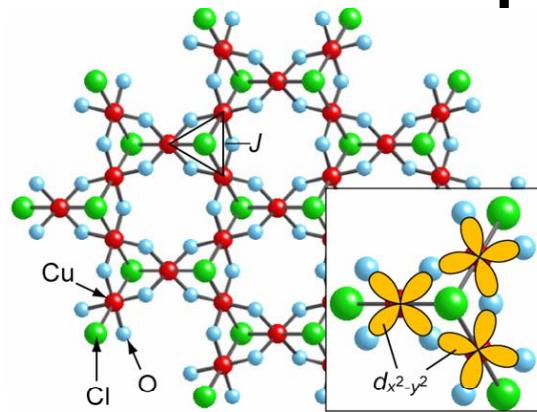
Exotica

- Local measurements
- thermal Hall
- ARPES (on insulator!)
- Proximity effects

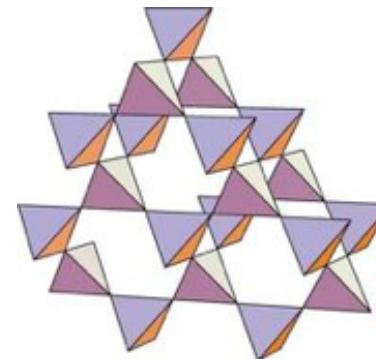
Structure of excitations?

- $E(k)$ from INS, RIXS
- optics, Raman

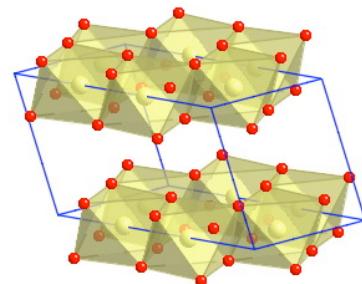
Top experimental platforms



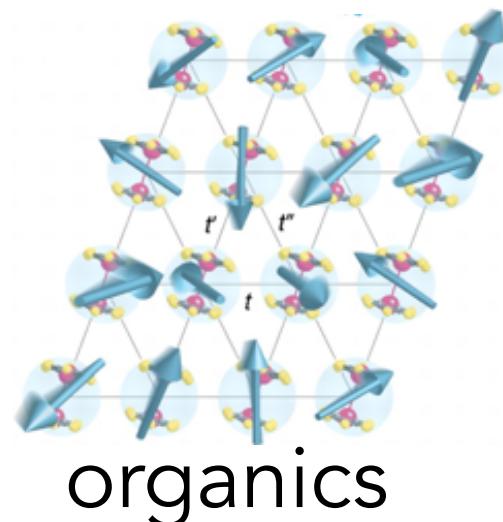
kagomé



Quantum spin ice

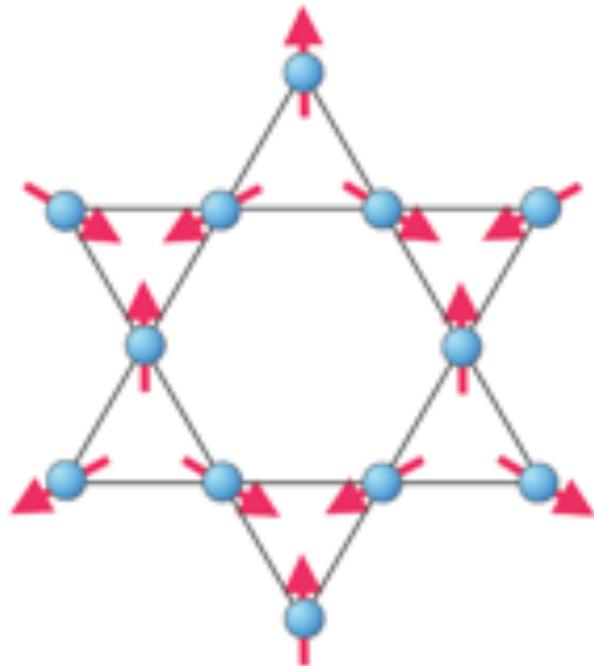


Kitaev materials



organics

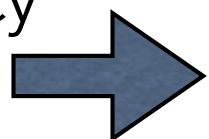
Kagomé antiferromagnet



$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \dots$$

Very large classical degeneracy

Small $z=4$, $x=1/2$

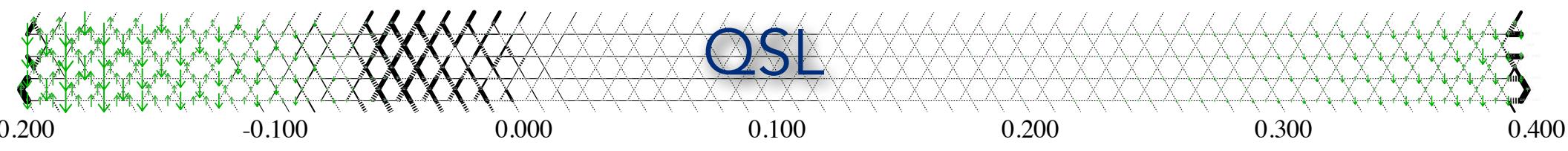


likely to be a QSL

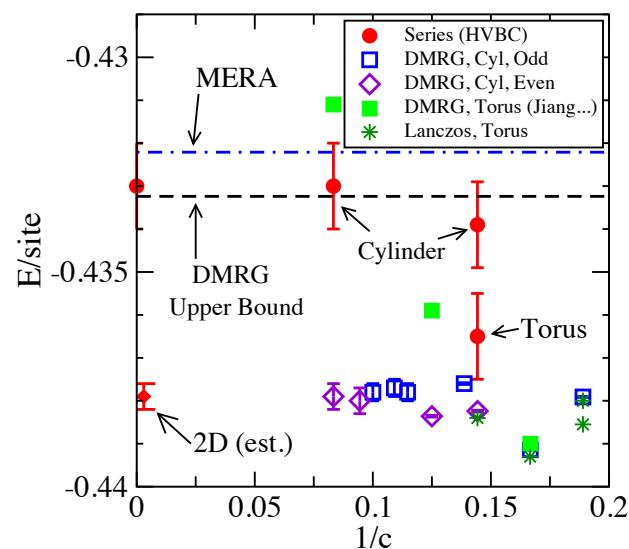
V. Elser, 1989 + many many others

$S=1/2$ kagomé AF

- Rather definitive evidence for QSL by DMRG



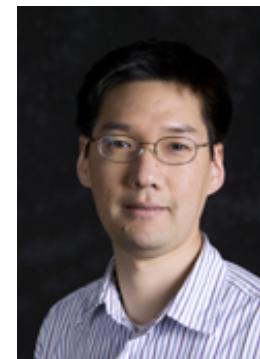
© Steve White



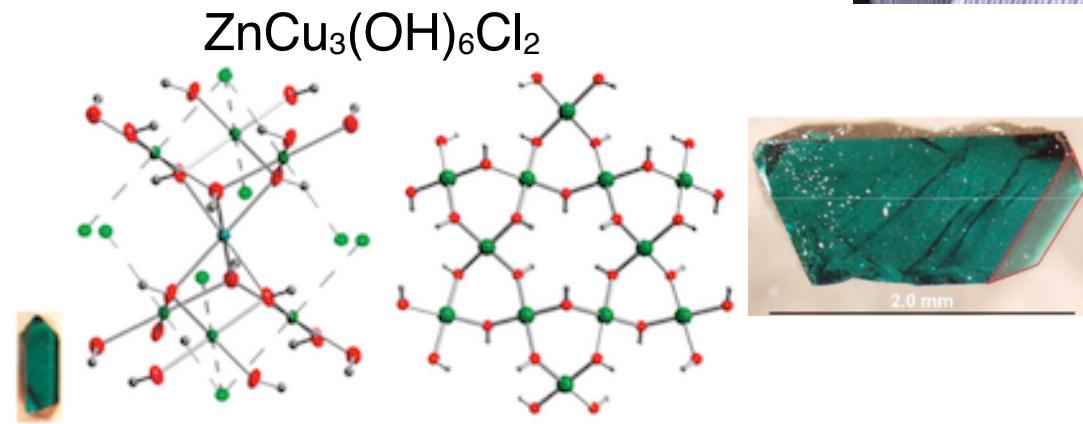
S. Yan *et al*, 2010

many other studies support
existence of some QSL phase

Herbertsmithite

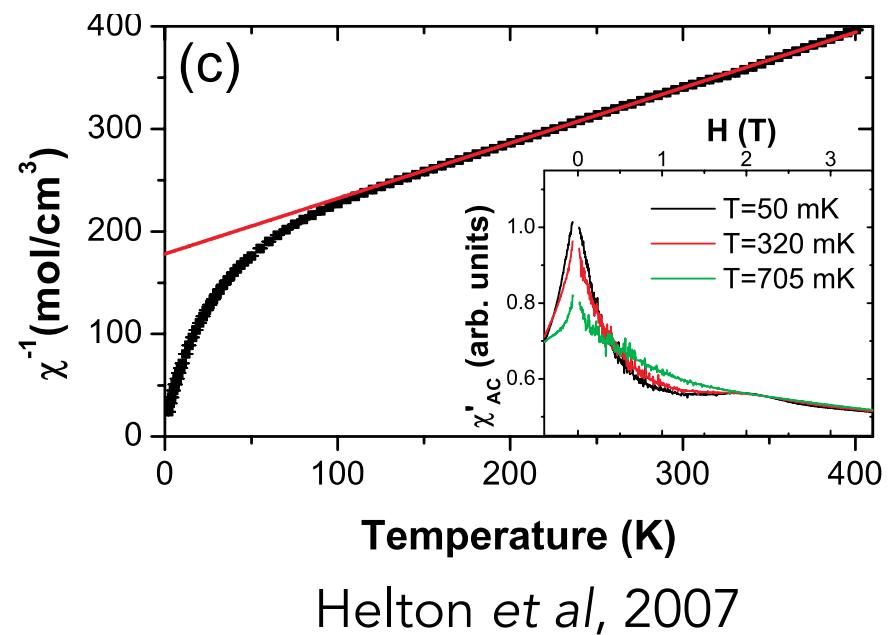


kagomé layers of Cu
S=1/2 spins, separated
by non-magnetic Zn



Heisenberg-like
with $J \sim 200\text{K}$

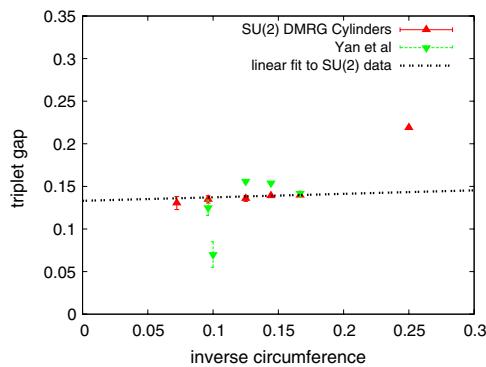
no order down to
50mK



Helton *et al*, 2007

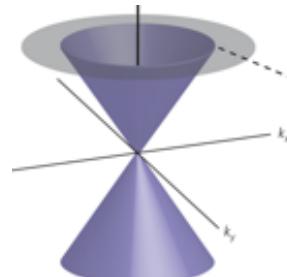
Theory

- What kind of QSL?



S. Depenbrock *et al*, 2012

gapped,
topological QSL



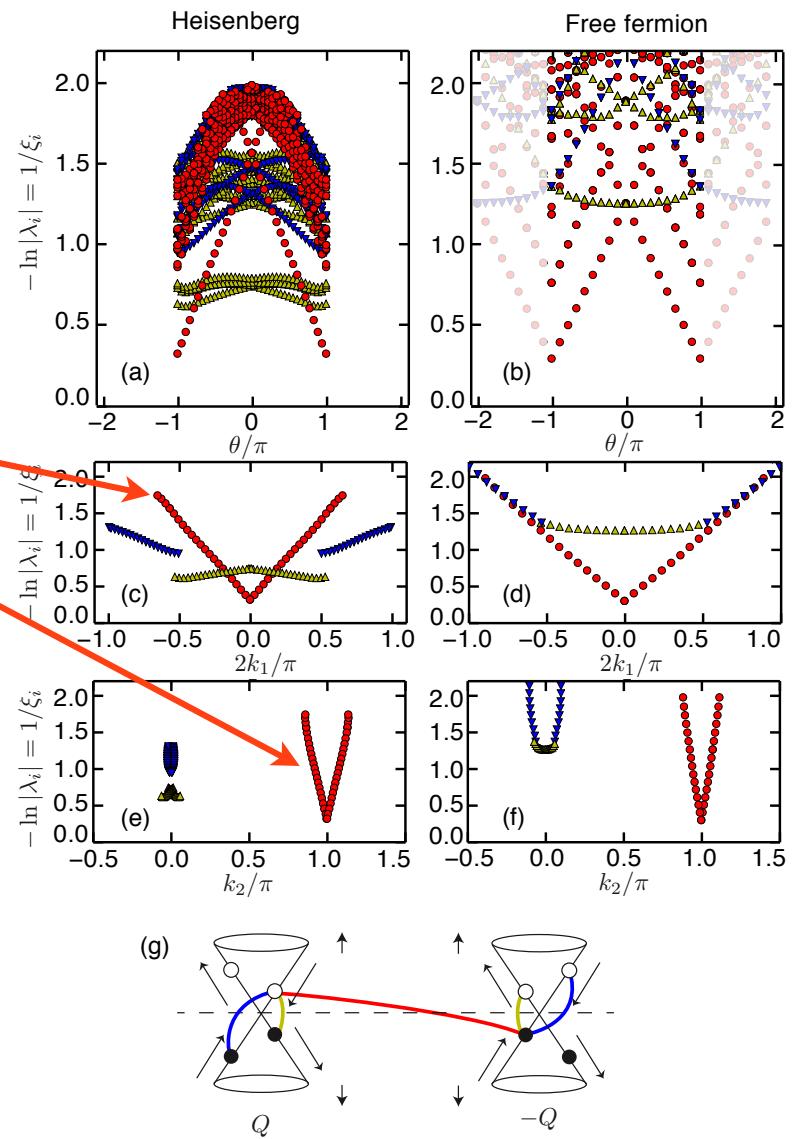
Y. Ran *et al*, 2007
F. Becca...

gapless
Dirac QSL

+ various other
proposals with
weaker
quantitative
support

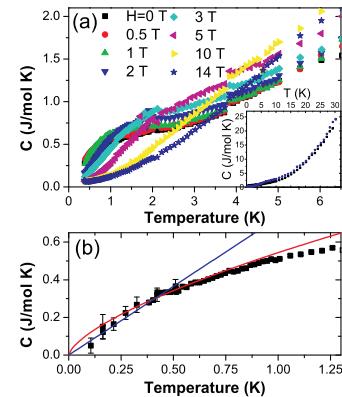
DMRG (2016)

Y.-C. He et al:
evidence for
Dirac QSL

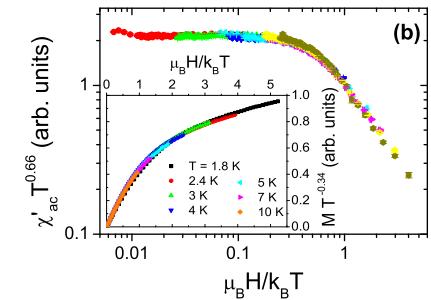


Herbertsmithite

Lots of early evidence
for gaplessness



Helton et al, 2007

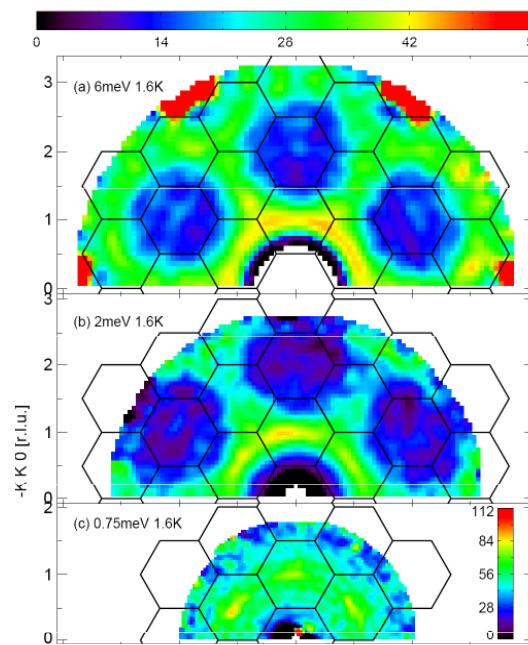
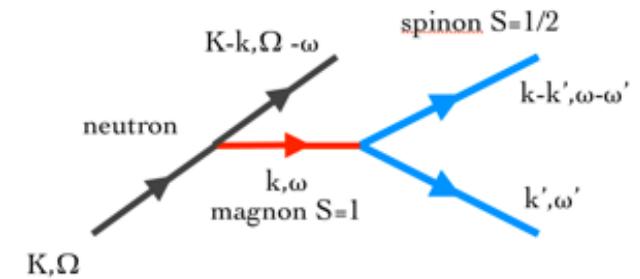


Helton et al, 2010

Single crystal INS

smooth continuum
scattering

T-H Han et al, 2012



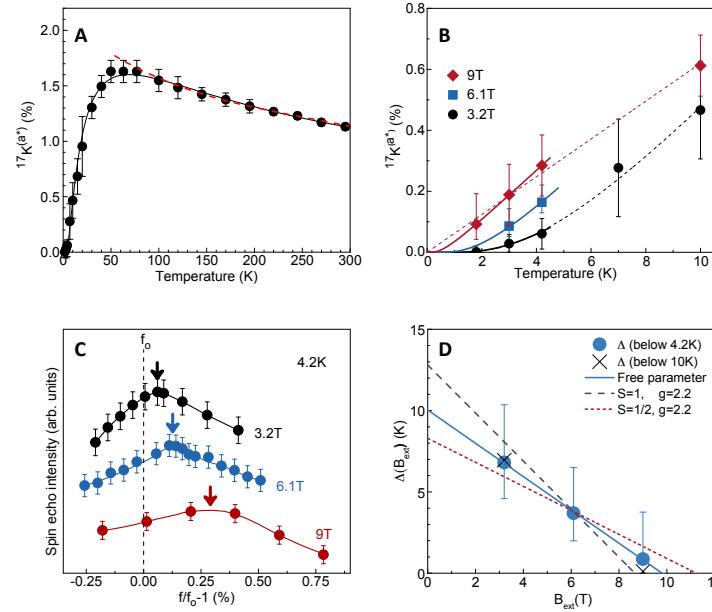
continuum scattering
expected
...but probably with more
structure?

Herbertsmithite

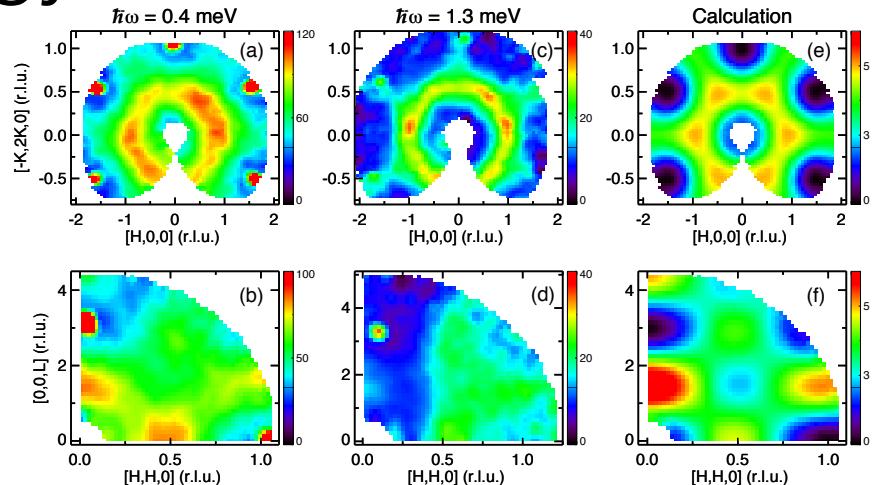
Single crystal NMR

M. Fu *et al*, 2015

McMaster



Low energy INS

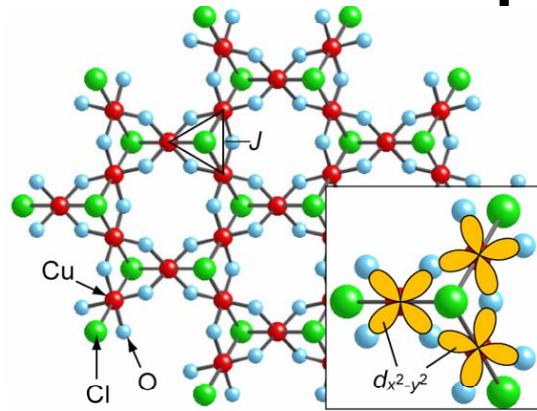


T-H Han *et al*, 2015

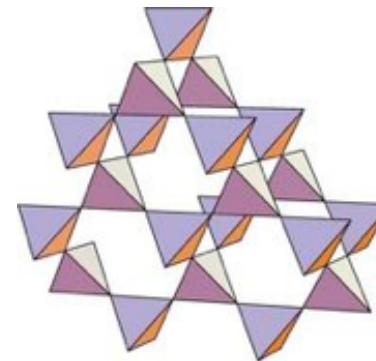
estimate gap \sim
10K

claim to separate
impurity signal
below 0.7meV

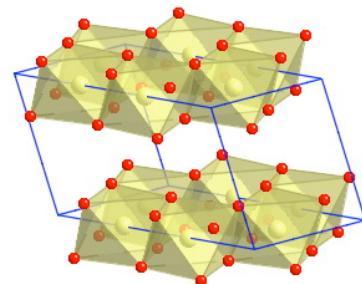
Top experimental platforms



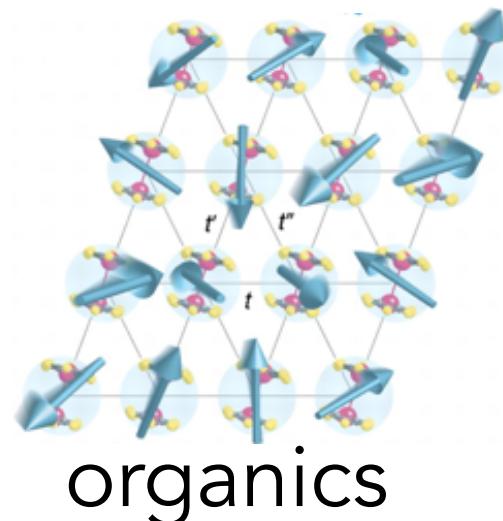
kagomé



Quantum spin ice



Kitaev materials



organics

Kitaev model

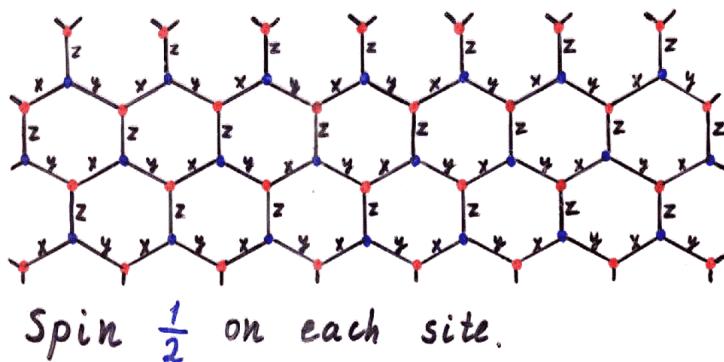
Kitaev's honeycomb model

c.f. Kitaev, Annals of Physics, 2006

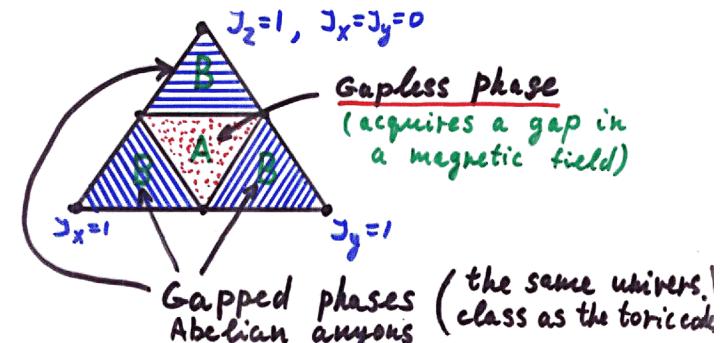
$$H = \sum_{i,\mu} K_\mu \sigma_i^\mu \sigma_{i+\mu}^\mu$$

KITP, 2003

1. The model

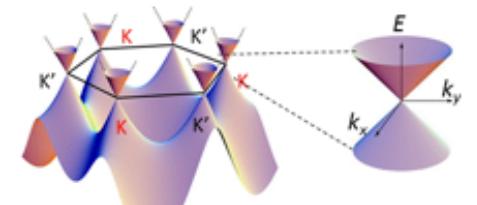


Phase diagram



exact parton construction $\sigma_i^\mu = i c_i c_i^\mu \quad c_i c_i^x c_i^y c_i^z = 1$

physical Majoranas $H_m = K \sum_{\langle ij \rangle} i c_i c_j$

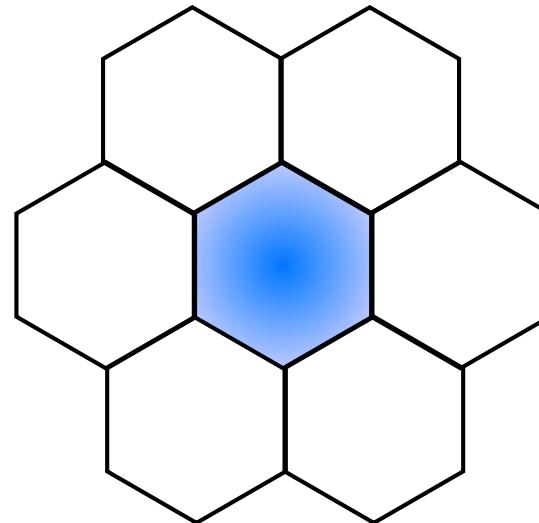


No S=0 singlets, but highly entangled.

Non-local excitations



Majorana ϵ



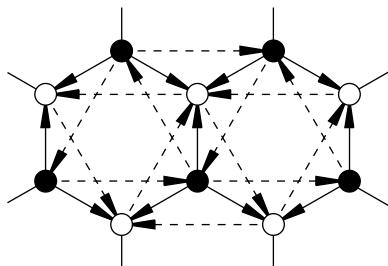
Flux e, m

In Kitaev's model:

- Majorana's dispersion $\sim K$ and Dirac-like
- Fluxes are localized and gapped

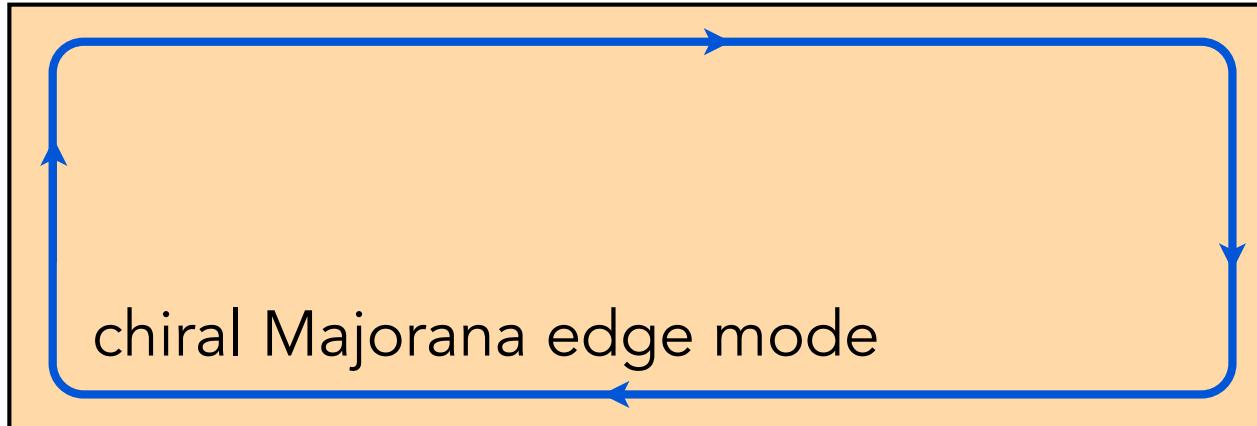
Non-Abelian Phase

- In an applied magnetic field, the Majoranas acquire a gap



$$H_{\text{eff}} = \frac{i}{4} \sum_{j,k} A_{jk} c_j c_k,$$
$$A = 2J(\text{---}) + 2\kappa(\text{---}),$$
$$\kappa \sim \frac{h_x h_y h_z}{J^2}.$$

field induces a fermion mass, very similar to the Haldane model (except Majorana)



$$H_e = -\frac{iv}{4} \int dx \eta \partial_x \eta$$

Quantum Hall Effect?

- No charge. Have to study heat transport!

T

$$I = \int_0^\infty \frac{dq}{2\pi} v^2 q f(vq) = \frac{c\pi k_B^2}{12\hbar} T^2$$

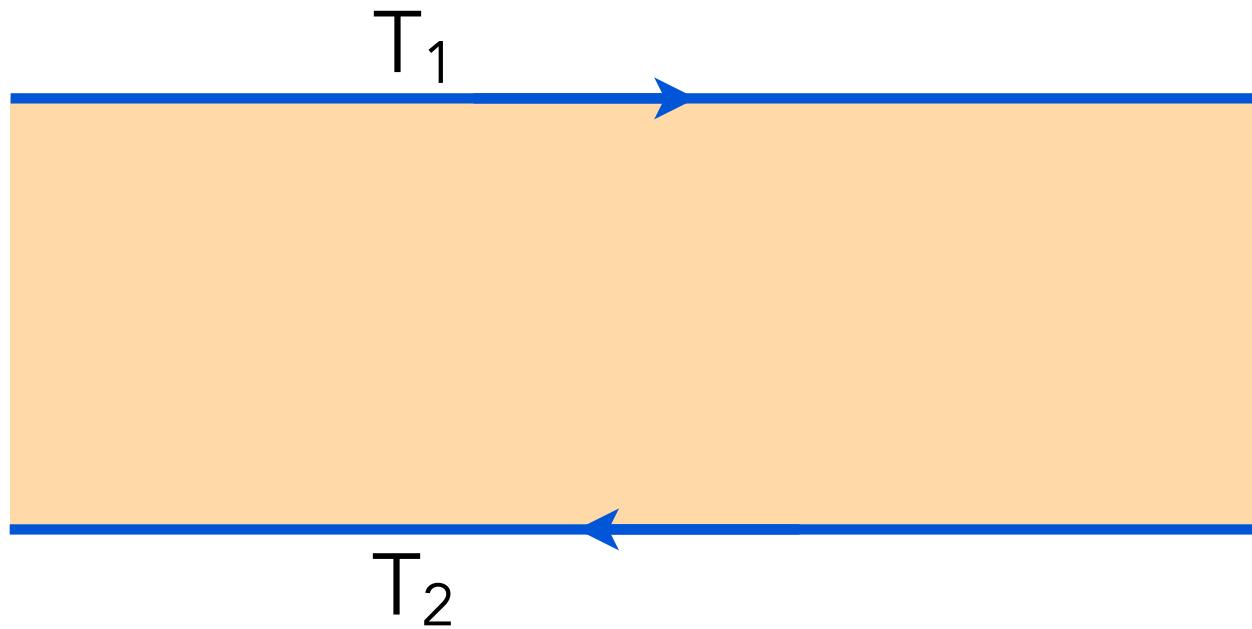
central charge $c=1/2$

c.f. $c=1$ for both IQHE and FQHE abelian states

implies the existence of bulk non-abelian excitations (the fluxes, bound to MZMs)

Quantum Hall Effect?

- No charge. Have to study heat transport!

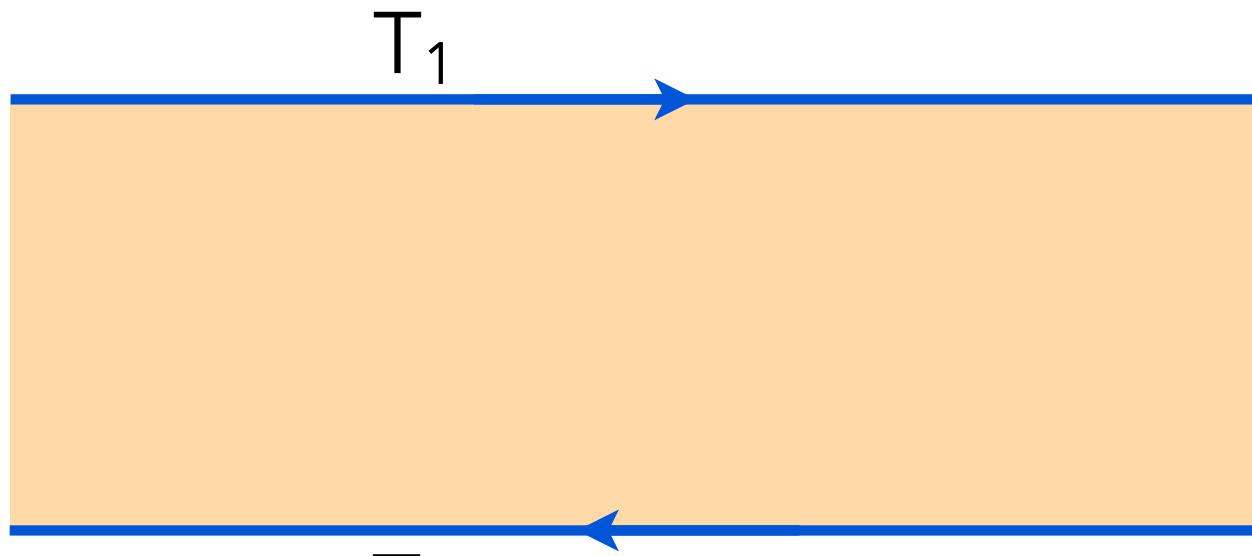


$$I = \frac{c\pi k_B^2}{12\hbar} (T_1^2 - T_2^2)$$

$$\approx \frac{c\pi k_B^2 T}{6\hbar} (T_1 - T_2)$$

Quantum Hall Effect?

- No charge. Have to study heat transport!



$$I_x = \kappa_H \Delta T_y$$

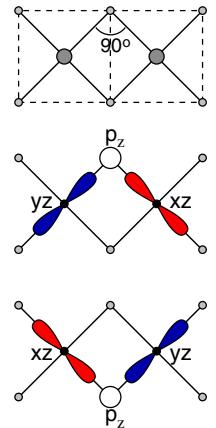
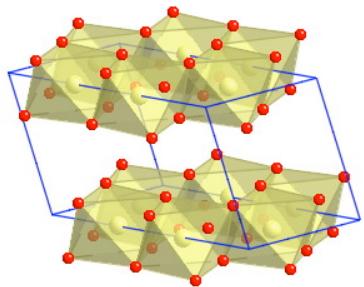
$$\kappa_H = \frac{\pi c k_B^2 T}{6 \hbar}$$

a universal prediction for chiral
“Ising anyon” phase: agnostic to
microscopic spin interactions

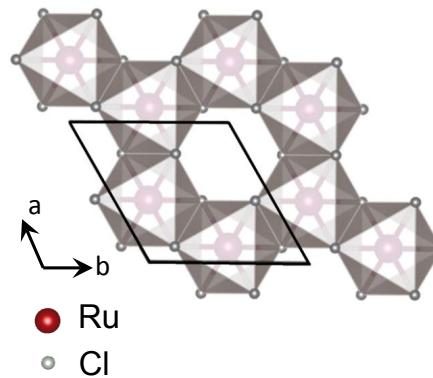
Kitaev Materials

Jackeli, Khaliullin
2009

Showed that Kitaev interaction can be large in edge-sharing octahedra with large spin-orbit-coupling



Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3

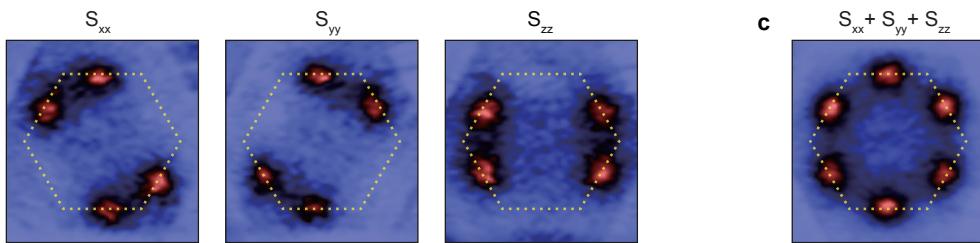


$\alpha\text{-RuCl}_3$

Y.-J. Kim...

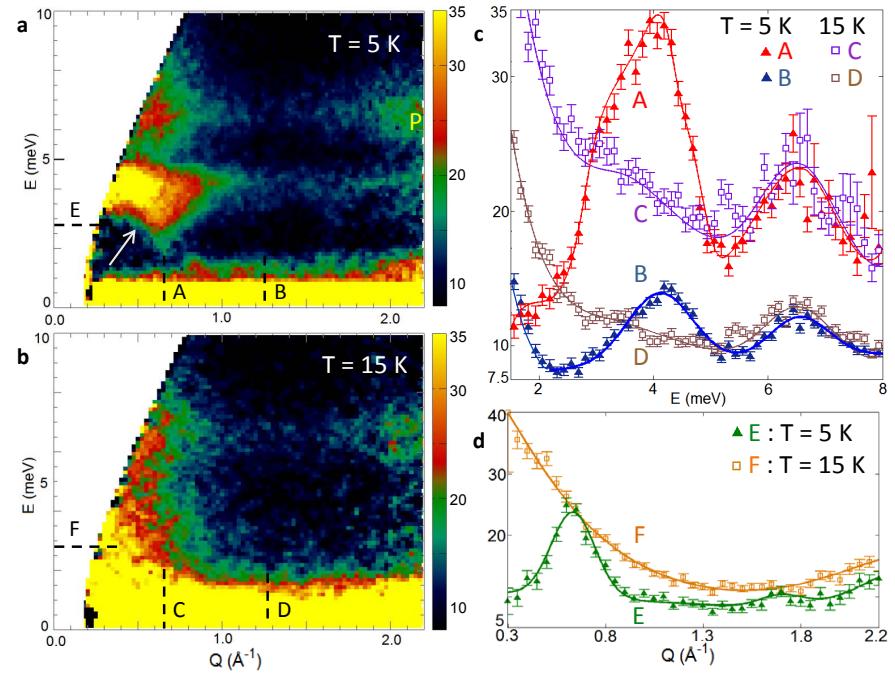
Honeycomb and hyper-honeycomb structures

Kitaev Materials



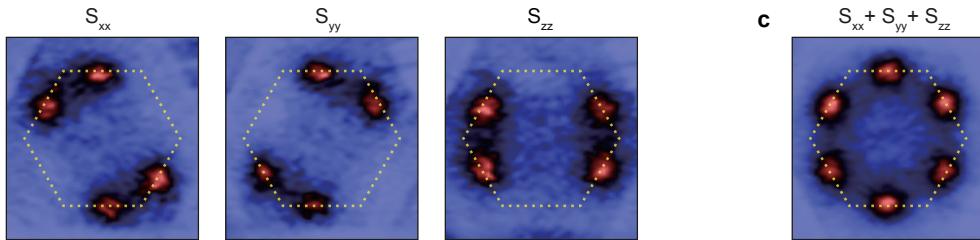
direct evidence for
direction-dependent
anisotropic exchange
from diffuse magnetic
x-ray scattering in
 Na_2IrO_3 (BJ Kim group)

there is pretty strong evidence
of substantial Kitaev exchange
in quite a few materials



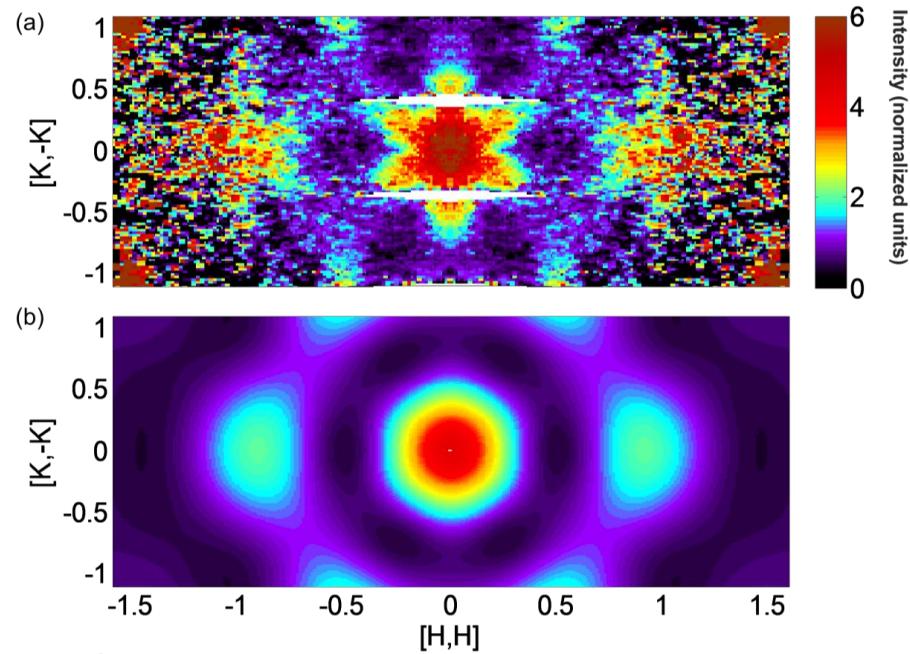
Observation of gapped
continuum mode persisting
above T_N in $\alpha\text{-RuCl}_3$
consistent with Majoranas
(A. Banerjee *et al*)

Kitaev Materials



direct evidence for
direction-dependent
anisotropic exchange
from diffuse magnetic
x-ray scattering in
 Na_2IrO_3 (BJ Kim group)

there is pretty strong evidence
of substantial Kitaev exchange
in quite a few materials



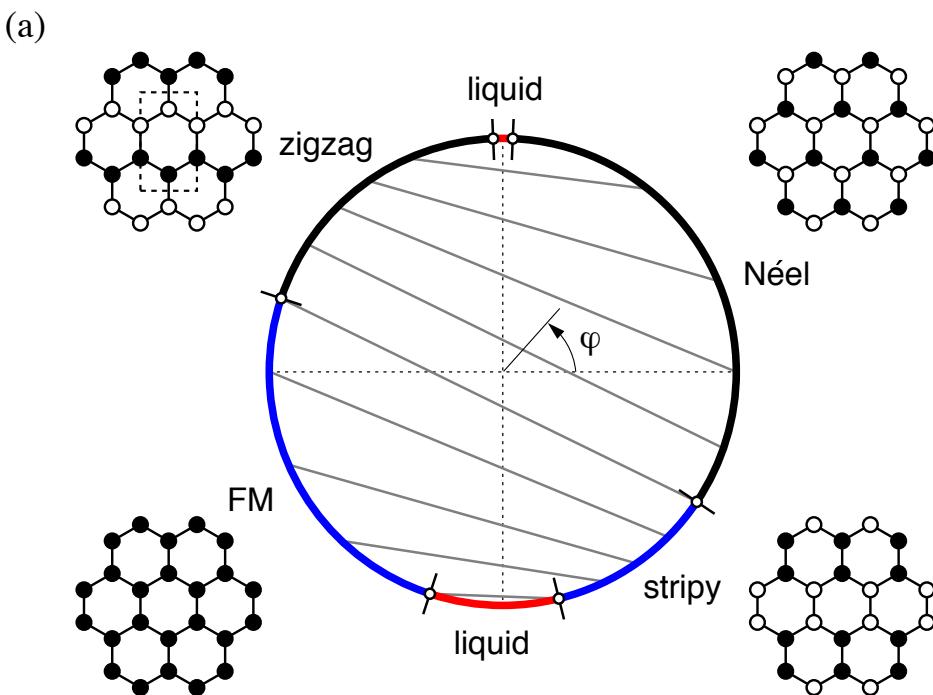
single-crystal data in $\alpha\text{-RuCl}_3$
compared to Kitaev's soluble
model (A. Banerjee et al)

Magnetism

- But...they all order so far

due to additional interactions,
e.g. Heisenberg

$$H = \sum_{i,\alpha} K S_i^\alpha S_{i+\alpha}^\alpha + J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$



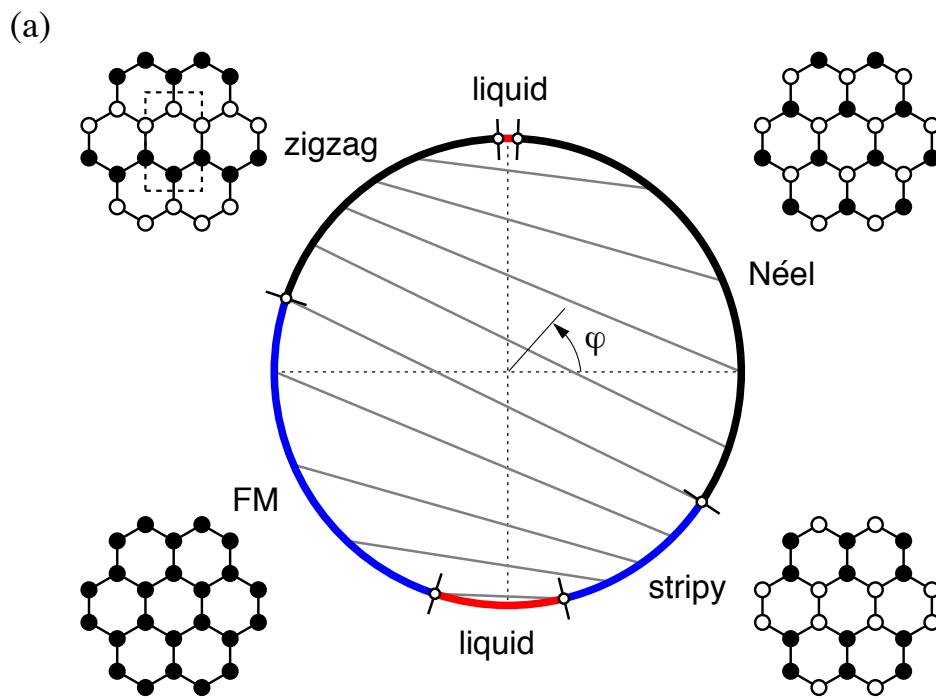
zigzag ordered state
has been observed in
 Na_2IrO_3 and $\alpha\text{-RuCl}_3$;
incommensurate order
in Li_2IrO_3

Magnetism

- But...they all order so far

due to additional interactions,
e.g. Heisenberg

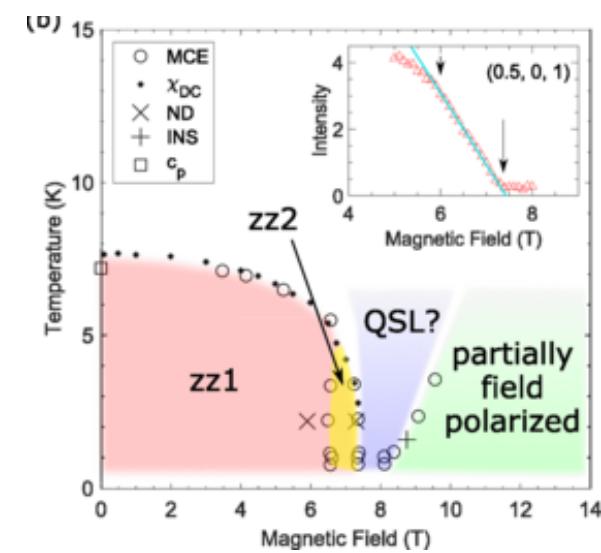
$$H = \sum_{i,\alpha} K S_i^\alpha S_{i+\alpha}^\alpha + J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$



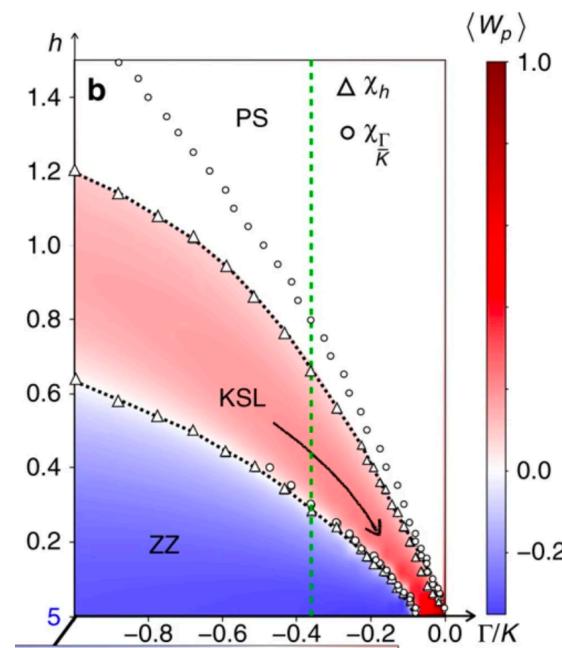
so far no QSL!

α -RuCl₃

Huge effort to understand field-induced paramagnetic state



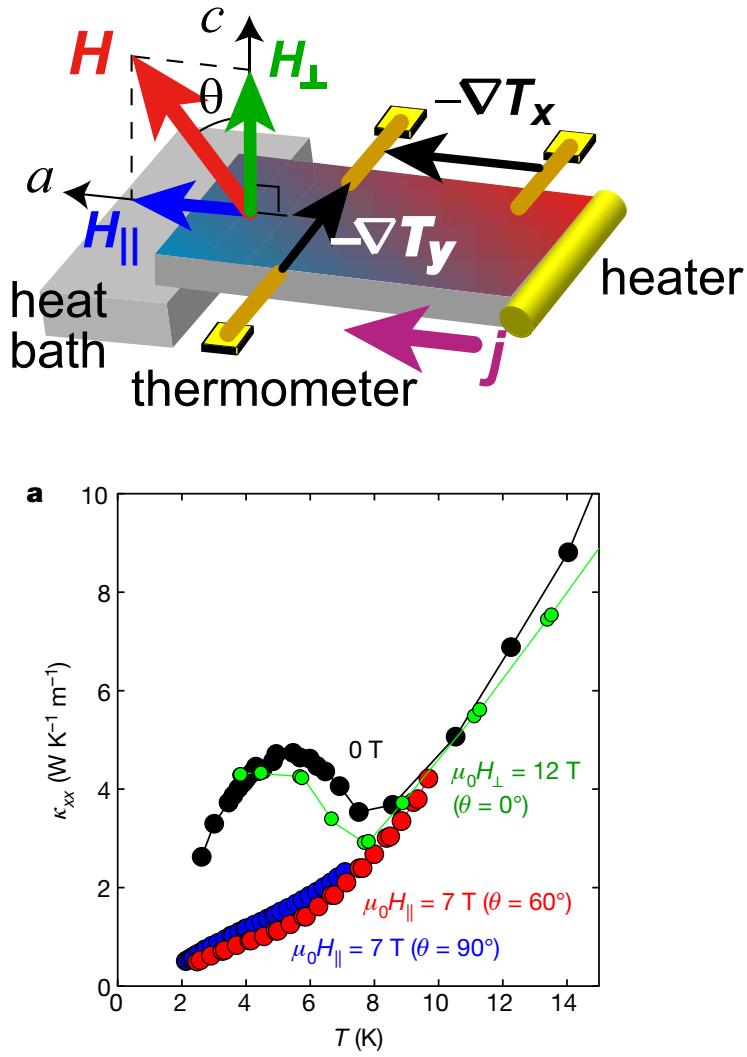
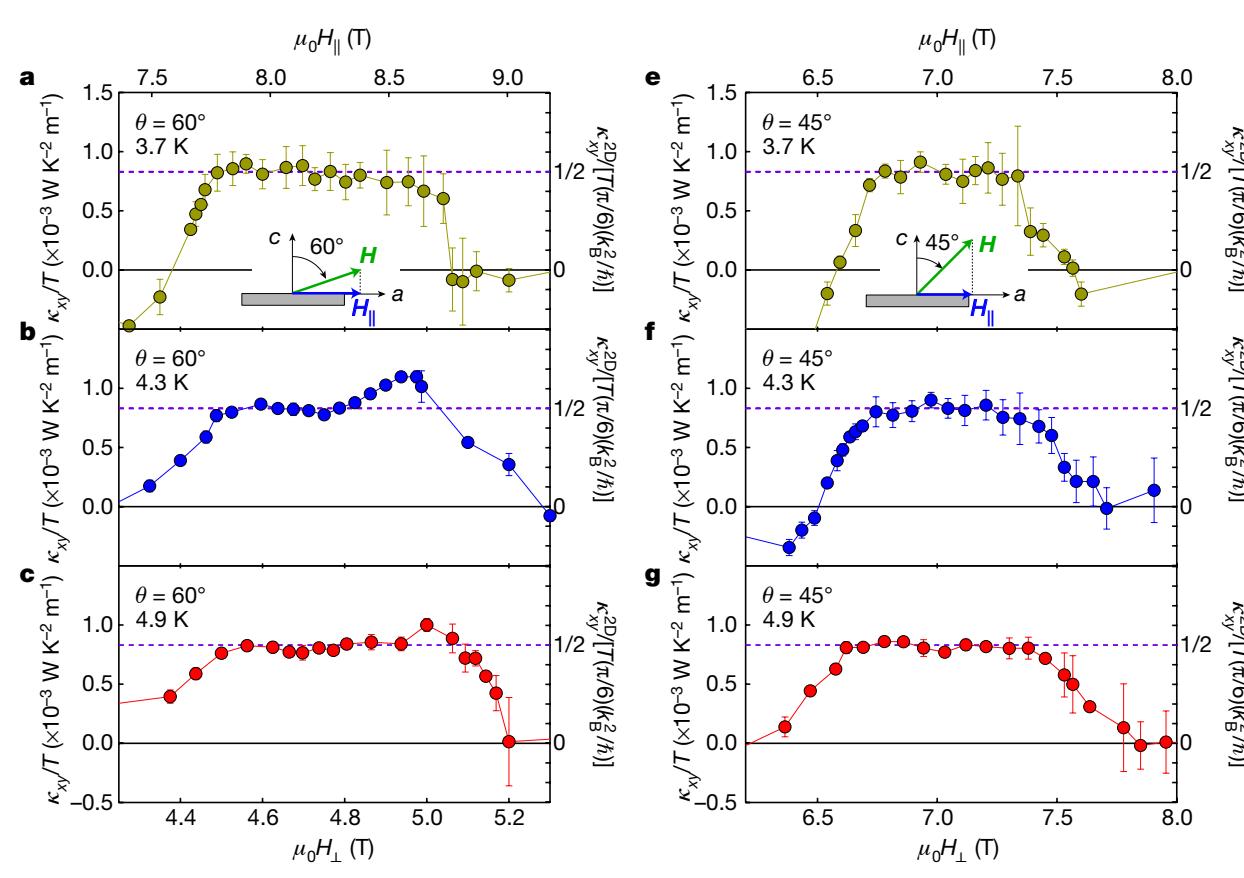
C. Balz *et al*, 2019



J. Gordon *et al*, 2019

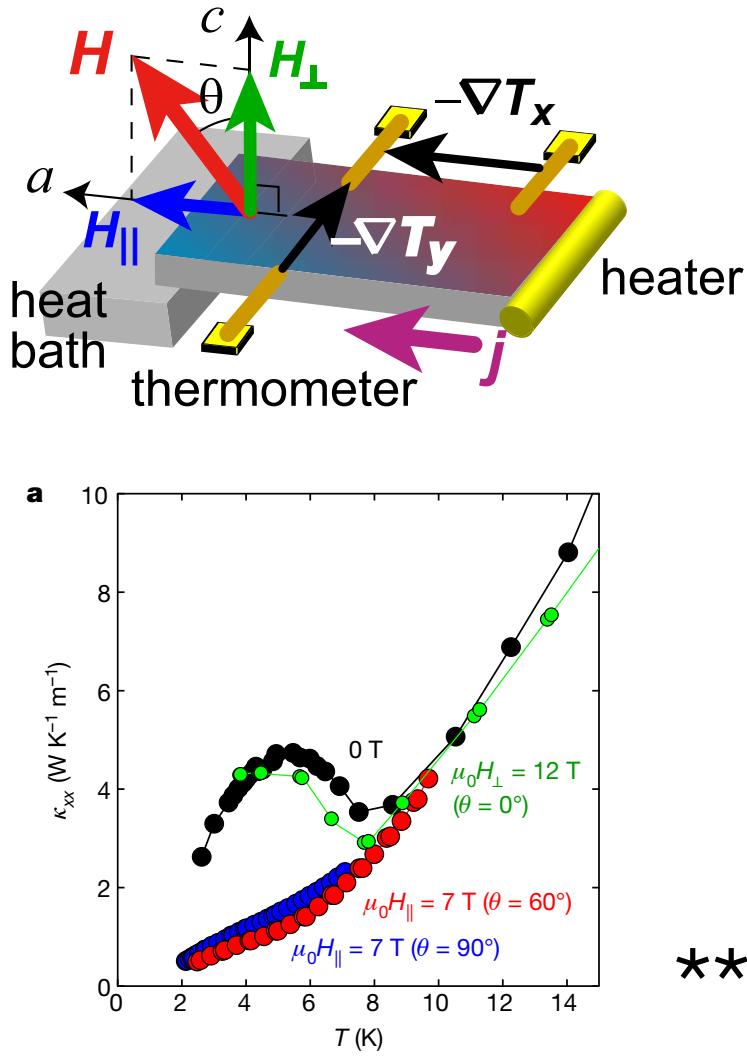
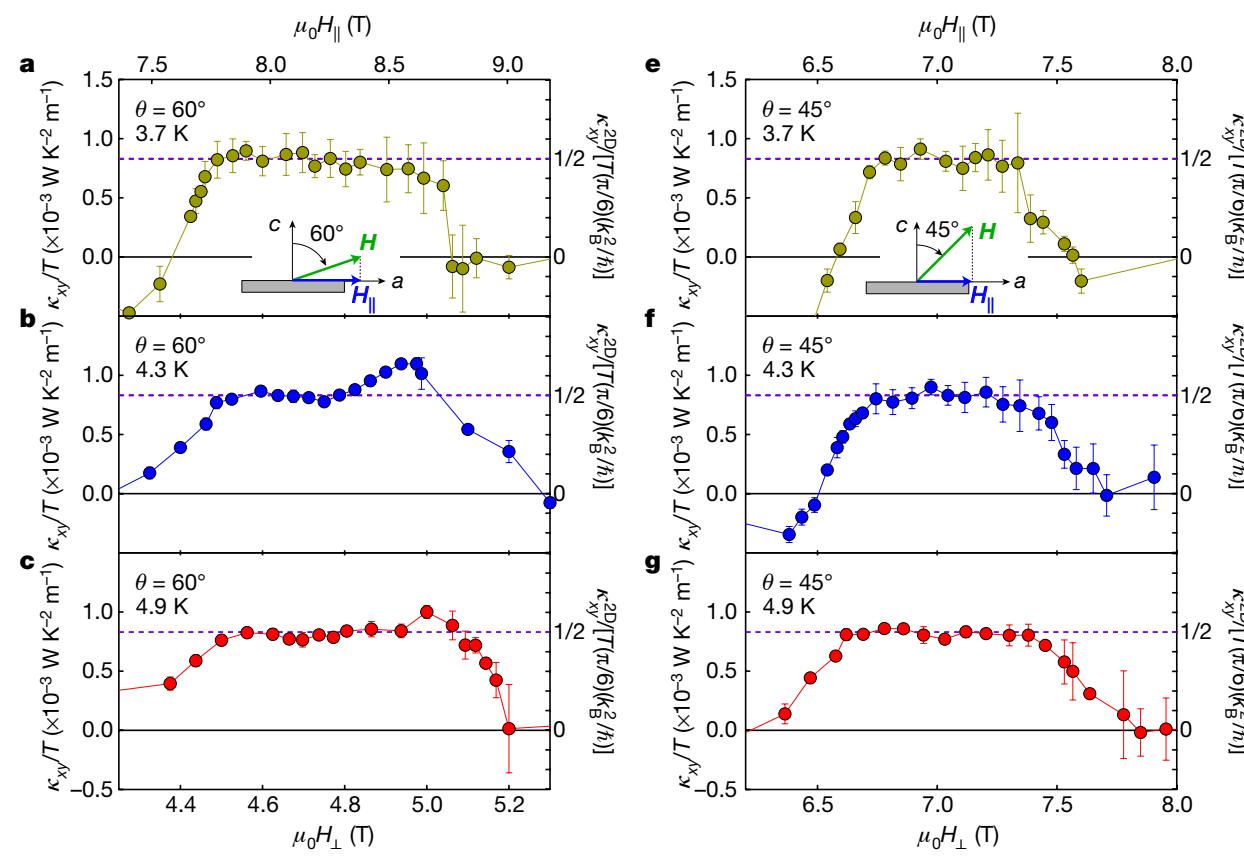
Thermal Hall Effect?

Y. Kasahara *et al*, Nature 2018



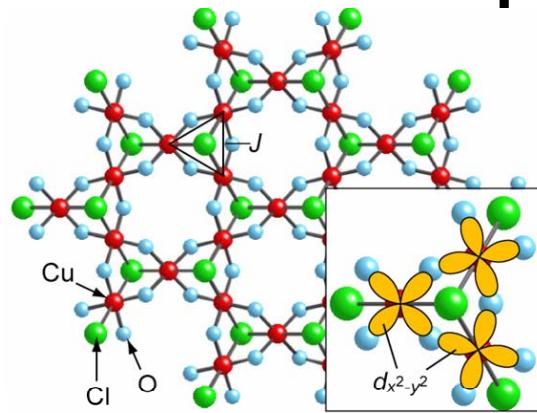
Thermal Hall Effect?

Y. Kasahara *et al*, Nature 2018

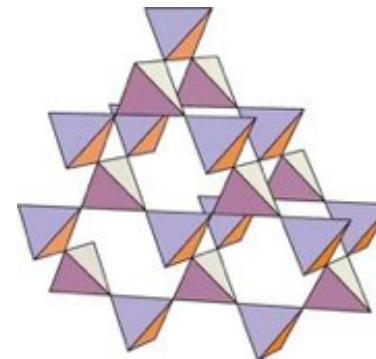


** Not reproduced. c.f. Ong talk?

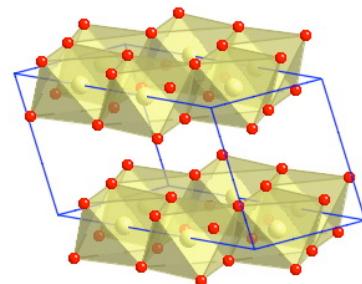
Top experimental platforms



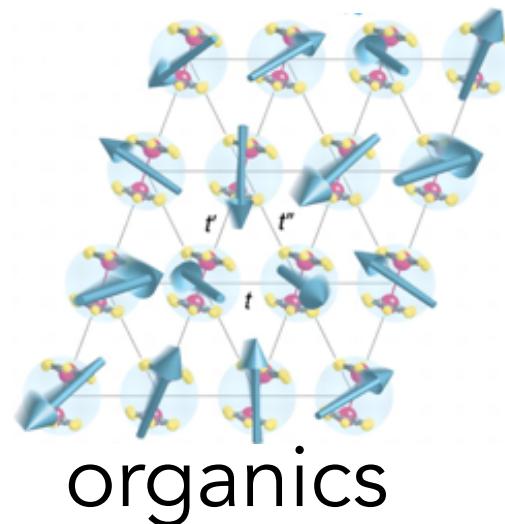
kagomé



Quantum spin ice



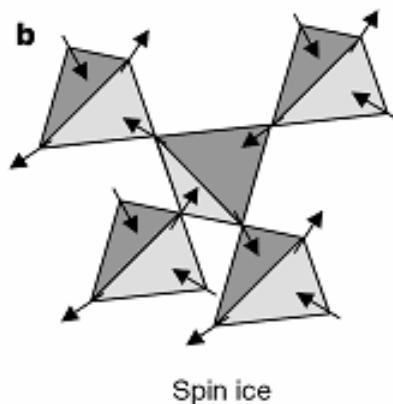
Kitaev materials



organics

Spin ice

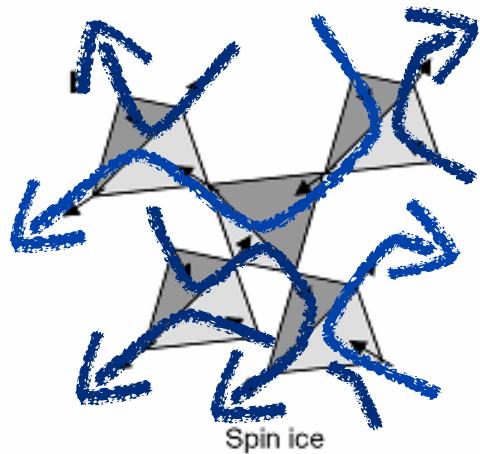
- Spins in $\text{Ho}_2\text{Ti}_2\text{O}_7$, $\text{Dy}_2\text{Ti}_2\text{O}_7$ have dominant NN Ising coupling J_{zz} enforcing classical 2in-2out “ice rules” for $T < 1\text{K}$



thermal fluctuations
through many
degenerate states

Spin ice

- Spins in $\text{Ho}_2\text{Ti}_2\text{O}_7$, $\text{Dy}_2\text{Ti}_2\text{O}_7$ have dominant NN Ising coupling J_{zz} enforcing classical 2in-2out “ice rules” for $T < 1\text{K}$



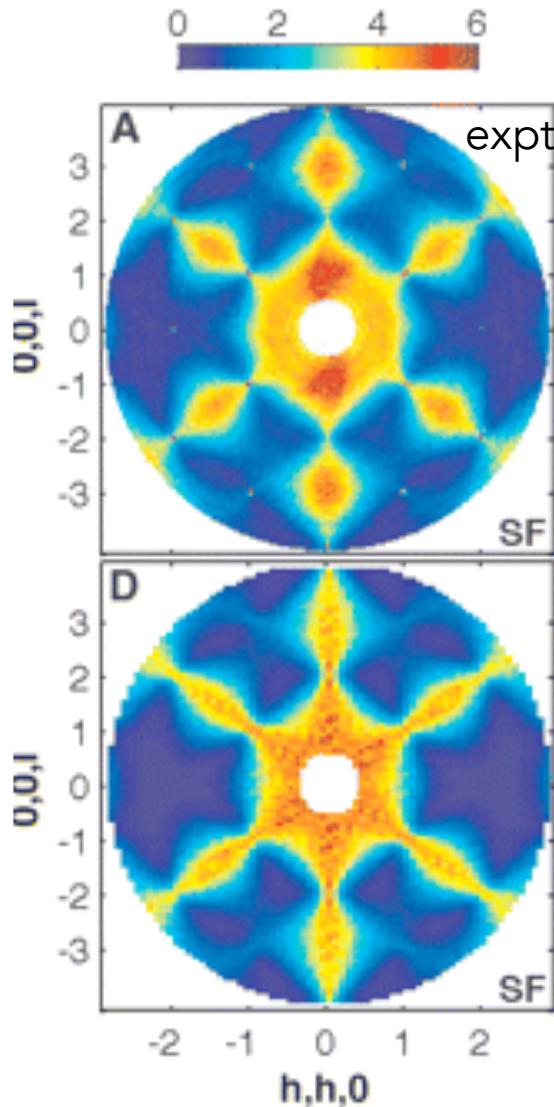
$$\vec{S} \sim \vec{b}$$

$$\vec{\nabla} \cdot \vec{b} = 0$$

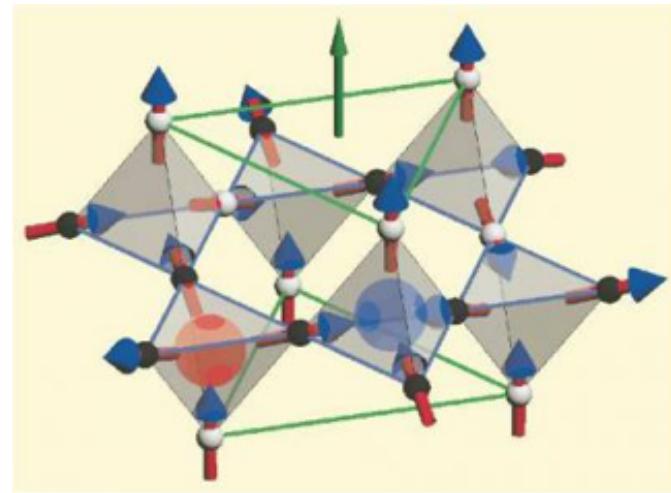
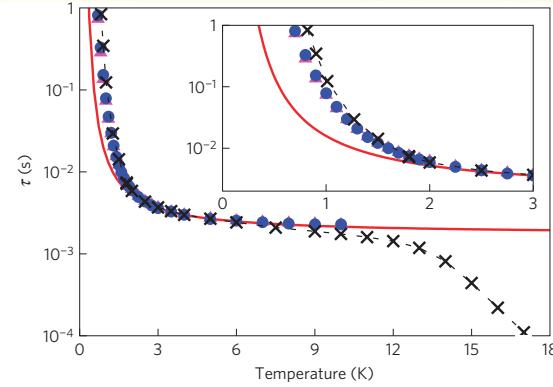
artificial magnetostatics: spins map to field lines

Classical spin liquid

T. Fennell et al, 2009



pinch
points
 $\vec{\nabla} \cdot \vec{b} = 0$



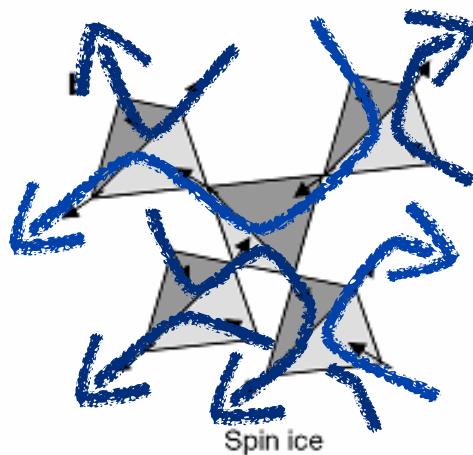
magnetic monopoles
behave like diffusing
ions in a polyelectrolyte

Quantum spin ice

$$H = H_{CSI} + J_{\pm} \sum_{\langle ij \rangle} (S_i^+ S_j^- + \text{h.c.})$$

quantum dynamics creates
superposition state

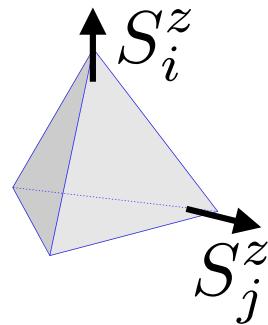
$$|\Psi\rangle = \sum_{\text{loops}}$$



QSL which “simulates”
quantum
electrodynamics -
vacuum fluctuations

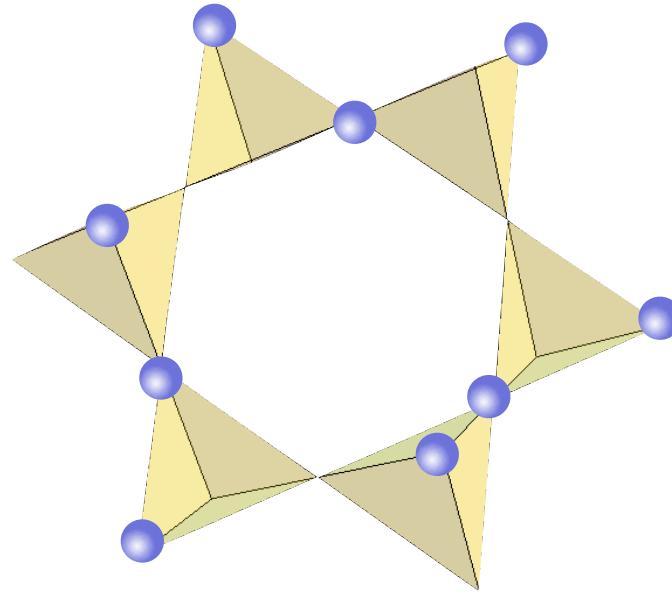
Mapping to E+M

1. Degenerate perturbation theory



$$H_0 = \frac{J_{zz}}{2} \sum_t \left(\sum_{i \in t} S_i^z \right)^2$$

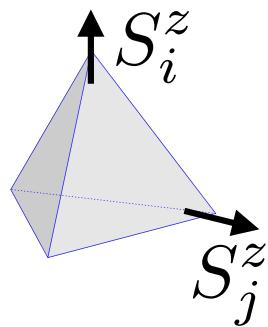
$$H_1 = J_{\pm} \sum_{\langle ij \rangle} (S_i^+ S_j^- + \text{h.c.})$$



- $S_i^z = +\frac{1}{2}$

Mapping to E+M

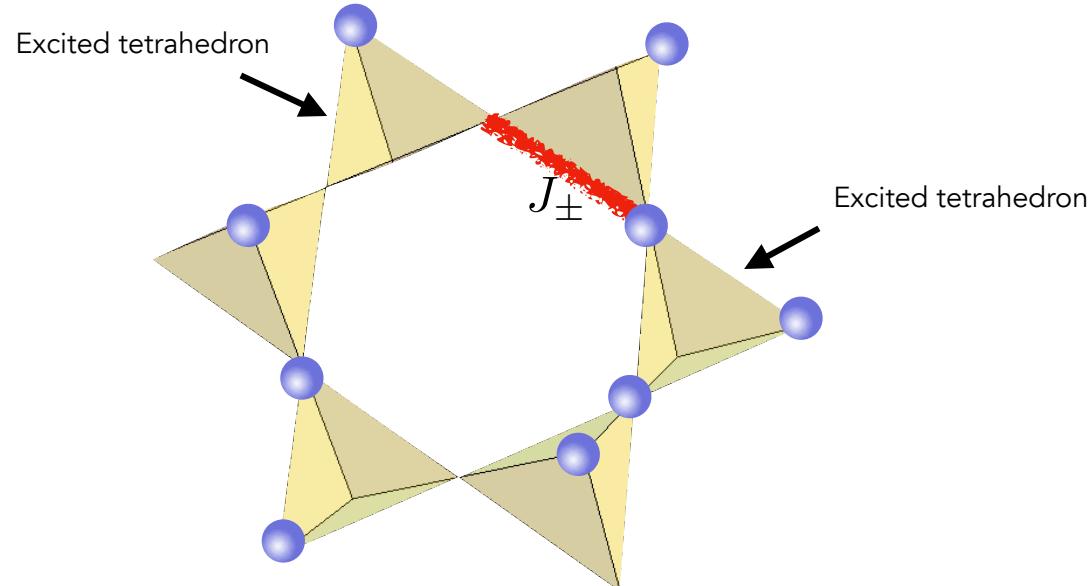
1. Degenerate perturbation theory



$$H_0 = \frac{J_{zz}}{2} \sum_t \left(\sum_{i \in t} S_i^z \right)^2$$

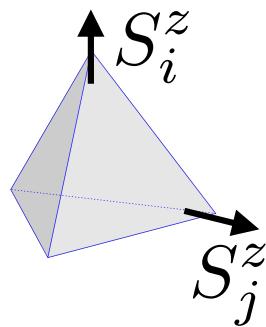
$$H_1 = J_{\pm} \sum_{\langle ij \rangle} (S_i^+ S_j^- + \text{h.c.})$$

1. Act once with H_1



Mapping to E+M

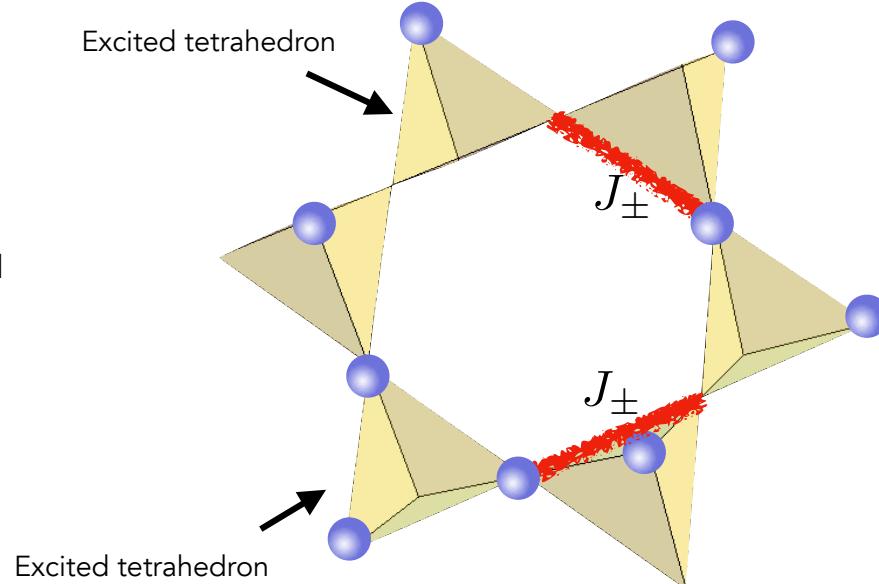
1. Degenerate perturbation theory



$$H_0 = \frac{J_{zz}}{2} \sum_t \left(\sum_{i \in t} S_i^z \right)^2$$

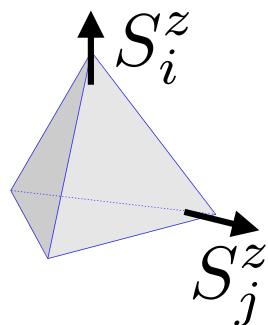
$$H_1 = J_{\pm} \sum_{\langle ij \rangle} (S_i^+ S_j^- + \text{h.c.})$$

1. Act once with H_1
2. Act twice with H_1



Mapping to E+M

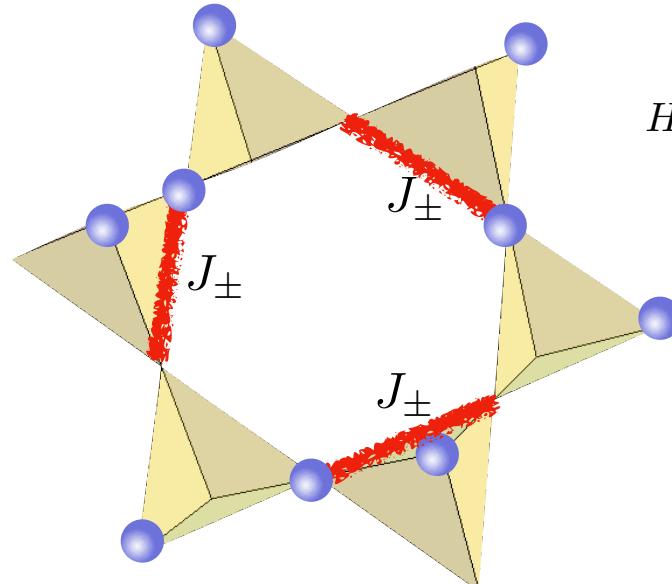
1. Degenerate perturbation theory



$$H_0 = \frac{J_{zz}}{2} \sum_t \left(\sum_{i \in t} S_i^z \right)^2$$

$$H_1 = J_{\pm} \sum_{\langle ij \rangle} (S_i^+ S_j^- + \text{h.c.})$$

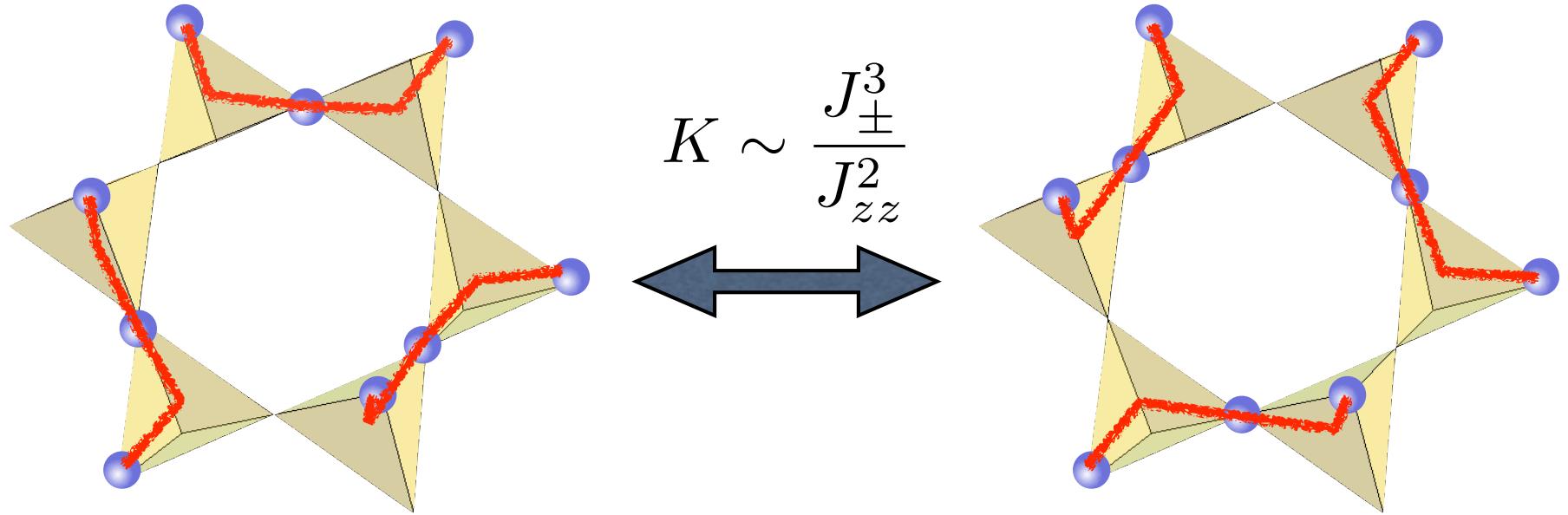
1. Act once with H_1
2. Act twice with H_1
3. Act thrice with H_1



$$H_{\text{eff}} \sim \frac{J_{\pm}^3}{J_{zz}^2} \sum_h (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + \text{h.c.})$$

“ring exchange”

Ring exchange

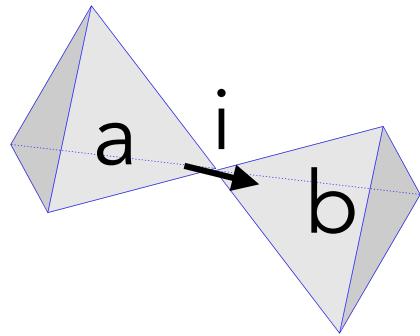


$$H_{\text{eff}} \sim \frac{J_{\pm}^3}{J_{zz}^2} \sum_h (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + \text{h.c.})$$

Tunneling reconnects field lines

Mapping to E+M

2. Introduce gauge fields



$$S_i^z = E_{ab}$$

$$S_i^\pm = e^{\pm i A_{ab}}$$

$$H_{\text{eff}} = U \sum_{\langle ab \rangle} \left(E_{ab}^2 - \frac{1}{4} \right) - K \sum_h \cos(\nabla \times A)$$

“odd” lattice **compact** U(1) gauge theory

(means E is half integer)

(means A_{ab} is a 2π periodic phase)

Mapping to E+M

3. Deconfined phase

$$H_{\text{eff}} = U \sum_{\langle ab \rangle} \left(E_{ab}^2 - \frac{1}{4} \right) - K \sum_h \cos(\nabla \times A)$$

\downarrow
 B^2

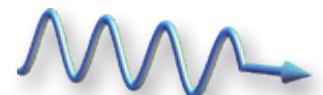
$$\approx U \sum_{\langle ab \rangle} \left(E_{ab}^2 - \frac{1}{4} \right) + \frac{K}{2} \sum_h (\nabla \times A)^2$$

Based on extensive study of lattice gauge theory, numerics, this is a qualitatively good approximation (gauge fields are the “right” choice of variables)

The rest is textbook E+M

Excitations

- fully coherent propagating monopoles
= “spinons” (charges in gauge theory)
- dual monopoles (dual charges)
- artificial photon: a gapless protected collective excitation which is *not* a Goldstone mode

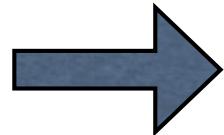


Artificial photon

- gapless, linear, *non-Goldstone* mode

Mapping to EM: $S_i^z \sim \mathbf{E} \cdot \hat{n}_i$

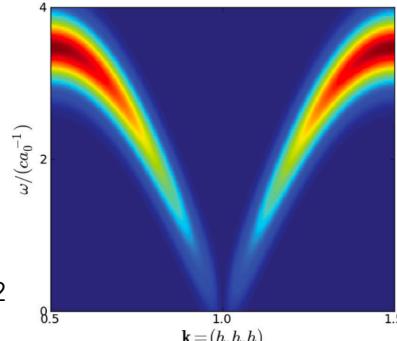
Quantization of SHO: $E_\mu \sim \frac{1}{\sqrt{V}} \sum_{k,\sigma} i\sqrt{k} (a_{k\sigma} e^{ik \cdot r} - a_{k\sigma}^\dagger e^{-ik \cdot r}) \epsilon_{\mu\sigma}(k)$



$$\langle S_k^z S_{-k}^z \rangle \sim |k| \delta(\omega - v|k|)$$

K.Ross *et al*, 2011

- Linearly dispersion mode at Bragg point but vanishing weight at low energy
- Completely robust to anisotropy, magnetic field, etc: does not arise from breaking any physical symmetry



Plot from O. Benton *et al*, 2012

Not yet observed -
challenge is narrow
bandwidth due to small
exchange in candidate
materials

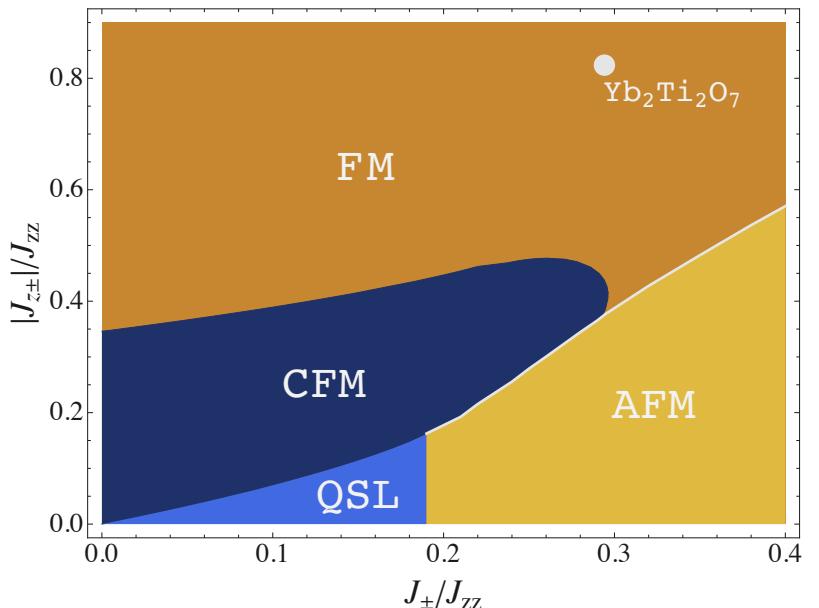
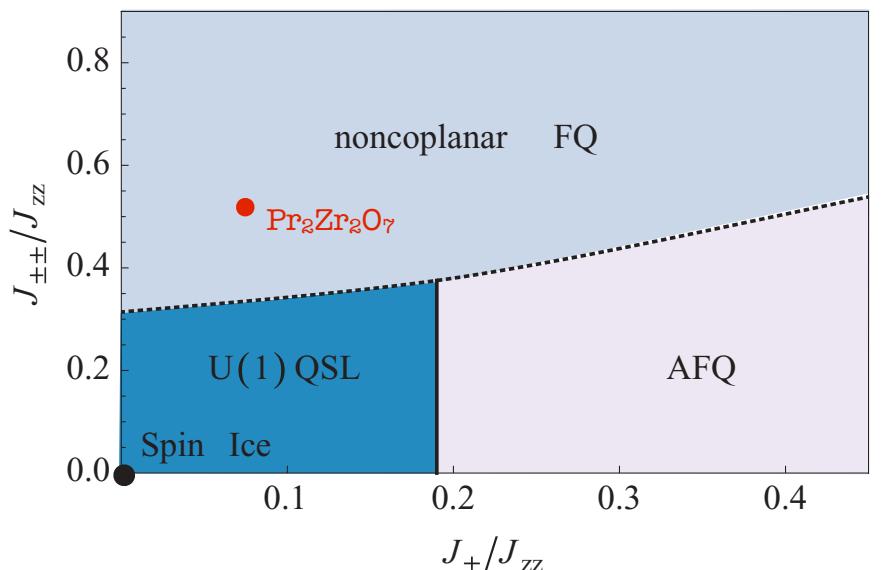
Quantum spin ice

Realistic theory for
quantum rare earth
pyrochlores

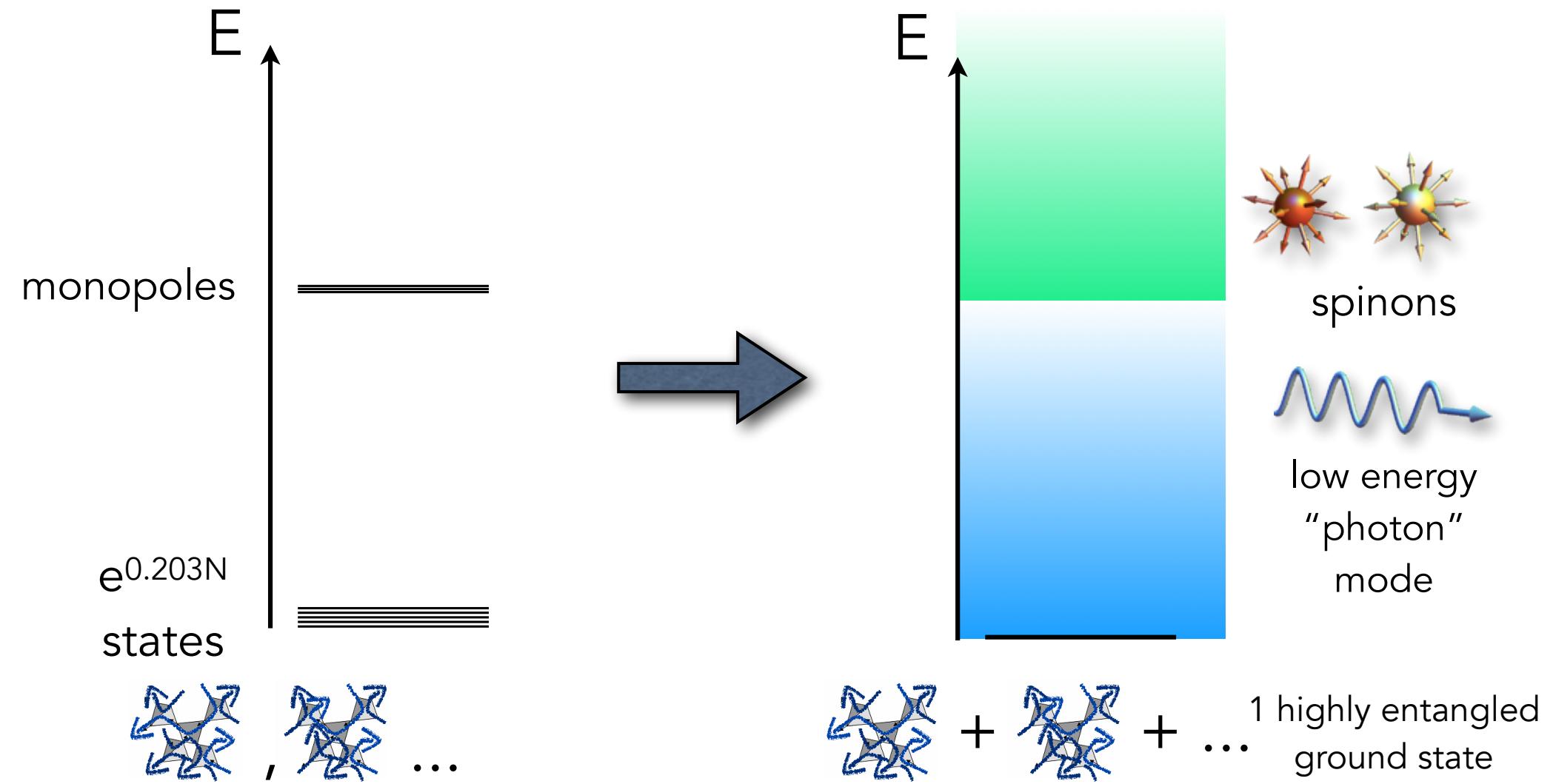
L. Savary + LB, 2012

S.B. Lee, S. Onoda + LB, 2012
+ Many subsequent numerical
and analytical works

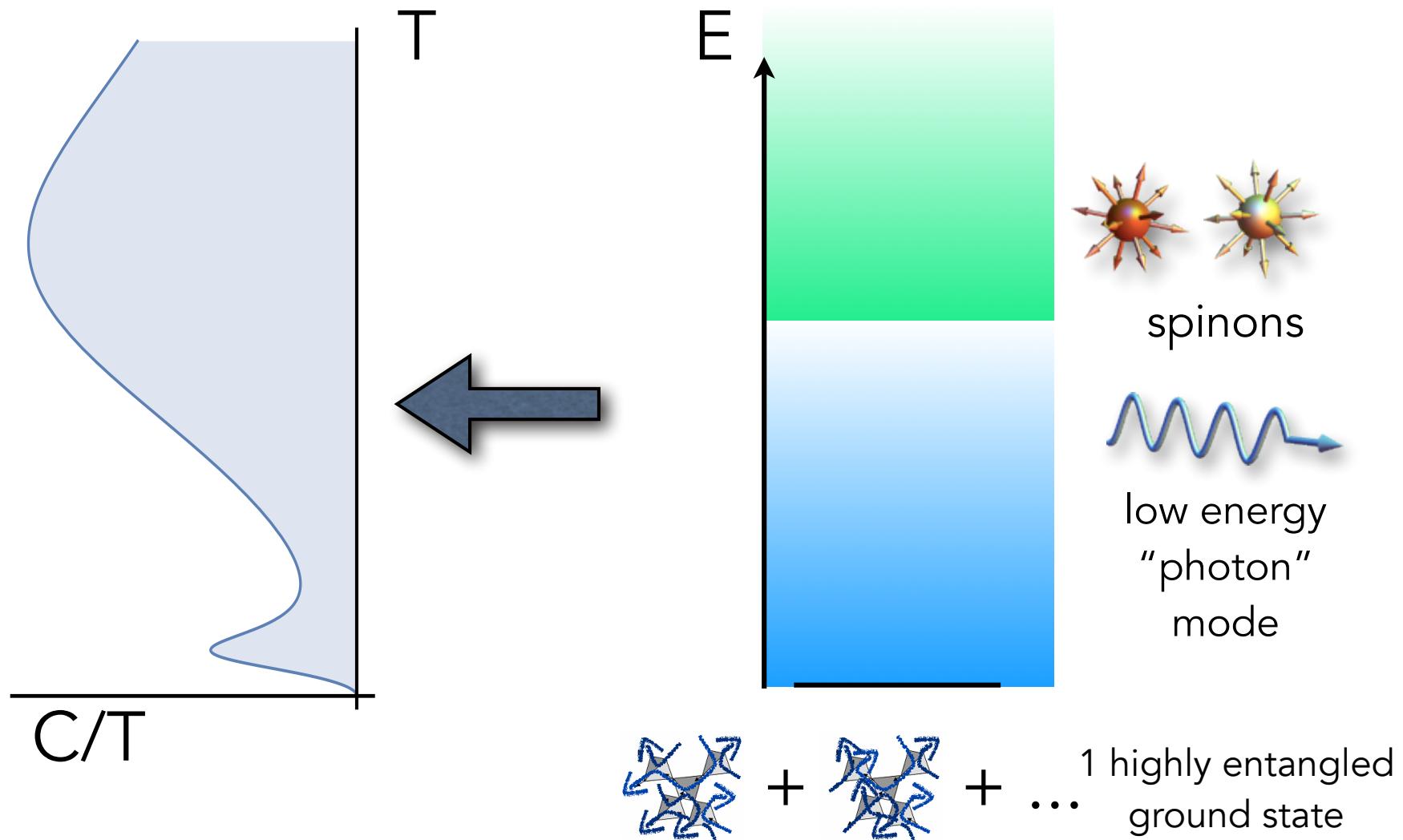
Possible application to
 $\text{Yb}_2\text{Ti}_2\text{O}_7$, $\text{Pr}_2\text{Zr}_2\text{O}_7$,
others...



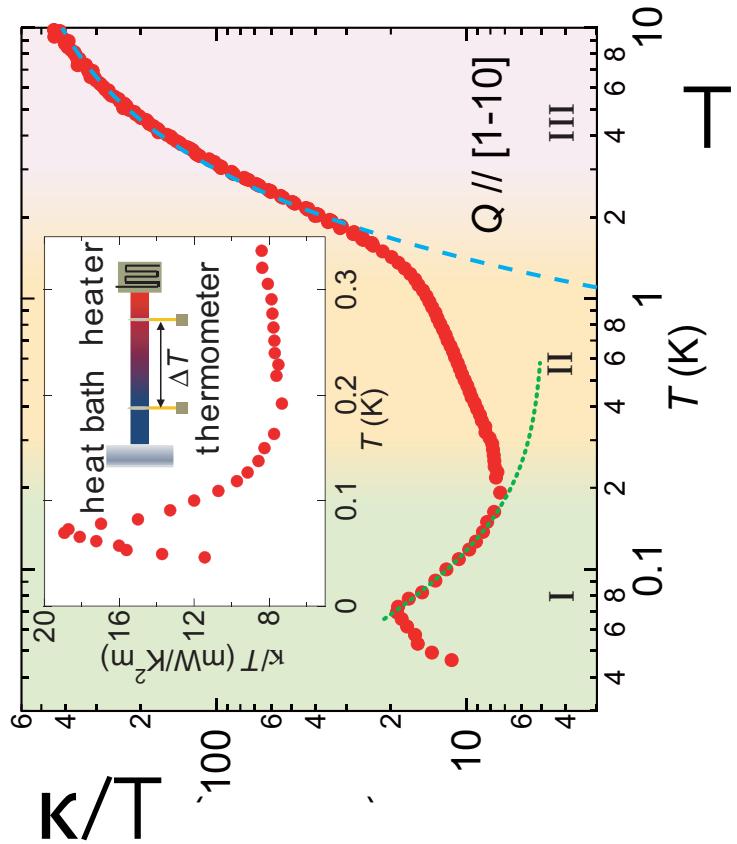
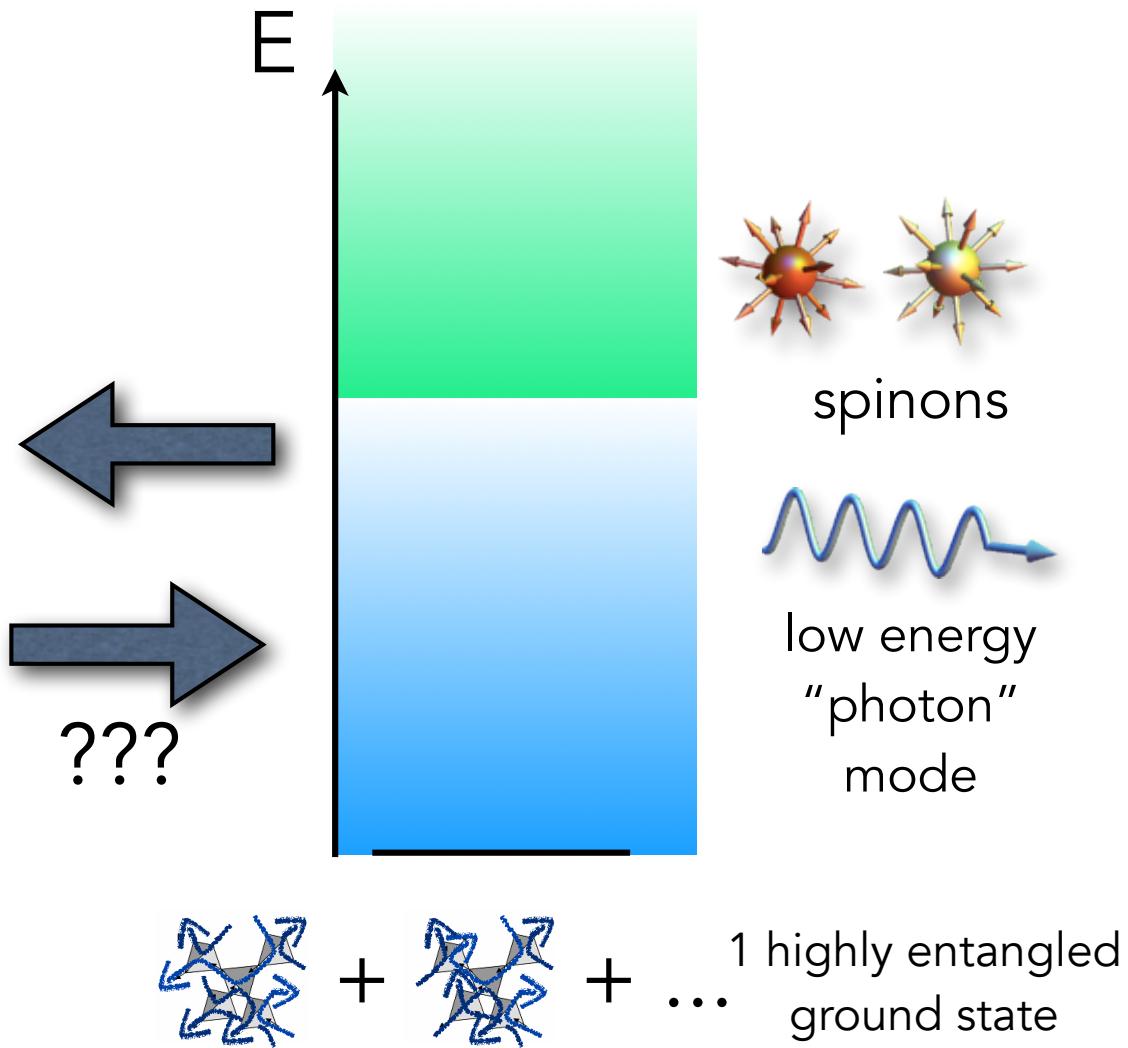
Quantum versus classical



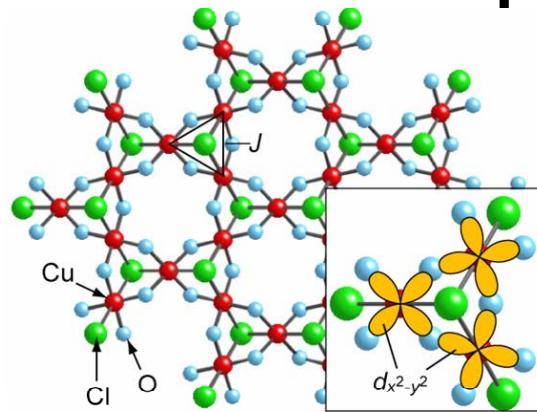
Quantum spin ice



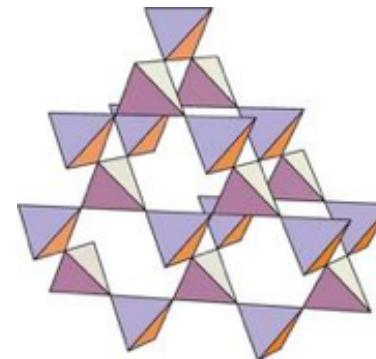
Quantum spin ice



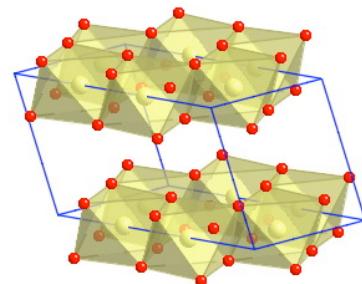
Top experimental platforms



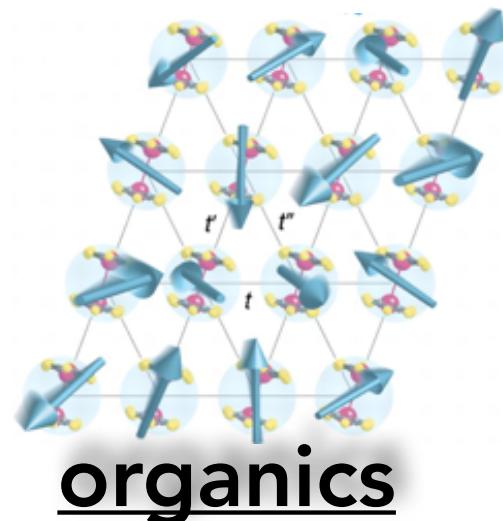
kagomé



Quantum spin ice

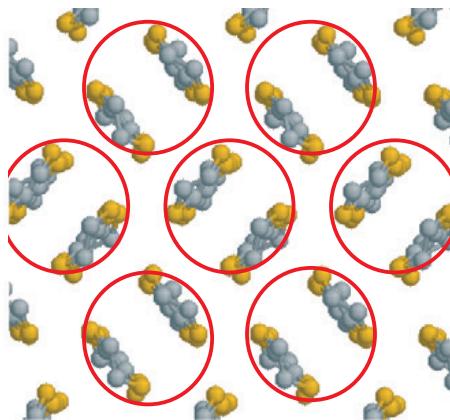


Kitaev materials

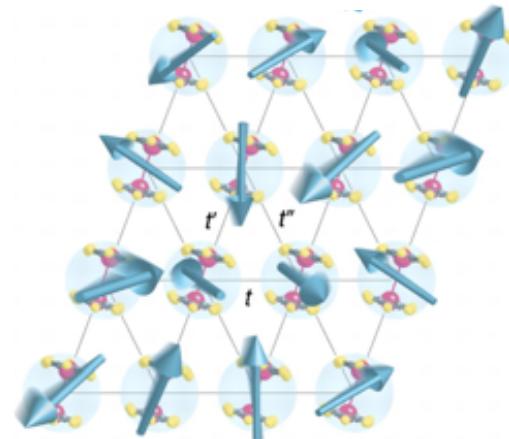


organics

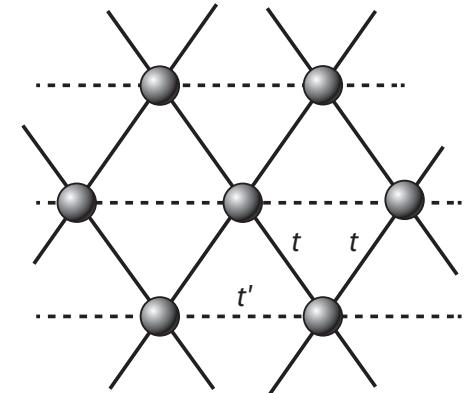
Organics



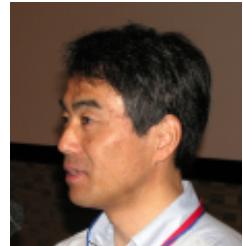
κ -(ET)₂X



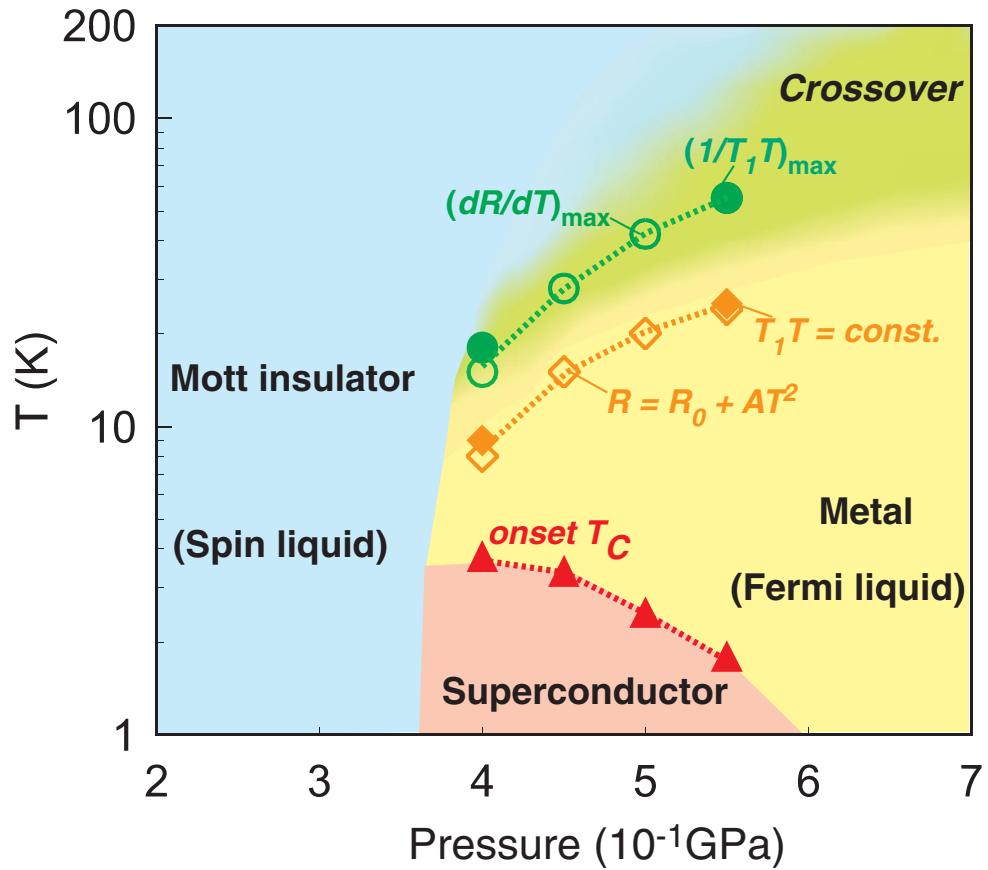
β' -Pd(dmit)₂



- Molecular materials which behave as effective triangular lattice $S=1/2$ antiferromagnets with $J \sim 250\text{K}$
- significant charge fluctuations

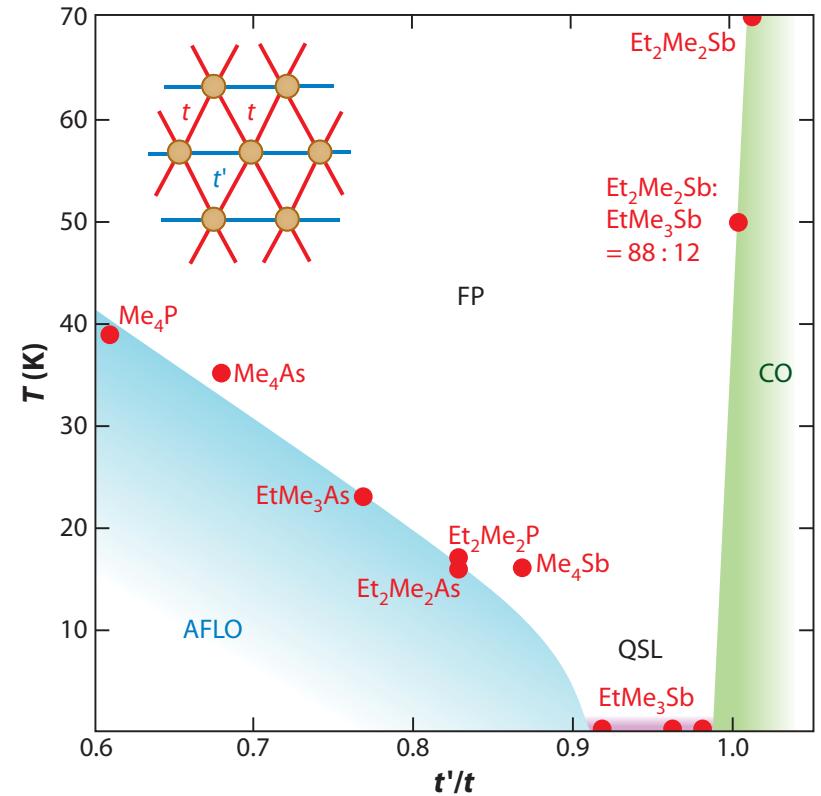


Organics



κ -(ET)₂Cu₂(CN)₃

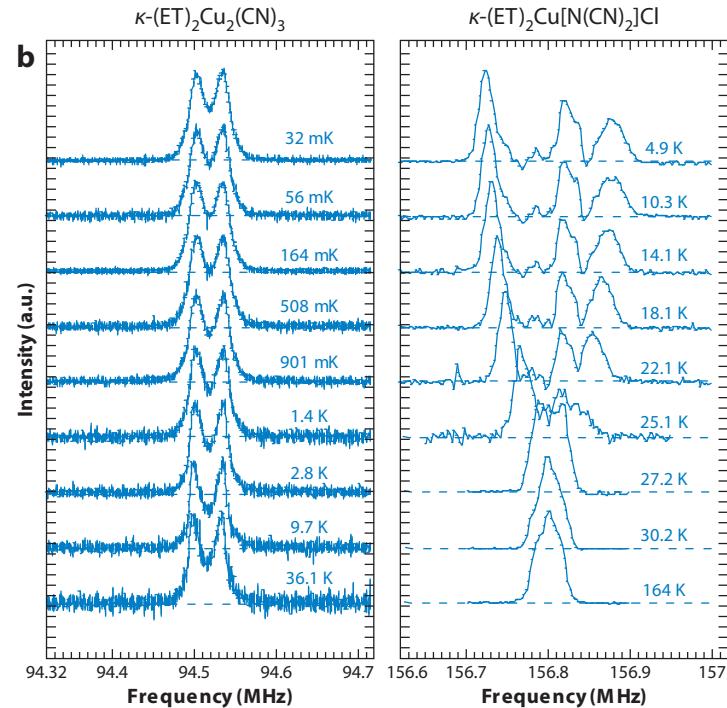
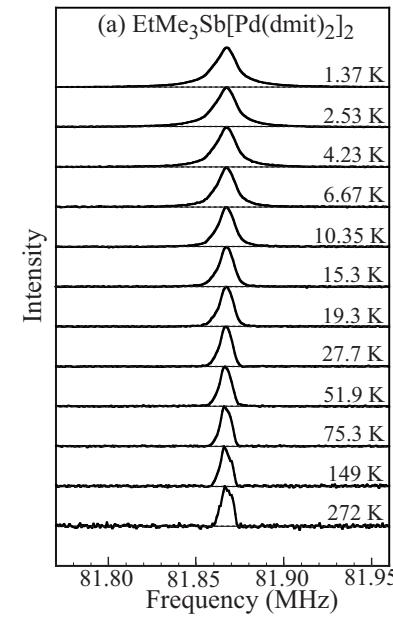
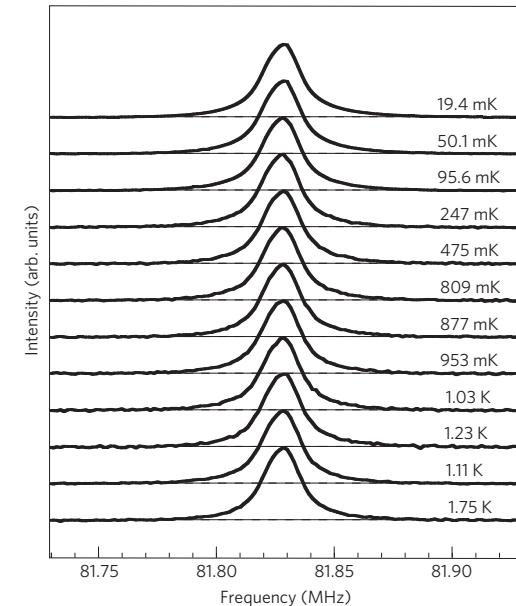
K. Kanoda group (2003-)



β' -Pd(dmit)₂

R. Kato group (2008-)

NMR lineshapes



$\kappa\text{-(ET)}_2\text{Cu}_2(\text{CN})_3$

Y. Shimizu
et al, 2003

^1H NMR

$\beta'\text{-Pd}(\text{dmit})_2$

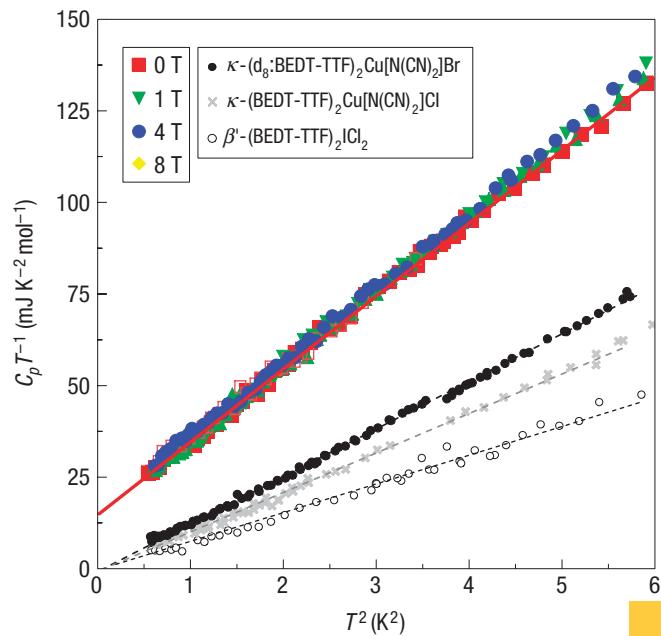
T. Itou et
al,
2008, 2010

^{13}Cs NMR

Evidence for lack of static moments: $f > 1000!$

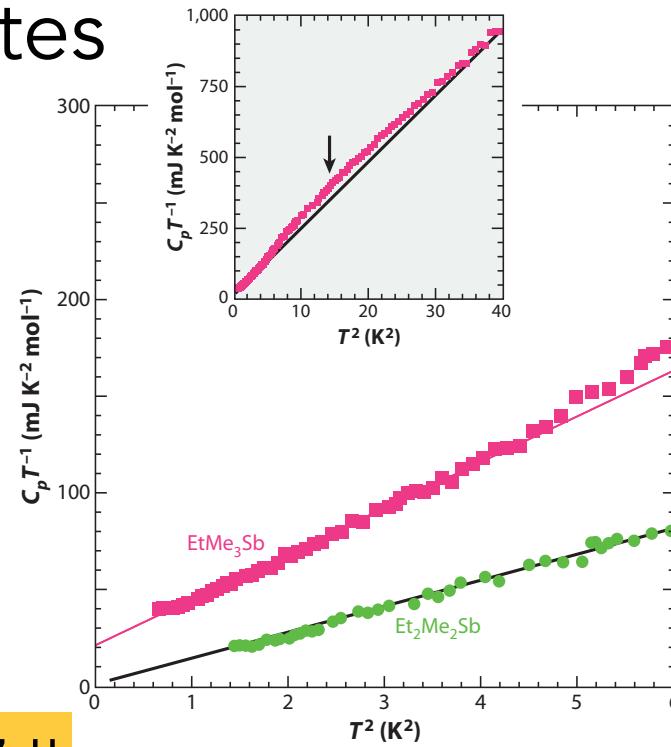
Specific Heat

- $C \sim \gamma T$ indicates gapless behavior with large density of states



κ -(ET)₂Cu₂(CN)₃

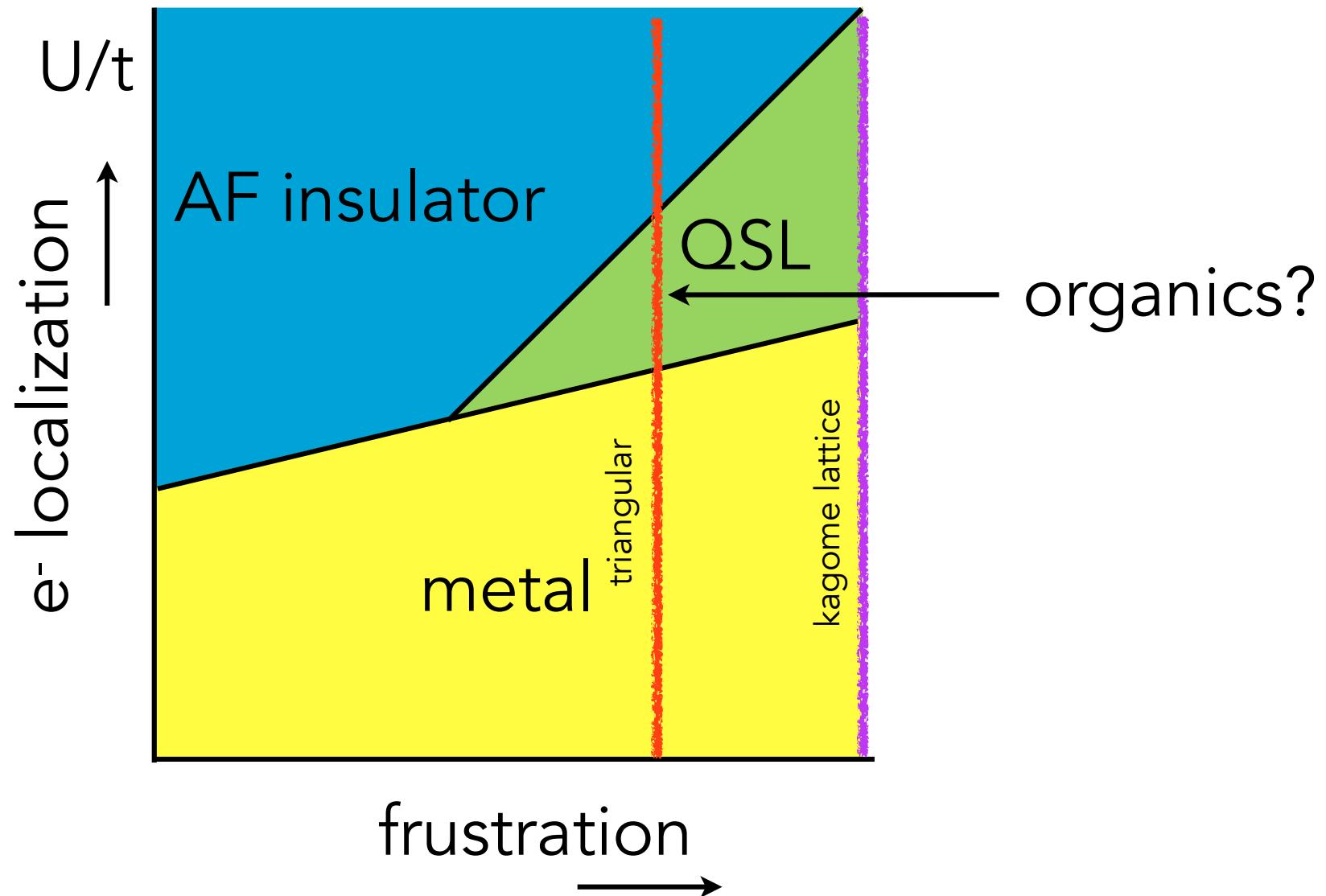
$$\gamma_{\text{Cu}} \sim 0.7 !!$$



β' -Pd(dmit)₂

S. Yamashita *et al*, 2008

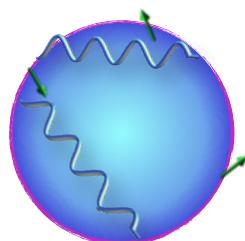
Charge fluctuations



Organics - Theory

- RVB/QSL state:
 - Motrunich, Lee+Lee: (2005) “uniform RVB”
 - It is described by a **“Fermi sea” of spinons** coupled to a U(1) gauge field

$$|\Psi\rangle = \prod_i \hat{n}_i (2 - \hat{n}_i) \prod_{k < k_F} c_{k\uparrow}^\dagger c_{k\downarrow}^\dagger |0\rangle$$



- The most gapless/highly entangled QSL state
- Like a “metal” of neutral fermions w/ a U(1) gauge field
- Prototype “non-Fermi liquid” state of great theoretical interest

Spinon Fermi surface

Calculations based on effective field theory “uniform RVB”

- Fermions w/ U(1) gauge field

Zeeman term

$$S_\psi = \int d^3x \psi^\dagger \left(\partial_\tau - \mu - \frac{1}{2m} (\nabla_{\mathbf{r}} - i\mathbf{A})^2 - \omega_B \sigma^3 \right) \psi,$$

Kinetic energy Emergent gauge field

$$S_A = \int \frac{d^3q}{(2\pi)^3} \frac{1}{2} (\gamma |\omega_n|/q + \chi q^2) |A(q)|^2, \quad \text{Landau damping}$$

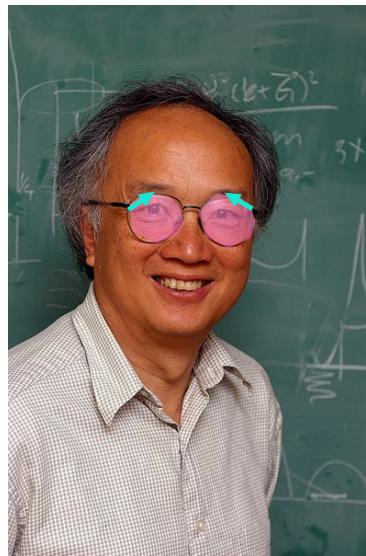
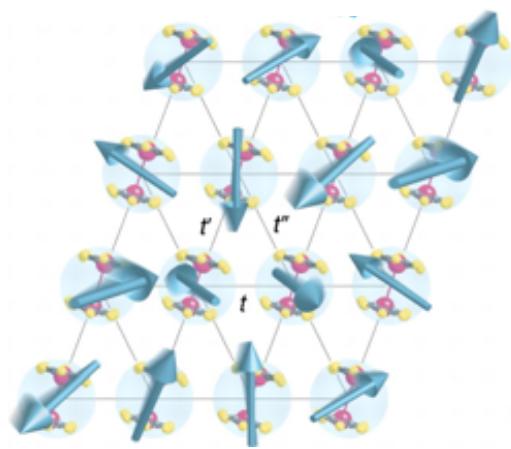
$$S_u = \int d^3x u \psi_\uparrow^\dagger \psi_\uparrow \psi_\downarrow^\dagger \psi_\downarrow. \quad \text{Short-range repulsion (from } a_0 \text{)}$$

Ioffe,Larkin 1989 Nagaosa 1999

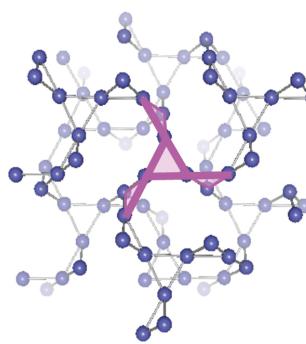
Sachdev, Metlitski, Senthil, McGreevy...

Kim, Furusaki, Lee, Wen 1994

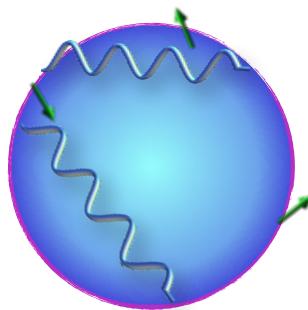
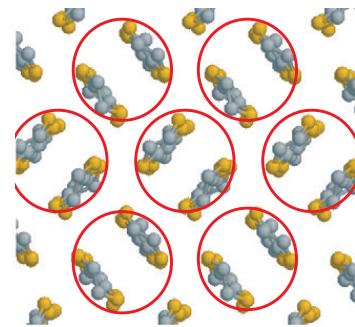
Spinon Fermi surface



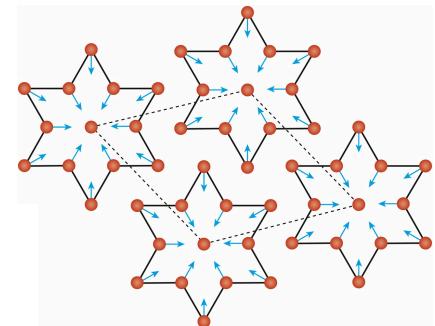
k -ET



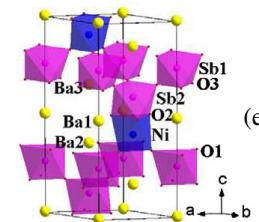
$\text{Na}_4\text{Ir}_3\text{O}_8$



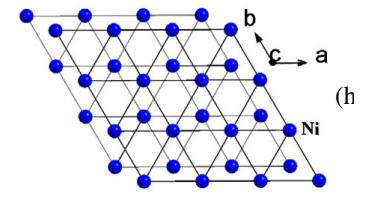
dmit



1T-TaS₂



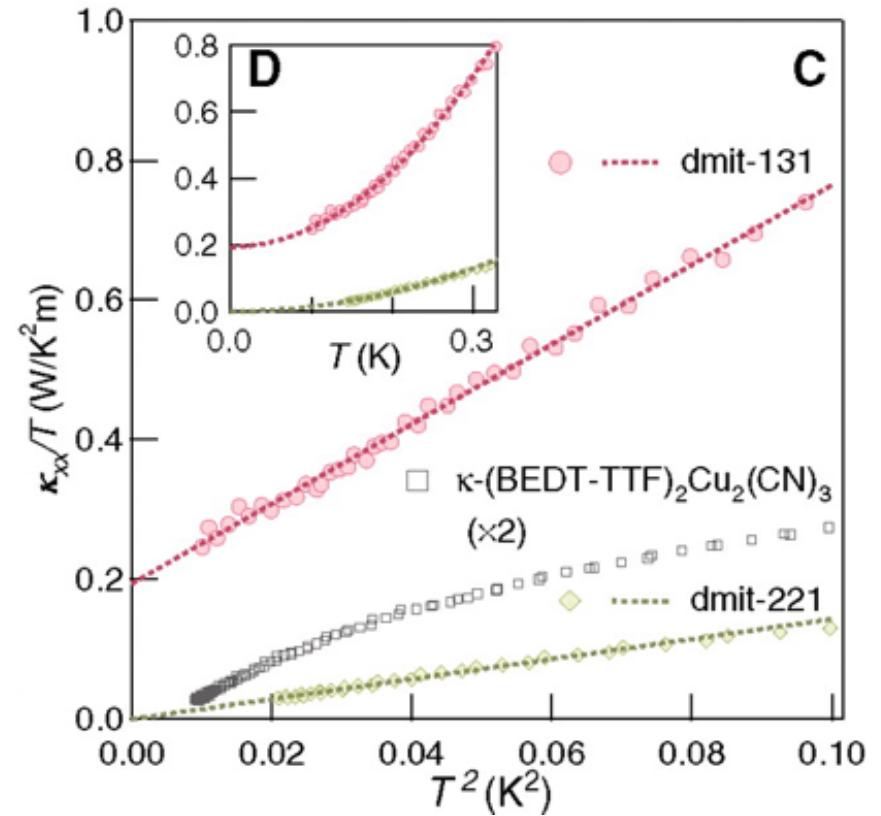
$\text{Ba}_3\text{Ni}\text{Sb}_2\text{O}_9$



(e) $\text{Ba}_3\text{Ni}\text{Sb}_2\text{O}_9$

Thermal conductivity

- Huge linear thermal conductivity indicates the gapless excitations are propagating
- Consistent with spinon Fermi surface?
- Estimate for a metal would correspond to a mean free path $l \sim 1 \mu\text{m}$
 $\approx 1000 \text{ \AA}$!



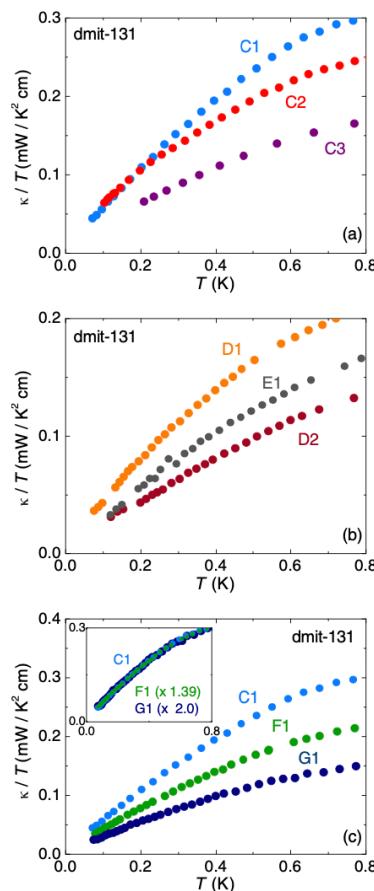
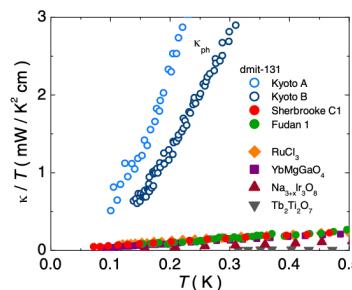
M. Yamashita *et al*, 2010

9 years later...

PHYSICAL REVIEW X 9, 041051 (2019)

Thermal Conductivity of the Quantum Spin Liquid Candidate $\text{EtMe}_3\text{Sb}[\text{Pd}(\text{dmit})_2]_2$: No Evidence of Mobile Gapless Excitations

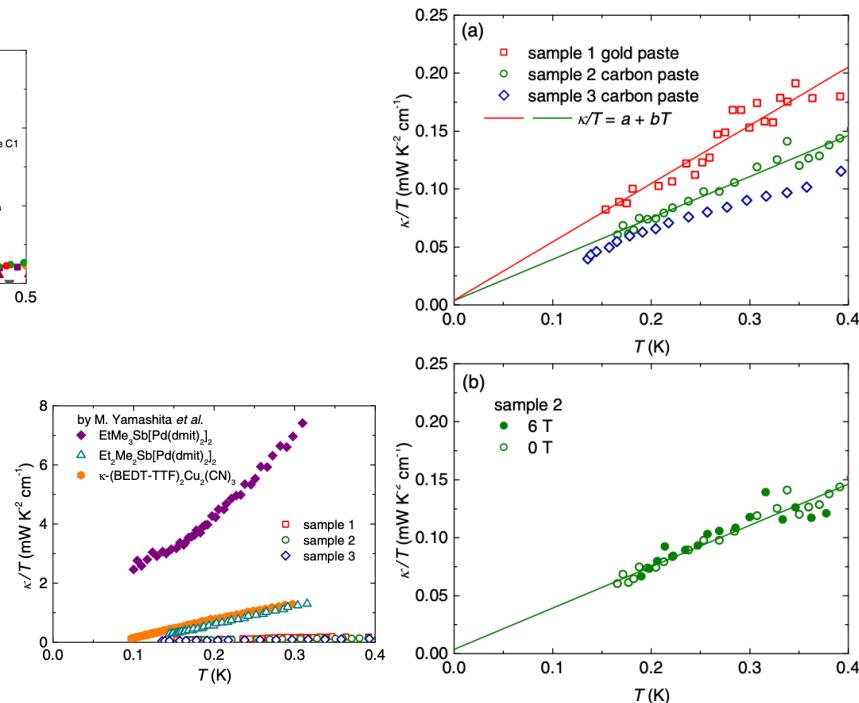
P. Bourgeois-Hope,¹ F. Laliberté,¹ E. Lefrançois,¹ G. Grissonnanche,¹ S. René de Cotret,¹ R. Gordon,¹ S. Kitou,² H. Sawa,² H. Cui,³ R. Kato,³ L. Taillefer,^{1,4,*} and N. Doiron-Leyraud¹



PHYSICAL REVIEW LETTERS 123, 247204 (2019)

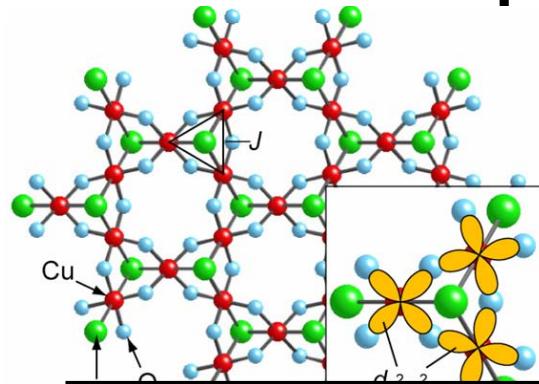
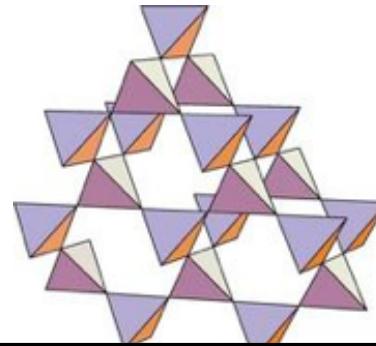
Absence of Magnetic Thermal Conductivity in the Quantum Spin Liquid Candidate $\text{EtMe}_3\text{Sb}[\text{Pd}(\text{dmit})_2]_2$

J. M. Ni,¹ B. L. Pan,¹ B. Q. Song,¹ Y. Y. Huang,¹ J. Y. Zeng,¹ Y. J. Yu,¹ E. J. Cheng,¹ L. S. Wang,¹ D. Z. Dai,¹ R. Kato,² and S. Y. Li^{1,3,*}

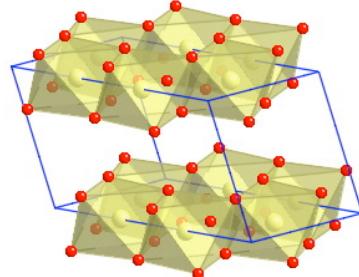


Controversy!

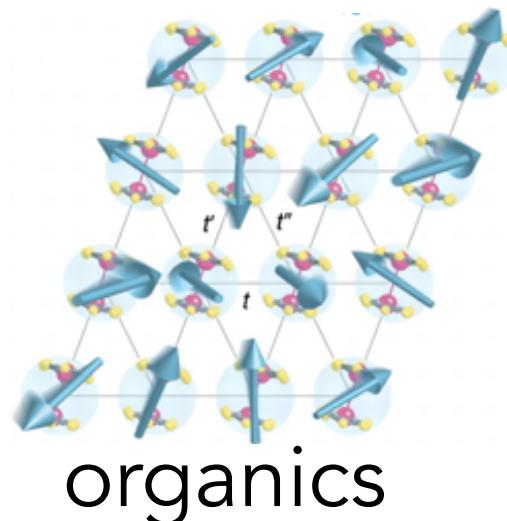
Top experimental platforms



This just scratches the surface: many more materials being studied



Kitaev materials



organics

Frontiers

New phases

- Fractons
- Quenched disorder

Fundamental problems

- QSLs with strongly coupled matter-gauge theory
- QCPs to/from QSL phases
- Out of equilibrium
- Doping - QSL induced SCivity?

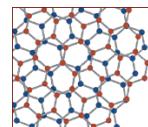
Reality

- New Materials! Maybe QSLs in VdW crystals?
- Definitive experimental signatures
 - Thermal Hall? Non-linear spectroscopy?
- Computational methods: less bias, reliability of variational methods, beyond ground states

Thanks for your attention

References here: <https://spinsandelectrons.com/pedagogy/>

Office of
Science



Simons Collaboration on
Ultra-Quantum Matter

