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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Phase diagram

3 new superconducting domes close to CNP 
and ν = ±1 and doubling of Tc > 3K

• CS – correlated state
• SC – superconducting state
• BI – band insulator 
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huge unit cell

am=13.4nm



Continuum model

approximate single layer as Dirac cone
no mixing from one valley to the other 
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One valley
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where k✓ = ✓K. The displacement gradient itself is

@u
1
µ

@x⌫
= �

@u
2
µ

@x⌫
= �✓

2
✏µ⌫ . (34)

Most interestingly, the term in the exponential in the second line of Eq. (39) becomes

Qj · (u1 � u2) = ✓Qj · ẑ ⇥ x = �✓ẑ ⇥Qj · x. (35)

We see that this immediately produces the wavevectors

qj = �✓ẑ ⇥Qj . (36)

The two non-zero vectors q1, q2 are two basis vectors of the reciprocal lattice of the moiré
pattern! Putting this all together, we can write the Hamiltonian for the rigid twist as
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Here we defined rotated Pauli matrices

⌧
µ(✓) = ⌧

µ � ✓✏µ⌫⌧
⌫
. (38)

The result is in perfect agreement with BM.

4 Conclusion

We provided a simple real space derivation of a full continuummodel for bilayer graphene in
the presence of small displacement gradients. Combining all three contributions discussed
in Sec. 3 gives the full continuum band Hamiltonian for arbitrary small displacement
gradients for the K valley. It is

HK [u1,u2] =

Z
d
2x

(
X

l

 
†
l

"
�iv
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 l

+
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j
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e
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†
2 Tj 1 + h.c.

i)
. (39)

We emphasize that Eq. (39) is derived under the assumption that @µul ⌧ 1 and t
0 ⌧ t,

but otherwise ul may have arbitrary spatial dependence. As shown in Sec. 3.4 it exactly
recovers the BM model for the case of a rigid twist. However, it is a starting point not
only to consider twisting, but also to include uniform and non-uniform strains. It also
ought to be su�cient to understand the coupling of low energy phonons (those derived
from the acoustic modes of the original graphene layers) to the bilayer – one needs only to
add dynamics to the displacement fields. Finally, Eq. (39) indeed is capable of describing
all three of these e↵ects together, simply by taking

ul = (3� 2l)
✓

2
ẑ ⇥ x+ ûl, l = 1, 2, (40)

where ûl represents the strain and/or phonons. For example, this is a natural point of
departure to discuss the e↵ects of twist angle inhomogeneity in twisted bilayer graphene,
as there is no need to assume random strains are small compared to the displacement
gradient comprising the twist. Hopefully this formulation will have pedagogical value and
find useful applications.

9

•Restores periodicity 
•Reveals dimensionless parameter, w/vk𝜃 

•Predicts flat bands at magic angles

Tj = u I+ w
�
⇣̄j⌧+ + ⇣j⌧�

�
, j = 0, 1, 2,

<latexit sha1_base64="YXEFa/qYIbc/OJdgTGd9Up2lcRw="></latexit>

Calculations become possible!

Lopes dos Santos et al (2007), 
Bistritzer+MacDonald (2011)



Continuum model
\

One length scale: 

Dimensionless parameter:

am = 2⇡/q✓
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Decreasing angle is the 
same as increasing hopping

Expt proof: M. Yankowitz et al, Science 2019

Lopes dos Santos et al (2007), 
Bistritzer+MacDonald (2011)



Continuum model

From BM

notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.

Partial insight into the origin of these behaviors can be achieved
by examining the simplest limit in which the momentum-space
lattice is truncated at the first honeycomb shell. Including the
sublattice degree of freedom, this truncation gives rise to the
Hamiltonian

Hk ¼

hkðθ∕2Þ Tb Ttr Ttl
T†
b hkbð− θ∕2Þ 0 0

T†
tr 0 hktrð− θ∕2Þ 0

T†
tl 0 0 hktlð− θ∕2Þ

2

664

3

775; [8]

where k is in the moiré Brillouin-zone and kj ¼ k þ qj. This
Hamiltonian acts on four two-component spinors Ψ ¼ ðψ0;ψ1;
ψ2;ψ3Þ. The first (ψ0) is at a momentum near the Dirac point of
one layer and the other three ψ j are at momenta near qj and in the

other layer. The dependence of hðθÞ on angle is parametrically
small and can be neglected. We have numerically verified that this
approximation reproduces the velocity with reasonable accuracy
down to the first magic angle (Fig. 4, Inset).

The renormalized velocity v⋆ ¼ ∂kϵ⋆k jk¼0 follows from the
spectrum ϵ⋆k of the twisted bilayer. The Hamiltonian is expressed
as a sum of the k ¼ 0 term Hð0Þ and the k -dependent term Hð1Þ

k
and solved to leading order in k.

Consider the k ¼ 0 term in the Hamiltonian. We assume that
Hð0Þ has zero energy eigenstates and prove our assumption by
explicitly finding these states. The zero energy eigenstates must
satisfy

ψ j ¼ −h− 1j T†
j ψ0: [9]

Because

Tjh− 1j T†
j ¼ 0 [10]

the equation for the ψ0 spinor is h0ψ0 ¼ 0, i.e., ψ0 is one of
the two zero energy states ψ ð1Þ

0 and ψ ð2Þ
0 of the isolated layer.

The two zero energy eigenstates of Hð0Þ then follow from Eq. 9.
Given that jψ ðjÞ

0 j ¼ 1, the wave functions should be normalized
by jΨj2 ¼ 1þ 6α2. The effective Hamiltonian matrix to leading
order in k is therefore

hΨðiÞjHð1Þ
k jΨðjÞi ¼ − v

1þ 6α2
ψ ðiÞ†
0

!
σ · k þ w2

∑

j

Tjh
− 1†
j σ

· kh− 1j T†
j

"
ψ ðjÞ
0 ¼ − v⋆ψ ðiÞ†

0 σ · kψ ðjÞ
0 :

Aside from a renormalized velocity

v⋆

v
¼ 1 − 3α2

1þ 6α2
; [11]

the Hamiltonian is identical to the continuum model Hamilto-
nian of single-layer graphene. The denominator in Eq. 11 cap-
tures the contribution of the Ψj’s to the normalization of the
wave function whereas the numerator captures their contribution
to the velocity matrix elements. For small α, Eq. 11 reduces to
the expression v⋆∕v ¼ 1 − 9α2, first obtained by Lopes dos Santos
et al. (15). The velocity vanishes at the first magic angle because it
is in the process of changing sign. The eigenstates at the Dirac
point are a coherent combination of components in the two layers
that have velocities of opposite sign.

Counterflow Conductivity. The distribution of the quasiparticle
velocity between the two layers implies exotic transport charac-
teristics for separately contacted layers. Consider a counterflow
geometry in which currents in the two layers flow antiparallel to
one another. We focus on twist angles θ ≳ 2° for which the eight-
band model is valid and to the semiclassical regime in which
ϵFτ > 1 and find the counterflow conductivity σCF. We assume
that the Fermi momentum is much smaller than k θ and that
1∕τ0 < ℏvk θ, where τ0 is single particle lifetime. Using the Kubo
formula we find that

σCF ¼ 4e2

π ∑

kμ

jhψ k jvxCFjψ k ij2½ImfGr
k μðϵFÞg&2; [12]

where

vxCF ¼ − v

σx 0 0 0
0 − σx 0 0
0 0 − σx 0
0 0 0 − σx

0
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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Just solve it!

(via plane wave 
expansion)



Dirac Points
There is always a band touching at Km,Km’ for any angle

5.1. Naïve argument

and consider the effects of a non-zero twist. In the local frame of each layer,
there is no effect at all. However, viewed in the global coordinates of the lab-
oratory, the relative rotations are visible as a rotation of the momenta of the
bands in each layer. In Fig. 11 we illustrate this for two angles, showing the
graphene Brillouin zones of each layer rotated by ±q/2, and a moiré Brillouin
zone taking the two rotated copies of the K Dirac point as its adjacent cor-
ners. For q ⌧ 1, the Dirac point originally at K in the upper/lower layer is
displaced by ±Kq/2 in the y direction in momentum space. We define the
distance between the two displaced Dirac points as kq = Kq.

�kq/2 0 kq/2

�vkq/2

0

vkq/2

ky

e

Figure 12: Weak inter-layer tunneling picture of twisted bands along a line
connected the two moiré zone corners in momentum space.

Now let us consider the spectrum along a line of constant kx in momen-
tum space passing through the two displaced copies of the K Dirac point –
see Fig. 12. The thin lines show the dispersion for zero inter-layer tunneling,
drawn in blue for one layer and black for the other. The dispersions cross at
ky = 0 at energies of ±vkq/2. Now turn on the inter-layer tunneling. It leads
to anticrossings between the states of different layers, shown in thick brown.
States at ±vkq/2 are pushed toward the zero of energy. Note that no such
anti-crossing occurs at the Dirac points themselves, which are states of one
layer. To first order in the inter-layer hopping, the states closest to the Fermi
energy at ky = 0 have the energy

(51) e(ky = 0) ⇡ ±
�
vkq/2 � t

0
av
�

,

where t
0
av is the average effect of the hopping on the twisted states. We might

expect t
0
av to be some fraction, e.g. maybe half, of the hopping t

0 between
aligned C-C bonds, since the alignment is irregular and only partial. We see
that the effect of inter-layer hopping is to narrow the band. If we blindly
extrapolate, we would find that these states cross zero when t

0
av = vkq/2, or

27
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Touching protected by C2T symmetry

Locked to mBZ corner by C3 symmetry



“Magic angles”

notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.

Partial insight into the origin of these behaviors can be achieved
by examining the simplest limit in which the momentum-space
lattice is truncated at the first honeycomb shell. Including the
sublattice degree of freedom, this truncation gives rise to the
Hamiltonian

Hk ¼

hkðθ∕2Þ Tb Ttr Ttl
T†
b hkbð− θ∕2Þ 0 0

T†
tr 0 hktrð− θ∕2Þ 0

T†
tl 0 0 hktlð− θ∕2Þ

2

664

3

775; [8]

where k is in the moiré Brillouin-zone and kj ¼ k þ qj. This
Hamiltonian acts on four two-component spinors Ψ ¼ ðψ0;ψ1;
ψ2;ψ3Þ. The first (ψ0) is at a momentum near the Dirac point of
one layer and the other three ψ j are at momenta near qj and in the

other layer. The dependence of hðθÞ on angle is parametrically
small and can be neglected. We have numerically verified that this
approximation reproduces the velocity with reasonable accuracy
down to the first magic angle (Fig. 4, Inset).

The renormalized velocity v⋆ ¼ ∂kϵ⋆k jk¼0 follows from the
spectrum ϵ⋆k of the twisted bilayer. The Hamiltonian is expressed
as a sum of the k ¼ 0 term Hð0Þ and the k -dependent term Hð1Þ

k
and solved to leading order in k.

Consider the k ¼ 0 term in the Hamiltonian. We assume that
Hð0Þ has zero energy eigenstates and prove our assumption by
explicitly finding these states. The zero energy eigenstates must
satisfy

ψ j ¼ −h− 1j T†
j ψ0: [9]

Because

Tjh− 1j T†
j ¼ 0 [10]

the equation for the ψ0 spinor is h0ψ0 ¼ 0, i.e., ψ0 is one of
the two zero energy states ψ ð1Þ

0 and ψ ð2Þ
0 of the isolated layer.

The two zero energy eigenstates of Hð0Þ then follow from Eq. 9.
Given that jψ ðjÞ

0 j ¼ 1, the wave functions should be normalized
by jΨj2 ¼ 1þ 6α2. The effective Hamiltonian matrix to leading
order in k is therefore

hΨðiÞjHð1Þ
k jΨðjÞi ¼ − v

1þ 6α2
ψ ðiÞ†
0

!
σ · k þ w2

∑

j

Tjh
− 1†
j σ

· kh− 1j T†
j

"
ψ ðjÞ
0 ¼ − v⋆ψ ðiÞ†

0 σ · kψ ðjÞ
0 :

Aside from a renormalized velocity

v⋆

v
¼ 1 − 3α2

1þ 6α2
; [11]

the Hamiltonian is identical to the continuum model Hamilto-
nian of single-layer graphene. The denominator in Eq. 11 cap-
tures the contribution of the Ψj’s to the normalization of the
wave function whereas the numerator captures their contribution
to the velocity matrix elements. For small α, Eq. 11 reduces to
the expression v⋆∕v ¼ 1 − 9α2, first obtained by Lopes dos Santos
et al. (15). The velocity vanishes at the first magic angle because it
is in the process of changing sign. The eigenstates at the Dirac
point are a coherent combination of components in the two layers
that have velocities of opposite sign.

Counterflow Conductivity. The distribution of the quasiparticle
velocity between the two layers implies exotic transport charac-
teristics for separately contacted layers. Consider a counterflow
geometry in which currents in the two layers flow antiparallel to
one another. We focus on twist angles θ ≳ 2° for which the eight-
band model is valid and to the semiclassical regime in which
ϵFτ > 1 and find the counterflow conductivity σCF. We assume
that the Fermi momentum is much smaller than k θ and that
1∕τ0 < ℏvk θ, where τ0 is single particle lifetime. Using the Kubo
formula we find that

σCF ¼ 4e2

π ∑

kμ

jhψ k jvxCFjψ k ij2½ImfGr
k μðϵFÞg&2; [12]

where

vxCF ¼ − v

σx 0 0 0
0 − σx 0 0
0 0 − σx 0
0 0 0 − σx

0
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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Why magic angles?

notonic dependence on θ, vanishing repeatedly at the series of
magic angles illustrated in Fig. 4.

Partial insight into the origin of these behaviors can be achieved
by examining the simplest limit in which the momentum-space
lattice is truncated at the first honeycomb shell. Including the
sublattice degree of freedom, this truncation gives rise to the
Hamiltonian

Hk ¼

hkðθ∕2Þ Tb Ttr Ttl
T†
b hkbð− θ∕2Þ 0 0

T†
tr 0 hktrð− θ∕2Þ 0

T†
tl 0 0 hktlð− θ∕2Þ

2

664

3

775; [8]

where k is in the moiré Brillouin-zone and kj ¼ k þ qj. This
Hamiltonian acts on four two-component spinors Ψ ¼ ðψ0;ψ1;
ψ2;ψ3Þ. The first (ψ0) is at a momentum near the Dirac point of
one layer and the other three ψ j are at momenta near qj and in the

other layer. The dependence of hðθÞ on angle is parametrically
small and can be neglected. We have numerically verified that this
approximation reproduces the velocity with reasonable accuracy
down to the first magic angle (Fig. 4, Inset).

The renormalized velocity v⋆ ¼ ∂kϵ⋆k jk¼0 follows from the
spectrum ϵ⋆k of the twisted bilayer. The Hamiltonian is expressed
as a sum of the k ¼ 0 term Hð0Þ and the k -dependent term Hð1Þ

k
and solved to leading order in k.

Consider the k ¼ 0 term in the Hamiltonian. We assume that
Hð0Þ has zero energy eigenstates and prove our assumption by
explicitly finding these states. The zero energy eigenstates must
satisfy

ψ j ¼ −h− 1j T†
j ψ0: [9]

Because

Tjh− 1j T†
j ¼ 0 [10]

the equation for the ψ0 spinor is h0ψ0 ¼ 0, i.e., ψ0 is one of
the two zero energy states ψ ð1Þ

0 and ψ ð2Þ
0 of the isolated layer.

The two zero energy eigenstates of Hð0Þ then follow from Eq. 9.
Given that jψ ðjÞ

0 j ¼ 1, the wave functions should be normalized
by jΨj2 ¼ 1þ 6α2. The effective Hamiltonian matrix to leading
order in k is therefore

hΨðiÞjHð1Þ
k jΨðjÞi ¼ − v

1þ 6α2
ψ ðiÞ†
0

!
σ · k þ w2

∑

j

Tjh
− 1†
j σ

· kh− 1j T†
j

"
ψ ðjÞ
0 ¼ − v⋆ψ ðiÞ†

0 σ · kψ ðjÞ
0 :

Aside from a renormalized velocity

v⋆

v
¼ 1 − 3α2

1þ 6α2
; [11]

the Hamiltonian is identical to the continuum model Hamilto-
nian of single-layer graphene. The denominator in Eq. 11 cap-
tures the contribution of the Ψj’s to the normalization of the
wave function whereas the numerator captures their contribution
to the velocity matrix elements. For small α, Eq. 11 reduces to
the expression v⋆∕v ¼ 1 − 9α2, first obtained by Lopes dos Santos
et al. (15). The velocity vanishes at the first magic angle because it
is in the process of changing sign. The eigenstates at the Dirac
point are a coherent combination of components in the two layers
that have velocities of opposite sign.

Counterflow Conductivity. The distribution of the quasiparticle
velocity between the two layers implies exotic transport charac-
teristics for separately contacted layers. Consider a counterflow
geometry in which currents in the two layers flow antiparallel to
one another. We focus on twist angles θ ≳ 2° for which the eight-
band model is valid and to the semiclassical regime in which
ϵFτ > 1 and find the counterflow conductivity σCF. We assume
that the Fermi momentum is much smaller than k θ and that
1∕τ0 < ℏvk θ, where τ0 is single particle lifetime. Using the Kubo
formula we find that

σCF ¼ 4e2

π ∑

kμ

jhψ k jvxCFjψ k ij2½ImfGr
k μðϵFÞg&2; [12]

where

vxCF ¼ − v

σx 0 0 0
0 − σx 0 0
0 0 − σx 0
0 0 0 − σx

0
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Fig. 3. Moiré bands. (A) Energy dispersion for the 14 bands closest to the
Dirac point plotted along the k-space trajectory A → B → C → D → A (see
Fig. 1) for w ¼ 110 meV, and θ ¼ 5° (Left,), 1.05° (Middle), and 0.5° (Right).
(B) DOS. (C) Energy as a function of twist angle for the k ¼ 0 states. Band
separation decreases with θ as also evident from A. (D) Full dispersion of
the flat band at θ ¼ 1.05°.

Fig. 4. Renormalized Dirac-point band velocity. The band velocity of the
twisted bilayer at the Dirac point v⋆ is plotted vs. α2, where α ¼ w∕vkθ

for 0.18° < θ < 1.2°. The velocity vanishes for θ ≈ 1.05°, 0.5°, 0.35°, 0.24°,
and 0.2°. (Inset) The renormalized velocity at larger twist angles. The solid
line corresponds to numerical results and dashed line corresponds to analytic
results based on the eight-band model.
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• A2: Tufted cushion effect

• A3: Close to a chiral model 
with elliptic function solutions
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Where does continuum model 
come from?

Moiré bands in twisted double-layer graphene
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A moiré pattern is formed when two copies of a periodic pattern
are overlaid with a relative twist. We address the electronic struc-
ture of a twisted two-layer graphene system, showing that in its
continuum Dirac model the moiré pattern periodicity leads to
moiré Bloch bands. The two layers become more strongly coupled
and the Dirac velocity crosses zero several times as the twist angle
is reduced. For a discrete set of magic angles the velocity vanishes,
the lowest moiré band flattens, and the Dirac-point density-of-
states and the counterflow conductivity are strongly enhanced.

Low-energy electronic properties of few layer graphene (FLG)
systems are known (1–8) to be strongly dependent on stacking

arrangement. In bulk graphite 0° and 60° relative orientations of
the individual layer honeycomb lattices yield rhombohedral and
Bernal crystals, but other twist angles also appear in many sam-
ples (9). Small twist angles are particularly abundant in epitaxial
graphene layers grown on SiC (10, 11), but exfoliated bilayers can
also appear with a twist, and arbitrary alignments between adja-
cent layers can be obtained by folding a single graphene layer
(12, 13).

Recent advances in FLG preparation methods have attracted
theoretical attention (14–20) to the intriguing electronic proper-
ties of systems with arbitrary twist angles, usually focusing on the
two-layer case. The geometry of the bilayer system is character-
ized by a twist angle θ and by a translation vector d. Commensur-
ability is determined only by θ. Sliding one layer with respect to
the other in a commensurate structure modifies the unit cell but
leaves the bilayer crystalline. In this work we find it convenient to
regard the AB stacking as the aligned configuration. The posi-
tions of the carbon atoms in the two misaligned layers labeled
by R and R0 are then related by R0 ¼ MðθÞðR − τÞ þ d, where
M is a 2-D rotation matrix within the graphene plane, and τ is
a vector connecting the two atoms in the unit cell.

The problem is mathematically interesting because a bilayer
forms a two-dimensional crystal only at a discrete set of commen-
surate rotation angles; for generic twist angles Bloch’s theorem
does not apply microscopically and direct electronic structure
calculations are not feasible. For twist angles larger than a few
degrees the two layers are electronically isolated to a remarkable
degree, except at a small set of angles which yield low-order com-
mensurate structures (16, 19). As the twist angles become smal-
ler, interlayer coupling strengthens, and the quasiparticle velocity
at the Dirac point begins to decrease.

Here we focus on the strongly coupled small twist angle regime.
We derive a low-energy effective Hamiltonian valid for any value
of d and for θ ≲ 10° irrespective of whether or not the bilayer struc-
ture is periodic. We show that it is meaningful to describe the elec-
tronic structure using Bloch bands even for incommensurate twist
angles and study the dependence of these bands on θ.

Model
We construct a low-energy continuum model Hamiltonian that
consists of three terms: two single-layer Dirac–Hamiltonian terms
that account for the isolated graphene sheets and a tunneling
term that describes hopping between layers. The Dirac–Hamilto-
nian (21) for a layer rotated by an angle θ with respect to a fixed
coordinate system is

hkðθÞ ¼ −vk 0 eiðθk−θÞ

e−iðθk−θÞ 0

! "
;

where v is the Dirac velocity, k is momentum measured from the
layer’s Dirac point, θk is the momentum orientation relative to
the x axis, and the spinor Hamiltonian acts on the individual
layer’s A and B sublattice degrees-of-freedom. We choose the co-
ordinate system depicted in Fig. 1 for which the decoupled bilayer
Hamiltonian is j1ihðθ∕2Þh1jþ j2ihð−θ∕2Þh2j, where jiihijprojects
onto layer i.

We derive a continuummodel for the tunneling term by assum-
ing that the interlayer tunneling amplitude between π-orbitals
is a smooth function tðrÞ of spatial separation projected onto the
graphene planes. The matrix element

Tαβ
kp0 ¼ hΨð1Þ

kα jHTjΨ
ð2Þ
p0βi [1]

of the tunneling Hamiltonian HT describes a process in which an
electron with momentum p0 ¼ Mp residing on sublattice β in one
layer hops to a momentum state k and sublattice α in the other
layer. In a π-band tight-binding model the projection of the wave
functions of the two layers to a given sublattice are

jψ ð1Þ
kα i ¼

1ffiffiffiffi
N

p
∑

R

eikðRþταÞjR þ ταi [2]

and

jψ ð2Þ
pβ i ¼

1ffiffiffiffi
N

p
∑

R0

eipðR
0þτ0βÞjR0 þ τ0βi: [3]

Here τA ¼ 0, τB ¼ τ, and R is summed over the triangular Bravais
lattice. Substituting Eqs. 2 and 3 in Eq. 1 and invoking the two-
center approximation,

hR þ ταjHTjR0 þ τ0βi ¼ tðR þ τα − R0 − τ0βÞ; [4]

for the interlayer hopping amplitude in which t depends on the dif-
ference between the positions of the two carbon atoms we find that

Tαβ
kp0 ¼

∑

G1G2

tk̄þG1

Ω
ei½G1τα−G2ðτβ−τÞ−G0

2d&δk̄þG1 ;p̄0þG0
2
: [5]

Here Ω is the unit cell area, tq is the Fourier transform of the tun-
neling amplitude tðrÞ, the vectors G1 and G2 are summed over re-
ciprocal lattice vectors, and G0

2 ¼ MG2. The bar notation over
momenta in Eq. 5 indicates that momentum is measured relative
to the center of the Brillouin zone and not relative to the Dirac
point. Note that crystal momentum is conserved by the tunneling
process because t depends only on the difference between lattice
positions.*
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Directly calculate overlap of every C orbital in 
layer 1 with every C orbital in layer 2

Obtain hopping matrix in momentum space by 
Poisson resummation formula

At the end of the calculation Fourier transform 
back to obtain simple real space formula

Assume rigid rotation of layers

From BM



Effective field theory
Describes low energy, long wavelength physics, 
can include effects of any perturbations that are 

small and slowly varying 

Here:
• Unperturbed system: isolated graphene layers 
• Perturbations: 

• Interlayer tunneling 
• Slowly varying displacements of the layers



Rotation ⊂ Displacement 
Gradient

Ashcroft-Mermin: phonons 

x = R+ ũ(R)
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<latexit sha1_base64="U15RUF72ugR1PRLNmmDLZmdcze0=">AAACD3icbVDLSsNAFJ34rPUVFdy4GSxC3ZSkCrosunFZxT6gCWUymbZDZyZhZiKUmI/wF9zq3p249RPc+iVO2iy09cDlHs65l3s5Qcyo0o7zZS0tr6yurZc2yptb2zu79t5+W0WJxKSFIxbJboAUYVSQlqaakW4sCeIBI51gfJ37nQciFY3EvZ7ExOdoKOiAYqSN1LcPPU1ZSFIv4GmSZdW832Wnfbvi1Jwp4CJxC1IBBZp9+9sLI5xwIjRmSKme68TaT5HUFDOSlb1EkRjhMRqSnqECcaL8dPp/Bk+MEsJBJE0JDafq740UcaUmPDCTHOmRmvdy8V8v4HOX9eDST6mIE00Enh0eJAzqCObhwJBKgjWbGIKwpOZ3iEdIIqxNhGUTijsfwSJp12vuWa1+e15pXBXxlMAROAZV4IIL0AA3oAlaAINH8AxewKv1ZL1Z79bHbHTJKnYOwB9Ynz8bsZz1</latexit>

R
<latexit sha1_base64="KrFXLI/5do0JPsFdRjWstdUskcw=">AAAB/XicbVA9SwNBFHwXv2L8ilraLAbBKtxFQcugjWUUcwkkR9jb7CVrdveO3T0hHMG/YKu9ndj6W2z9JW6SKzRx4MEw8x7zmDDhTBvX/XIKK6tr6xvFzdLW9s7uXnn/wNdxqghtkpjHqh1iTTmTtGmY4bSdKIpFyGkrHF1P/dYjVZrF8t6MExoIPJAsYgQbK/ndUGR3k1654lbdGdAy8XJSgRyNXvm7249JKqg0hGOtO56bmCDDyjDC6aTUTTVNMBnhAe1YKrGgOshm307QiVX6KIqVHWnQTP19kWGh9ViEdlNgM9SL3lT81wvFQrKJLoOMySQ1VJJ5cJRyZGI0rQL1maLE8LElmChmf0dkiBUmxhZWsqV4ixUsE79W9c6qtdvzSv0qr6cIR3AMp+DBBdThBhrQBAIP8Awv8Oo8OW/Ou/MxXy04+c0h/IHz+QMB+ZXV</latexit>

x
<latexit sha1_base64="FP/Vc8ayK9CImmcvqleIs4zIT/k=">AAAB/XicbVC7SgNBFL0bXzG+opY2g0GwCrtR0DJoYxnBPCBZwuxkNhkzM7vMzIphCf6CrfZ2Yuu32PolziZbaOKBC4dz7uVcThBzpo3rfjmFldW19Y3iZmlre2d3r7x/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF9nfvuBKs0ieWcmMfUFHkoWMoKNlVq9QKSP03654lbdGdAy8XJSgRyNfvm7N4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k9n307RiVUGKIyUHWnQTP19kWKh9UQEdlNgM9KLXib+6wViIdmEl37KZJwYKsk8OEw4MhHKqkADpigxfGIJJorZ3xEZYYWJsYWVbCneYgXLpFWremfV2u15pX6V11OEIziGU/DgAupwAw1oAoF7eIYXeHWenDfn3fmYrxac/OYQ/sD5/AE+F5X7</latexit>

Rotation
✓ =

1

2
(@xuy � @yux)
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ũ = ✓ẑ ⇥R
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Twisting is just a subset of elastic 
deformations of two layers



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength

x = R+ ũ(R)
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R is not the actual real space location - 
physics is local in x not R 

Small problem:



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength

Solution: Eulerian coordinates

x = R+ u(x)
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Effective field theory

• Three effects: 

1. Coordinate change: transformation of local frames to 
global one 

2. Strains: modification of energetics of each layer due to 
changes in electron hopping 

3. Tunneling: strong dependence of relative local 
alignment
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Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
2R 

†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det

✓
@Rµ

@x⌫

◆
⇡ d

2x (1�r · u) . (7)

4

H =
X

l

 †
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
�iv

✓
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@ul,µ

@x⌫
⌧⌫

◆
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@xµ
+ v (K · @µul +Al) ⌧

µ

�
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coordinate change

Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
2R 

†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det

✓
@Rµ

@x⌫

◆
⇡ d

2x (1�r · u) . (7)
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Strain gauge field

Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
2R 

†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det
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@x⌫
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⇡ d

2x (1�r · u) . (7)
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tunneling. Form fixed by space 
group symmetries 

Tj = u I+ w
�
⇣̄j⌧+ + ⇣j⌧�

�
, j = 0, 1, 2,
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Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
2R 

†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det

✓
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@x⌫

◆
⇡ d

2x (1�r · u) . (7)
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Q0=



Apply to rigid twist
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Eq. (24), when applied on an initial TQ on the right hand side, generates another TQ0 on
the left, with Q0 = O3Q�Q1. We iterate this relation starting with Q = 0 and generate
in addition two further Fourier coe�cients, after which the iteration closes.

The result is
Tj ⌘ T�Qj = uI+ w

�
⇣̄
j
⌧
+ + ⇣

j
⌧
��

, (25)

where

⇣ = e
2⇡i/3

, ⇣̄ = ⇣
⇤ =

1

⇣
= e

�2⇡i/3
. (26)

and

Q0 = 0, Q1 =
4⇡

3a

✓p
3/2
1/2

◆
, Q2 =

4⇡

3a

✓p
3/2

�1/2

◆
. (27)

The three wavevectors Qj , j = 0, 1, 2 form an equilateral triangle of reciprocal lattice
points whose centroid is the K point (see Fig. 1).

Now we can assign physical significance to u and w by considering some special cases.
Suppose we take ul = 0, which corresponds to an AA bilayer. We have

T(u) =
X

j

Tje
�iQj ·u ���!

u=0

X

j

Tj = 3uI. (28)

In the final result, we used the fact that
P

j ⇣
j =

P
j ⇣̄

j = 0. Eq. (28) agrees with
the simple physical expectation that we just have diagonal sublattice hopping t

0 in this
configuration. Hence we conclude that

u =
t
0
AA

3
, (29)

where t
0
AA is the interlayer hopping for an AA region. Now consider u = (0, a), which

corresponds to AB stacking. We see from Eq. (27) that e�iQj ·u = ⇣̄
j . Then we have

T(u) =
X

j

Tje
�iQj ·u �����!

u=(0,a)

X

j

Tj ⇣̄
j = 3w⌧�. (30)

This is again consistent with expectations: interlayer hopping is only from sublattice B
on layer 1 to sublattice A on layer 2, or vice versa. Hence we see that

w =
t
0
AB

3
. (31)

We have allowed for the inter-layer hopping t
0
AB to be di↵erent in the AB regions from

that in the AA ones, though this di↵erence is expected to be small.
We have now fully determined all the terms in the continuum description, by combining

Eq. (9), Eq. (11), and Eq. (14), which are now fully specified. The result is given explicitly
for clarity in Eq. (39) of the Conclusion.

3.4 Application to a rigid twist

To connect to the continuum model of BM, we specialize to a rigid twist, and evaluate the
general result for the case

u1 = �u2 =
✓

2
ẑ ⇥ x. (32)

For such a pure rotation, the strain-induced gauge field vanishes, Al = 0, and there is
zero compression so r · ul = 0 as well. The K-point shift term becomes

K · @µu1 = �K · @µu2 = ⌥✓K

2
ŷ ⌘ ⌥k✓

2
ŷ, (33)
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H =  †
1


�iv⌧ ( ✓2 ) ·r�

vk✓
2
⌧y

�
 1 +  †

2


�iv⌧ (� ✓

2 ) ·r+
vk✓
2
⌧y

�
 2

<latexit sha1_base64="xz4gMPxlE6xl9OYQaVzHoJR2siA="></latexit>

+
X

j

h
e�iqj ·x †

2 Tj 1 + h.c.
i
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where k✓ = ✓K. The displacement gradient itself is

@u
1
µ

@x⌫
= �

@u
2
µ

@x⌫
= �✓

2
✏µ⌫ . (34)

Most interestingly, the term in the exponential in the second line of Eq. (39) becomes

Qj · (u1 � u2) = ✓Qj · ẑ ⇥ x = �✓ẑ ⇥Qj · x. (35)

We see that this immediately produces the wavevectors

qj = �✓ẑ ⇥Qj . (36)

The two non-zero vectors q1, q2 are two basis vectors of the reciprocal lattice of the moiré
pattern! Putting this all together, we can write the Hamiltonian for the rigid twist as

HK,✓ =

Z
d
2x

(
 
†
1


�iv⌧ ( ✓2) ·r� vk✓

2
⌧
y

�
 1 +  

†
2


�iv⌧ (� ✓

2) ·r+
vk✓

2
⌧
y

�
 2

+
X

j

h
e
�iqj ·x †

2 Tj 1 + h.c.
i)

. (37)

Here we defined rotated Pauli matrices

⌧
µ(✓) = ⌧

µ � ✓✏µ⌫⌧
⌫
. (38)

The result is in perfect agreement with BM.

4 Conclusion

We provided a simple real space derivation of a full continuummodel for bilayer graphene in
the presence of small displacement gradients. Combining all three contributions discussed
in Sec. 3 gives the full continuum band Hamiltonian for arbitrary small displacement
gradients for the K valley. It is

HK [u1,u2] =

Z
d
2x

(
X

l

 
†
l

"
�iv

 
⌧
µ +

@u
l
µ

@x⌫
⌧
⌫ �r · ul⌧

µ

!
@

@xµ
+ v (K · @µul +Al) ⌧

µ

#
 l

+
X

j

h
e
�iQj ·(u1�u2) 

†
2 Tj 1 + h.c.

i)
. (39)

We emphasize that Eq. (39) is derived under the assumption that @µul ⌧ 1 and t
0 ⌧ t,

but otherwise ul may have arbitrary spatial dependence. As shown in Sec. 3.4 it exactly
recovers the BM model for the case of a rigid twist. However, it is a starting point not
only to consider twisting, but also to include uniform and non-uniform strains. It also
ought to be su�cient to understand the coupling of low energy phonons (those derived
from the acoustic modes of the original graphene layers) to the bilayer – one needs only to
add dynamics to the displacement fields. Finally, Eq. (39) indeed is capable of describing
all three of these e↵ects together, simply by taking

ul = (3� 2l)
✓

2
ẑ ⇥ x+ ûl, l = 1, 2, (40)

where ûl represents the strain and/or phonons. For example, this is a natural point of
departure to discuss the e↵ects of twist angle inhomogeneity in twisted bilayer graphene,
as there is no need to assume random strains are small compared to the displacement
gradient comprising the twist. Hopefully this formulation will have pedagogical value and
find useful applications.

9

Evaluate for 

Exactly the BM model.

H =
X

l

 †
l


�iv

✓
⌧µ +

@ul,µ

@x⌫
⌧⌫

◆
@

@xµ
+ v (K · @µul +Al) ⌧

µ

�
 l
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• Recovers BM result intuitively 
• Subsumes other extensions of BM (Nam+Koshino, Bi,Yuan+Fu…) 
• Includes coupling of acoustic phonons 
• Can handle arbitrary inhomogeneous strains 
• All these things together 
• Easy to add more layers 
• Very nice for teaching
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Phase diagram

3 new superconducting domes close to CNP 
and ν = ±1 and doubling of Tc > 3K

• CS – correlated state
• SC – superconducting state
• BI – band insulator 

All this within two flat bands
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Quantum Anomalous Hall Effect

This is just the appearance of QHE in zero magnetic field by 
spontaneous breaking of time-reversal symmetry 

Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau

REPORTS

1State Key Laboratory of Low-Dimensional Quantum Physics,
Department of Physics, Tsinghua University, Beijing 100084,
China. 2Beijing National Laboratory for Condensed Matter
Physics, Institute of Physics, The Chinese Academy of Sciences,
Beijing 100190, China. 3Department of Physics, Stanford Uni-
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Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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levels nor an external magnetic field. This type
of QHE induced by spontaneous magnetization
is considered the quantized version of the con-
ventional (nonquantized) anomalous Hall effect
(AHE) discovered in 1881 (16). The quantized
Hall conductance is directly given by a topo-
logical characteristic of the band structure called
the first Chern number. Such insulators are called
Chern insulators.

One way to realize a Chern insulator is to start
from a time-reversal-invariant TI. These mate-
rials, whose topological properties are induced
by spin-orbit coupling, were experimentally re-
alized soon after the theoretical predictions in
both 2D and 3D systems (12, 13). Breaking the
TRS of a suitable TI (17) by introducing ferro-
magnetism can naturally lead to the quantum
anomalous Hall (QAH) effect (6–9, 11). By tuning
the Fermi level of the sample around the mag-
netically induced energy gap in the density of states,
one is expected to observe a plateau of Hall
conductance (sxy) of e

2/h and a vanishing lon-
gitudinal conductance (sxx) even at zero mag-
netic field [figure 14 of (7) and Fig. 1, A and B].

The QAH effect has been predicted to occur
by Mn doping of the 2D TI realized in HgTe
quantum wells (8); however, an external mag-
netic field was still required to align the Mn mo-
ments in order to realize the QAH effect (18). As
proposed in (9), due to the van Vleck mechanism
doping the Bi2Te3 family TIs with isovalent 3d
magnetic ions can lead to a ferromagnetic insu-
lator ground state and, for thin film systems, this
will further induce the QAH effect if the mag-
netic exchange field is perpendicular to the plane
and overcomes the semiconductor gap. Here, we
investigate thin films of Cr0.15(Bi0.1Sb0.9)1.85Te3
(19, 20) with a thickness of 5 quintuple layers
(QL), which are grown on dielectric SrTiO3 (111)
substrates by molecular beam epitaxy (MBE)
(20, 21) (fig. S1). With this composition, the
film is nearly charge neutral so that the chem-
ical potential can be fine-tuned to the electron- or
hole-conductive regime by a positive or nega-
tive gate voltage, respectively, applied on the
backside of the SrTiO3 substrate (20). The films
are manually cut into a Hall bar configuration
(Fig. 1C) for transport measurements. Varying
the width (from 50 mm to 200 mm) and the as-
pect ratio (from 1:1 to 2:1) of the Hall bar does
not influence the result. Figure 1D displays a
series of measurements, taken at different tem-
peratures, of the Hall resistance (ryx) of the sam-
ple in Fig. 1C, as a function of the magnetic field
(m0H). At high temperatures, ryx exhibits linear
magnetic field dependence due to the ordi-
nary Hall effect (OHE). The film mobility is
~760 cm2/Vs, as estimated from the measured
longitudinal sheet resistance (rxx) and the carrier
density determined from the OHE. The value is
much enhanced compared with the samples in
our previous study (20, 21), but still much lower
than that necessary for QHE (2, 3). With decreas-
ing temperature, ryx develops a hysteresis loop
characteristic of the AHE, induced by the ferro-

magnetic order in the film (22). The square-shaped
loop with large coercivity (Hc = 970 Oersted at
1.5 K) indicates a long-range ferromagnetic or-
der with out-of-plane magnetic anisotropy. The
Curie temperature is estimated to be ~15 K (Fig.
1D, inset) from the temperature dependence of
the zero field ryx that reflects spontaneous mag-
netization of the film.

Figure 2, A and C, shows the magnetic field
dependence of ryx and rxx, respectively, mea-
sured at T = 30 mK at different bottom-gate
voltages (Vgs). The shape and coercivity of the
ryx hysteresis loops (Fig. 2A) vary little with Vg,
thanks to the robust ferromagnetism probably

mediated by the van Vleck mechanism (9, 20).
In the magnetized states, ryx is nearly indepen-
dent of the magnetic field, suggesting perfect
ferromagnetic ordering and charge neutrality of
the sample. On the other hand, the AH resist-
ance (height of the loops) changes dramatically
with Vg, with a maximum value of h/e2 around
Vg = –1.5 V. The magnetoresistance (MR) curves
(Fig. 2C) exhibit the typical shape for a ferro-
magnetic material: two sharp symmetric peaks
at the coercive fields.

The Vg dependences of ryx and rxx at zero
field [labeled ryx(0) and rxx(0), respectively] are
plotted in Fig. 2B. The most important obser-

30 mK 30 mK

A B

V  = Vgg
0 V  = Vgg

0

Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field
dependence of ryx at Vg0. (B) Magnetic field dependence of rxx at Vg0. The blue and red lines in (A) and
(B) indicate the data taken with increasing and decreasing fields, respectively.

30 mK

30 mK

30 mK

30 mK

A B

C D

Fig. 2. The QAH effect measured at 30 mK. (A) Magnetic field dependence of ryx at different Vgs.
(B) Dependence of ryx(0) (empty blue squares) and rxx(0) (empty red circles) on Vg. (C) Magnetic field
dependence of rxx at different Vgs. (D) Dependence of sxy(0) (empty blue squares) and sxx(0) (empty
red circles) on Vg. The vertical purple dashed-dotted lines in (B) and (D) indicate the Vg for Vg0. A
complete set of the data is shown in fig. S3.
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QAHE in TBG

Phenomenology of magic angle graphene

Dmitri K. Efetov

Correlated insulators: Superconductivity:

Magnetism: Topology:

Y. Cao, et. al. Nature (2018);Y. Cao, et. al. Nature (2018);

A. Sharpe, et. al. Science (2019); M. Serlin, et. al. ArXive (2019);

Strange metal?:
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FIG. 2. Temperature dependence of the quantum anomalous Hall effect. (A) Rxy and (B) Rxx as a function of B measured at various
temperatures for n = 2.37⇥1012 cm�2. Rxx and Rxy mixing was corrected using contact symmetrization[29]. (C) Temperature dependence
of the field-training symmetrized resistance R̄xy at B = 0, as described in the main text. The Curie was determined to be TC ⇡ 7.5(.5) K
using an Arrott plot analysis (see Fig. S12. The inset shows detailed low-temperature dependence of R̄xy at B = 0. Error bars are the
standard error derived from 11 consecutive measurements. R̄xy saturates below ⇡ 3 K to a value of (1.0010 ± 0.0002) ⇥ h

e2
, determined

by averaging the points between 2 and 2.7 K. (D) Arrhenius plots of field training symmetrized resistances R̄xx and �R̄xy = h/e2 � R̄xy .
Dotted lines denote representative activation fits. Systematic treatment of uncertainty arising from the absence of a single activated regime
gives � = 31± 11 K and 26± 4 K for R̄xx and �R̄xy , respectively[29].

the quantum oscillations are highly anomalous, with hole-like 1

quantum oscillations originating at ⌫ = 2, again in contrast 2

to all prior reports[23–26]. Additional Landau fan features 3

also appear consistent with hBN alignment of 0.6�(Fig. S11); 4

however, twist angle variations within the tBLG itself pre- 5

clude unambiguous determination of the hBN-tBLG twist an- 6

gle. While no detailed theory for these observations is avail- 7

able, the extreme sensitivity of the detailed structure of the 8

flat bands to model parameters, combined with observations 9

that hBN substrates can produce energy gaps as large as 30 10

meV in monolayer graphene[34], point to the role of the sub- 11

strate in tipping the balance between competing many-body 12

ground states at ⌫ = 3 in favor of the QAH state. Taken to- 13

gether, these observations suggest that hBN aligned samples 14

constitute a different class of tBLG devices with distinct phe- 15

nomenology. 16

Figs. 2A and B show the temperature dependence of major 17

hysteresis loops in Rxx and Rxy , respectively. As T increases, 18

we observe both a departure from resistance quantization and 19

a suppression of hysteresis, with the Hall effect showing linear 20

behavior in field by T = 12 K. In our measurements, we ob- 21

serve resistance offsets of ⇠ 1 k⌦ from the ideal value, which 22

vanish when resistance is symmetrized or antisymmetrized 23

with respect to magnetic field (or, for B ⇡ 0, with respect 24

to field training). For quantitative analysis of the T -dependent 25

data, we thus study field-training symmetrized resistances, de- 26

noted R̄xy and R̄xx. Figure 2C shows R̄xy(0). Finite hys- 27

teresis is observed up to temperatures of 8K (Fig .2C), con- 28

sistent with the Curie temperature TC ⇡ 7.5 K determined 29

from an Arrott plot ( Fig. S12). At low temperatures, R̄xy is 30

quantized to (1.001± 0.0002)⇥ h

e2
, remaining quantized up 31

to T = 3 K before detectable deviation is observed.R̄xy re- 32

mains quantized up to T ⇡ 3 K, with the average value of 33

(1.0010± 0.0002)⇥ h

e2
between 2 and 2.7 K. 34

To quantitatively assess the energy scales associated with 35

the QAH state, we measure the activation energy at low tem- 36

perature. Fig. 2D shows both the measured R̄xx and the devi- 37

ation from quantization of the Hall resistance, �R̄xy = h/e2� 38

R̄xy , on an Arrhenius plot. We assume that the Hall conduc- 39

tivity �xy is approximately T -independent and the longitudi- 40

nal conductivity �xx ⇠ e��/(2T ), where � is the energy cost 41

of creating and separating a particle-antiparticle excitation of 42

the QAH state. Within this picture, inverting the conductivity 43

tensor gives �Rxy ⇠ e��/(T ) while Rxx ⇠ e��/(2T )[29]. 44

QAHE to 1/1000 accuracy
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Theoretical remarks
•Underlying Dirac fermions of graphene have large incipient 

Berry curvature  
•Curvature is realized by breaking C2T symmetry

To illustrate this important point, we present the argument in
a form that does not depend on detailed knowledge of the reg-
istration within each of the domains. Of course, in practice the
registration types (and hence the asymmetry signs) arise from
general energetic and geometric constraints which can be easily
accounted for (27). As an example, we consider three possible
registrations: (i) site A in hBN aligned with site A in graphene
and site B in hBN with site B in graphene; (ii) site A in hBN
aligned with site B in graphene and site B in hBN with H (hol-
low) in graphene; and (iii) A in hBN aligned with site B in
graphene whereas site B in hBN aligned with site A in graphene.
Configurations (i) and (iii) cost the same energy, but have a

different energy than (ii). Importantly, lateral sliding of a cell
with configuration (i) cannot generate configuration (iii) because
it would require a lattice rotation. At the same time, whereas
lateral sliding of a cell with configuration (i) can generate con-
figuration (ii), it costs a different energy. As a result, stacking
frustration between neighboring cells cannot occur, locking the
registration between all hexagonal cells to yield a constant global
gap, Δg.
Next, we note that imperfect registration around the domain

boundaries yields a weaker coupling between G and hBN
[strained graphene sheet buckles (16) increasing the G-to-hBN
distance]. Reduction in sublattice-asymmetric potential Δg,0 can
be modeled as

ΔðrÞ=Δg,0 + δm½GðrÞ * FðrÞ$, sgn  δm=−sgn Δg,0, [3]

where FðrÞ describes the unit cell of the pattern of domain walls,
GðrÞ=

P
n,l∈Zδðr− na1 − la2Þ is the superlattice form factor (a1,2

are superlattice basis vectors), and * indicates convolution. The
relative sign sgn  δm=−sgn Δg accounts for the weaker coupling
between G and hBN at the domain boundaries.
Because we are interested in bandstructure reconstruction in

the lowest minibands, we expand ΔðrÞ into lowest harmonics
yielding Eq. 2 with

Δg =Δg,0 + δm~Fq=0, m3 = 2δm~Fq=bj , [4]

where ~FðqÞ= 1=A
R
d2rFðrÞeiq · r is the form factor, bj are the re-

ciprocal superlattice vectors, and A is the area of superlattice
unit cell. Crucially, the sign of the form factor F determines the
sign of m3. Choosing a symmetric FðrÞ, with origin at the center
of a hexagonal domain (pictured in Fig. 1A, x̂ and ŷ are the
horizontal and vertical directions) and δ-functions along the hex-
agonal domain walls, we obtain the form factor

~FðqÞ= 2w
A
X3

j=1

sin
!
d
2
qi · x̂

"

qi · x̂
cos

 ffiffiffi
3

p
d

2
qi · ŷ

!

. [5]

Here d and w are the domain wall length and width, and
qi =RðθjÞq, where RðθjÞ are the 2× 2 rotation matrices with
θ1 = 0, θ2 = π=3, and θ3 = 2π=3.
Evaluating Eq. 5 gives ~Fq=0 = 3ζ> 0 and ~Fq=bj =−9

ffiffiffi
3

p
ζ=4π< 0,

where ζ=wd=A> 0. Comparing with Eq. 2, we find the relation
between signs of m3 and Δg:

sgn m3 =−sgnðδmÞ= sgn
$
Δg

%
. [6]

As we will see, this leads to a nontrivial topological class Cv =±1
in the lowest minibands (Fig. 3A).
The incommensurate case (moiré superlattice) differs from

the commensurate case in two important ways. One is that the
G-to-hBN coupling is dominated by the modulational part
ΔðrÞ=m3

P3
j=1cosðbj · rÞ arising from the moiré pattern. The

other is that the global gap parameter Δg is zero in the bare

Hamiltonian; however, a nonzero Δg value is generated pertur-
batively in m3, with the Δg sign the opposite of the m3 sign. The
analysis is particularly simple for the long-period moiré patterns
arising for rigid G and hBN stackings at small twist angles, as
shown in Fig. 1B.
Of course, one m3 harmonic cannot produce an average global

gap at DP because it is sign-changing, heibxi= 0. However, a
combination of three different harmonics can open up a gap
(14). This can be seen from a perturbation analysis of the
Hamiltonian [2] which we write as H =H0 +V , where H0 = vσ · p,
V = σ3m3

P3
j=1cosðbj · rÞ. Perturbation theory in V yields a term

describing a global gap at a third order in V via

δH =V
1

e−H0
V

1
e−H0

V . [7]

Choosing triplets of harmonics with bi + bj + bk = 0, third-order
perturbation theory in m3 yields a gap

Δg =
X

±bi ,±bk

m3σ3
2

1
vσ · bi

m3σ3
2

1
vσ · bk

m3

2
=−

3m3
3

4ðvjbjÞ2
, [8]

where the minus sign results from the anticommutation relations
½σ1, σ3$+ = 0, ½σ2, σ3$+ = 0. Importantly, this analysis predicts a re-
lation between signs

sgn
$
Δg

%
=−sgnðm3Þ, [9]

which is opposite to the relation found for the commensurate
case, Eq. 6. Whereas the gap size obtained at a third order of
perturbation theory in a noninteracting system is small, electron
interaction effects are expected to produce an enhancement and

A B

DC

Fig. 3. (A and B) Berry curvature distribution, ΩðkÞ, in the lowest conduction
band (labeled “1” in Fig. 2B) obtained from the Hamiltonian in Eq. 2. Two
choices of signs, (A) sgnðΔgÞ= sgnðm3Þ and (B) sgnðΔgÞ=−sgnðm3Þ, yield
Cv =−1 and Cv = 0, respectively. The hot spots of ΩðkÞ at DP (point ~Γ) and SBZ
corners ~K, ~K′ correspond to gap opening and avoided band crossing regions.
The central hot spot carries a net Berry flux π, whereas the corner hot spots
carry a net flux ±π=2 (see the text). Parameters used: m3 = 20 meV,
e0 = Zvjbj= 300 meV, Δg =m3 in A; Δg =−m3 in B. (C and D) Valley Hall con-
ductivity, σvxy (Eq. 14), vs. carrier density for the two minibands above and
below DP: σvxy changes sign for topological bands (C) but keeps the same sign
for nontopological bands (D) (n0 is the density needed to fill the first miniband,
other parameter values are the same as in A and B).
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We outline a designer approach to endow widely available plain
materials with topological properties by stacking them atop other
nontopological materials. The approach is illustrated with a model
system comprising graphene stacked atop hexagonal boron
nitride. In this case, the Berry curvature of the electron Bloch bands
is highly sensitive to the stacking configuration. As a result, electron
topology can be controlled by crystal axes alignment, granting a
practical route to designer topological materials. Berry curvature
manifests itself in transport via the valley Hall effect and long-range
chargeless valley currents. The nonlocal electrical response mediated
by such currents provides diagnostics for band topology.

topological bands | graphene | van der Waals heterostructure

Electronic states in topological materials possess unique
properties including a Hall effect without an applied mag-

netic field (1–3) and topologically protected edge states (4, 5).
Accessing nontrivial electron topology depends on identifying
materials in which symmetry and interactions produce topolog-
ical Bloch bands. Such bands can only arise when multiple re-
quirements, such as a multiband structure with a Berry phase and
suitable symmetry, are fulfilled. As a result, topological bands
are found in only a handful of exotic materials in which good
transport properties are often lacking. Formulating practical
methods for transforming widely available materials with a rea-
sonably high carrier mobility (such as silicon or graphene) into a
topological phase remains a grand challenge.
Here, we lay out an approach for engineering designer

topological materials out of stacks of generic materials—
“Chernburgers.” Our scheme naturally produces (i) topological
bands with different Chern invariant values, and (ii) tunable
topological transitions. As an illustration, we analyze graphene
on hexagonal boron–nitride heterostructures (G/hBN), where
broken inversion symmetry is expected to generate Berry cur-
vature (6, 7), a key ingredient of topological materials. Indeed,
recently valley currents have been demonstrated in a G/hBN
system (8) signaling the presence of Berry curvature (6). As we
will show, Berry curvature in G/hBN can be molded by stacking
configuration, leading to a large variability in properties.
Transitions between different topological states can be induced
by a slight change in stacking angle.
Topological bands in G/hBN arise separately for valley K and

valley K′. Graphene bandstructure reconstruction due to the
coupling to hBN produces superlattice minibands (9–14), with
Berry curvature ΩðkÞ developing near avoided crossings. The
minibands for each valley possess a valley Chern number

Cv =
1
2π

Z

k∈SBZ

d2kΩðkÞ, [1]

where the integral is taken over the entire superlattice Brillouin
zone (SBZ) in one valley (K or K′). As discussed below, for
commensurate stackings (Fig. 1A) Cv =±1 for the lowest mini-
bands. In contrast, for incommensurate moiré superlattice struc-
tures (Fig. 1B), the invariant [1] vanishes in these minibands,
Cv = 0. The difference in the behavior for these configurations
arises from the difference in sign of the contributions to Berry

curvature from regions near SBZ center ~Γ (the Dirac point,
hereafter denoted DP) and corners ~K, ~K′ (Fig. 2). We will see
that these contributions add in the commensurate case but sub-
tract for the incommensurate case, yielding topological and non-
topological bands, respectively (Fig. 1).
Interestingly, the conditions for both topological and non-

topological bands are met by currently available systems. Indeed,
both commensurate and incommensurate stackings have been
recently identified in G/hBN by scanning probe microscopy (15,
16). Further, the commensurate–incommensurate transition can
be controlled by twist angle between G and hBN, providing a
practical route in which to tailor electron topology via a tunable
structural transition.
We note that time-reversal (TR) symmetry requires that ΩðkÞ

in K and K ′ valleys have opposite signs. As a result, the total
Chern invariant always vanishes, CvðKÞ+ CvðK′Þ= 0. However,
the weakness of intervalley scattering (17, 18) can enable long-
range topological currents in individual valleys. As we will see,
the nonlocal electrical signals mediated by such currents can
provide diagnostics for valley band topology.
We also note that topological bands in graphene are some-

times presumed either impossible or impractical. Indeed, a
connection between K and K ′ bands at high energies, whenever
present, renders valley-specific topological invariants ill-defined
(19, 20). Proposals relying on large spin–orbit coupling (21, 22)
are also sensitive to disorder; proposals in other systems such as
optical flux lattices (23) suffer from similar implementation pit-
falls. Our scheme circumvents these difficulties by exploiting
Bragg scattering in the G/hBN superlattice to create energy gaps
above and below the K and K′ Dirac points (Fig. 2). The Dirac
points, sandwiched between these gaps, are no longer connected
in a single band; the resulting minibands possess well-defined
topological invariants.

Minimal Model for Superlattice Bands
Modeling the superlattice bandstructure is greatly facilitated by
several aspects of the G/hBN system. First is the long-wavelength
character of superlattice periodicity, which results from nearly
identical periods of graphene and hBN crystal structure. For
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A family of designer topological materials is introduced, com-
prising stacks of two-dimensional materials which by them-
selves are not topological, such as graphene. Previously, topo-
logical bands in graphene were presumed either impossible or
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No interactions needed - just coupling to hBN - to generate 
Dirac mass and form valley Chern bands  



Theoretical remarks
•Valley polarization gives non-zero AHE.   
•Quantization occurs if gap is complete - needs spin 

polarization
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Theoretical Remarks
Effective field theory approach to interactions: 

Hint =

Z
d
2
x d

2
x
0
Vsc(|x� x

0|)⇢(x)⇢(x0) +Hsr
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Conservation of spin and charge 
separately at each valley plus discrete 
Z2 valley exchange symmetry (TR,C2)



Theoretical remarks
•Valley polarization gives non-zero AHE.   
•Quantization occurs if gap is complete - needs spin 
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Theoretical remarks

Valley polarization Orbital moment
out of plane Ising
Associated with Tc robust

Tied to sign of QAHE



Theoretical remarks

Valley polarization Orbital moment
out of plane Ising

Spin polarization Spin moment
O(3) Heisenberg-like

Associated with Tc robust

Tied to sign of QAHE

Easily polarized by field at low T



Domain manipulation
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n.b. domains are valley domains

Metastability



Domain manipulation

Current switches domains.  How does this work?
(tiny)



Current

Well-developed IQHE:  
•no dissipation, only edge state transport 
•Charge of each edge is separately conserved

✤Can view current-carrying state as quasi-equilibrium ensemble 
where current determines edge occupation

Can formulate F(I,M)

⇢xx ⌧ ⇢xy
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Energetics

How does energy depend upon current in a Chern insulator?

August 23, 2019

1 Mechanism of current coupling to domains

The mechanism by which the current is interacting with ferromagnetic domains is poorly understood. The
observed behavior is not consistent with joule heating-driven thermal relaxation of magnetic order because the
application of a DC current stabilizes a magnetization state in an opposing magnetic field (Fig. ??C). This
statement holds true even in the limit of extreme device asymmetry.

In this section, we consider a simple mean field model for the coupling of an applied current to the QAH
order parameter, i.e. the Ising magnetization, whose sign determines the Chern number and therefore the Hall
conductivity. In particular, we show that the non-equilibrium distribution of electrons in the current-carrying
state is di↵erent in the two domains, owing to a di↵erence in population of the chiral edge states and to edge
asymmetries. As a result, the free energy of a domain contains a term which is odd in the order parameter and
in the current, thus preferentially favoring a particular sign of the Hall conductivity, which can be switched by
changing the sign of the current. The e↵ect is linear in the length of the edges.

We consider a Hall bar with translational invariance along x and a confining potential along y. As a simplified
model we take a free electron gas with two spin states, and presume that the up spins see a positive (orbital)
magnetic field B and the down spins see a negative magnetic field �B. The total density of electrons is such
that it would fill one Landau level if all spins were polarized; this mimics the situation in a Chern insulator
with ⌫ = ±1. We add a repulsive interaction between species, Un"n#. Presumably this leads to spontaneous
polarization, with the Ising order parameter � = n" � n#. Let us consider the mean field theory in which
without domain walls � becomes a constant, and all spins are polarized. Then we have two possible states
related by time reversal symmetry.

Consider a single domain. We suppose the minority polarization states are exchange split above the Fermi
energy, and model only the single spin polarization selected by the order parameter. This is then just the
usual integer quantum hall e↵ect. The twist is that we want to compute the free energy in the presence of a
current, and then observe how it depends upon the magnetization state of the domain. For a single domain
in the Landau gauge the lowest Landau level states are specified by a single momentum quantum number
k = kx. They are localized at the position y(k) = k`2sign(B), where ` =

p
�0/B is the magnetic length. Their

dispersion ✏(k) forms a flattened parabola which approximates the constant Landau level energy far from the
boundaries, but rises due to the confining potential when y(k) reaches either boundary. The precise way in
which it rises is non-universal and depends upon the shape of the boundaries. Importantly, the final result will
be expressed entirely in terms of properties of the two edges near the Fermi energy. Thus we expect that the
various assumptions in the model are not important, and the results are generic and model independent for a
QAH state.

In this formulation, we do not quite separate the two boundaries into distinct channels, because by treating
both edges as part of one whole, we automatically achieve the cancellation of unphysical e↵ects of states far
from the Fermi energy which must otherwise be put in manually. The logic we will take is to treat the system
in a sort of generalized Gibbs ensemble, in which we assume quasi-equilibrium with Lagrange multipliers for
conserved and approximately conserved quantities. The former is the charge, i.e. electron number, and the
latter is the current, which is conserved when we assume the two edges are decoupled. So with this replacement
we have

H ! H � µN � µ̃I =
X

k

(✏(k)� µ� µ̃✏0(k)) c†kck. (1)

1

n = nR + nL
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We can from this write the free energy

F/L =

Z
dk

2⇡
f(✏k � µ� µ̃✏0k), (2)

with
f(✏) = �kBT ln

�
1 + e��✏

�
. (3)

The current is given by

I = �
Z

dk

2⇡
e✏0knF (✏k � µ� µ̃✏0k). (4)

Here the Fermi function

nF (✏) =
1

e�✏ + 1
= f 0(✏). (5)

This implies

I = e
@(F/L)

@µ̃
. (6)

Eq. (6) fixes µ̃ as a function of current I, and thereby, inserting this into Eq. (2), obtain the free energy in terms
of current. We carry this out in a Taylor series in µ̃ and I.

The expansion of the free energy is

F/L = F0 +
1

2
F2µ̃

2 +
1

6
F3µ̃

3 +O(µ̃4). (7)

with "k = ✏k � µ. The first term F0 is a constant. The remaining coe�cients are

F2 =

Z
dk

2⇡
("0k)

2n0
F ("k) ⇡

1

2⇡
(|v1|+ |v2|) ,

F3 =

Z
dk

2⇡
("0k)

3n00
F ("k) ⇡ � 1

⇡

✓
sign(v1)

m1
+

sign(v2)

m2

◆
. (8)

Here vi = ✏0(ki) is the velocity at the end i (top or bottom of the Hall bar), and mi is the (inverse) curvature
at ki. The approximation signs indicate the leading terms in the T ! 0 limit, i.e. for temperatures well below
the AQHE gap.

With these equations we can solve for µ̃ in terms of the I up to second order in current. Reinserting this
into the formula for the free energy we obtain consistently up to third order the result

F/L = F0 +
1

2e2F2
I2 � F3

3e3F3
2

I3 +O(I4). (9)

Finally we have obtained a term (proportional to I3) in the energy which is odd in the current. The coe�cient
F3 is odd under time-reversal, i.e. changes sign in the two domains. So the cubic term favors one domain over
the other, depending upon the sign of the current.

A schematic of the mechanism of domain selection is shown in Fig. 1. For simplicity of illustration we
assume one edge is much “sharper” than the other, which means that its dispersion is much steeper than the
other “smooth” edge. The sharp edge with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport
because electrons move faster on this edge. This allows us to draw a picture of the dispersion just near one
edge. In the figure, the edge dispersion is shown in black for one sign of the magnetization/Hall conductivity
(denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal copies, so are
reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and
down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for
M < 0. Focus on the positive current case I > 0. We seek to find the energy di↵erence for fixed current but
opposite domains. Consider first the M > 0 domain. The positive current raises the Fermi level, populating
additional states. The total energy of those states is the integral over the domain of added states of the single
particle energy of those states: this defines the gray shaded area under the black dispersion curve and above
the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the M > 0 state. Now
consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area
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Two chemical potentials

Sommerfeld expansion

We can from this write the free energy

F/L =

Z
dk

2⇡
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with
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The current is given by
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e✏0knF (✏k � µ� µ̃✏0k). (4)

Here the Fermi function

nF (✏) =
1

e�✏ + 1
= f 0(✏). (5)

This implies

I = e
@(F/L)

@µ̃
. (6)

Eq. (6) fixes µ̃ as a function of current I, and thereby, inserting this into Eq. (2), obtain the free energy in terms
of current. We carry this out in a Taylor series in µ̃ and I.

The expansion of the free energy is

F/L = F0 +
1

2
F2µ̃

2 +
1

6
F3µ̃

3 +O(µ̃4). (7)

with "k = ✏k � µ. The first term F0 is a constant. The remaining coe�cients are

F2 =

Z
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Here vi = ✏0(ki) is the velocity at the end i (top or bottom of the Hall bar), and mi is the (inverse) curvature
at ki. The approximation signs indicate the leading terms in the T ! 0 limit, i.e. for temperatures well below
the AQHE gap.

With these equations we can solve for µ̃ in terms of the I up to second order in current. Reinserting this
into the formula for the free energy we obtain consistently up to third order the result

F/L = F0 +
1

2e2F2
I2 � F3

3e3F3
2

I3 +O(I4). (9)

Finally we have obtained a term (proportional to I3) in the energy which is odd in the current. The coe�cient
F3 is odd under time-reversal, i.e. changes sign in the two domains. So the cubic term favors one domain over
the other, depending upon the sign of the current.

A schematic of the mechanism of domain selection is shown in Fig. 1. For simplicity of illustration we
assume one edge is much “sharper” than the other, which means that its dispersion is much steeper than the
other “smooth” edge. The sharp edge with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport
because electrons move faster on this edge. This allows us to draw a picture of the dispersion just near one
edge. In the figure, the edge dispersion is shown in black for one sign of the magnetization/Hall conductivity
(denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal copies, so are
reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and
down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for
M < 0. Focus on the positive current case I > 0. We seek to find the energy di↵erence for fixed current but
opposite domains. Consider first the M > 0 domain. The positive current raises the Fermi level, populating
additional states. The total energy of those states is the integral over the domain of added states of the single
particle energy of those states: this defines the gray shaded area under the black dispersion curve and above
the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the M > 0 state. Now
consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area
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This implies
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Eq. (6) fixes µ̃ as a function of current I, and thereby, inserting this into Eq. (2), obtain the free energy in terms
of current. We carry this out in a Taylor series in µ̃ and I.

The expansion of the free energy is
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Here vi = ✏0(ki) is the velocity at the end i (top or bottom of the Hall bar), and mi is the (inverse) curvature
at ki. The approximation signs indicate the leading terms in the T ! 0 limit, i.e. for temperatures well below
the AQHE gap.

With these equations we can solve for µ̃ in terms of the I up to second order in current. Reinserting this
into the formula for the free energy we obtain consistently up to third order the result

F/L = F0 +
1

2e2F2
I2 � F3

3e3F3
2

I3 +O(I4). (9)

Finally we have obtained a term (proportional to I3) in the energy which is odd in the current. The coe�cient
F3 is odd under time-reversal, i.e. changes sign in the two domains. So the cubic term favors one domain over
the other, depending upon the sign of the current.

A schematic of the mechanism of domain selection is shown in Fig. 1. For simplicity of illustration we
assume one edge is much “sharper” than the other, which means that its dispersion is much steeper than the
other “smooth” edge. The sharp edge with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport
because electrons move faster on this edge. This allows us to draw a picture of the dispersion just near one
edge. In the figure, the edge dispersion is shown in black for one sign of the magnetization/Hall conductivity
(denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal copies, so are
reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and
down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for
M < 0. Focus on the positive current case I > 0. We seek to find the energy di↵erence for fixed current but
opposite domains. Consider first the M > 0 domain. The positive current raises the Fermi level, populating
additional states. The total energy of those states is the integral over the domain of added states of the single
particle energy of those states: this defines the gray shaded area under the black dispersion curve and above
the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the M > 0 state. Now
consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area
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We can from this write the free energy
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with
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The current is given by
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This implies
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Eq. (6) fixes µ̃ as a function of current I, and thereby, inserting this into Eq. (2), obtain the free energy in terms
of current. We carry this out in a Taylor series in µ̃ and I.

The expansion of the free energy is
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Here vi = ✏0(ki) is the velocity at the end i (top or bottom of the Hall bar), and mi is the (inverse) curvature
at ki. The approximation signs indicate the leading terms in the T ! 0 limit, i.e. for temperatures well below
the AQHE gap.

With these equations we can solve for µ̃ in terms of the I up to second order in current. Reinserting this
into the formula for the free energy we obtain consistently up to third order the result

F/L = F0 +
1

2e2F2
I2 � F3

3e3F3
2

I3 +O(I4). (9)

Finally we have obtained a term (proportional to I3) in the energy which is odd in the current. The coe�cient
F3 is odd under time-reversal, i.e. changes sign in the two domains. So the cubic term favors one domain over
the other, depending upon the sign of the current.

A schematic of the mechanism of domain selection is shown in Fig. 1. For simplicity of illustration we
assume one edge is much “sharper” than the other, which means that its dispersion is much steeper than the
other “smooth” edge. The sharp edge with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport
because electrons move faster on this edge. This allows us to draw a picture of the dispersion just near one
edge. In the figure, the edge dispersion is shown in black for one sign of the magnetization/Hall conductivity
(denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal copies, so are
reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and
down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for
M < 0. Focus on the positive current case I > 0. We seek to find the energy di↵erence for fixed current but
opposite domains. Consider first the M > 0 domain. The positive current raises the Fermi level, populating
additional states. The total energy of those states is the integral over the domain of added states of the single
particle energy of those states: this defines the gray shaded area under the black dispersion curve and above
the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the M > 0 state. Now
consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area
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A schematic of the mechanism of domain selection is shown in Fig. S17. For simplicity of illustration we assume one edge is1

much “sharper” than the other, which means that its dispersion is much steeper than the other “smooth” edge. The sharp edge2

with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport because electrons move faster on this edge. This3

allows us to draw a picture of the dispersion just near one edge. In the figure, the edge dispersion is shown in black for one sign of4

the magnetization/Hall conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal5

copies, so are reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and6

down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for M < 0. Focus7

on the positive current case I > 0. We seek to find the energy difference for fixed current but opposite domains. Consider first8

the M > 0 domain. The positive current raises the Fermi level, populating additional states. The total energy of those states is9

the integral over the domain of added states of the single particle energy of those states: this defines the gray shaded area under10

the black dispersion curve and above the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the11

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area12

above the blue curve and below the k axis for k > 0, ✏ < 0 is the energy cost for creating these hole states. One can see that the13

blue area is not equal to the gray area, and that the inequality is due to the curvature of the dispersion. The difference in the two14

areas is the energy difference the two domains due to the non-equilibrium current.15

M > 0M < 0

k

✏

FIG. S17. Schematic illustration of an asymmetric “fast” edge and the population changes at this edge due to a current I > 0 for positive and
negative domains, shown in black and blue. The dashed lines show the Fermi energy for the two cases in the presence of the current. The
difference of the two shaded areas is the energy difference between the two domains due to the current (see text).

Estimates of effect magnitude in tBLG16

To make an estimate of the magnitude of these effects, we use the same “fast edge” approximation to simplify to a single17

velocity and mass parameter. Then the cubic term in the free energy is18

F ⇠ (2⇡)3

3⇡

~2sign(v)
me3v3

LI3. (S10)

Here we restored the dependence on ~. The contribution the current to the free energy is enhanced by decreases in the edge19

mass and velocity, which are determined by non-universal edge physics. The free energy is particularly sensitive to v and I , since20

both appear cubed, which renders making precise estimates difficult. Nonetheless, to show consistency, we take v = 5⇥104 m/s21

(a typical literature value for magic angle tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which22

is the order of the switching currents at low temperature (since the theory has been carried at T = 0). This gives an energy23

F = 4.0 meV, which is similar to the magnetostatic energy assuming an orbital moment per electron of a few Bohr magnetons.24

Uncertainties in the edge properties as well as thermal renormalizations not taken into account here make it hard to make a more25

quantitative comparison at present. These are interesting subjects for future work.26

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH device with gate defined edges. In such a27

device, one could systematically vary the sharpness and symmetry of the edge potential to probe which effects are most relevant28

to critical switching currents.29

Simple limit: one “fast” (costly) edge

I>0: 
• Add right-moving e-s 
• Remove left-moving e-s

�F ⇠ ~2
me3v3

LI3
<latexit sha1_base64="cvQbA4OgPcQ7CzMovsKGZE/a3ng="></latexit>



Dissipative Regime

A fully non-equilibrium problem, bulk 2d physics



Thanks

+
X

j

h
e�iQj ·(u1�u2) †

2 Tj 1 + h.c.
i

<latexit sha1_base64="9JECA2gE1KkaM2TJf972koZ+mPY="></latexit>

H =
X

l

 †
l


�iv

✓
⌧µ +

@ul,µ

@x⌫
⌧⌫

◆
@

@xµ
+ v (K · @µul +Al) ⌧

µ

�
 l

<latexit sha1_base64="cEaFIAtBUhUqt8irHBPg/rZyeHI="></latexit>

M. Serlin et al, arXiv:1907.00261L.B., arXiv:1909.01545


