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Outline

® NaYbOg: a possible new quantum spin liquid

® Continuum model for twisted bilayer graphene for
dummies

® Quantum anomalous Hall effect in TBG: controlling the
order parameter with current



Spin Liquids

® Possible U(1) Dirac QSL on the triangular lattice (J1-J2)
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Spin Liquids?

Material

Kagome Heisenberg U(1) Dirac Herbertsmithite Interlayer disorder

Un-reproduced key
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NaYbOz

ESR shows gx=3.3, g,=1.7: expect
XY-like spins (common for Yb3+)
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No ordering or freezing at B=0
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NaYbOz

Neutron scattering
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NaYbOz

Up—up—down

Quantum disordered
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Temperature, T (K)
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Magic angle graphene

Physics Worlad
‘ Breakthrough of the year,
- - 2018

Pablo Jaillo—Herrero |

(MIT)
R, (kQ) 8-ﬂ|||]ﬂm . Dimitri Efetov
M1, 6 =1.16° (Barcelona)

. CS - correlated state

SC — superconducting state

Bl — band insulator LGOI 10

Superconductor

i1 i reidees A

/
/

-1.8 -1.6 -1.4 -1.2
- : 12 ~Am-2 -
Carrier density, n (10' cm™) n( 02 em 2)

Y. Cao et al, 2018 YX. Lu et al, 2019



Two topics in TBG

1.Continuum model for TBG as effective
field theory

2.Non-equilibrium driving a QAHE state
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Continuum modael

approximate single layer as Dirac cone
no mixing from one valley to the other



Continuum modael




10

One valley

Iq@ :2KDSing

moiré Brillouin zone



Continuum modael

Bistritzer+MacDonald (2011) H = Hyn + Hiun

Hkin — U(k — Kl) y 0'9/2‘1><1‘ -+ U(k — KQ) y 0'_9/2|2><2|

Hyun = w (T(@)[1)(2] + T'(2)[2)(1])

periodic hopping matrix: smoothly interpolates

hopping of uniform AA/AB/BA bilayers AR
e AR B A
*Restores periodicity BA . BA
, , AA
*Reveals dimensionless parameter, AB. " AB

w/vky
AA

*Predicts flat bands at magic angles



We derive a continuum model for the tunneling term by assum-
ing that the interlayer tunneling amplitude between z-orbitals
is a smooth function #(r) of spatial separation projected onto the
graphene planes. The matrix element

1 2
Ti = (P [HT|¥5)) [1]

of the tunneling Hamiltonian Ht describes a process in which an
electron with momentum p’ = Mp residing on sublattice § in one
layer hops to a momentum state k and sublattice o in the other
layer. In a z-band tight-binding model the projection of the wave
functions of the two layers to a given sublattice are

m, _ 1 ik(R+1,)
Via) = —= D @ F R+ 7,) [2]
N R
and
2, 1 DR+7) 1l |
=——— Ve IR + 7). [3]
‘l//p/}> \/N; ’ ﬂ)

Here 7o = 0, 7g = 7, and R is summed over the triangular Bravais
lattice. Substituting Eqgs. 2 and 3 in Eq. 1 and invoking the two-
center approximation,

R+ T |HI[R + 7)) = (R +7,~R =), [4]

for the interlayer hopping amplitude in which ¢ depends on the dif-
ference between the positions of the two carbon atoms we find that

t_
af Z k+G1 i[Gy7,—~Gy(75—17)-GLd] 5
Tkp’ = 0 1 el[ 17 z(T/i 7) 2 ]5k+G1,I3’+G/2' [5]

GG,

Here Q is the unit cell area, ¢, is the Fourier transform of the tun-
neling amplitude #(r), the vectors G; and G, are summed over re-
ciprocal lattice vectors, and G, = MG,. The bar notation over
momenta in Eq. 5 indicates that momentum is measured relative
to the center of the Brillouin zone and not relative to the Dirac
point. Note that crystal momentum is conserved by the tunneling
process because ¢ depends only on the difference between lattice
positions.*

erivation

Directly calculate overlap of every C orbital in
layer 1 with every C orbital in layer 2

Assume rigid rotation of layers

Obtain hopping matrix in momentum space by
Poisson resummation formula

At the end of the calculation Fourier transform
back to obtain simple real space formula



Fftective field theory

Describes low energy, long wavelength physics,

can include effects of any perturbations that are

small and slowly varying

Here:

Unperturbed system: isolated graphene layers

Perturbations:
* Interlayer tunneling
* Slowly varying displacements of the layers



Rotation c Displacement
Gradient

Ashcroft-Mermin: phonons

oo‘o'o.o O o® o0 %

PoRcuR) i

R

Rotation
1
925(&6uy—8yux) u=0zxR

Twisting is just a subset of elastic

deformations of two layers



Fftective field theory

Locality:
H = /d%?—[[w,u,w]

Hamiltonian density is a local functional of the
fields, analytic, and expandable in powers of small
parameters — here field gradients and hopping
strength



Fftective field theory

Locality:
H = /d%?—[[w,u,w]

Hamiltonian density is a local functional of the
fields, analytic, and expandable in powers of small
parameters — here field gradients and hopping
strength

Small problem:

r=R+u(R) R is not the actual real space location -
physics is local in x not R



Fftective field theory

Locality:
H = /d%?—[[w,u,w]

Hamiltonian density is a local functional of the
fields, analytic, and expandable in powers of small
parameters — here field gradients and hopping
strength

Solution: Eulerian coordinates

r =R+ u(x)



Fftective field theory

® Three effects:

1. Coordinate change: transformation of local frames to
global one

2. Strains: modification of energetics of each layer due to
changes in electron hopping

3. Tunneling: strong dependence of relative local
alignment



Result

ou o,
_ T ‘ | L v |
M= Sl | (7 ) o U+ A

£ [Ty Ty, b,

Correct to first order in strain gradients and hopping



Result

coordinate change

M= 30wl i (7 G ) o (K Oy ) 7]
[

0z, 0z,

£ [Ty Ty, b,

Correct to first order in strain gradients and hopping



R@SU‘t %@
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£ [Ty Ty, b,

Correct to first order in strain gradients and hopping



Result

ou o,
_ T ‘ | L v |
M= Sl | (7 ) o U+ A

4 Z { —1Q; - (u1— ’UJ2)¢£ T, + h.c. } «— tunneling. Form fixed by space

j group symmetries

Tj:U]I+w(CJT+—|—C]T_), 75 =0,1,2,

Correct to first order in strain gradients and hopping



Apply to rigid twist

. Oou, ,\ O
o2 {_w (TM "o, ) ar, U +AZ)TM} "

+ 3 [eri @yl Ty e ]

J

v
Evaluate for u1=—u2=§2><w. »

. vk . vk
H = 1] {—m(%) v jff‘f} 1 + ¢ {—m(—%) V- 294 ¥,
+3° {e—i%"%; T, + h.c.} g — 65 xQ
J

Exactly the BM model.



Result

ou o,
_ T ‘ | Ly v |
M= S [ (7 Gt )y o w4

+3 [e—@'Qa"Wl—“Qw; T, + h.c.}
J

e Recovers BM result intuitively
e Subsumes other extensions of BM (Nam+Koshino, Bi,Yuan+Fu...)
* Includes coupling ot acoustic phonons
e Can handle arbitrary inhomogeneous strains
o All these things together
® Easy to add more layers
* \ery nice for teaching



Quantum Anomalous Hall Effect

This is just the appearance of QHE in zero magnetic field by
spontaneous breaking of time-reversal symmetry

A The lowest sub-bands v

with broken TRS ---~- - Fermilevel

C.-Z. Zhang et al, 2013
Cr-doped (Bi/Sb),Tes



QAHE in TBG

3 e’s per moiré unit cell
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Theoretical remarks

e Underlying Dirac fermions of graphene have large incipient

Berry curvature
e Curvature is realized by breaking C,T symmetry
*Valley polarization gives non-zero AHE.

* Quantization occurs it gap is complete - needs spin

polarization
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Energy

Energy

eV e Symmetry breaking =
ey T A Z, (valley)
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Domain manipulation
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Current
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Well-developed IQHE:
* no dissipation, only edge state transport

* Charge of each edge is separately conservea

¢ Can view current-carrying state as quasi-equilibrium ensemble
where current determines edge occupation

» Can tormulate F(I,M)



(A)symmetry

| — | vector
M — -M  pseudovector



Energetics

Simple limit: one “fast” (costly) edge

1>0:
e Add right-moving e
* Remove left-moving e

hZ
AF ~ LI3

me3v3




Dissipative Regime

C " 05005 1

Current (nA)

A fully non-equilibrium problem, bulk 2d physics
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