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Spin Liquids
• Possible U(1) Dirac QSL on the triangular lattice (J1-J2)
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state evolving adiabatically under the flux insertion. In
most cases, the adiabatic flux insertion can be main-
tained, except very close to the Dirac cone (large flux ✓),
where accurate iDMRG simulation becomes very chal-
lenging due to the small gap and large entanglement of
the state. Once adiabatic flux insertion fails at large
✓, the iDMRG simulation may suddenly collapse to an
ordered state (or other super-selection sector of ground-
state) [45]. We will not present the data of flux ✓ for
which adiabatic flux insertion fails, as they do not reveal
any direct information of spin-liquid ground state at zero
flux.

Excitation gap. Previous DMRG studies have found
a considerably large spin gap in the J1-J2 TAFM [17].
However, this is not su�cient to exclude a DSL since
on a cylinder the momentum is discrete, so the gapless
Dirac point may be missed. The flux insertion, which
e↵ectively changes the quantized momentum of spinons,
can make spinons hit Dirac point at specific values of
flux ✓ [45]. By carefully studying the DSL ansatz incor-
porating the e↵ect of emergent gauge fields [50], we find
that DSL on di↵erent cylinder geometries YCLy-n have
distinct ✓ dependence. If both Ly and n are even, the
DSL is gapless when ✓ = 2⇡ (Since spinons are fractional
particles, the flux insertion has 4⇡ periodicity). For all
other three cases, the system will be gapless at ✓ = ⇡ or
3⇡.

Fig. 2 shows the energy gap as a function of flux ✓.
Although the gap is large at ✓ = 0 [62], we find it sig-
nificantly decreases as ✓ increases. The sensitivity of the
energy gap is an indication of the gapless DSL: 1) for
a gapped spin liquid the spin gap should have a small
dependence (exponentially in Ly) on the flux; 2) finite
flux drags the momentum lines toward the Dirac points,
thus the gap monotonically reduces. Due to the small

FIG. 2. Spin excitation gap. (a) Energy gap �Sz=0 and
(b) �Sz=1 as a function of the inserted flux ✓ at J2/J1 = 0.12
for YC8-0 (blue #), YC10-0 (blue ⇤), YC8-1 (black }) and
YC10-1 (black D) cylinder geometries. The data is collected
using DMRG bond dimension m = 4096 for YC8/10-0 and
6144 for YC8/10-1. (Details please see the supple. mat.[50])

FIG. 3. Correlation length spectrum. Inverse correla-
tion length 1/⇠Sz=1 as a function of the flux ✓ (left column),
momentum k1 (middle column) and momentum k2 (right col-
umn) for the cylinder (a) YC8-0, (b) YC10-0, with m = 6144
and (c) YC8-1, (d) YC10-1 with m = 12288. The lowest-lying
excitations contain spinon-pair at M points and monopole ex-
citations at K± point, the former is denoted by blue 9 while
the latter is denoted by red / and magenta .. It is an artifact
of finite bond dimension that the correlation length is not di-
verging at the Dirac point, and it becomes more severe for the
larger system sizes (see supplementary material [50] for more
discussion).

gap when Dirac points are approached, we are not able
to maintain the adiabatic flux insertion when ✓ ⇠ 1.5⇡
for YC2n-2m cylinder, and ✓ ⇠ ⇡ for all other cylin-
ders. There are also truncation e↵ects from the finite
bond dimensions m in iDMRG, which may explain that
the Ly = 10 gap appears larger than the Ly = 8 gap in
Fig. 3. We discuss results for di↵erent m in the Supple-
mental Material [50]. The important message is, in all
cases the gap systematically decreases as a function of ✓,
and it is consistent with the theoretical expectation that
the finite-size gap of DSL vanishes at i) ✓ = ⇡ for YC8-1
and YC10-1, ii) ✓ = 2⇡ for YC8-0 and YC10-0.

The frustrated case: inside the (gapless) spin-liquid phase

• J1 − J2 model with J2/J1 = 0.125

The variational wave function has only π-flux
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• Qualitative features are not all captured by mean field (no Gutzwiller projection)

• Huge signal at low energies around K points

X.-Y. Song, C. Wang, A. Vishwanath, Y.-C. He, arXiv:1811.11186
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T1 T2 Rx Rotation T note

square

�†
1 �1 ��1 ��1 ��3 �†

1 Re[�1] as  ⌧
3 

�†
2 ��2 ��2 ��2 ��2 ��†

2 Im[�2] trivial
�†

3 ��3 �3 �3 �1 �†
3 Re[�3] as  ⌧

1 
�†

4/5/6 ��4/5/6 ��4/5/6 �4/5/6 �4/5/6 ��†
4/5/6 Re[�4/5/6] as  ⌧

2 ⌦ �1/2/3 

honey-

comb

�†
+ e�i 2⇡3 �†

+ �+ ei
⇡
3 �†

� �+ Im[�1] as  ⌧
1 

�†
� ei

2⇡
3 �†

� �� ei
⇡
3 �†

+ �� Im[�2] as  ⌧
2 

�†
3 �†

3 �†
3 �3 �†

3 �3 Re[�3] trivial
�†

4/5/6 �†
4/5/6 �†

4/5/6 ��4/5/6 ��†
4/5/6 ��4/5/6 Im[�4/5/6] as  ⌧

3 ⌦ �1/2/3 

TABLE I: Square and Honeycomb lattice: Monopole symmetries. Summary of monopole transformations
on square (staggered flux state) and honeycomb lattices, where �1/2/3 are spin singlet monopoles (�± = �1 ⌥ i�2)
and �4/5/6 are spin triplet monopoles. Symmetry operations T1/2, Rx denote translation along two lattice vectors
(for honeycomb T1/2 direction has 2⇡/3 angle between them) and reflection along horizontal bonds, respectively.
Rotation implies site centered 4-fold rotation for the square lattice and hexagon centered 6-fold rotation for the
honeycomb. There is always a trivial monopole (highlighted in red) for DSLs on both these bipartite lattices. On
proliferating the trivial monopole the emergent symmetry is reduced from U(1)top ⇥ SO(6) ! SO(5), and the 15
SO(6) adjoint fermion bilinears spilt according to 5 + 10. The 5 fermion bilinears, which form an SO(5) vector, are
now symmetry equivalent to 5 monopoles, as listed in the last column, which is relevant to the chiral symmetry
breaking pattern described in Sec IV B 1 and Eq. (12).

T1 T2 R C6 T
M00 + + � + �
Mi0 + + + � +
M01 � � �M03 �M02 +
M02 + � M02 M03 +
M03 � + �M01 M01 +
Mi1 � � Mi3 Mi2 �
Mi2 + � �Mi2 �Mi3 �
Mi3 � + Mi1 �Mi1 �
�†

1 e�i⇡3 �†
1 ei

⇡
3 �†

1 ��†
3 �2 �1

�†
2 ei

2⇡
3 �†

2 ei
⇡
3 �†

2 �†
2 ��3 �2

�†
3 ei

�⇡
3 �†

3 ei
�2⇡
3 �†

3 ��†
1 ��1 �3

�†
4/5/6 ei

2⇡
3 �†

4/5/6 e�i 2⇡3 �†
4/5/6 �†

4/5/6 ��4/5/6 -�4/5/6

TABLE II: Triangular Lattice: Fermion Bilinears

and Monopole Symmetries The Mij =  �i⌧ j 
denotes the 16 fermion mass terms. Their
transformation under lattice and time reversal
symmetry are shown followed by the corresponding
table for the six magnetic monopoles �i. Symmetries
T1/2, R, C6 denote translation and reflection marked in
fig 1, and 6-fold rotation around a site, respectively.

it is expected to be relevant to understanding the phase
structure on the triangular lattice.

In contrast, on the kagomè lattice an inspection of the
monopole and mass term transformation laws imply (see
Table III) the following two invariant terms:

�L1
kagome = M01(�1e

i 2⇡
3 ) + M02(�2) + M03(�3e

�i 2⇡
3 ) + h.c.

�L2
kagome = ei 2⇡

3 (�†
1)

2 + (�†
2)

2 + e�i 2⇡
3 (�†

3)
2 + h.c. (10)

where M0i ⌘  ⌧ i . Note, the first term involves a

combination of a single monopole insertion operator and
a fermion bilinear, which may be regarded as the ex-
cited state of a monopole with larger scaling dimension,
and the second term refers to doubled monopole inser-
tion. The scaling dimensions for these operators, esti-
mated from large Nf is �1⇤ = �1 +

p
2 ⇠ 2.43 and

�2 = 0.673Nf �0.194 ⇠ 2.50. While these are nominally
relevant, their closeness to 3 implies that we should leave
open the possibility of a stable phase or critical point on
the kagomè lattice described by a U(1) Dirac spin liq-
uid. Regardless of stability, this di↵erence in the nature
of the monopoles from the bipartite case will have an im-
portant impact on proximate orders that we document
below. In particular, relatively complex magnetic orders
such as the 120 degree state and the 12 site VBS pattern
on the triangular lattice are captured.

B. Chiral Symmetry Breaking, Monopole
Proliferation and Ordered States

Now, we will be concerned with identifying ordered
states that can be reached from the Dirac spin liquid,
either as a result of an intrinsic instability, or because
interactions are tuned to trigger a phase transition. The
scenario that we will assume is that of a two step pro-
cess with spontaneous mass generation occurring first,
i.e. a fermion bilinear spontaneously acquires an ex-
pectation value by symmetry breaking, followed by the
monopole proliferation and confinement [50]. The 16
fermion bilinears are classified as 1 � 15, a singlet and
adjoint representation of SU(4)⇠ SO(6). Depending on
the symmetries of the interaction, a mass term  ̄M ,
with M being either the identity or a vector such as
M = (M01, M02, M03), can be generated. This is cap-

X-Y Song et al, 2018



Spin Liquids?

Model QSL Material Issue

Kagome Heisenberg U(1) Dirac Herbertsmithite Interlayer disorder

Kitaev honeycomb Gapless Z2/Ising 𝛼-RuCl3
Un-reproduced key 

result

Triangular Hubbard U(1) Fermi surface k-(ET),dmit organics
Interlayer disorder/
unreproduced result

Triangular J1-J2 
Heisenberg U(1) Dirac? YbMgGaO4?

Random alloy Mg/Ga 
disorder



NaYbO2

Isotropic triangular lattice of Yb3+ 
effective S=1/2 moments

ARTICLESNATURE PHYSICS

plotted in Fig. 3a show an increase in the susceptibility as a phase 
boundary is traversed at 3 T, followed by nearly total suppression 
of χ′(H) at 5 T. For μ0H > 5 T, χ′(H) begins to recover, suggesting 
a higher-field phase boundary—one marking the quenching of the 
ordered state as spins are further polarized toward a quantum para-
magnetic phase. Data collected across the ordered regime are plot-
ted in Fig. 3b and show a sharp transition below 1 K at μ0H = 4 T. 
The probable origin of the enhancement in χ′(T) when entering the 
ordered state at 3 T is the proximity of the quantum critical point 
associated with the nearby 0 K phase boundary. These quantum 
fluctuations are suppressed when crossing the finite-temperature 
phase boundaries away from this point.

To further characterize NaYbO2, heat capacity measurements 
were performed. Figure 3c shows the zero-field C(T) of both NaYbO2 
and a non-magnetic comparator, NaLuO2, plotted from 80 mK  
to 40 K. Consistent with susceptibility data, no sharp anomaly 
indicative of the onset of long-range order is observed in NaYbO2. 
Instead, a broad feature comprising two peaks is apparent—one peak 

centred near 1 K and the other near 2.5 K. Two peaks in C(T) are 
predicted in a number of theoretical models for both trian gular34,35 
and kagome-based36,37 Heisenberg lattices where a quantum spin 
liquid state appears. Integrating the magnetic entropy, ΔSM(T), with 
the lattice contribution subtracted yields an entropy reaching 95% 
of Rln(2) where R is the ideal gas constant and is consistent with the 
nominal Jeff = 1/2 magnetic doublet of NaYbO2.

When applying a magnetic field, data in Fig. 3d show that the 
2.5 K peak in specific heat as a function of temperature, Cp(T), 
where pressure (p) is constant, shifts upward in temperature, similar  
to other frustrated magnets; however, under 5 T, a sharp anomaly 
appears near 1 K and is coincident with the downturn in χ′(T) at 
this field. Under 9 T, this sharp peak broadens and shifts lower 
in temperature as the system is driven into the disordered state. 
Integrated under 5 T, the magnetic entropy matches that of 0 T, and 
the lowest-temperature Cp(T) is strongly suppressed once order is 
generated. This is consistent with the suppression of low-energy 
spin fluc tuations when entering the ordered state, which return 
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Fig. 2 | Low-field magnetization and magnetic susceptibility data. a, Low-temperature Curie–Weiss fit to the constant field magnetic susceptibility  
χd.c. in a temperature range free from Van Vleck contributions from high-energy crystal field doublets (where the majority of trivalent Yb ions are in  
the Jeff!=!1/2 ground state). A large mean-field interaction strength of −10.3(8)!K with an effective local moment, μeff, of 2.63(19)!μB is fit with a 
temperature-independent χ0!=!0.0053(3)!e.m.u.!mol−1 background term. Inset: EPR data collected at 4.2!K fit to anisotropic g-factors of gab!=!3.294(8) 
and gc!=!1.726(9). b, Isothermal magnetization versus field data reaching only 67% of the expected 1.5!μB per Yb ion polarized moment under μ0H!=!9!T. 
c, Temperature and frequency dependence of a.c. magnetic susceptibility χ′(T) from 50!mK to 4!K under zero field. d, χ′(T) data collected under applied 
magnetic fields. A minority fraction of free Yb moments are quenched at low temperatures and high fields, resulting in a peak in χ′(T), and the downward 
inflection parameterizing this Zeeman splitting is denoted by orange stars. Inset shows field-subtracted 0!T!−!2!T χ′(T) data between 1!K and 3!K and a 
Curie–Weiss fit quantifying the fraction of free Yb moments in the system, as described in the text. Values in parentheses and error bars indicate one 
standard deviation. a.u., arbitrary units.
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Susceptibility shows antiferromagnetic 
exchange with ~10K scale

ESR shows gxy=3.3, gz=1.7: expect 
XY-like spins (common for Yb3+) 



NaYbO2
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plotted in Fig. 3a show an increase in the susceptibility as a phase 
boundary is traversed at 3 T, followed by nearly total suppression 
of χ′(H) at 5 T. For μ0H > 5 T, χ′(H) begins to recover, suggesting 
a higher-field phase boundary—one marking the quenching of the 
ordered state as spins are further polarized toward a quantum para-
magnetic phase. Data collected across the ordered regime are plot-
ted in Fig. 3b and show a sharp transition below 1 K at μ0H = 4 T. 
The probable origin of the enhancement in χ′(T) when entering the 
ordered state at 3 T is the proximity of the quantum critical point 
associated with the nearby 0 K phase boundary. These quantum 
fluctuations are suppressed when crossing the finite-temperature 
phase boundaries away from this point.

To further characterize NaYbO2, heat capacity measurements 
were performed. Figure 3c shows the zero-field C(T) of both NaYbO2 
and a non-magnetic comparator, NaLuO2, plotted from 80 mK  
to 40 K. Consistent with susceptibility data, no sharp anomaly 
indicative of the onset of long-range order is observed in NaYbO2. 
Instead, a broad feature comprising two peaks is apparent—one peak 

centred near 1 K and the other near 2.5 K. Two peaks in C(T) are 
predicted in a number of theoretical models for both trian gular34,35 
and kagome-based36,37 Heisenberg lattices where a quantum spin 
liquid state appears. Integrating the magnetic entropy, ΔSM(T), with 
the lattice contribution subtracted yields an entropy reaching 95% 
of Rln(2) where R is the ideal gas constant and is consistent with the 
nominal Jeff = 1/2 magnetic doublet of NaYbO2.

When applying a magnetic field, data in Fig. 3d show that the 
2.5 K peak in specific heat as a function of temperature, Cp(T), 
where pressure (p) is constant, shifts upward in temperature, similar  
to other frustrated magnets; however, under 5 T, a sharp anomaly 
appears near 1 K and is coincident with the downturn in χ′(T) at 
this field. Under 9 T, this sharp peak broadens and shifts lower 
in temperature as the system is driven into the disordered state. 
Integrated under 5 T, the magnetic entropy matches that of 0 T, and 
the lowest-temperature Cp(T) is strongly suppressed once order is 
generated. This is consistent with the suppression of low-energy 
spin fluc tuations when entering the ordered state, which return 
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Fig. 2 | Low-field magnetization and magnetic susceptibility data. a, Low-temperature Curie–Weiss fit to the constant field magnetic susceptibility  
χd.c. in a temperature range free from Van Vleck contributions from high-energy crystal field doublets (where the majority of trivalent Yb ions are in  
the Jeff!=!1/2 ground state). A large mean-field interaction strength of −10.3(8)!K with an effective local moment, μeff, of 2.63(19)!μB is fit with a 
temperature-independent χ0!=!0.0053(3)!e.m.u.!mol−1 background term. Inset: EPR data collected at 4.2!K fit to anisotropic g-factors of gab!=!3.294(8) 
and gc!=!1.726(9). b, Isothermal magnetization versus field data reaching only 67% of the expected 1.5!μB per Yb ion polarized moment under μ0H!=!9!T. 
c, Temperature and frequency dependence of a.c. magnetic susceptibility χ′(T) from 50!mK to 4!K under zero field. d, χ′(T) data collected under applied 
magnetic fields. A minority fraction of free Yb moments are quenched at low temperatures and high fields, resulting in a peak in χ′(T), and the downward 
inflection parameterizing this Zeeman splitting is denoted by orange stars. Inset shows field-subtracted 0!T!−!2!T χ′(T) data between 1!K and 3!K and a 
Curie–Weiss fit quantifying the fraction of free Yb moments in the system, as described in the text. Values in parentheses and error bars indicate one 
standard deviation. a.u., arbitrary units.
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when the high-field quantum paramagnetic phase is approached. 
Determining the precise form of the zero-field Cp(T) is compli-
cated by a nuclear Schottky feature that dominates below 100 mK 
(Supplementary Fig. 2c); however, attempts to do so away from this 
feature yield C(T) ∝ T2, as shown in the inset of Fig. 3d.

Low-temperature neutron-scattering measurements were also  
per formed. Figure 4a shows temperature-subtracted (330 mK −  
1.5 K) diffraction data and the absence of zero-field magnetic  
order. Field-subtracted data at 450 mK plotted in Fig. 4b reveal  
that under 5 T, new superlattice reflections appear at the momen-
tum transfers Q = (1/3, 1/3, 0), (1/3, 1/3, 1) and (1/3, 1/3, 3). Given  
the symmetry constraints of the R3m structure, these either repre-
sent a 120° non-collinear spin structure or an up–up–down pattern 
of spin order. The absence of a reflection at Q = (1/3, 1/3, 2) sug-
gests that the field-induced order is collinear. Additionally, mag-
netic intensity appears at the Q = (0, 0, 3) position, consistent with 
the two-q or two-propagation vector structure (q = (1/3, 1/3, 0) + 
q = (0, 0, 0)) expected for the equal-moment up–up–down state38. 
The best fit to this model is shown in Fig. 4c, where spins refine to  
be oriented nearly parallel to the (1, −1, −1) direction with an 
ordered moment of 1.36 ± 0.1 μB. This value is less than the 1.5 μB 
expected, probably due to the presence of a minority fraction of 
free moments as well as the influence of remnant fluctuations in 

the ordered state. Magnetic peaks are resolution-limited with a 
minimum spin–spin correlation length ξmin = 450 Å. Further data 
collected at 67 mK determine the low-temperature, magnetic field 
phase boundaries (Supplementary Fig. 4b).

Inelastic scattering data plotted in Fig. 4d,e reveal a renormaliza-
tion of the low-energy spin dynamics when transitioning from the 
quantum disordered state into the up–up–down phase. The zero-
field data show a diffuse spectrum of excitations centred around  
the (1/3, 1/3, 0) wave vector, and when applying a 5 T field, much  
of this spectral weight is shifted into the elastic channel and a  
nearly flat band of excitations centred at 1 meV. Powder-averaged 
linear spin wave calculations assuming a purely two-dimensional 
triangular lattice in a 5 T magnetic field reproduce this flat feature, 
and the simulated dynamic structure factor S(Q, E) is plotted in  
Fig. 4f. This simulation was generated using nearest-neighbour cou-
pling with a nearly Heisenberg Hamiltonian with a slight easy-plane 
anisotropy, Jz = 0.45 and Jxy = 0.51 meV. The subtle downturn at low 
Q of the 1 meV band requires easy-plane anisotropy, as discussed in 
the Supplementary Information.

We now discuss the implications of our results. The similar  
YbO6 octahedra of NaYbO2 and YbMgGaO4 intimate that the local 
crystal fields and in-plane exchange couplings between Yb ions are 
comparable; however, the main distinction between the two systems 
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Fig. 3 | High-field magnetic susceptibility and heat capacity data. a, χ′(H) data collected at 330!mK showing the phase boundary (dashed line) between 
the quantum disordered (QD) ground state and magnetically ordered q!=!(1/3,!1/3,!0) state near 3!T. A second transition back into the quantum disordered 
state or a quantum paramagnetic phase begins at higher fields. b, χ′(T) data collected under a series of magnetic fields that traverse the ordered state; 
4!T and 5!T χ′(T) data illustrate the onset of the ordered phase below 1!K, while 6!T and 7!T data suggest partial re-entry into a disordered magnetic state. 
c, Specific heat of NaYbO2 measured down to 80!mK under zero field and overplotted with the non-magnetic NaLuO2 analogue. The resulting magnetic 
entropy ΔSM approaches 95% of Rln(2). d, Values of Cp(T) under varying magnetic fields. The lower peak centred around 1!K develops a sharp anomaly at 
5!T, indicative of the phase transition into the q!=!(1/3,!1/3,!0) state that is suppressed by 9!T. The inset shows the low-temperature portion of the 0!T Cp(T) 
data fit to a power law. The resulting fit to T2.04 is shown as a solid yellow line through the data. Error bars denote one standard deviation of the data.
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is the much shorter interplane distance in NaYbO2. This suggests 
that the interlayer coupling is non-negligible, and therefore, a mini-
mal Hamiltonian should include nearest-neighbour bonds within 
the planes and between neighbouring layers. Based on the structure, 
a symmetry analysis leads to the following exchange Hamiltonian:
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The first line H2d contains interactions within a triangular  
layer, and the second between layers. The unit vectors ̂eij are  
oriented along the ij bond, and ̂f ij is a unit vector along the projec-
tion of the ij bond into the a–b plane. The in-plane Hamiltonian 
is identical to that in YbMgGaO4, but is rewritten here (following 
Iaconis et  al.39) in a more physically transparent ‘compass model’ 
form. The interlayer exchange H′ in the second line also has a  
compass-like structure. We expect that this form applies to the full 

family of delafossite-like antiferromagnets, ARX2 (A = alkali metal, 
R = rare earth and X = chalcogen ions), with dipolar Kramers  
doublets on the R site, sharing the space group 166.

Notably, H2d contains a wide range of phase space favouring 
three types of classical orders: (1) three-sublattice 120° structures, 
(2) collinear two-sublattice stripe phases and (3) out-of-plane 
Ising anisotropy with up–up–down structures. Because we do not 
observe zero-field order, and we expect that interplane exchange 
is substantial, we infer that the interactions in H′ should be  
frustrated by the in-plane order or correlations. Consideration  
of the coupling between layers J′ uniquely singles out the three-
sublattice 120° structure: to leading order, only this in-plane 
order allows the staggered magnetization to effectively cancel the 
exchange field between neighbouring planes (see Supplementary 
Information)39. This is even true to a large extent also for the aniso-
tropic J′c and J′cz couplings.

Using this deduction that NaYbO2 has 120° correlations, we 
expect fluctuations among many classically degenerate or nearly 
degenerate states to strongly suppress order. Furthermore, recent 
density matrix renormalization group studies of H2d find that  
for S = 1/2 quantum spins, a spin liquid state indeed occurs in a 
corner of the classically 120° ordered phase space with moderate 
Jcz coupling40. Consequently, it is plausible that a spin liquid state 
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Fig. 4 | Neutron diffraction and inelastic neutron-scattering data. a, Temperature-subtracted neutron powder diffraction data (330!mK!− !1.5!K) collected 
under 0!T, showing the absence of low-temperature magnetic order. The red line is a constant fit to the subtracted data. b, Under an applied field of 5!T 
at 450!mK, new magnetic peaks appear at (1/3,!1/3,!z) positions (z!=!0,!1,!3), corresponding to an ordering wave vector of q!=!(1/3,!1/3,!0). The data were 
refined by analysing field-subtracted data (5!T!− !0!T), which are constrained by the suppressed (1/3,!1/3,!2) reflection. c, The best fit to the 5!T induced 
magnetic state using the two-q structure q!=!(1/3,!1/3,!0)!+!q!=!(0,!0,!0) is generated by a collinear spin structure with Yb moments of 1.36(10)!μB. The 
displayed structure aligns moments approximately along the <1, − 1,!− 1> direction and has six symmetrically equivalent structures generated by three-fold 
in-plane rotational and mirror symmetries. d, Inelastic neutron-scattering spectrum collected at 67!mK and 0!T. e, Inelastic neutron-scattering spectrum 
collected at 74!mK and μ0H !=!5!T. f, Linear spin wave calculations showing the powder-averaged S(Q,!E) for a two-dimensional triangular lattice of 
anisotropic Yb3+ moments of NaYbO2 in a 5!T field and three-sublattice ordering. Error bars denote one standard deviation of the data.
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perturbed via the application of a magnetic field that induces antifer-
romagnetic order consistent with an up–up–down plateau state for 
the triangular lattice and reflects an underlying XXZ Hamiltonian 
with enhanced fluctuations due to interlayer frustration. Our data 
reveal that NaYbO2 hosts an enticing quantum disordered ground 
state controllable via modest external fields and presents a cleanly 
tunable platform for exploring order to quantum disorder phase 
boundaries inherent to the XXZ triangular lattice.

Polycrystalline NaYbO2 was synthesized and characterized via 
neutron powder diffraction measurements (see Methods for further 
synthesis and experiment details). Figure 1a shows the structure 
at 1.6 K, revealing R3m symmetry with fully occupied sodium and 
oxygen sites. The D3d distorted YbO6 octahedra and bond lengths 
are illustrated, and a similar YbO6 environment in YbMgGaO4 is 
known to generate a large 38 meV splitting between the first excited 
state and the ground state doublet20,21. A comparison of the Yb envi-
ronments of the two materials is provided in Supplementary Table 2.  
At low temperatures, the ground state therefore behaves as an  
isolated Jeff = 1/2 Kramers doublet. Nearest-neighbour Yb–Yb dis-
tances were refined to 3.3507(1) Å at 300 K, consistent with previ-
ous reports27–29, and naively support enhanced exchange relative to 
other frustrated Yb-based compounds.

Characterizing this exchange, magnetic susceptibility (χ) and 
magnetization data are plotted in Figs. 2 and 3. Below 50 K, the 
Van Vleck contribution to the susceptibility is negligible. The data 
from 20 K to 100 K were modelled by Curie–Weiss fits of the form 

=χ χ θ− −

−( )C
T

1
1

0 CW
 (where C is specific heat, T is temperature, χ0 is 

the temperature-independent contribition to the susceptibility and  
θCW is the Curie–Weiss temperature), shown in Fig. 2a, and yield a 
local moment of 2.63(8) Bohr magnetons (µB) with an antiferromag-
netic θCW = −10.3(8) K. Relative to YbMgGaO4, θCW is substantially 
enhanced (θCW = −4 K)15,16,18,20, consistent with enhanced exchange. 
The local moment suggests a heightened g-factor, which was vali-
dated via electron paramagnetic resonance (EPR) measurements 
(Fig. 2a inset). A powder-averaged g-factor of gavg = 3.03 is implied 
by the local moment extracted from susceptibility data. Fits to  

the EPR line shape reveal anisotropic g-factors of gab = 3.294(8)  
and gc = 1.726(9) corresponding to the triangular a–b plane and  
c axis, respectively.

Although the saturated moment for this system is expected to be 
approximately 1.5 μB per Yb ion, M(H) (where M is magnetization 
and H is magnetic field strength) measurements collected at 2 K up 
to 9 T (Fig. 2b) were able to polarize Yb moments up to 1 μB only, 
consistent with notable θCW exchange. Figure 2c shows zero-field 
a.c. susceptibility data collected down to 50 mK. No signatures of 
freezing, frequency dependence or long-range order are observed. 
Instead, χ′(T) continues to diverge as the sample is cooled, gener-
ating an empirical frustration parameter of θCW/0.050 K > 200. As  
we will later argue, this zero-field state is an inherently quantum 
disordered state dressed by a small fraction of free Yb moments that 
are quenched in a magnetic field.

Data on χ′(T) collected under a variety of H fields are plotted in 
Fig. 2d. Under small H values, the divergence in χ′(T) (the real part 
of the a.c. susceptibility) is suppressed and a maximum appears. The 
temperature of this maximum increases with field until μ0H = 2 T 
(where µ0 is the permeability of free space) is reached, beyond which 
χ′(T) becomes nearly temperature independent. The inflection in 
χ′(T) increases linearly with H and is plotted in Fig. 1b. This matches 
the expected Zeeman splitting (ΔE) of isolated Jeff = 1/2 moments, 
ΔE = 2μBgavgJeffH, and suggests that χ′(T) at μ0H = 2 T represents 
the remaining majority of the correlated/bound Yb moments. As 
an estimate of the fraction of free spins, μ0H = 0 T data were fit to a 
Curie–Weiss form after removing the majority response accessed at 
μ0H = 2 T. Fits to a Curie–Weiss form between 1 K and 4 K (Fig. 2d) 
are described by a model of 14.4(6)% free spins with a full moment 
of 2.63 μB and θCW = −0.45(4) K. In addition, 2 K M(H) data plotted 
in Supplementary Fig. 2d were fit to a two-component model of 
Brillouin-like free spins and exchange-field-bound moments, which 
yielded a free spin fraction of approximately 7%. These fits roughly 
parametrize the limits of a free spin fraction in the material and sug-
gest that free spins coexist within a quantum disordered ground state.

At higher fields, the nearly temperature-independent χ′(T) at 
2 T evolves into an ordered state. Isothermal χ′(H) data at 330 mK 
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Fig. 1 | Crystal structure and magnetic (H,!T) phase diagram of NaYbO2. a, Refined NaYbO2 structure (1.6!K, R3m) contains equilateral triangular layers 
of D3d YbO6 distorted octahedra separated by 3.346!Å. Sodium cations refine to full occupation, creating a uniform chemical environment surrounding the 
triangular layers. Purple spheres, Yb atoms; black spheres, Na atoms; brown spheres, O atoms. b, Low-temperature phase boundary between quantum 
disordered and antiferromagnetic ordered states in NaYbO2, plotted as a function of field and temperature, extracted from a.c. susceptibility and neutron-
scattering experiments. The dashed line denotes the boundary of Zeeman-driven quenching of a minority fraction of free Yb moments under field, above 
which free moments are quenched. These free moments coexist with a quantum disordered ground state. Values in parentheses and error bars indicate 
one standard deviation. kB is the Boltzmann constant, Hq denotes the onset temperature of the up–up–down ordered state and HZeeman denotes the 
suppression in magnetic susceptibility observed due to the quenching of a small fraction of free Yb moments.
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is the much shorter interplane distance in NaYbO2. This suggests 
that the interlayer coupling is non-negligible, and therefore, a mini-
mal Hamiltonian should include nearest-neighbour bonds within 
the planes and between neighbouring layers. Based on the structure, 
a symmetry analysis leads to the following exchange Hamiltonian:
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The first line H2d contains interactions within a triangular  
layer, and the second between layers. The unit vectors ̂eij are  
oriented along the ij bond, and ̂f ij is a unit vector along the projec-
tion of the ij bond into the a–b plane. The in-plane Hamiltonian 
is identical to that in YbMgGaO4, but is rewritten here (following 
Iaconis et  al.39) in a more physically transparent ‘compass model’ 
form. The interlayer exchange H′ in the second line also has a  
compass-like structure. We expect that this form applies to the full 

family of delafossite-like antiferromagnets, ARX2 (A = alkali metal, 
R = rare earth and X = chalcogen ions), with dipolar Kramers  
doublets on the R site, sharing the space group 166.

Notably, H2d contains a wide range of phase space favouring 
three types of classical orders: (1) three-sublattice 120° structures, 
(2) collinear two-sublattice stripe phases and (3) out-of-plane 
Ising anisotropy with up–up–down structures. Because we do not 
observe zero-field order, and we expect that interplane exchange 
is substantial, we infer that the interactions in H′ should be  
frustrated by the in-plane order or correlations. Consideration  
of the coupling between layers J′ uniquely singles out the three-
sublattice 120° structure: to leading order, only this in-plane 
order allows the staggered magnetization to effectively cancel the 
exchange field between neighbouring planes (see Supplementary 
Information)39. This is even true to a large extent also for the aniso-
tropic J′c and J′cz couplings.

Using this deduction that NaYbO2 has 120° correlations, we 
expect fluctuations among many classically degenerate or nearly 
degenerate states to strongly suppress order. Furthermore, recent 
density matrix renormalization group studies of H2d find that  
for S = 1/2 quantum spins, a spin liquid state indeed occurs in a 
corner of the classically 120° ordered phase space with moderate 
Jcz coupling40. Consequently, it is plausible that a spin liquid state 

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

E
 (

m
eV

)

0 T

67 mK

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Intensity (a.u.)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

E
 (

m
eV

)

5 T

74 mK

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Intensity (a.u.)

a b c

d e f

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

800

0 T (330 mK) – 0 T (1.5 K)
600

400

200

0

800

600

400

200

0

–200 –200

–150

150
0

In
te

ns
ity

 (
co

un
ts

)

In
te

ns
ity

 (
co

un
ts

)

–400

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7

330 mK

5 T – 0 T

Calculated

Difference

(Jz, Jxy) = (0.45, 0.51) meV

B = 5.00 T

E
 (

m
eV

)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Intensity (a.u.)

∣Q ∣ (Å−1)

∣Q ∣ (Å−1) ∣Q ∣ (Å−1)

∣Q ∣ (Å−1)

∣Q ∣ (Å−1)

a b

c

Fig. 4 | Neutron diffraction and inelastic neutron-scattering data. a, Temperature-subtracted neutron powder diffraction data (330!mK!− !1.5!K) collected 
under 0!T, showing the absence of low-temperature magnetic order. The red line is a constant fit to the subtracted data. b, Under an applied field of 5!T 
at 450!mK, new magnetic peaks appear at (1/3,!1/3,!z) positions (z!=!0,!1,!3), corresponding to an ordering wave vector of q!=!(1/3,!1/3,!0). The data were 
refined by analysing field-subtracted data (5!T!− !0!T), which are constrained by the suppressed (1/3,!1/3,!2) reflection. c, The best fit to the 5!T induced 
magnetic state using the two-q structure q!=!(1/3,!1/3,!0)!+!q!=!(0,!0,!0) is generated by a collinear spin structure with Yb moments of 1.36(10)!μB. The 
displayed structure aligns moments approximately along the <1, − 1,!− 1> direction and has six symmetrically equivalent structures generated by three-fold 
in-plane rotational and mirror symmetries. d, Inelastic neutron-scattering spectrum collected at 67!mK and 0!T. e, Inelastic neutron-scattering spectrum 
collected at 74!mK and μ0H !=!5!T. f, Linear spin wave calculations showing the powder-averaged S(Q,!E) for a two-dimensional triangular lattice of 
anisotropic Yb3+ moments of NaYbO2 in a 5!T field and three-sublattice ordering. Error bars denote one standard deviation of the data.
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is the much shorter interplane distance in NaYbO2. This suggests 
that the interlayer coupling is non-negligible, and therefore, a mini-
mal Hamiltonian should include nearest-neighbour bonds within 
the planes and between neighbouring layers. Based on the structure, 
a symmetry analysis leads to the following exchange Hamiltonian:
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The first line H2d contains interactions within a triangular  
layer, and the second between layers. The unit vectors ̂eij are  
oriented along the ij bond, and ̂f ij is a unit vector along the projec-
tion of the ij bond into the a–b plane. The in-plane Hamiltonian 
is identical to that in YbMgGaO4, but is rewritten here (following 
Iaconis et  al.39) in a more physically transparent ‘compass model’ 
form. The interlayer exchange H′ in the second line also has a  
compass-like structure. We expect that this form applies to the full 

family of delafossite-like antiferromagnets, ARX2 (A = alkali metal, 
R = rare earth and X = chalcogen ions), with dipolar Kramers  
doublets on the R site, sharing the space group 166.

Notably, H2d contains a wide range of phase space favouring 
three types of classical orders: (1) three-sublattice 120° structures, 
(2) collinear two-sublattice stripe phases and (3) out-of-plane 
Ising anisotropy with up–up–down structures. Because we do not 
observe zero-field order, and we expect that interplane exchange 
is substantial, we infer that the interactions in H′ should be  
frustrated by the in-plane order or correlations. Consideration  
of the coupling between layers J′ uniquely singles out the three-
sublattice 120° structure: to leading order, only this in-plane 
order allows the staggered magnetization to effectively cancel the 
exchange field between neighbouring planes (see Supplementary 
Information)39. This is even true to a large extent also for the aniso-
tropic J′c and J′cz couplings.

Using this deduction that NaYbO2 has 120° correlations, we 
expect fluctuations among many classically degenerate or nearly 
degenerate states to strongly suppress order. Furthermore, recent 
density matrix renormalization group studies of H2d find that  
for S = 1/2 quantum spins, a spin liquid state indeed occurs in a 
corner of the classically 120° ordered phase space with moderate 
Jcz coupling40. Consequently, it is plausible that a spin liquid state 
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Fig. 4 | Neutron diffraction and inelastic neutron-scattering data. a, Temperature-subtracted neutron powder diffraction data (330!mK!− !1.5!K) collected 
under 0!T, showing the absence of low-temperature magnetic order. The red line is a constant fit to the subtracted data. b, Under an applied field of 5!T 
at 450!mK, new magnetic peaks appear at (1/3,!1/3,!z) positions (z!=!0,!1,!3), corresponding to an ordering wave vector of q!=!(1/3,!1/3,!0). The data were 
refined by analysing field-subtracted data (5!T!− !0!T), which are constrained by the suppressed (1/3,!1/3,!2) reflection. c, The best fit to the 5!T induced 
magnetic state using the two-q structure q!=!(1/3,!1/3,!0)!+!q!=!(0,!0,!0) is generated by a collinear spin structure with Yb moments of 1.36(10)!μB. The 
displayed structure aligns moments approximately along the <1, − 1,!− 1> direction and has six symmetrically equivalent structures generated by three-fold 
in-plane rotational and mirror symmetries. d, Inelastic neutron-scattering spectrum collected at 67!mK and 0!T. e, Inelastic neutron-scattering spectrum 
collected at 74!mK and μ0H !=!5!T. f, Linear spin wave calculations showing the powder-averaged S(Q,!E) for a two-dimensional triangular lattice of 
anisotropic Yb3+ moments of NaYbO2 in a 5!T field and three-sublattice ordering. Error bars denote one standard deviation of the data.
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when the high-field quantum paramagnetic phase is approached. 
Determining the precise form of the zero-field Cp(T) is compli-
cated by a nuclear Schottky feature that dominates below 100 mK 
(Supplementary Fig. 2c); however, attempts to do so away from this 
feature yield C(T) ∝ T2, as shown in the inset of Fig. 3d.

Low-temperature neutron-scattering measurements were also  
per formed. Figure 4a shows temperature-subtracted (330 mK −  
1.5 K) diffraction data and the absence of zero-field magnetic  
order. Field-subtracted data at 450 mK plotted in Fig. 4b reveal  
that under 5 T, new superlattice reflections appear at the momen-
tum transfers Q = (1/3, 1/3, 0), (1/3, 1/3, 1) and (1/3, 1/3, 3). Given  
the symmetry constraints of the R3m structure, these either repre-
sent a 120° non-collinear spin structure or an up–up–down pattern 
of spin order. The absence of a reflection at Q = (1/3, 1/3, 2) sug-
gests that the field-induced order is collinear. Additionally, mag-
netic intensity appears at the Q = (0, 0, 3) position, consistent with 
the two-q or two-propagation vector structure (q = (1/3, 1/3, 0) + 
q = (0, 0, 0)) expected for the equal-moment up–up–down state38. 
The best fit to this model is shown in Fig. 4c, where spins refine to  
be oriented nearly parallel to the (1, −1, −1) direction with an 
ordered moment of 1.36 ± 0.1 μB. This value is less than the 1.5 μB 
expected, probably due to the presence of a minority fraction of 
free moments as well as the influence of remnant fluctuations in 

the ordered state. Magnetic peaks are resolution-limited with a 
minimum spin–spin correlation length ξmin = 450 Å. Further data 
collected at 67 mK determine the low-temperature, magnetic field 
phase boundaries (Supplementary Fig. 4b).

Inelastic scattering data plotted in Fig. 4d,e reveal a renormaliza-
tion of the low-energy spin dynamics when transitioning from the 
quantum disordered state into the up–up–down phase. The zero-
field data show a diffuse spectrum of excitations centred around  
the (1/3, 1/3, 0) wave vector, and when applying a 5 T field, much  
of this spectral weight is shifted into the elastic channel and a  
nearly flat band of excitations centred at 1 meV. Powder-averaged 
linear spin wave calculations assuming a purely two-dimensional 
triangular lattice in a 5 T magnetic field reproduce this flat feature, 
and the simulated dynamic structure factor S(Q, E) is plotted in  
Fig. 4f. This simulation was generated using nearest-neighbour cou-
pling with a nearly Heisenberg Hamiltonian with a slight easy-plane 
anisotropy, Jz = 0.45 and Jxy = 0.51 meV. The subtle downturn at low 
Q of the 1 meV band requires easy-plane anisotropy, as discussed in 
the Supplementary Information.

We now discuss the implications of our results. The similar  
YbO6 octahedra of NaYbO2 and YbMgGaO4 intimate that the local 
crystal fields and in-plane exchange couplings between Yb ions are 
comparable; however, the main distinction between the two systems 
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Fig. 3 | High-field magnetic susceptibility and heat capacity data. a, χ′(H) data collected at 330!mK showing the phase boundary (dashed line) between 
the quantum disordered (QD) ground state and magnetically ordered q!=!(1/3,!1/3,!0) state near 3!T. A second transition back into the quantum disordered 
state or a quantum paramagnetic phase begins at higher fields. b, χ′(T) data collected under a series of magnetic fields that traverse the ordered state; 
4!T and 5!T χ′(T) data illustrate the onset of the ordered phase below 1!K, while 6!T and 7!T data suggest partial re-entry into a disordered magnetic state. 
c, Specific heat of NaYbO2 measured down to 80!mK under zero field and overplotted with the non-magnetic NaLuO2 analogue. The resulting magnetic 
entropy ΔSM approaches 95% of Rln(2). d, Values of Cp(T) under varying magnetic fields. The lower peak centred around 1!K develops a sharp anomaly at 
5!T, indicative of the phase transition into the q!=!(1/3,!1/3,!0) state that is suppressed by 9!T. The inset shows the low-temperature portion of the 0!T Cp(T) 
data fit to a power law. The resulting fit to T2.04 is shown as a solid yellow line through the data. Error bars denote one standard deviation of the data.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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Two topics in TBG

1.Continuum model for TBG as effective 
field theory 

2.Non-equilibrium driving a QAHE state
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moiré Brillouin zone



Continuum model
Bistritzer+MacDonald (2011)

Hkin = v(k �K1) · �✓/2|1ih1|+ v(k �K2) · ��✓/2|2ih2|
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Htun = w
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T(x)|1ih2|+ T†(x)|2ih1|

�
<latexit sha1_base64="QtZhYpTXyk3QHDzhjjfhukWl1B0="></latexit><latexit sha1_base64="QtZhYpTXyk3QHDzhjjfhukWl1B0="></latexit><latexit sha1_base64="QtZhYpTXyk3QHDzhjjfhukWl1B0="></latexit><latexit sha1_base64="QtZhYpTXyk3QHDzhjjfhukWl1B0="></latexit>

H = Hkin +Htun
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periodic hopping matrix: smoothly interpolates 
hopping of uniform AA/AB/BA bilayers
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AA•Restores periodicity 
•Reveals dimensionless parameter, 
w/vk𝜃 

•Predicts flat bands at magic angles
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A moiré pattern is formed when two copies of a periodic pattern
are overlaid with a relative twist. We address the electronic struc-
ture of a twisted two-layer graphene system, showing that in its
continuum Dirac model the moiré pattern periodicity leads to
moiré Bloch bands. The two layers become more strongly coupled
and the Dirac velocity crosses zero several times as the twist angle
is reduced. For a discrete set of magic angles the velocity vanishes,
the lowest moiré band flattens, and the Dirac-point density-of-
states and the counterflow conductivity are strongly enhanced.

Low-energy electronic properties of few layer graphene (FLG)
systems are known (1–8) to be strongly dependent on stacking

arrangement. In bulk graphite 0° and 60° relative orientations of
the individual layer honeycomb lattices yield rhombohedral and
Bernal crystals, but other twist angles also appear in many sam-
ples (9). Small twist angles are particularly abundant in epitaxial
graphene layers grown on SiC (10, 11), but exfoliated bilayers can
also appear with a twist, and arbitrary alignments between adja-
cent layers can be obtained by folding a single graphene layer
(12, 13).

Recent advances in FLG preparation methods have attracted
theoretical attention (14–20) to the intriguing electronic proper-
ties of systems with arbitrary twist angles, usually focusing on the
two-layer case. The geometry of the bilayer system is character-
ized by a twist angle θ and by a translation vector d. Commensur-
ability is determined only by θ. Sliding one layer with respect to
the other in a commensurate structure modifies the unit cell but
leaves the bilayer crystalline. In this work we find it convenient to
regard the AB stacking as the aligned configuration. The posi-
tions of the carbon atoms in the two misaligned layers labeled
by R and R0 are then related by R0 ¼ MðθÞðR − τÞ þ d, where
M is a 2-D rotation matrix within the graphene plane, and τ is
a vector connecting the two atoms in the unit cell.

The problem is mathematically interesting because a bilayer
forms a two-dimensional crystal only at a discrete set of commen-
surate rotation angles; for generic twist angles Bloch’s theorem
does not apply microscopically and direct electronic structure
calculations are not feasible. For twist angles larger than a few
degrees the two layers are electronically isolated to a remarkable
degree, except at a small set of angles which yield low-order com-
mensurate structures (16, 19). As the twist angles become smal-
ler, interlayer coupling strengthens, and the quasiparticle velocity
at the Dirac point begins to decrease.

Here we focus on the strongly coupled small twist angle regime.
We derive a low-energy effective Hamiltonian valid for any value
of d and for θ ≲ 10° irrespective of whether or not the bilayer struc-
ture is periodic. We show that it is meaningful to describe the elec-
tronic structure using Bloch bands even for incommensurate twist
angles and study the dependence of these bands on θ.

Model
We construct a low-energy continuum model Hamiltonian that
consists of three terms: two single-layer Dirac–Hamiltonian terms
that account for the isolated graphene sheets and a tunneling
term that describes hopping between layers. The Dirac–Hamilto-
nian (21) for a layer rotated by an angle θ with respect to a fixed
coordinate system is

hkðθÞ ¼ −vk 0 eiðθk−θÞ

e−iðθk−θÞ 0

! "
;

where v is the Dirac velocity, k is momentum measured from the
layer’s Dirac point, θk is the momentum orientation relative to
the x axis, and the spinor Hamiltonian acts on the individual
layer’s A and B sublattice degrees-of-freedom. We choose the co-
ordinate system depicted in Fig. 1 for which the decoupled bilayer
Hamiltonian is j1ihðθ∕2Þh1jþ j2ihð−θ∕2Þh2j, where jiihijprojects
onto layer i.

We derive a continuummodel for the tunneling term by assum-
ing that the interlayer tunneling amplitude between π-orbitals
is a smooth function tðrÞ of spatial separation projected onto the
graphene planes. The matrix element

Tαβ
kp0 ¼ hΨð1Þ

kα jHTjΨ
ð2Þ
p0βi [1]

of the tunneling Hamiltonian HT describes a process in which an
electron with momentum p0 ¼ Mp residing on sublattice β in one
layer hops to a momentum state k and sublattice α in the other
layer. In a π-band tight-binding model the projection of the wave
functions of the two layers to a given sublattice are

jψ ð1Þ
kα i ¼

1ffiffiffiffi
N

p
∑

R

eikðRþταÞjR þ ταi [2]

and

jψ ð2Þ
pβ i ¼

1ffiffiffiffi
N

p
∑

R0

eipðR
0þτ0βÞjR0 þ τ0βi: [3]

Here τA ¼ 0, τB ¼ τ, and R is summed over the triangular Bravais
lattice. Substituting Eqs. 2 and 3 in Eq. 1 and invoking the two-
center approximation,

hR þ ταjHTjR0 þ τ0βi ¼ tðR þ τα − R0 − τ0βÞ; [4]

for the interlayer hopping amplitude in which t depends on the dif-
ference between the positions of the two carbon atoms we find that

Tαβ
kp0 ¼

∑

G1G2

tk̄þG1

Ω
ei½G1τα−G2ðτβ−τÞ−G0

2d&δk̄þG1 ;p̄0þG0
2
: [5]

Here Ω is the unit cell area, tq is the Fourier transform of the tun-
neling amplitude tðrÞ, the vectors G1 and G2 are summed over re-
ciprocal lattice vectors, and G0

2 ¼ MG2. The bar notation over
momenta in Eq. 5 indicates that momentum is measured relative
to the center of the Brillouin zone and not relative to the Dirac
point. Note that crystal momentum is conserved by the tunneling
process because t depends only on the difference between lattice
positions.*
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Directly calculate overlap of every C orbital in 
layer 1 with every C orbital in layer 2

Obtain hopping matrix in momentum space by 
Poisson resummation formula

At the end of the calculation Fourier transform 
back to obtain simple real space formula

Assume rigid rotation of layers



Effective field theory
Describes low energy, long wavelength physics, 
can include effects of any perturbations that are 

small and slowly varying 

Here:
• Unperturbed system: isolated graphene layers 
• Perturbations: 

• Interlayer tunneling 
• Slowly varying displacements of the layers



Rotation ⊂ Displacement 
Gradient

Ashcroft-Mermin: phonons 

x = R+ ũ(R)
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Rotation
✓ =

1

2
(@xuy � @yux)
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ũ = ✓ẑ ⇥R
<latexit sha1_base64="Bv534JpC6tBHtmc7nPPLjJMXCFY=">AAACK3icbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsSo4Q8mktzaYzAzJHaEO8x/+hL/gVveuFFeC/2E6nYVWDwROzrmXk5wwkcKg6745U9Mzs3PzlYXq4tLyymptbf3CxKnm0OGxjPVVyAxIEUEHBUq4SjQwFUq4DG+PR/7lHWgj4ugchwkEit1Eoi84Qyt1a00fhexB5ocqS/OcHlIfB4CM+gOGhXpvVTukwNDR9Szv1upuwy1A/xKvJHVSot2tffq9mKcKIuSSGXPtuQkGGdMouIS86qcGEsZv2Q1cWxoxmxVkxd9yum2VHu3H2p4IaaH+3MiYMmaoQjupGA7MpDcS//VCNZGM/YMgE1GSIkR8HNxPJcWYjoqjPaGBoxxawrgW9u2UD5hmHG29VVuKN1nBX3LRbHi7jebpXr11VNZTIZtki+wQj+yTFjkhbdIhnDyQJ/JMXpxH59V5dz7Go1NOubNBfsH5+gaEjqi3</latexit>

Twisting is just a subset of elastic 
deformations of two layers



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength

x = R+ ũ(R)
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R is not the actual real space location - 
physics is local in x not R 

Small problem:



Effective field theory
Locality:

H =

Z
d
2
xH[ ,u, w]
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Hamiltonian density is a local functional of the 
fields, analytic, and expandable in powers of small 
parameters — here field gradients and hopping 
strength

Solution: Eulerian coordinates

x = R+ u(x)
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Effective field theory

• Three effects: 

1. Coordinate change: transformation of local frames to 
global one 

2. Strains: modification of energetics of each layer due to 
changes in electron hopping 

3. Tunneling: strong dependence of relative local 
alignment
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Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
2R 

†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det

✓
@Rµ

@x⌫

◆
⇡ d

2x (1�r · u) . (7)

4

H =
X

l

 †
l


�iv

✓
⌧µ +

@ul,µ

@x⌫
⌧⌫

◆
@

@xµ
+ v (K · @µul +Al) ⌧

µ

�
 l
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coordinate change

Correct to first order in strain gradients and hopping 
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X
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Z
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†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv
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⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
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Figure 1: Left panel: conventions for graphene lattice. Two linearly independent Bravais
lattice (translation) vectors a1, a2 are shown. The distance between neighboring carbon
atoms is a, as marked. Right panel: Graphene Brillouin zone and some other useful
wavevectors. The wavevectors Q1 and Q2 are basis vectors for the reciprocal lattice. The
K point (also denoted K point in the text) is the centroid of the triangle formed by
the origin, Q1 and Q2. The two other Brillouin zone corners K � Q1 and K � Q2 are
equivalent to K as quasimomenta, and are obtained from the latter by C3 rotations.

Dirac fields  ±(R), with the subscript denoting the valley, via (see e.g. Ref. [21] for a
standard analysis deriving the Dirac Hamiltonian and continuum fields)

c(R) ⇠  +(R)eiK·R +  �(R)e�iK·R
, (3)

where K = (4⇡/(3
p
3a), 0) (a is the distance between two carbon atoms) is the zone corner

momentum of one valley, see Fig. 1. We will focus on theK valley, as within the continuum
description the valleys do not mix, and henceforth drop the valley index  + !  . Results
for the other valley are readily derived by C2 symmetry. Note that the lack of mixing is
an excellent approximation when the displacement gradients are small, because then the
slowly-varying nature of the perturbations cannot generate su�cient momentum to mix
the two valleys. The Hamiltonian in the original coordinates has the simple Dirac form:

HDirac = �iv

X

µ=1,2

Z
d
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†
⌧
µ @

@Rµ
 , (4)

where ⌧µ are the Pauli matrices acting in the sublattice space, and v is the Dirac velocity.
Now we must transform to the global coordinates x. We must determine the transfor-
mation property of the Dirac field. To obtain it, we change coordinates in Eq. (3) using
Eq. (2) to obtain (again keeping only terms associated with the K valley):

c(x) = c(R(x)) ⇠  (R)eiK·(x�u(x)) ⌘  (x)eiK·x
. (5)

This implies that

 (x) =  (R)e�iK·u(x) $  (R) =  (x)eiK·u(x)
. (6)

Now we can introduce Eq. (6) into the Dirac equation, Eq. (4), and change variables from
R to x. We require the field transformation and the transformation of the integration
measure and of the gradients. The measure is

d
2R = d

2x det

✓
@Rµ

@x⌫

◆
⇡ d
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Eq. (24), when applied on an initial TQ on the right hand side, generates another TQ0 on
the left, with Q0 = O3Q�Q1. We iterate this relation starting with Q = 0 and generate
in addition two further Fourier coe�cients, after which the iteration closes.

The result is
Tj ⌘ T�Qj = uI+ w

�
⇣̄
j
⌧
+ + ⇣

j
⌧
��

, (25)

where

⇣ = e
2⇡i/3

, ⇣̄ = ⇣
⇤ =

1

⇣
= e

�2⇡i/3
. (26)

and

Q0 = 0, Q1 =
4⇡

3a

✓p
3/2
1/2

◆
, Q2 =

4⇡

3a

✓p
3/2

�1/2

◆
. (27)

The three wavevectors Qj , j = 0, 1, 2 form an equilateral triangle of reciprocal lattice
points whose centroid is the K point (see Fig. 1).

Now we can assign physical significance to u and w by considering some special cases.
Suppose we take ul = 0, which corresponds to an AA bilayer. We have

T(u) =
X

j

Tje
�iQj ·u ���!

u=0

X

j

Tj = 3uI. (28)

In the final result, we used the fact that
P

j ⇣
j =

P
j ⇣̄

j = 0. Eq. (28) agrees with
the simple physical expectation that we just have diagonal sublattice hopping t

0 in this
configuration. Hence we conclude that

u =
t
0
AA

3
, (29)

where t
0
AA is the interlayer hopping for an AA region. Now consider u = (0, a), which

corresponds to AB stacking. We see from Eq. (27) that e�iQj ·u = ⇣̄
j . Then we have

T(u) =
X

j

Tje
�iQj ·u �����!

u=(0,a)

X

j

Tj ⇣̄
j = 3w⌧�. (30)

This is again consistent with expectations: interlayer hopping is only from sublattice B
on layer 1 to sublattice A on layer 2, or vice versa. Hence we see that

w =
t
0
AB

3
. (31)

We have allowed for the inter-layer hopping t
0
AB to be di↵erent in the AB regions from

that in the AA ones, though this di↵erence is expected to be small.
We have now fully determined all the terms in the continuum description, by combining

Eq. (9), Eq. (11), and Eq. (14), which are now fully specified. The result is given explicitly
for clarity in Eq. (39) of the Conclusion.

3.4 Application to a rigid twist

To connect to the continuum model of BM, we specialize to a rigid twist, and evaluate the
general result for the case

u1 = �u2 =
✓

2
ẑ ⇥ x. (32)

For such a pure rotation, the strain-induced gauge field vanishes, Al = 0, and there is
zero compression so r · ul = 0 as well. The K-point shift term becomes

K · @µu1 = �K · @µu2 = ⌥✓K

2
ŷ ⌘ ⌥k✓

2
ŷ, (33)

8

H =  †
1


�iv⌧ ( ✓2 ) ·r�

vk✓
2
⌧y

�
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
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�
 2
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where k✓ = ✓K. The displacement gradient itself is

@u
1
µ

@x⌫
= �

@u
2
µ

@x⌫
= �✓

2
✏µ⌫ . (34)

Most interestingly, the term in the exponential in the second line of Eq. (39) becomes

Qj · (u1 � u2) = ✓Qj · ẑ ⇥ x = �✓ẑ ⇥Qj · x. (35)

We see that this immediately produces the wavevectors

qj = �✓ẑ ⇥Qj . (36)

The two non-zero vectors q1, q2 are two basis vectors of the reciprocal lattice of the moiré
pattern! Putting this all together, we can write the Hamiltonian for the rigid twist as

HK,✓ =

Z
d
2x

(
 
†
1


�iv⌧ ( ✓2) ·r� vk✓

2
⌧
y

�
 1 +  

†
2


�iv⌧ (� ✓

2) ·r+
vk✓

2
⌧
y

�
 2

+
X

j

h
e
�iqj ·x †

2 Tj 1 + h.c.
i)

. (37)

Here we defined rotated Pauli matrices

⌧
µ(✓) = ⌧

µ � ✓✏µ⌫⌧
⌫
. (38)

The result is in perfect agreement with BM.

4 Conclusion

We provided a simple real space derivation of a full continuummodel for bilayer graphene in
the presence of small displacement gradients. Combining all three contributions discussed
in Sec. 3 gives the full continuum band Hamiltonian for arbitrary small displacement
gradients for the K valley. It is

HK [u1,u2] =

Z
d
2x

(
X

l

 
†
l

"
�iv

 
⌧
µ +

@u
l
µ

@x⌫
⌧
⌫ �r · ul⌧

µ

!
@

@xµ
+ v (K · @µul +Al) ⌧

µ

#
 l

+
X

j

h
e
�iQj ·(u1�u2) 

†
2 Tj 1 + h.c.

i)
. (39)

We emphasize that Eq. (39) is derived under the assumption that @µul ⌧ 1 and t
0 ⌧ t,

but otherwise ul may have arbitrary spatial dependence. As shown in Sec. 3.4 it exactly
recovers the BM model for the case of a rigid twist. However, it is a starting point not
only to consider twisting, but also to include uniform and non-uniform strains. It also
ought to be su�cient to understand the coupling of low energy phonons (those derived
from the acoustic modes of the original graphene layers) to the bilayer – one needs only to
add dynamics to the displacement fields. Finally, Eq. (39) indeed is capable of describing
all three of these e↵ects together, simply by taking

ul = (3� 2l)
✓

2
ẑ ⇥ x+ ûl, l = 1, 2, (40)

where ûl represents the strain and/or phonons. For example, this is a natural point of
departure to discuss the e↵ects of twist angle inhomogeneity in twisted bilayer graphene,
as there is no need to assume random strains are small compared to the displacement
gradient comprising the twist. Hopefully this formulation will have pedagogical value and
find useful applications.
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H =
X

l

 †
l


�iv

✓
⌧µ +

@ul,µ

@x⌫
⌧⌫

◆
@

@xµ
+ v (K · @µul +Al) ⌧

µ

�
 l

<latexit sha1_base64="cEaFIAtBUhUqt8irHBPg/rZyeHI="></latexit>



Result

+
X

j

h
e�iQj ·(u1�u2) †

2 Tj 1 + h.c.
i

<latexit sha1_base64="9JECA2gE1KkaM2TJf972koZ+mPY="></latexit>

• Recovers BM result intuitively 
• Subsumes other extensions of BM (Nam+Koshino, Bi,Yuan+Fu…) 
• Includes coupling of acoustic phonons 
• Can handle arbitrary inhomogeneous strains 
• All these things together 
• Easy to add more layers 
• Very nice for teaching
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Quantum Anomalous Hall Effect

This is just the appearance of QHE in zero magnetic field by 
spontaneous breaking of time-reversal symmetry 

Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau
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Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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levels nor an external magnetic field. This type
of QHE induced by spontaneous magnetization
is considered the quantized version of the con-
ventional (nonquantized) anomalous Hall effect
(AHE) discovered in 1881 (16). The quantized
Hall conductance is directly given by a topo-
logical characteristic of the band structure called
the first Chern number. Such insulators are called
Chern insulators.

One way to realize a Chern insulator is to start
from a time-reversal-invariant TI. These mate-
rials, whose topological properties are induced
by spin-orbit coupling, were experimentally re-
alized soon after the theoretical predictions in
both 2D and 3D systems (12, 13). Breaking the
TRS of a suitable TI (17) by introducing ferro-
magnetism can naturally lead to the quantum
anomalous Hall (QAH) effect (6–9, 11). By tuning
the Fermi level of the sample around the mag-
netically induced energy gap in the density of states,
one is expected to observe a plateau of Hall
conductance (sxy) of e

2/h and a vanishing lon-
gitudinal conductance (sxx) even at zero mag-
netic field [figure 14 of (7) and Fig. 1, A and B].

The QAH effect has been predicted to occur
by Mn doping of the 2D TI realized in HgTe
quantum wells (8); however, an external mag-
netic field was still required to align the Mn mo-
ments in order to realize the QAH effect (18). As
proposed in (9), due to the van Vleck mechanism
doping the Bi2Te3 family TIs with isovalent 3d
magnetic ions can lead to a ferromagnetic insu-
lator ground state and, for thin film systems, this
will further induce the QAH effect if the mag-
netic exchange field is perpendicular to the plane
and overcomes the semiconductor gap. Here, we
investigate thin films of Cr0.15(Bi0.1Sb0.9)1.85Te3
(19, 20) with a thickness of 5 quintuple layers
(QL), which are grown on dielectric SrTiO3 (111)
substrates by molecular beam epitaxy (MBE)
(20, 21) (fig. S1). With this composition, the
film is nearly charge neutral so that the chem-
ical potential can be fine-tuned to the electron- or
hole-conductive regime by a positive or nega-
tive gate voltage, respectively, applied on the
backside of the SrTiO3 substrate (20). The films
are manually cut into a Hall bar configuration
(Fig. 1C) for transport measurements. Varying
the width (from 50 mm to 200 mm) and the as-
pect ratio (from 1:1 to 2:1) of the Hall bar does
not influence the result. Figure 1D displays a
series of measurements, taken at different tem-
peratures, of the Hall resistance (ryx) of the sam-
ple in Fig. 1C, as a function of the magnetic field
(m0H). At high temperatures, ryx exhibits linear
magnetic field dependence due to the ordi-
nary Hall effect (OHE). The film mobility is
~760 cm2/Vs, as estimated from the measured
longitudinal sheet resistance (rxx) and the carrier
density determined from the OHE. The value is
much enhanced compared with the samples in
our previous study (20, 21), but still much lower
than that necessary for QHE (2, 3). With decreas-
ing temperature, ryx develops a hysteresis loop
characteristic of the AHE, induced by the ferro-

magnetic order in the film (22). The square-shaped
loop with large coercivity (Hc = 970 Oersted at
1.5 K) indicates a long-range ferromagnetic or-
der with out-of-plane magnetic anisotropy. The
Curie temperature is estimated to be ~15 K (Fig.
1D, inset) from the temperature dependence of
the zero field ryx that reflects spontaneous mag-
netization of the film.

Figure 2, A and C, shows the magnetic field
dependence of ryx and rxx, respectively, mea-
sured at T = 30 mK at different bottom-gate
voltages (Vgs). The shape and coercivity of the
ryx hysteresis loops (Fig. 2A) vary little with Vg,
thanks to the robust ferromagnetism probably

mediated by the van Vleck mechanism (9, 20).
In the magnetized states, ryx is nearly indepen-
dent of the magnetic field, suggesting perfect
ferromagnetic ordering and charge neutrality of
the sample. On the other hand, the AH resist-
ance (height of the loops) changes dramatically
with Vg, with a maximum value of h/e2 around
Vg = –1.5 V. The magnetoresistance (MR) curves
(Fig. 2C) exhibit the typical shape for a ferro-
magnetic material: two sharp symmetric peaks
at the coercive fields.

The Vg dependences of ryx and rxx at zero
field [labeled ryx(0) and rxx(0), respectively] are
plotted in Fig. 2B. The most important obser-

30 mK 30 mK

A B

V  = Vgg
0 V  = Vgg

0

Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field
dependence of ryx at Vg0. (B) Magnetic field dependence of rxx at Vg0. The blue and red lines in (A) and
(B) indicate the data taken with increasing and decreasing fields, respectively.

30 mK

30 mK

30 mK

30 mK

A B

C D

Fig. 2. The QAH effect measured at 30 mK. (A) Magnetic field dependence of ryx at different Vgs.
(B) Dependence of ryx(0) (empty blue squares) and rxx(0) (empty red circles) on Vg. (C) Magnetic field
dependence of rxx at different Vgs. (D) Dependence of sxy(0) (empty blue squares) and sxx(0) (empty
red circles) on Vg. The vertical purple dashed-dotted lines in (B) and (D) indicate the Vg for Vg0. A
complete set of the data is shown in fig. S3.
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QAHE in TBG

Phenomenology of magic angle graphene
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Spontaneous AHE - not 
quite quantized
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FIG. 2. Temperature dependence of the quantum anomalous Hall effect. (A) Rxy and (B) Rxx as a function of B measured at various
temperatures for n = 2.37⇥1012 cm�2. Rxx and Rxy mixing was corrected using contact symmetrization[29]. (C) Temperature dependence
of the field-training symmetrized resistance R̄xy at B = 0, as described in the main text. The Curie was determined to be TC ⇡ 7.5(.5) K
using an Arrott plot analysis (see Fig. S12. The inset shows detailed low-temperature dependence of R̄xy at B = 0. Error bars are the
standard error derived from 11 consecutive measurements. R̄xy saturates below ⇡ 3 K to a value of (1.0010 ± 0.0002) ⇥ h

e2
, determined

by averaging the points between 2 and 2.7 K. (D) Arrhenius plots of field training symmetrized resistances R̄xx and �R̄xy = h/e2 � R̄xy .
Dotted lines denote representative activation fits. Systematic treatment of uncertainty arising from the absence of a single activated regime
gives � = 31± 11 K and 26± 4 K for R̄xx and �R̄xy , respectively[29].

the quantum oscillations are highly anomalous, with hole-like 1

quantum oscillations originating at ⌫ = 2, again in contrast 2

to all prior reports[23–26]. Additional Landau fan features 3

also appear consistent with hBN alignment of 0.6�(Fig. S11); 4

however, twist angle variations within the tBLG itself pre- 5

clude unambiguous determination of the hBN-tBLG twist an- 6

gle. While no detailed theory for these observations is avail- 7

able, the extreme sensitivity of the detailed structure of the 8

flat bands to model parameters, combined with observations 9

that hBN substrates can produce energy gaps as large as 30 10

meV in monolayer graphene[34], point to the role of the sub- 11

strate in tipping the balance between competing many-body 12

ground states at ⌫ = 3 in favor of the QAH state. Taken to- 13

gether, these observations suggest that hBN aligned samples 14

constitute a different class of tBLG devices with distinct phe- 15

nomenology. 16

Figs. 2A and B show the temperature dependence of major 17

hysteresis loops in Rxx and Rxy , respectively. As T increases, 18

we observe both a departure from resistance quantization and 19

a suppression of hysteresis, with the Hall effect showing linear 20

behavior in field by T = 12 K. In our measurements, we ob- 21

serve resistance offsets of ⇠ 1 k⌦ from the ideal value, which 22

vanish when resistance is symmetrized or antisymmetrized 23

with respect to magnetic field (or, for B ⇡ 0, with respect 24

to field training). For quantitative analysis of the T -dependent 25

data, we thus study field-training symmetrized resistances, de- 26

noted R̄xy and R̄xx. Figure 2C shows R̄xy(0). Finite hys- 27

teresis is observed up to temperatures of 8K (Fig .2C), con- 28

sistent with the Curie temperature TC ⇡ 7.5 K determined 29

from an Arrott plot ( Fig. S12). At low temperatures, R̄xy is 30

quantized to (1.001± 0.0002)⇥ h

e2
, remaining quantized up 31

to T = 3 K before detectable deviation is observed.R̄xy re- 32

mains quantized up to T ⇡ 3 K, with the average value of 33

(1.0010± 0.0002)⇥ h

e2
between 2 and 2.7 K. 34

To quantitatively assess the energy scales associated with 35

the QAH state, we measure the activation energy at low tem- 36

perature. Fig. 2D shows both the measured R̄xx and the devi- 37

ation from quantization of the Hall resistance, �R̄xy = h/e2� 38

R̄xy , on an Arrhenius plot. We assume that the Hall conduc- 39

tivity �xy is approximately T -independent and the longitudi- 40

nal conductivity �xx ⇠ e��/(2T ), where � is the energy cost 41

of creating and separating a particle-antiparticle excitation of 42

the QAH state. Within this picture, inverting the conductivity 43

tensor gives �Rxy ⇠ e��/(T ) while Rxx ⇠ e��/(2T )[29]. 44

QAHE to 1/1000 accuracy
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Theoretical remarks
•Underlying Dirac fermions of graphene have large incipient 

Berry curvature  
•Curvature is realized by breaking C2T symmetry 
•Valley polarization gives non-zero AHE.   
•Quantization occurs if gap is complete - needs spin 

polarization
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Domain manipulation

0

1

-0.1 0 0.1
B (T)

-1

0

1

R
xy

(h
/e

2 )

B

R
xx

(h
/e

2 )

B field biases energy of 
domains

B

�E = �B ·M
<latexit sha1_base64="ViaUk3DZj9brVUEajJXeFwklCAo=">AAACF3icbZDLSgMxFIYz9VbrrepSkGAR3FhmqqAbpXgBN0IFe4FOKZk0bUOTmSE5I5ShO1/CV3Cre3fi1qVbn8RMOwtt/SHw8Z9zOCe/Fwquwba/rMzc/MLiUnY5t7K6tr6R39yq6SBSlFVpIALV8IhmgvusChwEa4SKEekJVvcGl0m9/sCU5oF/D8OQtSTp+bzLKQFjtfO77hUTQPA1PsOH2PVkfDFyaSeABG9H7XzBLtpj4VlwUiigVJV2/tvtBDSSzAcqiNZNxw6hFRMFnAo2yrmRZiGhA9JjTYM+kUy34vE/RnjfOB3cDZR5PuCx+3siJlLrofRMpyTQ19O1xPy35smpzdA9bcXcDyNgPp0s7kYCQ4CTkHCHK0ZBDA0Qqri5HdM+UYSCiTJnQnGmI5iFWqnoHBVLd8eF8nkaTxbtoD10gBx0gsroBlVQFVH0iJ7RC3q1nqw36936mLRmrHRmG/2R9fkD4JuezQ==</latexit>

n.b. domains are valley domains



Domain manipulation

Current switches domains.  How does this work?
(tiny)



Current

Well-developed IQHE:  
•no dissipation, only edge state transport 
•Charge of each edge is separately conserved

✤Can view current-carrying state as quasi-equilibrium ensemble 
where current determines edge occupation

Can formulate F(I,M)



(A)symmetry

Mirror
I

I → I 
M → -M

vector
pseudovector



Energetics

24

A schematic of the mechanism of domain selection is shown in Fig. S17. For simplicity of illustration we assume one edge is1

much “sharper” than the other, which means that its dispersion is much steeper than the other “smooth” edge. The sharp edge2

with |v1| ⌘ v � |v2| and 1/m1 ⌘ 1/m � 1/m2 dominates the transport because electrons move faster on this edge. This3

allows us to draw a picture of the dispersion just near one edge. In the figure, the edge dispersion is shown in black for one sign of4

the magnetization/Hall conductivity (denoted M > 0), and in blue for the other sign (M < 0). The two curves are time-reversal5

copies, so are reflected in the k axis. If a positive current is driven, the Fermi level is shifted up at this edge for M > 0 and6

down for M < 0, while it is shifted down if a negative current is driven for M > 0 or a positive one is driven for M < 0. Focus7

on the positive current case I > 0. We seek to find the energy difference for fixed current but opposite domains. Consider first8

the M > 0 domain. The positive current raises the Fermi level, populating additional states. The total energy of those states is9

the integral over the domain of added states of the single particle energy of those states: this defines the gray shaded area under10

the black dispersion curve and above the k axis for positive k, ✏. This area is the energy cost of driving a positive current for the11

M > 0 state. Now consider still I > 0 but M < 0. The Fermi level is shifted down, and states are depopulated. The blue area12

above the blue curve and below the k axis for k > 0, ✏ < 0 is the energy cost for creating these hole states. One can see that the13

blue area is not equal to the gray area, and that the inequality is due to the curvature of the dispersion. The difference in the two14

areas is the energy difference the two domains due to the non-equilibrium current.15

M > 0M < 0

k

✏

FIG. S17. Schematic illustration of an asymmetric “fast” edge and the population changes at this edge due to a current I > 0 for positive and
negative domains, shown in black and blue. The dashed lines show the Fermi energy for the two cases in the presence of the current. The
difference of the two shaded areas is the energy difference between the two domains due to the current (see text).

Estimates of effect magnitude in tBLG16

To make an estimate of the magnitude of these effects, we use the same “fast edge” approximation to simplify to a single17

velocity and mass parameter. Then the cubic term in the free energy is18

F ⇠ (2⇡)3

3⇡

~2sign(v)
me3v3

LI3. (S10)

Here we restored the dependence on ~. The contribution the current to the free energy is enhanced by decreases in the edge19

mass and velocity, which are determined by non-universal edge physics. The free energy is particularly sensitive to v and I , since20

both appear cubed, which renders making precise estimates difficult. Nonetheless, to show consistency, we take v = 5⇥104 m/s21

(a typical literature value for magic angle tBLG), and m = me, i.e. a unit effective mass, and a current of I = 100 nA, which22

is the order of the switching currents at low temperature (since the theory has been carried at T = 0). This gives an energy23

F = 4.0 meV, which is similar to the magnetostatic energy assuming an orbital moment per electron of a few Bohr magnetons.24

Uncertainties in the edge properties as well as thermal renormalizations not taken into account here make it hard to make a more25

quantitative comparison at present. These are interesting subjects for future work.26

Experimentally, this could be verified by fabricating a tBLG aligned to hBN QAH device with gate defined edges. In such a27

device, one could systematically vary the sharpness and symmetry of the edge potential to probe which effects are most relevant28

to critical switching currents.29

Simple limit: one “fast” (costly) edge

I>0: 
• Add right-moving e-s 
• Remove left-moving e-s

�F ⇠ ~2
me3v3

LI3
<latexit sha1_base64="cvQbA4OgPcQ7CzMovsKGZE/a3ng="></latexit>



Dissipative Regime

A fully non-equilibrium problem, bulk 2d physics
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perturbed via the application of a magnetic field that induces antifer-
romagnetic order consistent with an up–up–down plateau state for 
the triangular lattice and reflects an underlying XXZ Hamiltonian 
with enhanced fluctuations due to interlayer frustration. Our data 
reveal that NaYbO2 hosts an enticing quantum disordered ground 
state controllable via modest external fields and presents a cleanly 
tunable platform for exploring order to quantum disorder phase 
boundaries inherent to the XXZ triangular lattice.

Polycrystalline NaYbO2 was synthesized and characterized via 
neutron powder diffraction measurements (see Methods for further 
synthesis and experiment details). Figure 1a shows the structure 
at 1.6 K, revealing R3m symmetry with fully occupied sodium and 
oxygen sites. The D3d distorted YbO6 octahedra and bond lengths 
are illustrated, and a similar YbO6 environment in YbMgGaO4 is 
known to generate a large 38 meV splitting between the first excited 
state and the ground state doublet20,21. A comparison of the Yb envi-
ronments of the two materials is provided in Supplementary Table 2.  
At low temperatures, the ground state therefore behaves as an  
isolated Jeff = 1/2 Kramers doublet. Nearest-neighbour Yb–Yb dis-
tances were refined to 3.3507(1) Å at 300 K, consistent with previ-
ous reports27–29, and naively support enhanced exchange relative to 
other frustrated Yb-based compounds.

Characterizing this exchange, magnetic susceptibility (χ) and 
magnetization data are plotted in Figs. 2 and 3. Below 50 K, the 
Van Vleck contribution to the susceptibility is negligible. The data 
from 20 K to 100 K were modelled by Curie–Weiss fits of the form 

=χ χ θ− −

−( )C
T

1
1

0 CW
 (where C is specific heat, T is temperature, χ0 is 

the temperature-independent contribition to the susceptibility and  
θCW is the Curie–Weiss temperature), shown in Fig. 2a, and yield a 
local moment of 2.63(8) Bohr magnetons (µB) with an antiferromag-
netic θCW = −10.3(8) K. Relative to YbMgGaO4, θCW is substantially 
enhanced (θCW = −4 K)15,16,18,20, consistent with enhanced exchange. 
The local moment suggests a heightened g-factor, which was vali-
dated via electron paramagnetic resonance (EPR) measurements 
(Fig. 2a inset). A powder-averaged g-factor of gavg = 3.03 is implied 
by the local moment extracted from susceptibility data. Fits to  

the EPR line shape reveal anisotropic g-factors of gab = 3.294(8)  
and gc = 1.726(9) corresponding to the triangular a–b plane and  
c axis, respectively.

Although the saturated moment for this system is expected to be 
approximately 1.5 μB per Yb ion, M(H) (where M is magnetization 
and H is magnetic field strength) measurements collected at 2 K up 
to 9 T (Fig. 2b) were able to polarize Yb moments up to 1 μB only, 
consistent with notable θCW exchange. Figure 2c shows zero-field 
a.c. susceptibility data collected down to 50 mK. No signatures of 
freezing, frequency dependence or long-range order are observed. 
Instead, χ′(T) continues to diverge as the sample is cooled, gener-
ating an empirical frustration parameter of θCW/0.050 K > 200. As  
we will later argue, this zero-field state is an inherently quantum 
disordered state dressed by a small fraction of free Yb moments that 
are quenched in a magnetic field.

Data on χ′(T) collected under a variety of H fields are plotted in 
Fig. 2d. Under small H values, the divergence in χ′(T) (the real part 
of the a.c. susceptibility) is suppressed and a maximum appears. The 
temperature of this maximum increases with field until μ0H = 2 T 
(where µ0 is the permeability of free space) is reached, beyond which 
χ′(T) becomes nearly temperature independent. The inflection in 
χ′(T) increases linearly with H and is plotted in Fig. 1b. This matches 
the expected Zeeman splitting (ΔE) of isolated Jeff = 1/2 moments, 
ΔE = 2μBgavgJeffH, and suggests that χ′(T) at μ0H = 2 T represents 
the remaining majority of the correlated/bound Yb moments. As 
an estimate of the fraction of free spins, μ0H = 0 T data were fit to a 
Curie–Weiss form after removing the majority response accessed at 
μ0H = 2 T. Fits to a Curie–Weiss form between 1 K and 4 K (Fig. 2d) 
are described by a model of 14.4(6)% free spins with a full moment 
of 2.63 μB and θCW = −0.45(4) K. In addition, 2 K M(H) data plotted 
in Supplementary Fig. 2d were fit to a two-component model of 
Brillouin-like free spins and exchange-field-bound moments, which 
yielded a free spin fraction of approximately 7%. These fits roughly 
parametrize the limits of a free spin fraction in the material and sug-
gest that free spins coexist within a quantum disordered ground state.

At higher fields, the nearly temperature-independent χ′(T) at 
2 T evolves into an ordered state. Isothermal χ′(H) data at 330 mK 
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Fig. 1 | Crystal structure and magnetic (H,!T) phase diagram of NaYbO2. a, Refined NaYbO2 structure (1.6!K, R3m) contains equilateral triangular layers 
of D3d YbO6 distorted octahedra separated by 3.346!Å. Sodium cations refine to full occupation, creating a uniform chemical environment surrounding the 
triangular layers. Purple spheres, Yb atoms; black spheres, Na atoms; brown spheres, O atoms. b, Low-temperature phase boundary between quantum 
disordered and antiferromagnetic ordered states in NaYbO2, plotted as a function of field and temperature, extracted from a.c. susceptibility and neutron-
scattering experiments. The dashed line denotes the boundary of Zeeman-driven quenching of a minority fraction of free Yb moments under field, above 
which free moments are quenched. These free moments coexist with a quantum disordered ground state. Values in parentheses and error bars indicate 
one standard deviation. kB is the Boltzmann constant, Hq denotes the onset temperature of the up–up–down ordered state and HZeeman denotes the 
suppression in magnetic susceptibility observed due to the quenching of a small fraction of free Yb moments.
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