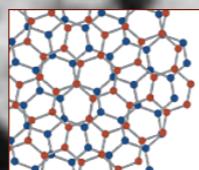


# Towards UQM in experiments

Leon Balents, KITP



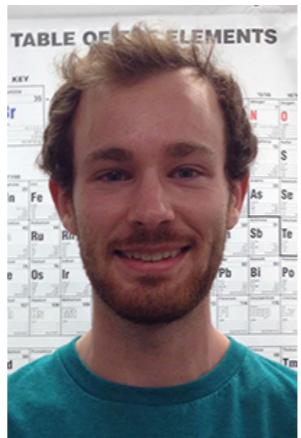
Simons Collaboration on  
Ultra-Quantum Matter



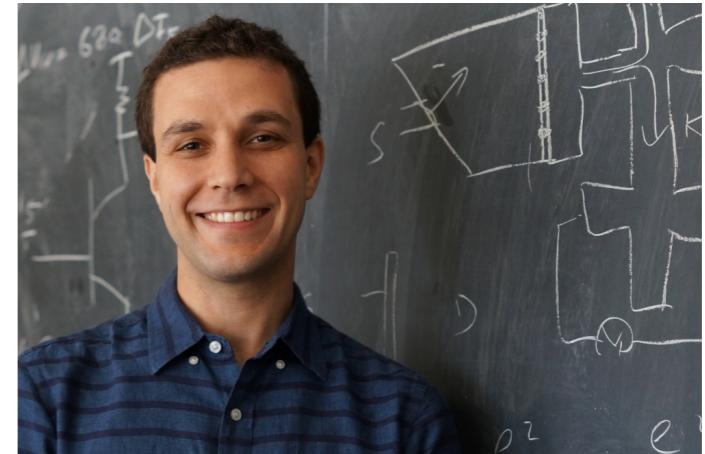
# Collaborators



Stephen Wilson



Mitchell Bordelon



Andrea Young



Chunxiao Liu



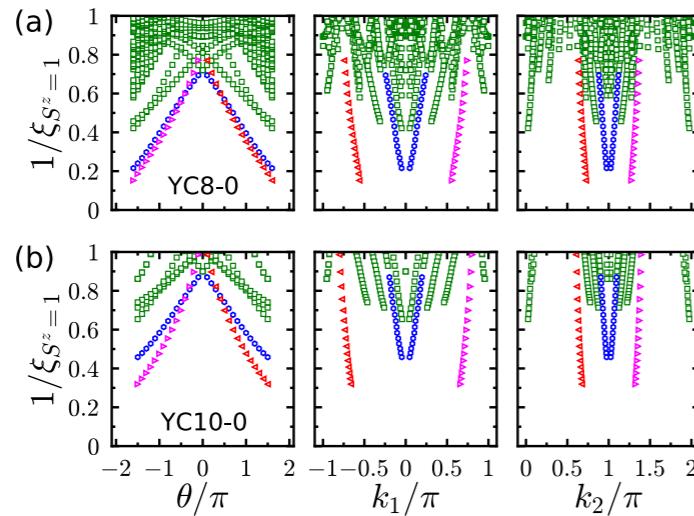
Kasra Hejazi

# Outline

- $\text{NaYbO}_2$ : a possible new quantum spin liquid
- Continuum model for twisted bilayer graphene for dummies
- Quantum anomalous Hall effect in TBG: controlling the order parameter with current

# Spin Liquids

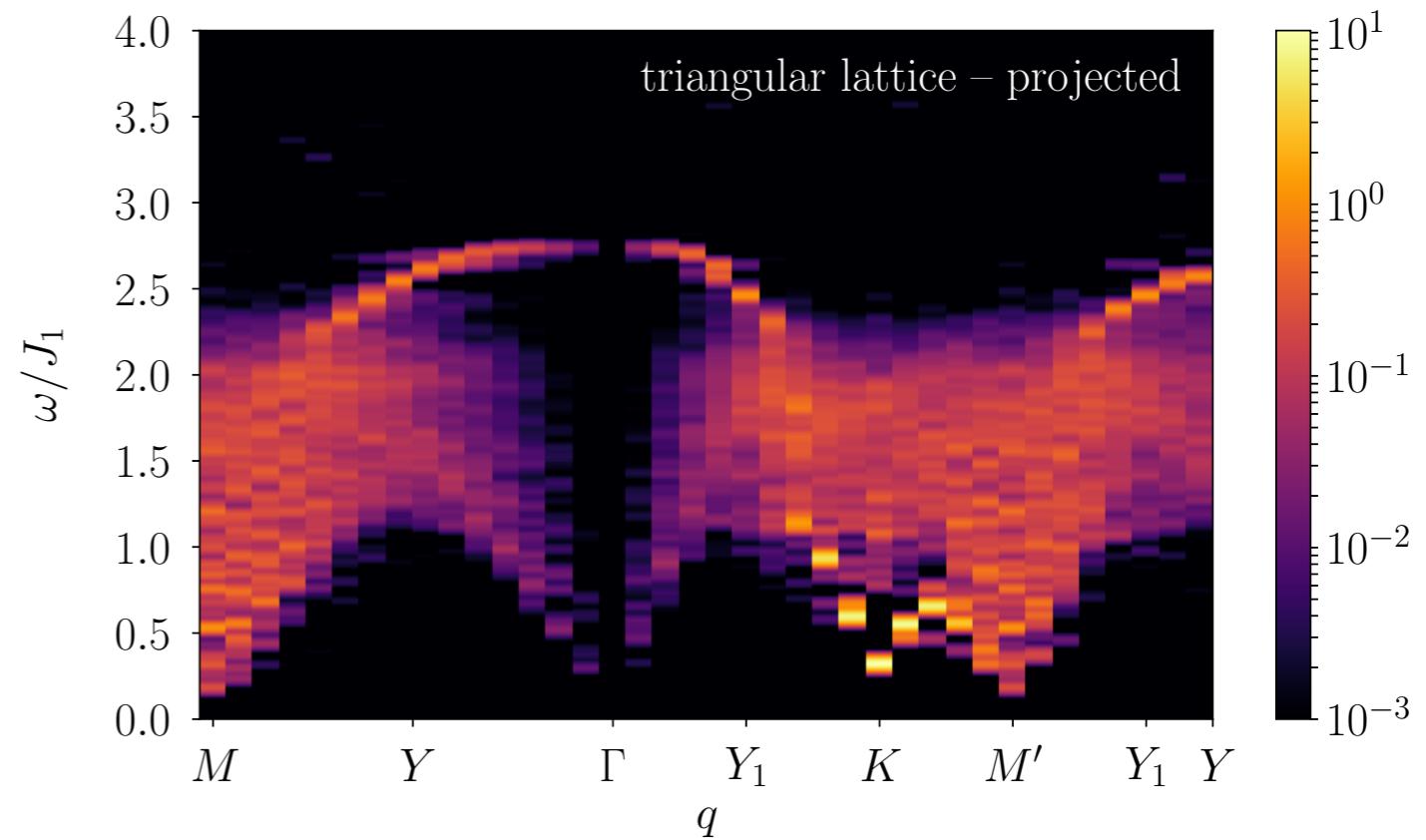
- Possible U(1) Dirac QSL on the triangular lattice ( $J_1$ - $J_2$ )



Shijie Hu *et al*, 2019

|                        | $T_1$                                     | $T_2$                                      | $R$                    | $C_6$           | $\mathcal{T}$   |
|------------------------|-------------------------------------------|--------------------------------------------|------------------------|-----------------|-----------------|
| $M_{00}$               | +                                         | +                                          | -                      | +               | -               |
| $M_{i0}$               | +                                         | +                                          | +                      | -               | +               |
| $M_{01}$               | -                                         | -                                          | $-M_{03}$              | $-M_{02}$       | +               |
| $M_{02}$               | +                                         | -                                          | $M_{02}$               | $M_{03}$        | +               |
| $M_{03}$               | -                                         | +                                          | $-M_{01}$              | $M_{01}$        | +               |
| $M_{i1}$               | -                                         | -                                          | $M_{i3}$               | $M_{i2}$        | -               |
| $M_{i2}$               | +                                         | -                                          | $-M_{i2}$              | $-M_{i3}$       | -               |
| $M_{i3}$               | -                                         | +                                          | $M_{i1}$               | $-M_{i1}$       | -               |
| $\Phi_1^\dagger$       | $e^{-i\frac{\pi}{3}}\Phi_1^\dagger$       | $e^{i\frac{\pi}{3}}\Phi_1^\dagger$         | $-\Phi_3^\dagger$      | $\Phi_2$        | $\Phi_1$        |
| $\Phi_2^\dagger$       | $e^{i\frac{2\pi}{3}}\Phi_2^\dagger$       | $e^{i\frac{\pi}{3}}\Phi_2^\dagger$         | $\Phi_2^\dagger$       | $-\Phi_3$       | $\Phi_2$        |
| $\Phi_3^\dagger$       | $e^{i\frac{-\pi}{3}}\Phi_3^\dagger$       | $e^{i\frac{-2\pi}{3}}\Phi_3^\dagger$       | $-\Phi_1^\dagger$      | $-\Phi_1$       | $\Phi_3$        |
| $\Phi_{4/5/6}^\dagger$ | $e^{i\frac{2\pi}{3}}\Phi_{4/5/6}^\dagger$ | $e^{-i\frac{2\pi}{3}}\Phi_{4/5/6}^\dagger$ | $\Phi_{4/5/6}^\dagger$ | $-\Phi_{4/5/6}$ | $-\Phi_{4/5/6}$ |

X-Y Song *et al*, 2018

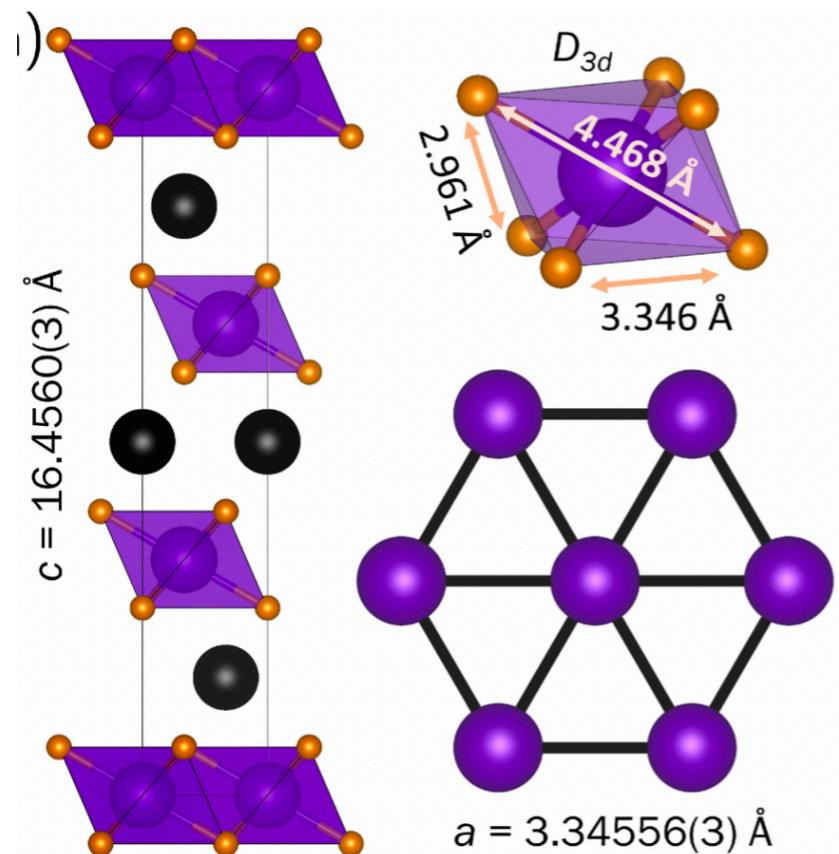


Federico Becca, unpublished

# Spin Liquids?

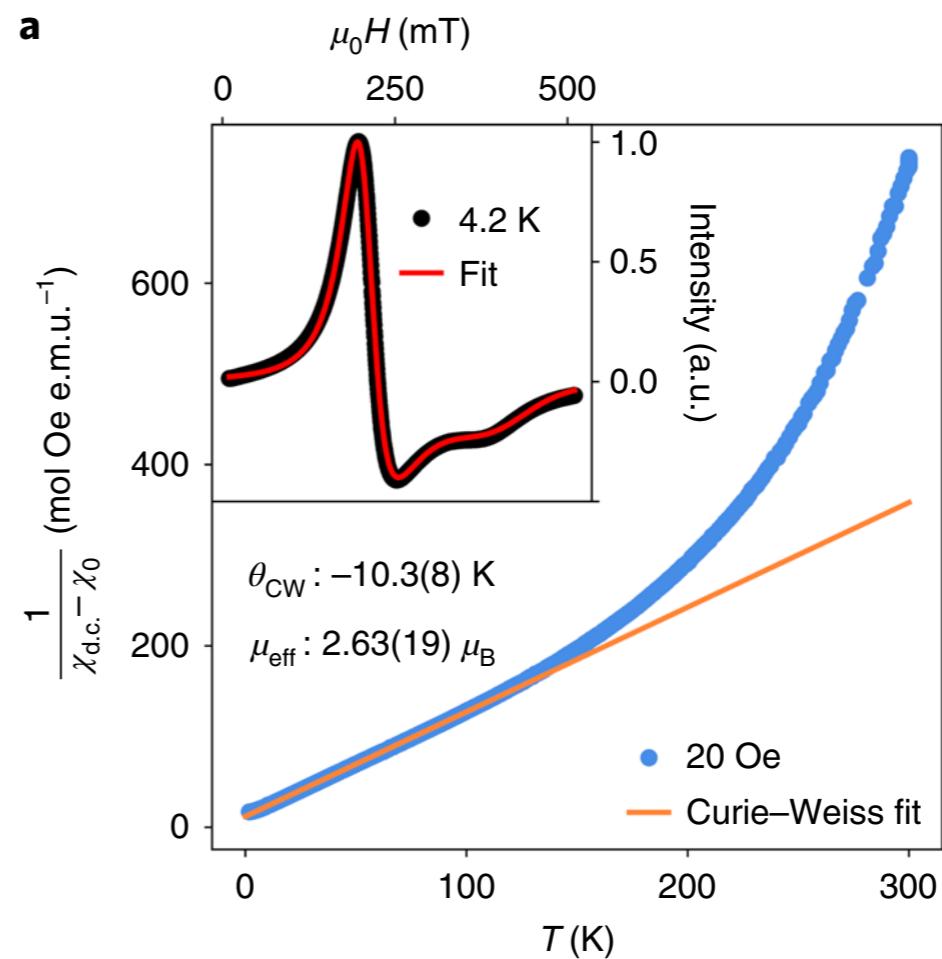
| Model                                                | QSL                | Material                    | Issue                                   |
|------------------------------------------------------|--------------------|-----------------------------|-----------------------------------------|
| Kagome Heisenberg                                    | U(1) Dirac         | Herbertsmithite             | Interlayer disorder                     |
| Kitaev honeycomb                                     | Gapless Z2/Ising   | $\alpha$ -RuCl <sub>3</sub> | Un-reproduced key result                |
| Triangular Hubbard                                   | U(1) Fermi surface | k-(ET),dmit organics        | Interlayer disorder/unreproduced result |
| Triangular J <sub>1</sub> -J <sub>2</sub> Heisenberg | U(1) Dirac?        | YbMgGaO <sub>4</sub> ?      | Random alloy Mg/Ga disorder             |

# NaYbO<sub>2</sub>



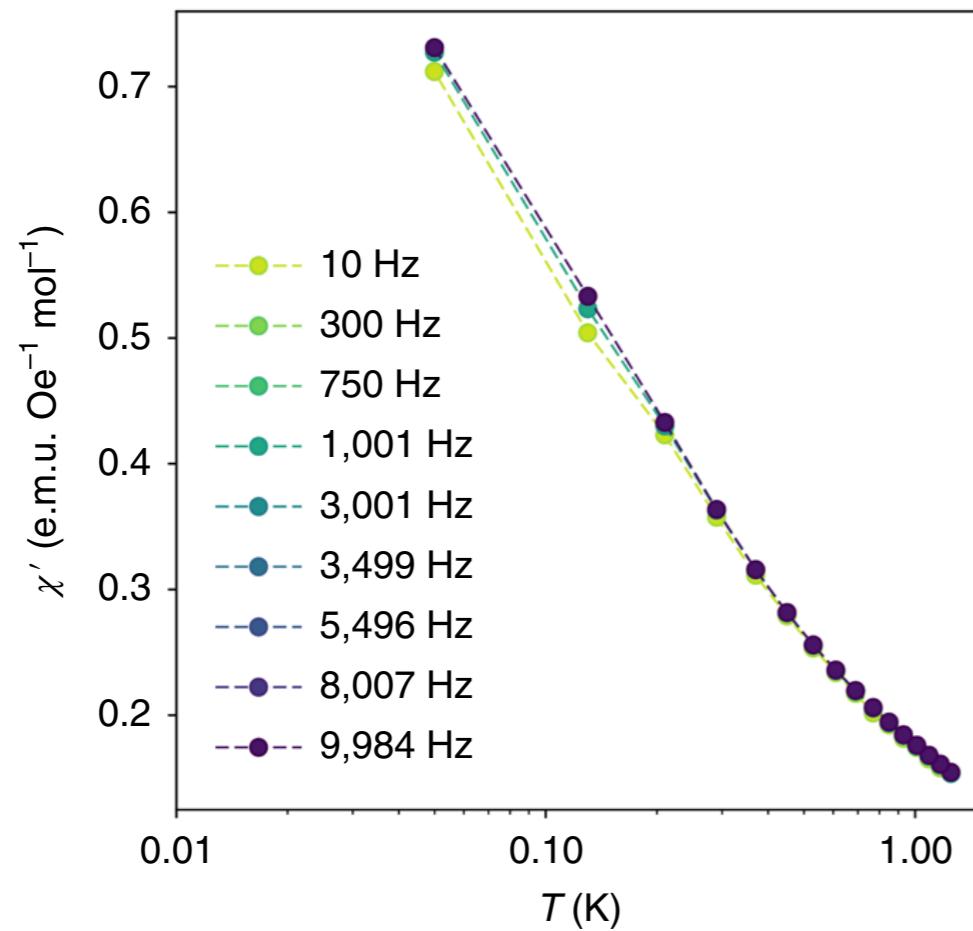
Isotropic triangular lattice of Yb<sup>3+</sup>  
effective S=1/2 moments

ESR shows g<sub>xy</sub>=3.3, g<sub>z</sub>=1.7: expect  
XY-like spins (common for Yb<sup>3+</sup>)

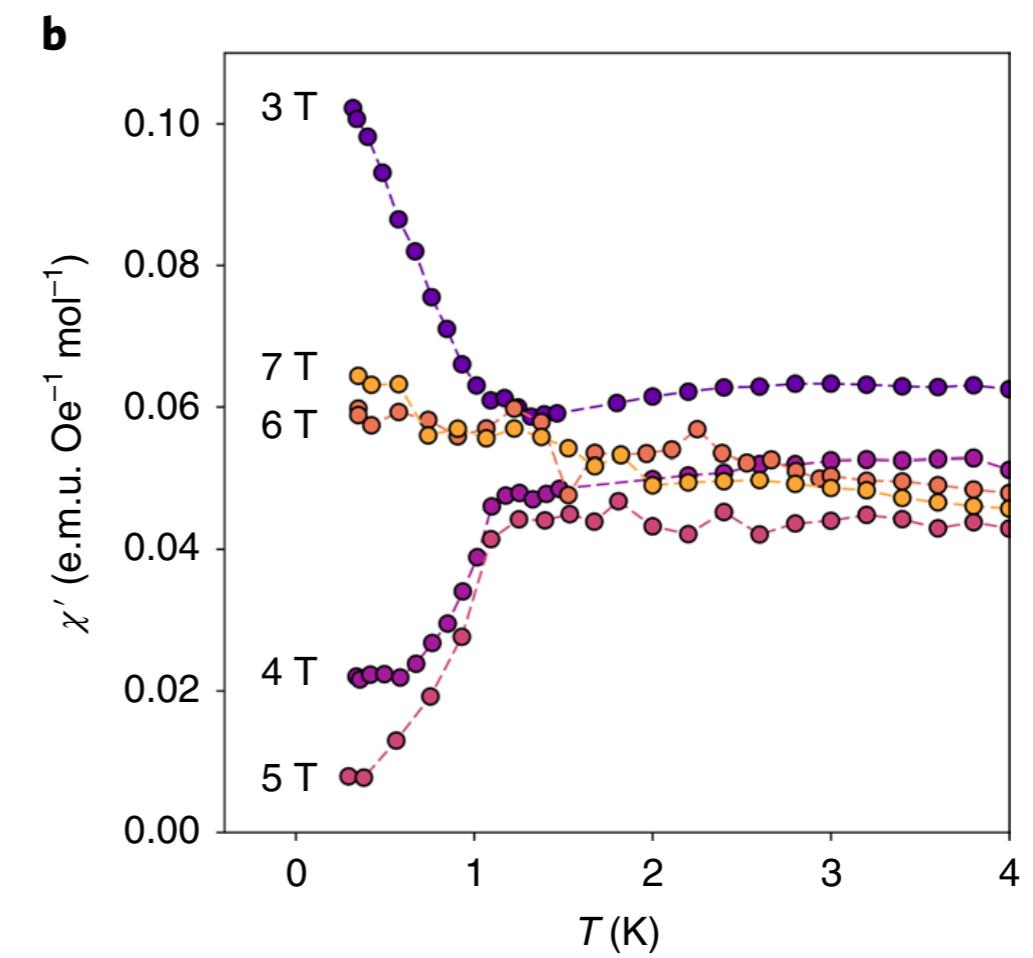


Susceptibility shows antiferromagnetic  
exchange with ~10K scale

# NaYbO<sub>2</sub>



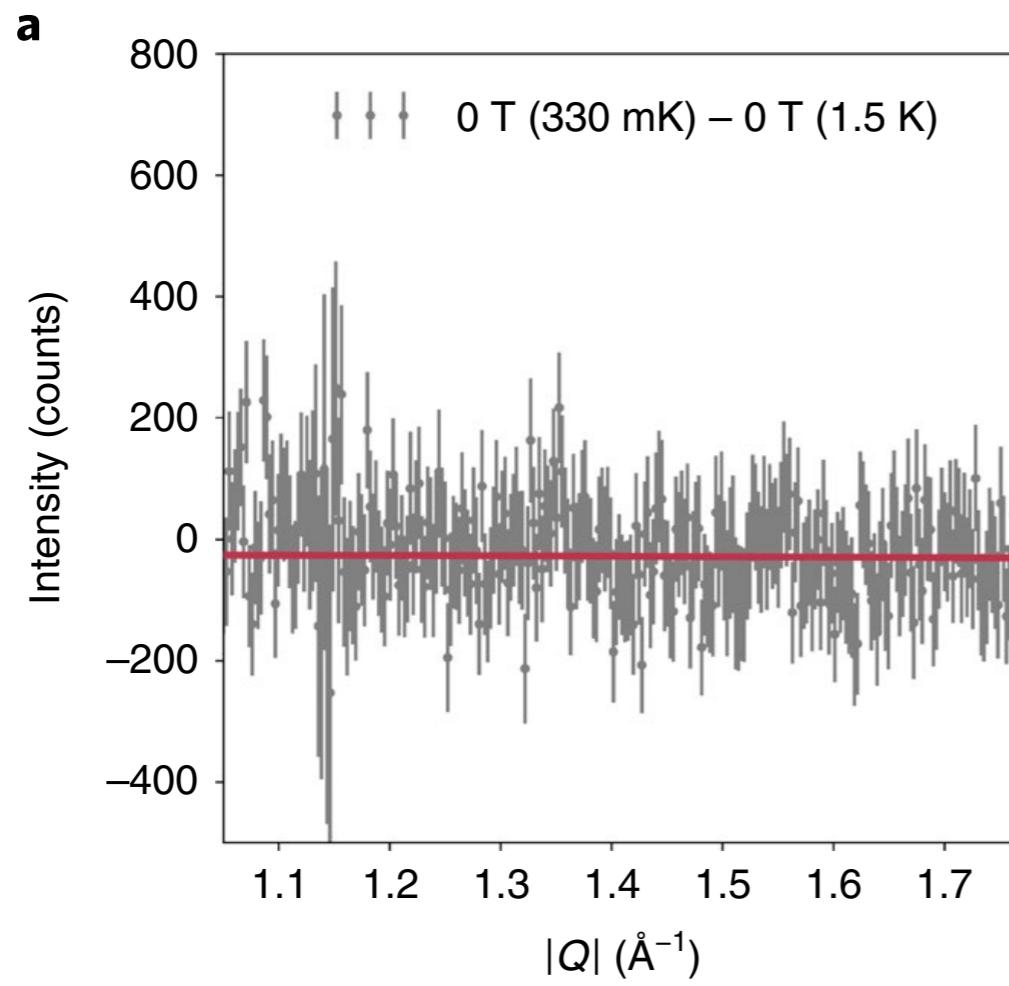
No ordering or freezing at  $B=0$



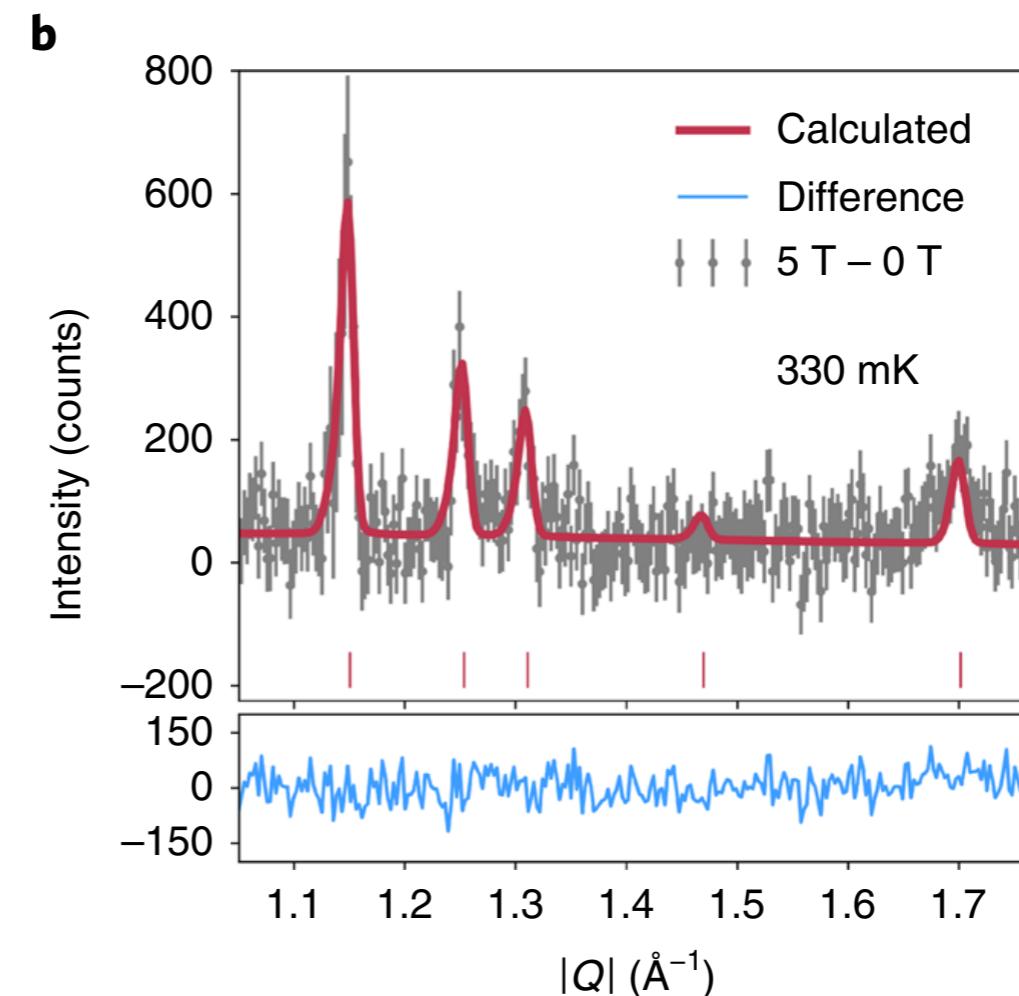
“action” in  $B>2T$ .

# NaYbO<sub>2</sub>

## Neutron scattering

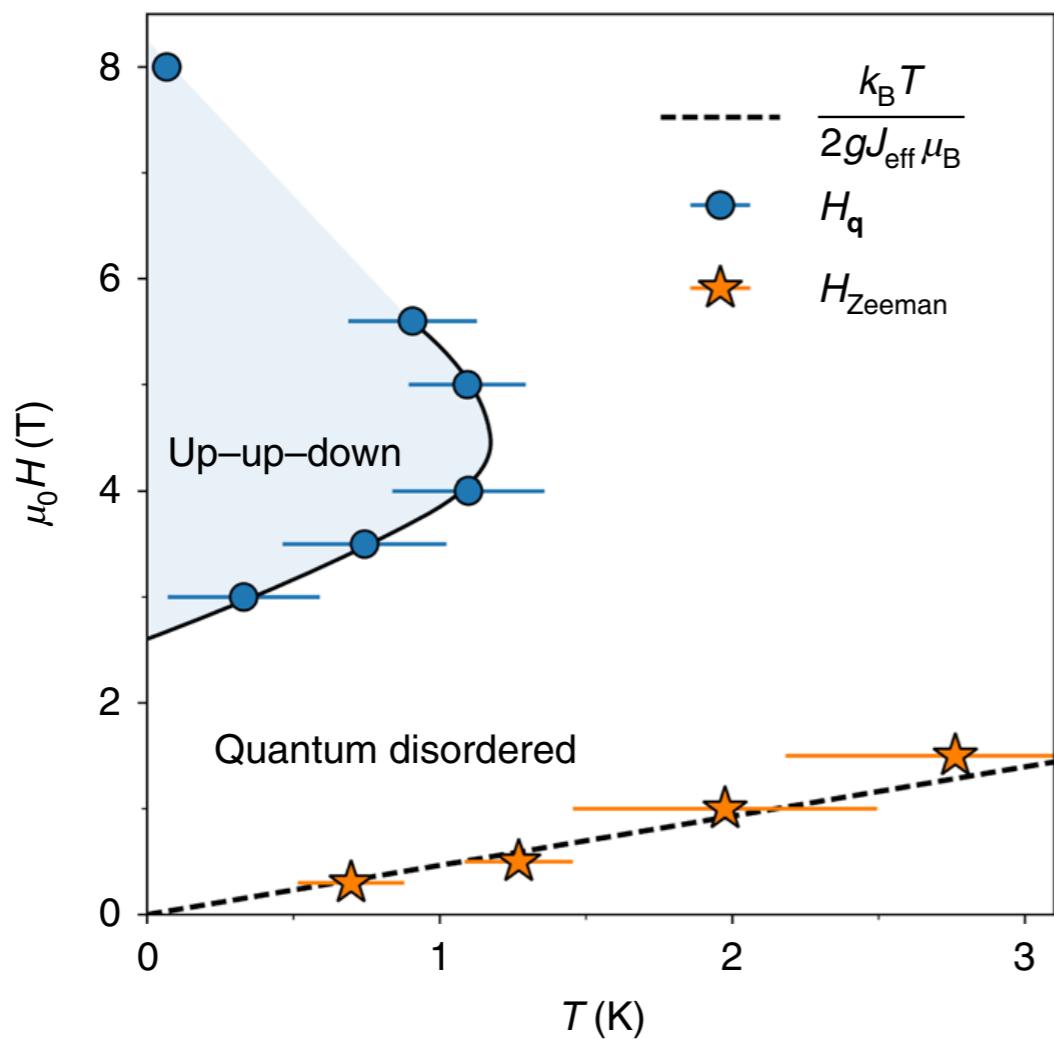


Featureless at B=0



Field-induced order

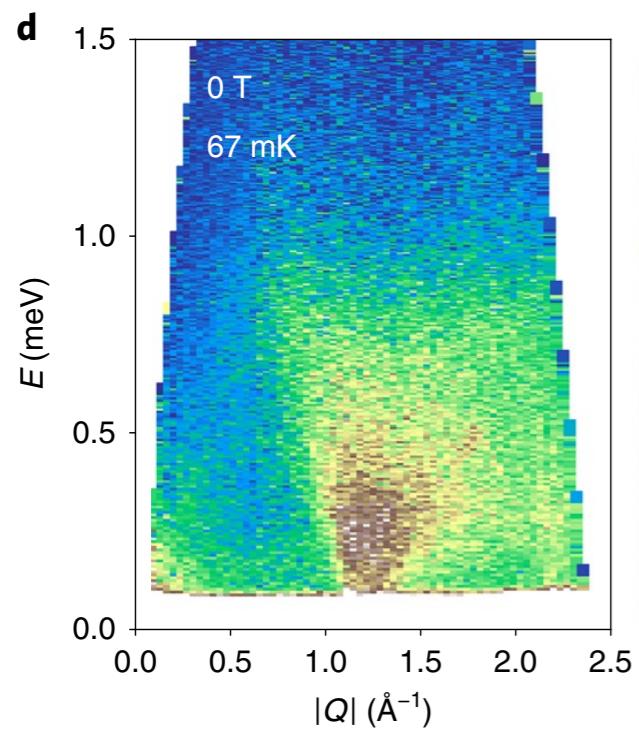
# NaYbO<sub>2</sub>



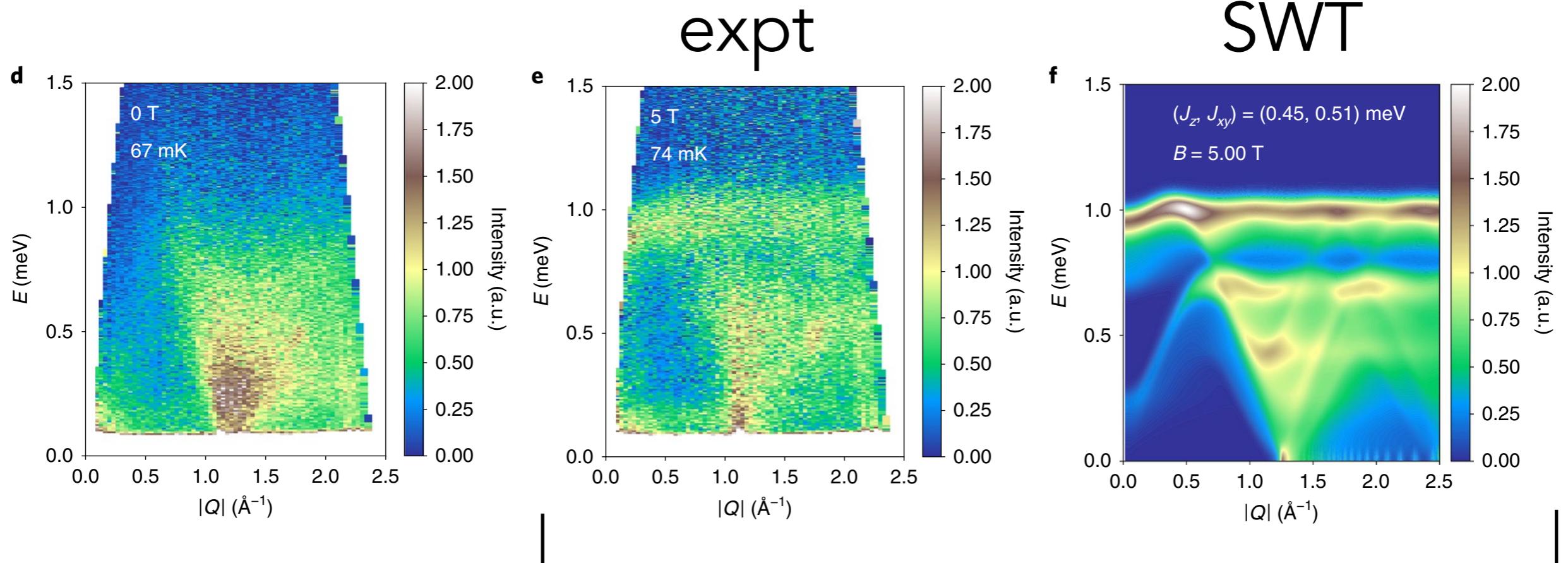
Field-induced  
3-sublattice  
order

# NaYbO<sub>2</sub>

## Powder INS



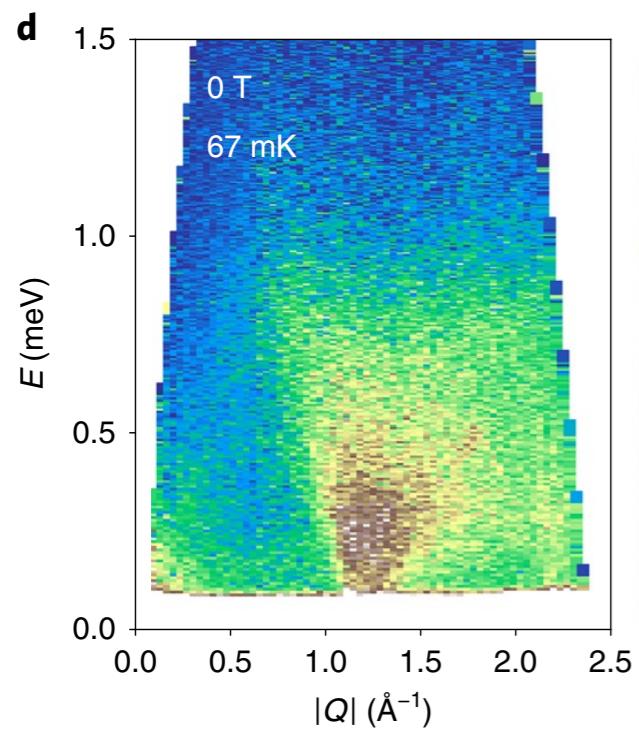
QSL?



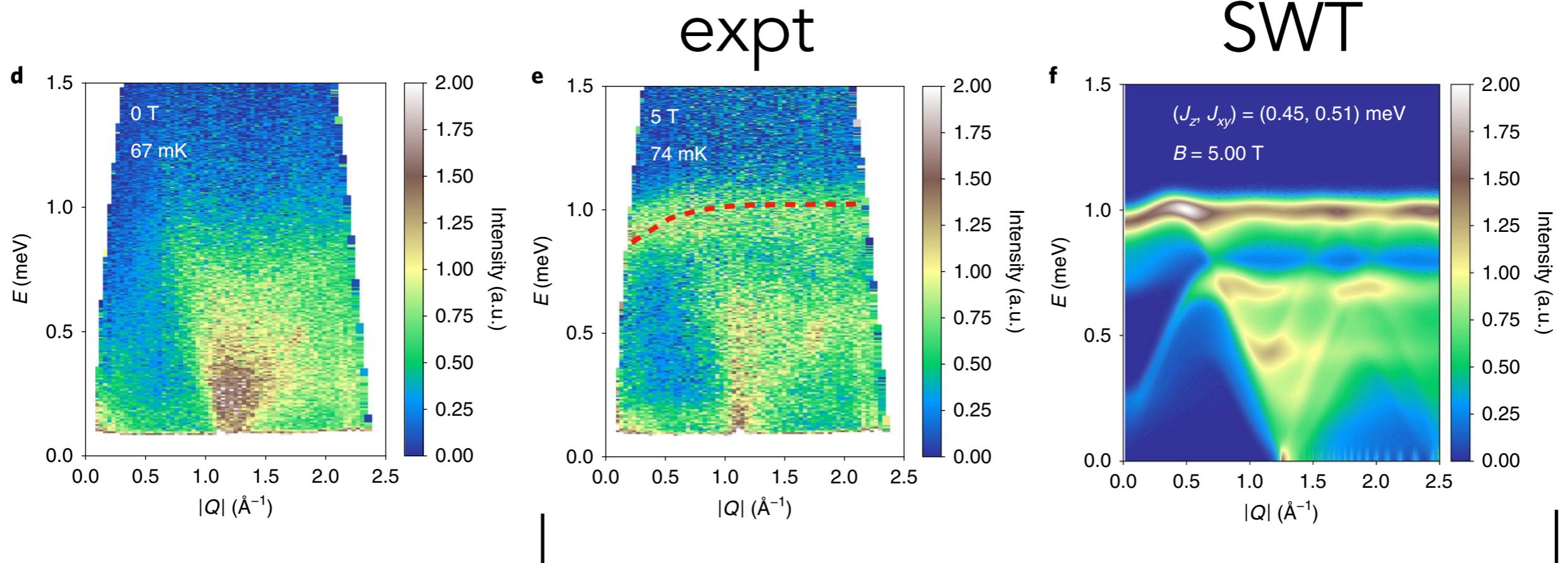
In the ordered state

# NaYbO<sub>2</sub>

## Powder INS



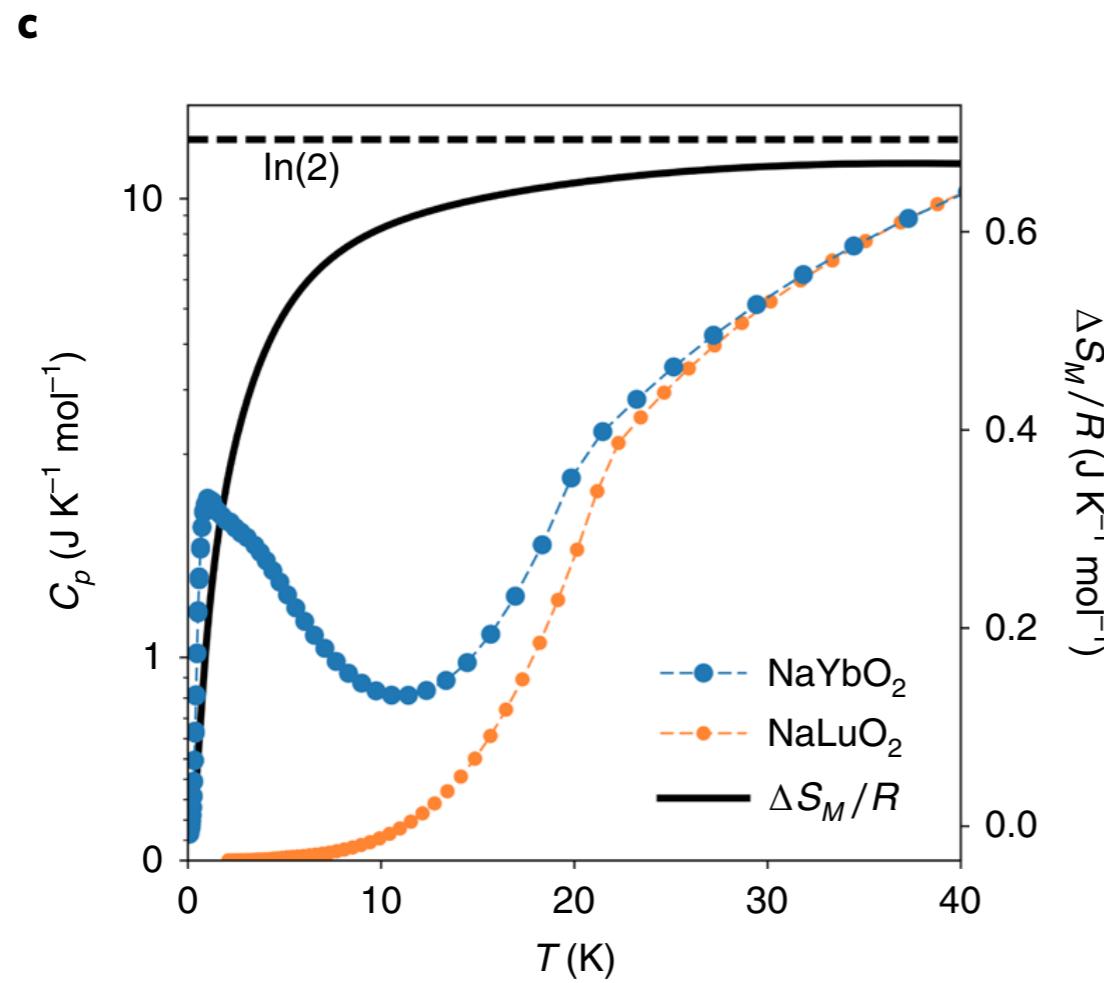
QSL?



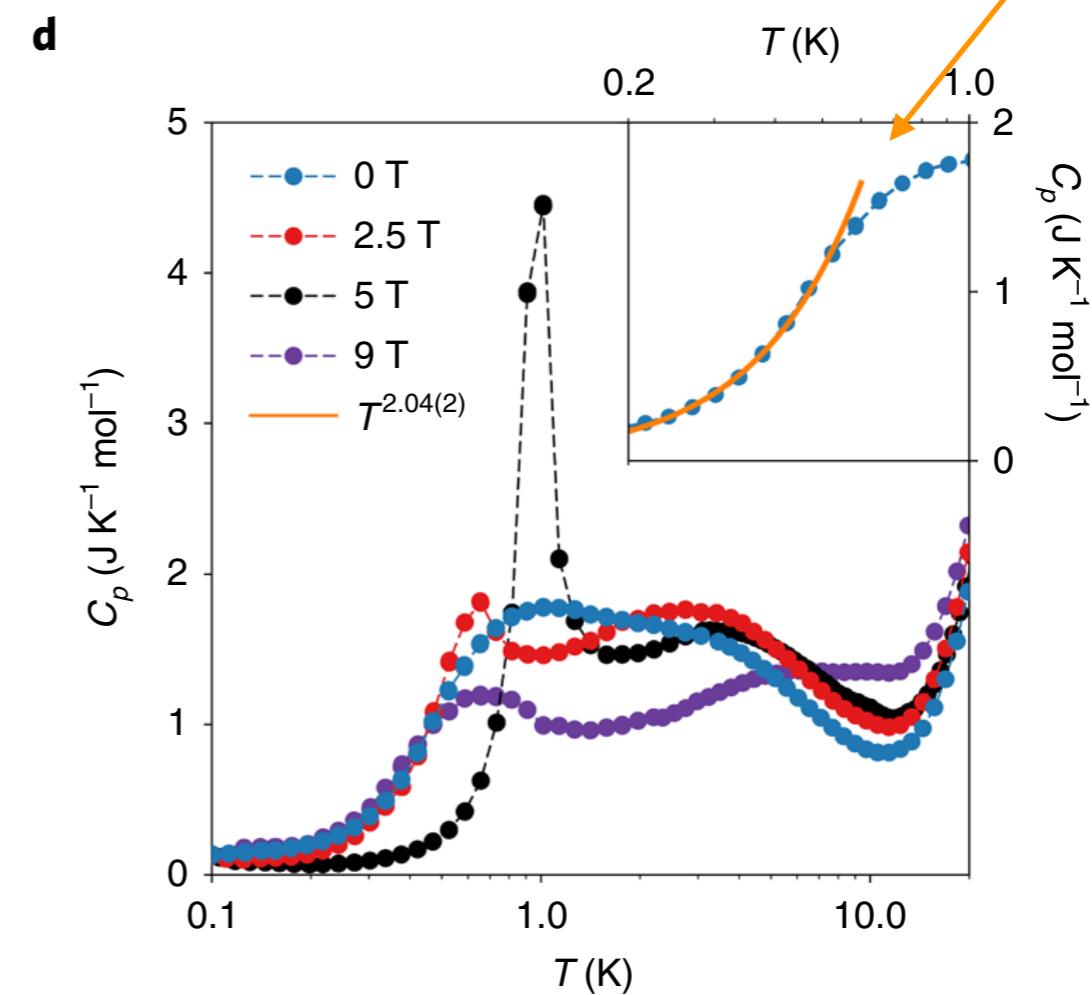
In the ordered state

# NaYbO<sub>2</sub>

$C \sim T^2$ ?



Entropy confirms  $S=1/2$



So far consistent with U(1) Dirac

# Magic angle graphene

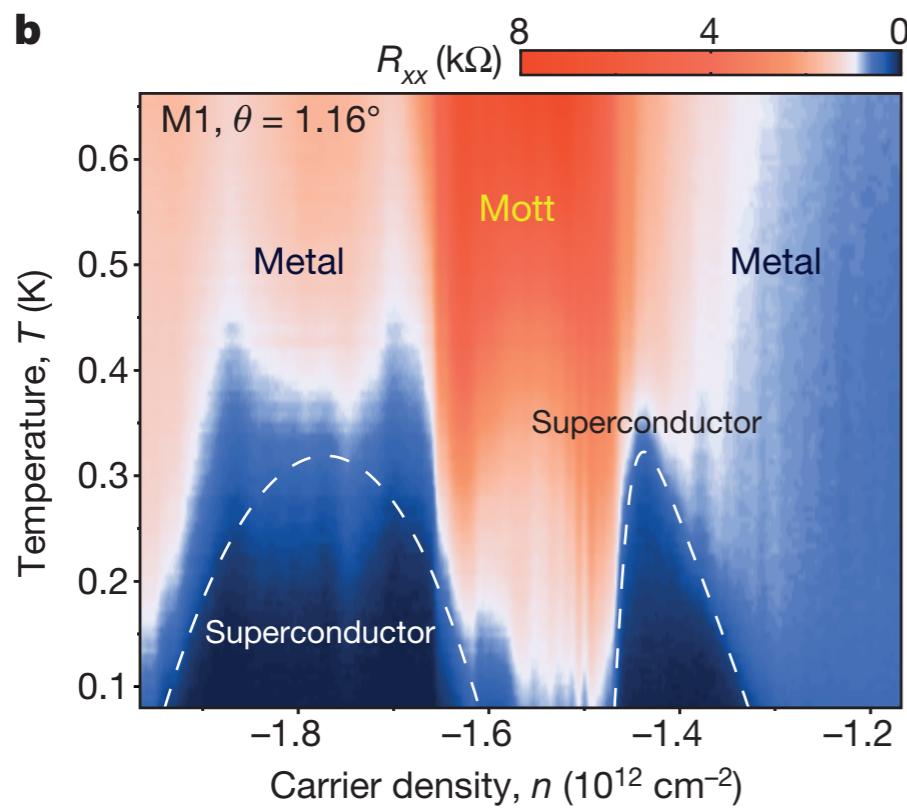


Pablo Jarillo-Herrero  
(MIT)

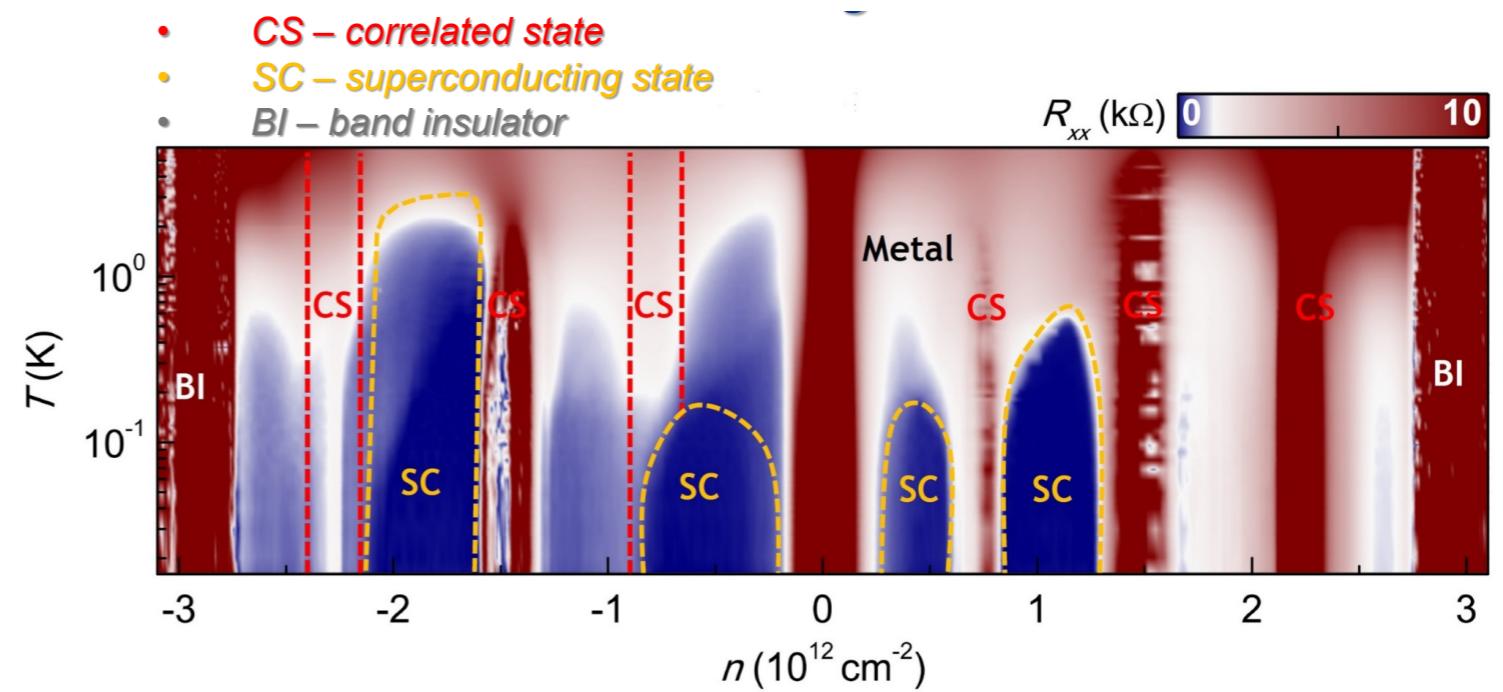
Physics World  
Breakthrough of the year,  
2018



Dimitri Efetov  
(Barcelona)



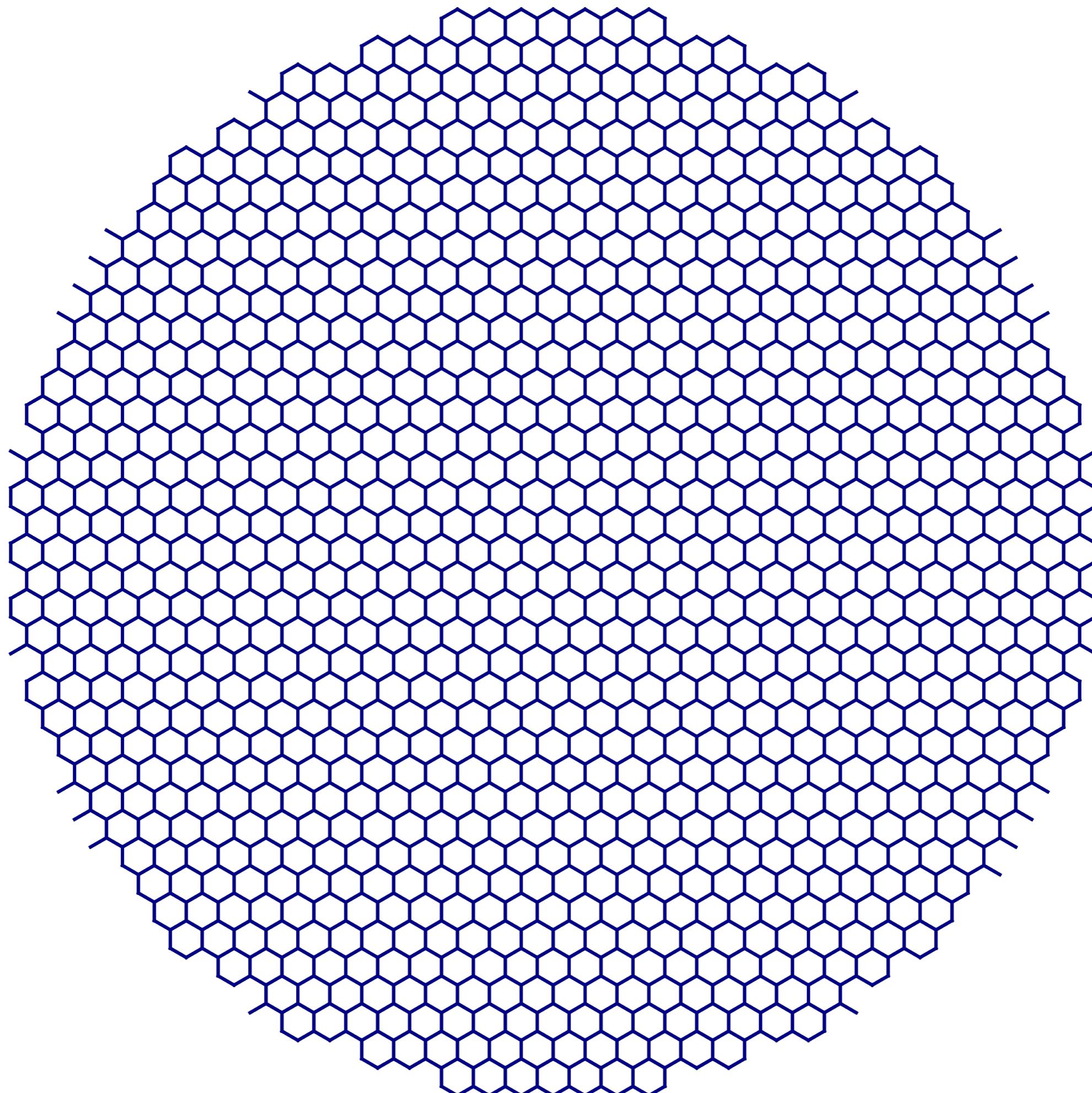
Y. Cao *et al*, 2018



YX. Lu *et al*, 2019

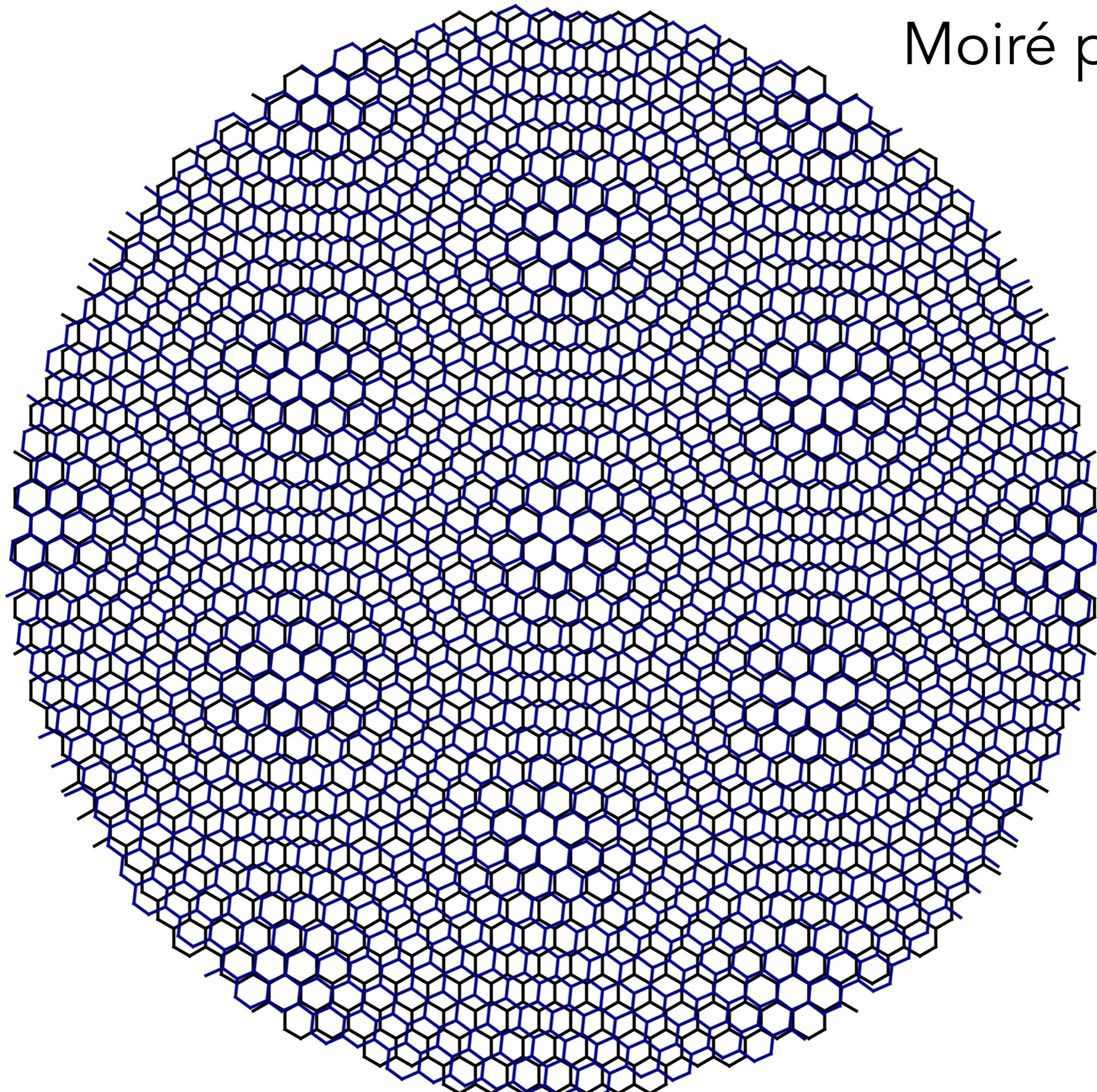
# Two topics in TBG

1. Continuum model for TBG as effective field theory
2. Non-equilibrium driving a QAHE state



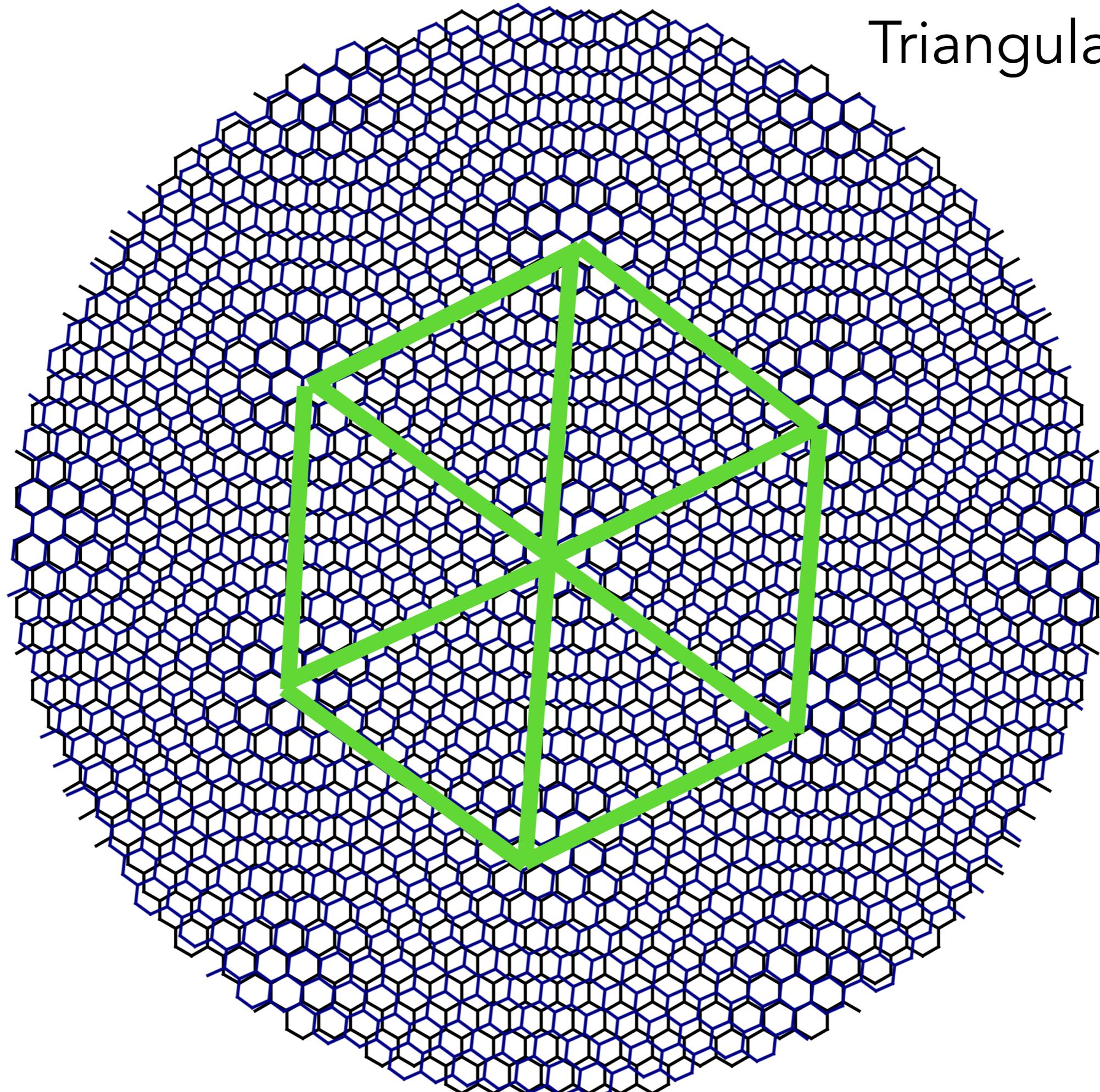
Moiré pattern

6°

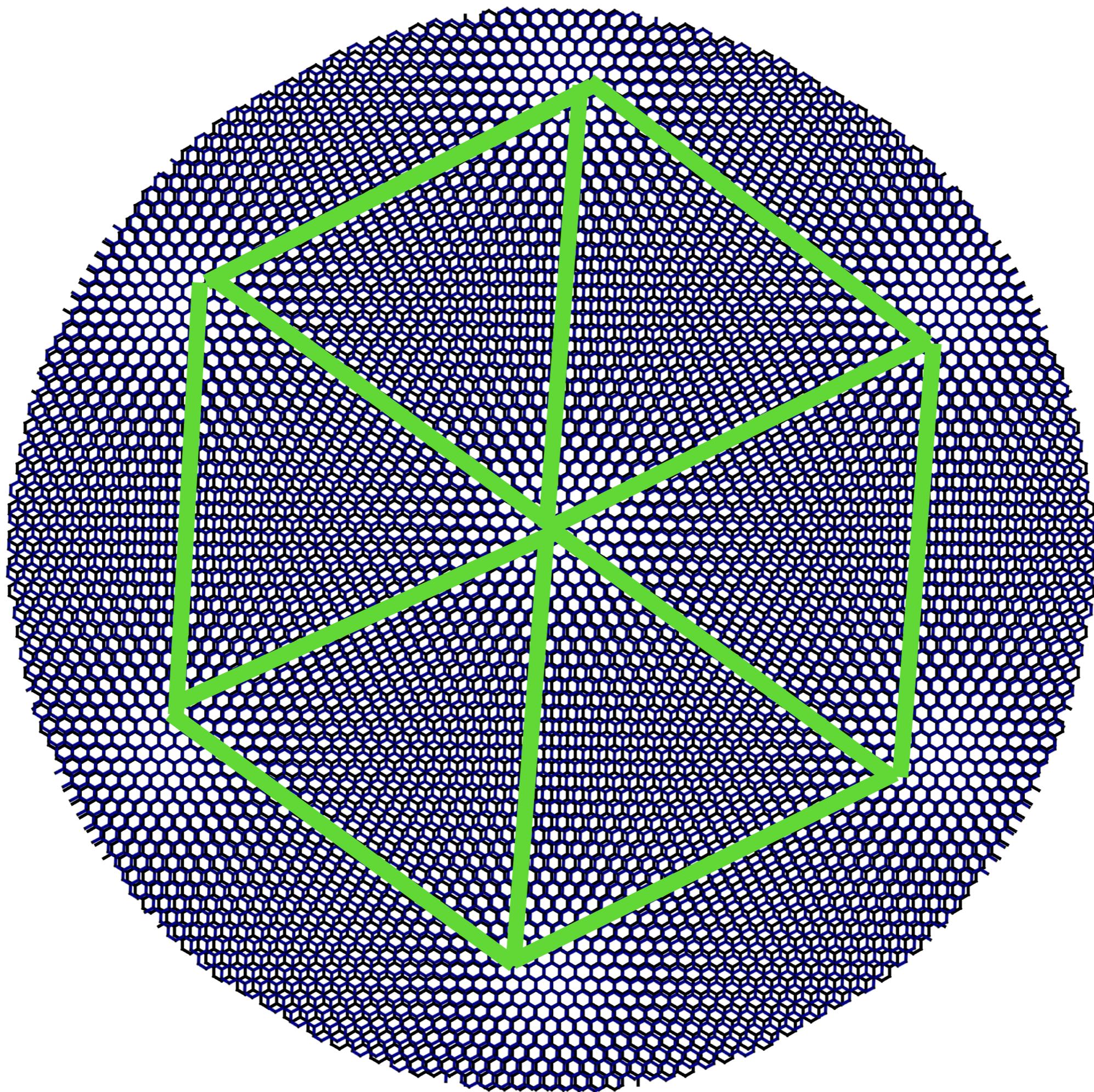


Triangular lattice

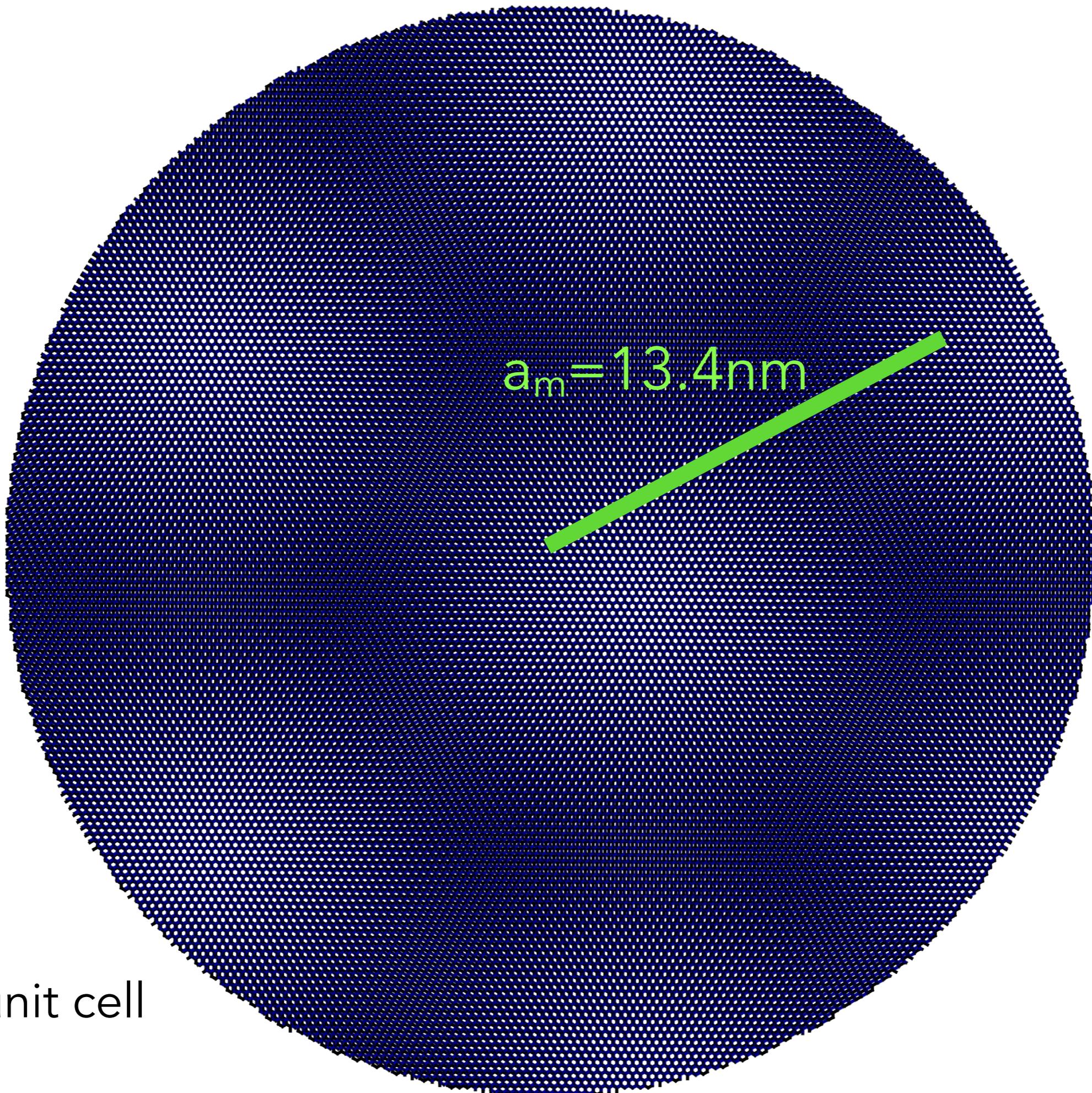
6°



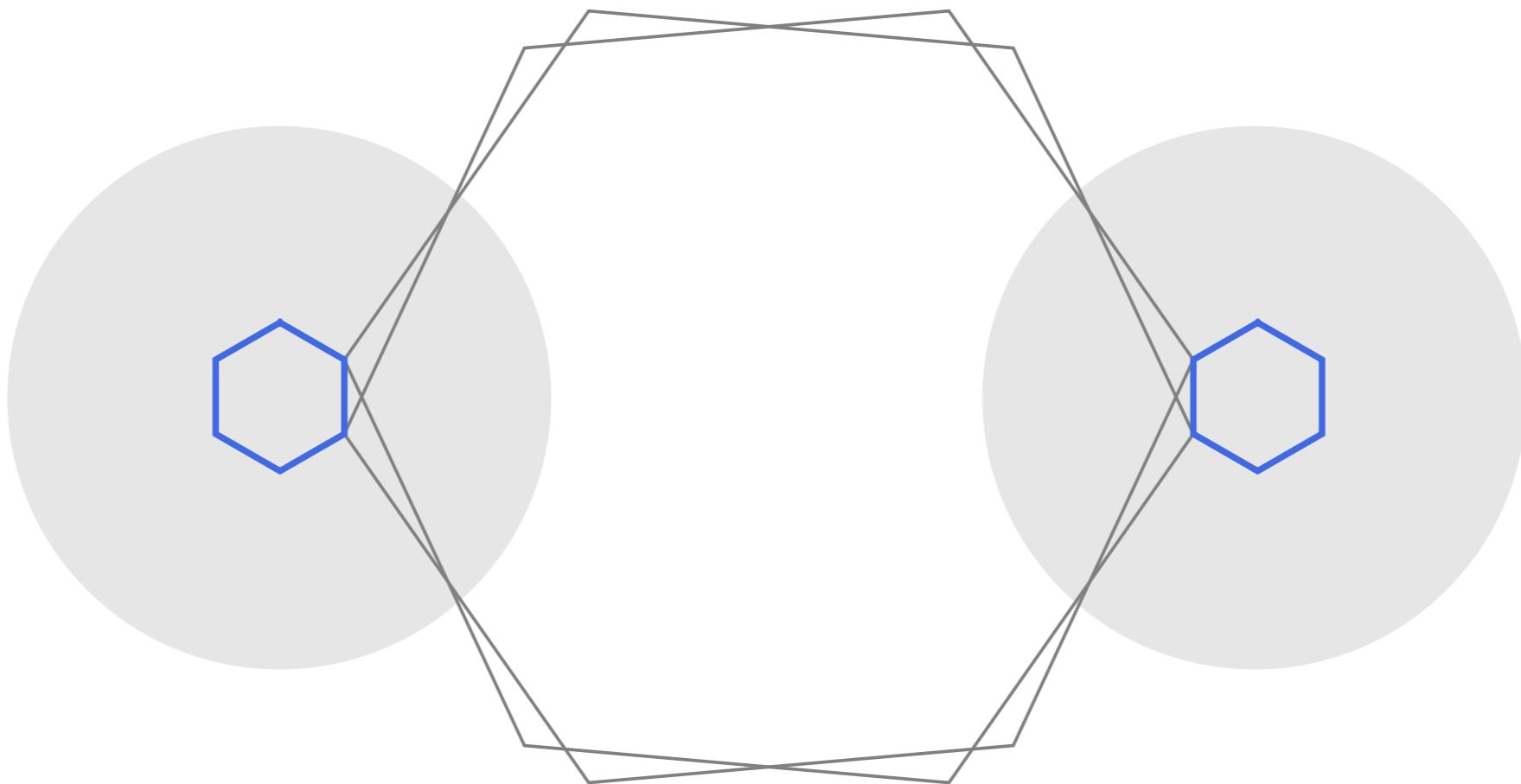
2°



1°

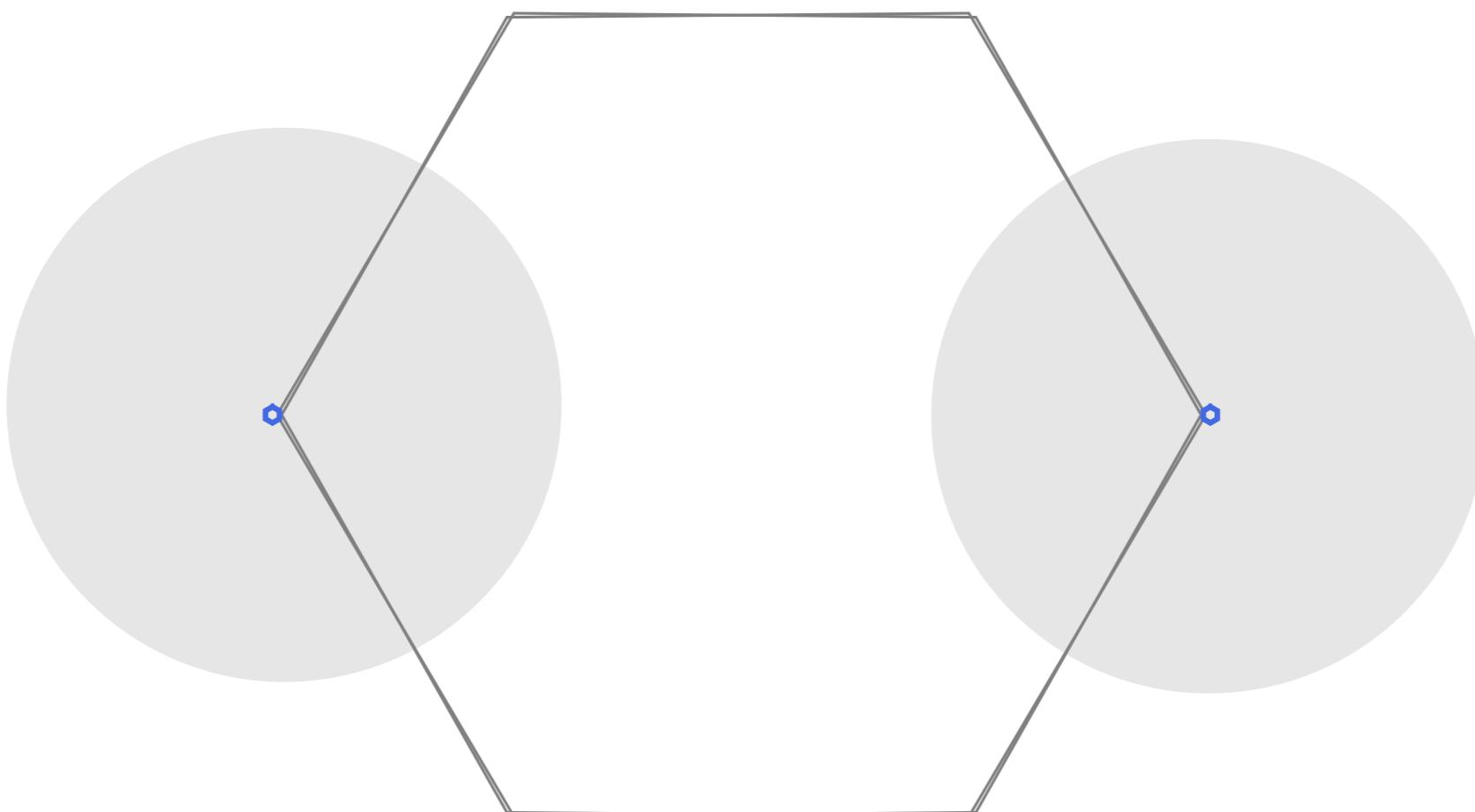


# Continuum model



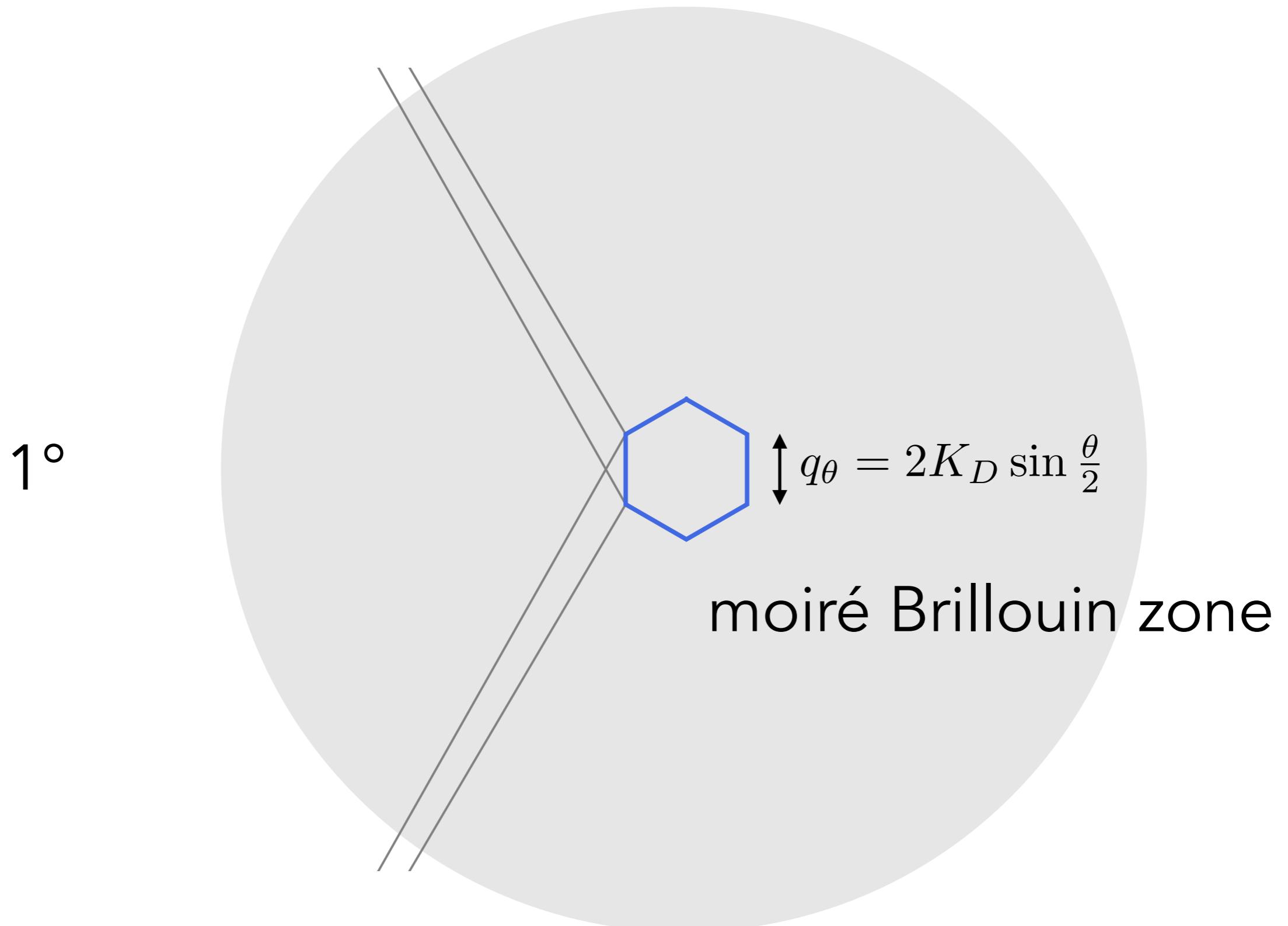
approximate single layer as Dirac cone  
no mixing from one valley to the other

# Continuum model



1°

# One valley



# Continuum model

Bistritzer+MacDonald (2011)

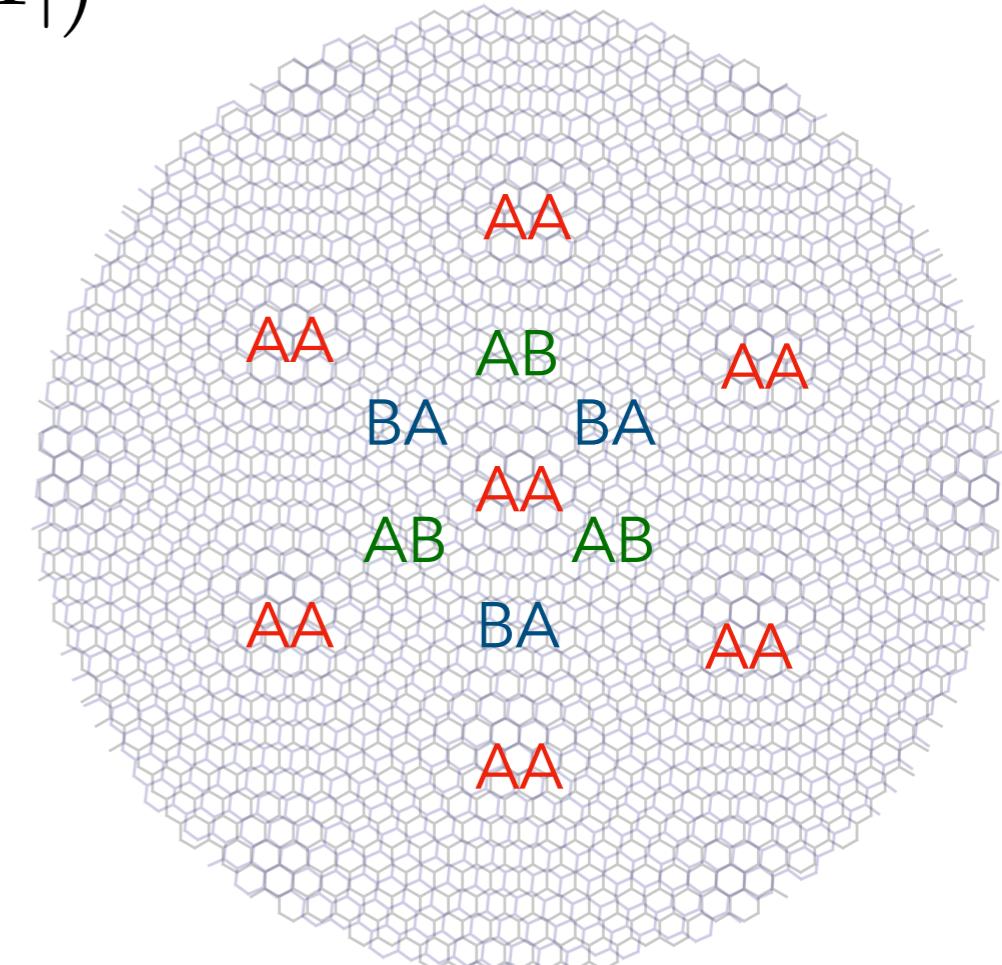
$$H = H_{\text{kin}} + H_{\text{tun}}$$

$$H_{\text{kin}} = v(\mathbf{k} - \mathbf{K}_1) \cdot \boldsymbol{\sigma}_{\theta/2} |1\rangle\langle 1| + v(\mathbf{k} - \mathbf{K}_2) \cdot \boldsymbol{\sigma}_{-\theta/2} |2\rangle\langle 2|$$

$$H_{\text{tun}} = w (\mathbf{T}(\mathbf{x}) |1\rangle\langle 2| + \mathbf{T}^\dagger(\mathbf{x}) |2\rangle\langle 1|)$$

periodic hopping matrix: smoothly interpolates  
hopping of uniform AA/AB/BA bilayers

- Restores periodicity
- Reveals dimensionless parameter,  
 $w/vk_\theta$
- Predicts flat bands at magic angles



# BM Derivation

We derive a continuum model for the tunneling term by assuming that the interlayer tunneling amplitude between  $\pi$ -orbitals is a smooth function  $t(r)$  of spatial separation projected onto the graphene planes. The matrix element

$$T_{\mathbf{k}\mathbf{p}'}^{\alpha\beta} = \langle \Psi_{\mathbf{k}\alpha}^{(1)} | H_T | \Psi_{\mathbf{p}'\beta}^{(2)} \rangle \quad [1]$$

of the tunneling Hamiltonian  $H_T$  describes a process in which an electron with momentum  $\mathbf{p}' = M\mathbf{p}$  residing on sublattice  $\beta$  in one layer hops to a momentum state  $\mathbf{k}$  and sublattice  $\alpha$  in the other layer. In a  $\pi$ -band tight-binding model the projection of the wave functions of the two layers to a given sublattice are

$$|\Psi_{\mathbf{k}\alpha}^{(1)}\rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}(\mathbf{R}+\tau_\alpha)} |\mathbf{R} + \tau_\alpha\rangle \quad [2]$$

and

$$|\Psi_{\mathbf{p}'\beta}^{(2)}\rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}'} e^{i\mathbf{p}'(\mathbf{R}'+\tau'_\beta)} |\mathbf{R}' + \tau'_\beta\rangle. \quad [3]$$

Here  $\tau_A = 0$ ,  $\tau_B = \tau$ , and  $\mathbf{R}$  is summed over the triangular Bravais lattice. Substituting Eqs. 2 and 3 in Eq. 1 and invoking the two-center approximation,

$$\langle \mathbf{R} + \tau_\alpha | H_T | \mathbf{R}' + \tau'_\beta \rangle = t(\mathbf{R} + \tau_\alpha - \mathbf{R}' - \tau'_\beta), \quad [4]$$

for the interlayer hopping amplitude in which  $t$  depends on the difference between the positions of the two carbon atoms we find that

$$T_{\mathbf{k}\mathbf{p}'}^{\alpha\beta} = \sum_{\mathbf{G}_1 \mathbf{G}_2} \frac{t_{\mathbf{k}+\mathbf{G}_1}}{\Omega} e^{i[\mathbf{G}_1 \tau_\alpha - \mathbf{G}_2(\tau_\beta - \tau) - \mathbf{G}'_2 \mathbf{d}]} \delta_{\mathbf{k}+\mathbf{G}_1, \bar{\mathbf{p}}' + \mathbf{G}'_2}. \quad [5]$$

Here  $\Omega$  is the unit cell area,  $t_{\mathbf{q}}$  is the Fourier transform of the tunneling amplitude  $t(\mathbf{r})$ , the vectors  $\mathbf{G}_1$  and  $\mathbf{G}_2$  are summed over reciprocal lattice vectors, and  $\mathbf{G}'_2 = M\mathbf{G}_2$ . The bar notation over momenta in Eq. 5 indicates that momentum is measured relative to the center of the Brillouin zone and not relative to the Dirac point. Note that crystal momentum is conserved by the tunneling process because  $t$  depends only on the difference between lattice positions.\*

Directly calculate overlap of every C orbital in layer 1 with every C orbital in layer 2

Assume rigid rotation of layers

Obtain hopping matrix in momentum space by Poisson resummation formula

At the end of the calculation Fourier transform back to obtain simple real space formula

# Effective field theory

Describes low energy, long wavelength physics,  
can include effects of any perturbations that are  
small and slowly varying

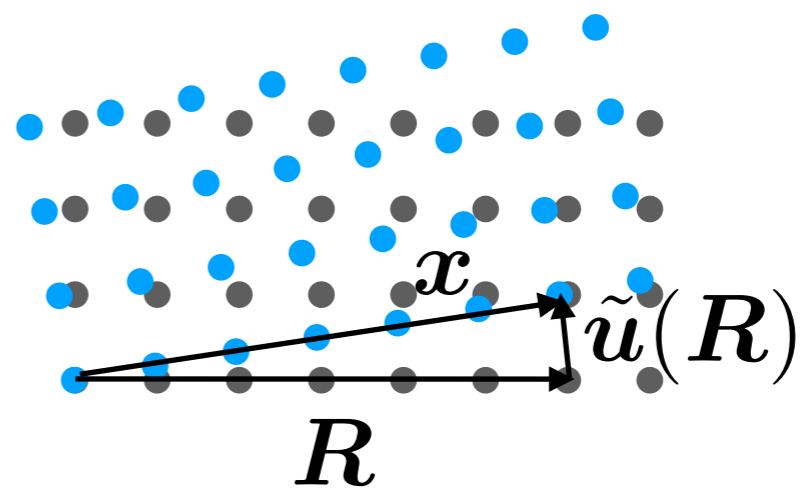
Here:

- Unperturbed system: isolated graphene layers
- Perturbations:
  - Interlayer tunneling
  - Slowly varying displacements of the layers

# Rotation $\subset$ Displacement Gradient

Ashcroft-Mermin: phonons

$$x = R + \tilde{u}(R)$$



Rotation

$$\theta = \frac{1}{2} (\partial_x u_y - \partial_y u_x)$$

$$\tilde{u} = \theta \hat{z} \times R$$

Twisting is just a subset of elastic  
deformations of two layers

# Effective field theory

Locality:

$$H = \int d^2x \mathcal{H}[\psi, \mathbf{u}, w]$$

Hamiltonian density is a *local* functional of the fields, *analytic*, and expandable in powers of small parameters — here field gradients and hopping strength

# Effective field theory

Locality:

$$H = \int d^2x \mathcal{H}[\psi, \mathbf{u}, w]$$

Hamiltonian density is a *local* functional of the fields, *analytic*, and expandable in powers of small parameters — here field gradients and hopping strength

Small problem:

$$\mathbf{x} = \mathbf{R} + \tilde{\mathbf{u}}(\mathbf{R}) \quad \mathbf{R} \text{ is not the actual real space location - physics is local in } \mathbf{x} \text{ not } \mathbf{R}$$

# Effective field theory

Locality:

$$H = \int d^2x \mathcal{H}[\psi, \mathbf{u}, w]$$

Hamiltonian density is a *local* functional of the fields, *analytic*, and expandable in powers of small parameters — here field gradients and hopping strength

Solution: Eulerian coordinates

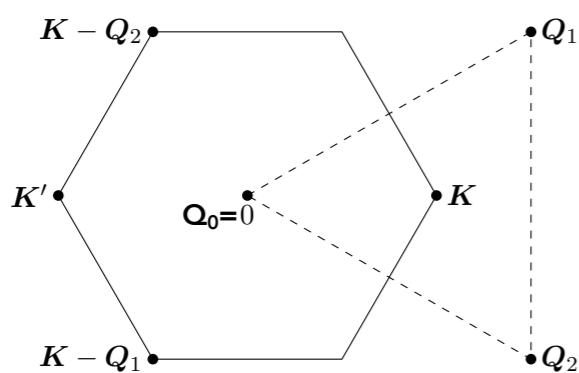
$$\mathbf{x} = \mathbf{R} + \mathbf{u}(\mathbf{x})$$

# Effective field theory

- Three effects:
  1. Coordinate change: transformation of local frames to global one
  2. Strains: modification of energetics of each layer due to changes in electron hopping
  3. Tunneling: strong dependence of relative *local* alignment

# Result

$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$
$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

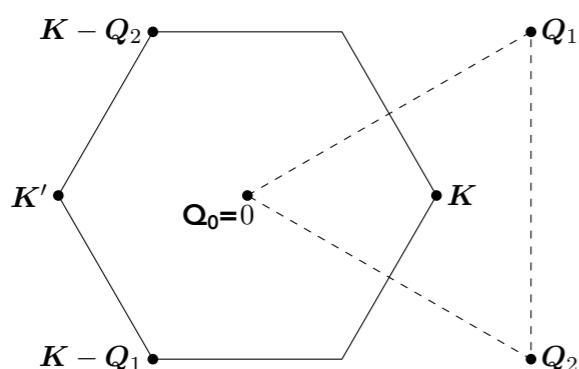


Correct to first order in strain gradients and hopping

# Result

coordinate change

$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$
$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

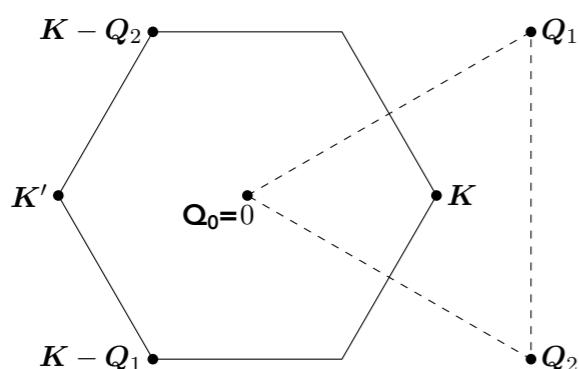


Correct to first order in strain gradients and hopping

# Result

$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (K \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$
$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

Strain gauge field

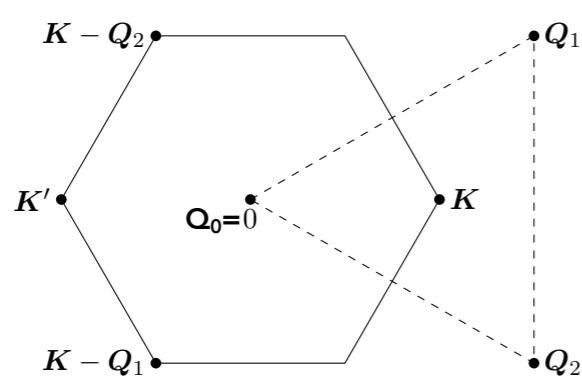


Correct to first order in strain gradients and hopping

# Result

$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$

$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathbf{T}_j \psi_1 + \text{h.c.} \right] \leftarrow \text{tunneling. Form fixed by space group symmetries}$$



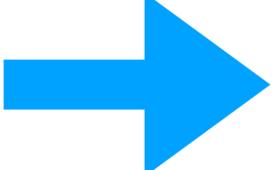
$$\mathbf{T}_j = u \mathbb{I} + w (\bar{\zeta}^j \tau^+ + \zeta^j \tau^-), \quad j = 0, 1, 2,$$

Correct to first order in strain gradients and hopping

# Apply to rigid twist

$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$

$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

Evaluate for  $u_1 = -u_2 = \frac{\theta}{2} \hat{z} \times \mathbf{x}$ . 

$$\mathcal{H} = \psi_1^\dagger \left[ -iv \boldsymbol{\tau} \left( \frac{\theta}{2} \right) \cdot \boldsymbol{\nabla} - \frac{vk_\theta}{2} \tau^y \right] \psi_1 + \psi_2^\dagger \left[ -iv \boldsymbol{\tau} \left( -\frac{\theta}{2} \right) \cdot \boldsymbol{\nabla} + \frac{vk_\theta}{2} \tau^y \right] \psi_2$$

$$+ \sum_j \left[ e^{-i\mathbf{q}_j \cdot \mathbf{x}} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

$$\mathbf{q}_j = -\theta \hat{z} \times \mathbf{Q}_j$$

Exactly the BM model.

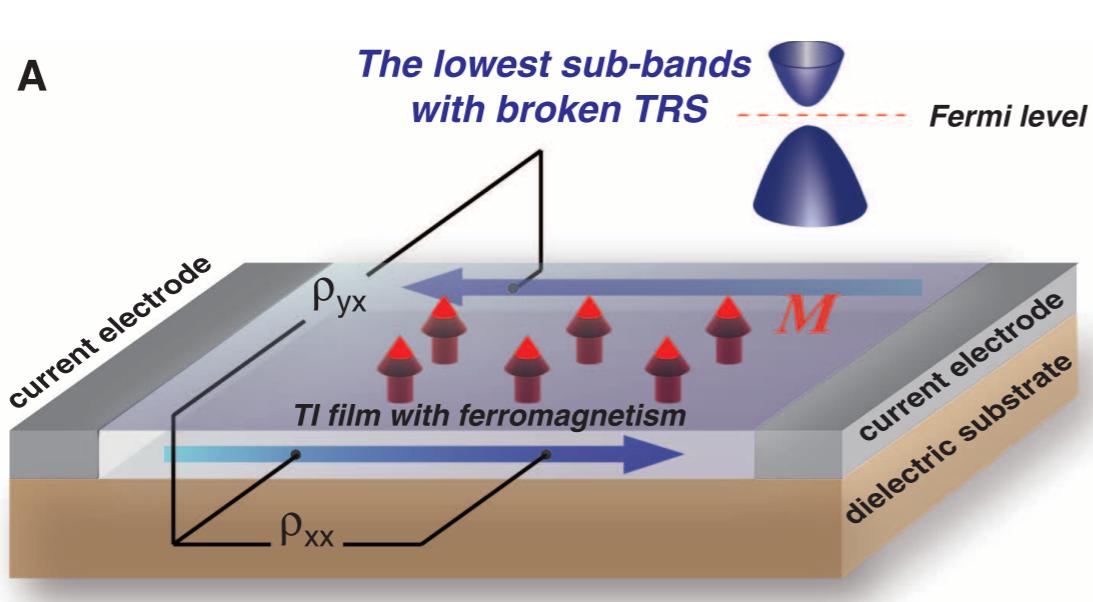
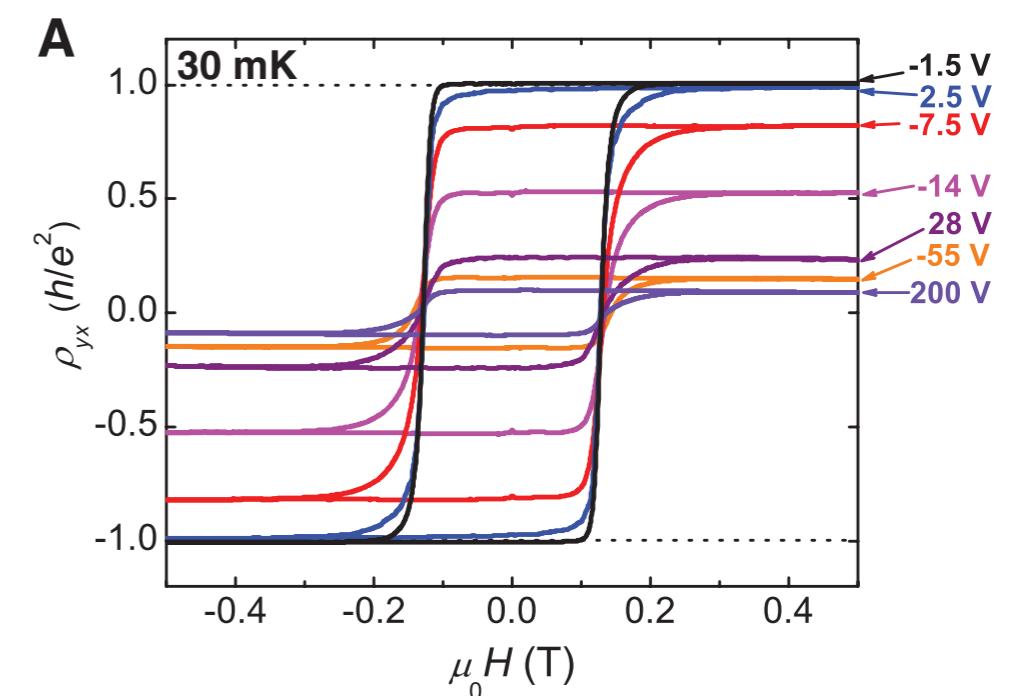
# Result

$$\begin{aligned}\mathcal{H} = & \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l \\ & + \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]\end{aligned}$$

- Recovers BM result intuitively
- Subsumes other extensions of BM (Nam+Koshino, Bi,Yuan+Fu...)
- Includes coupling of acoustic phonons
- Can handle arbitrary inhomogeneous strains
- All these things together
- Easy to add more layers
- Very nice for teaching

# Quantum Anomalous Hall Effect

This is just the appearance of QHE in zero magnetic field by spontaneous breaking of time-reversal symmetry

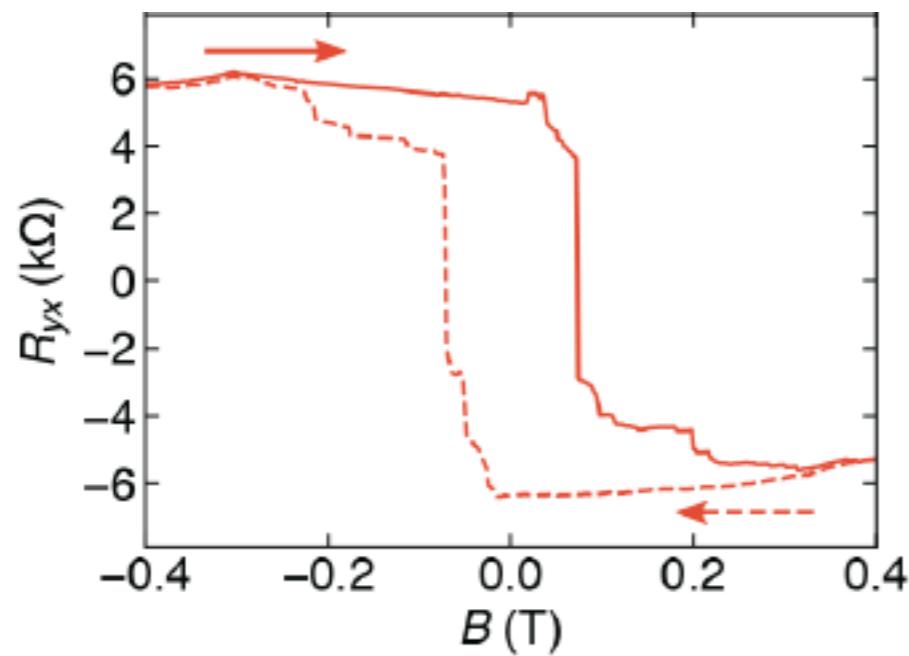


C.-Z. Zhang et al, 2013

Cr-doped  $(\text{Bi}/\text{Sb})_2\text{Te}_3$

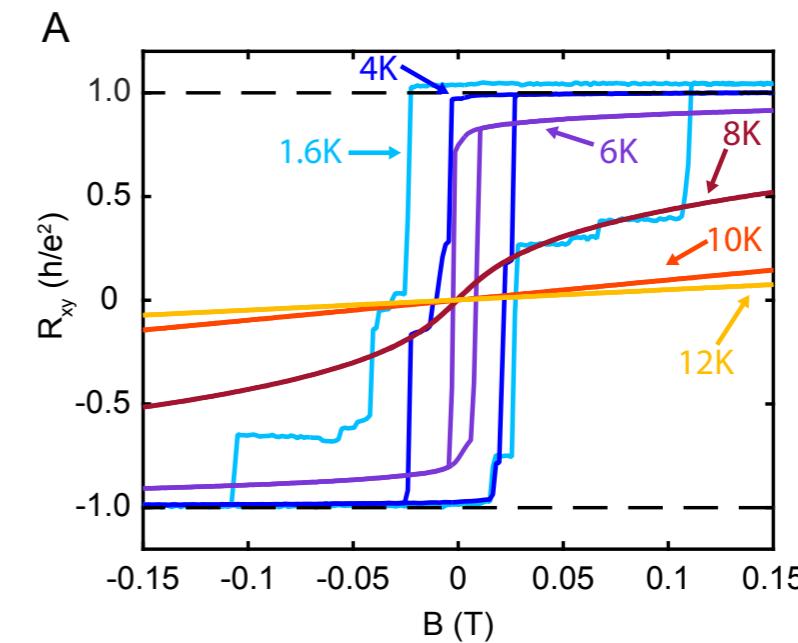
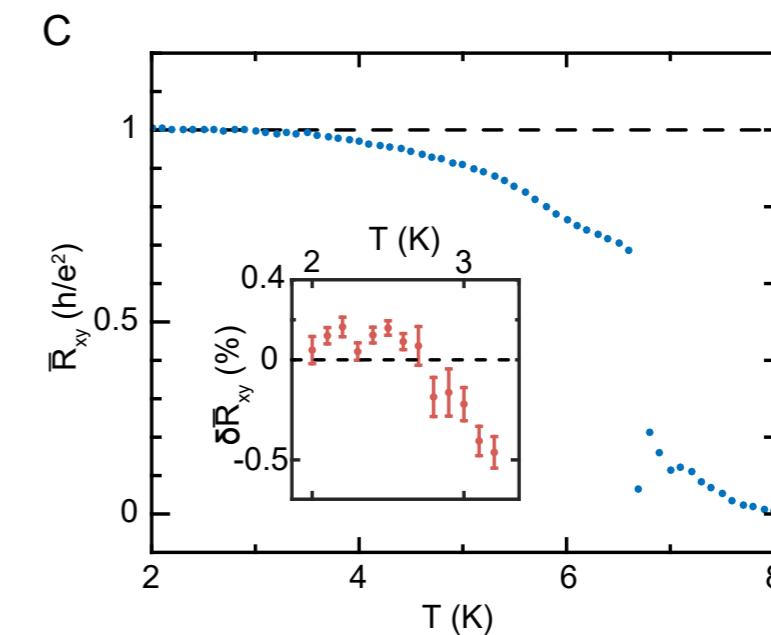
# QAHE in TBG

3 e-'s per moiré unit cell



A. Sharpe, et. al. *Science* (2019);

Spontaneous AHE - not  
quite quantized

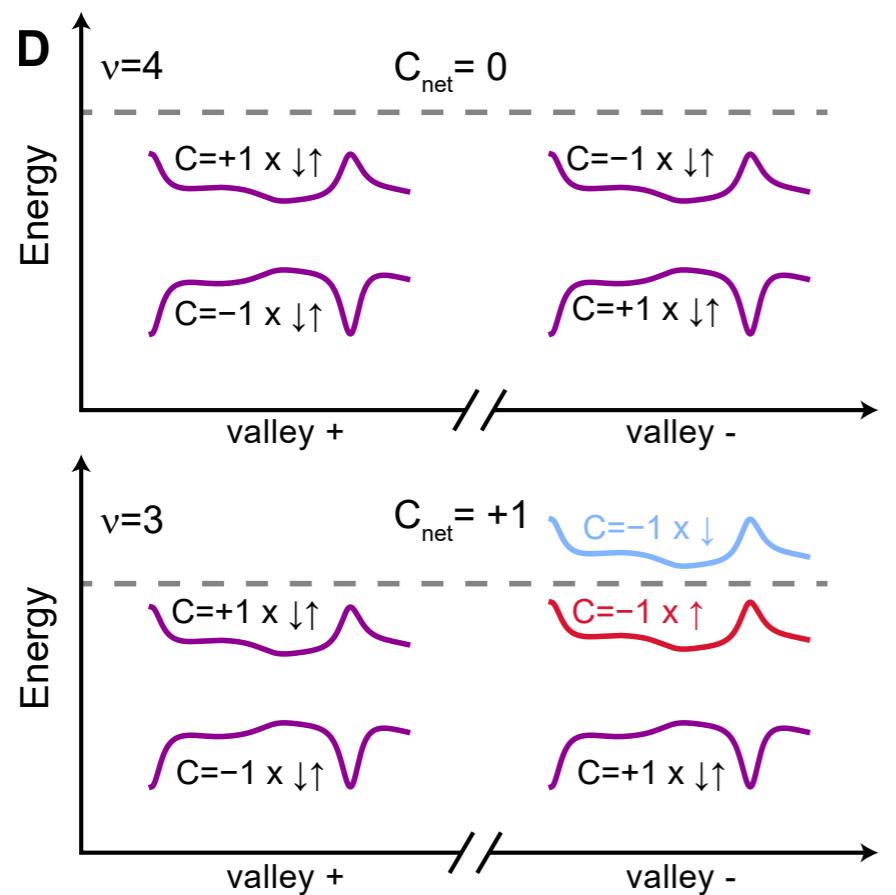


M. Serlin et al., unpublished

QAHE to 1/1000 accuracy

# Theoretical remarks

- Underlying Dirac fermions of graphene have large incipient Berry curvature
- Curvature is realized by breaking  $C_2T$  symmetry
- Valley polarization gives non-zero AHE.
- Quantization occurs if gap is complete - needs spin polarization



Spin and valley split

Symmetry breaking =  
 $Z_2$  (valley)  
 $\times$   
 $SU(2)$  (spin)

# If you have any more questions...



1. arXiv:1907.06282 [pdf, other] cond-mat.str-el cond-mat.mes-hall  
Derivation of Wannier orbitals and minimal basis tight-binding hamiltonians for twisted bilayer **graphene**: a first-principles approach  
Authors: Stephen Carr, Shiang Fang, Hoi Chun Po, Ashvin Vishwanath, Efthimios Kavvadas  
Abstract: Twisted bilayer graphene (TBGL) has emerged as an important platform for studying correlated phenomena, including unconventional superconductivity, in two-dimensional systems. The complexity of the atomic-scale structures in TBGL has made even the study of single-particle physics at low energies around the Fermi level, quite challenging. Our goal here is to provide a convenient and physically motivated model. [More](#)  
Submitted 1 July 2019; originally announced July 2019.  
Comments: 12 pages, 5 figures, 1 table  
Journal ref: Phys. Rev. X 9, 031089 (2019)

2. arXiv:1905.07409 [pdf, other] cond-mat.str-el cond-mat.mes-hall  
Nematic topological semimetal and insulator in magic angle bilayer **graphene** at charge neutrality  
Authors: Sheng Li, Eslam Khalaf, Jong Yeon Lee, Ashvin Vishwanath  
Abstract: We report on a fully self-consistent momentum space Hartree-Fock calculation of interaction effects on the Moiré flat bands of twisted bilayer graphene, tuned near the magic angle. We focus on the charge neutrality point, where experiments have variously reported either insulating or semimetallic behavior. We find three types of self-consistent solutions with competitive ground state energy (i) insulating, (ii) semimetallic, (iii) metallic. [More](#)  
Submitted 1 May 2019; originally announced May 2019.  
Comments: 5 pages, 4 figures  
Journal ref: Phys. Rev. X 9, 031089 (2019)

3. arXiv:1903.08685 [pdf, other] cond-mat.str-el cond-mat.supr-con  
Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer **graphene**  
Authors: Jong Yeon Lee, Eslam Khalaf, Shiang Fang, Xiaoming Liu, Zeyu Hao, Phillip Kim, Ashvin Vishwanath  
Abstract: Two monolayers of graphene twisted by a small "magic angle" exhibit nearly flat bands leading to correlated electronic states and superconductivity, whose precise nature including possible broken symmetries, remain under debate. Here we theoretically study a related but different system with reduced symmetry - twisted (ternary) bilayer graphene (TDBLQ), consisting of (ternary) Bernal stacked bilayers. [More](#)  
Submitted 3 September 2019; v1 submitted 20 March 2019; originally announced March 2019.  
Comments: main: 15 pages, appendix: 11 pages

4. arXiv:1903.08130 [pdf, other] cond-mat.str-el cond-mat.str-el cond-mat.supr-con  
Spin-polarized Correlated Insulator and Superconductor in Twisted Double Bilayer Graphene  
Authors: Xiaoming Liu, Zeyu Hao, Eslam Khalaf, Jong Yeon Lee, Kenji Watanabe, Takashi Taniguchi, Phillip Kim  
Abstract: Fermion-pairing and superconductivity typically compete with each other since the internal magnetic field generated in a magnet suppresses the formation of spin-singlet Cooper pairs in conventional superconductors. Only a handful of fermionic superconductors are known in heavy fermion systems, where single-body electron interactions promoted by the narrow energy bands play a key role in stabilizing superconductivity. [More](#)  
Submitted 25 March 2019; v1 submitted 19 March 2019; originally announced March 2019.  
Comments: 13 pages, 3 figures and supplementary information

5. arXiv:1901.10485 [pdf, other] cond-mat.str-el cond-mat.mes-hall doi: 10.1103/PhysRevB.100.085109  
Magic Angle Hierarchy in Twisted Graphene Multilayers  
Authors: Eslam Khalaf, Alex J. Kruchkov, Grigory Tarnopolsky, Ashvin Vishwanath  
Abstract: When two monolayers of graphene are stacked with a small relative twist angle, the resulting band structure exhibits a remarkably flat pair of bands at a sequence of "magic angles" where correlation results in a host of exotic phases. Here, we study a class of related models of  $n$ -layered graphene with alternating relative twist angle  $\pm\theta$  which exhibit magic angle flat bands coexisting. [More](#)  
Submitted 12 August 2019; v1 submitted 29 January 2019; originally announced January 2019.  
Comments: 5.5 pages, 6 figures, published version  
Journal ref: Phys. Rev. B 100, 085109 (2019)

6. arXiv:1808.05250 [pdf, ps, other] cond-mat.str-el cond-mat.mes-hall doi: 10.1103/PhysRevLett.122.106405  
Origin of Magic Angles in Twisted Bilayer **Graphene**  
Authors: Grigory Tarnopolsky, Alex J. Kruchkov, Ashvin Vishwanath  
Abstract: Twisted Bilayer graphene (TBG) is known to feature isolated and relatively flat bands near charge neutrality, when tuned to special magic angles. However, different criteria for the magic angle such as the vanishing of Dirac speed, minimal bandwidth or maximal band gap to higher bands typically give different results. Here we study a modified continuum model for TBG which has an infinite sequence. [More](#)  
Submitted 15 August 2018; originally announced August 2018.  
Comments: 7 pages, 4 figures  
Journal ref: Phys. Rev. Lett. 122, 106405 (2019)

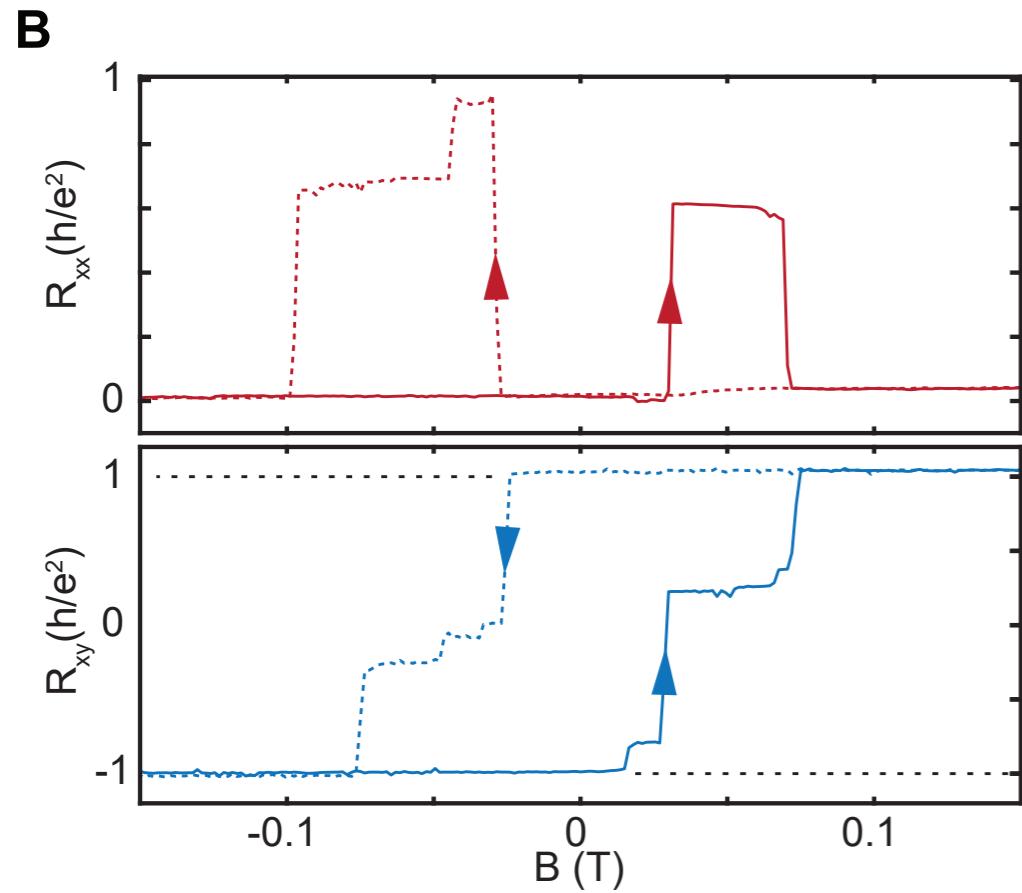
7. arXiv:1808.02482 [pdf, other] cond-mat.str-el cond-mat.mes-hall cond-mat.supr-con doi: 10.1103/PhysRevB.98.195455  
Faithful Tight-binding Models and Fragile Topology of Magic-angle Bilayer **Graphene**  
Authors: Hoi Chun Po, Lijun Zou, T. Senthil, Ashvin Vishwanath  
Abstract: Correlated insulators and superconductivity have been observed in "magic-angle" twisted bilayer graphene, when the nearly flat bands close to neutrality are partially filled. While a momentum-space continuum model accurately describes these flat bands, interaction effects are more conveniently incorporated in tight-binding models. We have previously shown that no fully symmetric tight-binding model can incorporate these effects. [More](#)  
Submitted 2 June 2019; v1 submitted 7 August 2018; originally announced August 2018.  
Comments: (9+10) pages, (6+5) figures, (3+4) tables, v3: close to published version  
Journal ref: Phys. Rev. B 98, 195455 (2018)

8. arXiv:1806.07873 [pdf, other] cond-mat.str-el cond-mat.mes-hall cond-mat.str-el cond-mat.mes-hall cond-mat.str-el  
Band Structure of Twisted Bilayer **Graphene**: Emergent Symmetries, Commensurate Approximants and Wannier Obstructions  
Authors: Lijun Zou, Hoi Chun Po, Ashvin Vishwanath, T. Senthil  
Abstract: A remarkable feature of the band structure of bilayer graphene at small twist angle is the appearance of isolated bands near neutrality, whose bandwidth can be reduced at certain magic angles (e.g.  $\theta = 1.05^\circ$ ). In this regime, correlated insulating states and superconductivity have been experimentally observed. A microscopic description of these phenomena requires an understanding of universal features. [More](#)  
Submitted 29 August 2018; v1 submitted 20 June 2018; originally announced June 2018.  
Comments: 14 pages + appendices, v3: published version  
Journal ref: Phys. Rev. B 98, 085435 (2018)

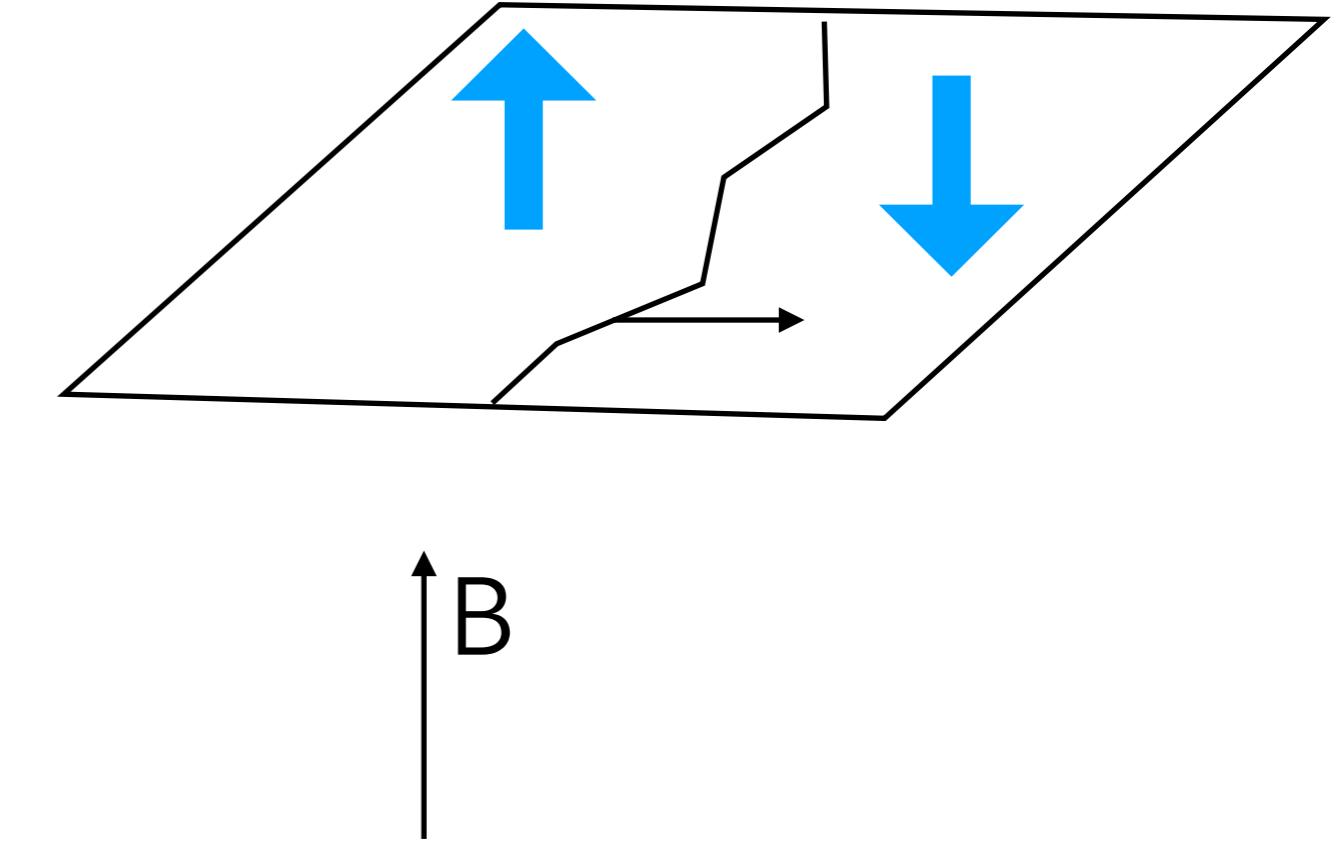
9. arXiv:1805.06867 [pdf, other] cond-mat.str-el cond-mat.mes-hall cond-mat.str-el cond-mat.mes-hall cond-mat.supr-con  
Superconductivity from Valley Fluctuations and Approximate SO(4) Symmetry in a Weak Coupling Theory of Twisted Bilayer Graphene  
Authors: Yizhuang You, Ashvin Vishwanath  
Abstract: We develop a weak coupling approach to superconductivity in twisted bilayer graphene, starting from the Fermi liquid regime. A key observation is that near half filling, the fermiology consists of well nested Fermi pockets derived from opposite valleys, leading to enhanced valley fluctuation, which in turn can mediate superconductivity. This scenario is studied within the random phase approximation. [More](#)  
Submitted 29 March 2018; v1 submitted 17 May 2018; originally announced May 2018.  
Comments: 13 pages, 8 figures, 3 tables

10. arXiv:1803.09742 [pdf, other] cond-mat.str-el cond-mat.mes-hall cond-mat.str-el cond-mat.mes-hall cond-mat.supr-con doi: 10.1103/PhysRevB.83.031089  
Origin of Mott insulating behavior and superconductivity in twisted bilayer **graphene**  
Authors: Hoi Chun Po, Lijun Zou, Ashvin Vishwanath, T. Senthil  
Abstract: A remarkable recent experiment has observed Mott insulator and proximate superconductor phases in twisted bilayer graphene when electrons partly fill a nearly flat band that arises at a "magic" twist angle. However, the nature of the Mott insulator, origin of superconductivity and an effective low energy model remain to be determined. We propose a Mott insulator with intervalley coherence that is. [More](#)  
Submitted 22 May 2018; v1 submitted 26 March 2018; originally announced March 2018.  
Comments: Main text (17 pages, 4 figures, 1 table) + Appendices; v2: Schematic (Fig. 1) updated; typos fixed and notational consistency improved  
Journal ref: Phys. Rev. B 98, 031089 (2018)

# Domain manipulation



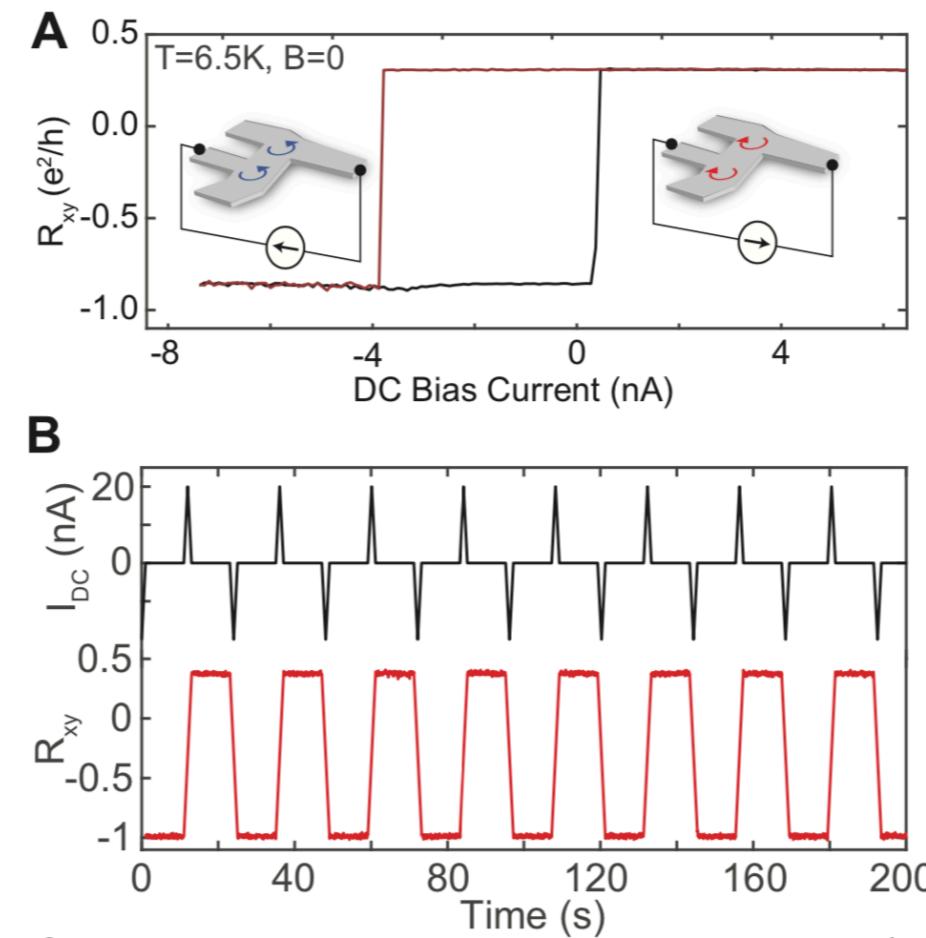
B field biases energy of domains



$$\Delta E = -\mathbf{B} \cdot \mathbf{M}$$

n.b. domains are *valley* domains

# Domain manipulation



(tiny)

Current switches domains. How does this work?

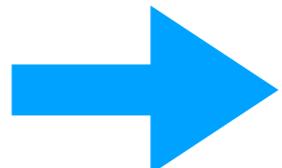
# Current



Well-developed IQHE:

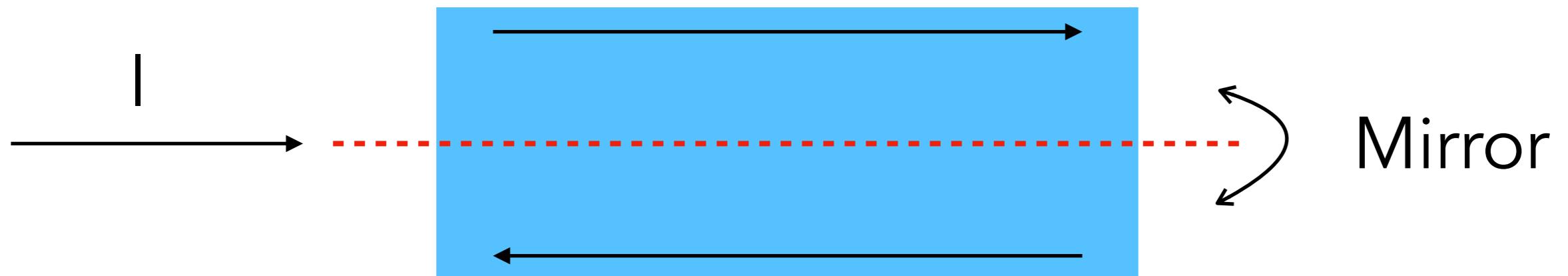
- no dissipation, only edge state transport
- Charge of each edge is separately conserved

♣ Can view current-carrying state as quasi-equilibrium ensemble where current determines edge occupation



Can formulate  $F(I, M)$

# (A)symmetry



$| \rightarrow |$       vector  
 $M \rightarrow -M$       pseudovector

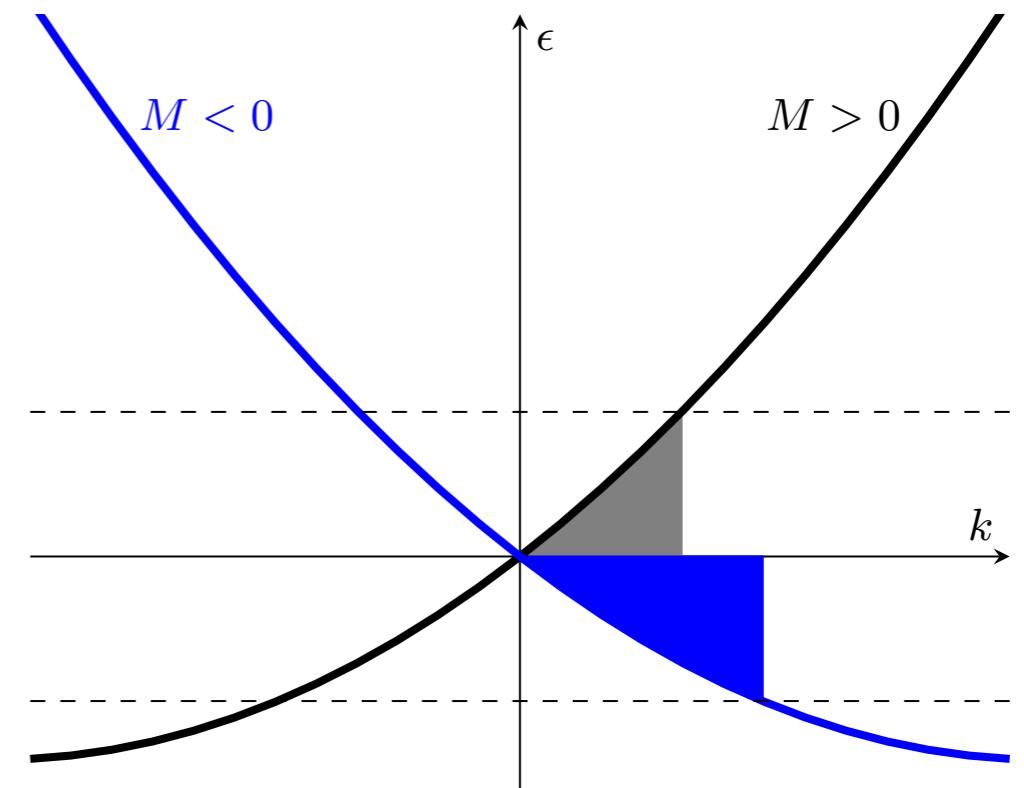
# Energetics

Simple limit: one “fast” (costly) edge

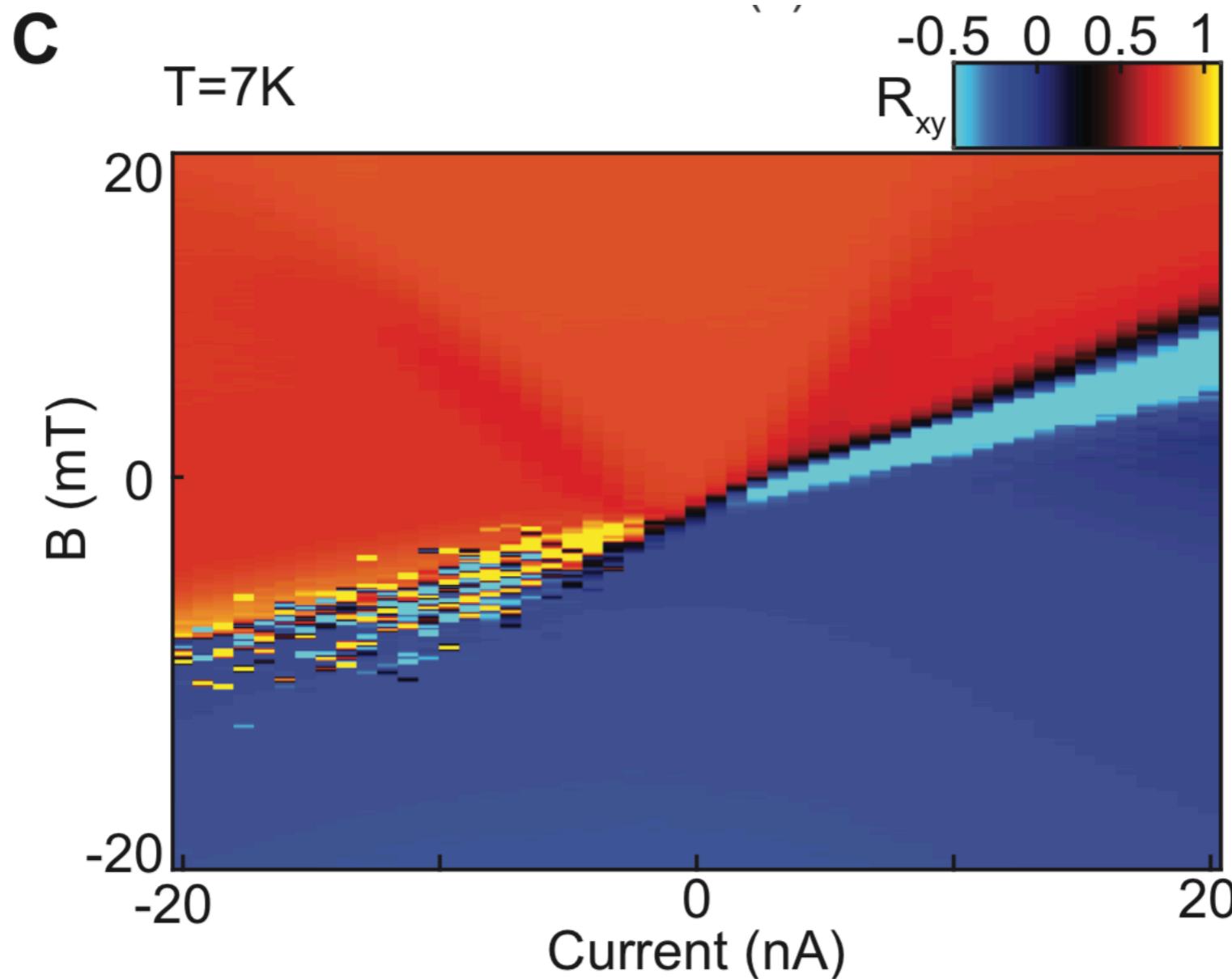
$I > 0$ :

- Add right-moving  $e^-s$
- Remove left-moving  $e^-s$

$$\Delta F \sim \frac{\hbar^2}{me^3v^3} LI^3$$

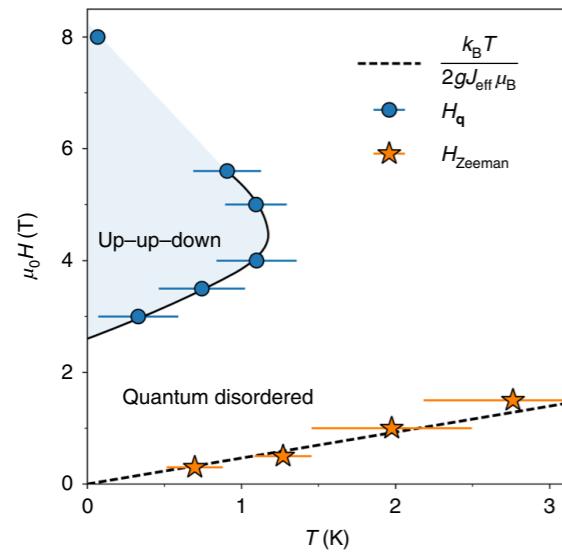


# Dissipative Regime



A fully non-equilibrium problem, bulk 2d physics

# Thanks

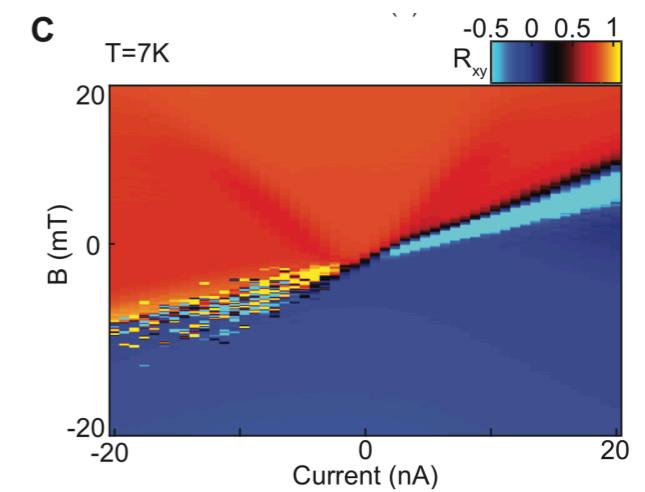


M. Bordelon *et al*, Nat. Phys. (2019)

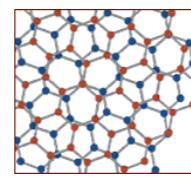
$$\mathcal{H} = \sum_l \psi_l^\dagger \left[ -iv \left( \tau^\mu + \frac{\partial u_{l,\mu}}{\partial x_\nu} \tau^\nu \right) \frac{\partial}{\partial x_\mu} + v (\mathbf{K} \cdot \partial_\mu \mathbf{u}_l + \mathcal{A}_l) \tau^\mu \right] \psi_l$$

$$+ \sum_j \left[ e^{-i\mathbf{Q}_j \cdot (\mathbf{u}_1 - \mathbf{u}_2)} \psi_2^\dagger \mathsf{T}_j \psi_1 + \text{h.c.} \right]$$

L.B., arXiv:1909.01545



M. Serlin *et al*, arXiv:1907.00261



Simons Collaboration on  
Ultra-Quantum Matter



# CIFAR