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1 What this course is about

Lecture 1 (1h 15mins)
January 16th, 2018This is the second quarter of a course on quantum many body physics. The

focus is on fermions, and matter built up from them. This is a pretty important
subject since electrons are fermions, and the most quantum objects in ordi-
nary matter are electrons. We will cover phenomena that occur uniquely with
fermions, as well as methodology for studying fermionic systems.

2 Second quantization

We will heavily rely on the use of second quantization for fermions, as we
did for bosons in the previous quarter. I assume you have seen this before in
some previous class. Many good reviews are available. A compact discussion
is given for example in Negele and Orland’s book on Quantum Many Body
Physics. Here we will just review the subject and make a few conceptual points.

2.1 Bosons

First let us remind ourselves how it all works for bosons (see also Sec.6.1 of
my notes for 217a). We define boson annihilation operators ai and creation
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2. Second quantization

operators a†
i , which obey commutation relations

(1) [aj, a†
k ] = δjk,

and

(2) [aj, ak] = 0, [a†
j , a†

k ] = 0.

These relations define the algebra of these operators. It does not immediately
tell us the space of states these operators act on. Formally I guess this corre-
sponds to choosing a representation of this algebra. The minimal one is the
standard one we now describe. We can define number operators

(3) n̂j = a†
j aj.

and a good basis for the “Fock space” is the set of eigenstates of these opera-
tors:

(4) n̂j|n1n2 · nN〉 = nj|n1n2 · nN〉,

where we define these number eigenstates to be normalized. We can explicitly
construct these states by action on the vacuum, using the recursion relations

(5) a†
j |n1 · · · nj · · · nN〉 =

√
nj + 1|n1 · · · nj + 1 · · · nN〉.

From this we can obtain

(6) |n1 · · · nj · · · nN〉 =
1√

n1! · · · nN !
(a†

1)
n1 · · · (a†

N)
nN |0〉.

Where |0〉 is the “vacuum” state of no particles, which is annihilated by all
annihilation operators:

(7) aj|0〉 = 0.

Eqs. (6,7) might be regarded as the definition of the basis states. We also have

(8) aj|n1 · · · nj · · · nN〉 =
√

nj − 1|n1 · · · nj − 1 · · · nN〉.

These relations are proved by using the fact that [a†
j , n̂j] = a†

j and [aj, n̂j] = −aj,
and normalization.

With the definition above of the basis states, we can verify that the Fock
space so defined has a tensor product structure. So more formally

(9) |n1 · · · nN〉 = |n1〉 ⊗ · · · ⊗ |nN〉,

and the bosonic operators are also tensor products

(10) a†
j = 1⊗ 1 · · · ⊗ a† ⊗ · · · 1,
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2.2. Fermions

where the a† operator appears in the jth place on the right hand side above.
The same form holds, mutatis mutandis, for the annihilation operator aj. In-
stead of Eq. (5), we could have used the tensor product of states and operators,
Eqs. (9,10) as a definition for bosons. The tensor product form is very natural,
and indicates that boson states and operators at different “sites” j 6= j′ are
independent. In the above discussion the labels need not be sites, but could be
any other label for single particle states, e.g. momentum. But the site label is
particularly natural and important because the direct product nature reflects
the locality of physical space.

2.2 Fermions

We approach fermions by just replacing the bosonic commutation relations by
anti-commutators:

(11) {cj, c†
k} = δjk,

and

(12) {cj, ck} = {c
†
j , c†

k} = 0.

Here {A, B} = AB + BA defines the anti-commutator. I will try to be consis-
tent and mostly use the letter “c” for fermions and “a” for bosons.

These relations look innocuous. But they drastically change the physics.
Note that Eq. (12) implies by taking k = j that c2

j = (c†
j )

2 = 0. Moreover we

see that the number operator n̂j = c†
j cj obeys

(13) n̂2
j = c†

j cjc
†
j cj = c†

j (1− c†
j cj)cj = c†

j cj = n̂j.

This implies that the eigenvalues of n̂j must obey n2
j = nj, hence nj = 0, 1 only.

This is the famous Pauli exclusion principle. Consider first the case where we
just have a single “site” j = 1 only (and drop the label). Then we can consider
two normalized basis states |0〉 and |1〉, with the two possible eigenvalues.
Since 〈0|n̂|0〉 = 0 = 〈0|c†c|0〉 is the norm of the state c|0〉 we must have

(14) c|0〉 = 0.

Similarly, using the anti-commutator, 〈1|cc†|1〉 = 〈1|(1 − n̂)|1〉 = 0 which
implies

(15) c†|1〉 = 0.

Now

(16) n̂c†|0〉 = c†cc†|0〉 = c†(1− c†c)|0〉 = c†|0〉,

which implies that c†|0〉 = λ|1〉 with some constant λ. Then normalization of
the two basis states implies that |λ|2 = 1. We can actually choose the relative
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2. Second quantization

phase of the two basis states to make λ = 1. So

(17) c†|0〉 = |1〉.

Now we act with c on this, cc†|0〉 = (1− c†c)|0〉 = |0〉, which implies that

(18) c|1〉 = |0〉.

That’s all simple and consistent. Things get more complicated when we in-
troduce multiple single-particle states, because of Eq. (12). Let us define the
occupation number states according to

(19) |n1n2 · · · nN〉 = (c†
1)

n1(c†
2)

n2 · · · (c†
N)

nN |0〉,

which is analogous to Eq. (6), but actually simpler because nj = 0, 1 only so
no non-trivial normalization factors arise. What is important though is that
the order of the operators in Eq. (19) matters. The order is a convention. But
we need to pick one and stick with it. Having done it, one can verify that

c†
j |n1n2 · · · 0j · · · nN〉 = (−1)∑k<j nk |n1n2 · · · 1j · · · nN〉,(20)

c†
j |n1n2 · · · 1j · · · nN〉 = 0,

and

cj|n1n2 · · · 1j · · · nN〉 = (−1)∑k<j nk |n1n2 · · · 0j · · · nN〉,(21)

cj|n1n2 · · · 0j · · · nN〉 = 0.

One can readily check that these relations, Eqs.(20,21) imply the anti-commutation
relations of all the operators.

Comparing this to the boson case, we can see that the Hilbert space of
fermions can be considered as a tensor product, but the fermionic operators
are not simple in this sense: unlike in Eq. (10), a single fermion operator does
not correspond to a tensor product of identity operators with a single non-
trivial entry. In this sense, the fermion operators are not local. A more explicit
way to think about this is the famous Jordan-Wigner transformation. We can
identify the two occupation number states ni = 0, 1 with two eigenstates of a
Pauli matrix, σz

i = +1,−1, respectively, i.e. ni = (1− σz
i )/2, or σz

i = (−1)ni .
Then we define the usual Pauli operators as direct products:

(22) σ
µ
j = 11 ⊗ · · · ⊗ (σµ)j ⊗ 1 · · · ⊗ 1N ,

with µ = x, y, z. Then Eqs. (20)(21) imply that

(23) c†
j = σz ⊗ σz ⊗ · · · ⊗

(
σ−
)

i ⊗ 1 · · · ⊗ 1N =

(
∏
k<j

σz
k

)
σ−j ,

where σ±j = (σx
j ± iσy

j )/2 are the usual raising and lowering operators. Simi-
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2.3. Diagonalization and three classes of free fermion systems

larly for the annihilation operator,

(24) cj = σz ⊗ σz ⊗ · · · ⊗
(
σ+
)

i ⊗ 1 · · · ⊗ 1N =

(
∏
k<j

σz
k

)
σ+

j .

The representation of single fermion operators in terms of local Pauli opera-
tors is highly non-local. The product over σz

k in parenthesis in these equations
is often called the Jordan-Wigner string.

It is useful to consider “bosonic” operators, by which I mean those involv-
ing an even number of fermi operators (these are called “physical” by Bravyi
and Kitaev). For example Ajk = c†

j ck, with j < k for concreteness. We can see
using the Jordan-Wigner transformation that

(25) Ajk = −
(

k−1

∏
l=j

σz
l

)
σ−j σ+

k .

In general, we see that a two-fermion operator like Ajk, which appears to act
only on sites j and k, actually in the spin representation (where the tensor
product is defined) acts on more sites, whose number depends on the separa-
tion of j and k. These formulae are general. We can consider the “site” label
to be anything. In a one dimensional system, it would be natural to order the
labels according to the actual spatial coordinate. In that case, we would see
that when j and k are neighboring sites, the extra non-locality does not appear
for bosonic operators. This means, roughly speaking, that for one dimensional
systems, the spectrum and eigenstates of fermionic and bosonic systems with
local Hamiltonians are similar.

However, in two or more dimensions, we must choose some artificial order-
ing of all the sites to define the strings (or equivalently, the signs in the basis
in Eq. (19)). Then Ajk for many pairs of nearby sites in real space inevitably
becomes highly non-local in the spin representation. So in dimensions greater
than or equal to two, we can expect extremely different physics in fermionic
systems from what we find in bosonic ones.

The major physical difference between fermions and bosons is that free
fermions are still interesting! Slightly less facetiously, fermions are interesting
because they can be stable at non-zero density without interactions, and can
be generically gapless.

2.3 Diagonalization and three classes of free fermion systems

A generic free fermion Hamiltonian takes the form

(26) H = ∑
ij

hijc†
i cj,
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2. Second quantization

where h (the matrix whose entries are hij) is a hermitian matrix, h = h†. This
is solved by transforming to the basis of eigenvectors of h:

(27) hφ(a) = εaφ(a) ⇔∑
j

hijφ
(a)
j = εaφ

(a)
i .

The fermion operators can be traded for new ones using the basis change
formula,

(28) cj = ∑
a

φ
(a)
j ca,

which is a canonical transformation (preserving Eqs. (11,12)) for any φ(a) that
form an orthonormal set. Then we have

(29) H = ∑
a

εac†
aca = ∑

a
εan̂a.

This is now diagonal in the Fock basis, and the full spectrum is know. Specif-
ically, the ground state is, up to a phase, just the one in which all negative
energy eigenstates are occupied:

(30) |Ψ0〉 = ∏
a|εa<0

c†
a |0〉.

Here we are absorbing the chemical potential/Fermi energy into the definition
of the εa.

We will mainly be interested in systems with translational symmetry. In
this case it may be advantageous to trade the site label i for a pair of labels:
a coordinate x which belongs to the Bravais lattice, and indexes the unit cell
containing the site, and a sublattice number s = 1 · · · nb, where nb is the num-
ber of sites/orbitals/single-particle states within a unit cell (it could include
spin states etc.). The general translationally invariant Hamiltonian of this form
can be written as

(31) H = ∑
x,x′

∑
s,s′

hss′(x− x′)c†
sxcs′x′ .

For this form, either with periodic boundary conditions or infinite volume,
(quasi-)momentum k is a good quantum number. We can then go to a plane
wave (Bloch) basis, which partly diagonalizes the Hamiltonian

(32) csx =
1√
N

∑
k

eik·xcsk,

where N is the number of unit cells. This is another use of the change of
basis formula, for which we have taken an orthonormal basis which does not
fully diagonalize the Hamiltonian (it instead breaks it into blocks of different
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2.3. Diagonalization and three classes of free fermion systems

momentum). The Hamiltonian becomes

(33) H = ∑
k

∑
ss′

ĥss′(k)c
†
skcs′k.

Here ĥ(k) is the Bloch Hamiltonian. By construction it is an nb × nb Hermitian
matrix which has the periodicity of the reciprocal lattice:

(34) ĥ(k + Q) = ĥ(k),

if Q is in the reciprocal lattice, i.e. Q · xj ∈ 2πZ for all Bravais lattice vectors
xj.

We can finish the diagonalization by finding eigenvectors of ĥ(k)

(35) ĥ(k)φ(n)
k = εnφ

(n)
k ,

and writing

(36) csk = ∑
n

φ
(n)
sk cak.

Then and we can trade the abstract eigenstate label a for the pair (k, n), where
n is a discrete “band” index. Then the diagonal Hamiltonian is

(37) H = ∑
n

∑
k

εnkc†
nkcnk,

where εnk describes the dispersion of the nth band. Several distinct situations
can be envisioned:

1. Insulators: All bands have entirely negative or entirely positive energies,
i.e.

εnk < 0 n ≤ n1,

εnk > 0 n > n1,(38)

for all k. The ground state has the first n1 bands occupied and the others
empty, and there is an excitation gap ∆ = minn>n1 εnk −maxn≤n1 εnk.

2. Zero gap semiconductor or semi-metal: Here some bands reach zero
energy at their maxima or minima:

εnk ≤ 0 n ≤ n1,

εnk ≥ 0 n > n1,(39)

and the equalities are satisfied for some non-zero locus in momentum
space. Examples are Dirac and Weyl systems, where bands touch at a sin-
gle point in two or three-dimensional momentum space, quadratic band
touching systems like bulk HgTe, and nodal line semi-metals where
bands touch over curves in momentum space.
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3. Free fermion phases

3. Metals: Here some bands have both positive and negative energies, i.e.
εnk = 0 is satisfied for a surface (set of co-dimension one) in momentum
space for at least one n. This is called the Fermi surface. The Fermi sur-
face divides momentum space into regions of occupied and unoccupied
states.

Notably, in cases two and three above there is no energy gap above the ground
state: an excitation with arbitrarily low energy can be made by adding or re-
moving one or more fermion whose energy is as close to zero as we wish. This
occurs extremely simply, even without interactions. By contrast, for bosons to
be gapless, we need either to perform some fine-tuning to make the minimum
energy boson state approach zero energy, or we need the mechanism of spon-
taneous symmetry breaking (like the superfluidity discussed in the previous
quarter’s notes), or some more exotic mechanism is required.

3 Free fermion phases

Lecture 2 (1h 15mins)
January 18th, 2018 3.1 Metals at the free fermion level

Many of the properties of metals are captured by the simple free fermion
theory. We’ll return to why this is the case – what is called Fermi liquid theory
– later in the class. For now I want to go over some of the amazing properties
of free fermion metals, which arise due to the presence of a Fermi surface. The
Fermi surface means that there are a huge number of low energy excitations,
from all the possible electron and hole states near the surface.

One of things we will do repeatedly is to try to focus on the low energy
degrees of freedom in a problem. In the context of free fermions, this means
to consider only the single particle states close to the chemical potential or
Fermi energy. For a metal, this is exactly the vicinity of the Fermi surface.
Instead of writing the full Hamiltonian including all the bands, Eq. (37), we
can instead assume all the single particle states more than some energy E0
below the chemical potential are always occupied, while all states more than
E0 above the chemical potential are always empty, and simply retain those
states within the band εF − E0 < εnk < εF + E0. The energy E0 we choose
should be larger than some energies we are interested in probing, like the
thermal energy kBT, or frequency h̄ω of a probe, but still small compared to
microscopic energies (which thankfully are of the order of 104K in metals).
When the the latter smallness is sufficient, we can expand the dispersion εnk
around the Fermi energy, i.e. Taylor expand in k− K, where K is a point on
the Fermi surface. We re-express the momenta in the cut-off range as

(40) k(K, q) = K + v̂F(K)q,

where vF(K) = ∇εn(k)|k=K is the Fermi velocity at the point K, which is
normal to the Fermi surface, and q measures the distance to the Fermi surface.
The result is

(41) H = ∑
K∈FS

∑
|q|<Λ

vF(K)q c†
K+v̂F(K)qcK+v̂F(K)q,
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3.1. Metals at the free fermion level

with Λ ∼ E0/vF (it could be taken constant or varying along the Fermi sur-
face). Here we have suppressed band indices, but one may keep in mind that
the Fermi surface may arise from several bands, and may contain multiple
disjoint pieces. The parameters in the low energy theory are the Fermi surface
itself and the collection of Fermi velocities. Notably, the energy dispersion
is linear around the Fermi surface, and the form of Eq. (41) strongly resem-
bles a collection of many one-dimensional Hamiltonians, since the dispersion
depends locally only on the single component (q) of the momentum, with
K appearing more like an “index” to count different “patches” of the Fermi
surface.

This form has a very strong contrast to a typical relativistic field theory,
where the minimum energy states lie all near the origin in momentum space.
Most importantly, it has far more low energy states. Indeed, it is hard to find
examples with more low energy states than in a free electron metal. This has a
lot of consequences:

1. Power law correlations: Just about any correlation function in a free
fermion system has slowly-decaying power-law components. This in-
cludes the electron Green’s function, the density-density and spin-spin
correlation functions, the pair field correlation function, etc.

2. 2kF oscillations: The size of the Fermi surface itself, e.g. its diameter 2kF
in the simplest spherical case, appears via characteristic oscillations in
physical quantities like the density near a boundary, or the interactions
between dilute magnetic moments in a metal. These are called “Friedel
oscillations”.

3. Thermodynamics: The large number of low energy states means that the
entropy of a free electron metal is large even at low temperature, in fact it
is linear in temperature T. Accordingly, the specific heat behaves like c ∼
γT, where γ is known as the Sommerfeld constant. The thermodynamic
spin and orbital susceptibilities are also large and become constant at
low temperature.

4. Response and conductivity: Having so many low energy excitations
means that the metal responds strongly to small perturbations. Within
linear response theory, this is related to the behavior of retarded corre-
lation functions at low frequency. Metals respond strongly to magnetic
and electric fields, for example they have large conductivity, large imag-
inary spin susceptibilities (this has consequences for NMR for example).
Metals also have large thermal conductivity. Transport of charge and
heat are complicated subjects we will return to later in the class.

As an example, let’s look in some detail at a simple correlation function,
the density-density one. For this purpose we can consider the simplest model
of a free electron gas, or more generally a single band, so εnk → εk. Then the
band wavefunctions

(42) φk
j →

1√
V

eik·xj .
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3. Free fermion phases

where V is the volume in units of lattice sites. This means the density operator
becomes

(43) n̂(x) =
1
V ∑

k,q
c†

k+qckeiq·x.

Now consider the density-density correlation function

(44) 〈n̂(x)n̂(x′)〉 = 1
V2 ∑

k,q
∑

k′ ,q′
〈Ψ0|c†

k+qckc†
k′+q′ck′ |Ψ0〉ei(q·x+q′ ·x).

Recognizing that the ground state has occupied states within the Fermi surface
and empty without, we see that there are two contributions. If q = q′ = 0,
then the quantity inside the expectation value reduces to the product of two
number operators, and the result of the sums over k and k′ just gives the total
number of particles squared. If this is not true, then the electron removed at
momentum k′ by the last annihilation operator should be put back by the first
one at k + q, which forces q = k′ − k. Similarly q′ = k− k′ = −q. In this case,
we require k′ inside the Fermi surface and k outside it. So the result is

(45) 〈n̂(x)n̂(x′)〉 = n̄2 +
1

V2 ∑
|k|>kF

∑
|k′ |<kF

ei(k−k′)·(x−x′).

Taking the continuum limit, we obtain

〈n̂(x)n̂(x′)〉 = n̄2 +
∫
k

∫
|k′ |<kF

ei(k−k′)·(x−x′) −
∫

|k|<kF

∫
|k′ |<kF

ei(k−k′)·(x−x′)

= n̄2 − n̄δ(x− x′)−

∣∣∣∣∣∣∣
∫

|k|<kF

eik·(x−x′)

∣∣∣∣∣∣∣
2

,(46)

where we introduce the notation
∫

k =
∫ ddq

(2π)d in d dimensions. In three di-
mensions, we can evaluate the final integral explicitly

∫
|k|<kF

eik·(x−x′) =

∞∫
0

dk k2
1∫
−1

d cos θ
2π

(2π)3 eik|x−x′ |,

=
−kF

2π2|x− x′|2

(
cos kF|x− x′| − sin kF|x− x′|

kF|x− x′|

)
.(47)

Using the fact that for a spinless electron gas, the density is related to the
Fermi energy by n̄ = k3

F/6π2, we can write this as

(48)
〈n̂(x)n̂(x′)〉

n̄2 = 1−
∣∣∣∣ 3
(kF|x− x′|)2

(
sin kF|x− x′|

kF|x− x′| − cos kF|x− x′|
)∣∣∣∣2 ,

neglecting the delta-function part. A Taylor expansion shows that this function

12
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Figure 1: Tail of the density density correlations of a 3d electron gas.

vanishes as |x− x′| → 0. This is called a “correlation hole”, and reflects the
fact that two fermions cannot occupy the same position, as a consequence of
the Pauli principle. For larger |x − x′|, it oscillates and approaches unity, as
shown in Fig. 1. These 2kF oscillations are a Hallmark of the Fermi surface.

The envelope of the oscillations depends upon the dimensionality, decay-
ing in three dimensions like 1/x4 as seen from Eq. (48). In lower dimensions
the decay is slower, so the oscillations are more pronounced. The result looks
qualitatively similar to the density-density correlation function in a classical
liquid: the oscillations indicate the tendency to local crystallinity, and their
decay reflects the liquidity. The free fermi gas is therefore a kind of liquid of
fermions, whose crystallinity is stronger in lower dimensions as the decay is
slower there.

This is just one example. Many other correlation functions behave simi-
larly. For example, if we restore spin, the spin-spin correlation function has
the same form as the density-density one (show it!!).

3.2 Two dimension Dirac fermions and graphene

Now we will move from metals to nodal semi-metals. They arise in many con-
texts, and are an important topic in current research (2018). We will discuss a
few examples in two and three dimensions. By far the longest studied exam-
ple is two-dimensional graphene. Working out the band structure of graphene
is by now a standard classroom problem, starting from a tight-binding model
of a single π orbital for electrons on each site of a honeycomb lattice. You can
find it discussed in many many places, for example this Reviews of Modern
Physics article.

For completeness, we include a brief exposition here. The geometry is
shown in Fig. 2. The lattice sites are divided into A and B sublattices, con-
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3. Free fermion phases
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Figure 2: A hexagon of the honeycomb lattice. Nearest-neighbor bonds are
obvious, and representative second neighbor bonds are shown with dashed
lines. Two linearly independent Bravais lattice (translation) vectors A1, A2 are
shown, as are the three nearest-neighbor vectors e1, e2, e3. A unit cell consists
of a pair of A and B sites, one of which is enclosed by an ellipse.

nected by nearest-neighbor bonds shown as solid lines. We define a unit cell
containing two sites on a vertical bond, for example the pair in the ellipse
drawn in the figure. A site is indexed by the coordinate of its unit cell, which
we take to be the coordinate of the A site within that cell, and the sublat-
tice s = 1, 2 = A, B. The A sites are then located at the sites of the trian-
gular Bravais lattice, for which we may take A1 and A2 shown in the figure
as primitive lattice vectors. We define also the three nearest-neighbor vectors
ei, i = 1, 2, 3 as shown. One can see that A1 = e3 − e1 = −2e1 − e2 and
A2 = e3 − e2 = −2e2 − e1. The basis vectors B1 and B2 of the reciprocal lat-
tice are defined by Bi · Aj = 2πδij as usual. If we define vectors bi such that
bi · ej = 2πδij for i, j = 1, 2, then we can find that B1 = (−2b1 + b2)/3, and
B2 = (−2b2 + b1)/3.

With all these definitions, it is straightforward to write down the Bloch
Hamiltonian for the nearest-neighbor model. We obtain

(49)

ĥ(k) = −t
(

0 1 + e−ik·A2 + e−ik·A1

1 + eik·A2 + eik·A1 0

)
=

(
0 f (k)

f ∗(k) 0

)
,

with

(50) f (k) = −t
(

1 + e−ik·A2 + e−ik·A1
)

.

We see that ĥ(k) is indeed periodic and smooth, as expected. Band touching
occurs when f (k) vanishes identically, i.e. both real and imaginary parts. This
occurs at the two inequivalent corners of the Brillouin zone, denoted K and
K′. If we take the length of the nearest-neighbor bond to be unity, then A1 =
(
√

3/2, 3/2), A2 = (−
√

3/2, 3/2), and it is easily verified that f vanishes at

14



3.2. Two dimension Dirac fermions and graphene

the points K = (4π/(3
√

3), 0), K′ = −K. Taylor expanding, we have

(51) f (±K + k) ∼ 3
2

t(±kx − iky).

Since the eigenvalues of the matrix in Eq. (49) are ±| f (k)|, this implies that
the bands touch linearly.

The Bloch Hamiltonian already appears as a 2×2 matrix whose index we
denote a, b etc. and which lies in the sublattice space. To include spin, we
would also require a spin-1/2 index σ =↑, ↓. In a low energy description,
which linearizes the dispersion around the Dirac points, there is an additional
“valley” index A = 1, 2, which labels the two Brillouin zone corners. The con-
tinuum fields are defined simply by separating the momentum components
which are in a small neighborhood of the Dirac points:

(52) caα,KA+k = ψAaα,k, for |k| � 1.

Putting this all together, the low energy Hamiltonian is

(53) H = ∑
k

ψ†
kv(µzτxkx + τyky)ψk.

Here k measures the deviation of the momentum from the Dirac point. The
fermions are described by a spinor ψ = ψAaα, where τ Pauli matrices act
on the sublattice a space, µ act on the valley space (you can see Eq. (53) is
diagonal in the valley space because it only involves µz), and σ act on the spin
space (these are not present because spin-orbit coupling is weak and can be
neglected). We keep the indices implicit for compactness as much as possible.

The Hamiltonian in Eq. (53) is easy to diagonalize. It is already diagonal
in the valley and spin subspaces, so we can treat µz in the Hamiltonian as a
constant = ±1 (its eigenvalues). We are left with a 2×2 matrix in the τ space.
The eigenvalues of this matrix are easy to find by for example rotating it by
an SU(2) rotation to the τz direction. One has

(54) ε± = ±v
√

k2
x + k2

y = ±v|k|.

We see the dispersion is just a relativistic “light-cone” of conduction and va-
lence bands intersecting at k = 0.

Stability of the Dirac point

A key question is whether this behavior is generic. That is, we may have made
a small mistake in our Hamiltonian by neglecting some term, and would cor-
recting this lead to the removal of this intersection point and fundamental
modification of the spectrum? This certainly appears possible, since the 2d
Dirac equation allows a mass term. Even if we “freeze” the valley and spin de-
grees of freedom, i.e. just consider the two component Dirac equation for fixed
spin and valley quantum numbers, one can add a term of the form mψ†τzψ
to the Hamiltonian above which is known as a Dirac mass, and will indeed
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3. Free fermion phases

remove the intersection point. Maybe some principle (symmetry?) prohibits
adding this term? Perhaps there are other allowed perturbations?

Let us start with the simple-minded answer, which is just based on the
Dirac Hamiltonian, Eq. (53) and symmetries. We ask what might prevent
adding a term proportional to ψ† Mτzψ to the Hamiltonian? Here M could
be a matrix in the spin and valley spaces. So long as this anti-commuted with
the two matrices inside Eq. (53), it will serve as a mass. First, it is natural to
assume spin rotation symmetry, SU(2)σ, because spin-orbit coupling is weak
in graphene so this is a good approximation microscopically. This requires
M to not contain any of the spin Pauli matrices. Second, we impose trans-
lational symmetry, which means that quasi-momentum is conserved up to a
reciprocal lattice vector, and so there is no scattering between valleys. This
requires M to not contain µx or µy. These two constraints allow matrices of
the form M ∼ 1, µz, i.e. mass terms τz and µzτz. Now consider time-reversal
symmetry. This changes the sign of momentum, and hence interchanges the
two Dirac points, which means µz → −µz. The matrix τz simply labels the
sublattices, so it is time-reversal invariant. Thus of the two remaining options,
only the M ∼ 1 or pure τz mass is time-reversal invariant. If we assume time-
reversal symmetry, we still need one more symmetry to prevent the addition
of τz. For this, we need to require some symmetry which interchanges the two
sublattices, for example inversion around the center of a bond. Under this op-
eration, τz → −τz, and so inversion symmetry removes the finally remaining
mass term. We conclude that the Dirac points remain intact if we maintain
four conditions: 1. spin rotation symmetry SU(2)σ, 2. inversion symmetry, 3.
the translation symmetry of the honeycomb lattice, and 4. time-reversal sym-
metry.

This analysis is acceptable but uninspiring, and leaves open other possible
questions. Later, we will return to reconsider the stability in topological terms,
and see that a more elegant explanation is possible.

3.3 Three dimensional Weyl fermions
Lecture 3 (1h 15mins)
January 23rd, 2018 The 2d Dirac fermion requires some symmetry to protect it. In three dimen-

sions, there are “nodes” or band intersections that do not require any sym-
metry other than the translational symmetry required to define bands them-
selves. These are known as Weyl points.

We assume the “generic” situation that bands in a three dimensional sys-
tem, including the effects of spin-orbit coupling, are non-degenerate. This
is true unless band degeneracy is enforced by the combination of inversion
and time-reversal symmetry. Assuming non-degenerate bands, we consider
the possibility that two bands approach one another in energy near some
point K. To study the putative band crossing, we can focus only on those
two bands, which restricts the Bloch hamiltonian, ĥ(k) to a two dimensional
matrix, which, by assumption, has degenerate eigenvalues at q = 0. Writing
k = K + q, one may expand this matrix to leading linear order in q as

(55) ĥ(K + q) = AµqµI + Bµνqµτν,
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3.3. Three dimensional Weyl fermions

where I is the identity matrix and τν are the Pauli matrices. By design, this
Hamiltonian has degenerate eigenvalues at q = 0. Now suppose we make
a small perturbation of the system, shifting ĥ → ĥ + ĝ, where ĝ is a small
constant Hermitian matrix. We can always express ĝ = g0I + gντν. Thus the
perturbed Bloch Hamiltonian becomes

(56) ĥ→ (Aµqµ + g0)I + (Bµνqµ + gν)τν.

The perturbed Hamiltonian has degenerate bands when the coefficients of all
the Pauli matrices vanish. This occurs when BTq + g = 0, or q = −(BT)−1g,
which is simply a point slightly shifted from the original band crossing. We
see that a small generic perturbation of the system does not remove the band
crossing, but only shifts it. We conclude from this simple analysis that the
band crossing is protected, although its location is not. We will understand
the protection more deeply later in Sec. 4.2.

Such a band crossing is “accidental” in the sense that it is unconnected to
any symmetry. We can understand the occurrence of the accidental crossing by
a counting argument. To obtain two degenerate eigenvalues of a generic two
dimensional matrix requires tuning three parameters to zero: the coefficients
of the three Pauli matrices, or equivalently the naı̈ve energy level difference
(τz) and the matrix elements between the two levels (τx, τy). In three dimen-
sions, the three components of momentum provide three such parameters.
Thus accidental band crossings occur generically in three dimensions, but not
in two.

The band crossing is called a “Weyl point”, because the Hamiltonian in
Eq. (55) can be cast in the form of the Weyl equation. By a suitable coordinate
change, we can make Bµν diagonal. Then the Hamiltonian is written as

(57) ĥ(q) = A · qI + ∑
µ

vµqµτµ.

Here we expressed the diagonalized coefficient of the Pauli operators as a
velocity vµ. The resulting energy levels are

(58) ε± = A · q±
√

∑ v2
µq2

µ.

This is an anisotropic Dirac-like dispersion in three dimensions, with a “tilt”
given by the A · q. In particle physics, the Weyl equation was devised as a kind
of “square root” of the Dirac equation. Like ĥ in Eq. (57), the Weyl equation
is a 2×2 matrix one, instead of the 4×4 matrix form of the (probably) more
familiar Dirac equation. The price paid for taking the square root is that Weyl
fermions are necessarily massless: as we have seen, there is no perturbation
which removes the band crossing. Eq. (58) generalizes the dispersion of Weyl
fermions from particle physics (which are constrained by Lorenz invariance)
to an anisotropic and tilted form. When the tilt A is small, it describes two
tilted cones touching at a point, such that the only states at zero energy are
those at the touching point q = 0. However, it can and does happen that the
tilt A is large enough that it overcomes the the band splitting terms in some
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3. Free fermion phases

directions of momentum space. In this case the states at zero energy are not
limited to q = 0, and there is no energy at which the support of the states is
limited to a single point. Rather, there is some complex evolution of a Fermi
surface at all energies. This situation has come to be known as a “type II”
Weyl point, and the simpler former case as a “type I” Weyl point.

3.4 Three dimensional Dirac fermions

Three dimensional Dirac fermions, whose low energy dynamics are described
by the 4-component Dirac equation, also can occur in solids, though not acci-
dentally. Dirac points occur in systems with both inversion and time-reversal
symmetry (a priori it is possible also in an antiferromagnet which maintains
invariance under simultaneous time-reversal and translation symmetry, but I
am not aware of a known example). These constraints alone imply that all
bands are two-fold degenerate at every quasi-momentum k. The Dirac point
corresponds to a crossing of two of these two-fold degenerate bands at some
point. Returning to the “constraint counting” arguments earlier, to achieve de-
generacy of these four levels requires tuning a large number of off-diagonal
matrix elements to vanish, clearly more than the three components of momen-
tum that are available. This is why Dirac points do not occur accidentally.

However, an additional ingredient of symmetry can be enough to allow
Dirac points to occur. There are several ways they can happen. Let’s describe
one, which is how you might understand the material Cd3As2. We can under-
stand this system by thinking of it as a tetragonal distortion of an underlying
cubic material. Cubic semiconductors are quite common: all the big semicon-
ductor materials like Si, Ge, and GaAs are cubic. In such a cubic system there
are bands which are predominantly built from p orbitals, which at the atomic
level have orbital angular momentum ` = 1. Taking into account the spin
s = 1/2 of the electron, spin-orbit coupling can build from these orbital total
angular momentum states j = 1/2 and j = 3/2. With spherical symmetry and
time-reversal symmetry, the four states of the j = 3/2 multiplet are degener-
ate. This gives us the building blocks for a Dirac system.

In a cubic semiconductor, the Bloch Hamiltonian describing the states built
from the j = 3/2 orbitals is a 4×4 matrix, which is a function of momentum,
and can be expressed in terms of sums and products of the j = 3/2 matrices
J. We can expand it near the origin in momentum space. Take k = 0 first. It
must be a polynomial in the spin matrices. Cubic symmetry acts on J like a
vector, and J is odd under time-reversal symmetry. So the allowed terms are

ĥ = aI + a|J|2 + b|J|4 + c(J4
x + J4

y + J4
z ).(59)

Now for j = 3/2, all these terms are constants, proportional to the identity.
This means the Bloch Hamiltonian at k = 0 is a constant, which implies the
4 states remain unsplit due to these symmetries. Now we can add in terms
which are linear or quadratic in momentum. Inversion symmetry is impor-
tant because under it, k → −k but J → J, because angular momentum is a
pseudovector. This means linear terms in momentum are not allowed. The ex-
pansion for the Bloch Hamiltonian therefore starts at the quadratic level, and
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there are just three terms:

(60) ĥ = αk2 + β(k · J)2 + γ(k2
x J2

x + k2
y J2

y + k2
z J2

z ).

We chose the energy at k = 0 to be zero. This equation describes two two-fold
degenerate quadratically dispersing bands. Depending on the magnitude and
signs of the constants α, β, γ, they either disperse both upward, both down-
ward, or one upward and one downward. For simplicity, let us take γ ≈ 0.
Then the Hamiltoian is diagonalized by simply choosing the quantization axis
of J along the momentum, and there are two sets of energies:

(61) ε± 1
2
= (α + β/4)k2, ε± 3

2
= (α + 9β/4)k2.

We can choose β < 0 and |β|/4 < α < 9|β|/4, in which case the J · k̂ =
±1/2 band disperses upward and the J · k̂ = ±3/2 band disperses downward.
This is a “quadratic band touching” semi-metal. It is a semi-metal because
since one band disperses in both directions, there is no place to put the Fermi
level in a gap. This situation occurs in the famous material HgTe. In more
conventional semiconductors like Si etc, both these bands disperse downward
and are considered valence bands.

To get to a Dirac semi-metal, let us consider stretching or compressing the
system along the z axis, to convert it to tetragonal symmetry. This process
leaves inversion, time-reversal, and C4 four-fold rotational symmetry around
the z axis intact. It does however allow a non-trivial term at k = 0: we can add
to the Bloch Hamiltonian

(62) ĥ′(k) = λJ2
z .

We assume the distortion is such that λ > 0. This has the effect of lifting the
degeneracy between the J · k̂ = ±1/2 and the J · k̂ = ±3/2, with the latter
being lifted up relative to the former. Consider the Bloch Hamiltonian then
for the special line kx = ky = 0:

(63) ĥ(0, 0, kz) = αk2
z − |β|k2

z J2
z + λJ2

z .

This just describes two two-fold degenerate parabolas, one pointing up and
one down, which cross at some momentum kz = ±k0, with k0 =

√
λ/|β|.

This crossing is a potential Dirac point. Let us ask, along this line, how robust
this crossing is? The bands which cross have Jz = ±1/2 and Jz = ±3/2. We
know that, so long as inversion and time-reversal are maintained, the bands
must remain two-fold degenerate. So we need to ask if these two bands con-
tinue to cross under an arbitrary but small (symmetry preserving) perturba-
tion? Perturbations that shift each of the two bands separately will not re-
move the crossing point, only move it along the line. But can the crossing
be removed? This requires off-diagonal matrix elements that mix different Jz
states. However, under a C4 rotation, each of the four states transforms differ-
ently, |Jz〉 → eiπ Jz/2|Jz〉, where the phase factor eiπ Jz/2 takes the four distinct
values ei3π/4, eiπ/4, e−iπ/4, e−i3π/4. This is sufficient to prevent any term which
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mixes these states. Importantly, C4 symmetry leaves any momentum along the
kx = ky = 0 line invariant, so remains a good symmetry for any kz, including
at the band crossing. This is enough to conclude the crossing is stable.

To see that it is a Dirac point, we should linearize the Bloch Hamilonian in
all three directions around the crossing point, k = (qx, qy, k0 + qz). Plugging
this into the Bloch Hamiltonian and linearizing in q we obtain

(64) ĥ(k0ẑ + q) ∼ 2(α− |β|J2
z )k0qz − |β|k0

[
qx{Jx, Jz}+ qy{Jy, Jz}

]
.

One can check that this satisfies all symmetries. For j = 3/2 matrices, the
matrices {Jx, Jz} and {Jy, Jz} are non-trivial. Define the matrices:

Γ3 =
5
4

I− J2
z =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,(65)

Γ1 = − 1√
3
{Jx, Jz} =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 ,(66)

Γ2 = − 1√
3
{Jy, Jz} =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 .(67)

One can readily check that these satisfy the Clifford algebra,

(68) ΓµΓν + ΓνΓµ = 2δµν.

and the Hamiltonian can be rewritten as

(69) ĥ(k0ẑ + q) ∼ uqz + v1(qxΓ1 + qyΓ2) + v3qzΓ3

with v1 =
√

3|β|k0 and v3 = 2|β|k0 and u = 2(α− 5/4|β|)k0. This describes an
anisotropic Dirac cone with a tilt u. In the second quantized representation,
the Dirac point Hamiltonian becomes

(70) H = ∑
q

ψ†
q

(
u · q +

3

∑
µ=1

vµqµΓµ

)
ψq,

with v2 = v1, and u = (0, 0, u).

For a more general discussion, I suggest you look at a recent review article
by Peter Armitage and collaborators. We will not talk much more about 3d
Dirac semimetals.
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4 Berry curvature and topology

Lecture 4 (1h 15mins)
January 25th, 2018

4.1 Dirac point

Let us reconsider the stability of a 2d Dirac point from a bit more sophisticated
point of view. The best way to address this question is to use a (mildly) non-
trivial combination of symmetry and topology. It turns out the intersection is
robust so long as we maintain: 1. spin rotation symmetry SU(2)σ, 2. inversion
symmetry, 3. the translation symmetry of the honeycomb lattice, and 4. time-
reversal symmetry. The first is a good approximation for graphene because
spin-orbit coupling is very weak for carbon. The second, third, and fourth
conditions are true for ideal graphene without applied fields, but might be
violated under some conditions.

How do we see the robustness? Well the first condition of SU(2)σ sym-
metry implies the Hamiltonian is spin independent. So we can just think of
the two spin states separately. Then we have, away from the Dirac points,
non-degenerate bands for each physical momentum (note: the valley index
actually specifies the patch in momentum space, and so the condition (3) of
translational symmetry implies that different valleys do not mix). The bands
are defined from the eigenvalue problem of the Bloch Hamiltonian, Eq. (35),
which we can rewrite in bra-ket notation as

(71) ĥ(k)|φ(n)
k 〉 = εn|φ(n)

k 〉.

In this case, n = 1, 2 = +,− for the conduction and valence bands, and ĥ(k)
can be taken as a 2×2 matrix. As k is varied smoothly, so long as the two
bands do not touch, the eigenvalues vary smoothly, and likewise the phase of
the eigenstates may chosen so that they too vary smoothly, at least for small
(local) changes in k. For such smoothly defined and normalized states, we can
define a quantity to describe the variation,

(72) An(k) = Im
[
〈φ(n)

k |∇k|φ
(n)
k 〉

]
.

This is known as the Berry gauge field or Berry connection (note that the
overlap inside the square brackets is purely imaginary due to the normaliza-
tion condition of the eigenstate). We call this a gauge field because there is
an unphysical freedom to choose the phase of the Bloch eigenstate at every k.
Changes in this choice correspond to a transformation

(73) |φ(n)
k 〉 → eiχn(k)|φ(n)

k 〉,

with an arbitrary smooth phase χ(k). Under this change, the Berry gauge field
transforms as

(74) An(k)→ An(k) +∇χn(k).

The quantity which is invariant under this gauge transformation is mathe-
matically the same as a magnetic flux. In two dimensions, there is just one
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component

(75) Bn(k) =
∂Anx

∂ky
−

∂Any

∂kx
.

Now let us consider the properties of Bn under the inversion and time-reversal
symmetries we have yet to use. Under inversion, k → −k, which, because of
the derivatives implies that Bn(−k) = Bn(k). Under time reversal, we also
have k → −k, but in addition the wavefunction undergoes complex conjuga-
tion. The latter imparts an addition minus sign, so that Bn(−k) = −Bn(k).
These two conditions are compatible only if

(76) Bn(k) = 0, with TR× I.

Eq. (76) is true provided the smoothness and non-crossing condition of eigen-
states, which we assumed, is obeyed. This means it is true for all k except the
Dirac points. At the Dirac points, the crossing means that the Berry gauge field
is not well-defined, as the eigenstate associated with each band is also not
defined.

However, we can consider a loop encircling a Dirac point,

(77) Θ =
∮
K

dk ·An(k),

where the subscript K indicates the line integral is taken around the Dirac
point at (say) the K point of the Brillouin zone. This is a Berry phase: it gives
the phase evolved under adiabatic evolution of a wavefunction through this
loop. The quantity is invariant under single-valued gauge transformations,
because it is the integral of a gradient, but changes under large but smooth
gauge transformations, e.g. χ(k) = pθ(k), where θ(k) is the angle of the k
point measured from the location of the Dirac point, and p is an integer so
that the gauge transformation is single valued. This means that Θ is defined
modulo 2π. It turns out that for a Dirac electron, the value of theta is actually

(78) Θ = π(mod 2π).

This is easily worked out from the eigenfunction of the Dirac Hamiltonian, or
microscopically from the Bloch Hamiltonian of the graphene model.

The non-trivial value of π for the Berry phase implies the stability of the
band touching, as can be argued as a proof by contradition. Suppose the band
touching were to be removed by a small perturbation. Then we would require
Eq. (76) to hold everywhere, including at the former Dirac point. Then we
could use Stokes’ theorem to express Θ in Eq. (77) as the area integral of
Bn inside the loop, which would immediately have to vanish. However, a
small perturbation can make only small changes in the Bloch states far from a
degeneracy point, and so the loop integral cannot change discontinuously. We
conclude that the band touching cannot be lifted by any small perturbation
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preserving time-reversal and inversion symmetry. What can in fact happen,
if symmetry allows it, is for the Dirac point to move in k space under the
effect of perturbations (this is allowed if we break the 3-fold lattice rotation
symmetry). Then the two Dirac points can drift and annihilate.

By similar arguments, we can obtain the quantization of Θ, which must
be a multiple of π (including 0) around any loop, modulo 2π, and also the
“fermion doubling” result that there must be an even number of such Dirac
points. I leave these as exercises to the reader.

4.2 Weyl point

The stability of the Weyl point can also be understood more deeply using the
Berry phase ideas discussed above for the 2d Dirac case. In three dimensions,
for non-degenerate bands away from the touching point, we can still introduce
the Berry gauge field from Eq. (72), but with three components. Now it has
the full structure of a conventional electromagnetic vector potential, so we can
define the full analog of a three-dimensional magnetic field,

(79) Bn = ∇×An,

which is the three-dimensional Berry curvature. It is by definition divergence
free

(80) ∇ ·Bn = 0,

away from any singularities like the Weyl point. This means the Berry flux
forms field lines which can emanate or terminate only at band touchings like
the Weyl point, which appears as a “monopole” of Berry flux.

To see this that the monopole charge indeed is non-zero, we can consider
the integral explicitly for a surface around the Weyl point. For this purpose, let
us take the simplest example of a Weyl point in which we take vµ = v all equal
in Eq. (57), and let us compute the integral over a spherical surface around
the Weyl point, since the result is independent of the shape of the surface
using Eq. (80) and Gauss’ theorem. For this choice, the Bloch eigenfunction
for the positive band (the negative band can be readily worked out by the
same method) is determined by the equation

(81)
(

kz kx − iky
kx + iky −kz

)
|φ〉 = k|φ〉.

This has the solution

(82) |φ〉 =


√

k+kz
2k

kx+iky√
2k(k+kz)

 .

Note that this eigenfunction depends only on k̂ and not the magnitude of k as
is expected, and is singular along the “south pole” k̂ = −ẑ. The eigenfunction
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4. Berry curvature and topology

cannot be a global analytic function on the sphere, but necessarily has some
spurious singularity in some direction. This is a gauge artifact, and is related
to the famous “Dirac string”. Physical quantities like the Berry curvature are
non-singular everywhere, as we will readily see. From this eigenfunction, we
can compute the Berry gauge field,

(83) A =


− ky

2k(k+kz)

kx
2k(k+kz)

0

 .

Since it is not gauge invariant, the Berry vector potential is also singular at
kz = 0. Now taking the curl, we finally obtain the simple and physical result

(84) B =
k

2k3 =
k̂

2k2

The surface integral is then easily computed,

(85)
∫

dk̂ ·B = 4πk2 1
2k2 = 2π.

We see that the Weyl point appears as a monopole of strength 2π, i.e. Eq. (80)
can be replaced by

(86) ∇ ·B = 2πδ(k).

Notably, had we considered the lower band, we would have obtained a −2π
strength monopole.

The stability of the Weyl point follows from similar arguments to those we
used for the Dirac point in two dimensions. The non-zero integral over Berry
curvature and the divergence-free condition away from band crossings implies
that there must be a crossing inside the integration volume. Since the integral
can be taken at a finite radius, far from the crossing, the Weyl point can at
most move smoothly with a small perturbation. In this case, no symmetry at
all is required for stability, other than the translational invariance required to
define the bands themselves.

There are interesting constraints also on the number and types of Weyl
points. We can assign them an integer charge in units of 2π. The total charge of
all Weyl points must vanish. This is because the Brillouin zone is a closed man-
ifold, and any field lines emerging at a “source” monopole must terminate at
a corresponding “sink”. Thus the minimal number of Weyl points is two. Fur-
thermore, if time reversal symmetry is preserved, there must be at least four
Weyl points. This is because, under time-reversal a Weyl point at k = K is ex-
changed with another Weyl point at k = −K of the same charge. There must
be another set of oppositely charged Weyl points elsewhere to compensate
the non-zero charge of these two Weyl points. The situation with the min-
imal number allowed of only two toyal Weyl points conversely must break
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time-reversal symmetry. We will see soon that there are immediate physical
consequences of this broken time-reversal.

5 Insulators and topology

From the low energy point of view, insulators appear completely trivial: there
are simply no low energy states below the band gap. However, we can still ask
the question: are there different types of qualitatively distinct gapped states?
One way to formulate this is to ask if every band insulator can be smoothly
transformed into every other one? The answer is no. Moreover, it turns out
that if we relax the basic framework of periodic boundary conditions/infinite
volume to consider finite volume with a boundary, then the distinctions be-
tween different band insulators can appear in the energy spectrum as edge
states.

5.1 Two Dirac masses

The simplest such situation is in two dimensions. Let us return to the graphene
model of Sec. 3.2 and add some perturbations that turn the Dirac semimetal
into an insulator. For the moment, we will consider spinless Dirac electrons,
governed by Eq. (53). We saw that, for spin-independent interactions, there
are two possible “mass” terms which could be added that maintain the trans-
lational symmetry of the lattice. Consider the Hamiltonian with both these
terms added:

(87) H = ∑
k

ψ†
k v
(
µzτxkx + τyky + m1τz + m2µzτz)ψk.

Here the mass m1 is time-reversal invariant, and could be realized by adding
a staggered potential of opposite sign on the A and B sublattices. The mass
m2 is odd under time-reversal, and can be realized by adding a second neigh-
bor hopping (dashed lines in Fig. 2) which is pure imaginary and has a pos-
itive (negative) sign for second neighbors reached by “turning” right (left)
when walking two steps on the lattice. The honeycomb model with imagi-
nary second neighbor hopping is known as the Haldane model, after Haldane
introduced it for reasons to become clear below. Since µz commutes with the
one-particle terms in Eq. (87), it is a constant of the motion and can be treated
as equal to ±1. Then the energy dispersion is easily calculated as a function
of µz to be

(88) ε±,k(m1, m2) = ±
√

v2k2 + (m1 + µzm2)2.

We see that either m1 or m2 alone introduces a gap; however, the gap van-
ishes if |m1| = |m2|, by taking µz = −sign(m1/m2). If one plots a “phase
diagram” in the m1 − m2 plane, there are four gapped regions separated by
“phase boundaries”. At least in this model, it is not possible to pass from the
“charge density wave” insulator with m1 6= 0, m2 = 0 to the “time-reversal
broken” insulator with m1 = 0, m2 6= 0, without passing through a model in
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5. Insulators and topology
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Figure 3: “Phase diagram” showing effects of masses on 2d Dirac fermions.
The labels “CDW-A” and “CDW-B” indicate charge density wave regions in
which the electrons are localized preferentially on the A or B sublattice sites,
respectively.

which the gap vanishes. When the gap does vanish, on the |m1| = |m2| lines,
it does so for just one of the two Dirac points.

What is the physical meaning of this? It turns out that the two separated
gapped insulators are indeed physically distinct phases. The “charge density
wave” insulator is a simple band insulator, while the “time-reversal broken”
insulator is a type of topological insulator, known as a Chern insulator, or quan-
tum Hall state. The simplicity of the charge-density wave insulator can be seen
by simply going back to the lattice model and increasing the staggered po-
tential until it is very large. This process is smooth and no phase transitions
occur: the gap increases monotonically as the potential is increased. When
the potential is very strong, the insulator itself becomes atomic in nature: one
electron resides each site of one of the sublattices (the one with much lower
energy), while the other sublattice is empty. There is virtually no motion of
the electrons.

5.2 Edge state

The Chern insulator, by contrast, does not have a simple atomic limit. This
leads to interesting phenomena at an interface between the two. Let us con-
sider modeling such an interface by the Dirac Hamiltonian but with masss
m1(y), m2(y) that are functions of y, with the interface located at y = 0. For
y → ∞, we have the charge density wave, and m1 > 0, m2 = 0, while for
y → ∞, we have the Chern insulator, and m1 = 0, m2 > 0. We assume the
masses vary smoothly between the two regions, and write the Dirac equation
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5.2. Edge state

in the position representation in the y direction:

(89) H = ∑
kx

∫
dy ψ†

kx
(y)
[
vkxµzτx − ivτy∂y + (m1(y) + m2(y)µz)τz]ψkx

(y).

The single-particle eigenfunctions that diagonalize the Hamiltonian obey

(90)
[
vkxµτx − ivτy∂y + (m1(y) + m2(y)µ)τz] φkx (y) = εkx φkx (y).

Here we replaced µz → µ = ±1 to indicate that we can treat the two eigenval-
ues of µz independently, as constants. Let us seek a solution in which φ is an
eigenstate of τx, i.e. τxφ = τφ, with τ = ±1. We can rewrite iτy = τzτx = τzτ
when acting on φ. Hence we have

(91)
[
τµvkx + τz (−τv∂y + (m1(y) + µm2(y))

)]
φkx (y) = εkx φkx (y).

This is consistent under the conditions: Lecture 5 (1h 15mins)
January 30th, 2018

εkx = τµvkx,(92) (
−τv∂y + (m1(y) + µm2(y))

)
φkx (y) = 0.(93)

The second equation has a formal solution:

φkx (y) = Ae
∫ y

0 dy′ m1(y
′)+µm2(y

′)
τv .(94)

This solution is formal because this function is only normalizable if the ex-
ponential becomes large and negative at both y → +∞ and y → −∞. This
requires (m1 + µm2)/τ < 0 as y→ +∞ and (m1 + µm2)/τ > 0 as y→ −∞. In
turn this implies that the sign of m1 + µm2 is opposite at y = ±∞. The inter-
face between the Chern and band insulator satisfies this condition. Specifically,
in the band insulator at y = +∞, m1 > 0 and m2 = 0, so the sign m1 + µm2
is positive, while in the Chern insulator, m1 = 0 and m2 > 0, so the sign of
m1 + µm2 is the sign of µ. Hence for µ = −1, the sign is different, and we ob-
tain convergence for τ = −1. So we obtain a single branch of modes (those with
µ = τ = −1 which have such a special eigenstate, for which the dispersion
relation is

εkx = vkx.(95)

This is a one-dimensional branch of states, whose wavefunction is exponen-
tially localized at the interface between the Chern and band insulator. The
mode resides inside the band gap, which is required for exponential localiza-
tion, and which means that its low energy states reside at the Fermi energy
even when the bulk of both insulators exhibit a gap. Importantly, the mode is
chiral, in that the group velocity in the x direction, parallel to the interface, is
positive. This is called a chiral edge state, and is characteristic of the integer
quantum Hall effect.

The chiral edge state is the only low energy mode in this system. So below
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5. Insulators and topology

some energy scale (roughly the bulk gap), the low energy effective theory just
includes this one mode:

(96) Heff = ∑
kx

vkx ψ†
kx

ψkx
=
∫

dx − ivψ†∂xψ.

The chirality of the edge state gives it a great deal of robustness. Perturba-
tions at the edge, including disorder, cannot make a low energy electron turn
around, because all the available states propagate in the same direction. We
say that there is no backscattering possible. This means that the edge state
cannot become localized by disorder, and in fact has an infinite conductivity
(but not infinite conductance - we will come back to this).

5.3 Chern number

The gapless edge state appearing at the boundary between the charge density
wave and Chern insulators suggests there is something qualitatively different
about the two phases. Indeed there is, and the distinction is topology. We
can understand it based on the Berry phase discussion we began earlier in
Sec. 3.2. Let us consider the total Berry curvature of a filled band, which is a
gauge independent quantity:

(97) Θ =
∫

BZ

d2kBn(k),

where the integral is taken over the full Brillouin zone. This is actually a
famous object, which is known to be a quantized topological invariant: 2π
times the Chern Number,

(98) Θ = 2πC,

where C is an integer. Chern proved a general result that a “curvature” inte-
grated over a two-dimensional closed manifold is quantized. Here the curva-
ture is B, and the manifold is the Brillouin zone, which is a torus. Eq. (97) can
be regarded as the integral of the Berry flux normal to the surface of the torus.

One can understand this quantization more directly here by using Stoke’s
theorem to rewrite it as the line integral around some arbitrary “boundary” of
the Brillouin zone:

(99) Θ =
∮

∂(BZ)

dk ·An(k).

For example for a square Bravais lattice with unit spacing we can take −π <
kx < π and −π < ky < π, and the line integral in Eq. (99) becomes an integral
around the square. Now we can take advantage of gauge invariance to choose
a specific gauge. We can definitely choose the “Landau gauge” where Ay = 0.
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5.4. Hall conductivity

Then the integral becomes

(100) Θ =

π∫
−π

dkxAx(kx,−π)−
π∫
−π

dkxAx(kx, π) = θx(−π)− θx(π)

This is a difference of two line integrals, θx(±π) which are actually defined
on loops in parameter space, since kx = ±π are equivalent points. Thus each
θx(ky) is actually itself a gauge-invariant Berry phase, and furthermore ky = π
and ky = −π are equivalent. This means that these physical quantities must
be equal up to a multiple of 2π, i.e. θx(−π) = θx(π) + 2πC. This shows the
desired quantization.

There are a number of implications of a non-zero Chern number. One is
that it is an obstruction to the construction of a smooth, periodic set of Bloch
functions, over the full Brillouin zone. This is because if such a set exists, then
A and B are single valued, and therefore the integral, Eq. (97) of a curl over a
continuous periodic surface without boundary (the torus) is necessarily zero
(equivalently, opposite sides of the line integration in Eq. (99) or Eq. (100)
must cancel exactly. Another view of the Chern number is from Eq. (100),
which shows that it can be considered a “winding number” of θx(ky). In fact,
θx(ky) has the physical interpretation of a “polarization”, and the winding
number of this polarization is related to something called a Thouless pump.
Not sure if I will talk about this.

5.4 Hall conductivity

Now we are going to show that the Chern number is directly related to an
easily measured quantity: the Hall conductivity. To do so, we first derive a
general formula for the conductivity called the Kubo formula. This follows
the general problem of linear response theory. We apply a small perturbation
to the Hamiltonian of a system – in this case an electric field – and observe
its effect upon the expectation value of another quantity – in this case the
current density. The standard way to do this is to choose a gauge with zero
scalar potential, so that the electric field is E = −∂t A, where A is the vector
potential. For a spatially constant but in general AC electric field, we can take
A(t) = Re [E/(iω)e−iωt]. The vector potential may be included by the minimal
coupling procedure, which amounts to replacing k → k + eA, i.e. using the
Hamiltonian

(101) H(A) = ∑
k

ĥss′(k + eA)c†
skcs′k.

The current density is defined by the derivative of the Hamiltonian (or of the
action in the field theory) with respect to the vector potential, hence

(102) j = −e
1
V ∑

k

∂ĥss′(k + eA)

∂k
c†

skcs′k,
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5. Insulators and topology

where V is the system volume. Note that there is some explicit dependence
on the vector potential in the current. For small electric fields, we can expand
it:

(103) jµ = −e
1
V ∑

k
c†

k

[
∂ĥ
∂kµ

+ e
∂2ĥ

∂kµ∂kν
Aν

]
ck,

where now ĥ is evaluated with zero vector potential. Working to linear order
in the electric field, and taking expectation values in the system with the field,
we have

〈jµ〉 = −e
1
V ∑

k

[〈
c†

k
∂ĥ
∂kµ

ck

〉
1

+ eAν

〈
c†

k
∂2ĥ

∂kµ∂kν
ck

〉
0

]
= 〈jµ〉1 − e2 Aν〈Qµν〉0,(104)

with

(105) jµ = −e
1
V ∑

k
c†

k
∂ĥ
∂kµ

ck,

and

(106) Qµν =
1
V ∑

k
c†

k
∂2ĥ

∂kµ∂kν
ck.

In Eq. (104) the subscript indicates the order to which the expectation value
should be calculated in the vector potential.

Now we can use the linear response formalism to obtain the first term.
This is a standard treatment, which we convered in Physics 217a (please see
Sec. 5.4 of those notes). The standard result is that, in the presence of a time-
dependent perturbation H′(t) of a Hamiltonian, the first order shift of the
expectation value of an operator O is

(107) 〈O(t)〉1 = 〈O(t)〉0 − i
∫

dt′ 〈
[
O(t), H′(t′)

]
〉0 θ(t− t′).

Taylor expanding the Hamiltonian in Eq. (101), we have

(108) H′(t) = −VA(t) · j(t).

So we obtain, using the fact that in equilibrium there is no current density
〈j〉0 = 0,

(109) 〈jµ(t)〉1 = iV
(∫

dt′〈
[
jµ(t), jν(t′)

]
〉0θ(t− t′)

)
Aν(t′).

Using the form of the vector potential in terms of electric field, we finally
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5.4. Hall conductivity

obtain the conductivity:

(110) σµν(ω) =
1
ω

V
∞∫

0

dt eiωt〈
[
jν(0), jµ(t)

]
〉+ ie2〈Qµν〉0

 .

This is called the Kubo formula for the conductivity. The second term in the
current (proportional to 〈Q〉) is the so-called “diamagnetic” contribution. It is
manifestly symmetric in µ, ν, and consequently does not contribute to the Hall
conductivity, which is defined as the anti-symmetric part of the conductivity
tensor. In two dimensions, there is just one component σH = (σxy − σyx)/2. It
is instructive to write the Kubo formula for σH in a spectral representation, by
just inserting complete sets of states:

(111)

σH(ω) =
V

2ω

∞∫
0

dt
eiωt

Z

Tr
[
e−βH

(
jyeiHtjxe−iHt − eiHtjxe−iHtjy − jxeiHtjye−iHt + eiHtjye−iHtjx

) ]
= −V

ω

∞∫
0

dt
eiωt

Z ∑
mn

e−βEm εij〈m|ji|n〉〈n|jj|m〉 cos(En − Em)t

= V ∑
mn

e−βEm

Z
εij〈m|ji|n〉〈n|jj|m〉

1
2iω

[
1

ω + Em − En
+

1
ω + En − Em

]
.

We are interested in the low frequency limit. Taylor expanding the term in Lecture 6 (1h 15mins)
February 1st, 2018the square brackets, the dc limit is

(112) σH = V ∑
m 6=n

e−βEm

Z
iεij〈m|ji|n〉〈n|jj|m〉

(En − Em)2 .

We can take m 6= n because the numerator vanishes for m = n (and the
denominator’s singular is regularized by the limit ω → 0). This expression
is in terms of the many-body eigenstates and many-body energy levels. For
free fermions, we can now proceed to re-express it in terms of single-particle
states. For this, we start with Eq. (105) and apply the change of basis formula,
cks = ∑n φ

(n)
k,s ckn to convert to the basis of Bloch eigenstates n. Keeping the

index s of the sites/orbital symbolic, we can write this as

(113) ck = ∑
n
|φ(n)

k 〉ck,n,

where now n sums over Bloch eigenstates/bands. The current operator is then

(114) jµ = −e
1
V ∑

k
∑
nn′
〈φ(n′)

k | ∂ĥ
∂kµ
|φ(n)

k 〉c
†
k,n′ck,n
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5. Insulators and topology

Inserting this into Eq. (112), we see that because we have m 6= n, the only
contributions arise from n′ 6= n in the current operators. Physically, the Fock
state |n〉 must be obtained by removing one electron from single particle state
n and adding one to state n′. So we obtain

(115) σH = e2 1
V ∑

k
∑
nn′

iεij〈φ
(n)
k |

∂ĥ
∂ki
|φ(n′)

k 〉〈φ(n′)
k | ∂ĥ

∂kj
|φ(n)

k 〉

(εnk − εn′k)2 nF(εnk)(1− nF(εn′k)),

where nF(ε) is the Fermi function. This is valid at any temperature for free
fermions. Now by differentiating the Schrödinger equation for the Bloch func-
tions, we obtain the identity

(116)

〈φ(n)
k |

∂ĥ
∂ki
|φ(n′)

k 〉 = (εnk− εn′k)〈
∂

∂ki
φ
(n)
k |φ

(n′)
k 〉 = −(εnk− εn′k)〈φ

(n)
k |

∂

∂ki
φ
(n′)
k 〉.

Using this identity for both matrix elements in the numerator, we can cancel
the denominator and obtain

σH =
e2

V ∑
k

∑
nn′

iεij〈
∂

∂ki
φ
(n)
k |φ

(n′)
k 〉〈φ(n′)

k | ∂

∂k j
φ
(n)
k 〉nF(εnk)(1− nF(εn′k))

=
e2

V ∑
k

∑
n

iεij〈
∂

∂ki
φ
(n)
k |

∂

∂k j
φ
(n)
k 〉nF(εnk).(117)

In going from the first line to the second, we noticed that the term propor-
tional to two Fermi functions vanishes due to symmetry of the matrix element
product in i↔ j while multiplied by the εij factor. For the other term, the sum
over n′ is free and becomes a resolution of the identity. Now we can take the
infinite volume limit, which converts the result to

(118) σH = e2 ∑
n

∫ d2k
(2π)2Bn(k)nF(εnk).

This formula is valid for any free electron system, including both metals and
insulators. It was actually derived long ago by Karplus and Luttinger who
were concerned with the Hall effect in ferromagnetic metals. There was a big
controversy about this but the modern view is that the explanation based on
Eq. (118) is largely correct in metals.

For insulators, the Fermi function at zero temperature selects occupied
bands, and the integrals are proportional to the Chern numbers of these filled
bands. One then obtains from this that (putting back the factor of h̄ set to one
throughout to get units correct)

(119) σH(T = 0)insulator =
e2

2πh̄ ∑
n|εn<0

Cn =
e2

h ∑
n|εn<0

Cn.

This is the celebrated TKKN formula. We have proven the quantization of the
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5.5. Laughlin’s argument

Hall conductivity!

5.5 Laughlin’s argument

The TKKN formula is beautiful but its origin is a bit opaque. One may also
worry that it assumes a perfect periodic solid so that the inevitable imperfec-
tions in a real material will mess up the quantization. There is a very appealing
and physical argument due to Laughlin that clarifies the physics of the quan-
tized Hall conductivity and shows why it is robust, at least to imperfections.

Laughlin’s argument neglects interactions between electrons, but not dis-
order. It goes something like this. We consider a two dimensional system at
zero temperature, and assume that it has a well-defined local conductivity
tensor σµν. We further assume that there are no extended states at the Fermi
energy. In a clean system, this implies that the system is a band insulator, but
we can also allow for disorder, which may induce states at the Fermi energy,
provided that in the bulk – i.e. away from any boundaries – those states are
localized. In condensed matter physics we say a state is localized if its wave-
function decays exponentially in space away from some region specific to that
state. One can think roughly of localized states as states bound to some impu-
rities. We may talk about localization in more detail later. The assumption is
basically that the system has no mobile states at the Fermi energy with which
to dissipate energy.

Φ

E
j

Figure 4: Corbino geometry: the sample is an annulus, with a flux Φ inserted
inside the inner hole. No magnetic field penetrates the sample. The time-
dependence of the flux during the insertion creates a circumferential electric
field E. Due to the Hall conductivity a radial current j is produced.

This implies that the symmetric parts of the conductivity tensor vanish, be-
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5. Insulators and topology

cause the power dissipated in an electric field Eµ is σµνEµEν which vanishes by
assumption. This implies the conductivity tensor in 2d has just two elements
σH = σxy = −σyx, the Hall conductivity. Now Laughlin’s argument further
constrains the magnitude of the Hall conductivity under these assumptions.
We can use the conductivity tensor to compute linear response in any geom-
etry, and so choose what is sometimes called the Corbino geometry, which
consists of a ring-shaped sample or annulus (one can also formulate the ar-
gument using a cylinder). Imagine slowly turning on a magnetic field inside
the inner hole of the ring, so that no field at all penetrates the sample itself,
but a net flux Φ(t) passes through the hole. The flux is increased from zero to
the flux quantum Φ = h/e very slowly, so that the response of the system is
adiabatic.

Let us first analyze the effect of the flux using linear transport. A time de-
pendent flux is accompanied according to Faraday’s law by an electric field,
in the azimuthal direction. The electric field is Eφ = −∂tΦ/(2πr), at a ra-
dius r from the center of the hole. Accordingly, this creates a radial current
I = 2πrσHEφ = −σH∂tΦ. Integrating the current over time, we obtain a total
transfer of charge from the outer to inner radius of

(120) Q = −σH(Φ(t f )−Φ(0)) = −h
e

σH .

Now we will argue that the transferred charge must be an integer multiple
of the elementary charge e. To see this we use quantum mechanics. The flux
is included in quantum mechanics by a vector potential Aφ(r) = Φ(t)/(2πr)
along the tangential direction at radius r, which is included via minimal cou-
pling as usual. After the flux is increased to h/e, the Hamiltonian reaches a
form which is equivalent up to a gauge transformation, ψ → eiφψ, where φ
is the azimuthal angle in the plane, to the one with zero flux. At the single-
particle level, we may write that

(121) H(Φ =
h
e
) = e−iφH(Φ = 0)eiφ,

where H is the single-particle Hamiltonian, and φ is the operator representing
the azimuthal angle. This is a unitary transformation, which implies that the
energy levels and single particle states (up to phases) are the same before and
after the flux insertion. However, in the middle of the insertion process, the
energies and states can have evolved. Since the process is assumed adiabatic,
we can follow these individual levels through the flux evolution, and they
must evolve in such a way that each eigenstate at zero flux evolves into another
eigenstate at one flux quantum, i.e. the levels may permute. Note that this
argument works for the full finite system, edges included.

A given single particle state s evolves through the flux insertion into an-
other level s′ after the insertion. This is called “spectral flow”. It is perfectly
possible for s′ = s, but sometimes this is not the case. If both levels s and s′

are occupied initially, then the evolution of s → s′ does not change the oc-
cupation of the level s′, and hence does not change the contribution of this
level to the charge density, and specifically to the charge on either boundary.
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5.5. Laughlin’s argument

If both levels are empty, the conclusion is the same. However, if s is occupied
and s′ is empty, or vice versa, then the level occupation of s′ is changed, and
the charge density may be modified. Now since we are making a very small
change of flux in a large system, we expect that the energy level shifts over
the flux insertion will be very small (indeed classically there is no work done
by the Hall transport). So the contributions from spectral flow only occur for
levels near the Fermi energy. Now the assumption that any states at the Fermi

r

ε

εF

Figure 5: Sketch of spectral flow of single particle levels in the flux insertion
process. Initially empty and full states are shown as open and filled circles,
respectively. The horizontal axis is the radial distance, with circles showing
the centroid of the corresponding levels. States which are extended around
the annulus undergo spectral flow near the Fermi energy at the boundaries
of the sample. Levels that are localized do not undergo spectral flow, and are
indicated as circles without arrows. Some extended states must persist in the
bulk, indicated by the dashed line. The spectral flow of levels across the Fermi
level determines the number of electrons transferred, n.

level in the bulk are localized comes into play. The Aharonov-Bohm effect is
only operative for states which are extended fully around the circumference
of the disk, so that an electron in this state is able to sense the phase. For any
localized state, the energy and wavefunction must be, up to a phase factor,
completely independent of the flux. This implies there is no spectral flow for
the levels at the Fermi energy in the bulk.

Knowing this, we therefore understand that any spectral flow at the Fermi
level comes entirely from levels at the two edges. The net result can only be
a change of population of electrons by some integer n at either edge, and by
charge conservation the change must be equal and opposite, so that n electrons
are transferred from one edge to another. Equating the charge Q transferred
in Eq. (120) to −ne we obtain finally the Hall quantization condition

(122) σH = n
e2

h
.

The Laughlin argument is powerful because it includes the effects of dis-
order. It helps to understand the global structure of the extended states, and
makes a connection between the IQHE and pumping. A good homework
problem is to actually check that pumping occurs in a simple model, by calcu-
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5. Insulators and topology

lating the spectral flow explicitly, for example for the Hamiltonian of an edge
state obtained in Sec. 5.2.Lecture 7 (1h 15mins)

February 6th, 2018

5.6 Many-body Chern Invariant

Laughlin’s argument gives a great understanding of how the IQHE is robust
against disorder. It is less clear that it is robust against interactions. One way
to see this is to start with the edge theory and try to add interactions. Another
argument is to generalize the Chern number (and relation to the Hall conduc-
tivity) to a many-body formula, without reference to Bloch states. We do this
by combining aspects of Laughlin’s argument with the Kubo formula.

Let us return to the spectral representation of the Hall conductivity, Eq. (112),
and take the zero temperature limit:

(123) σH =
1
V ∑

n>0

iεij〈0|Ji|n〉〈n|Jj|0〉
(En − E0)2 ,

where we defined the “total current operator” J = V j. Now we will try to
reproduce these matrix elements of the current operator by some physical
process. We recall that the current is the derivative of the Hamiltonian with re-
spect to vector potential. We can introduce vector potential without magnetic
field in the sample following the Laughlin construction by inserting flux. Con-
sider the usual toroidal sample, but with flux inserted through both “holes”
of the torus. This corresponds to taking

(124) Ax =
Φx

Lx
, Ay =

Φy

Ly
.

This changes the Hamiltonian according to

(125) H(Φx, Φy) = H(0, 0)− ∑
i=x,y

Φi
Li

Ji.

Now we have a Hamiltonian as a function of two paramters Φx, Φy, so we
can contemplate the Berry phases accumulated as we move through this two
dimensional parameter space. Note that inserting flux is very similar to vary-
ing momentum, as a flux (which is a fraction of the flux quantum) can be
gauged away at the cost of changing the boundary conditions, which in turn
leads to a shift in the allowed quantized discrete momenta. Now consider an
infinitesimal change in the flux Φi. Standard perturbation theory implies that
the change in the ground state wavefunction is

(126)
∂

∂Φi
|0〉 = − 1

Li
∑

n 6=0

〈n|Ji|0〉
En − E0

|n〉.

Taking the hermitian conjugate of this equation, and then the overlap of the
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5.6. Many-body Chern Invariant

two, we obtain

(127)

(
∂

∂Φj
〈0|
)

∂

∂Φi
|0〉 = 1

LiLj
∑
n

〈0|Jj|n〉〈n|Ji|0〉
(En − E0)2 .

Recognizing LxLy = V, we get from Eq. (123) that

(128) σH = h̄iεij

(
∂

∂Φj
〈0|
)

∂

∂Φi
|0〉,

where we returned the necessary factor of h̄ to make the units correct. We
can rewrite this following the Berry phase conventions by defining the gauge
connection

(129) Ai(θx, θy) = i〈0|∂θi |0〉,

where we define the 2π-periodic angles

(130) θi = 2π
Φ
ϕ0

=
e
h̄

Φ,

in SI units where ϕ0 = h/e. Then

(131) σH =
e2

h̄
B(θx, θy),

with

(132) B(θx, θy) =
∂

∂θx
Ay −

∂

∂θy
Ax

defining the many-body Berry curvature. Eq. (131) shows that the Hall con-
ductivity is a Berry curvature! Now we appeal to the thermodynamic limit:
in a large system, the Hall conductivity should not depend upon the value of
some tiny flux put through the holes of the torus, i.e. on the boundary condi-
tions. This is a little subtle, but is pretty clear for an insulator, and is maybe
even some kind of definition of an insulator. Anyway, we can expect that B is
independent of the angles θx, θy. We can replace it by its average, so that

(133) σH =
e2

h̄

∫ d2θ

(2π)2B(θx, θy) =
e2

h
C,

where C is the many body Chern number

(134) C =
1

2π

∫
d2θ B(θx, θy),

which is quantized to an integer. This shows quantization of the Hall conduc-
tivity, without any reference to non-interacting particles, or of translational
symmetry for that matter.
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5. Insulators and topology

5.7 Chern insulators: summary and bulk-boundary correspondence

In the prior parts of this section we have come to understand that there are
classes of insulators in two dimensions, called Chern insulators, that are non-
trivial and cannot be deformed into trivial ones. We described them in a num-
ber of ways:

• An example of a Chern insulator occurs in the Haldane model of a
honeycomb lattice, which realizes time-reversal breaking opposite mass
terms for the two Dirac fermions at the K and K′ points.

• The Chern insulator in this example has a chiral edge state.

• The Hall conductivity is quantized and equal to e2/h times an integer C
known as the Chern number. The Chern number may be expressed in
various ways, for non-interacting and interacting electrons.

• Laughlin’s argument shows that this quantization can be understood as
a consequence of spectral periodicity under insertion of a pure flux equal
to the flux quantum, and that C describes a spectral flow at the edges of
the sample. Equivalently, C gives the number of electrons pumped across
the sample when a flux quantum is inserted. A non-zero C requires that
there are extended states at the boundaries of the sample.

• The quantization of the Hall conductivity is robust to both disorder and
interactions, but occurs only in the limit of zero temperature.

One point we did not comment on explicitly is the bulk-boundary correspon-
dence, which is implied in some way by Laughlin’s argument. We saw that
the Chern insulator in graphene has a single chiral fermion edge state at the
boundary to a trivial insulator. It is not too hard to show that it also has a unit
Chern number C = ±1. In fact, this correspondence is general, and there is
an identity relating the Chern number to the number of left and right moving
modes, NR and NL, respectively, at a boundary:

(135) C = NR − NL.

(This equation requires some definition of what “right” and “left” mean but
let us not belabor it).

One way to argue for Eq. (135) is to use the fact that the Hall conductivity
is given by e2/h× C, and then to calculate the Hall voltage directly from the
low energy model of edge states, and compare the two results. The latter cal-
culation is quite simple. Consider a Hall bar which is infinite in the x direction
and boundary by y = 0, L in the vertical direction. Suppose a voltage Vy ap-
plied between the top and bottom edges. This induces a shift in the chemical
potential for the top modes from equilibrium of µL and those at the bottom
of µ0, with µL − µ0 = eVy. Now for each mode, the shifted chemical potential
induces a change in the density of electrons. This occurs because when the
chemical potential is shited by µ, the states between k = 0 and k = −µ/h̄|v|
change their occupation (v is the velocity of the mode). The change in the
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5.8. From Chern to Time-Reversal Symmetric Topological Insulators

electron density for mode a is

(136) na = −
µa

2πh̄|va|
.

Note that electrons are always added with negative µa, irrespective of the
direction of the velocity of the mode. This is why there is an absolute value
here. Now the current induced in this mode is given by Ia = −naeva, which
implies

(137) Ia =
e
h

va

|va|
µa

Then the total current on a single edge is

(138) IL/0 =
e
h

µL/0 ∑
a

va

|va|
.

Now we can get the full current in the x direction by taking Ix = IL − I0,

(139) Ix =
e
h
(µL − µ0)∑

a

va

|va|
=

e2

h
Vy ∑

a

va

|va|
.

The final sum is exactly the difference in the number of right and left moving
modes, so we see that Ix = GxyVy with

(140) Gxy =
e2

h
(NR − NL).

The quantity Gxy is the Hall conductance rather than the Hall conductivity, i.e.
it is the ratio of the current to the voltage, rather than the ration of the current
density to electric field. However, one can easily show that these are equal in
two dimensions. Thus σxy = Gxy in this case, and by comparing to the formula
Eq. (133) of the Hall conductivity in terms of Chern number, we prove the
bulk-boundary correspondence, Eq. (135).

In the second homework, you are asked to show the existence of spectral
flow for a chiral edge state under the insertion of the single flux quantum.
This can provide another basis for the bulk-boundary correspondence, using
the connection of the number of electrons pumped under the flux insertion to
the Hall conductivity/Chern number.

5.8 From Chern to Time-Reversal Symmetric Topological Insulators

We can use the bulk-boundary correspondence in different ways. One way is
to regard the boundary property, i.e. the difference NR − NL, as the definition
of the topological invariant. If we can argue independently of the bulk that
this quantity is itself indeed topologically invariant, i.e. it is unchanged by
smooth deformations of the Hamiltonian which do not cause a bulk phase
transition, then we may not need the bulk definition. This turns out to be
possible, and when we generalize beyond the Chern insulators, may be much
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5. Insulators and topology

easier than the bulk approach. This will lead us to the Z2 topological insulator
with time-reversal symmetry in two dimensions.

Chern insulator and chirality of the edge

To do so, we first think through how we can argue for the edge invariant in the
case of the Chern insulator, in a non-interacting picture. This is the “chirality”
NR − NL. Consider a semi-infinite sample in the upper half-plane y > 0, with
axes chosen so that translational symmetry is maintained along the x direc-
tion. Then we can still label states by quasimomentum kx. The spectrum at a
fixed kx will consist of bulk states, which are extended (scattering) wavefunc-
tions that are not bound to the wall, and bound states. The bulk states can
have variable energy even at fixed kx because the momentum transverse to
the wall can change, so these appear as continuous regions in the kx–ε plane
(ε is the single-particle energy). Since we consider an insulator, the bulk states
are separated at all kx by a non-zero gap. The bound states appear as discrete
states at fixed kx, which then form dispersing curves εn(kx). They must lie
within the gap, or they would mix with the continuum states and lose their
identity.

Since we are interested in topological features, we can imagine deforming
the Hamiltonian so that the conduction and valence bands become horizontal
at their edges – this does not close the gap so it is allowed. Then a given set
of edge modes consists of a set of curves, the bound state dispersions, lying
within the gap. These curves must obey certain rules:

1. A curve cannot end except by passing into the continuum.

2. The total number of discrete bound states at fixed kx changes only when
the end of a curve tied to the continuum passes through this kx. This just
means that discrete states do not appear or disappear at energies away
from the continuum.

3. Curves must be smooth except when they intersect (this is just the smooth-
ness of non-degenerate eigenvalues we have already discussed several
times).

4. Subject to these rules, the curves may be smoothly deformed, and new
curves may be added by smoothly drawing them out of a continuum
(the latter corresponds to formation of a bound state).

We may start by considering a “trivial” insulator, by which we mean one
which can be deformed to the case with no bound states at all. From this we
may pull edge state branches out of the conduction or valence bands. Now
we study the numbers NR and NL of edge states crossing a particular energy
insider the gap. As a new branch is created and pulled across this energy, NR
and NL change but always do so together, so that NR − NL is unchanged. One
can convince one’s self that this remains true for all deformations allowed by
the above rules.
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5.8. From Chern to Time-Reversal Symmetric Topological Insulators

In a similar way, we can consider starting with a situation with one right-
moving edge state crossing the gap, so that NR−NL = 1. Once again, deform-
ing this mode or adding new modes may give rise to additional pairs of right
and left moving states at some energies, but the chirality NR − NL remains
fixed. At least at the level of pictures, we can convince ourselves that NR − NL
is a topological invariant.

Time-reversal invariant TIs and Z2 invariant
Lecture 8 (1h 15mins)
February 8th, 2018For a time-reversal invariant system, the Chern number must be zero. One

can readily see that time-reversal symmetry (TRS) implies B(k) = −B(−k),
which forces C = 0. Similarly, under TRS, a right-moving edge mode becomes
a left-moving edge mode and so NR − NL = 0 (so the bulk-boundary corre-
spondence in Eq. (135) is still valid but trivial).

However, it turns out that there is a still a topological invariant that sur-
vives in the presence of TRS. This is easiest to understand in terms of edge
modes. Consider again the semi-infinite sample with translational symmetry
and momentum kx a good quantum number. The presence of the boundary
does not spoil TRS, which takes kx → −kx. Thus edge modes must come in
degenerate pairs at kx and −kx. In general there are two values of kx which are
time-reversal invariant: kx = 0 and kx = Q/2 where Q is the smallest recip-
rocal lattice vector of the boundary Brillouin zone. At these time-reversal in-
variant wavevectors, a two-fold Kramer’s degeneracy is required. Apart from
these conditions we require the same ones as for the prior case without TRS.

Since the spectrum at kx is identical to that at −kx, it is sufficient to plot
the spectrum for 0 ≤ kx ≤ Q/2. At both ends of this interval, any bound
state modes must occur in pairs. Out of the energies within the gap at kx =
0 and kx = Q/2, two edge modes must emanate. Additional modes may
emerge from the conductance and/or valence bands. Consider a fixed energy
within the band gap and count the number of modes crossing the horizontal
line at that energy. Now imagine varying that energy, which sweeps that line
up or down. The number of modes crossing may change as that line crosses
the local maxima or minima of edge modes, or by crossing the endpoints at
kx = 0, Q/2. However, when it does so, the number always changes by a
multiple of 2. Thus the parity of the number of modes crossing the line is
independent of the energy within the gap. Similarly, we may vary the edge
modes rather than the energy at which we count, and the parity conservation
holds. Thus we have identified a Z2 topological invariant, which is just the
parity of the number of modes crossing a constant energy line over half the
surface Brillouin zone.

This argument leaves many things unresolved. It is not immediately obvi-
ous that the invariant defined this way is independent of the choice of surface
(it is – though the generalization to three dimensions is not). What is the bulk
definition of the invariant, and a bulk-boundary correspondence? We are not
going to address these questions now, though we will definitely come back to
some related things.
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6 Path integral methods

We are going to change gears now and develop some more field theory ideas.
Specifically, we will introduce the path integral for fermions. This is a bit of
a technical exercise. You need to see it, but perhaps do not need to really
remember the details all that often. The results we arrive at in the end will
be useful enough to remember, however, as is the general idea of how to get
there. These things are covered in many textbooks. The classic reference is
Negele and Orland’s book, but these days you can find many notes online.
Some of them might be helpful to you.

6.1 Technical details

Fermion coherent states and Grassmann numbers

To develop field theory in the path integral formulation, we would like to
parallel the development for bosonic theories. That began with coherent states,
which are eigenstates of the annihilation operator. Now we need to do that
for fermions. Start with the case of a single mode, described by operators c, c†

with as usual {c, c†} = 1. We seek a state such that

(141) c|c〉 = c|c〉,

where c is not an operator but a number, and |c〉 is the coherent state. We
notice a weird property required by fermions, since c2 = 0. This means cc|c〉 =
0. If we assume c is an ordinary number that commutes c, then we will find
that c2 = 0. This is a contradiction for ordinary numbers, which implies c is
not an ordinary number.

What turns out to work is for c to be what is called a Grassmann number.
This is just some abstract object which commutes with ordinary numbers but
anticommutes with other Grassmann numbers and with fermion operators.
This implies in particular that c2 = 0 and makes Eq. (141) consistent with
fermions. Recall that coherent states of bosons were Gaussian wavefunctions,
and could be written as exponentials of creation operators on the vacuum.
Solving Eq. (141) is easier than this. When working with Grassmann numbers,
Taylor expansion is a powerful thing. Any expansion always terminates at a
finite order, because c2 = 0. For the single fermion mode, one has just

(142) |c〉 = |0〉 − c|1〉,

where |0〉 and |1〉 are the occupation number eigenstates. Another way to
write this is

(143) |c〉 = e−cc† |0〉,

which can be seen to be equal to Eq. (142) by Taylor expanding it. We can also
define the bra

(144) 〈c̄| = 〈0|e−cc̄,
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which has the property that

(145) 〈c̄|c† = 〈c̄|c̄.

It is important to note that c̄ is not the complex conjugate of c and that 〈c̄| is
not the hermitian conjugate of |c〉. Actually c̄ has exactly the same status as c:
it is just a second Grassmann number. We can find the overlap of the coherent
state bra and ket:

(146) 〈c̄|c〉 = ec̄c.

Eqs. (141,143,144-146) readily generalize to many fermionic modes, just by
adding an appropriate index.

Grassmann calculus

What we’ve describe so far is enough to do algebra. For example there is a
Grassmann algebra which is built by linear combinations of the Grassmann
numbers and their products, with complex coefficients. When we multiply
states with these numbers we have enlarged the Hilbert space. Anyway, the
next step is to learn to integrate and differentiate.

We just define these as linear operations, which have some weird proper-
ties

∂

∂c
(a0 + a1c) = a1,(147) ∫

(a0 + a1c)dc =
∫

dc(a0 − a1c) = a1.(148)

The differentiation rule seems to make sense, while the integration one is
just strange. The logic is that we are trying to emulate integration of well-
behaved function on an infinite or periodic interval, for which the integral of
a derivative is zero. The integration rule ensures this. If you compare, you will
see that “integration is the same as differentiation”.

Now we can write the Gaussian integral

(149)
∫

e−ac̄cdc̄dc =
∫

dc̄dc e−ac̄c = a.

Work it out! Be careful about the order:
∫

dc̄dc = −
∫

dcdc̄. Note that this
looks superficially similar to the result of an ordinary Gaussian integral over
a complex variable except that it is proportional to a rather than 1/a. You can
either work out directly or get the following by differentiating the previous
equation by a:

(150)
∫

dc̄dc e−ac̄cc̄c = −1.
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From this we define in the usual way expectation values

(151) 〈cc̄〉 = −〈c̄c〉 =
−
∫

dc̄dc e−ac̄cc̄c∫
dc̄dc e−ac̄c =

1
a

.

The result of the expectation value looks the same as that for ordinary Gaus-
sian integrals, so long as one takes the proper order: 〈cc̄〉 = +1/a. Now we
want to generalize the Gaussian integration formulae to many variables. In the
case of real/complex variables we do this by making a change of variables in
the path integral to diagonalize the exponential. Change of variables is a little
different in Grassmann integrals. Specifically, if we change from variables ca
to da, and the transformation is “odd”, i.e. ca is a function expressed as a linear
combination of terms each of which contains an odd number of Grassmann
numbers db, then

(152)
∫

f (ca)dc1 · · · dcn =
∫

f (ca(db)) [det Jab]
−1 dd1 · · · ddn,

where the Jacobean is

(153) Jab =
∂ca

∂db
.

You can notice this formula is not intuitive for integration: in an ordinary in-
tegral one would the inverse Jacobean factor. One can also see that something
like this is necessary from the simple Gaussian integral in Eq. (149), if you
want the answer to be consistent with rescaling fields by 1/

√
a. Another way

to understand it is to remember that integration is the same as differentiation,
so you should use the Jacobean from differentiation.

Using this formula, you can prove the general Gaussian integral identity:

(154)
∫

dc̄dc e−c̄·A·c = det A,

where we used a vector notation where c and c̄ are n-component vectors of
Grassmann numbers, and A is an n× n matrix. Implicitly dc = dc1 · · · dcn etc.
Another more general identity is the extension of this one, but with sources.
One has

(155)
∫

dc̄dc e−c̄·A·c+c̄·d+d̄·c = (det A) ed̄·A
−1·d.

From this, we can obtain by (Grassmann) differentiation the general form of
all polynomial expectation values. The simplest is

(156) 〈cac̄b〉 =
[

A−1
]

ab
.

One can obtain all the higher polynomial expectation values using Wick’s
theorem, keeping in mind signs arising from anti-commutations.
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6.2 Trotterization

Lecture 9 (1h 15mins)
February 13th, 2018

Now we have most of what we need, math-wise. We want to apply it to treat
the partition function, Z = Tr e−βH , as usual by breaking this into many small
(imaginary) time intervals and then inserting complete sets of states. We will
need both a resolution of the identity and a formula for the trace. It’s not hard
to work out the resolution of the identity. Let’s do it by guessing and proving
it is correct. Our guess is

(157) I =
∫

dc̄dc e−c̄c|c〉〈c̄|.

Let’s check:∫
dc̄dc e−c̄c|c〉〈c̄| =

∫
dc̄dc e−c̄c (|0〉 − c|1〉) (〈0| − 〈1|c̄)

=
∫

dc̄dc e−c̄c (|0〉 − c|1〉) (〈0|+ c̄〈1|)

=
∫

dc̄dc e−c̄c (|0〉〈0| − c|1〉〈0|+ c̄|0〉〈1|+ cc̄|1〉〈1|)

=
∫

dc̄dc ((1− c̄c)|0〉〈0| − c|1〉〈0|+ c̄|0〉〈1|+ cc̄|1〉〈1|)

= |0〉〈0|+ |1〉〈1|.(158)

So it works! We can prove similarly the somewhat funny looking formula for
the trace:

(159) TrO =
∫

dc̄dc e−c̄c〈−c̄|O|c〉.

This is valid for any bosonic operator O. Note the minus sign inside the bra,
the meaning of which might not be so obvious:

(160) 〈−c̄| = 〈0|ecc̄.

OK now we are in business! Ready to Trotterize. There are a standard bunch
of steps. They look very similar to those we did for bosons in Sec.6 of the 217a
notes. I will not show the steps in these notes, but maybe do some in class.
The result is pretty much what you might guess:

(161) Z = Tr e−βH =
∫
[dc̄dc]e−S,

where the integral is over functions of τ which ranges from 0 to β that obey
anti-periodic boundary conditions: c̄(β) = −c̄(0) and c(β) = −c(0). The action
is

(162) S =

β∫
0

dτ [c̄∂τc + H(c̄, c)] ,
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where in the action the Hamiltonian as a function of the operators c, c† has
been replaced by the same function of Grassmann variables. Similarly, we can
calculate observables in the usual way:

(163)
1
Z

Tr
(

e−βH T̂τO1(τ1) · · · On(τn)
)
=

1
Z

∫
[dc̄dc]O1(τ1) · · · On(τn)e−S,

where O(τ) = eHτOe−Hτ are imaginary-time evolved Heisenberg operators,
and in going from the left-hand side to the right-hand side we replace op-
erators by fields. A few comments are in order. There are lots of potential
subtleties in these naı̈ve continuum expressions, and in principle you should
go back to discretization to resolve them. The Hamiltonian should be normal
ordered before replacing operators by Grassmanns. And of course, again, the
order matters for signs, so take care! After all these warnings, Eqs. (161-163)
are pretty nice - they look just like their bosonic counterparts. This makes it
all nice and easy to remember!

So far in this section I have been relatively careful to use (sightly!) different
symbols for the Grassmann numbers and the fermion operators. In the future,
I will be less careful, and when working with path integrals often use the same
symbol as I use for the operator in the Hamiltonian formalism. It is usually
clear from the context.

6.3 Simple examples

Let’s show some simple examples of how the path integral for fermions works.
Consider free fermions. Then the action is

(164) S =
∫

dτ
[
c̄i∂τci + hij c̄icj

]
.

The natural object to consider is the electron Green’s function

(165) Gij(τ − τ′) = 〈ci(τ)c̄j(τ
′)〉 = 1

Z
Tr
(

e−βH T̂τ ci(τ)c
†
j (τ
′)
)

.

This has various sorts of information in it. If we take the limit τ′ → τ + 0+ and
i = j, the time-ordering reconstructs the number operator for site i, we will
get minus (the time-ordering operator requires the appropriate sign for the
permutation used in the ordering process) the thermally averaged number
of electrons on site i. Alternatively, we may analytically continue the Green’s
function to real time and obtain a spectral density that informs us about the
single-electron excitations of the system.

Let us calculate the thing for free fermions, using the action in Eq. (164).
We can simplify it by going to Fourier space. Introduce the Fourier series

(166) ci(τ) =
1√

β
∑
ωn

e−iωnτci(iωn), c̄i(τ) =
1√

β
∑
ωn

eiωnτ c̄i(iωn).

Here importantly, to satisfy the anti-periodic boundary conditions on the path
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integral, we need to take the “fermionic” Matsubara frequencies

(167) ωfermion
n =

2π

β
(n + 1

2 ).

In Eq. (166) one should remember that in the path integral, ci and c̄i are not
conjugates in any way, so the choice of the opposite sign of the phase in the
definition of the Fourier transform is purely convention, but it is a convenient
one. You can regard Eq. (166) as an example of the change of variables formula
for the Grassmann integral (this is a linear change of variables, hence “odd”).
Putting these series into the action in Eq. (164), we get

(168) S = ∑
iωn

[
−iωnδij + hij

]
c̄i(iωn)cj(iωn).

The action has been block-diagonalized into independent blocks at each Mat-
subara frequency. Let’s further consider the case of a single band and apply
the Fourier transformation in space as well:

(169) ci(iωn) =
1√
V

∑
k

e−ik·xi ck(iωn), c̄i(iωn) =
1√
V

∑
k

eik·xi c̄k(iωn)

Now the action is fully diagonalized:

(170) S = ∑
iωn

∑
k
[−iωn + εk] c̄k(iωn)ck(iωn).

Using the Gaussian integral formula, we have

〈n̂k〉 = −〈ck(τ)c̄k(τ + 0+)〉 = − 1
β ∑

ωn

eiωn0+〈ck(ωn)c̄k(ωn)〉

= − 1
β ∑

ωn

eiωn0+

−iωn + εk
(171)

To calculate this sum, we need to be careful of convergence: the frequency
sum should be logarithmically divergent at large ωn, and it is only the expo-
nential that saves it. To do the sum one uses some standard trick. Consider
the following integral:

(172) I(C) =
∮
C

dz
2πi

1
eβz + 1

e0+z

−z + ε
,

where C is a circle of radius R around the origin in the complex plane (choos-
ing R so that it never passes right through a pole). Along this circle, the first
factor in the integrand is small when the real part of z is large (the exponential
in the denominator blows up), and the second factor is small when the real
part of z is negative. This is enough to ensure the convergence as R is taken
large. Note that this works only because of the 0+! Now if we take R → ∞,
the integral just becomes zero. We can also evaluate the integral differently, by
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summing all the residues of the poles inside this infinite circle. There is one
set of poles of the first function, at z = iωn, and another pole at z = ε. The
result is

(173) I(C → ∞) = 0 = − 1
β ∑

ωn

eiωn0+

−iωn + ε
− 1

eβε + 1
.

So we conclude that

(174)
1
β ∑

ωn

eiωn0+

−iωn + ε
= − 1

eβε + 1
= −nF(ε).

We obtain the expected result

(175) 〈n̂k〉 = nF(εk).

Note that the result was entirely determined by the 0+ sign, and we had to
cleverly choose the function 1/(eβz + 1) to obtain convergence of the integral
in Eq. (172) and to have poles with constant residue (1/β) at the fermionic
Matsubara frequencies. If we put a 0− instead in the sum, we would have
needed to choose a different function.

Now let us look at the electron spectral function. There are some nice gen-
eral rules for obtaining such spectral functions from the correlation functions
calculated by the path integral. The standard way is to calculate the spectral
function which is defined from the imaginary part of the retarded Green’s
function,

(176) ρ(ω) = −2Im GR(ω),

where the retarded Green’s function was defined for bosonic operators in the
217a notes in real time as the expectation value of a commutator, along with
step function to impose causality. For fermionic operators, the definition is the
same except that the commutator should be replaced by an anti-commutator.
For the electron operators, we define

(177) GR(t) = −i
〈
{ck(t), c†

k(0)}
〉

θ(t).

If you take the Fourier transform of GR(t), you will find that it can be written
as

(178) GR(ω) =
∫ dω′

2π

ρ(ω′)

ω−ω′ + iδ
,

where δ = 0+, and ρ(ω) is the spectral function, which is

(179) ρ(ω) =
1 + e−βω

Z ∑
mn
|〈m|ck|n〉|2 e−βEm × 2πδ(ω− En + Em).

Note that the analogous formula for bosonic operators is nearly identical, ex-
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cept that there would be a relative minus sign in the two terms in the numer-
ator of the prefactor of the sum. This makes the fermionic spectral function
slightly “nicer” insofar as it is always positive. From Eq. (178) we can see that
it is easy to extract the spectral function from the retarded Green’s function:

(180) ρ(ω) = −2Im GR(ω).

Now how to get the retarded function? This is where the magic happens.
By explicitly computing the spectral decomposition of the Matsubara Green’s
function, one can show that

(181) G(iωn) = 〈ck(ωn)c̄k(ωn)〉 = −
∫ dω′

2π

ρ(ω′)

iωn −ω′
,

so we can see that, comparing with Eq. (178),

(182) GR(ω) = −G(iωn → ω + iδ).

Hence we get, finally

(183) ρ(ω) = 2Im [G(iωn → ω + iδ)] .

These formulas, Eqs. (176)- (183), are general for any fermionic (odd in the
number of fermions) operator. But that of course includes the non-interacting
case. For that case we have

(184) G(iωn) =
1

−iωn + εk
.

Applying Eq. (183) and using the standard identity 1/(x− iδ) = P/x+ iπδ(x),
we get that

(185) ρ(ω) = 2πδ(ω− εk).

The presence of a delta function is the sign of a particle excitation with energy
εk. The prefactor 2π is the maximum possible, and indicates that this is a
non-interacting system.

6.4 Quasiparticles and the self energy

The theory of solids is built on the foundation of free fermions. For much of
the prior content of this class, we in fact relied on the free fermion model.
Yet, in fact, the electrons in a solid are pretty far from free, and interact quite
strongly with one another. So why does the non-interacting approach work?
What exactly does it get right?

The basic explanation comes from Landau. He introduces the idea of an
electronic quasiparticle. The Landau quasiparticle picture is one of “smooth”
or “adiabatic” evolution of the low energy states of a system with increas-
ing interactions. Consider a non-interacting fermion system. The many-body
ground state (best to think of the chemical potential subsumed into the Hamil-
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tonian) consists of a set of occupied levels below the Fermi energy, and empty
levels above it. The low energy excitations consist of modifying the ground
state by occupying a small number of levels above the Fermi energy, and/or
emptying a small number of levels below the Fermi energy. If the “small num-
ber” is unity, we have what are called elementary excitations, electrons and
holes, for a single added or removed electron, respectively.

The electronic system has typically a few conserved quantities which can
be used to label these states. The charge, or electron number, is one, which
of course distinguishes the ground state (neutral if we include the ions), the
electrons (charge −e) and the holes (charge +e). If we have a periodic lattice,
then translational symmetry allows us to assign (quasi-)momentum k. The
ground state typically has k = 0, while the electrons and holes have a con-
tinuous momentum label. There might also be a spin quantum number if we
do not have spin-orbit coupling, etc, and there can be other discrete quantum
numbers like a band index.

Once all these quantum numbers are fixed, the energy of the electron or
hole state is unique and non-degenerate (but dependent on the specific free
Hamiltonian). If we proceed to higher energy states involving more than one
excited electron and/or hole, this cease to be true. But we focus in Landau’s
picture on the elementary excitations, and view the higher energy states as
built from these.Lecture 10 (1h 15mins)

February 15th, 2018 Now consider introducing interactions. Landau postulates that, as interac-
tions are smoothly increased from zero, we can follow the original low energy
states smoothly as well: their energies and wavefunctions may evolve, but they
remain identifiable and qualitatively similar to their non-interacting counter-
parts. One may imagine carrying out this smooth continuation via simple per-
turbation theory in quantum mechanics. In perturbation theory, an isolated
level (one without others near it that can mix strongly with it) indeed evolves
smoothly. Using ordinary non-degenerate perturbation theory, one obtains a
series

(186) |n〉 = |n〉0 + ∑
m 6=n

0〈m|H′|n〉0
E(0)

n − E(0)
m

|m〉0 + · · ·

The state |n〉0 is an eigenstate of the non-interacting system, and |n〉 is an ex-
act eigenstate of the interacting Hamiltonian containing interactions H′. Non-
smooth evolution may happen when there is a degeneracy in the spectrum, so
the idea works best if this is minimized. The best case scenario is in an insula-
tor, where there is a minimum energy (a “gap”) required to create an electron
or hole excitation, and the lowest energy state so created is indeed unique.
In this case, perturbation theory for the elementary excitations, at least those
near the bottom of their bands, is very well-behaved.1

1We are intentionally ignoring a subtlety of many-body systems which is that the sums appear-
ing in naı̈ve perturbation theory contain a huge number of terms – the total number of eigenstates
is the exponential of the total entropy so exponentially large in the volume – and so there could
be divergences that are purely due to the thermodynamic limit. The physical expectation is that
such divergences cancel if one considers local quantities and energy differences between states,
rather than absolute energies, at least for simple systems like insulators. Ultimately this belief
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6.4. Quasiparticles and the self energy

Even when perturbation theory is well-behaved, the interacting eigenstates
are still linear combinations of the free ones. These combinations are restricted
by symmetry. For example, a state obtained by adiabatic continuation of the
free ground state can be expressed as a superposition of the free ground state
and terms with an equal number of electrons and holes, with zero net mo-
mentum. Pictorially,

(187) |0〉 =

∣∣∣∣∣∣
〉

=

∣∣∣∣∣∣
〉

0

+

∣∣∣∣∣∣
〉

0

+

∣∣∣∣∣∣
〉

0

+ · · ·

Similarly, for the exact one quasiparticle state will be a superposition of the
bare one electron state, plus ones with additional electron hole pairs of zero
net momentum:

(188) |k〉 =

∣∣∣∣∣∣
〉

=

∣∣∣∣∣∣
〉

0

+

∣∣∣∣∣∣
〉

0

+ · · ·

One can see in both these cases that for the free system, the terms beyond
the first would require additional energy to create, e.g. to make the vertical
transition shown by an arrow in the last term in Eq. (188). This means that
the coefficients of these terms have a non-zero dominator of this additional
energy.

For higher energy states, for example an electron in a highly excited band
of the free system, nature is not so kind. Such a single particle state typically
has the same energy and momentum as many multiple particle states (with
more than one excited electron and hole). This degeneracy makes perturba-
tion theory problematic, and the original particle state may “merge” into the
continuum and become imperfectly defined with interactions. Another way of
thinking about this merging is that the (high energy) electron can decay into
a lower energy electron state by emitting one or more electron-hole pairs. For
an insulator, such decay is forbidden just by energy conservation for the low-
est energy electrons and holes. If we move from insulators to gapless systems
like semi-metals or metals, then even for low energy electrons near the Fermi
energy, decay is possible, and the situation is subtle.

We can try to see Landau’s adiabatic approximation in action by studying
the electron spectral function, ρ(ω). From Eq. (179), we can take the zero
temperature limit to obtain

(189) ρ(ω, T = 0) =

{
∑n
∣∣〈n|c†

k|0〉
∣∣2 2πδ(ω− En + E0) ω > 0

∑m
∣∣〈m|ck|0〉

∣∣2 2πδ(ω− E0 + Em) ω < 0
.

You can see from here that for ω > 0, the spectral function has contributions

relies upon locality of the Hamiltonian, i.e. that interactions are not too long range. A more pre-
cise approach is possible by replacing naı̈ve perturbation theory by the concept of equivalence by
local unitaries or finite-depth unitary circuits. Anyway, I think that we don’t really need this here
and we should be satisfied with a simpler physical understanding.
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from “electron” excitations, i.e. states |n〉 with one more electron than the
ground state |0〉 and a quasi-momentum larger by k than the ground state.
For ω < 0, it instead detects “hole” excitations with one less electron than
the ground state. The total charge and momentum of the states |n〉 and |m〉
is fixed by symmetry, but otherwise any state with these quantum numbers
may contribute to the sums.

Following Landau’s arguments, we can think of each of the low energy
contributions |n〉 to the electron sum as an exact eigenstate obtained by adi-
abatic continuation of some eigenstate of the free electron system, and |0〉 as
the exact ground state which is an adiabatic continuation fo the free one. In
the case of an insulator, as we discussed, the low energy quasiparticle states
have nothing to mix with, and thus are protected from decay. The first term
in the spectral function is therefore

(190) ρ(ω > 0) =
∣∣∣〈k|c†

k|0〉
∣∣∣2 2πδ(ω− εk) + · · ·

Thus we expect the δ-function we found for the free case, Eq. (185), remains,
but with in general a reduced coefficient. The energy will also be shifted to
some renormalized dispersion. Higher energy |n〉may not be adiabatically con-
tinuous from the corresponding free states, but descend from them nonethe-
less. These higher terms, which give the · · · in Eq. (190), generally give con-
tinuum contributions to the spectral function, for example from states of two
fully interacting electrons plus a hole, etc.

Let us check this understanding by calculating the spectral function in
perturbation theory. The strategy is to use the path integral approach, which
naturally calculates the imaginary time Green’s function, and then obtain the
retarded correlation function and hence ρ(ω) by analytic continuation. The
methodology is very similar to what you should already have done for bosons
in physics 217a. Suppose the quadratic Hamiltonian is diagonalized,

(191) H0 = ∑
n,k

εnkc†
nkcnk.

A general four-fermion interaction U respecting translational symmetry is
then

(192)

H′ =
1

2V ∑
n1···n4

∑
k1···k4

Un1n2n3n4(k1k2k3k4)c†
n1k1

c†
n2k2

cn3k3
cn4k4

δk1+k2,k3+k4 .

In the path integral action, this becomes

(193) S0 = ∑
n,k,ωn

c̄nk(ωn) (−iωn + εnk) cnk(ωn),
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and

(194) S′ =
1

2βV ∑
1···4

U(1234)c̄1 c̄2c3c4 δ1+2,3+4,

where we introduced some (hopefully self-explanatory) notation to keep the
latter equation brief.

We are going to calculate the Green’s function,

(195) G(k, iωn) = 〈cnk(ωn)c̄nk(ωn)〉 ,

(c.f. Eq. (181) for a single band), perturbatively in S′, by just expanding the
integrand of the path integral order by order in S′, which generates standard
diagrammatic perturbation theory. It is convenient to “resum” the diagrams
that appear in the form of the self-energy Σn(k, iωn), which is defined by

(196) Gn(k, iωn) =
1

−iωn + εnk + Σn(k, iωn)
.

Note that any function G can be represented in this form, and we can always
invert this to obtain Σ(G). In general the Green’s function and the self-energy
need not be diagonal in the band index, so that they become matrices, but we
will neglect this complication.

In diagrammatic terms, the interaction is represented by a vertex with two
incoming and outgoing lines, the direction of the arrows on the lines indicat-
ing whether it represents a c̄ field (outgoing) or c field (incoming):

(197) S′ =

The self-energy has the nice property that it is obtained in perturbation theory
by summing only the one-particle irreducible diagrams (those which cannot be
broken into disconnected parts by cutting a single line), and truncating the
external legs.

(198) Σ = + + · · ·

The first term is a “tadpole” and gives a trivial constant. The second term
is the first non-trivial term in the self-energy. By appropriately labeling the
lines we get (taking the zero temperature limit for simplicity, which turns
Matsubara frequency sums into integrals)

Σn(k, iωn) =
2
V ∑

mpp′
∑
q,q′

∫ dΩndΩ′n
(2π)2 Γnmpp′(k, q, q′)

× 1
−iΩn + εpq

1
−iΩ′n + εp′q′

1
−i(ωn + Ωn + Ω′n) + εm,q+q′−k

,

(199)
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where

(200) Γnmpp′(k, q, q′) = Unmpp′(k, q + q′ − k, q, q′)Up′pmn(q
′, q, q + q′ − k, k)

is some complicated function of band indices and momentum which is smooth
and non-divergent for all parameters if the interactions are short-ranged. The
two frequency integrals can be done successively by contours. The result is

(201)

Σn(k, iωn) =
2
V ∑

mpp′
∑
q,q′

Γnmpp′(k, q, q′)
θ(εpq)θ(εp′q′)θ(−εm,q+q′−k) + (ε↔ −ε)

iωn + εm,q+q′−k − εpq − εp′q′
.

This result is quite nice, because it can be easily analytically continued, tak-
ing iω → ω + iδ. Since everything but the iδ is real, we readily see that the
imaginary part of the self-energy is simple (the real part is not so simple):

ImΣ(k, ω + iδ) = −2π ∑
mpp′

∫ ddqddq′

(2π)2d Γnmpp′(k, q, q′)
[
θ(εpq)θ(εp′q′)θ(−εm,q+q′−k) + (ε↔ −ε)

]

× δ(ω + εm,q+q′−k − εpq − εp′q′).
(202)

One physical interpretation obtains if we take ω = εk – this is called the
“on-shell” condition. We can think of this as representing an electron with
energy ω > 0 and momentum k, which may decay into two electrons with
momentum q, q′ and a hole with (missing) momentum q + q′ − k. The theta
functions enforce that the states are available for the two electrons produced,
i.e. they are above the Fermi energy and so initially empty, and likewise the
hole state is initially occupied – had we chosen ω < 0 the electrons and holes
are swapped. The self-energy gives the rate of the decay process.

To see that this physical interpretation is sensible, consider the retarded
Green’s function including the self-energy

(203) GR(k, ω) =
1

ω− εk − Σ(k, ω)− iδ
.

Expressing Σ = Σ′ + iΣ′′ in terms of real and imaginary parts, and taking the
imaginary part of GR, we obtain

(204) ρ(k, ω) =
−2Σ′′(k, ω)

(ω− εk − Σ′(k, ω))2 + (Σ′′(k, ω))2 .

From this, when the imaginary part of the self-energy is small, there is a sharp
peak in the spectral function at the renormalized energy ω = εk which is the
solution of

(205) εk = εk + Σ′(k, εk).

We may expand around this solution in the vicinity of the peak, assuming
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ω− εk � ω, εk, to obtain to leading order

ρ(k, ω) =
−2Zkγk

(ω− εk)2 + γ2
k

,(206)

where

(207) γk =
Σ′′(k, εk)

1− ∂ωΣ′(k, εk)
,

and

(208) Zk =
1

1− ∂ωΣ′(k, εk)
.

This describes a Lorentzian peak whose width is γk and weight is reduced
from the 2π of Eq. (185) for free fermions by the factor Zk. A Lorentzian is the
Fourier transform of an exponential, indicating that the quasiparticle decays
with a decay rate of order this width. This confirms that interpretation.

It is interesting to check how this works out for a band insulator, using
the perturbative result for the self-energy in Eq. (202). Consider the imaginary
part of the self-energy for an electron at the bottom of the lowest conduc-
tion band, Σ′′c (k, ω = εc,k), with k the band minimum, where since we are
working perturbatively, we may to leading order ignore the shift of the band
energy with interactions. Then the delta-function in Eq. (202) gives non-zero
contributions only when

(209) ω = εc,k = εpq + εp′q − εm,q+q′−k.

Furthermore, for ω > 0 only the term for which the theta functions select
εpq, εp′q′ > 0 and εm,q+q′−k < 0 can contribute. However, if εck is the minimum
energy of the conduction band, the right hand side of Eq. (209) is strictly larger
than the left, so the delta-function condition can never be satisfied, and we find
that Σ′′ is strictly zero.

The other extreme, where decay is always possible, is in a metal. Here there
are generally contributions to Eq. (202) even when n is taken to be the band at
the Fermi energy, k is a momentum just outside the Fermi surface, and ω = εk
is on-shell. These occur because there are states in which m, p, p′ are also from
this band and the corresponding momenta are all near the Fermi surface. An
asymptotic analysis of the integral in Eq. (202) shows that the result, while
non-zero, is parametrically small in the energy above the Fermi level, at least
for dimensions d ≥ 2:

(210) ImΣ(k, ω ≈ εk) ∼
{

const×ω2 d > 2
const×ω2 ln(1/ω) d = 2

.

In the perturbative expression, the constant is obviously quadratic in the
strength of interactions. Landau supposes that, even beyond perturbation the-
ory, the same frequency dependence holds, while the prefactor may not be
small. This means that for small enough ω, the decay rate of the quasiparticle

55



6. Path integral methods

becomes small, and indeed much smaller than its energy. Ultimately this is a
key ingredient in Landau’s justification of the quasiparticle approach.

One should note that Eq. (204) is just an exact rewriting, and so it is also
valid away from the peak, i.e. when ω is not close to the quasiparticle en-
ergy. Then the expansion leading to the Lorentzian form is invalid. In that
case, there is no sharp peak, but rather a smooth imaginary part whose fre-
quency dependence comes largely from that of Σ′′ itself (modulo the denom-
inator). This does not have to do with decay. Rather the interpretation is that
the self-energy is picking up contributions from higher excited (exact) multi-
quasiparticle states to the spectral decomposition. That is, in the interacting
system the state created by acting with a creation operator on the vacuum, i.e.
c†

k|0〉, is a sum of terms including some smooth amplitude for multiparticle
states. Consequently, these continuum excitations, which were already present
in the free system but gave zero contributions to the Green’s function in that
case, are “lit up” by interactions and produce a smooth continuum weight.
This “off-shell” part of the self-energy is generally non-zero above some fre-
quency, even for the band insulator case.

Figure 6: Spectral function. It would be nice to have a sketch.

Incidentally, both the quasiparticle peak and the continuum weight are
typical features observed in Angle Resolved Photo-Emission Spectroscopy
(ARPES), a measurement in which shoots high energy photons at a solid with
enough energy to kick electrons out. The ejected electrons are collected and
by resolving their momentum and energy, one can determine the spectral
function ρ(k, ω). This has become one of the most powerful and widespread
probes of electronic materials.

6.5 Electromagnetic response from the effective action

We’ve already talked about conductivity, and especially the Hall conductivity,
in many terms, and in particular as a linear response quantity. A closely re-
lated point of view which is formulated in the language of field theory is the
idea of an effective electromagnetic action. The simplest way to think about
this is to imagine coupling the electrons in a system to an electromagnetic
gauge field Aµ (including both the time component - the scalar potential -
and the spatial components), by minimal coupling. This gauge field may be
called a “probe” field. We call it a probe because we do not a priori wish to
give it any dynamics. It might be considered an external classical field that we
can vary at our convenience. Then we can ask how the partition function of
the system depends upon the space-time configuration of the gauge field. In
equations,

(211) Z[Aµ(x, τ)] =
∫
[dc̄dc]e−S[c̄,c,Aµ ].

In principle we can define this in the original quantum theory in terms of op-
erators as well, but it is awkward. Now it is convenient to define the logarithm
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of this partition function to be the effective action of the gauge field:

(212) Z[Aµ(x, τ)] = e−Seff[Aµ(x,τ)].

The reason for the name is that if we were to regard the gauge field as an-
other quantum field instead of just the classical probe one, we would have
integrated over it as well as the fermions. We could do this functional integral
in stages, and after first integrating out the fermions, the result would be a
new path integral with exactly Seff in the role of the action (plus any other
terms explicitly involving the electromagnetic field we saw fit to add).

Now there is a certain logic that leads us to expect a simple form of the
effective action in some situations. In particular, if the fermionic system we
are describing has a gap to all bulk excitations, then we expect the fermions
sustain no power-law correlations. Consequently, the path integral over them
should be as “finite” as a path integral ever is, and the effective action should
therefore be an analytic and local functional of the probe gauge field. This is
usually what we assume when we write down Lagrangians in field theory.

This situation applies to band insulators of all types, including the Chern
insulators we studied previously. It is interesting to see how the physics of the
quantum Hall effect manifests itself in the electromagnetic effective action.
We will do this via an explicit calculation. Consider the Haldane honeycomb
model related to graphene, which we studied in Sec. 5.1. We wll ignore spin,
i.e. consider spinless fermions. The low energy Hamiltonian we derived there,
Eq. (87), consists of two Dirac fermions, labeled there by µz = s = ±1, physi-
cally corresponding to the two valleys. Let us rewrite this as

(213) H = ∑
s

∑
k

ψ†
s,k
(
sτxvkx + τyvky + m̃sτz)ψs,k,

where m̃s = m1 + sm2 are two Dirac masses. It is convenient to make the
canonical transformation ψ− → τyψ−, ψ†

− → ψ†
−τy. This removes the s factor

in front of the τx and transfers it to the masses:

(214) H →∑
s

∑
k

ψ†
s,k
(
τxvkx + τyvky + msτz)ψs,k,

with ms = sm̃s. Note that after this transformation and redefinition of masses,
in the Chern insulator the two masses have the same sign, i.e. m+m− > 0,
while for the CDW insulator they have opposite sign. The corresponding ac-
tion is just the sum of two terms, S = S+ + S−, with

(215) Ss =
∫

dτ ∑
k

ψ̄s,k

(
∂τ + vτiki + msτz

)
ψs,k.

Transforming back to real space, we can add in the probe gauge field accord-
ing to the minimal coupling prescription:

(216) Ss =
∫

dτd2x ψ̄s

(
∂τ − ieA0 − ivτi(∂i − ieAi) + msτz

)
ψs.
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Since the actions for the two Dirac points are decoupled, we can treat them
separately. The resulting effective action will be the sum of the effective actions
from each Dirac point. It is convenient to first make small changes of variables,
to simplify the equations. Let

(217) ψ→ e−i π
4 τz

ψ, ψ̄→ iψ̄e−i π
4 τz

.

Note that this transformation is allowed in the path integral since ψ and ψ̄ are
independent fields. This brings the action into a simpler form:

(218) Ss =
∫

d3x ψ̄s
(
vµτµ(∂µ − ieAµ) + ms

)
ψs,

where we let τ → z appear as a third euclidean coordinate, with vz = 1. This
is pretty much the quantum field theory conventions. Now we are ready to
compute the effective action. For convenience, we are going to choose units so
that vµ = 1. We have Seff[A] = ∑s Sdirac

eff [A, ms], since the only dependence on
s appears through the mass. Using the formula for the Grassman integral, we
have formally that

(219) Sdirac
eff = − ln det

(
τµ(∂µ − ieAµ) + ms

)
= −Tr ln

(
τµ(∂µ − ieAµ) + ms

)
.

We can rearrange this according to

Sdirac
eff = −Tr ln

(
τµ∂µ + ms − ieAµτµ

)
= −Tr ln

(
G− − ieAµτµ

)
= −Tr ln G− − Tr ln

(
1− ieGAµτµ

)
= const. + ieTr

(
GAµτµ

)
− e2

2
Tr
(
GAµτµGAντν

)
+ O(A3).(220)

Here we defined the Green’s function,

(221) G =
(
τµ∂µ + ms

)−1 .

It can be readily written in momentum space as

(222) G(k) =
(
−ikµτµ + ms

)−1
=

ikµτµ + m
k2 + m2 .

In Eq. (220), the constant term can be neglected, and the term linear in the
gauge field vanishes. The quadratic term is most easily evaluated in momen-
tum space. The trace should be interpreted as a full operator trace, which
means in this case a momentum integration and a matrix trace. We have

Sdirac
eff =

e2

2

∫ d3k
(2π)3

d3q
(2π)3 Tr

[
m + i(qa + ka/2)τa

m2 + (q + k/2)2 τµ m + i(qb − kb/2)τb

m2 + (q− k/2)2 τν

]
Aµ(k)Aν(−k)

≡ 1
2

∫ d3k
(2π)3 Πµν(k)Aµ(k)Aν(−k).

(223)
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6.5. Electromagnetic response from the effective action

We can carry out the trace in Eq. (223) (which is now just the matrix trace)
using identities for Pauli matrices:

Tr τaτb = 2δab, Tr τaτbτc = 2iεabc,

Tr τaτbτcτd = 2
(

δabδcd + δadδbc − δacδbd
)

.

(224)

This gives

Πµν(k) =e2
∫ d3q

(2π)3

2m2δµν − 2mεµνλkλ − 2
(

2qµqν − 1
2 kµkν − (q2 − k2/4)δµν

)
(m2 + (q + k/2)2)(m2 + (q− k/2)2)

.

(225)

We are interested in the small momentum behavior of Πµν(k), which controls
long-wavelength universal physics. Due to the presence of the mass in the de-
nominators, the integral has no infra-red divergences, and should be a smooth
function of momentum (some terms may require a large q cut-off to make
them finite, but this is physical anyway). Furthermore, Eq. (225) has O(3) ro-
tational symmetry in the Euclidean plane. This restricts the form of the Taylor
expansion of Πµν in kµ. The leading term is naı̈vely a constant proportional to
δµν, but this must vanish by gauge invariance, since it would represent a mass
for Aµ. The next term is linear in kµ, and must be proportional to the ε symbol
by O(3) symmetry. We neglect higher O(k2) contributions. The anti-symmetric
linear term arises solely from the explicit εµνλkλ in the numerator – expansion
of the rest of the expression in powers of k can only lead to symmetric terms,
which cannot contribute at linear order (one can see this for example by using
the Feynman trick). To obtain the leading contribution we may therefore keep
only this term and set k = 0 in the denominator. This gives

(226) Πµν(k) = −2e2εµνλmkλ

∫ d3q
(2π)3

1
(q2 + m2)2 = − e2

4π

m
|m| εµνλkλ.

Re-inserting this into Eq. (223) we obtain finally

(227) Sdirac
eff = −i

e2

8π

m
|m|

∫
d3x εµνλ Aµ∂ν Aλ.

Please note the factor of i. This arose from the kλ factor in Eq. (226), which in
real space is i∂λ. With our condensed matter conventions, which are natural
for the thermodynamic partition function with imaginary time, is defined as
e−Seff , so that the factor in the exponential is intrinsically imaginary. The total
effective action is the sum of the two contributions from both Dirac points,
whence Seff = SCS, with

(228) iSCS[A] =
ke2

4π

∫
d3x εµνλ Aµ∂ν Aλ,
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where

(229) k =
1
2

(
m+

|m+|
+

m−
|m−|

)
is an integer. Eq. (228) is the famous Chern-Simons action. The integer k is
called the level of the Chern-Simons theory, and physically has the meaning
of the Hall conductivity, in units of e2/h. There are deep field theory argu-
ments which require k to be quantized to an integer for any “simple” insu-
lator without some more subtle structure (such subtle structure does arise in
the fractional quantum Hall effect). The Haldane/graphene model is physical
and so this happens automatically. If we just accept the field theory arguments
(which we may discuss...) that k is quantized, then this is enough to ensure the
stability of the quantum Hall effect. In QFT terms, the quantized Hall state is
perhaps just defined by the presence of a Chern-Simons term in the effective
action.

6.6 Chern-Simons theory
Lecture 11 (1h 15mins)
February 20th, 2018 The effective action in Eq. (228) is the simplest example of Chern-Simons (CS)

theory, which in turn is what is known as a topological quantum field theory
(TQFT). It is the beginning of a vast subject. I’d like to touch a bit on it, at
the most basic level, to get a glimpse of this alternative point of view on the
quantum Hall effect.

We derived the CS action from a specific microscopic model. This at least
proves there are physical problems where it occurs with non-zero k. We can,
however, take an alternative point of view and obtain the CS term from gen-
eral arguments. If we do not care about microscopics, this is sufficient and
very general. The argument is as follows. Suppose that we have a large sys-
tem consisting of electrons which has a gapped and unique ground state in
the bulk. Below the energy scale of the gap, there are no bulk degrees of free-
dom which can be excited. Consequently, the process of integrating out the
electrons is innocuous in the sense that it cannot generate any non-analytic
terms in the probe gauge field, and we can safely do it without missing any
low energy excitations. Then there is a consistent description of the system in
terms of an analytic and local effective action in Aµ(x, τ).

Such an analytic and local action can be addressed by expanding the la-
grangian density in powers of Aµ and its derivatives. The terms in this ex-
pansion are constrained by symmetry (not so important, as symmetries can
be broken) and gauge invariance (important!). Apart from any linear terms in
Aµ which can be removed by a shift, the lowest order term, counting pow-
ers of Aµ and of derivatives, which may occur is the CS term (an Aµ Aν term
without derivatives is not gauge invariant). Actually the CS term itself is not
obviously gauge invariant, since it involves a gauge field without a derivative
acting on it. How is it ok? A gauge transformation takes Aµ → Aµ + 1

e ∂µχ.
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6.6. Chern-Simons theory

Under this transformation, the variation of the Chern-Simons term is

iSCS[A]→ iSCS[A] +
ke
4π

∫
d3x εµνλ∂µχ∂ν Aλ

= iSCS[A] +
ke
4π

∫
d3x ∂µ

(
εµνλχ∂ν Aλ

)
.

(230)

If we are allowed, as we often sloppily do, to neglect boundary terms, then the
CS term is invariant, because its variation is the integral of a total derivative.
This is fine on a closed manifold, e.g. if we take periodic boundary condi-
tions in space and consider the T > 0 partition function and impose periodic
boundary conditions on χ and on the field strength εµνλ∂ν Aλ.

Quantization of the Chern-Simons level

The last point is subtle. It is pretty clear we need periodic boundary conditions
on the field strength, because it is physical. But there is no good reason we
need periodic boundary conditions on χ (or on Aµ for that matter). What
we really need is to maintain the anti-periodic boundary conditions on the
electrons, but since they transform by the phase factor ψ → eiχψ, we may
allow χ to wind by a multiple of 2π. For such a topologically non-trivial
gauge transformation, the invariance of the CS term is not obvious. Let us
consider this variation more carefully. We start by rewriting the CS term more
explicitly

iSCS[A] =
ke2

4π

∫
d3x

[
A0εij∂i Aj − εij Ai∂0 Aj + εij Ai∂j A0

]
.

(231)

Now what we will do is to consider a minimal non-trivial gauge field con-
figuration in a periodic system and see how the action transforms under a
gauge transformation. The simplest such configuration has a constant A0 and
a constant magnetic flux through a spatial cross-section,

(232) Φ =
∫

d2x εij∂i Aj.

With periodic boundary conditions, there is a Dirac quantization condition
imposed on the flux: it must be an integer multiple of the flux quantum,
Φ = nh/e = 2πn/e. This is necessary for consistent quantum mechanics
of charge e particles. Let us denote the constant A0 = s/(eβ), where s/e is
equal to the integral of A0 over imaginary time. The variable s is nice because
it behaves simply under a gauge transformation with non-zero winding: for
χ = 2πτ/β, we have s → s + 2π. Now we can try to evaluate Eq. (231) for
this gauge field configuration. The second term is zero because the spatial
components of the gauge field are constant. The last term might appear zero
but this is actually false because with a non-zero flux Ai cannot be single-
valued. Instead we should integrate by parts in space after which the last
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term becomes equal to the first. The result is that

(233) iSCS[A0 = s/β, Φ] =
ke2

2π

∫
d3xA0εij∂i Aj =

ke
2π

sΦ = kns.

Under the large gauge transformation which takes s→ s+ 2π, this changes by
2πkn. The partition function is unchanged if this is a multiple of 2π (remem-
ber the i!). This implies that the CS term is properly gauge invariant only when
k is an integer. This is remarkable because we obtain a quantization condition
from just gauge invariance and the discreteness of charge in units of e.

Equations of motion

We can use the Chern-Simons theory to discuss the linear response of the
system. To do this, we should analytically continue to real time. This requires
taking τ → it, A0 → −iA0, and S→ iS. We obtain the real-time action

(234) Srt
CS =

ke2

4π

∫
d2x dt

[
A0εij∂i Aj − εij Ai∂t Aj + εij Ai∂j A0

]
,

which is pretty much just a rewrite of Eq. (231). Now we can obtain the current
by

(235) ji = −
δS
δAi

= − ke2

2π
εij
(
∂j A0 − ∂t Aj

)
= − ke2

2π
εijEj = −

ke2

h
εijEj.

This is exactly the current-field relation of a system with a Hall conductivity
σH = ke2/h and zero diagonal conductivity σxx = σyy = 0. So in the field
theory approach the quantization of the CS level is the quantization of the
Hall conductivity. The vanishing diagonal conductivity was implicit in the
more physical discussion of the previous sections, but it comes for free in the
field theory approach. In fact, the smooth analytic assumption for the effective
action precludes the possibility of a dissipative conductivity.

6.7 Fractional Quantum Hall Effect

I can’t leave CS theory behind without saying a very quick word about the frac-
tional quantum Hall effect. It was discovered experimentally that quantized
Hall plateaus occur not only for integer multiples of e2/h but also rational
fractional multiples, most famously the Laughlin sequence σH = νe2/h, with
ν = 1/(2m + 1), one over an odd integer. The description in terms of the
CS theory, Eq. (228), seems impossible since the level k must be an integer to
satisfy gauge invariance.

Field theory has a glib answer for this, which misses a huge amount of
physics, but is satisfying in its minimalism. We made an assumption in writing
down Eq. (228) that there were no low energy bulk degrees of freedom. This
is not quite true in fractional quantum Hall states. Instead, some low energy
degrees of freedom must be kept (they are zero energy on the torus). These
are described by an emergent gauge field aµ which is not a probe field but a
real one representing physical degrees of freedom. Because we do not have
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6.7. Fractional Quantum Hall Effect

so much time left in the course, I am going to ask you to just accept that it is
possible for a gauge field to emerge like this. The low energy description of
the physical degrees of freedom will include only this gauge field.

For an electronic system, this implies there must be a description of the
physical electrical (3-)current jµ in terms of aµ. To satisfy the continuity equa-
tion, the only possible choice is

(236) jµ = αεµνλ∂νaλ.

Here α is some constant. Naı̈vely we can choose α arbitrarily by just rescaling
aλ. However, we should also impose a periodic equivalence on the emergent
gauge field: otherwise we will not be able to have any net charge in a closed
system with periodic boundary conditions. This total charge, which is the
integral of j0, can of course be a non-zero multiple of e. If we choose the
periodicity of aµ to be 2π/e like it is for our probe gauge field, then the flux
quantization is in units of h/e and so we should take α = e2/h = e2/(2πh̄) =
e2/2π in units with h̄ = 1:

(237) jµ =
e2

2π
εµνλ∂νaλ.

Please note this is the physical current jµ, which is a source for a physical
electromagnetic field with gauge field Aµ: the charge which is the integral
of j0 is the physical electromagnetic one. By introducing the emergent gauge
field aµ, we also should acknowledge the possible existence of gauge charges,
which are sources of the internal gauge field, and which experience forces
mediated by aµ. However, we are going to assume that all such charges have
a gap in the bulk, and first study the physics below that gap.

Now we postulate an action for the emergent gauge field

(238) S[a; A] =
∫

d3x
[

pe2

4π
εµνλaµ∂νaλ − jµ Aµ

]
.

We postulated a CS term for the emergent gauge field, and included the usual
j · A term in the action, so that we can describe the effects of a physical elec-
tromagnetic field. This looks a lot like what we did for the integer quantum
Hall effect, but it is important that here the CS term is for the internal not the
probe gauge field. The level p of this internal CS term is distinct from the level
k that appeared in the effective action for Aµ. I omitted the “effective” label
for S[a; A] in Eq. (238), because I wanted to emphasize that not all the degrees
of freedom in the bulk have been integrated out. It might still be called an
effective action though, because obviously the microscopic electrons are not
in there, and actually almost all the bulk degrees of freedom have been got
rid of.

To obtain the physical electromagnetic effective action, we can put Eq. (237)
into Eq. (238), and integrate out the internal gauge field. This is a Gaussian
integral and so it is equivalent to solving the equation of motion for aµ. The
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equation of motion is

(239)
δS[a; A]

δaµ
=

pe2

2π
εµνλ∂νaλ −

e2

2π
εµνλ∂ν Aλ = 0,

which just has the solution

(240) aµ =
1
p

Aµ,

and substituting this back into the action gives finally

(241) Seff[A] = − e2

4πp

∫
d3x εµνλ Aµ∂ν Aλ.

Note that by comparing to Eq. (228), we achieved k → 1/p in this process,
so by carrying through the equation of motion analysis in Sec. 6.6, we see
that this describes a fractional quantum Hall effect, σH = 1

p e2/h. This is the
so-called Laughlin sequence of fractional quantum Hall states.Lecture 12 (1h 15mins)

February 22nd, 2018
There are many questions to be asked here. A good one is how Eq. (241)

can now be gauge invariant when we needed an integer level before? In fact
it is still not gauge invariant, but Eq. (238) is. The problem is that in going to
the final effective action we treated Aµ and aµ like they were single valued,
which in general they are not, e.g. Eq. (240) does not have solutions in all
cases. However, if we are interested in infinitesimal Aµ the process is ok since
such configurations are topologically trivial. So Eq. (241) is correct in this case
and this is enough to obtain the Hall conductivity. However, we miss a lot of
physics that is captured by Eq. (239), and is related to topologically non-trivial
configurations of aµ.

Another good question is how to get the “oddness” of the denominator p
in the fractional quantum Hall effect? It seems like any integer p is ok from
what we have discussed so far. This ultimately is related to the fermionic na-
ture of the microscopic electrons, which has not played a role in this discussion
up to now.

These questions and more are answered by thinking more carefully about
the topological excitations of the emergent CS theory, and by the quasiparticles
above the gap in the fractional quantum Hall state. There is no good way to
do this justice in the time we have. But I’ll give you a taste. Let’s look at
the topological excitations of the CS theory, Eq. (239), on a torus, with zero
external probe field Aµ = 0. We are interested in the path integral over aµ. Let
us rewrite the action explicitly, as we did in Eq. (234) for Aµ, but staying in
imaginary time:

SCS = −i
pe2

4π

∫
d2xdτ

[
a0εij∂iaj − εijai∂τaj + εijai∂ja0

]

=
pe2

2π

∫
d2xdτ

[
−ia0 εij∂iaj + ia1∂τa2

]
.

(242)
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Now if we compare this action to ones with which we are familiar, e.g. from
quantum mechanics, we can recognize the second term. It is the same form as
the ip∂τx term which occurs between position and momentum. This “Berry
phase” term induces canonical commutation relations between p and x, and
likewise so does the one above between a1 and a2:

(243) [a1(x), a2(x′)] =
2π

pe2 iδ(x− x′).

The first term is different. We see that a0 appears only here, and the integral
over a0 is very simple:

(244)
∫
[da0]e−i pe2

2π

∫
d2xdτ a0 εij∂iaj = δ

[
pe2

2π
εij∂iaj

]
,

where the right hand side indicates a functional delta function. This basically
just enforces the constraint that the flux through the actual volume of the same
is zero εij∂iaj = 0.

The latter constraint means that there are actually no bulk gauge-invariant
degrees of freedom. This is why CS theory is called a topological field theory.
What is left? For the torus there are two non-trivial loops:

(245) φ1 =
∫

dx ax(x, 0), φ2 =
∫

dy ay(0, y),

where we arbitrarily chose y = 0 in the first term and x = 0 in the sec-
ond: the integral is independent of these choices due to the zero flux condi-
tion through the bulk (it is actually independent of any smooth deformation).
These quantities can be interpreted as the gauge flux through the two holes of
the torus. Now we can evaluate the commutator of these two flux operators
using Eq. (243), which gives

(246) [φ1, φ2] =
2π

pe2 i

Now remembering that the gauge field is periodic, we should consider the
exponentials of these fluxes, which are gauge invariant and respect the peri-
odicity requirements:

(247) Wi = e2πiφi/φ0 = eieφi ,

with φ0 = h/e = 2πh̄/e = 2π/e. The Wi operators are called “Wilson loops”.
They represent the discrete quantum degrees of freedom of the CS theory on
the torus. Now Eq. (246) means that φ1 and φ2 are canonically conjugate, so
that W1 generates translations of φ2 and vice-versa. Specifically,

(248) W−1
2 φ1W2 = φ1 +

2π

pe
= φ1 +

φ0

p
,
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and similarly

(249) W−1
1 φ2W1 = φ2 −

2π

pe
= φ2 −

φ0

p
.

This finally implies

(250) W1W2 = e
2πi

p W2W1.

The last equation is fully gauge invariant and expressed in terms of nice pe-
riodic quantities. It is actually a familiar thing in solid state physics: the mag-
netic translation algebra. It arises in a number of places. Most importantly, it
is well-known that this algebra has no one dimensional representations, and
in fact has representations of minimum dimension p. This is because if we
consider an eigenstate of W2, Eq. (250) implies that W1 multiplies its eigen-

value under W2 by e
2πi

p . So the level p dynamical CS theory on the torus has a
p-fold degeneracy. This degeneracy does not affect any local gauge invariant
operators (which are trivial in the CS theory), and so is topological.

What is the meaning of this degeneracy? Well we can understand it by
thinking of an annulus à la Laughlin, instead of a torus, with a small hole on
the inside. Let’s think of x as the coordinate along the circumferential direction
and y as the radial coordinate. Then φ1 is the gauge flux through the hole of
the annulus. Recall the physical electromagnetic current is related to the gauge
flux from Eq. (237). So we can compute the charge inside the circle enclosed
by φ1 as

(251) Q =
e2

2π
φ1 =

e
φ0

φ1.

From Eq. (248), we get

(252) W−1
2 QW2 = Q +

e
p

.

This tells us that the states related by the W2 operator differ in the charge in
the hole of the annulus by the fraction of an electron charge e/p. This is in very
close analogy to Laughlin’s flux insertion argument. Indeed, we can view W2
as a flux insertion operator. However, the commutation relations imply that
it inserts 1/p fraction of a gauge flux quantum. If you compare to Eq. (240),
you can see that this corresponds, if we couple it to an external gauge field,
to a single physical flux quantum. So this really does echo Laughlin’s thought
experiment.

We can imagine shrinking the size of the hole until it is microscopic in size.
Then the hole is simply a place for a quasi-particle to live. The algebra of the
Wilson loops is telling us that there are fractionally charged quasi-particles!
One can think of the Wilson loop operator as representing the Aharonov-
Bohm/Berry phase factor accumulated on adiabatically transporting an ele-
mentary quasi-particle of the system around the loop in question. What is
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perhaps more fundamental than fractional charge is fractional statistics. The
non-commutation of Wilson loops, Eq. (250), actually has the physical mean-
ing that under adiabatic motion of one quasiparticle around another, the quan-
tum state aquires a Berry phase of 2π/p. (We actually discussed this in my
217a class – see Fig.18 of the 217a notes). A different derivation of this fact is
to consider explicitly including quasiparticles in the bulk of the CS theory, by
adding their three-current jµ to the action:

(253) iSCS[a, j] =
∫

d3x
[

pe2

4π
εµνλaµ∂νaλ − jµaµ

]
.

Please compare to Eq. (238): here we write the quasi-particle current jµ, which
carries the emergent U(1) charge and hence is coupled to aµ, rather than the
electrical current jµ which carries physical charge and hence is coupled to the
external gauge field Aµ. We could also add the latter term but in the absence
of external applied fields it is not important. Carrying out the integral over a0
(or taking the equation of motion obtained by differentiating with respect to
it) gives the relation

(254)
pe2

2π
εij∂iaj = j0.

For a collection of stationary point particles, which have gauge charge in mul-
tiples of the fundamental charge e have j0(x, t) = ∑a naeδ(x− xa), which im-
plies

(255) εij∂iaj =
φ0

p ∑
a

naδ(x− xa).

So each particle with gauge charge e is accompanied by a gauge flux of 1/p
times a flux quantum. This gives rise to the Aharonov-Bohm phase of 2π/p
upon taking one particle around the other (this is slightly subtle, but discussed
in many places – see for example the David Tong notes). If we consider two
identical quasi-particles, with the same (gauge) charge, this phase is twice
the phase obtained by exchanging the two quasi-particles, so the exchange
phase is π/p. For p > 1 this is not a pure sign, and so they are rightly called
“anyons”.

With this observation, we can finally address the question of the parity of
p. A requirement for an electronic system is that an excitation with the proper-
ties of an electron exists in the system. The electron has, obviously, fermionic
statistics. So we can try to create it by making a composite of several anyons. If
we take n anyons, it forms a composite particle which has exchange statistics
of n2 times the fundamental anyon statistics (for example this is understood by
taking one composite around the other). The phase accumulated for exchang-
ing these composites is then n2π/p. The physical charge of this quasi-particle
is just n times the charge of a single quasi-particle, i.e. ne/p. So to get the
charge of the electron we need n = p, which makes the exchange phase equal
to pπ. This is equivalent to a Fermi minus sign only for p odd. Thus we ar-
rive at the odd-denominator condition due to the underlying Fermi statistics
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of electrons. Conversely, even denominator Laughlin states of bosons can be
described by CS theory with p even.

At this point, we are going to leave Chern-Simons theory and the frac-
tional quantum Hall effect behind. There is much more to this subject, but it
is certainly specialized and I would like to move on to other topics.Lecture 13 (1h 15mins)

February 27th, 2018

7 Renormalization group for Fermi systems

Topological phases, such as we have discussed before, are (locally) very robust
and stable, because they have a spectral gap and because of their topological
nature. A metal is in some sense the opposite situation, with a huge number
of low energy excitations. It definitely has numerous possible instabilities.
Landau’s Fermi liquid idea is largely a guess, and works remarkably well. But
it has a less than systematic feel to it. A more satisfactory approach is to regard
a metal as a (quantum) critical state, i.e. a gapless continuum field theory,
and ask if its perturbations are relevant or irrelevant in the renormalization
group sense. We will try to formulate this idea now for various gapless Fermi
systems, from Weyl and Dirac semimetals to the ultimate case of metals. A
cautionary remark is in order: we will only partly succeed in regarding a metal
as a continuum field theory, for reasons to be discussed, and consequently
this nominally systematic approach is not quite that. For the Weyl and Dirac
systems there are no issues.

7.1 RG for nodal semimetals

Set-up for nodal semi-metals

Let’s start with the nodal semimetals. Here we may have a number of Weyl or
Dirac points, located at various momenta in the Brillouin zone. We introduce
continuum fields ψaA(x) which represent the low energy electronic states near
these points,

(256) cia ∼∑
A

ψaA(xi)e−iKA ·xi ,

where i labels sites, a labels any other degrees of freedom such as orbitals,
spin, etc., and A labels the nodal points. The linearized Hamiltonian takes the
generic form

(257) H0 =
∫

ddxψ†

(
−i ∑

µ

Γµ∂µ

)
ψ.

where we subsumed all spin/orbital/sublattice/K-point indices into an im-
plicit spinor nature of ψ, and Γµ are some matrices which live in this spinor
space. We will treat this using the path integral, and so study the correspond-
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ing action

(258) S0 =
∫

ddx dτ ψ̄

(
∂τ − i ∑

µ

Γµ∂µ

)
ψ.

This action has a scale invariance. One can take

(259) x→ bx, τ → bτ, ψ→ b−d/2ψ,

and this leaves S invariant. We will want to add to the Hamiltonian some
four-fermion interaction, we we assume to be local (for any short-range inter-
action we can expand it in terms of local terms plus derivatives which are less
important):

(260) H1 =
∫

ddx ψ̄ψ̄Mψψ,

where M is some four-index tensor. This gives rise to the action

(261) S1 =
∫

ddxdτ ψ̄ψ̄Mψψ.

The addition of this term, S = S0 + S1, to the action, spoils the scale-
invariance of Eq. (259) (try it!). We want to understand the ultimate conse-
quence of this breaking of scale-invariance on the low energy physics: does
the scale invariance become a better or worse approximation at low energies?
What is the long-distance fate of the system.

Renormalization group approach à la Wilson

The Renormalization Group (RG) gives a way to address this. It makes the
notion of scale invariance more precise by regularizing the theory with a short-
distance cut-off so that it is actually finite (i.e. the path integral does not suffer
from short-distance definition problems) and then implementing this scale
transformation. Let us state the basic idea before going into any detail of
how it is implemented. The first important concept is that of a scale-dependent
effective action SΛ→Λ′ , which describes a system with a microscopic cut-off on
the largest momenta in the system, Λ, coarse-grained to describe only those
modes with momenta smaller than Λ′ < Λ. So SΛ→Λ = SΛ is the microscopic
action with a cut-off Λ. To carry out the RG we first separate out the modes
with |k| < Λ′ and those with Λ′ < |k| < Λ, and carry out the path integral
over the latter:

(262) ψ = ψ< + ψ>,

where

(263) ψk,ωn = ψ<
k,ωn

Θ(|k| < Λ′) + ψ>
k,ωn

Θ(Λ′ < |k| < Λ),
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and correspondingly for ψ̄. Then the effective action is defined so that the
correct partition function is obtained using it to define the weight for the

Z =
∫
[dψ̄][dψ] e−SΛ

=
∫
[dψ̄<][dψ<][dψ̄>][dψ>] e−SΛ [ψ̄< ,ψ< ,ψ̄> ,ψ< ]

=
∫
[dψ̄<][dψ<]e−SΛ→Λ′ [ψ̄< ,ψ< ],

(264)

where

(265) e−SΛ→Λ′ [ψ̄< ,ψ< ] ≡
∫
[dψ̄>][dψ>] e−SΛ [ψ̄< ,ψ< ,ψ̄> ,ψ< ].

In this way we can define a renormalized effective action SΛ→Λ′ [ψ̄, ψ] for any
Λ′ < Λ, and indeed regard this as a continuous flow of the action functionals,
taking Λ′ = Λe−`, with ` ≥ 0. It is conventional, and useful, to make the
actions at different ` easier to compare by rescaling the fields in such a way
as to restore a fixed cut-off at all `. This is done by changing variables in the
path integral over the remaining fields:’

(266) ψ<
k,ωn

= bχψ′bk,bzωn
, ψ̄<

k,ωn
= bχψ̄′bk,bzωn

,

with b = e` = Λ/Λ′, so that the cut-off for the momenta of the ψ′, ψ̄′ fields
is restored to Λ. The numbers χ and z are chosen in order to preserve nice
features of the effective action after rescaling – see below. With this transfor-
mation we define the rescaled effective action by

(267) SΛ,`[ψ̄′, ψ′] = SΛ→Λe−` [ψ̄<, ψ<].

Note that the right-hand side should be evaluated by inserting Eq. (266) in
it to express the functional in terms of the “primed” fields. By construction
SΛ,`=0[ψ̄, ψ] = SΛ[ψ̄, ψ], so Eq. (267) defines a family of actions with a fixed
cut-off, parametrized by ` ≥ 0, whose low energy properties are all identical.
This is the renormalization group flow in the space of actions, often called the
space of theories. A scale invariant theory (like S0) is a fixed point of the RG
flow. It may be attractive, i.e. actions which are close to it evolve closer to it
with increasing `, or it may be repulsive – and like general dynamical systems
one can find different “eigen-directions” in the flow for which perturbations of
a fixed point decay or grow. Of most interest are the fully stable fixed points,
since they govern the low energy properties of all nearby theories. Fixed points
with a small number of unstable directions are also of interest, and describe
situations in which scale invariance can be achieved by some kind of tuning,
e.g. phase transitions.

Perturbative implementation

Now let us see how the RG is actually carried out perturbatively in inter-
actions. For simplicity we directly work in the (almost – we will very occa-
sionally need β and V to normalize extensive quantities) zero temperature
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Figure 7: Wilsonian RG when the gapless modes lie at k = 0, as in nodal
semi-metals.

and infinite volume limit, so that momentum and Matsubara frequency sums
become integrals. We choose a slightly different Fourier convention which is
convenient in this limit:

ψ(x, τ) =

Λ∫ ddkdωn

(2π)d+1 ψk,ωn e−ik·x−iωnτ , ψk,ωn =
∫

ddxdτ ψ(x, τ)eik·x+iωnτ ,

ψ̄(x, τ) =

Λ∫ ddkdωn

(2π)d+1 ψ̄k,ωn eik·x+iωnτ , ψ̄k,ωn =
∫

ddxdτ ψ̄(x, τ)e−ik·x−iωnτ .

(268)

The short-distance regularization appears as a cut-off on the maximum mo-
mentum, |k| < Λ, as indicated by the superscript on the integral. With this
convention, the action is

(269) S0 =

Λ∫ ddkdωn

(2π)d+1 ψ̄k,ωn

(
−iωn + kµΓµ

)
ψk,ωn .

with the real space fields defined as just the Fourier transforms of their Fourier
space counterparts. Because modes with different k are decoupled in S0, we
have

S0 =

Λ′∫ ddkdωn

(2π)d+1 ψ̄<
k,ωn

(
−iωn + kµΓµ

)
ψ<

k,ωn
+

Λ∫
Λ′

ddkdωn

(2π)d+1 ψ̄>
k,ωn

(
−iωn + kµΓµ

)
ψ>

k,ωn

= S<
0 + S>

0 .
(270)

So without interactions, the coarse-graining step of the RG, Eq. (265), is simple:

SΛ→Λ′
0 = − ln

[∫
[dψ̄>][dψ>] e−S<

0 −S>
0

]

= S<
0 − βV

Λ∫
Λ′

ddkdωn

(2π)d+1Tr ln(−iωn + kµΓµ) = S<
0 − βVs>.

(271)
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There is only a constant shift of the action. The rescaling step to restore the
cut-off can now be made by applying Eq. (266) with χ = (d + 2)/2 and z = 1,
which gives

S<
0 [ψ̄>, ψ>] =

Λ/b∫ ddkdωn

(2π)d+1 ψ̄<
k,ωn

(
−iωn + kµΓµ

)
ψ<

k,ωn

= b−(d+2)
Λ/b∫ ddkdωn

(2π)d+1 ψ̄′bk,bωn

(
−iωn + kµΓµ

)
ψ′bk,bωn

=

Λ∫ ddkdωn

(2π)d+1 ψ̄′k,ωn

(
−iωn + kµΓµ

)
ψ′k,ωn

= S0[ψ̄
′, ψ′],

(272)

where in the last line we changed variables in the integral k → k/b, ωn →
ωn/b. We see that for this case, using the definition in Eq. (267),

(273) SΛ,`[ψ̄, ψ] = S0[ψ̄, ψ] + const.

This is the expression of scale-invariance of the quadratic theory. That is, S0 is
a fixed point of the RG.

Now let us see how to incorporate the interactions from S1. We split the
fields into slow and fast parts according to Eq. (262). Then we have

S1 =
∫

ddxdτ
[
ψ̄<ψ̄<Mψ<ψ< + ψ̄>ψ̄<Mψ<ψ< + ψ̄<ψ̄<Mψ<ψ>

+ ψ̄>ψ̄>Mψ<ψ< + · · ·
]

≡ S<
1 + S [ψ̄<, ψ<, ψ̄>, ψ̄>],

(274)

where we define S<
1 to be all the terms which contain no “fast” fields (i.e.

S<
1 = S1|ψ→ψ< ), and put the rest into S . In principle all combinations of slow

and fast fields appear there. We must integrate out the fast fields, following
Eq. (265). This leads formally to (dropping the constant contribution)

(275) SΛ→Λ′ = S<
0 + S<

1 + ∆S<,

with

(276) ∆S< = − ln
〈

e−S [ψ̄
< ,ψ< ,ψ̄> ,ψ̄> ]

〉
>

.

Here the final expectation value is the result of doing the integral over fast
fields. This must be evaluated perturbatively in S , i.e. perturbatively in M. This
expansion has a nice diagrammatic representation. We indicate the slow fields
ψ̄<, ψ< by “external lines” which are not contracted, and fast fields ψ̄>, ψ>

become internal lines, as they are integrated out according to the rules of
Gaussian integration. Terms with two external lines are potential corrections
to S0: these “tadpole diagrams” vanish at leading order if we have properly
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normal-ordered the terms in the interaction Hamiltonian H1. Terms with four
external lines give corrections to S1. They have the form

(277)

k1

k2

k3

k4

=

k1

k2

k3

k4

k1 + k2 + q

−q

+

k1

k2

k3

k4

k1 − k3 + qq +O(M3)

Here we have indicated d + 1-momenta on the various lines, i.e. combined
momentum and frequency into a single variable. Each diagram represents a
distinct contribution to ∆S< in Eq. (276). We will not work them out in detail,
because this requires specifying the Γµ matrices more precisely. However, it is
instructive to consider the first diagram a little further, in order to understand
the process:

∆S<
pp =

k1

k2

k3

k4

k1 + k2 + q

−q

= −2
<∫ 4

∏
i=1

dd+1ki

(2π)d+1 ψ̄k1,αψ̄k2,βψk3,γψk4,λ (2π)d+1δ(k1 + k2 − k3 − k4)

×
∫ dd+1q

(2π)d+1 MαβησMσ′η′γλG>
ηη′(k1 + k2 + q)G>

σσ′(−q).

(278)

Here the “pp” indicates this diagram is in the “particle-particle” channel, i.e.
that the arrows inside the loop flow in the same direction. The equation con-
tains G>, which is the Green’s function for the Gaussian theory governed by
S>

0 , i.e.

(279) G>
ηη′(k = (ωn, k)) =

[
(−iωn + kµΓµ)

−1
]

ηη′
Θ
(

Λ
b

< |k| < Λ
)

.

Warning: to get the sign correct in Eq. (278), one must carefully consider
the fermion contractions and keep track of minus signs incurred on anti-
commuting Grassmann fields: this is reflected here in the order of the “con-
tracted” indices σ, σ′ and η, η′. The terms on the final line of Eq. (278) may
be expanded in a series in ki, which gives a correction to M at zeroth order
with ki = 0, and higher order terms generating irrelevant gradient operators.
Keeping just the ki = 0 contribution, one obtains the correction to M of the
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form

(280) ∆M
pp
αβγλ = −2

Λ∫
Λ/b

dd+1q
(2π)d+1 MαβησMσ′η′γλG>

ηη′(q)G
>
σσ′(−q).

The integral is restricted to the shell in momentum space defining the fast
modes. Thus it is guaranteed to be finite, since the singularity in the Green’s
function occurs only at ωn = k = 0, which is outside the integration domain.
The integral can be explicitly carried out in many cases. If we take the rescaling
to be infinitesimal,

(281) b = eδ`, 0 < δ`� 1,

then the integral itself becomes linear in δ`, since this gives the thickness of
the momentum shell. Consequently, in this limit, the result of the integration
is of the formLecture 14 (1h 15mins)

March 1st, 2018

(282) ∆M = −Λd−1δ`
[

MΓppM + MΓphM
]

,

where we included contributions from both diagrams. Here Γpp, Γph are ten-
sors that encode the contractions that follow from each diagram, and the Λd−1

prefactor follows dimensionally.

So finally, including these terms that we have generated, we find

(283) SΛ→Λ′ = S<
0 +

∫
ddxdτ ψ̄<ψ̄< (M + ∆M)ψ<ψ< +O(M3).

Following this, we should redefine fields according to Eq. (266), to re-
express the new expression for the partition function and now effective action
in terms of ψ′. Note that by Fourier transformation, the definition of the new
fields in real space corresponding to Eq. (266) with χ = (d + 2)/2 and z = 1
is

(284) ψ<(x, τ) = b−d/2ψ′(x/b, τ/b),

which one can check agrees with Eq. (259). This leads to a new effective action
of the form

(285) SΛ,`[ψ′] = S0[ψ
′] + b1−d

∫
ddxdτ ψ̄′ψ̄′ (M + ∆M)ψ′ψ′ +O(M3).

Since b > 1, for d > 1 the interaction term appears like before but smaller. This
is what is meant by an irrelevant interaction. Comparing to the original action,
and considering the infinitesimal scaling defined in Eq. (281), then the new
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term has the same form as the old but with M→ M + δM, with

M + δM = e(1−d)δ` (M + ∆M) + O(M3)δ`

= M + (1− d)δ`M−Λd−1δ`
[

MΓppM + MΓphM
]
+ · · · ,

(286)

working to O(δ`), and using Eq. (282) in the second line.
We can repeat this rescaling to iterate to a total rescaling of ` =

∫
δ` and a

scale-dependent coupling that obeys

(287)
∂M

∂`
= −(d− 1)M−Λd−1

[
MΓppM + MΓphM

]
+ · · ·

Only through some hard work can we obtain the tensors Γpp and Γph to fully
define the quadratic terms in this (tensor) equation. Work that hard is reserved
for your homework – ¨̂ . However, we can see that for d > 1, the quadratic
terms are not very important at large `, at least if M is initially small, since the
flow will take M to progressively smaller values (if M is not initially small we
are out of luck, and the whole procedure cannot be carried out analytically –
we need to rely on guesses or other knowledge).

Summary

We conclude for d > 1, weak interactions are irrelevant for Dirac and Weyl
semimetals. The scale invariance of the free fermion theory is restored at low
energies. This may be considered a version of Fermi liquid theory for this case:
the low energy excitations are asymptotically free quasiparticles.

We can see that, while our concrete formulation used momentum space, it
did not play a major role in the conclusion. Actually we could have applied
other RG schemes with different types of cut-off, e.g. a real space cut-off, or
your favorite scheme from quantum field theory such as dimensional regular-
ization, and obtained physically identical results. This is because our effective
theory has low energy modes only at zero momentum, and so the action is
a Taylor expansion around this point. Order by order, polynomials of mo-
mentum Fourier transform directly back into derivatives in real space, so we
can just as well think in real space. The argument pretty much relies just on
“power counting”: the rescaling in Eq. (284) or Eq. (259) is dictated by dimen-
sional analysis, and it determined the important d− 1 factor. This dimension
counting is the same for Weyl and Dirac fermions, and so we conclude that all
local interactions are irrelevant for Weyl and Dirac fermions in two and three
dimensions.

There are some interesting problems where interactions are not irrelevant.
We can see that one dimension is such a case: here the power-counting term
vanishes and the interaction appears to be scale invariant. This scale invari-
ance is not exact however, and the quadratic terms become crucial. We say
that the interactions are “marginal” in this case. Another is a quadratic band
touching, where the Hamiltonian involves second (spatial) derivatives rather
that first order ones. It turns out that short-range interactions in two dimen-
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sions are marginal for such a quadratic band touching. We may also consider
long-range interactions. Coulomb 1/r interactions is an important case. One
can easily check that 1/r interactions are marginal for the Weyl/Dirac prob-
lems in both two and three dimensions.

7.2 RG for metals

One-dimensionality of the kinetic energy

With the simpler case of nodal semi-metals under our belt, we are ready to
tackle the problem of RG for a Fermi surface. This follows a rather well known
review article by R. Shankar. We are interested in perturbations of a free action
of the form

S0 =
∫ dd+1k

(2π)d+1 ψ̄k (−iωn + εk)ψk.

(288)

For simplicity we are going to neglect any band/spin indices for this subsec-
tion. To carry out the Wilsonian RG, we need to include some cut-off Λ into
this action, such that reducing Λ is equivalent to focusing on lower energy
degrees of freedom. The tricky aspect is that the low energy states in this case
correspond to those on the Fermi surface, i.e. εk = 0, which is in general an
extended object in momentum space, and so we cannot just describe it by a
Taylor expansion. The natural way to describe it is instead to the cut-off by
a shell of thickness 2Λ around this surface, which is sensible provided Λ is
small compared to the typical radius, kF, of the Fermi surface. The RG consists
of progressively “thinning” this shell down towards the ideal limit of a true
d− 1 dimensional surface.

For simplicity, we will consider the case of spherical symmetry with O(d)
rotational symmetry of the Hamiltonian, so that εk is a function of |k| only,
and the Fermi surface is a true sphere with radius kF. We can work in spherical
coordinates so that

k = K̂(kF + q),
(289)

where K̂ is a unit vector giving the direction in momentum space, and q is
the distance from the Fermi surface normal to the surface. We can define new
fields in these variables: The free action is

S0 =
∫ dωndK̂dq (kF + q)d−1

(2π)d+1 ψ̄K̂(kF+q),ωn

(
−iωn + εkF+q

)
ψK̂(kF+q),ωn

≈
kd−1

F
(2π)d+1

∫
dK̂dqdωn ψ̄K̂(kF+q),ωn

(−iωn + vFq)ψK̂(kF+q),ωn
,

(290)

with vF the Fermi velocity. From here redefine the field variables to be in terms
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of K̂ and q, and with a natural normalization

(291)

ψ̄K̂(kF+q),ωn
=

(
(2π)d−1

kd−1
F Sd−1

)1/2

ψ̄K̂,q,ωn
, ψK̂(kF+q),ωn

=

(
(2π)d−1

kd−1
F Sd−1

)1/2

ψK̂,q,ωn
,

where Sd is the surface area of the d-sphere. This gives

(292) S0 =
∫ dK̂

Sd−1

Λ∫
−Λ

dq
2π

∫ dωn

2π
ψ̄K̂,q,ωn

(−iωn + vq)ψK̂,q,ωn
.

In this formula we have separated the variable which is cut-off, q, fully from
the other variables. We can see that the fermionic propagator depends only
on q and ωn, and not on the angular variable K̂. The latter appears more like
an internal “flavor” index in the fermion fields. From the point of view of the
propagator, the low energy dynamics is effectively 1 + 1-dimensonal, regard-
less of the physical dimension d! This is a source of very different behavior for
the Fermi surface problem in comparison to the previous one.

In this form, the free action has a manifest scale invariance, just like S0 for
the nodal fermions in the previous subsection. Following the same procedure,
we obtain a fixed point for the free theory if we take

(293) ψ̄>
K̂,q,ωn

= b3/2ψ̄′K̂,bq,bωn
, ψ>

K̂,q,ωn
= b3/2ψ′K̂,bq,bωn

,

which is a special case of Eq. (266), if we view K̂ as an internal index. It is
important to note that there is a subtlety in comparison to the situation of
the previous subsection, because there are two important momentum scales
in the problem: the cut-off Λ and the Fermi momentum kF. The ratio kF/Λ is
dimensionless, and merely rescaling does not change it. So when we integrate
out modes in the coarse-graining step, the ratio kF/Λ is increased, and we
cannot restore it by a rescaling. Since we choose to rescale to restore the cut-
off to Λ, we effectively increase kF. The important point is that the ratio kF/Λ
increases under the RG. Viewed globally, the low energy region becomes a
narrower and narrower ring near the Fermi surface. This narrowness is phys-
ical and has consequences we will explore below.

Given that the propagator and the rescaling appears the same as in 1 + 1
dimensions, we can expect that interactions also may behave similarly to that
case. We saw that for 1d Dirac fermions short-range interactions are marginal,
so it will not be surprising to find the same here. Nevertheless, there are
significant differences from the 1 + 1 dimensional case, as we will clearly see.

77



7. Renormalization group for Fermi systems

kF2Λ

2Λ′

coarse
graining

rescaling

k′F

Figure 8: Wilsonian RG for a circular Fermi surface. By rescaling momenta
to restore the thickness of the annulus around the Fermi surface, the Fermi
momentum is effectively enlarged by a factor Λ′/Λ.

Phase space constraints and two types of interactions

We consider a general interaction involving four fermion operators, i.e. a two-
body interaction, which satisfies translational invariance:

S1 =
∫ 3

∏
i=1

dd+1ki

(2π)d+1 U({ki})ψ̄1ψ̄2ψ3ψ4.

(294)

where we abbreviated ψ̄1 = ψ̄ki ,ωn,i etc., and there are only three independent
integrals, so that

(295) k4 = k1 + k2 − k3, ωn,4 = ωn,1 + ωn,2 −ωn,3.

Now we would like to transform this to spherical coordinates and impose the
momentum shell cut-off. We write

S1 =
3

∏
i=1

∫ dK̂i
Sd

Λ∫
−Λ

dqi
2π

∫ dωn,i

(2π)2 U({K̂i})

× ψ̄K̂1,q1,ωn1
ψ̄K̂2,q2,ωn2

ψK̂3,q3,ωn3
ψK̂4,q4,ωn4

Θ(Λ− ||k4| − kF|).
(296)

Now in order to be sure that all four momenta lie inside the shell, we needed
to introduce the Θ function to constrain the length of the fourth momentum.
The expression for the fourth momentum in spherical coordinates is more
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complicated than in Eq. (295):

K̂4 =
K̂1(kF + q1) + K̂2(kF + q2)− K̂3(kF + q3)

|K̂1(kF + q1) + K̂2(kF + q2)− K̂3(kF + q3)|
,

(297)

q4 = K̂4 · [K̂1(kF + q1) + K̂2(kF + q2)− K̂3(kF + q3)]− kF.
(298)

Notably, the solution of these equations does not generically have q4 inside the
shell, which is why the Θ function is needed in Eq. (296). Indeed, this means
that the Θ function restricts the integration domain of the three otherwise free
angular variables K̂1, K̂2, K̂3. The physics here is that the four physical mo-
menta vectors obey the constraint k1 + k2 = k3 + k4, and at the same time lie
very close to the Fermi surface. These two conditions are highly constraining.
It is useful to think of the extreme case qi = 0, so all four vectors are exactly
on the Fermi surface. This is simplest in two dimensions. There are really only
two solutions to these constraints. First, we can have arbitrary K̂1 and K̂2, so
that k1 + k2 is a vector whose length is of order kF. Then for the remaining two
momenta to add to the same sum, we either need K̂3 = K̂1 and K̂4 = K̂2, or
the same with K̂3 and K̂4 interchanged. For spinless electrons, these represent
the same terms, since we can simply anticommute ψ3 and ψ4. We see that in
this case while the first two unit vectors are free, the third is completely deter-
mined. The second possibility is to have K̂2 = −K̂1, so that the sum vanishes.
Then we can arbitrarily choose K̂3 and take K̂4 = −K̂3. Importantly, in this
case too there are only two free K̂i directions, not three as one might naı̈vely
expect.

The actual integral is over a non-zero range of qi, so these conditions are
not perfectly satisfied, and there is some non-zero measure for all three K̂i
with i = 1, 2, 3. However, when Λ� kF, the integration region is all very near
one of the two above situations. So we can separate the interaction into two
terms, each including one of these regions: S1 = S1,V + S1,W :

S1,V =
∫ dK̂1

Sd

dK̂2

Sd

∫
K̂3≈K̂1

dK̂3

Sd

3

∏
i=1

Λ∫
−Λ

dqi
2π

∫ dωn,i

(2π)2 V(K̂1 · K̂2)

× ψ̄K̂1,q1,ωn1
ψ̄K̂2,q2,ωn2

ψK̂4,q4,ωn4
ψK̂3,q3,ωn3

Θ(Λ− |q4|),
(299)

S1,W =
∫ dK̂1

Sd

dK̂3

Sd

∫
K̂2≈−K̂1

dK̂2

Sd

3

∏
i=1

Λ∫
−Λ

dqi
2π

∫ dωn,i

(2π)2 W(K̂1 · K̂3)

× ψ̄K̂1,q1,ωn1
ψ̄K̂2,q2,ωn2

ψK̂3,q3,ωn3
ψK̂4,q4,ωn4

Θ(Λ− |q4|).

Here the interactions have been taken to be functions only of the “large” in-
tegration variables, since they are assumed smooth on the scale of kF, and
we have also used rotational invariance to write them in terms invariant
inner product. We chose the order of the operators in the V term so that
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7. Renormalization group for Fermi systems

V > 0 reflects a repulsive interaction. The result is that the interactions are
parametrized by two functions V and W of one variable. These describe two
“channels” of interactions. The first, V channel describes “forward scattering”
of electrons: two incoming electrons are scattered by this interaction into states
with momenta in the same two regions of the Fermi surface. The second, W
channel describes “pair scattering”: two electrons with nearly opposite mo-
menta are scattered to another completely different pair of anti-podal points
on the Fermi surface.

RG for forward scattering interaction
Lecture 15 (1h 15mins)
March 8th, 2018 Applying the scale transformation in Eq. (293) to Eq. (299), it is easy to see that

the interactions V and W are indeed marginal at the rescaling level. The key
then is to examine how they behave under the coarse-graining part of the RG.
To do this, we return to the diagrams we studied in the previous subsection. In
that case, we saw that the corrections to the interactions were to leading order
obtained by diagrams in which all external momenta and frequencies were set
to zero (because we are expanding around the divergent point of the Green’s
functions which occurs at zero momentum and frequency) and in which the
momenta inside the loop are integrated over the shell. Here instead of to zero
we should set the external momenta to lie exactly on the Fermi surface, which
is analogous insofar as this is where the Green’s functions diverge. In this way
we obtain four diagrams that describe corrections to the V vertex:

∆V =

K̂1

K̂2

K̂1

K̂2

=

K̂1

K̂2

K̂1

K̂2

≈ K̂1

≈ K̂2

+

K̂1

K̂2

K̂2

K̂1

≈ K̂1≈ K̂2

+

K̂1

K̂2

K̂2

K̂1

≈ −K̂2≈ −K̂1 +

K̂1

K̂2

K̂1

K̂2

K̂3, qK̂3, q .

(300)

Let us examine these different diagrams. The first, second, and fourth each
contain two V-type vertices, since the incoming legs at each vertex are not op-
posite. The third diagram contains two W vertices. Next, note the momentum
labels on the first three diagrams: one can see that the angular component of
the internal wavevectors are fixed by the external ones in all these cases. This
means that when Λ � kF, there is almost no integration volume for these
diagrams. Thus they give asymptotically zero contribution in the scaling limit
as Λ′ = Λe−` → 0.
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7.2. RG for metals

All that is left is the fourth diagram. Here we have a free integration over
the internal variables in the loop: K̂3, q, ωn. This is of the form

(301)

K̂1

K̂2

K̂1

K̂2

K̂3, qK̂3, q ∝
∫ dK̂3

Sd
V(K̂1 · K̂3)V(K̂3 · K̂2)

∫
Λ′<|q|<Λ

dq
2π

∫ dωn

2π

1
(−iωn + vq)2 = 0.

The final result vanishes upon carrying out the frequency integral, because
all singularities are on one side of the real axis, and the contour can be taken
on the opposite side. This type of vanishing is a consequence of causality:
basically the same excitation cannot travel both forward and backward. So we
see that all contributions to the renormalization of V have vanished. Since V
was also marginal at the rescaling level, we conclude that up to second order,
this interaction does not flow:

(302) ∂`V = 0, to O[(V, W)2].

In fact it turns out that V is exactly marginal in the scaling limit. It is an
example of what we call a Fermi liquid interaction, which Landau envisioned
from a rather different argument.

To get an idea of why this interaction is marginal, let us re-arrange the
operators in the expression, Eq. (299), for the V coupling:

S1,V =
∫ dK̂1

Sd

dK̂2

Sd

∫
K̂3≈K̂1

dK̂3

Sd

3

∏
i=1

Λ∫
−Λ

dqi
2π

∫ dωn,i

(2π)2 V(K̂1 · K̂2)

× ψ̄K̂1,q1,ωn1
ψK̂3,q3,ωn3

ψ̄K̂2,q2,ωn2
ψK̂4,q4,ωn4

Θ(Λ− |q4|).
(303)

Now we note that in this term K̂3 ≈ K̂1 and K̂4 ≈ K̂)2, so let us make that
replacement in the last line:

S1,V ≈
∫ dK̂1

Sd

dK̂2

Sd

∫
K̂3≈K̂1

dK̂3

Sd

3

∏
i=1

Λ∫
−Λ

dqi
2π

∫ dωn,i

(2π)2 V(K̂1 · K̂2)

× ψ̄K̂1,q1,ωn1
ψK̂1,q3,ωn3

ψ̄K̂2,q2,ωn2
ψK̂2,q4,ωn4

Θ(Λ− |q4|).
(304)

We can see from this that this term is expressed in terms of “number oper-
ators” ψ̄K̂ψK̂ , so that the number of fermions at each direction of the Fermi
surface is separately conserved. This vastly reduces the ability of this interac-
tion to mix different states in the Fock space. So it is perhaps not surprising
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7. Renormalization group for Fermi systems

that it does not renormalize.

Landau introduced a version of this interaction in the Hamiltonian form
which makes this conservation law even more explicit. The Landau Fermi
liquid Hamiltonian is

HFL = ∑
k

εknk +
1

2Ld ∑
k,k′

Vk,k′nknk′ ,

(305)

where nk = c†
kck is the number operator, and Vk,k′ is the analog of the V cou-

pling above. Eq. (305) is trivially exactly soluble since nk is a good quantum
number for all momenta.

RG for pair scattering interaction

Let us turn to the renormalization of W. In this case we can draw three dia-
grams:

∆W =

K̂1

−K̂1

K̂2

−K̂2

=

K̂1

−K̂1

K̂2

−K̂2

K̂3, q, ωn

−K̂3, q,−ωn

+

K̂1

−K̂1

K̂2

−K̂2

≈ K̂1≈ K̂2

+

K̂1

−K̂1

K̂2

−K̂2

≈ −K̂2≈ −K̂1 .

(306)

The first diagram represents two W vertices, while the second and third di-
agrams involve one V and one W vertex. The latter two terms vanish in the
small Λ limit because their internal angles are constrained. One is left with
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7.2. RG for metals

the first diagram:

∆W =

K̂1

−K̂1

K̂2

−K̂2

K̂3, q, ωn

−K̂3, q,−ωn

∝
∫ dK̂3

Sd
W(K̂1 · K̂3)W(K̂3 · K̂2)

×
∫

Λ′<|q|<Λ

dq
2π

∫ dωn

2π

1
(−iωn + vq)(iωn + vq)

6= 0.

(307)

This time the internal frequency integral does not vanish, because there are
poles symmetrically placed on both sides of the real axis. Thus the W inter-
action flows under the RG. With a little effort, one can get the sign, and the
result is

(308) ∂`W(K̂1 · K̂2) = −c
∫ dK̂3

Sd
W(K̂1 · K̂3)W(K̂3 · K̂2),

where c is a positive constant. The right hand side of Eq. (308) is basically a
convolution. For example, in two dimensions, we can redefine the function via

(309) W(θ) = W(cos θ),

and the RG equation becomes

(310) ∂`W(θ1 − θ2) = −c
∫ dθ′

2π
W(θ1 − θ′)W(θ′ − θ2).

This allows us to Fourier transform it

(311) W(θ) = ∑
m

Wmeimθ ,

which gives

(312) ∂`Wm = −cW2
m.

This clearly shows that each angular momentum channel is independent at
this order. The system is when the interaction is repulsive in all channels,
Wm > 0: these interactions are called “marginally irrelevant”. If even one of
them is attractive, Wm < 0, the metallic state becomes unstable: this interac-
tion is “marginally relevant”. This instability was discovered by Leon Cooper,
and is often called the Cooper instability. It induces pairing and leads to super-
conductivity.

A comment here is in order. In the theory without spin, Fermi statistics
places a strong constraint on the function W(K̂1 · K̂2): it must be odd under
the interchange K̂1 ↔ K̂2. This translates in two dimensions to W(θ + π) =
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8. Superconductivity

−W(θ), which requires Wm = 0 for m even. That is, only odd angular momen-
tum pairing interactions exist. If spin is included, the anti-symmetry required
by Fermi statistics can be accommodated in other ways by the spin structure,
both even and odd angular momentum pairings are possible.

8 Superconductivity

8.1 Path integral formulation

The RG we just discussed reveals an instability of the metallic state when
interactions are attractive. This leads to superconductivity. We would like now
to introduce field theory methods for the superconductivity problem. The RG
is great for checking for instabilities, but not as good for calculating what they
lead to. Basically, the RG is only controlled in the perturbative regime, but
the instability means that the pair scattering interaction grows at low energies
and develops non-perturbative effects.

We can treat these by some non-perturbative path integral technique, which
is a version of mean field theory. But first we need to set this up. We return to
our original Fourier conventions and consider the action including the pair-
scattering interaction, S = S0 + S1, with

S0 = ∑
k,ωn

c̄k,ωn ,α (−iωn + εk) ck,ωn ,α,

(313)

S1 = − 1
2βV ∑

{ki ,ωn,i}
U(k1 − k4)c̄1α c̄2βc3βc4α δk1+k2−k3−k4 δωn1+ωn2−ωn3−ωn4 .

(314)

Here α, β are spin-1/2 indices that take the values 1, 2 =↑ / ↓. The minus
sign in S1 was introduced so that U > 0 constitutes an attractive interac-
tion. We should require U(k) = U(−k) symmetric, since any antisymmetric
component vanishes under the exchange 1 ↔ 2, 3 ↔ 4. Note that we have
not explicitly required the momenta to take the form they must for the pair-
scattering interaction, but only taken the interaction to have the appropriate
dependence. In principle the S1 term therefore contains a forward-scattering
part as well. However, this will not be important, and we will treat the inter-
action in a manner which singles out the Cooper channel. The idea is to use a
Hubbard-Stratonovich transformation to rewrite the interaction as a quadratic
theory with a fluctuating pairing order parameter. Let us massage the inter-
action first into a more promising form. We change summation variables and
explicitly use the δ functions to get

S1 = − 1
2βV ∑

k,k′ ,q
∑

ωn ,ω′n ,ω̄n

U(k− k′) c̄−k′ ,−ω′n ,β c̄k′+q,ω′n+ω̄n ,αck+q,ωn+ω̄n ,αc−k,−ωn ,β,

(315)

where ωn, ω′n are fermionic Matsubara frequencies and ω̄n is a bosonic one.
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8.2. Saddle point

We apply a Hubbard-Stratonovich transformation in the form

e−S1 =
∫
[d∆̄d∆] exp

− βV
2 ∑

k,k′ ,q
∑̄
ωn

Wk,k′ ∆̄
αβ
k,q,ω̄n

∆αβ
k′ ,q,ω̄n



× exp

(
1
2 ∑

k,q,ω̄n

[
∆̄αβ

k,q,ω̄n ∑
ωn

ck+q,ωn+ω̄n ,αc−k,−ωn ,β + ∆αβ
k,q,ω̄n ∑

ωn

c̄−k,−ωn ,β c̄k+q,ωn+ω̄n ,α

])(316)

This reproduces the form of S1 in Eq. (315) (up to a constant related to Lecture 16 (1h 15mins)
March 9th, 2018ln det W) provided we take

[
W−1]

k,k′ = U(k− k′) (the inverse is in the matrix
sense). Substituting this into the path integral, the full path integral is

Z =
∫
[d∆̄d∆dc̄dc]e−S,

(317)

with

S =
βV
2 ∑

k,k′ ,q
∑̄
ωn

Wk,k′ ∆̄
αβ
k,q,ω̄n

∆αβ
k′ ,q,ω̄n

+ ∑
k,q,ωnω̄n

[
(−iωn + εk)δq,0δω̄n ,0 c̄k,ωn ,αck,ωn ,α

− 1
2

∆̄αβ
k,q,ω̄n

ck+q,ωn+ω̄n ,αc−k,−ωn ,β −
1
2

∆αβ
k,q,ω̄n

c̄−k,−ωn ,β c̄k+q,ωn+ω̄n ,α

]
.

(318)

Now formally the Grassmann integral can be carried out since it is Gaussian.
It yields

Z =
∫
[d∆̄d∆]e−Seff ,

(319)

with

Seff =
βV
2 ∑

k,k′ ,q
∑̄
ωn

Wk,k′ ∆̄
αβ
k,q,ω̄n

∆αβ
k′ ,q,ω̄n

+ S ,

(320)

with

S = − ln det [(−iωn + εk) + ∆̄ + ∆] ,
(321)

where we left the structure of the matrix in Eq. (321) rather implicit.

8.2 Saddle point

At this point we are prepared to make our non-perturbative approximation. It
is simply to make a saddle point evaluation of the path integral in Eq. (319),
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8. Superconductivity

i.e. with respect to ∆̄, ∆. Taking the saddle point equations gives

δSeff

δ∆̄αβ
k,q,ω̄n

= 0 =
βV
2 ∑

k′
Wk,k′∆

αβ
k′ ,q,ω̄n

− 1
2 ∑

ωn

〈
ck+q,ωn+ω̄n ,αc−k,−ωn ,β

〉
,

(322)

δSeff

δ∆αβ
k,q,ω̄n

= 0 =
βV
2 ∑

k′
Wk′ ,k∆̄αβ

k′ ,q,ω̄n
− 1

2 ∑
ωn

〈
c̄−k,−ωn ,β c̄k+q,ωn+ω̄n ,α

〉
,

(323)

which can be rewritten as

∆αβ
k,q,ω̄n

=
1

βV ∑
k′ωn

U(k− k′)
〈

ck′+q,ωn+ω̄n ,αc−k′ ,−ωn ,β

〉
.

∆̄αβ
k,q,ω̄n

=
1

βV ∑
k′ωn

U(k− k′)
〈

c̄−k′ ,−ωn ,β c̄k′+q,ωn+ω̄n ,α

〉
.

(324)

It is natural to expect a solution that does not break translational symmetry
in space or imaginary time. This corresponds to the condition q = ω̄n = 0. So
we impose

∆αβ
k,q,ω̄n

= ∆αβ
k δq,0δω̄,0, ∆̄αβ

k,q,ω̄n
= ∆̄αβ

k δq,0δω̄,0.

(325)

Then the saddle point equations become

∆αβ
k =

1
βV ∑

k′ ,ωn

U(k− k′)
〈

ck′ ,ωn ,αc−k′ ,−ωn ,β

〉
.

∆̄αβ
k =

1
βV ∑

k′ ,ωn

U(k− k′)
〈

c̄−k′ ,−ωn ,β c̄k′ ,ωn ,α

〉
.

(326)

The function ∆αβ
k is called the gap function, and these are the gap equations.

The expectation values on the right hand side are known as “pair fields”. The
summation over ωn is equivalent to taking the equal time expectation value:

∆αβ
k =

1
V ∑

k′
U(k− k′)

〈
ck′ ,α(τ)c−k′ ,β(τ)

〉
.

∆̄αβ
k =

1
V ∑

k′
U(k− k′)

〈
c̄−k′ ,β(τ)c̄k′ ,α(τ)

〉
.

(327)
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8.3. Solution of the gap equation

8.3 Solution of the gap equation

Pairing symmetries

The gap function and pair field are antisymmetric under k → −k and α ↔ β.
Simple solutions push the antisymmetry into the orbital or spin part only. For
example, a singlet superconductor has the form

(328) ∆αβ
k = ∆s(k)εαβ,

where εαβ = iσy
αβ is the usual unit anti-symmetric 2×2 matrix. In this case,

∆s(k) = ∆s(−k) should be an even function. This is called an even parity
superconductor. Such an even function can be expanded in a series of radial
functions multiplying spherical harmonics Ylm(k̂), with only even integer an-
gular momentum l = 0, 2, · · · , which are denoted s-wave, d-wave, etc. A triplet
superconductor occurs if we take the spin part to be symmetric:

(329) ∆αβ
k = ∆t(k) · (σyσ)αβ .

Here ∆t(k) is a 3-component vector of complex order parameters known as
the triplet order parameter. It is odd in momentum, ∆t(k) = −∆t(−k), and
hence has only spherical harmonics with odd l = 1, 3, · · · corresponding to
p-wave, f-wave, and higher channels.

For simplicity, we will focus on the singlet superconducting case, for which
we can write the quantity appearing the gap equation as

(330)
〈
ck,αc−k,β

〉
= ψ(k)εαβ,

where we suppressed the τ in the equal-time correlation function, and defined
the “pair field” ψ(k). The gap equation becomes

(331) ∆(k) =
1
V ∑

k′
U(k− k′)ψ(k′).

The function ∆̄(k) = ∆∗(k) at the saddle point level.

Bogoliubov-de Gennes Hamiltonian

Eq. (331) is implicitly a non-linear equation because ψ has a complex depen-
dence on ∆. To obtain it, we need to compute the expectation value in Eq. (330).
This comes from the fermionic part of action S in Eq. (318), evaluated at the
saddle point configuration of the gap function:

Sc = ∑
k,ωn

[
(−iωn + εk)c̄k,ωn ,αck,ωn ,α

− 1
2

∆̄(k)εαβck,ωn ,αc−k,−ωn ,β −
1
2

∆(k)εαβ c̄−k,−ωn ,β c̄k,ωn ,α

]
.

(332)

87



8. Superconductivity

We recognize that the path integral over c̄, c with this action just represents
the partition function of a quadratic fermion “mean field” Hamiltonian:

Hmf = ∑
k

[
εkc†

kck − ∆̄(k)cT
k

ε

2
c−k − ∆(k)c†

−k
ε

2
c∗k
]
.

(333)

This is known as the Bogoliubov-de Gennes Hamiltonian. It is drastically dif-
ferent from the usual free fermion model in that it contains “anomalous”
terms with a product of two annihilation operators or two creation opera-
tors, that do not conserve fermion number. This is a consequence of the fact
that the superconducting order parameter (∆ or ψ) breaks the U(1) symmetry
that generates charge conservation.

Hmf is still quadratic, so it can be diagonalized. There are many ways to
do this. First let us write the spin sum explicitly:

Hmf = ∑
k

[
εk

(
c†

k↑ck↑ + c†
k↓ck↓

)
− ∆̄(k)ck↑c−k↓ − ∆(k)c†

−k↓c
†
k↑

]
.

(334)

Here in the anomalous terms we used the fact that the gap function is even
in k to combine the two terms in the spin sum (anti-commuting the operators
and changing the sign of the momentum variable). For the form given here,
we can adopt a simple prescription which is to define new d operators of the
form

dk↑ = ck↑, dk↓ = c†
−k↓.

(335)

This is a simpler version of what are called the Nambu operators. This is
chosen so that the Hamiltonian in terms of d operators is no longer anomalous:

Hmf = ∑
k

[
εk

(
d†

k↑dk↑ + d−k↓d
†
−k↓

)
− ∆̄(k)dk↑d

†
k↓ − ∆(k)dk↓d

†
k↑

]

= ∑
k

[
εkd†

k↑dk↑ + ε−k(1− d†
−k↓d−k↓) + ∆̄(k)d†

k↓dk↑ + ∆(k)d†
k↑dk↓

]
.

(336)

Assuming that the spectrum is inversion symmetric, ε−k = εk, we obtain

Hmf = E0 + ∑
k

d†
k
[
εkσz + ∆(k)σ+ + ∆̄(k)σ−

]
dk.

(337)

where E0 = ∑k εk is a constant, we returned to the implicit notation for the
spinor index, and σ± = (σx ± iσy)/2 are the spin-1/2 raising and lowering
matrices. For each momentum, this has the form of the Hamiltonian for a
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spin-1/2 particle in a Zeeman field,

Hmf = E0 + ∑
k

nk · d†
kσdk,

(338)

with

nk =

Re∆(k)
Im∆(k)

εk

 .

(339)

This is easily diagonalized by choosing the spin quantization axis parallel to
nk. Let

dk = Uk fk,
(340)

with the unitary matrix Uk such that

nk ·U†
kσUk = Ekσz,

(341)

with

Ek = |nk| =
√

ε2
k + |∆(k)|2.

(342)

Then

Hmf = E0 + ∑
k

Ek f †
k σz fk = E0 + ∑

k
Ek

(
f †
k+ fk+ − f †

k− fk−

)
.

(343)

The result is a spectrum reminiscent of a semi-conductor, with a gap equal
to (twice) the value of |∆(k) at the Fermi momentum. Physically, the anoma-
lous pairing terms mix the degenerate electron and hole states at the Fermi
energy, and the resulting level repulsion opens a gap. The states precisely at
the Fermi energy are equal mixtures of electrons and holes, while those fur-
ther away are mostly electron-like or mostly hole-like.

Free energy and gap equation

Now we can address the gap equation, by calculating the pair field from this
Hamiltonian. We will use a trick, which is not necessary but convenient. From
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−kF 0 kF

0 2|∆(kF)|

k

E

Figure 9: Bogoliubov-de Gennes quasiparticle spectrum. The faint gray lines
are the spectrum in the normal state, the upward-opening and downward-
opening parabolas corresponding to particle and hole excitations, respectively.
Mixing particles and holes due to the anomalous terms in the BdG Hamilto-
nian leads to the spectrum ±Ek shown by the solid lines.

Eq. (330), we can contract both sides with the ε tensor to obtain

ψ(k) =
〈

cT
k

ε

2
c−k

〉
.

(344)

Comparing to Eq. (333), we see that this is precisely the coefficient of −∆̄(k)
in the Hamiltonian. Since the integral over c̄, c just calculates the fermion par-
tition function, we can recognize that the required expectation value is just a
derivative of the logarithm of the partition function:

ψ(k) =
Tr
(
ψ(k)e−βHmf

)
Tr
(
e−βHmf

) =
Tr
(
− ∂Hmf

∂∆̄(k) e−βHmf

)
Tr
(
e−βHmf

) =
Tr
(

1
β

∂
∂∆̄(k) e−βHmf

)
Tr
(
e−βHmf

)
=

1
β

∂

∂∆̄(k)
ln Tr

(
e−βHmf

)
= − ∂

∂∆̄(k)
Fmf,

(345)

where Fmf is the free energy

Fmf = −kBT ln Tr
(

e−βHmf
)

.

(346)

The mean field free energy is simple to evaluate from Eq. (343). The partition
function for a single fermion mode with energy ε is z = 1+ exp(−βε). Adding
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all the modes, we obtain

Fmf = E0 − kBT ∑
k

ln
(

1 + e−βEk
)
+ ln

(
1 + e+βEk

)
= E0 − kBT ∑

k
[ln 2 + ln (1 + cosh βEk)]

= E0 − 2kBT ∑
k

[
ln 2 + ln cosh

βEk
2

]
.

(347)

From the last formula it is easy to differentiate F to obtain the pair field:

ψ(k) = tanh
βEk

2
∂Ek

∂∆̄(k)
=

∆(k)
2Ek

tanh
βEk

2
.

(348)

Finally we can insert this into the gap equation to obtain the self-consistent
condition:

∆(k) =
1
V ∑

k′
U(k− k′)

∆(k′)
2Ek′

tanh
βEk′

2
.

(349)

We can do lots of fun stuff with this ¨̂ . First let us take the infinite volume
limit,

∆(k) =
∫ ddk′

(2π)d U(k− k′)
∆(k′)
2Ek′

tanh
βEk′

2
.

(350)

Now let us specialize to some simple situation. We make the very reasonable
approximation of weak interactions, so that the gap ∆ is small. Then the de-
nominator Ek′ is almost vanishing near the Fermi surface of the pure system,
i.e. when εk = 0. In that case this region will dominate the integral. Let us
further suppose that ∆(k) is approximately constant for these momenta, i.e.
we have s-wave pairing, and we may as well also take U(k) approximately
constant over the same region. Then the integrand becomes a function of k′

only through the energy ε ≡ εk′ , so we can trade the momentum integral for
one over energy. We have

(351) ∆ =

ω0∫
−ω0

dεN (ε)U
∆

2
√

ε2 + |∆|2
tanh

β
√

ε2 + |∆|2
2

.

Here N (ε) is the density of states (per spin) as a function of energy, and we
included a cut-off ω0 around the Fermi energy which reflects the approxima-
tions. We can eliminate a factor of ∆ from the above equation, which is valid in
the superconducting phase where it is non-zero. Furthermore, since for small
∆ the system is dominated by small ε, we can approximate N (ε) ≈ N (0).
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Then the gap equation becomes

N (0)U
ω0∫
0

dε
tanh β

√
ε2+|∆|2

2√
ε2 + |∆|2

= 1.

(352)

This equation determines the gap as a function of temperature and interaction
strength. For example, at zero temperature, the tanh becomes unity and the
zero temperature gap ∆0 = ∆(T = 0) obeys the equation

N (0)U
ω0∫
0

dε
1√

ε2 + |∆0|2
= 1.

(353)

The integral can be carried out to give

ln
ω0 +

√
|∆0|2 + ω2

0

|∆0|
=

1
N (0)U

,

(354)

which yields

|∆0| ∼ 2ω0e−
1

N (0)U , for N (0)U � 1.

(355)

Finally the non-perturbative nature of the superconducting instability is ap-
parent: the zero temperature gap as a function of the interaction has an essen-
tial singularity.Lecture 17 (1h 15mins)

March 13th, 2018

We can also determine the critical temperature Tc, at which ∆(Tc) = 0, by
asking for the solution of Eq. (352) for |∆| = 0:

N (0)U
ω0∫
0

dε
tanh βcε

2
ε

= 1.

(356)

We can define a new variable x = βcε/2, which gives

N (0)U

βcω0/2∫
0

dx
tanh x

x
= 1.

(357)

This determines Tc, which for weak interactions will be low, so βcω0 � 1, and
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8.4. Phenomenology of superconductivity

we can use asymptotics to approximate the integral:

βcω0/2∫
0

dx
tanh x

x
≈ ln(1.13βω0),

(358)

which finally gives

kBTc ≈ 1.13ω0e−
1

N (0)U .

(359)

Note that both the gap and the critical temperature depend on the cut-off
ω0, which is a rather phenomenological parameter. However, their ratio is
independent of them, which gives a famous result from BCS theory:

∆0 = 1.764kBTc.
(360)

8.4 Phenomenology of superconductivity

This is mainly intended as a class on techniques and theory of quantum mat-
ter. But I can hardly tell you about BCS theory without visiting a few of the
phenomena of superconductivity, and how to understand them.

Ginzburg-Landau theory

Most of the most striking phenomena actually arise not from BCS theory,
but from an earlier approach known as Ginzburg-Landau (GL) theory. GL
theory was not originally derived microscopically, but just postulated, like the
Landau theory of phase transitions. Later it was derived from BCS theory.
The key ingredient is to recognize that superconductivity is described by an
order parameter which carries “charge 2” under the electromagnetic U(1) gauge
symmetry. This is nothing but the gap function or pair field. Physically it can
be thought of as the Bose condensate wavefunction of Cooper pairs.

GL theory proceeds by assuming that the free energy of the system can be
written as a local functional of the order parameter and its derivatives, which
can further be expanded in a series in the order parameter. Requiring gauge
invariance and including the magneto-static energy one obtains the celebrated
GL free energy:

F =
∫

d3x

[
1

2m∗

∣∣∣∣( h̄
i
∇+

2e
c

A
)

ψ

∣∣∣∣2 + α|ψ|2 + β

2
|ψ|4 + |B|

2

8π

]
.

(361)

GL theory includes the concept of a complex order parameter taken from
quantum physics of condensates, but is otherwise a classical theory. This free
energy can be derived from our path integral approach by expanding the
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8. Superconductivity

effective action, Eq. (320), in a series in ∆, keeping only the zero Matsubara
frequency ω̄n = 0 corresponding to the time-averaged gap, and expanding
also in q, the “center of mass” momentum of the pairs. When we assume ∆ is
independent of τ, we obtain the action equal to βF, since the imaginary time
integral can be carried out explicitly.

The power of GL theory is its simplicity. We can easily use it to study
phenomena in the superconducting state. For example, it is easy to see the
Meissner effect: a SC expels magnetic field from its interior. To see this, we take
α < 0, for which the minimum free energy state has a non-zero |ψ| =

√
−α/β.

We can write

ψ =
√

n∗s eiθ ,
(362)

where θ is a phase that becomes well-defined in the SCing state.

Meissner effect

Taking the derivative of the free energy with respect to the vector potential
gives the current,

j =
h̄e

im∗
(ψ∗∇ψ−∇ψ∗ψ) +

(2e)2

m∗c
A|ψ|2

=
2eh̄n∗s

m∗

(
∇θ +

2e
h̄c

A
)

.

(363)

Sorry I am probably using cgs units with the factors of c here. By using the
Maxwell equation

∇× B =
4π

c
j,

(364)

we can take the curl of this equation to obtain

∇2B =
16πe2n∗s

m∗c2 B =
4πe2ns

mc2 B ≡ 1
λ2 B,

(365)

taking m∗ = 2m, n∗s = ns/2, where m and ns are the electron mass and density,
respectively (really the latter is the density of superconducting electrons). This
is the Helmholtz equation, and it implies magnetic fields are screened and
decay exponentially towards the interior of a superconductor with screening
length λ. This length is called the “London penetration depth”.

The expulsion of flux from a superconductor is ultimately thermodynamic
in origin. To see this, return to the GL energy and just choose the gauge θ = 0
(this is ok if there are no topological defects), and ψ constant. The free energy
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is

F =
∫

d3x
[

4e2n∗s
2m∗c2 |A|

2 +
|B|2
8π

+ const.
]

.

(366)

A non-zero field in the superconductor requires a gradient of the vector po-
tential, e.g. Ax = Bzy, so that |A| gets arbitrarily large in a large sample.
This means the energy of a superconductor with a non-zero field grows faster
than the volume of the sample! That is obviously too high in energy, and if a
material is forced to accomodate an internal field, it will simply destroy the
superconductivity to do so. For sufficiently small fields, however, the super-
conductivity wins and the field is expelled.

Vortices

Another basic phenomena in superconductors is the existence of vortices. This
is a topological defect in which the phase is not constant but winds non-
trivially:

∮
C

∇θ · dr = 2πnw,

(367)

where nw is an integer winding number, and the contour C encloses the “vor-
tex core”. In a three-dimensional superconductor vortices are curves that can
be extended or form loops. In two dimensions they are point objects.

The existence of supercurrents: currents which flow without dissipation
(by name the defining property of superconductivity) is closely related to the
existence of vortices. One can think of a persistent superflow through an an-
nulus as a large vortex whose core has been “pinned” in the hole inside the
annulus. The winding of the phase around this hole gives the current stability.
For the current to decay vortices must escape from the hole to the outside of
the annulus, one at a time, which costs considerable free energy and is almost
impossible at low temperatures. See Sec.6 of the 217a notes for a more detailed
explanation.

Manifestations of the gap

Generally, phenomena which are related to quasi-particles (electrons, holes)
are not described by GL theory, and require the BCS formulation. The basic
phenomena are captured by the BdG equations, which show that quasiparti-
cles have a gap, like in a semi-conductor, and are mixtures of electrons and
holes. The gap is visible in a number of measurements:

• Tunneling: tunneling from a metal into a superconductor, across a bar-
rier, is suppressed by the gap. Only once a voltage equal to ∆ is applied
is enough energy supplied for an electron to tunnel in or out of the
superconductor. The I-V curve of a N-SC tunnel junction reflects this.
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• Optics: The optical conductivity of a superconductor shows a gap for
frequencies between zero and 2∆. This is like a semiconductor. The dif-
ference from a semiconductor is that the superconductor has a delta
function peak at zero frequency reflecting the superfluid density.

• Thermal conductivity: The condensate, being a single state, has zero
entropy, and so carries no heat. Since the quasiparticles have a gap,
the thermal conductivity in a superconductor is strongly suppressed,
κ ∼ e−∆/kBT . It is interesting that a superconductor is a perfect conduc-
tor of electricity and a very bad conductor of heat. It is different for a
superfluid (why?).

• Thermodynamics: Most thermodynamic quantities are exponentially de-
pendent on temperature at low T, due to the gap. This includes the
specific heat, the penetration depth, etc. Note that this exponential de-
pendence is not true in a gapless superconductor, where the momentum
dependence of ∆(k) includes some zeros at the Fermi surface. The most
famous example is the d-wave superconductivity of the cuprates.

8.5 Topological superconductivity

We’ll finish by linking the subject of superconductivity back to topology.
Modern theory of topological superconductivity focuses on the BdG quasi-
particles, and asks if they might have topological invariants and boundary
modes similar to those of normal electrons. The most interesting aspect of
topological superconductors is their ability to host Majorana fermions.

Majorana chain

A very nice example was provided by Kitaev. It is a one-dimensionless chain
of spin-less (or fully spin-polarized) fermions in the presence of BCS pairing:

H = ∑
j

[
−w(c†

j cj+1 + c†
j+1cj)− µ(c†

j cj −
1
2
) + ∆∗cjcj+1 + ∆c†

j+1c†
j

]
.

(368)

Note that if we Fourier transform the pairing term we have

∑
j

∆c†
j+1c†

j = ∑
k

∆eikc†
k c†
−k = ∑

k

∆
2

(
eikc†

k c†
−k + e−ikc†

−kc†
k

)

= ∑
k

∆i sin k c†
k c†
−k.

(369)

So we can identify the gap function ∆k = i∆ sin k which is odd in momentum.
This is odd-parity pairing. It fits with our prior discussion since the spin state
of the pair is symmetric, which makes it a triplet pair. A singlet is not possible
for spin-polarized electrons. Kitaev’s model is simple because it involves only
nearest-neighbor pairing in real space, but this is not essential.
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Let us fully rewrite the Hamiltonian in momentum space, in order to di-
agonalize it. We have

H = ∑
k

[
−(2w cos k + µ) c†

k ck − i∆ sin k c†
k c†
−k + i∆∗ sin k c−kck

]
.

(370)

We can define the Nambu field

ψk =

(
ck

c†
−k

)
.

(371)

Then we have

H =
1
2 ∑

k
ψ†

k

(
−2w cos k− µ −2i∆ sin k

2i∆∗ sin k 2w cos k + µ

)
ψk ≡

1
2 ∑

k
ψ†

k H(k)ψk.

(372)

The BdG Hamiltonian matrix H(k) has the property of particle-hole symme-
try:

σxH(k)σx = −H∗(−k).
(373)

This is actually required of any BdG Hamiltonian and is really a property
of the rewriting in terms of the Nambu spinor. Note that as a consequence
any eigenstate of H(k) with energy ε is accompanied by another eigenstate
with the opposite energy of H(−k). The negative energy states are in fact
redundant. Of course, we can see this easily find the eigenvalues of H(k),
which are ±εk with

εk =
√
(2w cos k + µ)2 + 4|∆|2 sin2 k.

(374)

For the system to be gapless, i.e. for there to exist a solution to εk = 0, we need
sin k = 0 so k = 0, π, and then we also need 2w cos k + µ = 0 which requires
|µ| = 2|w|. It seems the chain is gapped except at some special critical points
where |µ| = 2|w|. These critical points are not accidental: they turn out to be
indicative of a topological distinction between one phase for |µ| < 2|w| and
another for |µ| > 2|w|.

To understand the nature of the phases, it is helpful to introduce Majorana
fermions. We can define Majorana fermion operators by

γ2j−1 = cj + c†
j , γ2j = −icj + ic†

j .
(375)
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These operators are Hermitian and obey the relations

γ†
l = γl , γlγm + γmγl = 2δlm.

(376)

Majorana fermion operators are weird. It takes two of them to form a single
complex fermion, which is a two level system. So in some loose sense a single
Majorana operator describes “half” of a two-level system. In terms of these
operators, the Hamiltonian becomes

H =
i
2 ∑

j

[
−µγ2j−1γ2j + (w + ∆)γ2jγ2j+1 + (−w + ∆)γ2j−1γ2j+2

](377)

Here we took ∆ real for simplicity. We can get a simple understanding of the
two phases by considering special cases within the two phases. In the phase
with |µ| > 2|∆|, we can take ∆ = w = 0. Then we have

Htriv = − iµ
2 ∑

j
γ2j−1γ2j = −

iµ
2 ∑

j

(
γ†

j γj −
1
2

)
.

(378)

This is obviously a trivial case. In the ground state all the original fermion
states are either occupied or empty.

The other phase is more interesting. We can take ∆ = w and µ = 0. Then
we obtain

Hnon−triv = iw ∑
j

γ2jγ2j+1.
(379)

This looks a lot like the previous trivial Hamiltonian, but with one important
exception: the “partners” of the Majorana fermions have been switched. The
fermions with even index are now paired with the odd index to their right,
instead of to their left. We can “solve” Eq. (379) by going back to complex
fermion operators, using the new combinations:

c̃j =
1
2
(γ2j + iγ2j+1), c̃†

j =
1
2
(γ2j − iγ2j+1).

(380)

which gives

Hnon−triv = 2w
N−1

∑
j=1

(
c̃†

j c̃j −
1
2

)
.

(381)

Each of the new fermion modes is just occupied or empty. This looks almost
the same as for the trivial phase, but notice that we only obtain N − 1 com-
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plex fermions this way, for a chain of N original sites. This is because there are
unpaired Majorana fermions at the ends: γ1 and γ2N do not enter the Hamil-
tonian. These are often called “Majorana zero modes”, although this is not as
good a terminology as unpaired Majorana fermions. We can combine them
into a new operator D = iγ1γ2N which has eigenvalues ±1 and commutes
with Hnon−triv. This means that the system has a two-fold degeneracy. The
degeneracy is unusual in that it is a two-level system which is not localized
anywhere in space, but rather is “shared” between the two ends.

Formally, we can introduce one more complex fermion d, d†, and write
D = 2d†d − 1, but this fermion is completely non-local. The two degenerate
states are connected by the action of d or d† (or γ1, γ2N), and hence differ by
±1 fermion. In fact, for an isolated system of fermions, we can always define
a fermion parity operator, P = (−1)N f , where N f is the total fermion number,
and this fermion parity must be conserved since the Hamiltonian is a bosonic
operator in which all terms contain an even number of fermion operators. In
the Majorana representation, the fermion parity is

P =
N

∏
j=1

(−iγ2j−1γ2j).

(382)

We can see that each factor of P is just what appears in Htriv, and so P is
uniquely fixed in the ground state of the trivial phase. In the non-trivial phase,
it is useful to rewrite P by

P = −iγ1

(
N−1

∏
j=1

(−iγ2jγ2j+1

)
γ2N .

(383)

In the ground states of Hnon−triv, the operators inside the product are all fixed,
so P reduces to D. Thus two states of opposite parity are degenerate in this
case.

Now we can imagine perturbing away from the special values ∆ = w,
µ = 0. In general this will introduce coupling between the pairs of Majo-
ranas. However, since there is a large gap, the internal Majoranas (or the cor-
responding complex fermions) can be integrated out to obtain some effective
Hamiltonian containing only the two Majoranas at the ends:

Heff = −itγ1γ2N .
(384)

Here t is the result of integrating out the internal fermions, but in the limit of
a long chain, we expect that t decays exponentially with N. The parameter t
describes the splitting (2|t|) between the two almost-degenerate parity states.
Importantly, it vanishes exponentially with the length of the chain, and so
the degeneracy is robust and restored in the thermodynamic limit. One can
actually directly obtain the wavefunctions of the Majorana zero modes by
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solving the BdG equations with an open end in a semi-infinite system.
The above approach focuses on the boundary states of the Majorana chain.

We could define a boundary topological invariant which is the parity of the
number of unpaired Majorana modes at one edge. This is +1 in the trivial
phase and −1 in the non-trivial phase. It is possible to also define a bulk in-
variant, but due to time I will not do this now. Kitaev’s original paper explains
this very nicely.

Other topological superconductors

Kitaev’s topological phase is an example of a topological superconductor with
no special symmetries in one dimension. If one imposes more symmetries,
for example adding time-reversal symmetry, the structure changes. Dimen-
sionality also plays a role. For global non-unitary symmetries, Schnyder and
colleagues, and independently Kitaev, worked out a full classification of topo-
logical superconductors (and insulators) at level of quadratic fermion Hamil-
tonians. This has a beautiful structure, and is now known as the “periodic
table” of topological insulators and superconductors (periodic because it has
some repeating structure). You might read about it. Even this is not a complete
story, and it is known that some topological phases are modified or unified by
interactions. We will not get into any more of this here.

Instead of attacking this full classification question, I will give an example
of another topological superconductor, this time in two dimensions. This is
the spin polarized “p+ip” superconductor, with the gap function

∆(k) = 〈ckc−k〉 = (kx + iky)v(k),
(385)

where v(k) is some function of the magnitude k = |k| only. This is an odd-
parity state as it must be for spin-polarized electrons, and it is intrinsically
complex, and so breaks time-reversal symmetry. There is a conjugate state
which is physically distinct where the prefactor in Eq. (385) is replaced by
kx − iky. For such a gap function, the BdG Hamiltonian is

H = ∑
k

[
εkc†

kck + v(k)(kx + iky)c†
kc†
−k + h.c.

]
.

(386)

It is convenient to adopt the Nambu notation (Eq. (371)), and rewrite this as

H =
1
2 ∑

k
ψ†

k

(
εk v(k)(kx + iky)

v(k)(kx − iky) −εk

)
ψk.

(387)

From this one can extract the BdG energies, which are ±E(k), with

E(k) =
√

ε2
k + |v|2|k|2.

(388)
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As in Kitaev’s chain, we can ask when this is gapless. The second term is zero
if and only if k = 0, so the energy vanishes only if εk=0 = 0. One can take a
simple model with εk = k2/(2m)− µ, and the transition occurs when µ = 0.

In the vicinity of the transition, we can focus on the critical modes around
k = 0, and therefore approximate εk ≈ εk=0 ≡ −µ, and also approximate
v(k) ≈ v(0) = v, and the BdG Hamiltonian becomes

H =
1
2 ∑

k
ψ†

k

(
−µ v(kx + iky)

v(kx − iky) µ

)
ψk =

1
2 ∑

k
ψ†

k
[
vkxτx − vkyτy − µτz]ψk.

(389)

We recognize this as a 2d Dirac Hamiltonian. The parameter µ plays the role
of a Dirac mass. We know that such a 2+1d Dirac equation describes an integer
quantum Hall transition, with the Hall conductivity changing by one unit as
the mass changes.

But wait! The Nambu Hamiltonian is redundant. Only half of the modes
are actually physical. Due to this redundancy, there is actually only one branch
of excitations, not two, described by Eq. (389). This is a 2d Majorana fermion,
and the transition at µ = 0 describes a critical Majorana fermion, not a critical
Dirac fermion. This distinction is crucial, and quite interesting. For our simple
model, there are two phases.
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