

GRAPHENE

LECTURES

Continuum Model

$$\mathcal{H}_{ip} = -i\mathbf{v}_F \vec{z} \cdot \vec{p} + \frac{8\pi k_B}{2} z^2 \gamma^2 - \sum_j (e^{-i\vec{q}_j \cdot \vec{r}} T_j \gamma^+ + h.c.)$$

$$T_j = V + W(S^j z^+ + \bar{S}^j \bar{z}^-)$$

BM model

$$u - t'_{\text{AA}/3}$$

$$W t'_{\text{AB}/3}$$

One can just solve this thing.

$$\mathcal{H}_{ip} |\Psi\rangle = \epsilon |\Psi\rangle$$

Usually do this by expanding in plane waves

$$|\Psi\rangle = \sum_{\text{of } \epsilon \text{ RLV}} |\Psi_{\epsilon, \vec{q}}\rangle e^{i(\epsilon t + \vec{q}) \cdot \vec{r}}$$

\uparrow
4-component spinor.

Truncate to $|\vec{q}| < \Lambda$ & increase Λ to converge.

Magic happens in this solution. I do not have a simple explanation. But it is not a hard calculation. Enough to take 4 plane wave components already.

Features of the solution

① There are always DPs at k_m, k_m'

Check?
Data

(actually old days \rightarrow large angles.)

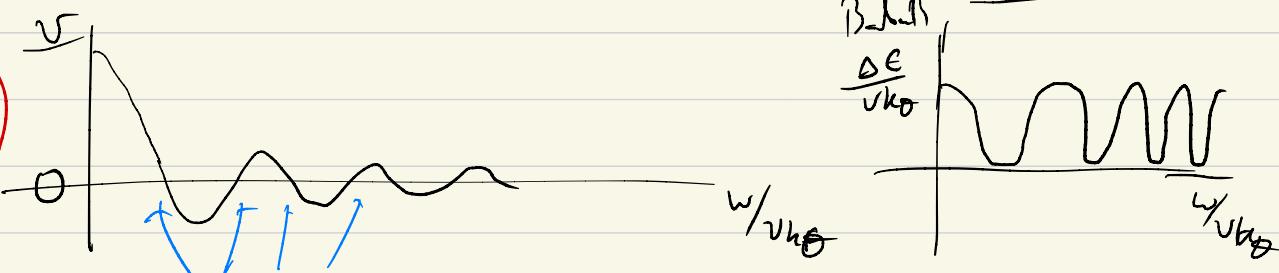
\Rightarrow twisting "decoupler" 2 layers

Correspond to $\frac{\omega}{\nu k_0} \ll 1$.

- Basically BM model preserves $C_2^2 TR \rightarrow$ DPs stable.
 $\leftarrow C_3$ (can't move)

② Velocity at DPs \leftarrow Bandwidth shrink \leftarrow oscillate:

SHOW
SLIDES



"magic angle" $\theta \approx 1.1, 0.5, \dots$

What is going on? No one really knows!
But we can solve it.

③ Many aspects near magic angles depend on details

e.g. Separation of flat bands from next bands.
Particle/hole symmetry breaking.

SLIDES

④ Sublattice

"Theoretist Problem"

- Flat bands mainly have weight in AA regions
"metal puddles"

- But Wannier centers at AB/BA regions.
- Hard to write a single "Fragile Topology" Tight Binding model

Po, Vishwanath, Bernevig, ...

Rough issue: bands for 1 valley contain 2 DPs (1 from each layer) both with same winding.

Very hard to find any real physical implication of this.

Definitely no problem w/ continuum model,
w/ flat bands, w/ DPs, etc.

Experiment Problem

- TB6 is not really homogeneous
 - Always variations in first cycle
 - Expt: different contacts can behave differently
 - How does this inhomogeneity (strain) affect the physics?

BUT - Good news

- Still some sharp phenomena
 - Clearly defined insulators, IQHE, SCs
 - ferromagnetism
 - Incoherent "high-T" transport

So: Hopefully as results, we can still think about uniform systems & capture much of it.

Need to go beyond bad Reg

- e^-e^- intr
- e^- -phonon intr.

not a priori obvious.
BUT probably relevant
for insulators.

e-e Interactions

[Should also worry about phonons]

Warning: ? 100? Theory papers I've read few.

Graphene is 1-layer.

Low energy Dirac Theory: Basically \sim FLT

$$H_{\text{eff}} = \int d^2x \left\{ -i\gamma^4 (k^x \gamma^x \partial_x + k^y \gamma^y \partial_y) \psi \right. \\ \left. + \sum_a g_a \psi^\dagger M_a \psi + M_a^\dagger \psi \right\} \\ + \int d^2x d^2x' \frac{e^2}{\epsilon |x-x'|^2 + a_0^2} e^{-|x-x'|/\xi} (\psi^\dagger \psi)_{x'} (\psi^\dagger \psi)_{x'}$$

Logic \rightarrow Integrate out H.C. $e^{-i\varepsilon t} \Rightarrow$ low- ε eff. field theory.

\rightarrow Constraint: Long-Range Coulomb. ε is
If you fix charge density, \rightarrow fixed ε .
then there must still be Coulomb. ε .

(One can do this via scalar potential)

Dimensional analysis: $[g_a] = ?$ $\sqrt{\gamma^x \gamma^x} = E/L^2 \Rightarrow \gamma^x \gamma^x = \frac{1}{L^2}$
 $\gamma^x = E$

$$[g_a] = E \cdot L^2 \quad \text{Must be} \quad [g_a] = \frac{e^2 a_0}{\varepsilon}$$

Suppose to Good exp. $(\psi^+)_x \approx (\psi^+)_x$

$$\begin{aligned}
 & \int d^2x' \frac{e^2}{\epsilon \sqrt{(x-x')^2 + a_0^2}} e^{-(x-x')/\xi} \\
 &= \frac{2\pi e^2}{\epsilon} \int \frac{dx' x}{\sqrt{x^2 + a_0^2}} e^{-x/\xi} \quad (\text{if } \xi \gg a_0 \\
 & \quad \text{dominated by } \propto x) \\
 & \approx \frac{2\pi e^2}{\epsilon} \int dx e^{-x/\xi} = \frac{2\pi e^2 \xi}{\epsilon}
 \end{aligned}$$

We see that the LR part is a factor of

$$\boxed{\frac{\xi}{a_0} \text{ larger}}$$

This is "dominant term" approx.

Same reason that we can treat e^- gas in semiconductor as though it has just $1/r$ Coulomb.

So to 1st approximation this applies here.

Bilagen

$$H = H_{\text{cm}} + \int d^2x d^2x' \sum_{ll'} \frac{e^2}{\epsilon \sqrt{(x-x')^2 + d^2(1-\delta_{ll'})}} e^{-(x-x')/\xi} \psi_{ll'}(x) \psi_{ll'}(x') \psi_{ll'}(x)$$

+ subdominant SR part.

l = layer.

d = inter-layer distance.

$\approx 3.4 \text{ \AA}$

c.f. $a = 1.4 \text{ \AA}$

Probably, can neglect "di" denon. ($d \ll \xi$ still).

$$\text{The } H' = \int \frac{e^2 e^{-(x-x')/l}}{\varepsilon|x-x'|} \left(\sum_{\sigma} e^{\sigma \vec{k}_F \cdot \vec{x}} \right)_x \left(\sum_{\sigma'} e^{\sigma' \vec{k}_F \cdot \vec{x}'} \right)_{x'}$$

Usually theorists assume this.

Continuous

Symmetries:

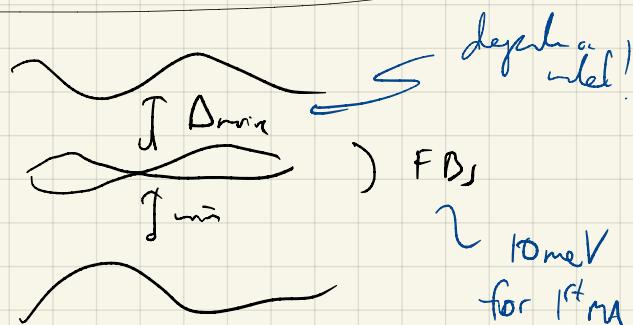
- $SU(2)$ Spin rot. \neq in each Valley.
- e^- # (charge) in each valley is conserved
- $\Rightarrow U(1)_c \times U(1)$

BUT 2 valleys are not identical (They are "reflected")

- No continuous rotation of k valley into k' valley

$$\text{If } "U" \sim \frac{e^2}{\varepsilon l m} \lesssim \Delta_{\text{noise}}$$

STM



Project to Flat bands. [From expt \rightarrow maybe not great?]

$$\psi_{n\sigma} = \sum_{n\sigma k} e^{i\vec{k}\cdot\vec{x}} \phi_{n\sigma k}(x) C_{n\sigma k}$$

\uparrow
valley spin

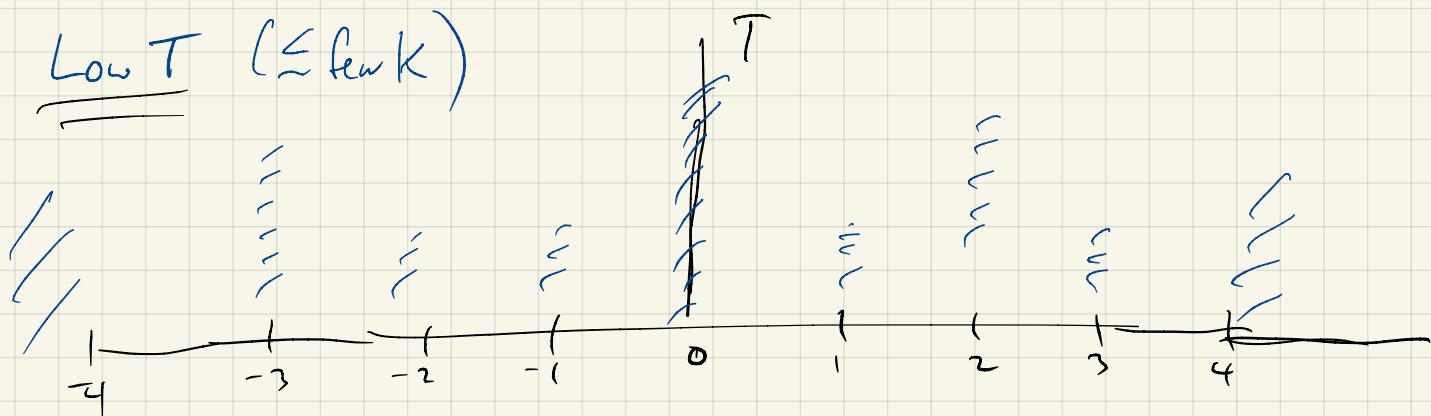
$$H' = \sum_{n_1 n_2 n_3 n_4} \sum_{\sigma \sigma' \sigma''} V_{n_1 n_2 n_3 n_4, \sigma \sigma' \sigma''} (h, h', g) C_{n_1 \sigma k}^+ C_{n_2 \sigma' k} C_{n_3 \sigma'' k} C_{n_4 \sigma' k}$$

V matrix elements are UGLY & depend on details of bands.

They depend on valley but not spin.

So $OK \rightarrow$ This is complicated. What do we want to understand?

* Experiments - Jarillo-Herrero, Dean, Young, Efetov, Goldhaber-Gordon, Kim, Titus ...



① Insulation at integer filling of Moiré lattice
- Some seem to be ferromagnetic, in sense of being enhanced by field
Others not.

② Superconductivity various places, mostly between the insulators
-

higher T ~ Up to $\sim 200K$ \rightarrow Very comprehensive transport study of "incoherent" metal

Tune model system over more than 2 full bands
over more than bandwidth $\sim k_B T$

Phonons? e-e?, Bm? Bloch-Gruneisen

$T \equiv$ 27000 Kphs/km \rightarrow 200

$\sim 10^5$ of K.

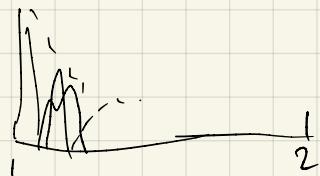
Now should discuss "Slater vs. Mott"

- Analogies: Hubbard model
QH Ferromagnet

How to think about low T?

Two paradigms: Mott-Hubbard System
QH Ferromagnet

• Mott-Hubbard: Large U quenches KE \rightarrow spin degeneracy
 \approx local picture
 total band filling



$$H = - \sum_{\langle i,j \rangle} t_{ij} c_i^\dagger c_j + U \sum_i \sum_{a< b} n_{ia} n_{ib}$$

$U \gg t \rightarrow$ Heisenberg/t-J \rightarrow Probably AFs, maybe QSLs?

all hell breaks loose

• QH FMs \sim "Slater"

S. Girvin, QHE = Novel Excitation
& broken Symmetry 1989
on arXiv

Completely flat band (i.e. LL)

$$p=1 \quad \text{---}$$

$$p=0 \quad \text{---} \quad \int \text{flux}$$

$$\frac{N}{\text{Area}} = n_e = n_T + n_B = \frac{B}{\Phi_0} \times V$$

$$H = \bigcup_{n=0}^{\infty} H_{\text{core}} \bigcup_{n=0}^{\infty}$$

1-e Slater

$$|p_{LL}; k; \alpha = \frac{\pi}{L}\rangle$$

$$V=1 \quad \text{Landau orbit}$$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

$$H_{\text{core}} = \frac{1}{2} \int dx dy \quad \hat{n}(x) \hat{n}(x') V_C(x-x')$$

SU(2) Symmetric $[\vec{S}_{\text{TOT}}, H] = 0$

Then: Know GS. $|4\rangle$ is eigenstate of $\hat{S}_T^2 = S_T(S_T+1)$
at S_T^z and N

$$\text{Consider } N = \frac{B L^2}{\Phi_0} = \frac{4}{\Phi_0} \quad V_{\text{TOT}} = 1.$$

and Maximal S_T^z for that N .

$$\text{To. } S_T = N/2$$

All values of S_T^z have same E

$$S_T^z = N/2$$

This state is unique!

$$|\Psi(S_T = S_T^z = N/2) = \prod_{k \in LL} (a_{k\uparrow}^\dagger |0\rangle)$$

So this must be an eigenstate.

Turns out it is also the ground state.

- Basic reason: Short-range part of Coulomb dominates ($V \sim \frac{1}{r}$) and spin-polarized c has "correlation hole"
 - Cannot occupy same point (or here, same Landau orbit)

So $\langle \Psi | H_c | \Psi \rangle$ is minimum.

* This is exact GS. for $P H_c P$. "QH FM"

Context:

- Also flat band FM is known in many ∇ models - Mielke, Tasaki, Lieb lattice
- Hubbard originally wrote his model as a model for Ferronagnetism (but it is AF at k_F filling)

Lesson for graphene?

* QH Ferromagnets are ideal Hartree-Fock ground state.
If it is close, HF may be good approx.

* Simplest HF \rightarrow Just generalized FMs

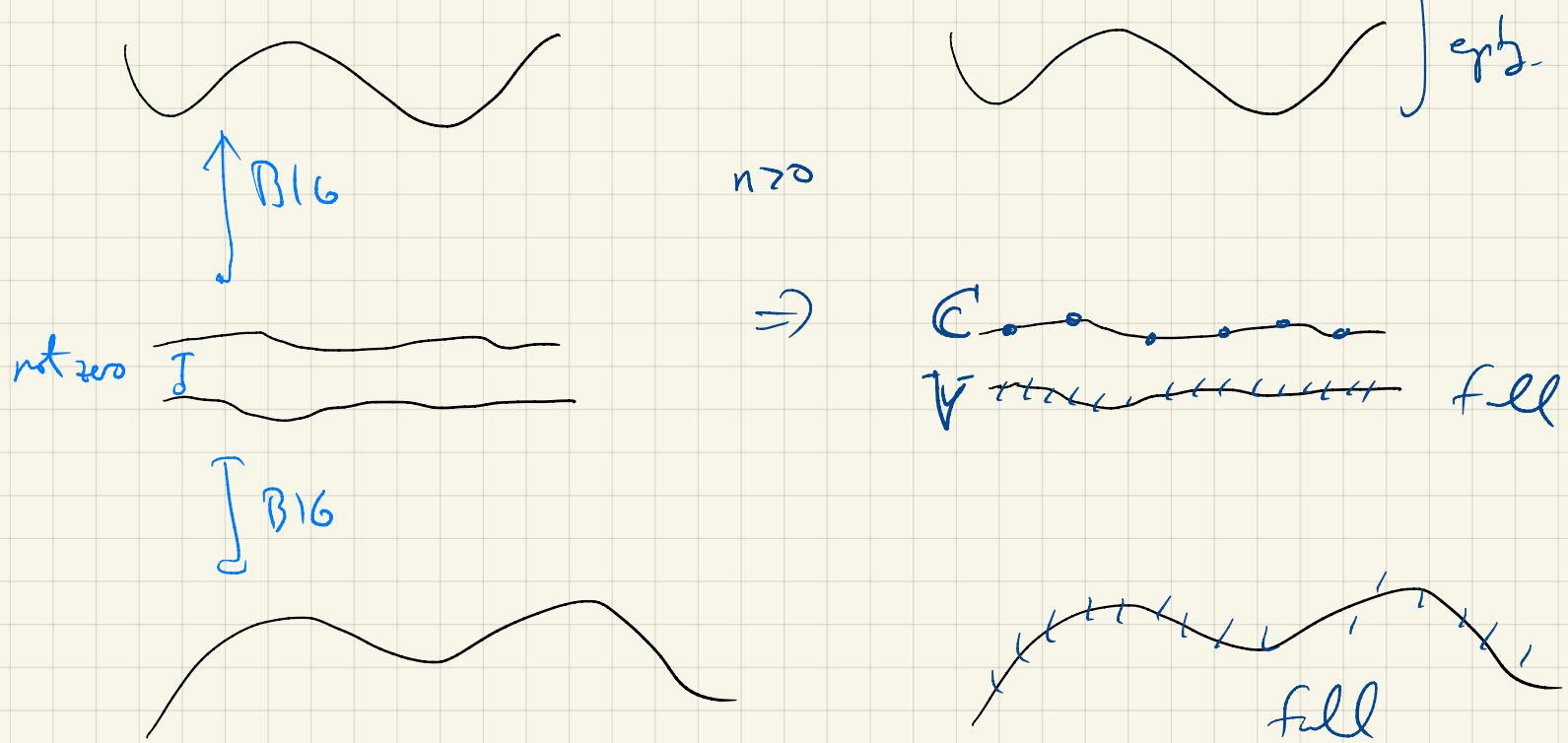
spin \rightarrow spin \times valley

Input: Symmetry is (\approx)

$SU(2)_k \times SU(2)_{k'} \times U(1)_k \times U(1)_{k'}$

not $SU(4)$. A bit like bilayer QH FMs

Suppose bands are like this:



→ Project + G b.d.

Reall $S_T, S_T^2, N_k, N_{k'}$ good ON,
(or $S_{T\bar{v}}, S_{T\bar{v}}^2$)

$$N_k + N_{k'} = N_e$$

$N_e = 1 \rightarrow 1e^-/\text{moiré cell} \rightarrow 1 \text{ full band}$

e.g. suppose $n_k^e = 1, n_{k'}^e = 0$ $S_k^2 = N/2$ $S_k^{tot} = N/2$
again a unique state.

$$|+\rangle = \prod_k G_{R,T}^+(k) |0\rangle$$

Symmetry: k vs k' discrete \rightarrow DWs
 T vs \bar{T} \rightarrow vs ↓ continuous. \rightarrow Skyrmions/magnons

Such a state is valley-polarized.

Also if $C + V$ are really split, DPs gapped,
so expect valley Chern #?

\therefore May be QAHE

$n_e = 3$ Similar except one band of holes

$$|4\rangle = \prod_k C_{kT}^{(1)} | \text{Full} \rangle$$

$n_e = 2$? Could be spin FM.

$$|4\rangle = \prod_k C_{kT}^{(a)} C_{k'T}^{(a)} |0\rangle$$

no valley polarization.

Or valley FM

$$|4\rangle = \prod_k C_{kT}^{(a)} C_{kS}^{(a)} |0\rangle$$

no spin polarization
spin singlet.

$n_e = 0$? Just need to separate $C - V$. Break C_2T or $SU(2)$

This stuff is rather trivial stealing of old QH ideas.
Even valley dof already done in QHFs in graphene.

Everything becomes a matter of numbers when we start
giving band width etc.

What's really new?

- Well, I think QHFs at zero field is new. \rightarrow QAHE. Can really see both $\sigma = \pm \frac{ne^2}{h}$
- Also, mechanism for QHE is NOT LLs. It is really tied to Valley FM.
- Valley FM is orbital FM. (Not spin).
- Opportunity to study orbital domain $\&$ DWs "topological moiré spintronics"