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TOPOLOGY IN SPIN SYSTEMS

• Previous talks: topology of “free” electron problems 

• How do we apply topology to spin systems?? 

• Find some emergent fermions 

• Couple the spins to electrons 

• avoid fermions completely 
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KITAEV MODEL
Dr. Alexei Kitaev, KITP & Microsoft (KITP Colloquium 11-09-05) Anyons in an Exactly Solved Model and Beyond Page 4
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NON-ABELIAN PHASE

• In an applied magnetic field, the Majoranas acquire a gap 

• BdG Hamiltonian for a topological superconductor

8.2. Derivation of an effective Hamiltonian

What if the perturbation does not respect the time-reversal symmetry? We will now
show that the simplest perturbation of this kind

V ¼ "
X

j

ðhxrx
j þ hyr

y
j þ hzrz

jÞ; ð45Þ

does open a spectral gap. (Physically, the vector h = (hx,hy,hz) is an external magnetic field
acting on all spins.) For simplicity, we will assume that Jx = Jy = Jz = J.

Let us use the perturbation theory to construct an effective Hamiltonian Heff acting on
the vortex-free sector. One can easily see that H ð1Þ

eff ¼ 0. Although the second-order term
H ð2Þ

eff does not vanish, it preserves the time-reversal symmetry. Therefore, we must consider
the third-order term, which can be written as follows:

H ð3Þ
eff ¼ P0VG 0

0ðE0ÞVG 0
0ðE0ÞVP0;

where P0 is the projector onto the vortex-free sector, and G 0
0 is the unperturbed Green

function with the vortex-free sector excluded. In principle, the Green function can be com-
puted for each gauge sector using the formula G 0ðEÞ ¼ "i

R1
0 eiðE"H 0þ idÞtdt (where d is an

infinitely small number). For fixed values of the field variables ujk the unperturbed Ham-
iltonian may be represented in the form (18) and exponentiated implicitly by exponentiat-
ing the corresponding matrix A; the final result may be written as a normal-ordered
expansion up to the second order. However, it is a rather difficult calculation, so we will
use a qualitative argument instead.

Let us assume that all intermediate states involved in the calculation have energy
DE &j J j above the ground state. (Actually, DE ' 0:27 j J j for the lowest energy state
with two adjacent vortices, see Appendix A.) Then G 0

0ðE0Þ can be replaced by
"ð1"P0Þ= j J j. The effective Hamiltonian becomes

H ð3Þ
eff & " hxhyhz

J 2

X

j;k;l

rx
jr

y
kr

z
l; ð46Þ

where the summation takes place over spin triples arranged as follows:

ð47Þ
Configuration (a) corresponds to the term rx

jr
y
kr

z
l ¼ "iDlûjlûklcjck (where Dl may be omit-

ted as we work in the physical subspace), or simply "icj ck in the standard gauge. Config-
uration (b) corresponds to a four-fermion term and therefore does not directly influence
the spectrum. Thus, we arrive at this effective Hamiltonian:

ð48Þ

26 A. Kitaev / Annals of Physics 321 (2006) 2–111

field induces a fermion mass, 
very similar to the Haldane 
model (except Majorana)

chiral Majorana edge mode

He = � iv

4

Z
dx ⌘@x⌘
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Like p+ip edge state except 
the fermions are not 

electrons



THERMAL QUANTUM HALL EFFECT

• Edge state picture
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a universal prediction for chiral “Ising 
anyon” phase: agnostic to 

microscopic spin interactions

Ix = H�Ty
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MATSUDA: QUANTIZED THERMAL HALL EFFECT?

KITAEV SPIN LIQUID

• Kasahara et al, 2018. ⍺-RuCl3

2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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Fig. 2 | Longitudinal thermal conductivity in α-RuCl3. a, Temperature 
dependence of κxx in a magnetic field H applied along various directions 
in the a–c plane. The inset illustrates a schematic of the measurement 
setup for κxx and κxy (see Methods for details). b, κxx at θ = 60°, plotted as a 
function of the parallel field component, H∥. The inset shows TN versus H∥ 

at different field directions. TN is determined by the T dependence of κxx 
shown in a (open symbols) and by the minimum in the H dependence of 
κxx (filled symbols), shown by arrows in the main panel. Crosses show TN 
for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 

= ∗H H  at low temperatures. The experimental error in the detection 
of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.
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Evidence for an emergent chiral 
Majorana fermion edge mode? 

• Tiny Hall angle? Savary 
• Reproducibility? 
• Why should the nonabelian QSL 

be stabilized?

Questions:



KITAEV SPIN LIQUID

• Savary: How about that small Hall angle? 

• Difference from electrical transport: phonons+spins both carry 
heat.  May there be a phonon miracle??

jex

(�T )ph
H

(�T )f
H

Lx

Ly



COUPLE SPINS TO ELECTRONS

• Go to war with the fermions you have, not the fermions you might 
want or wish to have at a later time (Donald Rumsfeld) 

• Magnetic Weyls: Pyrochlore iridates, Mn3Sn, Heuslers, RAlGe,… 

• Topological Kondo insulators: SmB6, YbB12, … 

• Magnetically doped topological insulators: Cr-Bi2Se3, MnBi2Te4,… 

• Magnetic 2d Dirac fermions? Checkelsky



COUPLE SPINS TO ELECTRONS

• Checkelsky: FexSny : Dirac fermions plus spins on a kagome lattice

 
 
Figure 1 | Crystal structure of binary kagome metals. a, Top view of the kagome plane in binary 
kagome metals TmXn. The kagome network consists of 3d transition metal atoms (Tm: Fe, Mn, Co) 
with space-filling X: Sn, Ge atoms at the center of hexagon. The in-plane unit cell is marked with 
the parallelogram. b, Tight-binding band structure of kagome lattice exhibiting two Dirac bands 
at the K-point and a flat band across the whole Brillouin zone. c-e, Stacking sequences of the 
binary kagome metal series TmXn with m:n = 3:1, 3:2, and 1:1 respectively. Structural unit cells 
are marked with solid line. The kagome layers labeled with A-C have different in-plane lattice 
offset. Spacing layers consisting of X atoms in hexagonal arrangement are labeled with X. The 
structural two-dimensionality increases with increasing the ratio of X to T. In the TX (1:1) structure 
(e), the kagome layers are perfectly aligned with one another and are interleaved with X layers, 
while in the T3X structure (d), neighboring kagome layers are shifted with respect to each other. In 
the T3X2 structure (c) both types of stacking coexist. 
 

 
 
 

Old times

II. KAGOME LATTICE MODEL

The simplest model we will consider is the nearest-
neighbor tight-hopping Hamiltonian on the kagome
lattice,6,10–13

Ht = − t!
"ij#

$ci
†cj + H.c.% , $1%

where the indices i , j denote the sites of the kagome lattice
and "ij#denotes nearest-neighbor pairs of sites. The particles
can be either fermions or bosons. We use this simple model
to demonstrate all the generic flat-band features discussed
above. Aside from providing concrete examples for all the
unique features of flat bands, the analysis of the kagome
model also proves a good model with which to develop the
techniques we will use throughout this paper.

A. Band structure

The band structure of Eq. $1% consists of a single flat band
with energy !0$q%=2t and two dispersive bands with

!"$q% = − t$1 " &3 + 2#$q%% , $2%

where

#$q% = cos$q · a1% + cos$q · a2% + cos$q · a3% . $3%

Here a1,2,3 are the three shortest Bravais lattice vectors for
the kagome $and triangular% lattice. The convention we use
for the three vectors illustrated in Fig. 1 is a1= x̂, a2=− 1

2 x̂
+

&3
2 ŷ, and a3=− 1

2 x̂−
&3
2 ŷ. The upper dispersive band !−$q%

touches the flat band at the $ point q=0.
The hopping term in the band basis is of the form

Ht = !
%
'

q
a%

†$q%a%$q%!%$q% , $4%

where the momentum integration is over the first Brillouin
zone and we use %=0," for the band index and & =1,2 ,3
for the basis index. Another set of operators a%$q% are related
to the original operators by a unitary transformation. In par-
ticular, momentum eigenstates of the flat band consist of

a0$q% = !
& =1

3

'&
! $q%c& $q% $5%

with '& $q%=sin$q ·a& +2 /2% /&(3−#$q%) /2, where the Greek
index arithmetic is always modulo 3 and (3−#$q%) /2
=!& =1

3 sin2$q ·a& +2 /2%.

B. Localized states

We can construct localized eigenstates by taking the linear
combinations

AR
† = N'

q
e−iq·Ra0

†$q%&(3 − #$q%)/2, $6%

with N being some normalization. Here and elsewhere we
will use AR

† to denote the creation operator for the localized
eigenstates. Choosing R to be the position at the center of a
hexagonal plaquette of the lattice and normalizing the opera-
tor, we find

AR
† =

1
&6

!
j=1

6

$− 1% jcj
†, $7%

where the indices 1 . . .6 enumerate the six successive sites
around the hexagonal plaquette as illustrated in Fig. 2. These
local operators are very useful, but they are unfortunately not
canonical bosons or fermions. Rather, if cj are bosonic, the
commutation relations are

(AR,AR!
† ) = (R,R! −

1
6

$R,R!, $8%

where the matrix $R,R! is the adjacency matrix of the trian-
gular lattice formed by the centers of the plaquettes. For
fermions, Eq. $8% holds with the commutator replaced by an
anticommutator.

The localized model can be understood directly in real-
space by considering a single triangle around the boundary
of the plaquette. One of the corners has an amplitude of 1

&6 , a
second has −1

&6 , and a third has zero amplitude. The hopping

3

a

a

a

1

2

FIG. 1. $Color online% Conventions for the shortest length Bra-
vais lattice vectors for the kagome lattice $brown arrows%.

6
R

1 2

3

45

FIG. 2. $Color online% Depiction of localized eigenstates on the
boundary of a single and triple plaquette. Those sites with nonzero
weight are denoted by a full $red% circle. The magnitude of the
weights is always the same but the phases alternate between "1.
The phases are denoted by " signs next to the relevant lattice sites.

BERGMAN, WU, AND BALENTS PHYSICAL REVIEW B 78, 125104 $2008%

125104-2

amplitude from the first and second sites onto the third site
cancels out. Thus the eigenstate is localized as a result of
destructive interference, which is a very useful guiding prin-
ciple in identifying these states in other flat-band models. For
a strictly localized wave function to be an eigenstate, the sum
of hopping amplitudes onto sites outside the support of the
wave function must vanish !see, for illustration, Fig. 3".

One can create similar exact single-particle eigenstates on
larger loops by summing over the plaquette states on a num-
ber of contiguous plaquettes and normalizing the state by the
length of the boundary of the area covered by the plaquettes

A!A
† = #

R!A
AR

†
$6

$%!A%
. !9"

Here A denotes the area covered by the plaquettes and %!A%
denotes the length of the boundary of this area. In Fig. 2 we
show one example of a three-plaquette loop.

C. State counting and band touching

We now turn to the main question addressed in this
paper—the origin of the band touching. We will show that
the set of localized eigenstates contains too many states to fit
into the flat band alone. Specifically, the dimension of the
space of localized state with the energy of the flat band has a
dimension which is 1 larger than that of the flat band. This
requires a contribution from a state of another band which,
since it is continuous, must touch the flat band at one point.

Because the difference in question involves only a finite
number of basis states !here 1, but there may be more in
other examples in Sec. III", it is necessary to consider a large
but finite system to make this counting precise !this counting
of states was mentioned in Refs. 11 and 13 but ignored in the
thermodynamic limit". It is advantageous to use periodic
boundary conditions !with a finite integral number of unit
cells in each of two directions", since in this case the Bloch
states in Eq. !5" remain eigenstates !with discrete q" in the
finite system. We must count carefully the number of linearly
independent states with energy !0. The plaquette states cre-
ated by Eq. !7" naively all seem linearly independent since
they occur on different plaquettes. With open boundary con-
ditions, the sum over all the plaquettes in the lattice leads to

a state of the form of Eq. !9" at the boundary of the system.
For periodic boundary conditions !putting the lattice on a
torus", however, this sum vanishes since there is no bound-
ary, Aq=0

† =#RAR
† =0. So when considering the Hilbert space

spanned by the plaquette states !7" we have only !N−1" in-
dependent states, where N is the number of plaquettes !and
unit cells" in the lattice. This accounts for all but one state of
the flat band.

The missing state is accounted for by a noncontractible
loop around the torus. By decorating such a loop with alter-
nating plus/minus signs, as illustrated in Fig. 4, one again
satisfies the conditions for destructive interference of outgo-
ing waves, and the associated wave function represents an
exact eigenstate with the flat-band energy. This state cannot
be expressed as a sum of plaquette operators, or it would be
possible to contract the loop just as any sum of plaquette
states is. We have therefore found the missing state. How-
ever, we have an embarrassment of riches—there is not one
such noncontractible loop, but two. In total we have !N+1"
states, all with the same energy. From the band structure we
know the flat band contains precisely N states, and so the
additional state must come from another band. For this rea-
son, one of the dispersive bands touches the flat band at
exactly one point.

In fact, from the loop states we can construct the plane-
wave Bloch state which touches the flat band explicitly. By
taking an equal weight linear superposition of the noncon-
tractible loops translated in any direction other than that
along which the loop runs, one obtains a state with the same
configuration in any unit cell, which therefore has the Bloch
form with momentum q=0. The double degeneracy of states
with q=0 signifies that not only must one of the dispersing
bands touch the flat band at a point, but that point is at q
=0.

III. LOCAL EIGENSTATES

A. Pyrochlore lattice model

Taking the nearest-neighbor hopping model !1" on the py-
rochlore lattice !instead of the kagome lattice" has two de-
generate flat bands at !0=2t and two dispersive bands

FIG. 3. !Color online" The localized states are exact eigenstates
due to destructive interference between the hopping amplitudes
from sites with nonzero weight !filled circles" to sites outside the
boundary !empty circle". The lattice sites with nonzero weight are
contained in a finite area within a boundary marked by the dashed
line.

! " ! " ! " ! "

"
!
"
!
"
!
"
!

FIG. 4. !Color online" The two noncontractible loop states
around the handles of the torus. One loop consists of the sites
marked by full !blue" circles and the other by the empty !red"
circles. As the other eigenstates in the flat band, the wave function
has an alternating " phase on the sites along the loops.
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kagome metals TmXn. The kagome network consists of 3d transition metal atoms (Tm: Fe, Mn, Co) 
with space-filling X: Sn, Ge atoms at the center of hexagon. The in-plane unit cell is marked with 
the parallelogram. b, Tight-binding band structure of kagome lattice exhibiting two Dirac bands 
at the K-point and a flat band across the whole Brillouin zone. c-e, Stacking sequences of the 
binary kagome metal series TmXn with m:n = 3:1, 3:2, and 1:1 respectively. Structural unit cells 
are marked with solid line. The kagome layers labeled with A-C have different in-plane lattice 
offset. Spacing layers consisting of X atoms in hexagonal arrangement are labeled with X. The 
structural two-dimensionality increases with increasing the ratio of X to T. In the TX (1:1) structure 
(e), the kagome layers are perfectly aligned with one another and are interleaved with X layers, 
while in the T3X structure (d), neighboring kagome layers are shifted with respect to each other. In 
the T3X2 structure (c) both types of stacking coexist. 
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We study “frustrated” hopping models, in which at least one energy band—at the maximum or minimum of
the spectrum—is dispersionless. The states of the flat band!s" can be represented in a basis, which is fully
localized, having support on a vanishing fraction of the system in the thermodynamic limit. In the majority of
examples, a dispersive band touches the flat band!s" at a number of discrete points in momentum space. We
demonstrate that this band touching is related to states which exhibit nontrivial topology in real-space. Spe-
cifically, these states have support on one-dimensional loops which wind around the entire system !with
periodic boundary conditions". A counting argument is given that determines, in each case, whether there is
band touching or none, in precise correspondence to the result of straightforward diagonalization. When they
are present, the topological structure protects the band touchings in the sense that they can only be removed by
perturbations, which also split the degeneracy of the flat band.
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I. INTRODUCTION

The theory of “accidental” touching of energy bands in
crystals has been recognized and studied since the early days
of the quantum theory of solids.1 By accidental, one means
that the touching is not required by symmetry. A spectacular
example of current interest is the Dirac point degeneracy of
graphene, which leads to a host of interesting behavior.2 An-
other class of heavily studied theoretical examples are the
Dirac points appearing in problems of two-dimensional !2D"
electrons moving in periodic potentials in a magnetic field
studied by Hofstadter3 and others. Three-dimensional !3D"
Dirac points occur in models of unusual “spin Hall insula-
tors” occurring with strong spin-orbit interactions.4 In all
these cases, despite the accidental nature of the band touch-
ing, it is robust to perturbations of the Hamiltonian. This
robustness has its origin in momentum-space topology of the
Bloch wave functions.5 For instance, in graphene, each Dirac
point is a source of a "# delta-function flux of Berry cur-
vature, so that the line integral of the Berry connection
#Cdk! · Im$unk%!! k%unk& = "# for any curve C enclosing a Dirac
point. If time reversal and inversion symmetries are main-
tained, the Berry curvature vanishes identically except at
points of band crossing and conservation of its flux protects
the band crossings comprising the Dirac points.

In this paper, we describe the topological protection be-
hind a completely different instance of accidental band
touching, which occurs in a broad class of “frustrated” hop-
ping models. The models which we will consider actually
display, in addition to band crossings, a more dramatic
phenomenon—the presence of one or more completely flat
bands. Models with flat bands are particularly interesting
physically because in this case the effect of interactions is
wholly nonperturbative—interactions can reconstruct the
states within the flat-band manifold without any cost in ki-
netic energy. This is a powerful mechanism for generating
complex and interesting many-body states as attested by the
richness of the fractional quantum Hall effect, which occurs
as a result of the flat-band degeneracy of Landau levels of
electrons in a magnetic field.

The frustrated hopping models we consider here arise in
other contexts, e.g., the description of magnons in frustrated
quantum antiferromagnets and the motion of cold atoms in
p-wave Bloch-band optical lattices !in addition, flat-band
electronic models have been invoked theoretically as models
with exact ferromagnetic ground states6–9". The distinguish-
ing feature of a flat band is that one can construct single-
particle Wannier states !superpositions of wave functions
with all momenta" which are strictly localized, i.e., have sup-
port on only a small finite number of sites. While Wannier
states may always be constructed, only for the case of a flat
band they do remain one-particle eigenstates.

In the vast majority of frustrated hopping models !we will
catalog many below", the flat band is found to touch one of
the dispersive bands at specific points in momentum space.
We study in each case whether this band touching can be
removed by some small changes in the Hamiltonian or
whether it somehow enjoys protection that makes a search
for such perturbations fruitless. The result of this paper is
that in many cases the crossing is protected and can only be
removed by perturbations that also destroy the flatness of the
low-energy band. Like the protection of the Dirac points of
graphene and others discussed above, the mechanism for this
stability is topological. However, because of the localized
character of the states in the flat band, the topological struc-
ture lies in real-space rather than momentum space. Specifi-
cally, the band touchings can be associated with eigenstates
whose support is extended along noncontractible loops
crossing a !toroidal" sample with periodic boundary condi-
tions.

The remainder of this paper is organized as follows. In
Sec. II, we describe in detail the structure of local and topo-
logical loop states for one of our simplest examples, the
nearest-neighbor hopping model on a kagome lattice. We
show how counting of these states requires band touching. In
Sec. III, we give a more abbreviated presentation of the gen-
eralization of these arguments to various other frustrated lat-
tices. Finally, we conclude with a discussion in Sec. IV.
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Figure 1 | Crystal structure of binary kagome metals. a, Top view of the kagome plane in binary 
kagome metals TmXn. The kagome network consists of 3d transition metal atoms (Tm: Fe, Mn, Co) 
with space-filling X: Sn, Ge atoms at the center of hexagon. The in-plane unit cell is marked with 
the parallelogram. b, Tight-binding band structure of kagome lattice exhibiting two Dirac bands 
at the K-point and a flat band across the whole Brillouin zone. c-e, Stacking sequences of the 
binary kagome metal series TmXn with m:n = 3:1, 3:2, and 1:1 respectively. Structural unit cells 
are marked with solid line. The kagome layers labeled with A-C have different in-plane lattice 
offset. Spacing layers consisting of X atoms in hexagonal arrangement are labeled with X. The 
structural two-dimensionality increases with increasing the ratio of X to T. In the TX (1:1) structure 
(e), the kagome layers are perfectly aligned with one another and are interleaved with X layers, 
while in the T3X structure (d), neighboring kagome layers are shifted with respect to each other. In 
the T3X2 structure (c) both types of stacking coexist. 
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been demonstrated that the insensitivity of the latter to thermal excita-
tions allows the parameterization σ σ σ σ= +f ( )xy xx xx xy

A
,0

2 int , where f(σxx,0) 
is a function of the residual conductivity σxx,0, σxx is the conductivity 
and σxyint is the intrinsic anomalous Hall conductivity22. Because σxyint 
does not depend on the scattering rate, in a system with substantial 
Berry curvature, σxyint is then the remnant σxyA  that is observed as σ → 0xx

2  
(Fig. 2c, top inset). Figure 2c demonstrates that σ T( )xy

A  remains rela-
tively unchanged from this remnant value at high temperature, until 
T ≈ 100 K at which an upturn concomitant with increasing σxx(T) is 
observed. This upturn is indicative of the onset of an extrinsic response, 
which is expected16  with the longer relaxation time in this range of σxx; 
the subsequent σxx2  scaling of the additional σxyA  (Fig. 2c, top inset) is 
also consistent with an extrinsic origin22,23. The scattering-rate- 
independent value of σxyA  at high T persists, varying by about 10% down 
to T = 2 K (158 ±  16  Ω−1 cm−1), which corresponds to approximately 
0.27e2/h per kagome bilayer, where e is the electronic charge and h is 
the Planck constant. We identify this contribution as σxyint (Fig. 2c), with 
behaviour akin to that expected from a massive Dirac band23.

These observations point to a substantial Berry-curvature contri-
bution to the transport response in Fe3Sn2 in a geometry that samples 
the kagome planes (Fig. 2c, middle inset). We also measured the  
Hall response perpendicular to the kagome plane σzx (Fig. 2c, lower 
inset). This out-of-plane signal is much smaller (Fig. 2c), with  
the ratio σ σ/zx xy

A A  being less than 10% at the highest T, indicating a 
large relative enhancement of the Berry curvature in the kagome 
plane.

To examine the origin of this Hall response further, we measured 
the electronic structure of Fe3Sn2 by using angle-resolved photoemis-
sion spectroscopy (ARPES). In Fig. 3a, b we show the experimen-
tal Fermi surface and energy–momentum dispersion, respectively, 
of the electronic bands along high-symmetry directions parallel to 
the kagome planes, measured at T = 20 K (see also Extended Data  
Fig. 2). A rich spectrum of electronic excitations with hexagonal 
symmetry is observed, consistent with the metallicity and crystal-
lographic structure described above. More notably, linearly dispers-
ing Dirac cones are observed at the corner points K and K′ of the 
Brillouin zone. This spectrum, which is reminiscent of the electronic 
structure of graphene24, is the long-sought realization of kagome- 
derived Dirac fermions5. These Dirac-like bands are shown in detail 
in the high-resolution energy–momentum section of the ARPES data 
across the K point in Fig. 3c (data are collected along the blue dashed 
line in Fig. 3a and then symmetrized in momentum about K); two Dirac 
cones, separated in energy but centred at K, are resolved. Hereafter, we 
focus on these bands and their role in generating Berry curvature.

The two-fold Dirac cones can also be identified in constant-energy 
contours (Fig. 3d). At the Fermi energy EF (Fig. 3d, top layer), a pair of 
Dirac cones forms two electron pockets centred at K: a circular inner 
pocket and a trigonally warped outer pocket. Moving down from EF 
each pocket shrinks, forming apparent Dirac points at binding energies 
of 70 meV (Fig. 3d, second layer) and 180 meV (Fig. 3d, bottom layer). 
At the midpoint energy (125 meV), the two Dirac cones cross and, 
within our experimental resolution, form a ring of Dirac points in the 
x–y momentum plane. The experimental electronic structure near the 
K point is therefore characterized by two energy-split (∆E = 110 meV) 
interpenetrating Dirac cones. This splitting is a natural consequence 
of the bilayer kagome structure, similarly to the case of multilayer 
graphene24, whereas the exchange splitting due to magnetic order 
is expected25 to be much larger (in excess of 2 eV). Photon-energy-
dependent ARPES (Extended Data Fig. 4) reveals negligible variation 
in the Dirac bands as a function of out-of-plane momentum kz, indi-
cating quasi-two-dimensional (quasi-2D) bands confined to the iron 
kagome bilayer.

Having established the Dirac fermiology of Fe3Sn2, we focus on 
the role of spin–orbit coupling and the possible mass acquisition 
of the Dirac bands. Inspection of the raw ARPES data reveals that 
the spectral intensity at the Dirac point is suppressed substantially 
(Extended Data Fig. 3d), which is more clearly visualized in the second  
derivative of the ARPES map (Fig. 3e). Analysis of the energy distri-
bution curves displayed in Fig. 3f reveals a break between the upper 
and lower branches of the Dirac cone, which signals the opening of an 
energy gap ∆. A quantitative analysis performed by fitting the energy 
distribution curves with Gaussian peaks returns ∆ = 30 ±  5 meV 
(Methods). This value is similar to that predicted previously for spin–
orbit-coupled 3d transition metals in kagome lattices7, but smaller 
than that observed in magnetically doped topological insulators (about 
50 meV)26 ,27 and in hydrogen-decorated graphene (at least 0.5 eV)28.

The emergence of massive Dirac fermions in Fe3Sn2 can be under-
stood as a combination of ferromagnetic splitting and spin–orbit cou-
pling in the underlying kagome geometry. Motivated by the weak kz 
dispersion observed in ARPES, we consider a stacked system of kagome 
layers. In Fig. 4a we show a perfect Fe3Sn kagome layer and the corre-
sponding Brillouin zone. The kagome layer has two-fold and three-fold 
rotational symmetries (C2x and C3z, respectively) that leave the K and 
K′ points invariant and thus form point group D3. In the absence of 
spin–orbit coupling, the two-fold-degenerate crossing (Dirac) points 
at K and K′ belong to a two-fold irreducible representation (E) and 
are therefore protected. As illustrated in Fig. 4b, a Dirac crossing can 
be observed at K in a tight-binding model HK for nearest-neighbour 
hopping on the kagome sites:
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Figure 1 | The kagome structure and Fe3Sn2. a, b, Structure of the 
kagome lattice (a) and the associated Dirac point in the nearest-neighbour 
tight-binding model (b), with the Brillouin zone shown in the inset. The 
band is degenerate, as denoted with red and blue spins. c, d, Ferromagnetic 
kagome lattice with broken time-reversal symmetry (moments in blue) (c) 
and the associated spin-polarized Dirac band with coupling between the 
magnetization and spin (d). e, f, Spin–orbit-coupled ferromagnetic 
kagome lattice with Berry phase φ accrued via hopping (e) and the 
corresponding gapped Dirac spectrum (f). g, The Fe3Sn kagome plane in 
Fe3Sn2, with the kagome network shown in red. h, Transmission electron 
microscopy cross-section of Fe3Sn2 and the corresponding Fe3Sn and 
stanene layers viewed from the [1010] direction.
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where 〈ij〉 indexes nearest-neighbour pairs, t is the hopping integral 
and cj (ci†) is the fermion annihilation (creation) operator, which is 
taken to be spin-polarized owing to exchange. The kagome bilayers in 
Fe3Sn2 (Fig. 4c) are tiled by triangles of two different bond lengths, 
2.59 Å and 2.75 Å, as indicated by the red and blue shading. However, 
the combined unit of these kagome layers and the intervening stanene 
layer preserves the {C2x, C3z} symmetry of the perfect kagome lattice 
and the Dirac points are thus protected by crystal symmetry in the 
absence of spin–orbit coupling. The additional layer degree of freedom 
further enriches the electronic structure. In particular, the ABA layer 
stacking of the structure in Fig. 4c gives rise to bonding–antibonding 
splitting29, as seen in a simple tight-binding model with this additional 
hopping (Fig. 4d).

We next introduce Kane–Mele-type spin–orbit coupling HSOI to the 
tight-binding model HK, with

∑ λ= −
〈 〉

↑ ↑ ↓ ↓H i c c c c( ) (2)
ij

ij i j i jSOI
† †

where λij represents the effect of spin–orbit coupling and ↑ and  
↓ denote the spin quantum number30. Writing λij = λ(Eij ×  Rij) · s, 
where λ is the spin–orbit coupling constant, E is the electric field  
on the hopping path, R is the hopping vector and s represents the 
electron spin, for spin-polarized bands near K and K′ with non-zero 
z polarization sz, HSOI effectively reduces to the Haldane term31. 
Accordingly, for the single-layer case (Fig. 4b), when EF is positioned 
in the Dirac gap, the system enters a Chern insulating phase with 
quantized anomalous Hall conductance7,31.

To connect with the Hall response, we construct a k · p Hamiltonian 
near K and K′ for the dual Dirac fermions and fit to the ARPES data 
(Fig. 4e, inset; Methods). We then calculate the contribution of the 
massive Dirac bands to the Hall response by integrating the Berry 
curvature of the filled states, which yields σ = . ± . /e h(0 31 0 05)xy

calc 2  at 
EF for a kagome bilayer (Fig. 4e), comparable to the observed value 
of σ = . ± . /e h(0 27 0 03)xy

int 2  per bilayer. Remarkably, despite the  
simplicity of our model, the action of the quasi-2D massive Dirac 
fermions at K and K′ largely accounts for the observed Hall response 
with the crystal viewed as a parallel network of bilayer kagome planes. 
However, there are limitations; for example, for a 2D model there is 
no contribution to the out-of-plane Hall response. We suggest instead 
that this out-of-plane response originates from the three-dimensional 
(3D) network of tin atoms and the associated kz-dispersive bands  
near Γ (Methods). The relative smallness of σzxA  is then consistent  
with a minor contribution of tin-atom-derived bands to the overall 
Berry curvature. More generally, the model evidences the role of the 
concentration of Berry curvature in the quasi-2D massive Dirac 
bands, which have small EF comparable to the spin–orbit coupling 
strength16. The robustness of the Hall response observed here is  
comparable to that of the Hall response that is driven by chiral  
antiferromagnetic order in Mn3Sn (ref. 8) and Mn3Ge (ref. 9); 
 however, instead of originating from 3D Weyl nodes10, the Hall 
response observed here is driven by quasi-2D Dirac fermions in a 
ferromagnetic kagome network interleaved with stanene layers.

By combining electrical transport measurements, ARPES and 
theoretical analysis, this study provides a comprehensive proof of 

1,200

1,000

800

600

400

200

0
4003002001000

T (K)

1.2

1.0

0.8

0.6

0.4

0.2

0

V
xx  (10

5 Ω
–1 cm

–1)

Vxy
int

c

Vzx
A

Vxy
A

–15

–10

–5

0

5

10

15

U y
x (

μΩ
 c

m
)

–3 –2 –1 0 1 2 3
B (T)

b

1,200

1,000

800

600

400

200

0

V x
y 

( Ω
–1

 c
m

–1
)

A

50403020100

Vxx (108  Ω–2 cm–2)2

Ix

Ix

Bz

By

Ey

Ez
x

y

z

–0.2

–0.1

0

R
0 

( μ
Ω
�c

m
 T

–1
)

4002000
T (K)

20

10

0

R
s  (+Ω

 cm
 T

–1)

–2

–1

0

1

2

M
 (
P B

 p
er

 ir
on

 a
to

m
)  

M
s 

(P
B
 p

er
 ir

on
 a

to
m

) 

V 
(Ω

–1
 c

m
–1

)

2

1

0
4002000

T (K)

2 K
300 K

2 K
50 K
100 K
150 K
200 K
250 K
300 K
350 K
400 K

a

B || c

B || c

Figure 2 | Anomalous Hall response of Fe3Sn2. a, Magnetization M of 
Fe3Sn2 along the c axis as a function of magnetic induction B at room 
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inset shows the saturation magnetization Ms (measured at 2 T) as a 
function of temperature T. b, Hall resistivity ρyx as a function of B. The 
inset shows the ordinary and anomalous Hall coefficients R0 (black) and Rs 
(purple), respectively, as a function of T. c, Anomalous Hall conductivities 

σxy
A  (red, left axis) and σzxA  (black, left axis) in the x–y and z–x planes, 

respectively, along with the longitudinal conductivity σxx (blue, right axis) 
and estimated intrinsic Hall conductivity σxyint (orange, left axis). The 
measurement configurations for σxy (top) and σzx (bottom) are shown in 
the lower inset; I represents the charge current. The upper inset shows σxyA  
plotted against σxx2 ; the solid and dashed lines are the scaling curves  
(see text).
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principle for engineering band-structure singularities and topolog-
ical phenomena in correlated systems. In particular, we realize lat-
tice-driven6,7,30,31 topological 3d electronic bands, which we suggest 
exhibit the defining properties of a ferromagnetic kagome metal. 
Viewed in isolation, the bands near K can be considered to exhibit 

a 2D ‘Chern gap’—a time-reversal-symmetry-broken topologically 
non-trivial phase that is intrinsic to stoichiometric materials and has 
a dominant contribution to the electrical response at temperatures of 
up to 300 K and above. To isolate these bands, as a step towards reali-
zing high-temperature dissipationless modes15, we propose finding  
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Figure 2 | Photoemission experiments on FeSn. a,b, Two representative XPS spectra of in situ 
cleaved FeSn, from which we identified the surface termination as Sn and kagome layers 
respectively. c,d, Fermi surfaces of FeSn measured on Sn and kagome terminations respectively. 
The Brillouin zone is marked with the red solid hexagon. Dashed black circle and triangle 
schematically represent the prominent Fermi surfaces centered at the K-point. e,f, Energy-
momentum dispersion of FeSn across the K-point along the dashed red line marked in c,d. DC1 
and DC2 indicate the position of Dirac points. Momentum distribution curves at Fermi energy are 
overlaided, with arrows indicating peaks at kF.  g-j, Constant energy maps measured on the kagome 
termination at +0.4 eV, +0.2 eV, 0 eV, and –0.2 eV with respect to the ED1, with clear shrinking 
and reopening of the Dirac pocket as the energy crosses the Dirac point. k,l, Constant energy map 
above and below DC1 respectively highlighting the modulation of photoemission intensity around 
the Dirac point. m, Dirac wave function on three sublattices of kagome lattice featuring Berry 
phase p acquired after 2p azimuthal rotation. n,o, Simulation of sublattice interference pattern of 
kagome lattice from Dirac wave functions in m. Colorbar at the bottom right of each panel 
indicates intensity from minimum (bottom) to maximum (top). 
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KAGOME DIRAC FERMIONS?

• Fe3Sn2 (bilayer)
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where 〈ij〉 indexes nearest-neighbour pairs, t is the hopping integral 
and cj (ci†) is the fermion annihilation (creation) operator, which is 
taken to be spin-polarized owing to exchange. The kagome bilayers in 
Fe3Sn2 (Fig. 4c) are tiled by triangles of two different bond lengths, 
2.59 Å and 2.75 Å, as indicated by the red and blue shading. However, 
the combined unit of these kagome layers and the intervening stanene 
layer preserves the {C2x, C3z} symmetry of the perfect kagome lattice 
and the Dirac points are thus protected by crystal symmetry in the 
absence of spin–orbit coupling. The additional layer degree of freedom 
further enriches the electronic structure. In particular, the ABA layer 
stacking of the structure in Fig. 4c gives rise to bonding–antibonding 
splitting29, as seen in a simple tight-binding model with this additional 
hopping (Fig. 4d).

We next introduce Kane–Mele-type spin–orbit coupling HSOI to the 
tight-binding model HK, with

∑ λ= −
〈 〉

↑ ↑ ↓ ↓H i c c c c( ) (2)
ij

ij i j i jSOI
† †

where λij represents the effect of spin–orbit coupling and ↑ and  
↓ denote the spin quantum number30. Writing λij = λ(Eij ×  Rij) · s, 
where λ is the spin–orbit coupling constant, E is the electric field  
on the hopping path, R is the hopping vector and s represents the 
electron spin, for spin-polarized bands near K and K′ with non-zero 
z polarization sz, HSOI effectively reduces to the Haldane term31. 
Accordingly, for the single-layer case (Fig. 4b), when EF is positioned 
in the Dirac gap, the system enters a Chern insulating phase with 
quantized anomalous Hall conductance7,31.

To connect with the Hall response, we construct a k · p Hamiltonian 
near K and K′ for the dual Dirac fermions and fit to the ARPES data 
(Fig. 4e, inset; Methods). We then calculate the contribution of the 
massive Dirac bands to the Hall response by integrating the Berry 
curvature of the filled states, which yields σ = . ± . /e h(0 31 0 05)xy

calc 2  at 
EF for a kagome bilayer (Fig. 4e), comparable to the observed value 
of σ = . ± . /e h(0 27 0 03)xy

int 2  per bilayer. Remarkably, despite the  
simplicity of our model, the action of the quasi-2D massive Dirac 
fermions at K and K′ largely accounts for the observed Hall response 
with the crystal viewed as a parallel network of bilayer kagome planes. 
However, there are limitations; for example, for a 2D model there is 
no contribution to the out-of-plane Hall response. We suggest instead 
that this out-of-plane response originates from the three-dimensional 
(3D) network of tin atoms and the associated kz-dispersive bands  
near Γ (Methods). The relative smallness of σzxA  is then consistent  
with a minor contribution of tin-atom-derived bands to the overall 
Berry curvature. More generally, the model evidences the role of the 
concentration of Berry curvature in the quasi-2D massive Dirac 
bands, which have small EF comparable to the spin–orbit coupling 
strength16. The robustness of the Hall response observed here is  
comparable to that of the Hall response that is driven by chiral  
antiferromagnetic order in Mn3Sn (ref. 8) and Mn3Ge (ref. 9); 
 however, instead of originating from 3D Weyl nodes10, the Hall 
response observed here is driven by quasi-2D Dirac fermions in a 
ferromagnetic kagome network interleaved with stanene layers.

By combining electrical transport measurements, ARPES and 
theoretical analysis, this study provides a comprehensive proof of 
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Figure 2 | Anomalous Hall response of Fe3Sn2. a, Magnetization M of 
Fe3Sn2 along the c axis as a function of magnetic induction B at room 
temperature (T = 300 K; orange) and low temperature (T = 2 K; black). The 
inset shows the saturation magnetization Ms (measured at 2 T) as a 
function of temperature T. b, Hall resistivity ρyx as a function of B. The 
inset shows the ordinary and anomalous Hall coefficients R0 (black) and Rs 
(purple), respectively, as a function of T. c, Anomalous Hall conductivities 

σxy
A  (red, left axis) and σzxA  (black, left axis) in the x–y and z–x planes, 

respectively, along with the longitudinal conductivity σxx (blue, right axis) 
and estimated intrinsic Hall conductivity σxyint (orange, left axis). The 
measurement configurations for σxy (top) and σzx (bottom) are shown in 
the lower inset; I represents the charge current. The upper inset shows σxyA  
plotted against σxx2 ; the solid and dashed lines are the scaling curves  
(see text).
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principle for engineering band-structure singularities and topolog-
ical phenomena in correlated systems. In particular, we realize lat-
tice-driven6,7,30,31 topological 3d electronic bands, which we suggest 
exhibit the defining properties of a ferromagnetic kagome metal. 
Viewed in isolation, the bands near K can be considered to exhibit 

a 2D ‘Chern gap’—a time-reversal-symmetry-broken topologically 
non-trivial phase that is intrinsic to stoichiometric materials and has 
a dominant contribution to the electrical response at temperatures of 
up to 300 K and above. To isolate these bands, as a step towards reali-
zing high-temperature dissipationless modes15, we propose finding  
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Q: AHE strongly 
decreases with 

lower 
temperature?

• FeSn (single layer)
Ideal FeSn Kagome Structure

M. Kang, L. Ye, et al., arXiv:1906.02167 (2019)

1 nm

Phys. Scr. 11, 47–54 (1975).
Localization scale ~ 0.5 nm

Broader Scale
Î Flat Band!

Band width of Dirac band: >1 eV
Band width of flat band ~ 0.1 eV

Flat band??!??!

Q: Correlation effects?
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• Savary: surprising transport phenomena in CeAlGe - an 
antiferromagnetic topological semimetal 

• Let me spoil the surpriseFigures
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Lucile will explain this!
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