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This talk

1. Main subject: dynamics of an antiferromagnet subjected
to strong optical fields

2. If there's time: some new results on excitations of a
quantum spin liquid
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experimental inspiration
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Ultra-tfast Manipulation of
Quantum Matter
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Floquet-Bloch states in Bi,Ses Photo-induced conductivity changes in K3Cqo
Wang et al, Science 2013 Mitrano et al, Nature 2016

Couple to electrons Couple to phonons?
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Square lattice antiferromagnet ~ Strong SOC

Good venue for light-spin interactions



Ultratast experiments

Gufeng Zhang et al, Averitt group, UCSD, in preparation

"Resonant” versus

Kerr angle ~ magnetization “non-resonant”



Phenomena
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* Oscillation frequency 0.57THz = 2meV independent of
details of pump: intrinsic magnon energy
* Pumping much more efficient for 9micron light.




Phenomena
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Questions
e \WWhat is the magnon oscillation and why is it visible?
* How is the magnon excited by sub-gap light?



Phenomena
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Na
Rotation (mrad.)

c.f. T. Satoh et al, 2010 - NiO
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Questions
e \WWhat is the magnon oscillation and why is it visible?
* How is the magnon excited by sub-gap light?



Magnons

® Gross features: square lattice Heisenberg antiferromagnet
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RIXS: J. Kim et al, PRL 2012

Magnon is a very low energy feature



Anisotropy

Unit cell doubled by octahedral rotation
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DM is removed in local frame
G. Jackeli+G.Khaliullin, 2009
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Fits to RIXS give J~60meV and §~.05

Small easy-plane anisotropy



Spin wave theory

® Holstein-Primakoff ST =67 _isY = /25 — ataa
= (ST S*=S-ala

Heq = HY + HD + HE + O(1/5)

= Eow magnon interactions

(2) = Z Ey akak

| out of|plane mode. Gap ~ 30meV! Too big to be the

oscillating magnon

(/2,772) (7.0) (/252 (rr) (@0
gapless Goldstone mode of in-plane rotations



In-plane anisotropy

® Even weaker effect gives tiny gap to in-plane magnon

argue due to lattice distortion induced by
spin order

X

Hyr=T) S —5'S!
(i)

[~6ueV (1) wo >~ 85VTJ ~2meV

Porras et al, 2019

Oscillation matches in-plane magnon.



Magnetization oscillation

® Q: Why does Kerr angle oscillate if magnon is in-plane??

In-plane spin rotation <@g out of plane torque

relation to magnons
(-1)'S — ./ (4 _ of
S = ((1)(iu()Xi)) . >/2 I(a a )

m=+/S/2(a+al)

z _ -1 slow modes - hydrodynamic
dSi—thy—hS’-z Oiu=x"m
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equations valid even when

magnons scatter
uniform magnetization oscillates out of

phase with in-plane angle u



Pumping

® Strategy: light creates source terms for EOM

Oru = X_lm +hm(t)

dem = —rk u +hy(t) effective fields drive during pump pulse

effective initial conditions

m(t +
decay/relaxation negligible /\ (2) drm(t,
1 A
e Ae

Theory: include light-matter interaction and

integrate out higher energy modes to obtain hy, h,



Coupling to E-tield

® Assumption: E-field of light dominates. Strong time-
reversal-symmetry constraints

T:E~E §--5 R . Me ~ g E°S/'S]

® General symmetry allowed couplings

He =Y [gle,- (B (SYS70 +S7S7,,) — (x 5 y)]

j staggering due to
+ & (E,51SY, — ES'S! .
£2 ( y<iZit +y> octahedral rotations
+ 83€j (EySf-’SﬁX - EXS;(S;:L)/)

important!
+ g1€;S? (E,S%,, — ESZ,)

+g5(Ey2-Si xSipx — Ex2-5; XSi—l—y)}

microscopic calculations confirm these terms

Katsura, Nagaosa, Balatsky, PRL 2005
Bolens, PRB 2018



Bosons

® Holstein-Primakoft: e = (ak,a’ )7

He = Eu(£)[04" a + O4'pvats + O35 casic + O(1/S%)]

~ Re (€,e™") At
Floquet drive

Energy (eV)

e Cannot excite single magnon due to momentum conservation
* Two magnon process is resonant: generates pairs with k and -k
?? How is k=0 magnetization created?



Formalism

e Non-equilibrium Keldysh method: evolve both bra and ket
W(t)) = U(t, —00)|¥(~00))
(O(t)) = (¥(00)|U(—00,t)OU(t, —00)[¥(~00))

e Keldysh contour

=-00 <

) tete

t=_oo >

Z = /D[a+, a_] exp(iS)

S = Z S/dt {Z 55,,-i8ta5,,- — H[{és,iv as,i}]}
s==4 i

path integral over

doubled fields



Formalism

e Non-equilibrium Keldysh path integral

He = Eu ()[04 va + O5'pvave + O3 cvasc + O(1/S°)]

— __{:__..L + ____..< + - 4+ .

* Now integrate out “fast” fields: internal lines

*
LS L 4

leading diagram




Formalism

e Non-equilibrium Keldysh path integral

He = Eu ()[04 va + O5'pvave + O3 cvasc + O(1/S°)]

— __{:__..L + ____..< + - 4+ .

* Now integrate out “fast” fields: internal lines

.
~ ’

leading diagram

involves boson interactions!



Physical picture

® Step 1:

photon generates coherent pairs

s

® Step 2: Interaction “proximitizes” low
energy condensate = magnons
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Results

® Effective fields given by loop integrals

_ ¢2,,u¢3,1/
h ~ /d2k5 E, .
g B,g__:il Q+ fEc+ f'Eq-k +in

dissipative virtual
separates into: P

~ 6(2 — Ex — Eq—x) " 06— Ex— Eq &



Results

® Effective fields given by loop integrals

_ ¢2,,u¢3,1/
h ~ /d2k5 E, .
g B,g__:il Q+ fEc+ f'Eq-k +in

dissipative virtual

separates into: P
~ §(Q — B — Eq—«) ~ g
— L — LQ—k

® Structure of contributions to effective fields

EE 1 EE total intensity  chiral intensity
. xCy yEx _ ~
sin 2¢ x { £l —E,E,  sindpx (EEc+E/E,) i (&€, — &)

traceless symmetric identity antisymmetric



Results

® Effective fields given by loop integrals

_ ¢2,,u¢3,1/
h ~ /d2k5 E, :
g B,BZ::il Q+ fEc+ f'Eq-k +in

dissipative virtual

separates into: P
~ §(Q — B — Eq—«) ~ g
— Tk T LQ-E

® Structure of contributions to effective fields

g LEE total intensity | chiral intensity
. xCy yEx _ ~
Sin 2 {gxéx _&,8,  sinddx (EE+EE) | i(6E -EE)

linear polarization



Results

® Effective fields given by loop integrals

_ ¢2,,u¢3,1/
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dissipative virtual
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® Structure of contributions to effective fields

g LEE total intensity  chiral intensity
. xCy yEx _ ~
Sin 2 {gxéx _&,8, | sinddx (EE+EE)  i(8E -EE)

circular polarization



Results

® Effective fields given by loop integrals

_ ¢2,,u¢3,1/
h ~ /d2k5 E, :
g B,BZ::il Q+ fEc+ f'Eq-k +in

dissipative virtual

separates into: P
~ §(Q — B — Eq—«) ~ g
— L — Q&

® Structure of contributions to effective fields

im0 x &1 &8, total intensity  chiral intensity
gxg_x - gyg_y Sin ¢ X (8x5x + 5y5y) | (5X5y - 5y5X)
=0 for SralrO4 circular polarization

(p=m/4) “inverse Faraday effect”



Prior approach to Inverse
Faraday eﬁect

PHYSICAL REVIEW = VOLUME 143, NUMBER MARCH 1966

Theoretical Discussion of the Inverse Faraday Effect, Raman
Scattering, and Related Phenomena*

P. S. PersHAN,} J. P. VAN DER ZIEL,} AND L. D. MALMSTRO M
Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts
(Received 25 October 1965)

* Derived effective thermodynamic potential

Fr M UMOE@)E(—) e Ky =~ = (W) E(w)

really correct for low frequency magnetization (not short pulse)

e Carried out for quantum mechanical few-level system

JHett=(ErER*— 8L6.%)J .4

+{(8r8r*+ 8L8.*)[J.2—3J (J+1)] - -
et Wl S i) Purely virtual excitations

e QOur results treat general many body situation with fast
dynamics and both real and virtual excitations



Results

Effective fields maximized when light is near peak of two-
magnon DOS
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Significant enhancement still possible!



Results

Effective fields maximized when light is near peak of two-
magnon DOS

04t P Gufeng Zhang et al
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Future directions

® Experimental test of frequency dependence. Many other
materials applications.

® Extensionto T>0

® Extension to non-collinear magnets: much larger anharmonic
effects

® Topological effects: Pump/probe of Dirac/Weyl magnons,
analogies to topological effects in SHG?

® Ultrafast dynamics of quantum spin liquids without magnons?



New results

Spinon interactions strongly modify their spectra

The eftect becomes dramatic in an applied
Zeeman field:

Dominant spectral weight at small
momentum is a collective “Spinon
wave” mode

Full small g-w structure given in
LB+O. Starykh, arXiv:1904.02117




O Ez/VF q

Fermionic two-spinon continuum modified by Silin

® Theory of light-induced magnetization oscillations
spin wave and gauge continuum.

in an antiferromagnet, with direct application to

Sr2|I’O4 ® Further work: modifications near g=0 by anisotropies/
SOC - needed to understand ESR, extension to Dirac
spin liquids

arXiv:1905.01313 arXiv:1904.02117




