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What is UQM?



What is UQM?
• Matter that is “more quantum” than usual 

• Matter which hosts persistent and non-
trivial long-range entanglement or 
quantum non-locality 

• Host for exotic excitations 

• The physical realization of exotic or 
strongly coupled field theories



It might seem evasive…

but it could be worse

truth isn’t 
truth



Further payo↵: Invertible states
I A robust notion of ‘short-range-entangled’ Related ideas: [Kitaev, Freed]

‘Invertible states,’ | i means 9| �1i,U s.t.

| i ⌦ | �1i = U|0i⌦2Ld has s = 0.

I Weak area law: a unique groundstate on any closed manifold
(no topological order, but can still be interesting as SPTs)

implies the existence of an inverse state and the area law.

Graphical proof of weak area law:

step 1: ‘edge inverse’

kills edge states

step 2: make adiabatic path

to |0i⌦ on T d

side view of H + Hrev +

wormholes :

How to detect pattern of many-body entanglement?

• X-ray scattering:
a universal probe of crystal order

• What is the universal probe for topological
order (pattern of many-body entanglement)

- We may use partition function
Z (Md) =

R
D[�]e�

R
d

d

xL(�)

on various space-time manifold Md

to probe topological order.

- The partition function has a form
Z (Md) = e�

R
M

d

ddx "(x)Z top(Md) where "(x) is the energy density.

Xiao-Gang Wen, MIT Simons foundation, Jan. 2018 Topological order and algebraic topology
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Do you know it when you see it…in experiment?



Smoking Gun?

• Inherently, non-locality is not so directly probed 

• We need to look for consequences of this structure…
not always obvious 

• One of the exciting things about UQM now is that it is 
becoming increasingly accessible to experiment: we 
*need* to understand UQM better to interpret these 

• I’ll discuss two examples where experiment surprised 
me



Two examples

• Singular angular magnetoresistance in 
a magnetic Weyl semimetal 

• Quantized thermal Hall effect in a 
nonabelian chiral spin liquid
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Two examples

• Singular angular magnetoresistance 
in a magnetic Weyl semimetal 

• Quantized thermal Hall effect in a 
nonabelian chiral spin liquid



Weyl semimetal
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.

AUGUST 15, 1937 PHYSICAL REVIEW VOLUM E 52

Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).

H = v~� · ~k

A two-component spinor in three 
dimensions: “half” of a Dirac fermion. 

Weyl fermions have a chirality  and 
must be massless

Bandstructure HgTe

E

k

E1

H1

inverted
gap

4.0nm 6.2 nm 7.0 nm 

normal
gap

H1

E1

B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)



Weyl semimetal
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A Weyl point is a “topological defect” 
in momentum space: a monopole for 

the Berry curvature
rk · B = ±2⇡q



�µ⌫ =
e2

2⇡h
✏µ⌫�Q�

~Q =
X

i

~kiqi + ~QRLV

Weyl semimetal
kz

k0

+

-

Fermi arc = chiral edge state

Hall vector Q ~ “dipole 
moment” of Weyl points 

X. Wan, Vishwanath, Savrasov, 2011

A.A. Burkov+LB, 2011

(when EF away from Weyl points add FS contributions)



Chiral anomaly

D. T. SON AND B. Z. SPIVAK PHYSICAL REVIEW B 88, 104412 (2013)

where v = ∂ϵp/∂p. Substituting Eqs. (6) into Eq. (1) we get the kinetic equation in the form

∂n
(i)
p

∂t
+

(
1 + e

c
B · !(i)

p

)−1
[(

eE + e

c
v × B + e2

c
(E · B)#(i)

p

)
∂n

(i)
p

∂p
+

(
v + eE × !(i)

p + e

c

(
!(i)

p · v
)
B

)
∂n

(i)
p

∂r

]

= I
(i)
coll{n(i)

p }

(7)

(cf. Ref. 19). Let us consider the case where µ ≫ T and h̄ωc =
h̄|e|v2B/cµ, and assume that the conductivity of the system
is determined by elastic scattering. Then the collision integral
Icoll in Eq. (7) describes elastic intra- and intervalley scattering
characterized by intravalley τintr and intervalley τ scattering
times, respectively. If µτintr,µτ ≫ 1, then these characteristic
times can be calculated using standard perturbation theory,
while all interference corrections to these quantities can be
neglected. We assume that τintr ≪ τ , the anisotropy of the
distribution function within each valley can be neglected, and
the latter depends only on the energy ϵ: n

(i)
p = n(i)(ϵ). In this

case the transport scattering time in the absence of magnetic
field τtr is essentially τintr. Denoting by ρ(i)(ϵ) the density of
states,12,13

ρ(i)(ϵ) =
∫

dp
(2πh̄)3

(
1 + e

c
B · !(i)

p

)
δ(ϵp − ϵ), (8)

in the homogeneous case we get the kinetic equation in the
form

∂n(i)(ϵ)
∂t

+ k(i)

ρ(i)(ϵ)
e2

4π2h̄2c
(E · B)

∂n(i)(ϵ)
∂ϵ

= I
(i)
coll{n(i)(ϵ)},

(9)

where the collision integral now includes only intervalley scat-
tering. For this, we will use the relaxation time approximation

I
(i)
coll = −δn(i)(ϵ)

τ
, (10)

where δni(ϵ) is the deviation of the distribution function from
its equilibrium value.

The electron density and entropy density in the ith valley
are

N (i) =
∫

dϵ ρ(i)(ϵ)n(i)(ϵ), (11)

S(i) = −
∫

dϵ ρ(i)(ϵ){(n(i)(ϵ) ln n(i)(ϵ)

+ [1 − n(i)(ϵ)] ln[1 − n(i)(ϵ)]}. (12)

Integrating Eq. (9) over ρ(i)(ϵ)dϵ we get the conservation law
for particle number in each valley:

∂N (i)

∂t
+ ∇ · j(i) = k(i) e2

4π2h̄2c
(E · B) − δN (i)

τ
, (13)

j(i) =
∫

dp
(2πh̄)3

[
v + eE × !(i)

p + e

c

(
!(i)

p · v
)
B

]
n(i)

p . (14)

Thus, in the presence of electric and magnetic fields, the num-
ber of particles in the ith valley, N (i), is not conserved even if
τ → ∞. This is the chiral anomaly which was originally
introduced in field theory in Refs. 20, and later discussed in
the context of electron band structure theory in Ref. 17, and
in the theory of superfluid 3He.21,22 It is interesting that the

anomaly can be understood completely in the framework of
the semiclassical kinetic equation (1), characterized by k(i),23

and that the term proportional to E · B in Eq. (13) is the same
as obtained in Ref. 17 in the ultraquantum limit.

Equation (7) represents a low-energy effective theory. To
see why the number of electrons in an individual valley is not
conserved one has to take into account the spectral flow process
which brings the energy levels (together with electrons occu-
pying them) from one Dirac point to another through the bulk
of the valence band, as schematically shown in Fig. 1. Such a
possibility exists only in the presence of a magnetic field.

The existence of the chiral anomaly results in a rather
unusual mechanism for the negative magnetoresistance. The
easiest way to calculate the magnitude of the effect is to
estimate the rate of entropy production in the presence of an
electric field,

Ṡ =
∑

i

∫
dp

(2πh̄)3

(
δn

(i)
p

)2

τ

1
n0

p
(
1 − n0

p
) = σE2

T
. (15)

At small E, the stationary solution to Eq. (9) is

δn(i)(ϵ) = − k(i)

ρ(i)(ϵ)
e2τ

4π2h̄2c
(E · B)

∂n0(ϵ)
∂ϵ

. (16)

For simplicity let us assume there are only two valleys, with
k1,2 = ±1, and with the same quasiparticle velocity v. Let the
z axis be parallel to B. Then, from Eqs. (15) and (16) we get
an anomaly-related contribution to the component σzz of the

FIG. 1. Schematic three-dimensional electron spectrum in a Weyl
metal. Only two valleys in the electron spectrum are shown. The
dashed line indicates the direction of the electron spectral flow in the
presence of parallel electric and magnetic fields.
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Nielsen-Ninomiya
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E and H on is a peculiar one different from one with 
a negligibly weak H. In the presence of  strong H the 
lattice analogy of  the ABJ anomaly takes place and 
the transfer of the particles from the LH degeneracy 
point to the RH one acts as a drift term,/Vldrift, in 
the Boltzmann equation. On the other hand for 
negJigible H each degeneracy points acts independent- 
ly. By the ABJ anomaly, the Fernfi energy level/~R in 
the RH corse goes up compared to that of  the H = 0 
case,/1, and/a L in the LH cone is lowered. See fig. 2: 
and fig. 6. In order that the system is in the steady 
stale the excess electrons by the ABJ anomaly in the 
RH cone must be scattered back to another state. But 
they can not be scattered back into the states in the 
same cone because, as was explained above, 7- = 0% 
when we neglect scattering from one degeneracy point 
to another. Therefore they must transit into the states 
in another cone, from the RH cone into the LH cone. 
We call this the intercone scattering and denote the 
corresponding relaxation time by 7-I" If  the intercone 
transition probability W(Pz-~Pz) from the RH cone 
into the LH cone is calculated then the collision term 
is given by 

1 ~ W(pz-+P'z) 2 ~ [f(ez)_fo(pz)] /VR]coll =~- Pz 

--__7- l l ( N  R -NOR ) " 

Here N R and NOR denote the total electron numbers 
in the RH cone above the degeneracy energy in the 
H 4= 0 and H = 0 cases, respectively. Thus 

1_ 2ell 1 p~,z W(pz ~ p,z) (25) 
7-I (27r)2 L ' 

~l]ae generation of  a current associated with the 
ABJ anomaly can be shown by the following energy 
conservation argument. The ABJ anomaly indicates 
that the electrons are transferred from the LH cone 
into the RH cone by the rate of  e2EH/(2~r) 2 per unit 
time and unit volume from eqs. (11) and (12). Notice 
that the dispersion law is continuous and the RH and 
LH cones are connected smoothly by it as shown in 
fig. 6. Since the Fermi level energies are/.t R > / / L ,  the 
transfer costs the energy [e2EH/(2n) 2 ] (/~R --/JL)- 
This energy must be taken from the E field by the 
presence of  a current JA determined by the energy 
balance 

to i 

Fig. 6. The electrons in the cone near L in the level to i are 
transferred to R as shown by the solid line arrow. The ex- 
ceeding electrons in R are scattered back to L as indicated by 
the dashed line arrow. 

t o i + t  

EJA = [e2Ett/(27r)2] (~R -- UL) " 

At the zero temperature, in the RH cone f0(e ) = 
0(/~ R - e) and then 

1 ~ fO (e) = [eH/(27r)2]UR/v NR = L--3 Py ,Pz 

A~R + (/~R -- ~)0NR/0/~ " 

Inserting this into the Boltzmann equation 

~gRIdrif t = - - JgRIcon ,  
we obtain 

~ R  - -  t t L  = e v E r I  • 

Thus 

JA = [ev e2EH/(21r) 2 ] 7-I (#  deg.pt.).  (26) 

Here the subscript A stands for the anomalous current, 
the one associated with the analogue of  the ABJ anom- 
aly. In the definition of  r 1 (25) we may approximate 
W(Pz ~ P'z) ~ W(P ~ P'), then 

W(pz_~p,z)..~(4ue21k)2nl [(p_p,)2 + l/r 2 ] - 2 

X 21rS(e - e ' ) ,  (27) 

with 1/r 2 = (EH/kv) (#  deg.pt.). According to eq. (16) 
P - P '  =Pd - P ~  + / ~ -  P ' ,  where P a n d P '  are oscil- 
lating around Pd andP~t with the order of  (e/-/) 1/2. 
We may ignore the oscillatory part ( P -  P ') and the 
1/r 2 term in the denominator of  (27) when corn- 
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conductivity tensor,

σzz = e2

4π2h̄c

v

c

(eB)2v2

µ2
τ. (17)

Note that σzz given by Eq. (17) is an increasing function of the
magnetic field. All other anomaly-related components of the
conductivity tensor σij are zero. In other words, the anomaly-
related current can flow only in the direction of B. One can
also understand this fact by noticing that, at E = 0, and in the
presence of a magnetic field, Eq. (14) gives an expression for
the current density (the chiral magnetic effect)24,25

j = e
∑

i

ji = e2

4π2h̄2c
B

∑

i

k(i)µ(i). (18)

Here we assume that the electron distribution functions in
the individual valleys have equilibrium forms. In the case
of a global equilibrium, all µi = µ, and the contributions to
Eq. (18) from different valleys cancel each other. According
to Eq. (13), in the presence of electric and magnetic fields,
an imbalance of electron populations and, consequently, a
difference between the the chemical potentials µi is created.
As a result, there is a finite current density, which can relax only
via intravalley scattering. In agreement with Eq. (17), its value
is proportional to τ , its direction is parallel to B, and it responds
only to the component of the electric field parallel to B.

There is a significant difference between the anomaly-
related [Eq. (17)] and the conventional Drude contributions
σ

(D)
ij (B) to the B dependence of the conductivity tensor.

For an isotropic Fermi surface and in the relaxation time
approximation, all components of σ

(D)
ij , except for σ (D)

zz , are
decreasing functions of B. For an anisotropic Fermi surface,
at (ωcτtr)2 ≪ 1, there is a B dependence of σ (D)

zz as well, which
can be estimated as

σ (D)
zz (0) − σ (D)

zz (B) ∼ σ (D)
zz (0)(ωcτtr)2. (19)

Here σ (D)(0) = e2νv2τtr/3 is the Drude conductivity, and
ν ∼ µ2/v3 is the density of states at the Fermi level. For
small magnetic fields, both the Drude and the anomalous
contributions to the resistance scale as B2, and the anomaly-
related contribution [Eq. (17)] dominates the magnetoresis-
tance, provided that

τ

τtr

1
(µτtr)2

> 1. (20)

Generically, in small-gap semiconductors, the parameter
τ/τtr ≫ 1, because the intervalley scattering requires a large
momentum transfer. If the scattering potential is smooth, this
parameter becomes exponentially large. Even in the case of
an anisotropic Fermi surface, depending on symmetry there
could be a direction of E for which σ (D)

zz is independent of B.
At small values of µ ≪ T the conductivity is determined by
electron-hole scattering.6,7 In this case one has to substitute µ
for T in Eqs. (17) and (20), while the parameter τ/τtr ≫ 1 is
exponentially large.

For ωcτtr ≫ 1, the B dependence of σ (D)
zz (B) saturates and

it becomes independent of B. In contrast, the deviation of the
anomaly-related contribution from the quadratic-in-B behavior
takes place at much higher magnetic fields. Thus, σzz could be
a nonmonotonic function of B. Finally, the anomaly-related

contribution to the conductivity tensor may be distinguished
by its unusual frequency dependence: it is controlled by the
parameter (ωτ )2, rather than by the conventional parameter
(ωτtr)2. Here ω is the frequency of the electric field.

At low values of µ the anomaly-related contribution to the
conductivity can be even larger than the Drude contribution
σ (D). In this case the system supports an additional type of
weakly damped plasma wave with a frequency

ωp ∼ ±
√

e2

πh̄c

v

c

eBv

T
, µ = 0, (21)

provided that ωp ≫ τ−1.
The approach based on the semiclassical equations of

motion, Eqs. (1) and (2), is valid if µ ≫ h̄ωc. In the opposite,
ultraquantum, limit ωcτtr ≫ 1, the anomaly-related negative
magnetoresistance has been previously discussed in Refs. 17
and 26. In this case the spectrum of the Dirac equation has the
form

ϵn(pz) = ±v

√
2n

h̄e

c
B + p2

z , n = 1,2, . . . . (22)

For the n = 0 case ϵ0 = ±vpz, where ± correspond to different
valleys. In other words, the n = 0 Landau level is chiral:
the branches of the spectrum with ϵ0 = ±vpz correspond to
different valleys, as shown in Fig. 2. Consider the case where
both the chemical potential and the temperature are small
compared to the energy difference between the zeroth and the
first Landau levels, i.e., µ,T < h̄v/LB , where LB =

√
h̄c/eB

is the magnetic length. In this case only chiral branches of
the spectrum are occupied by electrons. Contributions to the
current from branches of the spectrum with different chiralities
can relax only by intervalley scattering processes characterized
by τ . If the electric field is applied in the z direction, electrons
move according to the law ṗz = eEz − pz/τ , vz = ±v, and
we get the following expression for the conductivity:17

σzz = τe2v

4π2h̄L2
B

. (23)

FIG. 2. Schematic electron spectrum of a Weyl metal in the
ultraquantum limit. n = 0,1 label Landau levels. The dashed line
indicates the direction of the electron spectral flow in pz space in the
presence of a z component of the electric field.
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constants a ¼ b ¼ 3.4824 Å, c ¼ 11.8038 Å, and atomic
sites are in agreement with the experimental values.

III. RESULTS AND DISCUSSION

A. Magnetoresistance measurements

Figure 2 presents the MRmeasured at 1.8 K by tilting the
magnetic field (B) at an angle (θ) with respect to the electric
current (I). The Hall signal has been removed by averaging
the ρxx data over positive and negative field directions. As
shown in Fig. 2(a), when the magnetic field is applied
perpendicular to the current (B⊥I, θ ¼ 0 °), a surprising
positive MR of up to 80000% is observed. Near zero field,
MR exhibits quadratic field dependence, which soon
changes to almost linear dependence at a very low field
without any trend towards saturation up to 9 T. This giant
conventional MR strongly relies on θ and decreases
considerably with increasing θ. When the magnetic field
is rotated parallel to the electric current (θ ¼ 90 °), we
observe negative MR, strong evidence of Weyl fermions in
TaAs. Elaborate measurements at different angles around
θ ¼ 90 ° are implemented and presented in Fig. 2(b). As
shown in the main panel, by rotating θ from 87 ° to 91.8 °,
negative MR arises in the cases of θ between 88 ° and

91.5 °, and it reaches a maximum (−30%) at θ ¼ 90 °
(B==I). This can also be intuitively viewed as a conse-
quence of the steep downturn of MR in the magnetic field
range 1 T < B < 6 T (and −1 T < B < −6 T). In this
range, for clarity, the minima of MR curves at different
angles are listed in the inset of Fig. 2(b). The largest value,
as expected, occurs at θ ¼ 90 °. We note that the negative
MR in Fig. 2(b) disappeared as we rotated the field about
2 ° away from the current. This seems hard to believe.
However, it makes sense when we recall that the conven-
tional positive MR (B⊥I) of TaAs is very large (≈80000%
at 1.8 K in a field of 9 T) and increases remarkably with an
increasing magnetic field. So, a slightly imperfect align-
ment of the magnetic field and the current in the sample will
arouse a large perpendicular component and obscure the
negative MR, especially in a large field. Thus, the negative
MR is confined to about "2 ° of B==E. In other words, in a
system with smaller positive MR (at θ ¼ 0 °), we may
observe larger negative MR (at θ ¼ 90 °) in a wide
magnetic field range. Indeed, larger negative MR has been
observed in Na3Bi [35] and TaP [36], which have much
smaller positive MR than that of TaAs at θ ¼ 0 °.
The origin of the negative MR in TaAs can be

explained by the chiral anomaly in the semiclassical

FIG. 2. Angular and field dependence of MR in a TaAs single crystal at 1.8 K. (a) Magnetoresistance with respect to the magnetic field
(B) at different angles between B and the electric current (I) (θ ¼ 0 °–90 °). The inset zooms in on the lower MR part, showing negative
MR at θ ¼ 90 ° (longitudinal negative MR), and it depicts the corresponding measurement configurations. (b) Magnetoresistance
measured in different rotating angles around θ ¼ 90 ° with the interval of every 0.2 °. The negative MR appeared at a narrow region
around θ ¼ 90 °, and most obviously when B==I. Either positive or negative deviations from 90 ° would degenerate and ultimately kill
the negative MR in the whole range of the magnetic field. Inset: The minima of MR curves at different angles (88 °–92.2 °) in a magnetic
field from 1 to 6 T. (c) The negative MR at θ ¼ 90 ° (open circles) and fitting curves (red dashed lines) at various temperatures. T ¼ 1.8,
10, 25, 50, 75, and 100 K. (d) Magnetoresistance in the perpendicular magnetic field component, B × cos θ. The misalignment indicates
the 3D nature of the electronic states.
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.

205101-7
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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Mn3Sn andMn3Ge are actuallymetallic, as seen from the band structures. However, we retain the
terminology ofWeyl semimetal for simplicity and consistency. The valence and conduction bands cross each
many times near the Fermi energy, generatingmultiple pairs ofWeyl points.Wefirst investigate the Sn
compound. Supposing that the total valence electron number isNv, we search for the crossing points between
the Nv

th and +N 1v
th( ) bands.

As shown infigure 3(a), there are six pairs ofWeyl points in the first Brillouin zone; these can be classified
into three groups according to their positions, noted asW1,W2, andW3. TheseWeyl points lie in theMz plane
(withW2 points being only slightly off this plane owing to the residual-moment-induced symmetry breaking)
and slightly above the Fermi energy. Therefore, there are four copies for each of them according to the symmetry
analysis in equation (2). Their representative coordinates and energies are listed in table 1 and also indicated in
figure 3(a). AWeyl point (e.g.,W1 infigures 3(b) and (c)) acts as a source or sink of the Berry curvatureW, clearly
showing themonopole feature with a definite chirality.

In contrast toMn3Sn,Mn3Ge displaysmanymoreWeyl points. As shown in figure 4(a) and listed in table 2,
there are nine groups ofWeyl points. Here W1,2,7,9 lie in theMz planewithW9 on the ky axis,W4 appears in the
Mx plane, and the others are in generic positions. Therefore, there are four copies of W1,2,7,4, two copies ofW9,
and eight copies of otherWeyl points. Although there aremany otherWeyl points in higher energies owing to

Figure 2.Bulk band structures for (a)Mn3Sn and (b)Mn3Ge along high-symmetry lineswith SOC. The bands near theZ andK
(indicated by red circles) are expanded to showdetails in (a). The Fermi energy is set to zero.

Figure 3. Surface states ofMn3Sn. (a)Distribution ofWeyl points inmomentum space. Black andwhite points representWeyl points
with− and+ chirality, respectively. (b) and (c)monopole-like distribution of the Berry curvature near aW1Weyl point. (d) Fermi
surface atEF=86meV crossing theW1Weyl points. The color represents the surface LDOS. Twopairs ofW1 points are shown
enlarged in the upper panels, where clear Fermi arcs exist. (e) Surface band structure along a line connecting a pair ofW1 points with
opposite chirality. (f) Surface band structure along thewhite horizontal line indicated in (d). Here p1 and p2 are the chiral states
corresponding to the Fermi arcs.
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(withW2 points being only slightly off this plane owing to the residual-moment-induced symmetry breaking)
and slightly above the Fermi energy. Therefore, there are four copies for each of them according to the symmetry
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FIG. 2: First-principles band structure of RAlGe (R=La, Ce, and Pr). (a,b) Calculated

bulk band structure of LaAlGe without and with the inclusion of spin-orbit coupling. (c,d) Bulk

band structure of CeAlGe without and with the inclusion of spin-orbit coupling. In c the bands of

spin-up and spin-down states are plotted in red and violet colors, respectively. (e,f) same as (c,d)

but for PrAlGe.
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FIG. 3: Weyl fermions in LaAlGe, CeAlGe, and PrAlGe.
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Suzuki Angular Magneto-Resistance

Savary Angular Magneto-Resistance

Singular Angular Magneto-Resistance

SAMR
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Spin Flop

H
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Tilted Field

H
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Phase diagram
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SAMR is an indicator of SSB.  Why?



Domains
Extra resistance comes from domain walls

⇢e↵ = ⇢+
⇢̃dw
`d

Vdw = ⇢̃dwj

`d

Size of the effect depends on size of ⇢̃dw



Domain resistance
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ideal Weyl system has zero DW conductance!



Two examples

• Singular angular magnetoresistance in 
a magnetic Weyl semimetal 

• Quantized thermal Hall effect in a 
nonabelian chiral spin liquid



Quantum Spin Liquid

Phil Anderson, 1973



 





 = +...

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)

Resonating Valence Bond state



Quantum Spin Liquid

Phil Anderson, 1973



 





 = +...

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)

“poster child” for UQM



Fractional quantum number

excitation with ΔS = 1/2 
not possible for any finite 

cluster of spins

always created in pairs by any 
local operator

spinon



• Topological QSLs 

• U(1) QSL 

• Dirac QSLs 

• Spinon Fermi surface

Classes of QSLs
anyons, 
spinons 

compact U(1)

QED3

non-Fermi 
liquid “spin 

metal”



Smoking Gun?
Difficult to find incontrovertible and sharp 
indicator of a QSL!

A few possibilities

•T-linear thermal conductivity in 
spinon Fermi surface QSL 

•Transverse, linearly dispersing 
emergent photon mode in 3d U(1) 
QSL

observed!

not yet 
observed
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Kitaev’s honeycomb model H =
X

i,µ

Kµ�
µ
i �

µ
i+µ

exact parton construction �µ
i = icic

µ
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effective quadratic Hamiltonian

H =
X

i,µ

iKµcici+µ
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H =
X

i,µ

iKµcici+µ
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~1/4 of graphene



Non-local excitations

Majorana Flux

In Kitaev’s model: 
• Majorana’s dispersion ~ K and Dirac-like 
• Fluxes are localized with small gap

" e,m



Non-Abelian Phase
• In an applied magnetic field, the 

Majoranas acquire a gap

8.2. Derivation of an effective Hamiltonian

What if the perturbation does not respect the time-reversal symmetry? We will now
show that the simplest perturbation of this kind

V ¼ "
X

j

ðhxrx
j þ hyr

y
j þ hzrz

jÞ; ð45Þ

does open a spectral gap. (Physically, the vector h = (hx,hy,hz) is an external magnetic field
acting on all spins.) For simplicity, we will assume that Jx = Jy = Jz = J.

Let us use the perturbation theory to construct an effective Hamiltonian Heff acting on
the vortex-free sector. One can easily see that H ð1Þ

eff ¼ 0. Although the second-order term
H ð2Þ

eff does not vanish, it preserves the time-reversal symmetry. Therefore, we must consider
the third-order term, which can be written as follows:

H ð3Þ
eff ¼ P0VG0

0ðE0ÞVG0
0ðE0ÞVP0;

where P0 is the projector onto the vortex-free sector, and G0
0 is the unperturbed Green

function with the vortex-free sector excluded. In principle, the Green function can be com-
puted for each gauge sector using the formula G0ðEÞ ¼ "i

R1
0 eiðE"H0þidÞtdt (where d is an

infinitely small number). For fixed values of the field variables ujk the unperturbed Ham-
iltonian may be represented in the form (18) and exponentiated implicitly by exponentiat-
ing the corresponding matrix A; the final result may be written as a normal-ordered
expansion up to the second order. However, it is a rather difficult calculation, so we will
use a qualitative argument instead.

Let us assume that all intermediate states involved in the calculation have energy
DE &j J j above the ground state. (Actually, DE ' 0:27 j J j for the lowest energy state
with two adjacent vortices, see Appendix A.) Then G0

0ðE0Þ can be replaced by
"ð1"P0Þ= j J j. The effective Hamiltonian becomes

H ð3Þ
eff & " hxhyhz

J 2

X

j;k;l

rx
jr

y
kr

z
l; ð46Þ

where the summation takes place over spin triples arranged as follows:

ð47Þ
Configuration (a) corresponds to the term rx

jr
y
kr

z
l ¼ "iDlûjlûklcjck (where Dl may be omit-

ted as we work in the physical subspace), or simply "icj ck in the standard gauge. Config-
uration (b) corresponds to a four-fermion term and therefore does not directly influence
the spectrum. Thus, we arrive at this effective Hamiltonian:

ð48Þ

26 A. Kitaev / Annals of Physics 321 (2006) 2–111

field induces a fermion mass, 
very similar to the Haldane 
model (except Majorana)

chiral Majorana edge mode

H
e

= � iv

4

Z
dx ⌘@

x

⌘
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Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T

I =

Z 1

0

dq

2⇡
v2qf(vq) =

c⇡k2B
12~ T 2
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central charge c=1/2 

c.f. c=1 for both IQHE and FQHE abelian states

implies the existence of bulk non-abelian 
excitations (the fluxes, bound to MZMs)



Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T1

T2

I =
c⇡k2B
12~

�
T 2
1 � T 2

2

�
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⇡ c⇡k2BT

6~ (T1 � T2)
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Quantum Hall Effect?
• No charge.  Have to study heat 

transport!

T1

T2
H =

⇡ck2BT

6~
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a universal prediction for chiral 
“Ising anyon” phase: agnostic to 

microscopic spin interactions

Ix = H�Ty
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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α-RuCl3
Clearly not described by ideal Kitaev model, 
but still interesting  
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QUANTUM MAGNETISM

Neutron scattering in the proximate
quantum spin liquid a-RuCl3
Arnab Banerjee,1* Jiaqiang Yan,2 Johannes Knolle,3 Craig A. Bridges,4

Matthew B. Stone,1 Mark D. Lumsden,1 David G. Mandrus,2,5 David A. Tennant,6

Roderich Moessner,7 Stephen E. Nagler1*

The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting
Majorana fermion and gauge flux excitations.The magnetic insulator a-RuCl3 is thought to
realize a proximate KQSL.We used neutron scattering on single crystals of a-RuCl3 to
reconstruct dynamical correlations in energy-momentum space.We discovered highly unusual
signals, including a column of scattering over a large energy interval around the Brillouin
zone center, which is very stable with temperature.This finding is consistent with scattering
from the Majorana excitations of a KQSL. Other, more delicate experimental features can
be transparently associatedwith perturbations to an idealmodel.Our results encourage further
study of this prototypical material and may open a window into investigating emergent
magnetic Majorana fermions in correlated materials.

Q
uantum spin liquids (QSLs) are collective
magnetic states that can form in the net-
works of atomic moments (“spins”) in
materials. The spins fail to enter an or-
dinary static ordered state, such as a fer-

romagnet, as the temperature approaches zero
and instead become highly entangled and fluc-
tuate quantum mechanically (1, 2). A defining
feature of QSLs, connected to their topological
nature, is excitations that carry fractional quan-
tumnumbers (3,4)—aphenomenonunderpinning
the physics of the fractional quantumHall effect
(5), magnetic monopoles (6), and spin-charge
separation (7). Fractionalization can be seen ex-
perimentally by momentum-energy space recon-
struction. Inelastic neutron scattering directly
probes magnetic correlations in space and time.
As discussed below, our experiments provide a
comprehensive image of the collective magnetic
fluctuations in a topological quantum magnet.
Kitaev QSLs (KQSLs) (8–13) are currently the

focus of intense interest. The Kitaev model offers
distinctive insight into spin-liquid physics, as its
exact solubility permits a detailed analysis of its
properties, including those of its fractionalized
Majorana fermion and gauge flux excitations.
Beyond their importance in fundamental physics,

KQSLs are particularly noteworthy because a
magnetic field turns them into non-Abelian any-
ons, which can underpin a quantum computing
architecture topologically protected against de-
coherence (14, 15). The Kitaev model consists of
an extremely simple spin network (8, 9) with lo-
calized S = ½ spins on a honeycomb lattice
with an interaction Hamiltonian

H ¼
X

g;r→
ðK gSg

r→
Sg
r→þd

→

g

Þ ð1Þ

for either ferromagnetic (FM) or antiferromag-
netic (AF) coupling K. Here, r→ runs over the
lattice sites, and the index g (= x, y, z in spin
space) denotes the relevant interacting spin

component for the nearest-neighbor bond joined
by vector d

→

g, with Ising interaction strength K g

(Fig. 1A).
Insulatingmaterials comprisingweakly coupled

honeycomb layers of strongly spin-orbit–coupled
transition metal ions in edge-sharing cubic octa-
hedra (16) are promising candidates for realizing
KQSLs. These have included iridates containing
Ir4+ (17–20) and, most recently, the Ru3+-based
honeycomb magnet a-RuCl3 (21–26). Here, we
present inelastic neutron scattering on a single
crystal of a-RuCl3, providing a complete mea-
surement of the magnetic response function in
four-dimensional (4D) energy-momentum space.
From a technical perspective, our findings dem-
onstrate a qualitative advance over the polycrys-
talline samples studied to date (25), as well as
over single-crystal Raman studies (23), which are
unable to distinguish between different directions
in momentum space.
We used a 490-mg single crystal grown by

vapor transport of phase-pure a-RuCl3 (27). This
crystal has a low incidence of stacking faults
and exhibits a single magnetic ordering tran-
sition at TN = 7 K, where TN is the Néel tem-
perature (Fig. 1B and fig. S1). Below TN, the
magnetic order is zigzag in the individual honey-
comb layers, with a three-layer periodicity out
of plane. The orderedmoment <m> ~ 0.5mB/Ru

3+

(where mB is a unit Bohrmagneton) is only about
one-third of the net paramagnetic moment
(22, 25, 26). The details of the ordering can vary
in different samples depending on the precise
stacking of the layers; in any case, the order-
ing is incidental to the 2D QSL physics of in-
terest here.
Figure 2 contains a first set of central results. It

depicts the temperature and momentum depen-
dence of amagnetic scattering continuum for two
energy ranges: 4.5 to 7.5meV and 7.5 to 12.5meV.
The most salient feature is the robust response
centered at the G point: It is present from low
(T= 5K<TN) all theway to high (T= 120K>>TN)
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y z

Fig. 1. Structure and magnetism in single-crystal a-RuCl3. (A) Honeycomb lattice of Ru3+ magnetic
ions in one plane of a-RuCl3, showing the projections of the three mutually competing Ising bonds
corresponding to the Kitaev terms in Eq. 1. (B) The intensity of the magnetic Bragg Peak occurring at the
M point of the 2D honeycomb lattice corresponding to a zigzag structure with three-layer stacking
[k
→
= (12, 0, 1) in trigonal or (0, 1, 1

3) in monoclinic notation]. The single sharp magnetic transition is
characteristic of crystals with few or no stacking faults (26).The solid line is a power-law fit yielding
TN = 6.96 ± 0.02 K and a critical exponent b = 0.125 ± 0.015, suggesting 2D Ising behavior. Error bars
indicate 1 SD, assuming Poisson counting statistics. (Inset) The 490-mg single crystal of a-RuCl3 used
for the neutron measurements. [For more sample details, see the materials and methods (27).]
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Fig. 2. Momentum and temperature dependence of the scattering continuum.Neutron scattering measurements using fixed incident energy Ei = 40 meV,
projected on the reciprocal honeycomb plane defined by the perpendicular directions (H, H, 0) and (K, –K, 0), integrated over the interval L = [–2.5, 2.5].
Intensities are denoted by color, as indicated in the scale at right. Measurements integrated over the energy range [4.5, 7.5] meV are shown on the top
row at temperatures (A) 5 K, (B) 10 K, and (C) 120 K. The corresponding measurements integrated over the interval [7.5, 12.5] meV are shown on the bottom
in (D), (E), and (F). The white regions lack detector coverage. See fig. S11 for orientationally averaged data.

Fig. 3. Detailed features of the G point scattering. (A and B) Energy
dependence of the scattering at (A) 5 K and (B) 10 K shows a broad peak.
The data shown are integrated over constant momentum volumes defined by
the following ranges: L ¼ ½#2:5;2:5$ : ½z;0$≡ðK;#K;0Þ over the range
z ¼ ½#

ffiffiffi
3

p
=10;

ffiffiffi
3

p
=10$ : ½x;0$≡ðH;H;0Þ over the range x ¼ ½#0:1;0:1$. The solid

lines are visual guides produced by modeling the elastic component
as a Gaussian peak and the inelastic features using damped harmonic
oscillator (DHO) functions: E, elastic component; S, spin-wave (SW) peaks
appearing below TN; C, continuum. Fit parameters and the DHO function are

presented in table S1. Error bars indicate 1 SD, assuming Poisson counting
statistics. (C) Scattering symmetrized in the (H, H, L) plane and over
positive and negative L, integrated over the intervals z ¼ ½#

ffiffiffi
3

p
=10;

ffiffiffi
3

p
=10$

and E = [4.5, 7.5] meV at T = 10 K. (D) Same scattering, but in the
(K, –K, L) plane integrated over x = [–0.1, 0.1] and E = [4.5, 7.5] meV.
(E) Representative low-energy scattering expected from spin-wave
theory (SWT) for a zigzag-ordered phase (25). (F) Scattering at T = 5 K
integrated over L = [–2.5, 2.5] and E = [2, 3] meV. The white regions
lack detector coverage.
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Fig. 2 | Longitudinal thermal conductivity in α-RuCl3. a, Temperature 
dependence of κxx in a magnetic field H applied along various directions 
in the a–c plane. The inset illustrates a schematic of the measurement 
setup for κxx and κxy (see Methods for details). b, κxx at θ = 60°, plotted as a 
function of the parallel field component, H∥. The inset shows TN versus H∥ 

at different field directions. TN is determined by the T dependence of κxx 
shown in a (open symbols) and by the minimum in the H dependence of 
κxx (filled symbols), shown by arrows in the main panel. Crosses show TN 
for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Fig. 3 | Half-integer thermal Hall conductance plateau. a–h, Thermal 
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parallel field component, H∥. The right scales represent the 2D thermal 
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2D , in units of π/ /k ħ( 6)( )B

2 . Violet dashed  
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2 . Error bars represent one standard deviation.
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FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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dependence of κxx in a magnetic field H applied along various directions 
in the a–c plane. The inset illustrates a schematic of the measurement 
setup for κxx and κxy (see Methods for details). b, κxx at θ = 60°, plotted as a 
function of the parallel field component, H∥. The inset shows TN versus H∥ 

at different field directions. TN is determined by the T dependence of κxx 
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for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Fig. 3 | Half-integer thermal Hall conductance plateau. a–h, Thermal 
Hall conductivity κxy/T in a field tilted at θ = 60° (a–d) and 45° (e–h) 
plotted as a function of H⊥ (see inset of Fig. 2a). The top axes show the 
parallel field component, H∥. The right scales represent the 2D thermal 

Hall conductance, κ /Txy
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2 . Violet dashed  
lines represent the half-integer thermal Hall conductance, 
κ / π/ / = /T k ħ[ ( 6) ( )] 1 2xy
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B
2 . Error bars represent one standard deviation.
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2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-

LETTERRESEARCH

Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 

= ∗H H  at low temperatures. The experimental error in the detection 
of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.
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Fig. 2 | Longitudinal thermal conductivity in α-RuCl3. a, Temperature 
dependence of κxx in a magnetic field H applied along various directions 
in the a–c plane. The inset illustrates a schematic of the measurement 
setup for κxx and κxy (see Methods for details). b, κxx at θ = 60°, plotted as a 
function of the parallel field component, H∥. The inset shows TN versus H∥ 

at different field directions. TN is determined by the T dependence of κxx 
shown in a (open symbols) and by the minimum in the H dependence of 
κxx (filled symbols), shown by arrows in the main panel. Crosses show TN 
for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Fig. 3 | Half-integer thermal Hall conductance plateau. a–h, Thermal 
Hall conductivity κxy/T in a field tilted at θ = 60° (a–d) and 45° (e–h) 
plotted as a function of H⊥ (see inset of Fig. 2a). The top axes show the 
parallel field component, H∥. The right scales represent the 2D thermal 

Hall conductance, κ /Txy
2D , in units of π/ /k ħ( 6)( )B

2 . Violet dashed  
lines represent the half-integer thermal Hall conductance, 
κ / π/ / = /T k ħ[ ( 6) ( )] 1 2xy

2D
B
2 . Error bars represent one standard deviation.
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for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
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Fig. 3 | Half-integer thermal Hall conductance plateau. a–h, Thermal 
Hall conductivity κxy/T in a field tilted at θ = 60° (a–d) and 45° (e–h) 
plotted as a function of H⊥ (see inset of Fig. 2a). The top axes show the 
parallel field component, H∥. The right scales represent the 2D thermal 

Hall conductance, κ /Txy
2D , in units of π/ /k ħ( 6)( )B

2 . Violet dashed  
lines represent the half-integer thermal Hall conductance, 
κ / π/ / = /T k ħ[ ( 6) ( )] 1 2xy

2D
B
2 . Error bars represent one standard deviation.
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2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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We show that any critical transition region between two adjacent Hall plateaus in either integer or
fractional quantum Hall effect is characterized by a universal "semicircle" relationship between the
longitudinal and transverse conductivities a-,.„o-„,provided the sample is homogeneous and isotropic
on a large scale. This is demonstrated both for the phase-coherent quantum transport as well as for the
incoherent transport.

PACS numbers: 73.40.Hm

Recently there has been much interest in the study
of transition regions between successive quantum Hall
plateaus, in both the integer and the fractional regime.
Most of these studies have been focused on how the
transition region width AB scales with temperature at low
temperatures [1]. Experimentally, it has been noted that
the critical dependence AB ~ T can be extracted either
directly from the half-width of the peak in o„(B)or fr. om
the sharpness of the step in Hall conductivity cr„,(B).
Thus it has been realized, on intuitive ground at least,
that the peaklike o„(B)funct. ion and the steplike cr,~(B)
function in the transition region between two successive
plateaus are related. In the one-particle theory of the
integer quantum Hall effect, existence of a dependence
0 vs 0 y was studied in the framework of a scaling
analysis [2]. Based on a semiclassical model that the
transition region, in the critical regime, is represented by
a random mixture of two liquids with different quantized
local Hall conductivities crt and o.2, Dykhne and Ruzin [3]
recently developed a phenomenological theory to show
that o- and o-,y are related by a simple "semicircle"
relation:

~l + ~2 O 1
—O2

Physically, a finite effective longitudinal conductivity o.„
at T 0 is related to the existence of singularities
in the current distribution ("hot spots") close to the
percolation threshold. To derive relation (1), the authors
in Ref. [3] assumed a very weak scattering in the bulk
and described it by a local diagonal conductivity o.,"' «
o-2 —0.1, defined on a scale shorter than the correlation
length of the two-phase mixture. This description is
essentially classical and does not apply to the most
experimentally studied low-temperature regime where
quantum coherence exists on a much larger scale.
In this Letter, we demonstrate that the same simple

relationship between o and 0-
y holds in the quantum

coherent transport regime as well. We achieve this by first
proving a theorem that the semicircle relation between
o- and cr y is equivalent to the perpendicularity between

the average current densities in the two phases. We
then show by simulations on the quantum percolation
model that the currents are indeed perpendicular to a high
accuracy, thus finishing the demonstration.
As in Ref. [3], let us consider two competing quantum

Hall liquids in the presence of a long-range random po-
tential, with the magnetic field determining volume frac-
tions (close to 1/2), as depicted in Fig. 1(a). The "white"
regions represent the phase with quantized Hall conduc-
tivity cr1, such that if this phase percolates freely through-
out the sample, the system will be on the Hall plateau with
cr y = o-1. Similarly, the "black" regions have local Hall
conductivity cr2. Near the percolation threshold, transport

A4

(b)

A3

(c)
FICJ. l. (a) Schematic illustration of the random quantum per-
colation model for describing the transition between successive
quantum Hall plateaus. (b) A single saddle point magnified.
(c) The Chalker-Coddington network model (cr~ ( cr&)
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semicircle “law”

But for RuCl3, thermal Hall angle ~ 10-3 !!
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Hall conductance for the 2D pure Kitaev model calculated with the 
quantum Monte Carlo method show that quantization occurs slightly 
below ∆F/kB. Experimentally, ∆F/kB is estimated25 to be 10 K, which 
is consistent with the persistence of the thermal Hall quantization up 
to around 5 K.

In the plateau regime of κxy, no anomaly is observed in κxx, probably 
because phonon contributions largely dominate over fermionic excita-
tions arising from spins in κxx in the whole temperature range28,29. 
Moreover, owing to the strong spin–phonon coupling in α-RuCl311, the 
phonon conductivity is expected to show complicated H and T depend-
ences. The observed behaviour of the plateau as a function of H and T 
therefore demonstrates that κxy/T is not affected by spin–phonon scat-
tering in the plateau regime, providing strong support for topological 
protection. The fact that κxy vanishes at the highest fields, as shown 
in Fig. 3a–c, e–g, provides direct evidence that the thermal Hall effect 
is not influenced by phonons, demonstrating that κxy is a unique and 
powerful probe in the search for Majorana quantization.

We stress that a half-integer thermal Hall conductance in a bulk 
material is a direct consequence of the chiral Majorana edge current. 
Recent experiments based on the proximity effect between a quantum 
anomalous Hall insulator and a conventional superconductor have 
reported a signature of chiral Majorana edge modes20. However, this is 
based on the observation of half-integer quantization of the longitudi-
nal electrical conductance via the scattering matrix effect between the 
edge states of the insulator and superconductor. Moreover, Majorana 
fermions in Kitaev magnets and topological superconductors have 
essentially different features. In the former, strong correlations give 
rise to Majorana fermions, whereas in the latter they do not play a role. 
In addition, Majorana fermions exist inside the bulk of a sample in the 
Kitaev QSL state, in sharp contrast to topological superconductors, 
where they appear only at the edges. This distinct nature of Majorana 
fermions is supported by the fact that the quantum plateau disappears 
below about 400 mK in a topological superconductor device20, whereas 
it is preserved up to around 5 K in α-RuCl3.

At θ = 60°, κ /H T( )xy
2D  increases slightly from the quantized value 

before going to zero at a high field at 4.3 K and 4.9 K, which is repro-
duced in a different crystal (Extended Data Fig. 5a). However, such a 
behaviour is not observed at θ = 45°. On the other hand, an overshoot 
is also observed in the temperature dependence of κxy

2D, irrespective of 
the angle (Fig. 4) and crystal (Extended Data Fig. 5b); therefore, there 
seem to be certain high-energy corrections that are responsible for the 
excess conductivity at high fields and high temperatures. These over-
shoots are in contrast to the numerical results of the thermal Hall effect 
for the 2D pure Kitaev model with a weak magnetic field16. Meanwhile, 
it has been pointed out that non-Kitaev interactions, such as Heisenberg 
and off-diagonal ones, are important for α-RuCl3

30,31. Hence, the 

discrepancy may be attributed to high-field effects or non-Kitaev inter-
actions, which deserves further study.

The near vanishing of κ /Txy
2D  after its rapid suppression in the high-

field regime (Fig. 3a–c, e–g) demonstrates the disappearance of chiral 
Majorana edge currents. As shown by the open blue square in Fig. 1c, 
the temperature at which κ /Txy

2D  vanishes decreases rapidly with 
decreasing H∥. This suggests a topological quantum phase transition 
from the non-trivial QSL to a trivial high-field state, where the thermal 
Hall effect is absent, at µ0H∥ ≈ 9 T, as shown by the red circle in 
Fig. 1c32. The specific heat at 0.47 K for θ = 60° exhibits a dip-like 
anomaly in the vicinity of 9 T, which can be associated with an abrupt 
change of the spin gap at the topological transition, strongly supporting 
the presence of a characteristic field revealed by κxy/T (Extended Data 
Fig. 7a–c). The vanishing of κxy/T at the highest fields is unlikely to be 
due to the crossover to a simple forced ferromagnetic state because the 
magnetization at 9 T is less than 1/3 of the fully polarized value, indi-
cating that paramagnetic spins still remain. The observation of half- 
integer thermal Hall conductance reveals that topologically protected 
chiral Majorana edge currents persist in α-RuCl3, even in the presence 
of non-Kitaev interactions and a parallel field. This observation opens 
a possibility of using Majorana fermions and their link to non-Abelian 
anyons, which are important for topological quantum computing, 
revealing novel aspects of strongly correlated topological quantum 
matters.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0274-0.
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Fig. 4 | Temperature dependence of the thermal Hall conductance.  
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temperature regime. Error bars represent one standard deviation.
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From Y. Kasahara et al

Q: Can quantized thermal Hall effect 
persist when phonons dominate 
bulk conductivity?

A: Yes, and phonons actually help to 
make the effect observable.  
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: Temperature of phonons in not constant at the edge
?? Could edge be out of equilibrium with the 
phonons and have constant T??

- but: in that case, which T is measured?
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leads coupled 
to the lattice

• Assume spins go into nonabelian QSL phase: bulk spin 
gap, chiral edge state 

• Include bulk phonons with no Hall conductivity 

• Majoranas and phonons can exchange energy at the edge 
of the sample



Formulation

jbulk = �rTHOT COLD

j
ex

leads coupled 
to the lattice

• Variables: 

• Tph(x,y) = phonon temperature in bulk 

• Tf(x,Ly) etc = fermion temperature at edge



Formulation

jbulk = �rTHOT COLD

j
ex

leads coupled 
to the lattice

• Currents: 

• Bulk  

• Edge

jph = �rTph
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FIG. 1. Temperature maps of our rectangular system with dimen-
sions Lx and Ly consisting of a phonon bulk (lower box) and a Ma-
jorana fermion edge (upper edge). The phonon temperatures at the
left and right edges are assumed to be fixed as Tl,r , respectively, due
to the coupling of the lattice with the heater and thermal bath. The
black arrows for If along the edge denote the direction and mag-
nitude of the “clockwise” energy current associated with the chiral
Majorana mode. The white arrows in the bulk show a stream line
of jph. The 3d white arrows for jex indicate the energy current be-
tween the Majorana edge and bulk phonons. (�T )phH and (�T )fH
are the measured “Hall” temperature differences when the contacts
are coupled to the lattice or spins, respectively.

tions describing the energy transport. We consider the fol-
lowing two subsystems: the phonons, or lattice, located in
the bulk, and denoted with the index “ph”, and the Majorana
fermions, or spins, confined to the edge and indexed by “f”, as
well as a coupling between them. For simplicity, we assume
an isotropic bulk, with the relation

jph = �rTph, (1)

i.e., the energy current density in the bulk is parallel to the
thermal gradient, with  a characteristic of the lattice. The
“clockwise” edge current is that of a chiral fermion with cen-
tral charge c = 1/2, i.e.,

If =

⇡cT 2

f
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. (2)

The heat exchange between the phonons and Majoranas can
be modeled phenomenologically through an energy current
jex between the two subsystems (see the arrows in Fig. 1
for currents jph, If , jex). Microscopically, it is due to the
scattering events between edge Majorana fermions and bulk
phonons, and is the rate of energy transfer at the edge per unit
length, i.e., jex ⌘ 1

L

�
@E
@t

�
ph!f

= � 1

L

�
@E
@t

�
f!ph

, where L is
the length of the edge in evaluating

�
@E
@t

�
ph!f

[i.e., L = Lx,
resp. L = Ly , for jex(top/bottom), resp. jex(left/right)].
This in turn implies that the phonons and Majoranas have not
fully thermalized with one another. Assuming, however, that
thermalization is almost complete, i.e., Tf ⇡ Tph, and that
the fermions are strictly confined to the edge, the exchange
heat current jex can be linearized in the temperature differ-
ence Tph � Tf at the edge,

jex = �(T )(Tph � Tf ), (3)

where, crucially, � > 0 is a function of the overall constant
temperature T ⇡ Tph,f , and can be parametrized as �(T ) ⇠
T↵. We will determine ↵ from a phase space analysis of the
scattering events.

Hydrodynamic equations.—We assume our (two-
dimensional) system to be a rectangular slab of width
Ly and length Lx & Ly (see Fig. 1), and choose coordinates
with |x| < x

0

= Lx/2 and |y| < y
0

= Ly/2.
The continuity equation in the bulk in a steady state is r ·

jph(x, y) = 0 which implies the Laplace equation

r2Tph(x, y) = 0. (4)

Energy conservation at the edges gives rise to appropriate
boundary conditions. At the left and right edges, we as-
sume that only the lattice is coupled to thermal leads and
the phonons have fixed constant temperatures, Tl,r, respec-
tively. At the top and bottom edges, the current out of the
phonon subsystem must equal the exchange current, hence
±jy

ph(x,±y
0

) = jex(x,±y
0

). Moreover, the continuity equa-
tions for the edges imply ±@xIf (x,±y

0

) = jex(x,±y
0

). To-
gether these yield, given Eqs. (1) and (2),

@yTph(x,±y
0

) = �q

xy@xTf (x,±y
0

). (5)

Note the appearance of the ideal quantized Hall conductivity
q

xy = ⇡cT/6 = ⇡T/12 here, using Tf ⇡ T , which is valid
within our linearized treatment.

Quantization in the infinitely long limit.—For simplicity, we
first solve our hydrodynamic equations in the limit of an in-
finitely long system (Lx ! 1). Note that, even for finite
systems with Lx � Ly , this infinitely long limit is expected
to be relevant far away from the left and right edges.

Since there is translation symmetry in the x direction, the
boundary conditions Tph(±x

0

, y) = Tr,l lead to a uniform
temperature gradient dT

dx = limLx!1
Tr�Tl

Lx
, and the phonon

and Majorana temperatures must take the forms
(

Tph(x, y) =

dT
dx x +

ˆT (y) + const.

Tf (x,±y
0

) =

dT
dx x + const.

(6)

Laplace’s equation, Eq. (4), immediately implies that ˆT (y)

must be a linear function of y which we write ˆT (y) =

(�T )

ph
H

Ly
y. Therefore, from Eq. (5), we get the following con-

stant phonon temperature gradient in the y-direction:

@yTph(x, y) = �
q

xy



dT

dx
, (7)

since @yTph(x, y) = @yTph(x,±y
0

). From a phenomenologi-
cal perspective, the total current in the Hall bar geometry must
flow only along x, but Eq. (7) implies that the phonon thermal
gradient is tilted from the current axis by a small Hall angle
of tan ✓H = q

xy/ ⌧ 1.
Next consider the view of Alice the experimentalist. She

measures the temperature gradients via three contacts, and
assumes for the moment that these measurements give the
phonon temperature (the most reasonable assumption). To
deduce the Hall conductivity, she posits a bulk heat current
satisfying j = �ph,expt · rT , and tries to deduce the ten-
sor ph,expt (the ph superscript means this quantity is ob-
tained from a measurement of the phonon temperature). By

,
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FIG. 1. Temperature maps of our rectangular system with dimen-
sions Lx and Ly consisting of a phonon bulk (lower box) and a Ma-
jorana fermion edge (upper edge). The phonon temperatures at the
left and right edges are assumed to be fixed as Tl,r , respectively, due
to the coupling of the lattice with the heater and thermal bath. The
black arrows for If along the edge denote the direction and mag-
nitude of the “clockwise” energy current associated with the chiral
Majorana mode. The white arrows in the bulk show a stream line
of jph. The 3d white arrows for jex indicate the energy current be-
tween the Majorana edge and bulk phonons. (�T )phH and (�T )fH
are the measured “Hall” temperature differences when the contacts
are coupled to the lattice or spins, respectively.

tions describing the energy transport. We consider the fol-
lowing two subsystems: the phonons, or lattice, located in
the bulk, and denoted with the index “ph”, and the Majorana
fermions, or spins, confined to the edge and indexed by “f”, as
well as a coupling between them. For simplicity, we assume
an isotropic bulk, with the relation

jph = �rTph, (1)

i.e., the energy current density in the bulk is parallel to the
thermal gradient, with  a characteristic of the lattice. The
“clockwise” edge current is that of a chiral fermion with cen-
tral charge c = 1/2, i.e.,
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⇡cT 2

f
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The heat exchange between the phonons and Majoranas can
be modeled phenomenologically through an energy current
jex between the two subsystems (see the arrows in Fig. 1
for currents jph, If , jex). Microscopically, it is due to the
scattering events between edge Majorana fermions and bulk
phonons, and is the rate of energy transfer at the edge per unit
length, i.e., jex ⌘ 1
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[i.e., L = Lx,
resp. L = Ly , for jex(top/bottom), resp. jex(left/right)].
This in turn implies that the phonons and Majoranas have not
fully thermalized with one another. Assuming, however, that
thermalization is almost complete, i.e., Tf ⇡ Tph, and that
the fermions are strictly confined to the edge, the exchange
heat current jex can be linearized in the temperature differ-
ence Tph � Tf at the edge,

jex = �(T )(Tph � Tf ), (3)

where, crucially, � > 0 is a function of the overall constant
temperature T ⇡ Tph,f , and can be parametrized as �(T ) ⇠
T↵. We will determine ↵ from a phase space analysis of the
scattering events.

Hydrodynamic equations.—We assume our (two-
dimensional) system to be a rectangular slab of width
Ly and length Lx & Ly (see Fig. 1), and choose coordinates
with |x| < x

0

= Lx/2 and |y| < y
0

= Ly/2.
The continuity equation in the bulk in a steady state is r ·

jph(x, y) = 0 which implies the Laplace equation

r2Tph(x, y) = 0. (4)

Energy conservation at the edges gives rise to appropriate
boundary conditions. At the left and right edges, we as-
sume that only the lattice is coupled to thermal leads and
the phonons have fixed constant temperatures, Tl,r, respec-
tively. At the top and bottom edges, the current out of the
phonon subsystem must equal the exchange current, hence
±jy

ph(x,±y
0

) = jex(x,±y
0

). Moreover, the continuity equa-
tions for the edges imply ±@xIf (x,±y

0

) = jex(x,±y
0

). To-
gether these yield, given Eqs. (1) and (2),

@yTph(x,±y
0

) = �q

xy@xTf (x,±y
0

). (5)

Note the appearance of the ideal quantized Hall conductivity
q

xy = ⇡cT/6 = ⇡T/12 here, using Tf ⇡ T , which is valid
within our linearized treatment.

Quantization in the infinitely long limit.—For simplicity, we
first solve our hydrodynamic equations in the limit of an in-
finitely long system (Lx ! 1). Note that, even for finite
systems with Lx � Ly , this infinitely long limit is expected
to be relevant far away from the left and right edges.

Since there is translation symmetry in the x direction, the
boundary conditions Tph(±x

0

, y) = Tr,l lead to a uniform
temperature gradient dT

dx = limLx!1
Tr�Tl

Lx
, and the phonon

and Majorana temperatures must take the forms
(

Tph(x, y) =

dT
dx x +

ˆT (y) + const.

Tf (x,±y
0

) =

dT
dx x + const.

(6)

Laplace’s equation, Eq. (4), immediately implies that ˆT (y)

must be a linear function of y which we write ˆT (y) =

(�T )

ph
H

Ly
y. Therefore, from Eq. (5), we get the following con-

stant phonon temperature gradient in the y-direction:

@yTph(x, y) = �
q

xy



dT

dx
, (7)

since @yTph(x, y) = @yTph(x,±y
0

). From a phenomenologi-
cal perspective, the total current in the Hall bar geometry must
flow only along x, but Eq. (7) implies that the phonon thermal
gradient is tilted from the current axis by a small Hall angle
of tan ✓H = q

xy/ ⌧ 1.
Next consider the view of Alice the experimentalist. She

measures the temperature gradients via three contacts, and
assumes for the moment that these measurements give the
phonon temperature (the most reasonable assumption). To
deduce the Hall conductivity, she posits a bulk heat current
satisfying j = �ph,expt · rT , and tries to deduce the ten-
sor ph,expt (the ph superscript means this quantity is ob-
tained from a measurement of the phonon temperature). By
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phonon Hall angle corresponds to quantization! Implies 
quantization in 3 probe experiment measuring Tph
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Majorana temperature not equal to phonon one.  It is 
actually better to measure phonon temperature!



Finite Hall bar

• Solve coupled Laplace and 
boundary equations, with 
constant temperature leads. 

• Reveals dependence on 
“thermalization length” 
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3

From a purely phenomenological perspective, given the ap-
plied temperature gradient (@xTph) =

dT
dx , the phonon sys-

tem can be viewed as one with a longitudinal conductivity
xx = , and an effective thermal Hall conductivity ph

xy .
changed back to the previous statement– Indeed, by demand-
ing that there is no effective energy current in the transverse
direction, j0y

ph = �ph

xy@xTph � @yTph = 0, this effective
thermal Hall conductivity is readily found to take its quantized
value:

ph

xy = � (@yTph)

(@xTph)

= � (@yTph)

dT
dx

= q

xy =

⇡T

12

. (8)

A few remarks are in order. First, much like in the classical
(electrical) Hall effect where a transverse (“Hall”) voltage de-
velops which allows a transverse current to compensate that
from the Hall effect, a “Hall thermal gradient” appears here,
(�T )

ph

H /Ly , which allows to compensate the transverse en-
ergy current at the edges. Second, importantly, this effective
thermal Hall conductivity is only found to be quantized if the
transverse temperature gradient is obtained from the phonon
temperatures at the top and bottom edges. In contrast, if it is
obtained from the corresponding Majorana temperatures, the
transverse temperature gradient is identified as (�T )

f

H/Ly

and thus, from Eqs. (3) and (5), the effective thermal Hall con-
ductivity is found to be

f

xy =

(�T )

f

H

Ly
dT
dx

=

⇡T

12

✓
1 +

2

�(T )Ly

◆
. (9)

Note that f

xy ⇡ ph

xy only for a large enough phonon-
Majorana coupling �(T ) � /Ly .

General conditions for quantization.—To understand how
the quantization of the effective thermal Hall conductivity can
break down and determine the range of its applicability, we
now extend the solution of our hydrodynamic equations to a
finite system with Lx & Ly , where we must take into account
all boundary conditions, i.e. include the right and left bound-
ary conditions on top of those in Eqs . Again assuming that
the leads are coupled to the phonons only, those are:

(
Tph(±x

0

, y) = Tr,l

jex(±x
0

, y) = �(T )(Tph � Tf ) = ⌥q

xy@yTf
. (10)

Considering a small enough phonon-Majorana coupling �,
we aim to obtain a perturbative solution of the hydrodynamic
equations. To this end, we write

(
Tph(x, y) = T +

˜Tph(x, y)

Tf (x, y) = T +

˜Tf (x, y)

, (11)

with ˜Tph,f (x, y) ⌧ T , and the temperature variations in se-
ries expansions as ˜Tph =

P1
n=0

˜T
(n)
ph and ˜Tf =

P1
n=0

˜T
(n)
f

and assume that terms of increasing order n are progressively
less important. Note also that ˜Tph(x, y) = � ˜Tph(�x,�y)

and ˜Tf (x, y) = � ˜Tf (�x,�y) generally follow from the sym-
metries of the hydrodynamic equations. Starting from the

/2

)

-Lx/2 Lx/2
0

1

x

κ
xyp
h
/κ
xyq

(b)

FIG. 2. Measured thermal Hall conductivity 

ph
xy (Eq. (14)) as a

function of the longitudinal position x at which (�T )phH are mea-
sured for different aspect ratios Lx/Ly and dimensionless thermal
couplings �Lx/

q
xy: (a) for Lx/Ly = {100, 10, 4, 1} at fixed

�Lx/
q
xy = 100, and (b) for �Lx/

q
xy = {100, 10, 2, 0.5} at

fixed Lx/Ly = 100. In each case, the four different values in the
curly brackets correspond to the solid line, the dashed-dotted line,
the dashed line, and the dotted line, respectively.

� = 0 solution, ˜T
(0)

ph (x, y) =

dT
dx x and ˜T

(0)

f (x, y) = 0, the
temperature variations can then be found by an iterative proce-
dure. At each iteration step n > 0, we first solve the ordinary
differential equations [see Eqs. (5) and (10)]

q

xy@x
˜T
(n)
f = ±�

h
˜T
(n�1)

ph � ˜T
(n)
f

i
for y = ±y

0

,

q

xy@y
˜T
(n)
f = ⌥�

h
˜T
(n�1)

ph � ˜T
(n)
f

i
for x = ±x

0

, (12)

for the Majorana temperature ˜T
(n)
f along the edge. Then, us-

ing this solution, we obtain an appropriate Laplace equation
r2

˜T
(n)
ph = 0 for the phonon temperature ˜T

(n)
ph in the bulk,

along with Dirichlet boundary conditions ˜T
(n)
ph (±x

0

, y) = 0

at the left and right edges, and Neumann boundary conditions

ry
˜T
(n)
ph = ±�



h
˜T
(n)
f � ˜T

(n�1)

ph

i
for y = ±y

0

, (13)

at the top and bottom edges. It is well known that such a
Laplace equation with mixed Dirichlet and Neumann bound-
ary conditions has a unique solution that can be obtained by
standard methods. After each iteration step n, the only error
in the temperature corrections ˜T

(n)
ph and ˜T

(n)
f is due to the ab-

sence of ˜T
(n)
ph on the right-hand sides of Eqs. (12) and (13).

Indeed, including this term would precisely give rise to the
next temperature corrections ˜T

(n+1)

ph and ˜T
(n+1)

f . Neverthe-
less, it follows from Eq. (13) that successive temperature cor-
rections ˜T

(n)
ph are progressively less important and hence our

perturbative solution is convergent whenever � ⌧ /Ly [16].
Assuming this condition, we perform the first iteration step

(see Supplemental Material) to calculate the phonon tempera-
ture ˜T

(1)

ph and obtain the effective thermal Hall conductivity in
terms of the transverse temperature difference (�T )

ph
H :

ph

xy(x) = � 

dT
dx Ly

h
˜T
(1)

ph (x, y
0

) � ˜T
(1)

ph (x,�y
0

)

i
. (14)
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/L
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Bulk-edge coupling

4

(see Table I for a summary). Indeed, even for Lx � Ly , there
are two regimes for the effective thermal Hall conductivity
(see [17]):

ph,expt

xy (x) ⇡

8
<

:

⇡T
12

(Lx � `),

⇡T (L2
x�4x2

)

96`2 (Lx ⌧ `).
(14)

In the second regime we find that ph,expt

xy (x) has a strong
dependence on x and is smaller than q

xy = (⇡/12)T by a
factor ⇠ (Lx/`)2 ⌧ 1.

Estimation of the spin-lattice thermal coupling �.— The
phenomenological spin-lattice coupling �(T ) defined in
Eq. (3) can be obtained microscopically from, e.g., the Boltz-
mann equation. We calculate the rate of energy exchange
per unit length jex =

1

L

⇣
@E
@t

⌘

ph!f
due to the scattering

at the edge. Comparing to the form in Eq. (3), we extract
�(T ) = �

0

T↵, i.e., the exponent ↵ and the coefficient �
0

.
We consider a coupling at the top edge y = y

0

= Ly/2 of
the form

Hint =

�igvf

4

Z
dx ⇣(x)Kij@iuj(x, y

0

)⌘(x)@x⌘(x), (15)

where ⌘(x), ~u(x, y), ⇣(x) are the Majorana edge mode, the
lattice displacement field, and disorder potential, respectively,
g parametrizes the spin-lattice coupling, and vf is the fermion
velocity. Kij@iuj with i, j = x, y is some linear combina-
tion of the elastic tensor for u. Physically, Eq. (15) may be
understood from the observation that the lattice displacement
modifies the velocity of the Majorana edge mode by affecting
the strength of the Kitaev coupling.

Using Eq. (15) and calculating the energy transfer rate us-
ing a Boltzmann equation, we obtain a large power ↵ = 6.
The reason for the large exponent is twofold. First, the dis-
persions of both bulk phonons and edge Majoranas are lin-
ear which reduces the low energy phase space. Second,
the vertex necessarily involves two gradients: one because
⌘(x)⌘(x) = �(0) is a c-number for Majorana fermions, and
another because the strain tensor includes a gradient. We note
that, without disorder, two-phonon processes are necessary to
satisfy kinematic constraints in the physical regime, where the
velocity of the acoustic phonon vph is larger than vf . In that
case one obtains an even larger ↵ = 8.

To estimate the coefficient �
0

, we further assume that
the averaged disorder potential satisfies h⇣(x)⇣(x0

)idis =

⇣2 �(x�x0
), and consider an isotropic acoustic phonon mode

only. From the Boltzmann equation solution (see [17]), we
obtain

� =

g2⇣2

32(2⇡)

3v4

phv2

f⇢
0

f T 6, (16)

where ⇢
0

is the mass density of the lattice. In the model we
consider, f = 4.2 ⇥ 10

4. Unfortunately, at this time an ac-
curate quantitative estimate of � for ↵-RuCl

3

is not possible
due to the lack of knowledge of microscopic details of g, vf

and ⇣. However, crudely applying Eq. (16), we estimate the
characteristic length ` = q

xy/� to be several orders of mag-
nitude larger than the lattice spacing at temperatures of a few
Kelvins. Importantly, due to the large exponent ↵, we expect
that upon lowering the temperature of the sample, ` grows
rapidly and that the system enters the regime where Lx ⌧ `
in Eq. (14) and thus the quantization of the thermal Hall con-
ductivity breaks down.

Summary and discussion.—By carefully analyzing the in-
terplay between the chiral Majorana edge mode of an Ising
anyon phase and the energy currents carried by bulk phonons,
we have demonstrated that the thermal Hall conductivity of
such a non-abelian topological phase can be effectively quan-
tized in the presence of a much larger longitudinal thermal
conductivity. This is in accordance with recent experiments
on ↵-RuCl

3

[15]. However, this quantization only survives
under certain conditions. The main results are summarized in
Table I.

Coupling regime Weak Intermediate Strong

� ⇠ T

↵
� . �f �f ⌧ � ⌧ �ph �ph ⌧ �

Lx Lx . ` Lx � `

Ly Ly ⌧ /� Ly � /�



ph,expt
xy 

ph,expt
xy ⌧ 

q

xy 

q

xy 

q

xy



f,expt
xy –[18]



f,expt
xy � 

q

xy 

q

xy

TABLE I. Values of the effective thermal Hall conductivities ex-
tracted by measuring the temperatures of the phonon (ph,expt

xy ) or
Majorana (f,expt

xy ) subsystems in three coupling regimes, defined by
the value of � relative to �f = 

q

xy/Lx and �ph = /Ly . The
three coupling regimes can also be identified by comparing the sys-
tem dimensions Lx, Ly to the characteristic lengths ` = 

q

xy/� and
/�.

In words, those results are as follows. The quantization
survives for a sufficiently strong spin-lattice coupling � �
�f ⌘ q

xy/Lx, while it immediately disappears in the weak-
coupling regime defined by � . �f [see Fig. 2(b)]. Impor-
tantly, since � / T↵ is strongly dependent on the tempera-
ture, with ↵ � 6 for the mechanisms considered in this work,
we predict that the observed quantization of the thermal Hall
conductivity should eventually break down as the temperature
is lowered.

Even within the range of quantization (� � �f ), we can
identify two separate regimes, depending on how � compares
to �ph ⌘ /Ly � �f . In the strong-coupling regime, de-
fined by � � �ph, the spins and the lattice share the same
temperature, and the quantization of the thermal Hall conduc-
tivity follows from effectively having a system with a diagonal
conductivity expt

xx = expt

yy =  of the phonons and an off-
diagonal expt

xy = q
xy of the Majoranas. Surprisingly, how-

ever, in the intermediate regime defined by �f ⌧ � ⌧ �ph,
the thermal Hall conductivity appears to be quantized despite
a large temperature mismatch between the spins and the lat-

local phonon strain couples 
to Majorana kinetic energy

We use kinetic equation to 
calculate
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phonon-Majorana interaction Hamiltonian H
int

[from Eq. (15)] in momentum space are
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where y

0

= L

y

/2, !

~q

= v

ph

q
q

2

x

+ q

2

y

, with the acoustic phonon velocity v

ph

=

p
B/⇢

0

. Note that the relation ⌘

k

= ⌘

†
�k

has
not been explicitly applied, and the summation over k, k

0 runs over both negative and positive momenta [but only the annihilation
mode ⌘

k

appears in Eq. (B3)] [2].
The scattering matrix element M± that creates, resp. annihilates, a single phonon mode (i.e. which multiplies c

†
~q

⌘

k

⌘

k

0 , resp.
c
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⌘

k
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0 ) can be expressed as:
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To obtain the collision rate of a phonon mode at momentum ~q due to the scattering with Majorana fermions, i.e.
⇣

@g(~q)

@t

⌘

coll

,
we approximate the distribution functions for the phonons and edge Majorana fermions as the thermal distribution of bosons
and fermions respectively, with different local temperatures T +

˜

T

ph

, T +

˜

T

f

. This approximation should presumably be valid
at leading linear order in ˜

T

ph

� ˜

T

f

since the deviation from the thermal distribution should only contribute at higher orders
in ˜

T

ph

� ˜

T

f

. We argue that the system reaches local thermalization due to phonon-phonon and phonon-Majorana scattering.
Moreover, given the absence of particle number conservation for either the phonons or Majoranas, the chemical potentials
µ

ph,f

= 0 even away from equilibrium. From Fermi’s golden rule, we have
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where
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with g

!

= 1/(e

�! � 1) and f

✏

= 1/(e

�✏

+ 1) = 1� f�✏

. The factor of 2 in front of the summation in Eq. (B7) comes from the
two ways of creating and annihilating any given Majorana pair. The notation ✏ = ✏

k

, ✏

0
= ✏

k

0
, ! = !

~q

is used so long as there
is no ambiguity (✏

k

is the Majorana fermion dispersion). The reality of the Majorana mode ⌘(x) requires that ⌘
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, thus
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. From the first to the second line, we take k ! �k, k
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0, i.e. ✏ ! �✏, which is valid because the summation
over k, k

0 runs over both positive and negative values in our convention. From the second to the last line in Eq. (B7), we used the
fact that |M+

(~q, k, k

0
)|2 = |M�
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0
)|2. The total rate of energy change of the phonon subsystem through the collision

with edge Majorana fermions is:
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FIG. 1. Diagrammatic representation of the Majorana fermion (solid line) and phonon (wavy line) scattering vertex in the presence of disorder
(dashed line with ⌦). (a) The effective Majorana-phonon-disorder vertex presented in Eq. (15). (b) The scattering vertex constructed from the
microscopic Majorana-phonon and Majorana-disorder couplings. The connection between the two is shown in Sec. B 2.

Appendix B: Microscopic calculation of the thermal coupling �

In this section, we start with deriving the linearized energy current between phonons and Majoranas using the Boltzmann
equation formalism in Sec. B 1. In Sec. B 2, we justify that the Majorana-phonon-disorder vertex presented in Eq. (15) (see
Fig. 1 (a)) of the manuscript can be considered as an effective vertex from the microscopic Majorana-phonon and Majorana-
disorder couplings (see Fig. 1 (b)).

1. Collision integral

We consider the non-interacting Hamiltonians of the Majorana fermion and phonon fields:

H
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where ~u is the lattice displacement field in the continuous limit, ~⇡ is the conjugate lattice momentum, ⇢

0

is the lattice mass
density. The longitudinal phonon field in second quantized form is [1]:
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where V = L

x

L

y

is the volume of the system, ~!
~q

the energy of the phonon at momentum ~q, and q̂ = ~q/|~q|. In what follows,
we consider the majorana-phonon coupling at the top and bottom edges only. The Fourier transforms of the Majorana field ⌘(x)

and of the disorder field along those edges ⇣(x) are
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where L

x

is the length of the system along the x direction, such that {⌘(x), ⌘(x
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Bulk-edge coupling

4

(see Table I for a summary). Indeed, even for Lx � Ly , there
are two regimes for the effective thermal Hall conductivity
(see [17]):

ph,expt

xy (x) ⇡

8
<

:

⇡T
12

(Lx � `),

⇡T (L2
x�4x2

)

96`2 (Lx ⌧ `).
(14)

In the second regime we find that ph,expt

xy (x) has a strong
dependence on x and is smaller than q

xy = (⇡/12)T by a
factor ⇠ (Lx/`)2 ⌧ 1.

Estimation of the spin-lattice thermal coupling �.— The
phenomenological spin-lattice coupling �(T ) defined in
Eq. (3) can be obtained microscopically from, e.g., the Boltz-
mann equation. We calculate the rate of energy exchange
per unit length jex =

1

L

⇣
@E
@t

⌘

ph!f
due to the scattering

at the edge. Comparing to the form in Eq. (3), we extract
�(T ) = �

0

T↵, i.e., the exponent ↵ and the coefficient �
0

.
We consider a coupling at the top edge y = y

0

= Ly/2 of
the form

Hint =

�igvf

4

Z
dx ⇣(x)Kij@iuj(x, y

0

)⌘(x)@x⌘(x), (15)

where ⌘(x), ~u(x, y), ⇣(x) are the Majorana edge mode, the
lattice displacement field, and disorder potential, respectively,
g parametrizes the spin-lattice coupling, and vf is the fermion
velocity. Kij@iuj with i, j = x, y is some linear combina-
tion of the elastic tensor for u. Physically, Eq. (15) may be
understood from the observation that the lattice displacement
modifies the velocity of the Majorana edge mode by affecting
the strength of the Kitaev coupling.

Using Eq. (15) and calculating the energy transfer rate us-
ing a Boltzmann equation, we obtain a large power ↵ = 6.
The reason for the large exponent is twofold. First, the dis-
persions of both bulk phonons and edge Majoranas are lin-
ear which reduces the low energy phase space. Second,
the vertex necessarily involves two gradients: one because
⌘(x)⌘(x) = �(0) is a c-number for Majorana fermions, and
another because the strain tensor includes a gradient. We note
that, without disorder, two-phonon processes are necessary to
satisfy kinematic constraints in the physical regime, where the
velocity of the acoustic phonon vph is larger than vf . In that
case one obtains an even larger ↵ = 8.

To estimate the coefficient �
0

, we further assume that
the averaged disorder potential satisfies h⇣(x)⇣(x0

)idis =

⇣2 �(x�x0
), and consider an isotropic acoustic phonon mode

only. From the Boltzmann equation solution (see [17]), we
obtain

� =

g2⇣2
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3v4

phv2

f⇢
0

f T 6, (16)

where ⇢
0

is the mass density of the lattice. In the model we
consider, f = 4.2 ⇥ 10

4. Unfortunately, at this time an ac-
curate quantitative estimate of � for ↵-RuCl

3

is not possible
due to the lack of knowledge of microscopic details of g, vf

and ⇣. However, crudely applying Eq. (16), we estimate the
characteristic length ` = q

xy/� to be several orders of mag-
nitude larger than the lattice spacing at temperatures of a few
Kelvins. Importantly, due to the large exponent ↵, we expect
that upon lowering the temperature of the sample, ` grows
rapidly and that the system enters the regime where Lx ⌧ `
in Eq. (14) and thus the quantization of the thermal Hall con-
ductivity breaks down.

Summary and discussion.—By carefully analyzing the in-
terplay between the chiral Majorana edge mode of an Ising
anyon phase and the energy currents carried by bulk phonons,
we have demonstrated that the thermal Hall conductivity of
such a non-abelian topological phase can be effectively quan-
tized in the presence of a much larger longitudinal thermal
conductivity. This is in accordance with recent experiments
on ↵-RuCl

3

[15]. However, this quantization only survives
under certain conditions. The main results are summarized in
Table I.

Coupling regime Weak Intermediate Strong

� ⇠ T

↵
� . �f �f ⌧ � ⌧ �ph �ph ⌧ �

Lx Lx . ` Lx � `

Ly Ly ⌧ /� Ly � /�



ph,expt
xy 

ph,expt
xy ⌧ 

q

xy 

q

xy 

q

xy



f,expt
xy –[18]



f,expt
xy � 

q

xy 

q

xy

TABLE I. Values of the effective thermal Hall conductivities ex-
tracted by measuring the temperatures of the phonon (ph,expt

xy ) or
Majorana (f,expt

xy ) subsystems in three coupling regimes, defined by
the value of � relative to �f = 

q

xy/Lx and �ph = /Ly . The
three coupling regimes can also be identified by comparing the sys-
tem dimensions Lx, Ly to the characteristic lengths ` = 

q

xy/� and
/�.

In words, those results are as follows. The quantization
survives for a sufficiently strong spin-lattice coupling � �
�f ⌘ q

xy/Lx, while it immediately disappears in the weak-
coupling regime defined by � . �f [see Fig. 2(b)]. Impor-
tantly, since � / T↵ is strongly dependent on the tempera-
ture, with ↵ � 6 for the mechanisms considered in this work,
we predict that the observed quantization of the thermal Hall
conductivity should eventually break down as the temperature
is lowered.

Even within the range of quantization (� � �f ), we can
identify two separate regimes, depending on how � compares
to �ph ⌘ /Ly � �f . In the strong-coupling regime, de-
fined by � � �ph, the spins and the lattice share the same
temperature, and the quantization of the thermal Hall conduc-
tivity follows from effectively having a system with a diagonal
conductivity expt

xx = expt

yy =  of the phonons and an off-
diagonal expt

xy = q
xy of the Majoranas. Surprisingly, how-

ever, in the intermediate regime defined by �f ⌧ � ⌧ �ph,
the thermal Hall conductivity appears to be quantized despite
a large temperature mismatch between the spins and the lat-

local phonon strain couples 
to Majorana kinetic energy

We use kinetic equation to 
calculate
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phonon-Majorana interaction Hamiltonian H
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[from Eq. (15)] in momentum space are
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To obtain the collision rate of a phonon mode at momentum ~q due to the scattering with Majorana fermions, i.e.
⇣
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we approximate the distribution functions for the phonons and edge Majorana fermions as the thermal distribution of bosons
and fermions respectively, with different local temperatures T +
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at leading linear order in ˜

T

ph

� ˜

T

f
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in ˜

T

ph

� ˜

T

f

. We argue that the system reaches local thermalization due to phonon-phonon and phonon-Majorana scattering.
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with g
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. The factor of 2 in front of the summation in Eq. (B7) comes from the
two ways of creating and annihilating any given Majorana pair. The notation ✏ = ✏

k

, ✏

0
= ✏

k

0
, ! = !

~q

is used so long as there
is no ambiguity (✏

k

is the Majorana fermion dispersion). The reality of the Majorana mode ⌘(x) requires that ⌘

k

= ⌘

†
�k

, thus
✏

k

= �✏�k

. From the first to the second line, we take k ! �k, k

0 ! �k

0, i.e. ✏ ! �✏, which is valid because the summation
over k, k

0 runs over both positive and negative values in our convention. From the second to the last line in Eq. (B7), we used the
fact that |M+

(~q, k, k

0
)|2 = |M�

(~q,�k,�k

0
)|2. The total rate of energy change of the phonon subsystem through the collision
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FIG. 1. Diagrammatic representation of the Majorana fermion (solid line) and phonon (wavy line) scattering vertex in the presence of disorder
(dashed line with ⌦). (a) The effective Majorana-phonon-disorder vertex presented in Eq. (15). (b) The scattering vertex constructed from the
microscopic Majorana-phonon and Majorana-disorder couplings. The connection between the two is shown in Sec. B 2.

Appendix B: Microscopic calculation of the thermal coupling �

In this section, we start with deriving the linearized energy current between phonons and Majoranas using the Boltzmann
equation formalism in Sec. B 1. In Sec. B 2, we justify that the Majorana-phonon-disorder vertex presented in Eq. (15) (see
Fig. 1 (a)) of the manuscript can be considered as an effective vertex from the microscopic Majorana-phonon and Majorana-
disorder couplings (see Fig. 1 (b)).

1. Collision integral

We consider the non-interacting Hamiltonians of the Majorana fermion and phonon fields:
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where ~u is the lattice displacement field in the continuous limit, ~⇡ is the conjugate lattice momentum, ⇢

0

is the lattice mass
density. The longitudinal phonon field in second quantized form is [1]:
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where V = L

x

L

y

is the volume of the system, ~!
~q

the energy of the phonon at momentum ~q, and q̂ = ~q/|~q|. In what follows,
we consider the majorana-phonon coupling at the top and bottom edges only. The Fourier transforms of the Majorana field ⌘(x)
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where L
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(see Table I for a summary). Indeed, even for Lx � Ly , there
are two regimes for the effective thermal Hall conductivity
(see [17]):
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In the second regime we find that ph,expt

xy (x) has a strong
dependence on x and is smaller than q

xy = (⇡/12)T by a
factor ⇠ (Lx/`)2 ⌧ 1.

Estimation of the spin-lattice thermal coupling �.— The
phenomenological spin-lattice coupling �(T ) defined in
Eq. (3) can be obtained microscopically from, e.g., the Boltz-
mann equation. We calculate the rate of energy exchange
per unit length jex =

1

L

⇣
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ph!f
due to the scattering

at the edge. Comparing to the form in Eq. (3), we extract
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T↵, i.e., the exponent ↵ and the coefficient �
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.
We consider a coupling at the top edge y = y
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the form
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where ⌘(x), ~u(x, y), ⇣(x) are the Majorana edge mode, the
lattice displacement field, and disorder potential, respectively,
g parametrizes the spin-lattice coupling, and vf is the fermion
velocity. Kij@iuj with i, j = x, y is some linear combina-
tion of the elastic tensor for u. Physically, Eq. (15) may be
understood from the observation that the lattice displacement
modifies the velocity of the Majorana edge mode by affecting
the strength of the Kitaev coupling.

Using Eq. (15) and calculating the energy transfer rate us-
ing a Boltzmann equation, we obtain a large power ↵ = 6.
The reason for the large exponent is twofold. First, the dis-
persions of both bulk phonons and edge Majoranas are lin-
ear which reduces the low energy phase space. Second,
the vertex necessarily involves two gradients: one because
⌘(x)⌘(x) = �(0) is a c-number for Majorana fermions, and
another because the strain tensor includes a gradient. We note
that, without disorder, two-phonon processes are necessary to
satisfy kinematic constraints in the physical regime, where the
velocity of the acoustic phonon vph is larger than vf . In that
case one obtains an even larger ↵ = 8.

To estimate the coefficient �
0

, we further assume that
the averaged disorder potential satisfies h⇣(x)⇣(x0

)idis =

⇣2 �(x�x0
), and consider an isotropic acoustic phonon mode

only. From the Boltzmann equation solution (see [17]), we
obtain

� =
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f T 6, (16)

where ⇢
0

is the mass density of the lattice. In the model we
consider, f = 4.2 ⇥ 10

4. Unfortunately, at this time an ac-
curate quantitative estimate of � for ↵-RuCl

3

is not possible
due to the lack of knowledge of microscopic details of g, vf

and ⇣. However, crudely applying Eq. (16), we estimate the
characteristic length ` = q

xy/� to be several orders of mag-
nitude larger than the lattice spacing at temperatures of a few
Kelvins. Importantly, due to the large exponent ↵, we expect
that upon lowering the temperature of the sample, ` grows
rapidly and that the system enters the regime where Lx ⌧ `
in Eq. (14) and thus the quantization of the thermal Hall con-
ductivity breaks down.

Summary and discussion.—By carefully analyzing the in-
terplay between the chiral Majorana edge mode of an Ising
anyon phase and the energy currents carried by bulk phonons,
we have demonstrated that the thermal Hall conductivity of
such a non-abelian topological phase can be effectively quan-
tized in the presence of a much larger longitudinal thermal
conductivity. This is in accordance with recent experiments
on ↵-RuCl

3

[15]. However, this quantization only survives
under certain conditions. The main results are summarized in
Table I.

Coupling regime Weak Intermediate Strong

� ⇠ T
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� . �f �f ⌧ � ⌧ �ph �ph ⌧ �

Lx Lx . ` Lx � `
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TABLE I. Values of the effective thermal Hall conductivities ex-
tracted by measuring the temperatures of the phonon (ph,expt

xy ) or
Majorana (f,expt

xy ) subsystems in three coupling regimes, defined by
the value of � relative to �f = 

q

xy/Lx and �ph = /Ly . The
three coupling regimes can also be identified by comparing the sys-
tem dimensions Lx, Ly to the characteristic lengths ` = 

q

xy/� and
/�.

In words, those results are as follows. The quantization
survives for a sufficiently strong spin-lattice coupling � �
�f ⌘ q

xy/Lx, while it immediately disappears in the weak-
coupling regime defined by � . �f [see Fig. 2(b)]. Impor-
tantly, since � / T↵ is strongly dependent on the tempera-
ture, with ↵ � 6 for the mechanisms considered in this work,
we predict that the observed quantization of the thermal Hall
conductivity should eventually break down as the temperature
is lowered.

Even within the range of quantization (� � �f ), we can
identify two separate regimes, depending on how � compares
to �ph ⌘ /Ly � �f . In the strong-coupling regime, de-
fined by � � �ph, the spins and the lattice share the same
temperature, and the quantization of the thermal Hall conduc-
tivity follows from effectively having a system with a diagonal
conductivity expt

xx = expt

yy =  of the phonons and an off-
diagonal expt

xy = q
xy of the Majoranas. Surprisingly, how-

ever, in the intermediate regime defined by �f ⌧ � ⌧ �ph,
the thermal Hall conductivity appears to be quantized despite
a large temperature mismatch between the spins and the lat-

j
ex

/
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strong T-dependence: 
thermalization becomes 

poor at low T.



Prediction 3

From a purely phenomenological perspective, given the ap-
plied temperature gradient (@xTph) =

dT
dx , the phonon sys-

tem can be viewed as one with a longitudinal conductivity
xx = , and an effective thermal Hall conductivity ph

xy .
changed back to the previous statement– Indeed, by demand-
ing that there is no effective energy current in the transverse
direction, j0y

ph = �ph

xy@xTph � @yTph = 0, this effective
thermal Hall conductivity is readily found to take its quantized
value:

ph

xy = � (@yTph)

(@xTph)

= � (@yTph)

dT
dx

= q

xy =

⇡T

12

. (8)

A few remarks are in order. First, much like in the classical
(electrical) Hall effect where a transverse (“Hall”) voltage de-
velops which allows a transverse current to compensate that
from the Hall effect, a “Hall thermal gradient” appears here,
(�T )

ph

H /Ly , which allows to compensate the transverse en-
ergy current at the edges. Second, importantly, this effective
thermal Hall conductivity is only found to be quantized if the
transverse temperature gradient is obtained from the phonon
temperatures at the top and bottom edges. In contrast, if it is
obtained from the corresponding Majorana temperatures, the
transverse temperature gradient is identified as (�T )

f

H/Ly

and thus, from Eqs. (3) and (5), the effective thermal Hall con-
ductivity is found to be

f

xy =

(�T )

f

H

Ly
dT
dx

=

⇡T

12

✓
1 +

2

�(T )Ly

◆
. (9)

Note that f

xy ⇡ ph

xy only for a large enough phonon-
Majorana coupling �(T ) � /Ly .

General conditions for quantization.—To understand how
the quantization of the effective thermal Hall conductivity can
break down and determine the range of its applicability, we
now extend the solution of our hydrodynamic equations to a
finite system with Lx & Ly , where we must take into account
all boundary conditions, i.e. include the right and left bound-
ary conditions on top of those in Eqs . Again assuming that
the leads are coupled to the phonons only, those are:

(
Tph(±x

0

, y) = Tr,l

jex(±x
0

, y) = �(T )(Tph � Tf ) = ⌥q

xy@yTf
. (10)

Considering a small enough phonon-Majorana coupling �,
we aim to obtain a perturbative solution of the hydrodynamic
equations. To this end, we write

(
Tph(x, y) = T +

˜Tph(x, y)

Tf (x, y) = T +

˜Tf (x, y)

, (11)

with ˜Tph,f (x, y) ⌧ T , and the temperature variations in se-
ries expansions as ˜Tph =

P1
n=0

˜T
(n)
ph and ˜Tf =

P1
n=0

˜T
(n)
f

and assume that terms of increasing order n are progressively
less important. Note also that ˜Tph(x, y) = � ˜Tph(�x,�y)

and ˜Tf (x, y) = � ˜Tf (�x,�y) generally follow from the sym-
metries of the hydrodynamic equations. Starting from the

/2

)

-Lx/2 Lx/2
0

1

x

κ
xyp
h
/κ
xyq

(b)

FIG. 2. Measured thermal Hall conductivity 

ph
xy (Eq. (14)) as a

function of the longitudinal position x at which (�T )phH are mea-
sured for different aspect ratios Lx/Ly and dimensionless thermal
couplings �Lx/

q
xy: (a) for Lx/Ly = {100, 10, 4, 1} at fixed

�Lx/
q
xy = 100, and (b) for �Lx/

q
xy = {100, 10, 2, 0.5} at

fixed Lx/Ly = 100. In each case, the four different values in the
curly brackets correspond to the solid line, the dashed-dotted line,
the dashed line, and the dotted line, respectively.

� = 0 solution, ˜T
(0)

ph (x, y) =

dT
dx x and ˜T

(0)

f (x, y) = 0, the
temperature variations can then be found by an iterative proce-
dure. At each iteration step n > 0, we first solve the ordinary
differential equations [see Eqs. (5) and (10)]

q

xy@x
˜T
(n)
f = ±�

h
˜T
(n�1)

ph � ˜T
(n)
f

i
for y = ±y

0

,

q

xy@y
˜T
(n)
f = ⌥�

h
˜T
(n�1)

ph � ˜T
(n)
f

i
for x = ±x

0

, (12)

for the Majorana temperature ˜T
(n)
f along the edge. Then, us-

ing this solution, we obtain an appropriate Laplace equation
r2

˜T
(n)
ph = 0 for the phonon temperature ˜T

(n)
ph in the bulk,

along with Dirichlet boundary conditions ˜T
(n)
ph (±x

0

, y) = 0

at the left and right edges, and Neumann boundary conditions

ry
˜T
(n)
ph = ±�



h
˜T
(n)
f � ˜T

(n�1)

ph

i
for y = ±y

0

, (13)

at the top and bottom edges. It is well known that such a
Laplace equation with mixed Dirichlet and Neumann bound-
ary conditions has a unique solution that can be obtained by
standard methods. After each iteration step n, the only error
in the temperature corrections ˜T

(n)
ph and ˜T

(n)
f is due to the ab-

sence of ˜T
(n)
ph on the right-hand sides of Eqs. (12) and (13).

Indeed, including this term would precisely give rise to the
next temperature corrections ˜T

(n+1)

ph and ˜T
(n+1)

f . Neverthe-
less, it follows from Eq. (13) that successive temperature cor-
rections ˜T

(n)
ph are progressively less important and hence our

perturbative solution is convergent whenever � ⌧ /Ly [16].
Assuming this condition, we perform the first iteration step

(see Supplemental Material) to calculate the phonon tempera-
ture ˜T

(1)

ph and obtain the effective thermal Hall conductivity in
terms of the transverse temperature difference (�T )

ph
H :

ph

xy(x) = � 

dT
dx Ly

h
˜T
(1)

ph (x, y
0

) � ˜T
(1)

ph (x,�y
0

)

i
. (14)

decreasing T

Expect failure of quantization at low 
enough temperature!



Disorder
• Experimental observation: 

• Quantization is observed only in the “best” 
samples, which have the largest diagonal 
thermal conductivity 

• Presumably, sample variations involve lattice 
disorder that affects the phonon transport 

• What is the effect on thermal Hall 
measurements?



Disorder
• Network model 

• Disorder included as random resistors

resistor

chiral Ii!j = ±H(Ti + Tj)/2
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Ii!j = ij(Ti � Tj)
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resistor Ii!j = �(Ti � Tj)
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Disorder
Input: smooth random conductivity

Output: Hall temperature gradient 
(anti-symmetrized in field)



Disorder
Input: smooth random conductivity

Output: Hall temperature gradient 
(anti-symmetrized in field)
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Summary

j
ex

(�T )phH

(�T )fH

L
x

Ly

Tf (x, y)

TrTl

jph(x, y)

If (x, y)

Tph(x, y)

• Quantized value of 
thermal Hall conductivity 
can be measured even 
when large phonon 
conductivity is present 

• Quantization is only 
power-law good, and 
deviations are controlled 
by edge-bulk 
equilibration

ARXIV:1805.10532

• Singular angular 
magneto-
resistance: the 
result of SSB 
combined with the 
accidental but 
protected nature of 
Weyl points
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FIG. 1: Suzuki, et al.
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