

UQM from theory to experiment

Leon Balents, KITP

UQMII, August 22-24, 2018

ICTP Dirac Medal 2018

Congratulations to:

Subir Sachdev
HARVARD
UNIVERSITY,
USA

Dam Thanh Son
UNIVERSITY OF
CHICAGO,
USA

Xiao-Gang Wen
MIT, USA

The Abdus Salam
International Centre
for Theoretical Physics

What is UQM?

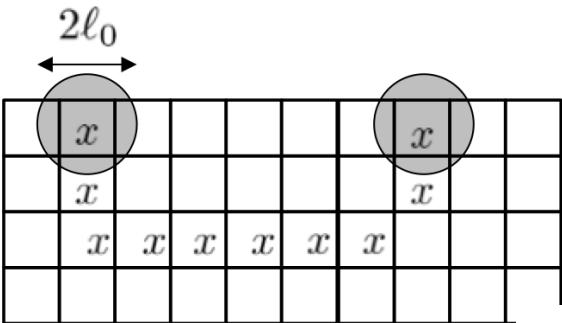
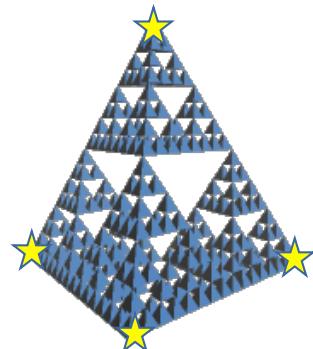
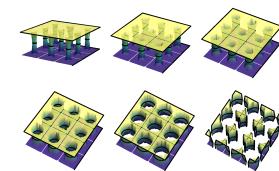
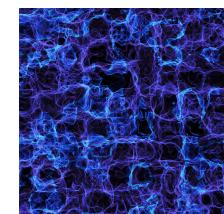
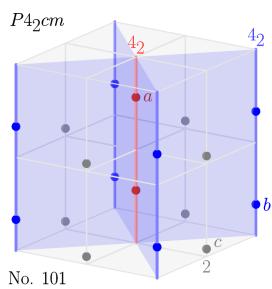
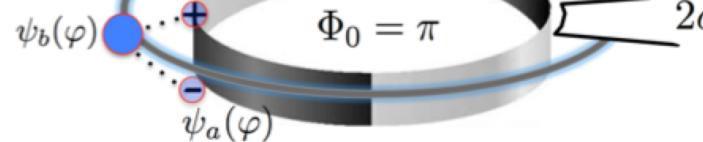
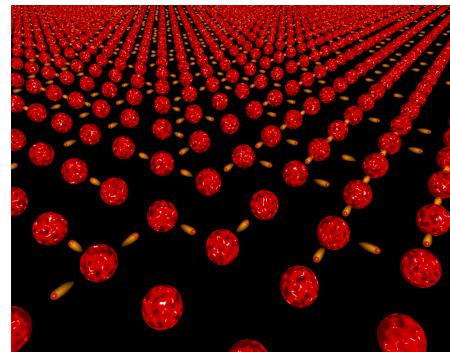
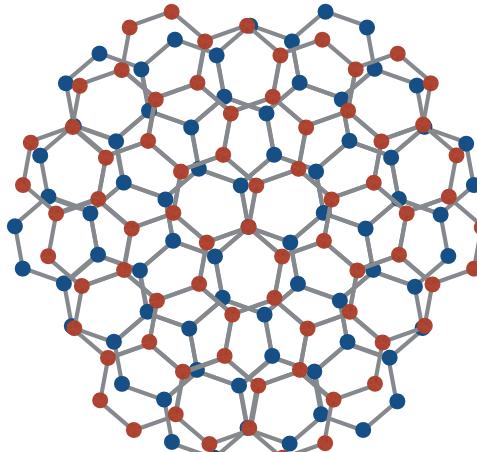
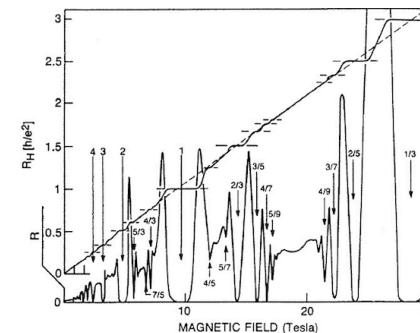
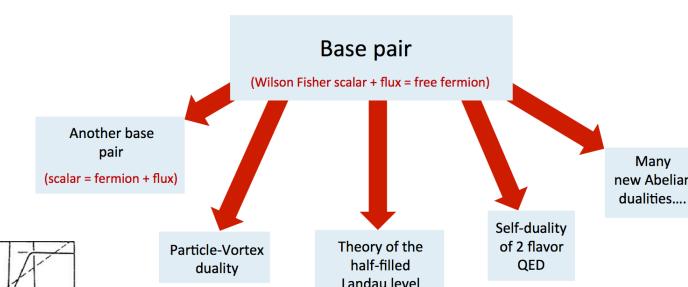
What is UQM?

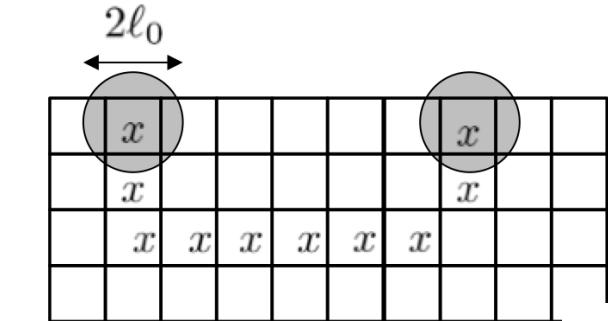
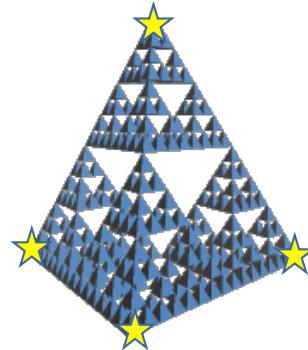
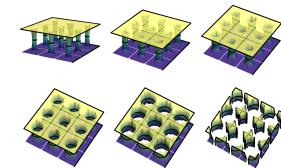
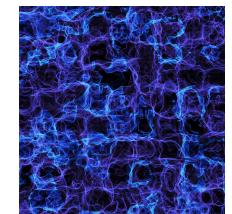
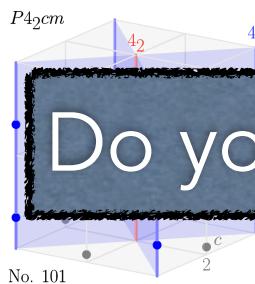
- Matter that is “more quantum” than usual
- Matter which hosts persistent and non-trivial long-range entanglement or quantum non-locality
- Host for exotic excitations
- The physical realization of exotic or strongly coupled field theories

It might seem evasive...

but it could be worse





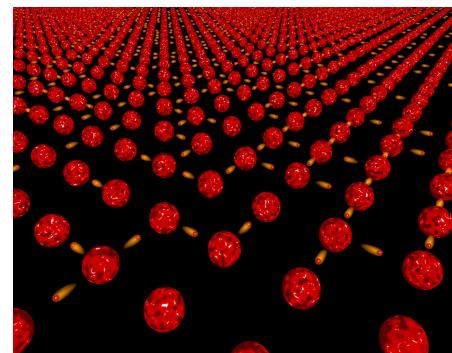
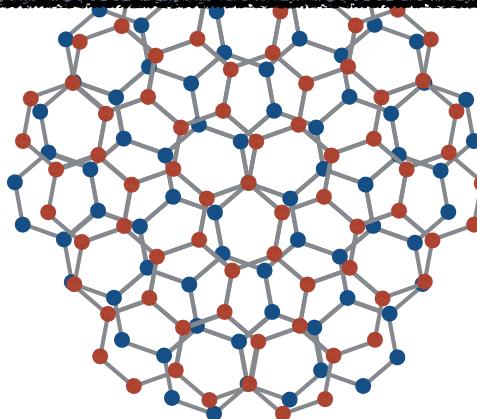
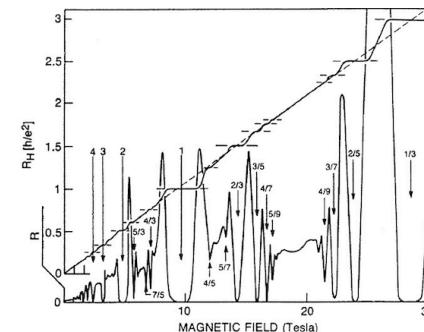
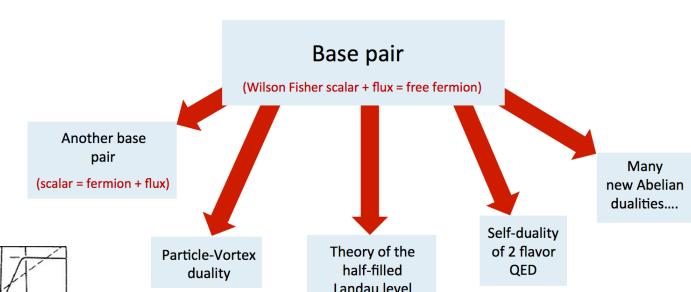


$$\psi_b(\varphi)$$

$$\Phi_0 = \pi$$

$$2\delta$$

Do you know it when you see it...in experiment?



Smoking Gun?

- Inherently, non-locality is not so directly probed
- We need to look for consequences of this structure... not always obvious
- One of the exciting things about UQM now is that it is becoming increasingly accessible to experiment: we ***need*** to understand UQM better to interpret these
- I'll discuss two examples where experiment surprised me

Two examples

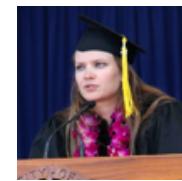
- Singular angular magnetoresistance in a magnetic Weyl semimetal
- Quantized thermal Hall effect in a nonabelian chiral spin liquid

Collaborators

- Mengxing Ye (Minnesota)

- Gábor Halász (KITP -> ORNL)

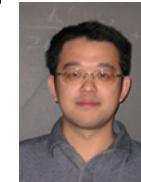
- Lucile Savary (ENS Lyon)



- Jianpeng Liu (KITP -> HKUST)

- Joe Checkelsky (MIT)

- Takehito Suzuki (MIT)



Two examples

- Singular angular magnetoresistance
in a magnetic Weyl semimetal
- Quantized thermal Hall effect in a
nonabelian chiral spin liquid

Weyl semimetal

.937

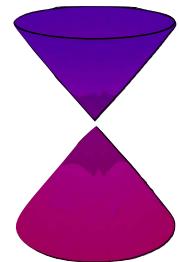
PHYSICAL REVIEW

Accidental Degeneracy in the Energy Bands of Crystals

CONYERS HERRING
Princeton University, Princeton, New Jersey
(Received June 16, 1937)

For a crystal without an inversion center, the energy separation $\delta E(\mathbf{k} + \boldsymbol{\kappa})$ in the neighborhood of a point \mathbf{k} where contact of equivalent manifolds occurs may be expected to be of the order of κ as $\kappa \rightarrow 0$, for all directions of $\boldsymbol{\kappa}$.

$$H = v \vec{\sigma} \cdot \vec{k}$$



A two-component spinor in three dimensions: “half” of a Dirac fermion. Weyl fermions have a chirality and must be massless

Weyl semimetal

.937

PHYSICAL REVIEW

Accidental Degeneracy in the Energy Bands of Crystals

CONYERS HERRING
Princeton University, Princeton, New Jersey
(Received June 16, 1937)

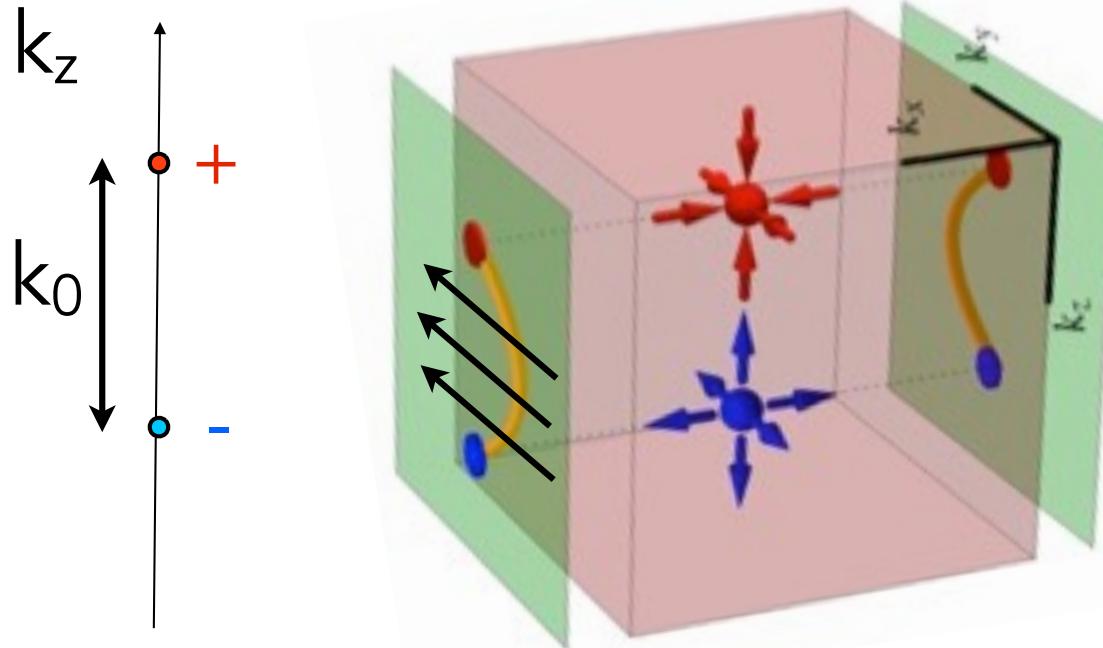
For a crystal without an inversion center, the energy separation $\delta E(\mathbf{k} + \boldsymbol{\kappa})$ in the neighborhood of a point \mathbf{k} where contact of equivalent manifolds occurs may be expected to be of the order of κ as $\kappa \rightarrow 0$, for all directions of $\boldsymbol{\kappa}$.

$$H = v\vec{\sigma} \cdot \vec{k}$$

A Weyl point is a “topological defect” in momentum space: a monopole for the Berry curvature

$$\nabla_{\mathbf{k}} \cdot \mathcal{B} = \pm 2\pi q$$

Weyl semimetal



X. Wan, Vishwanath, Savrasov, 2011

A.A. Burkov+LB, 2011

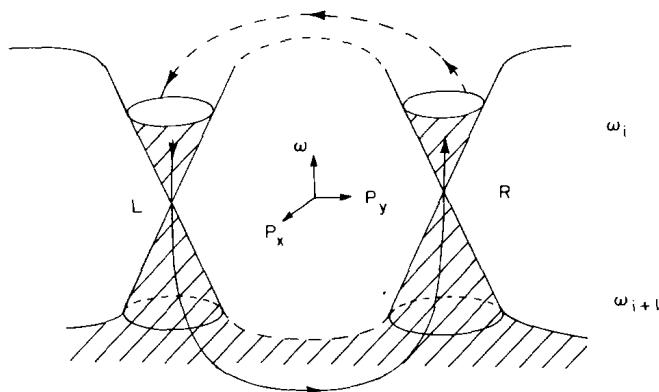
$$\sigma_{\mu\nu} = \frac{e^2}{2\pi h} \epsilon_{\mu\nu\lambda} Q_\lambda$$

$$\vec{Q} = \sum_i \vec{k}_i q_i + \vec{Q}_{RLV}$$

Hall vector $\mathbf{Q} \sim$ "dipole moment" of Weyl points

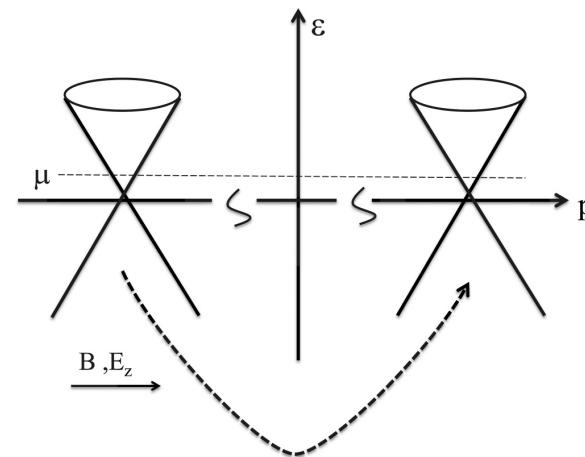
(when E_F away from Weyl points add FS contributions)

Chiral anomaly



Nielsen-Ninomiya

$$\sigma_{zz} = \frac{e^2}{4\pi^2\hbar c} \frac{v}{c} \frac{(eB)^2 v^2}{\mu^2} \tau.$$



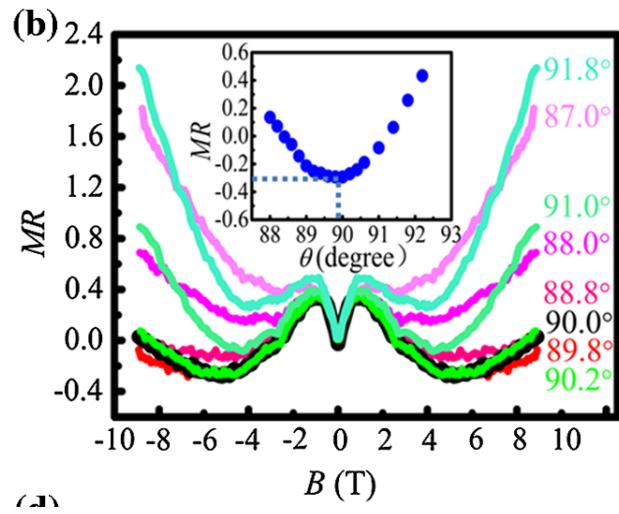
Son-Spivak

negative magnetoresistance

Chiral anomaly

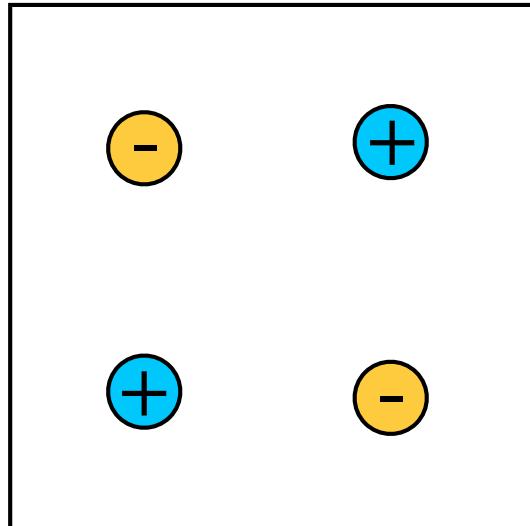
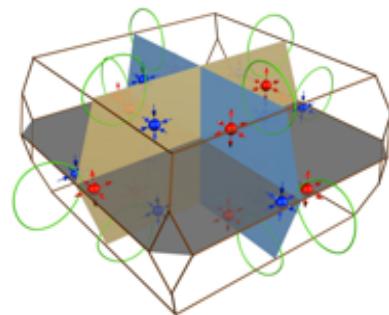
X. Huang *et al*, 2015

TaAs



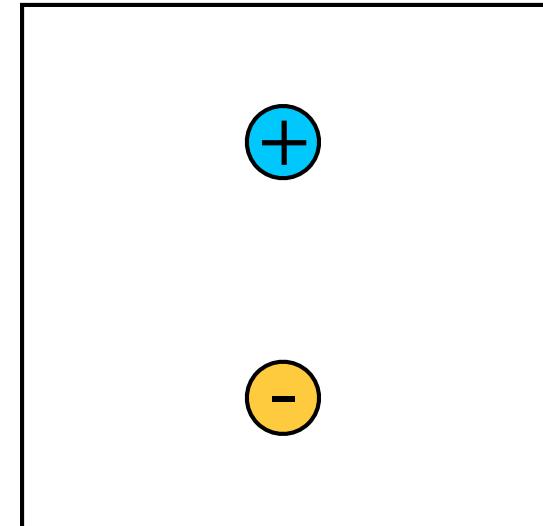
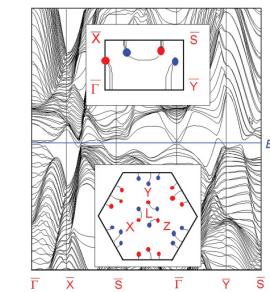
Negative MR observed in some Weyl materials but somewhat ambiguous

I-breaking Weyls



TaAs, Na₃Bi, TaP, WTe₂,...

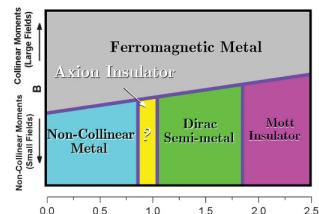
TR-breaking Weyls



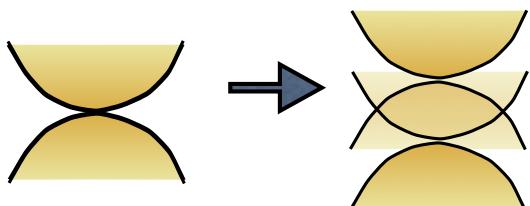
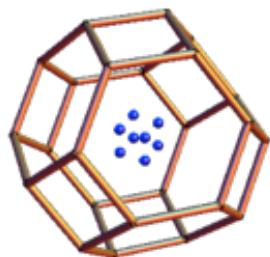
R₂Ir₂O₇?, Mn₃(Sn/Ge), RAlGe

Antiferromagnetic Weyls

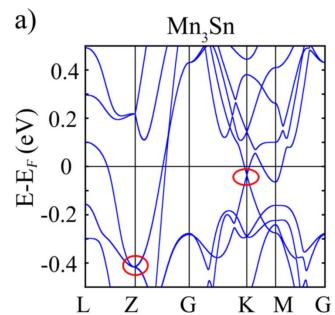
Pyrochlore iridates



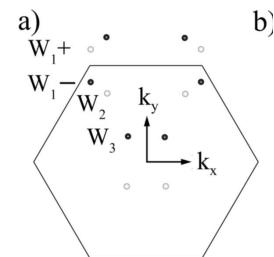
X. Wan *et al*, 2011



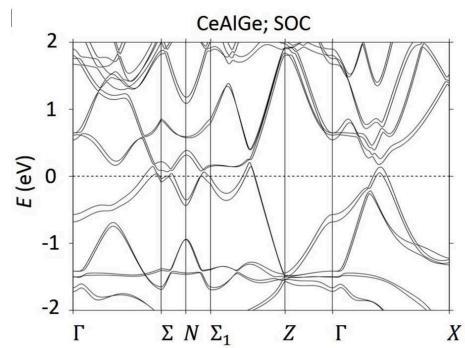
Mn_3Sn , Mn_3Ge



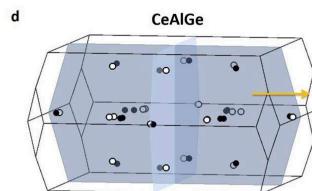
H. Yang *et al*, 2017



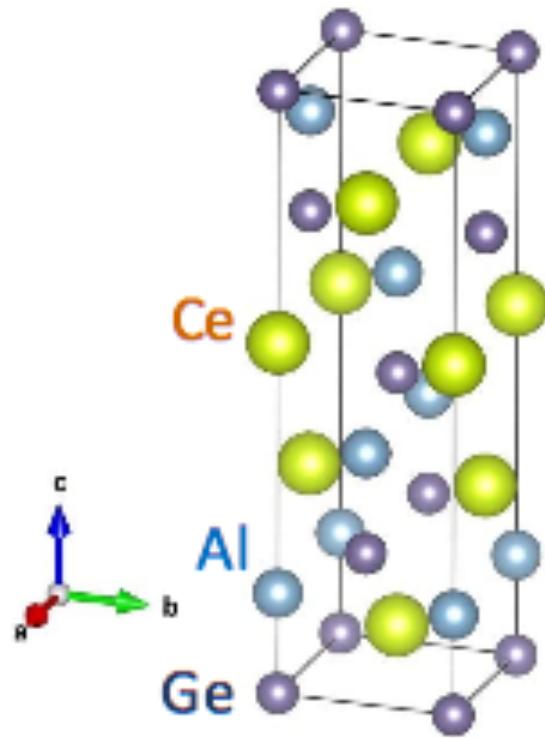
RAIGe



G. Chang *et al*, 2016



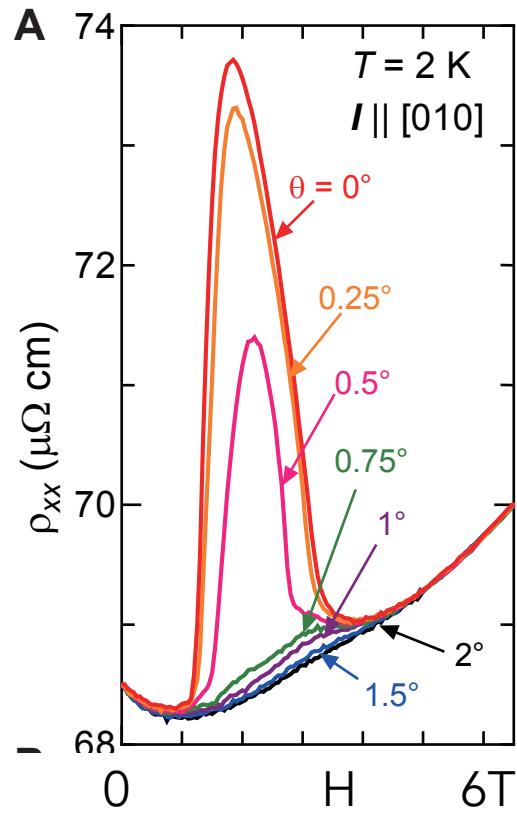
CeAlGe



- tetragonal
- Ce 4f¹ moments
- Semi-metallic band structure

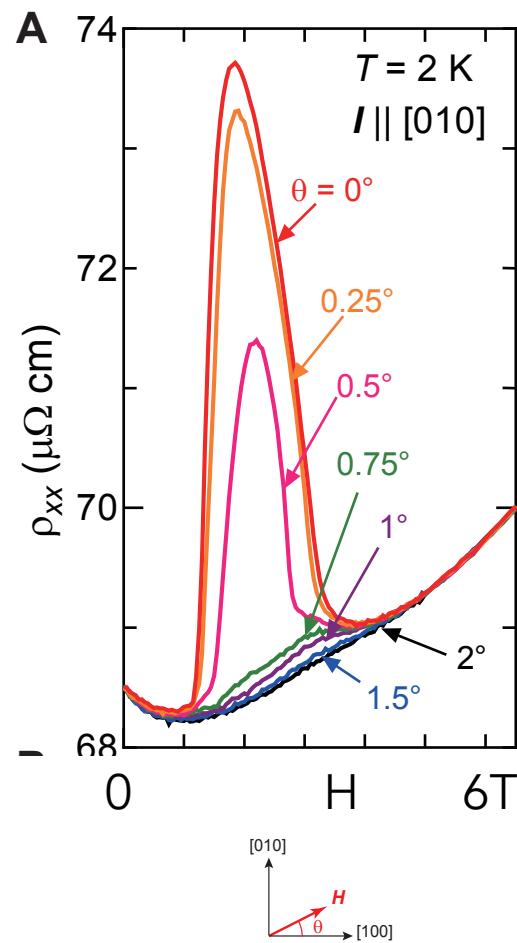
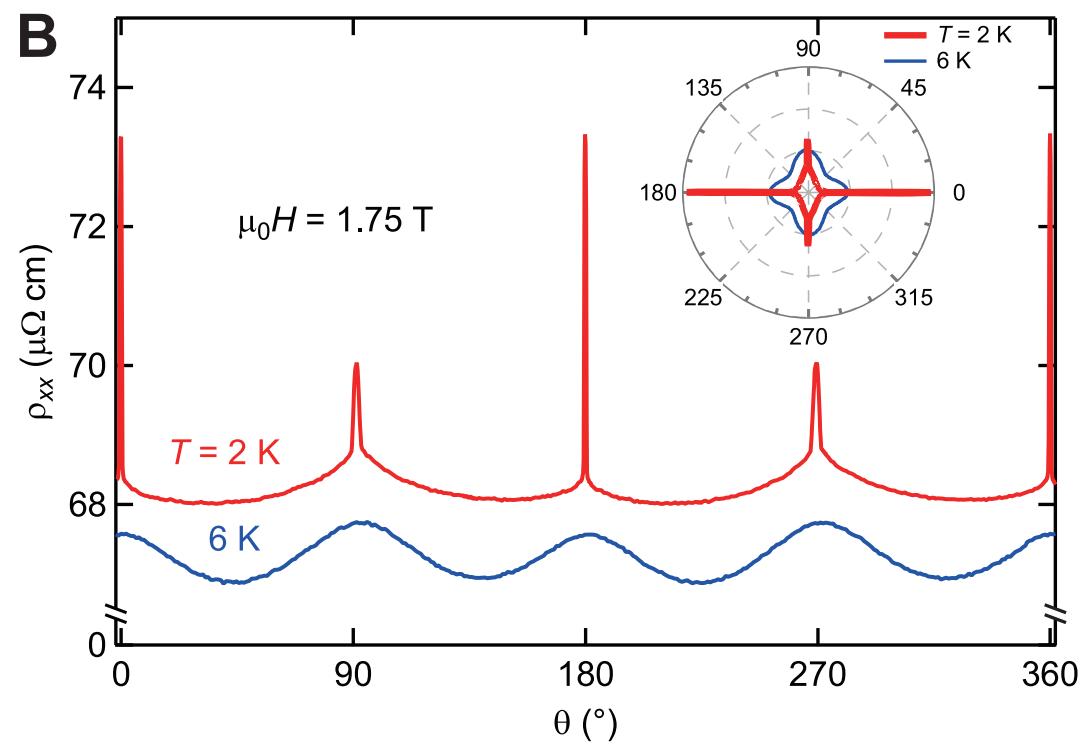
Space group: $I4_1md$

Resistivity



resistivity
enhancement at
intermediate fields
and low T

Resistivity



very narrow angular dependence!
smoking gun of something!

Suzuki Angular Magneto-Resistance

~~Suzuki~~ Angular Magneto-Resistance

Savary Angular Magneto-Resistance

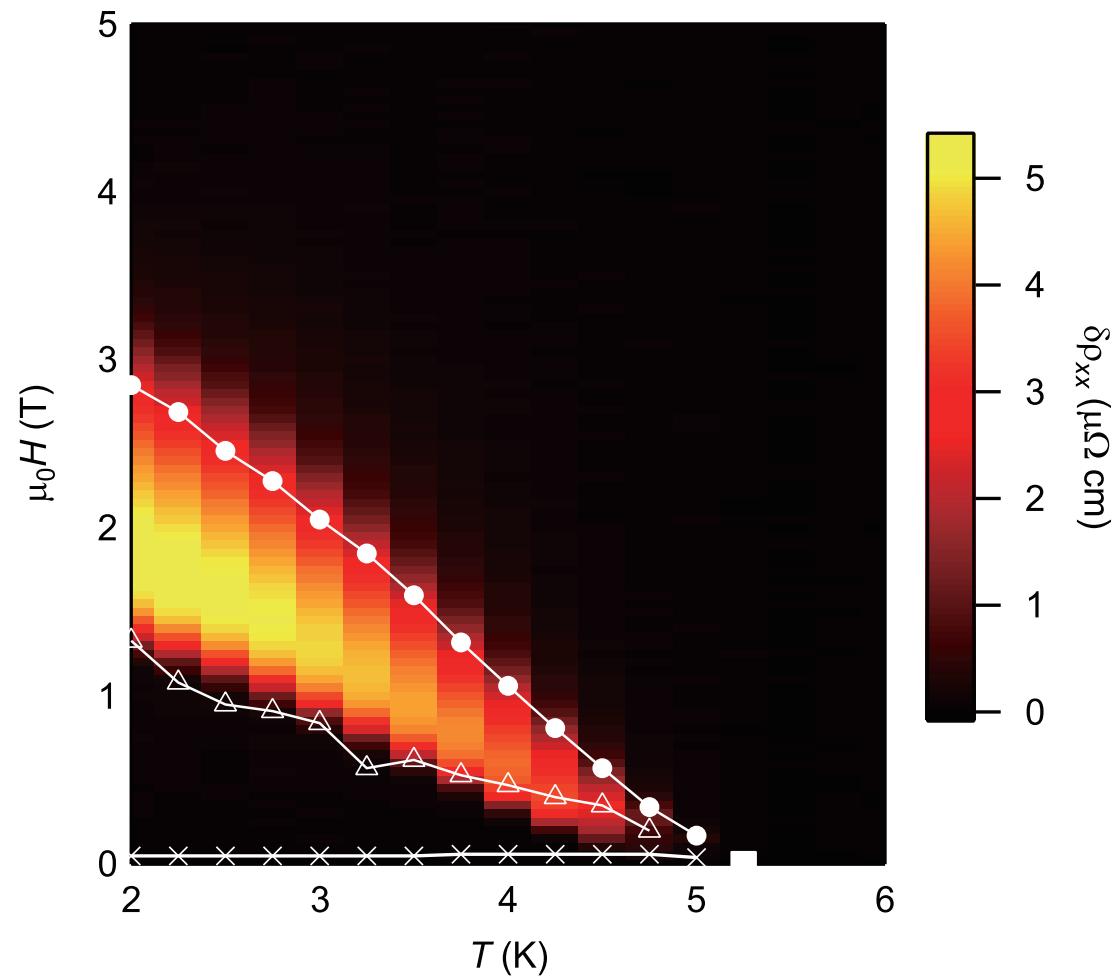
~~Suzuki~~ Angular Magneto-Resistance

~~Savary~~ Angular Magneto-Resistance

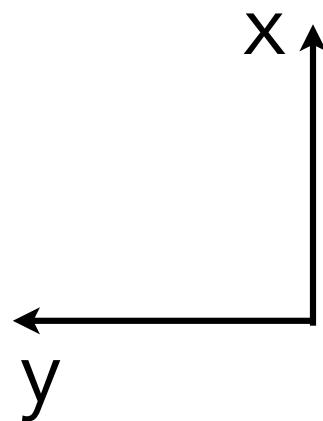
Singular Angular Magneto-Resistance

SAMR

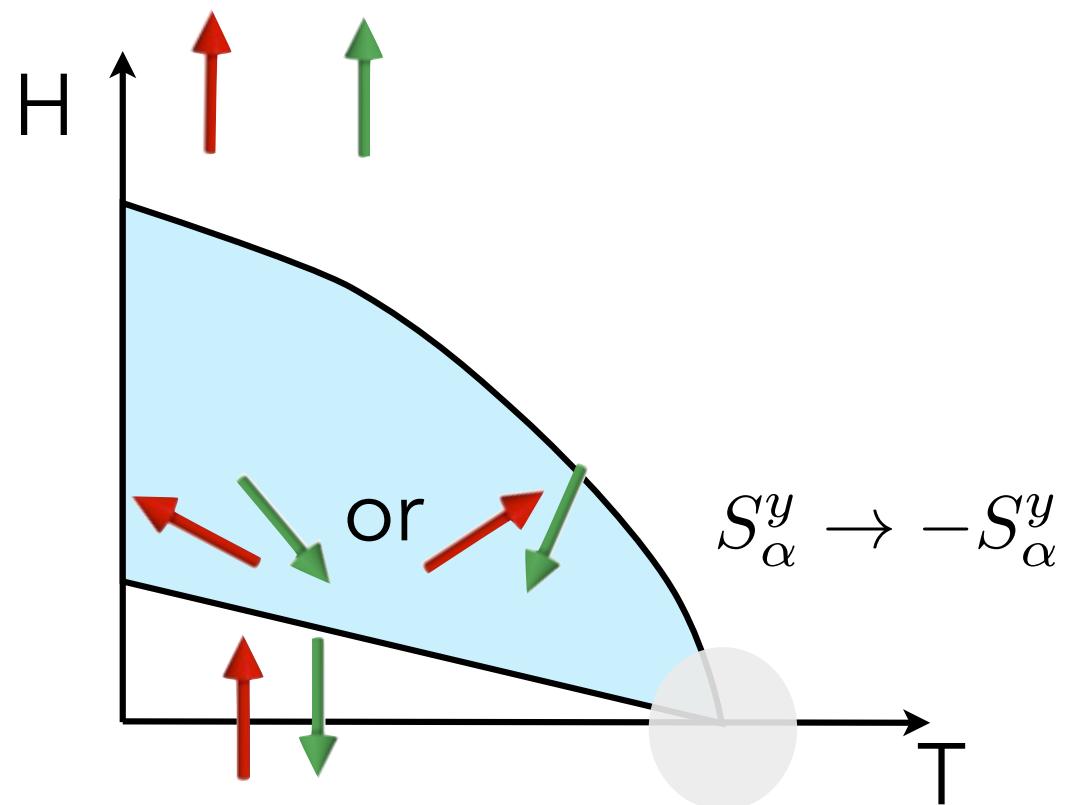
A Phase?



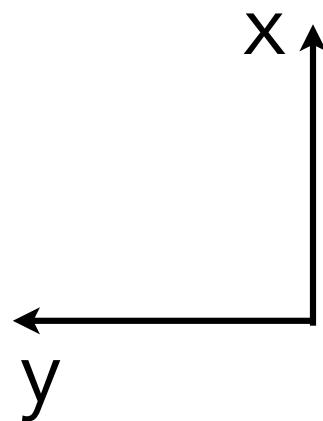
Spin Flop



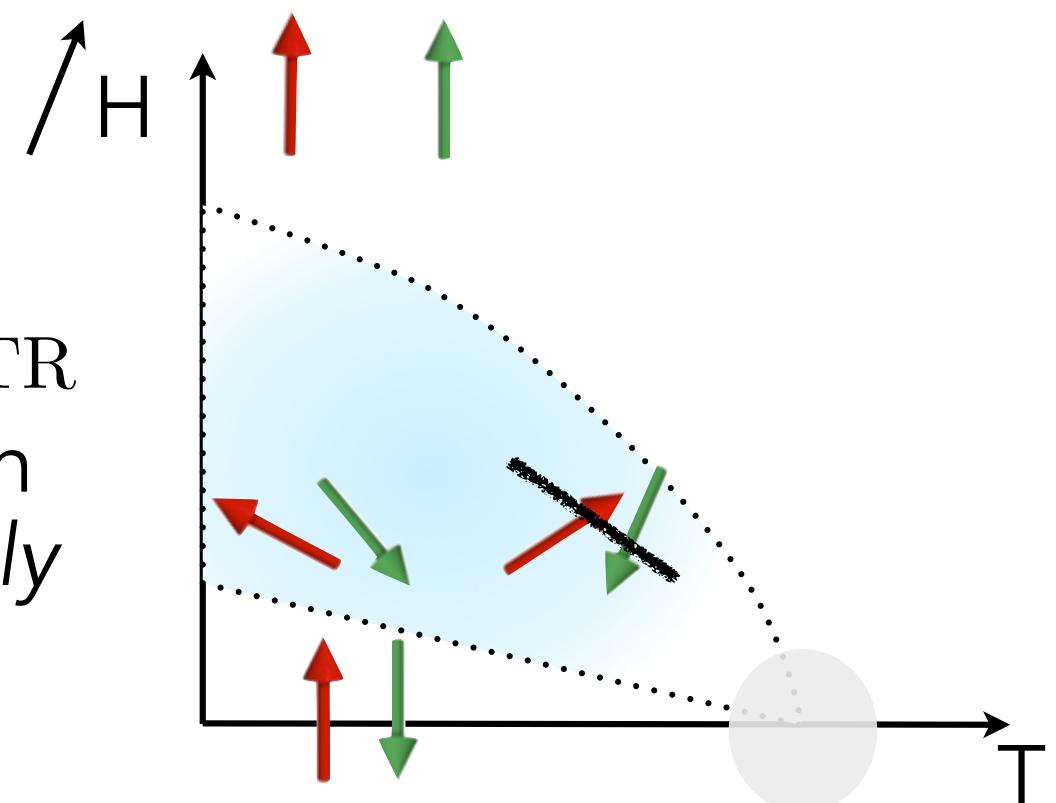
$m_{010} \times \text{TR}$
broken



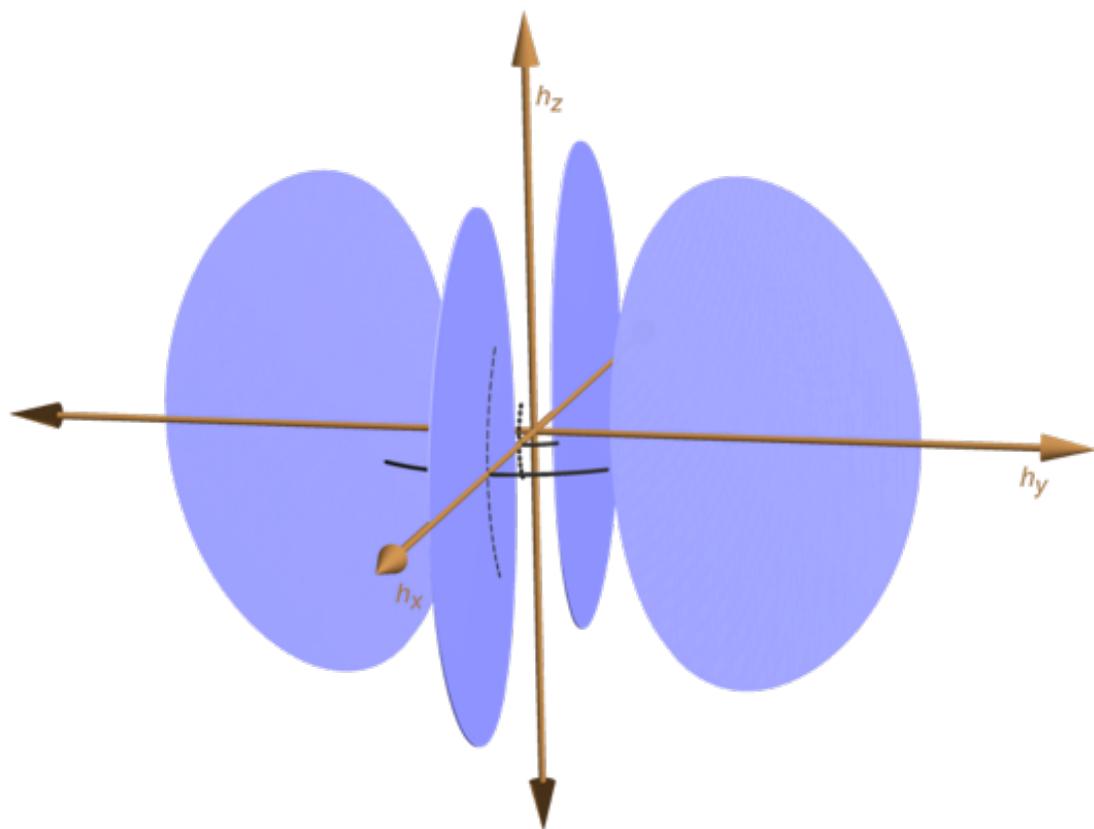
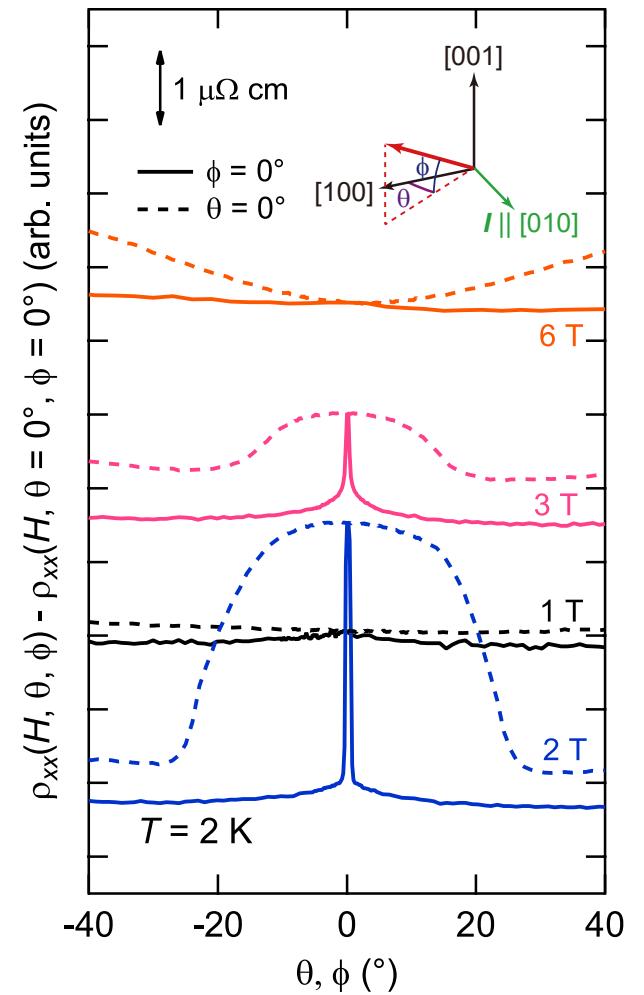
Tilted Field



$m_{010} \times \text{TR}$
broken
explicitly



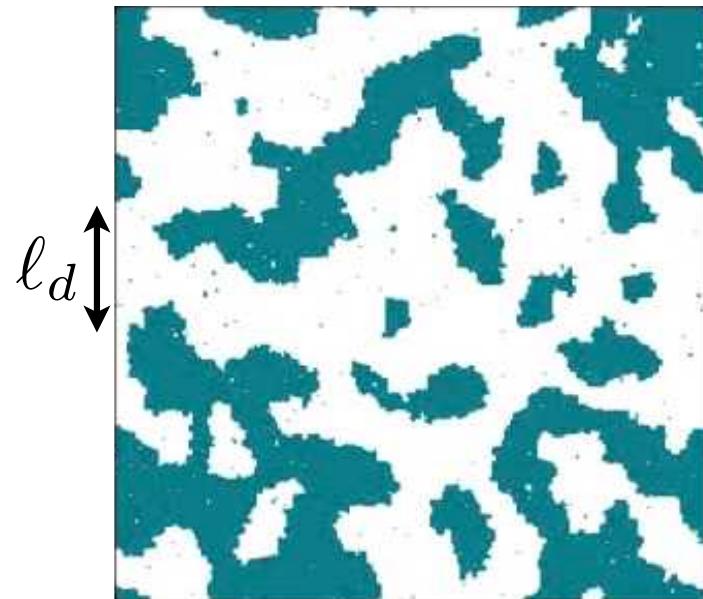
Phase diagram



SAMR is an indicator of SSB. Why?

Domains

Extra resistance comes from *domain walls*

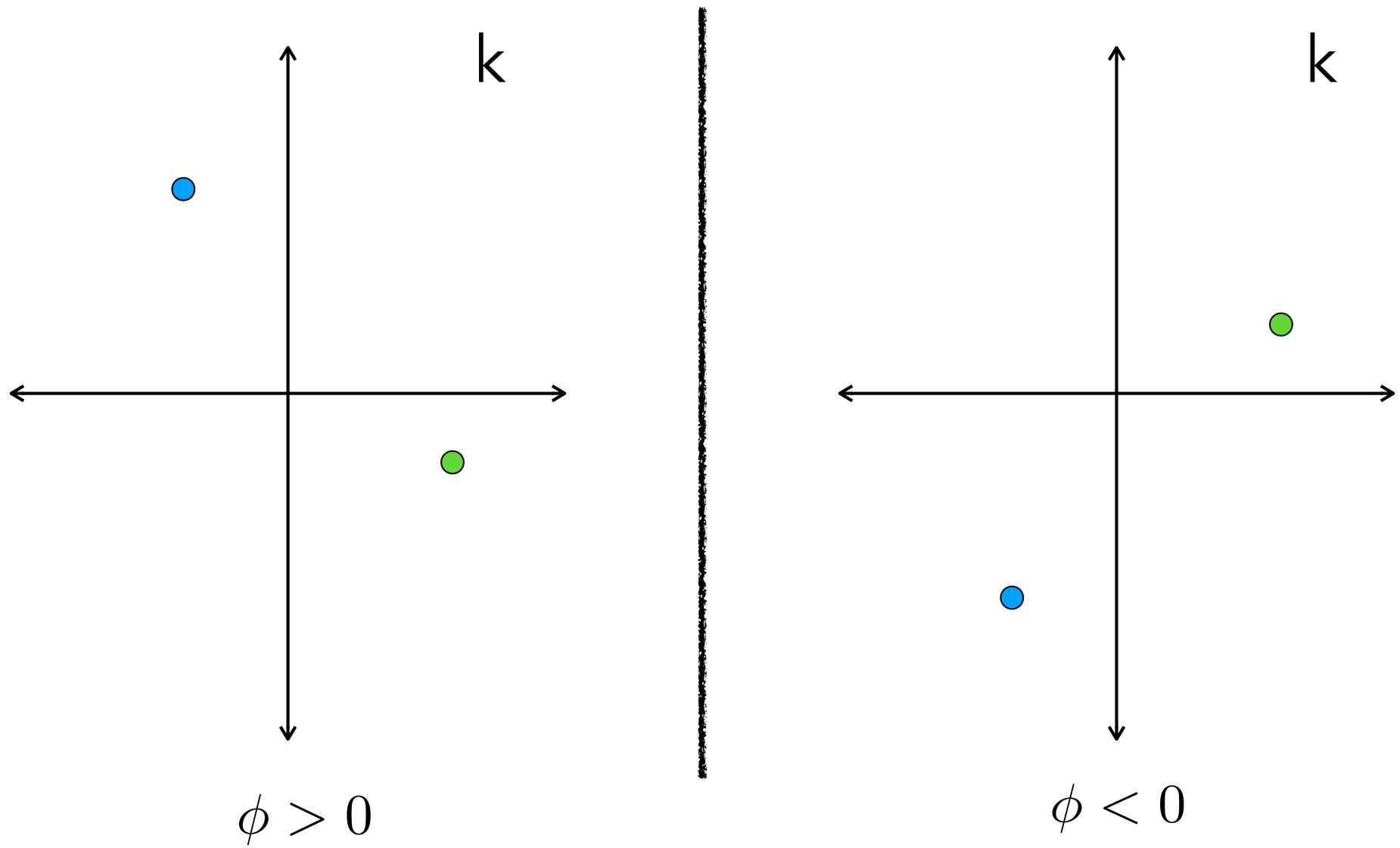


$$\rho_{\text{eff}} = \rho + \frac{\tilde{\rho}_{\text{dw}}}{\ell_d}$$

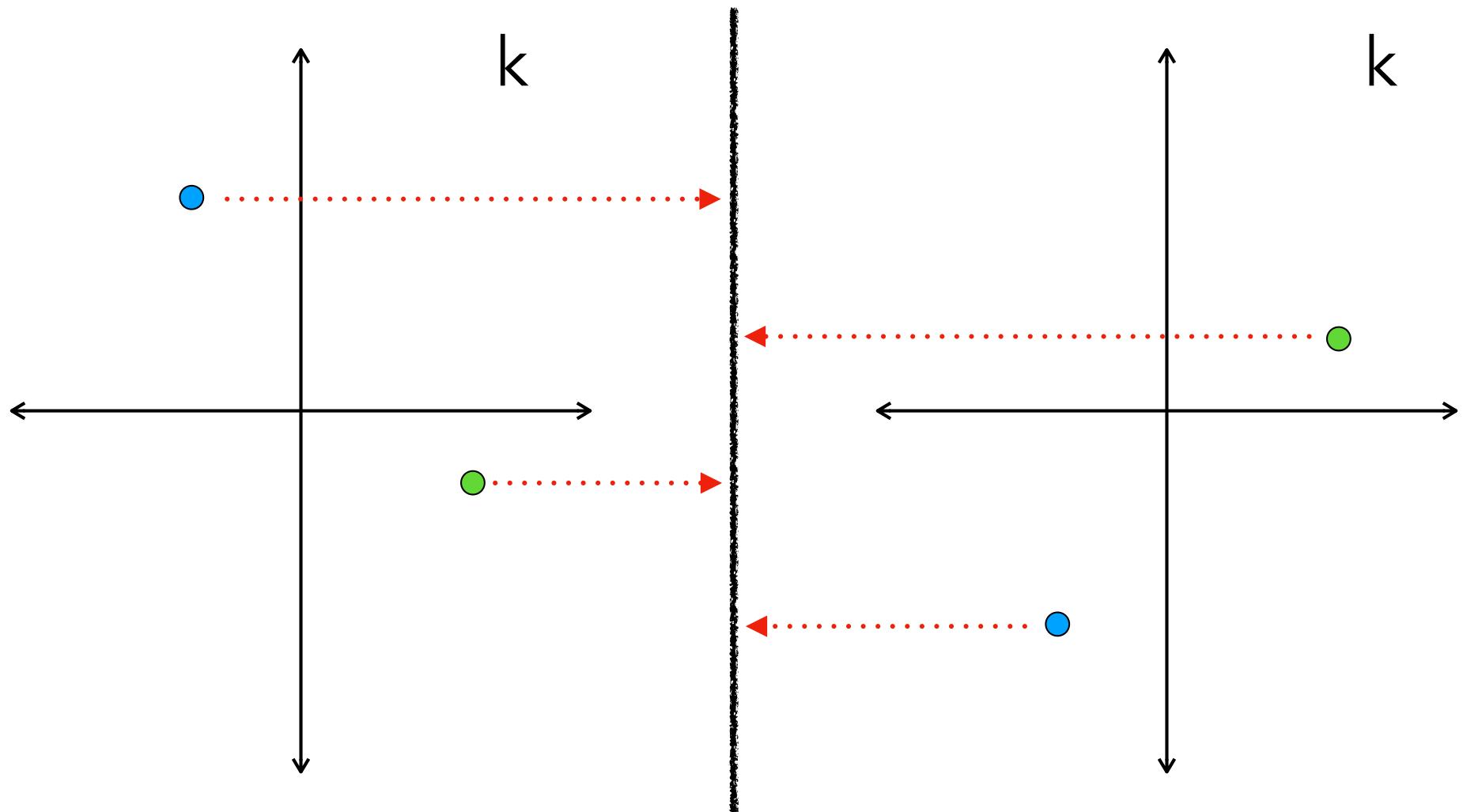
$$V_{\text{dw}} = \tilde{\rho}_{\text{dw}} j$$

Size of the effect depends on size of $\tilde{\rho}_{dw}$

Domain resistance



Domain resistance



$\phi > 0$

mirror is a mirror!

$\phi < 0$

ideal Weyl system has zero DW conductance!

Two examples

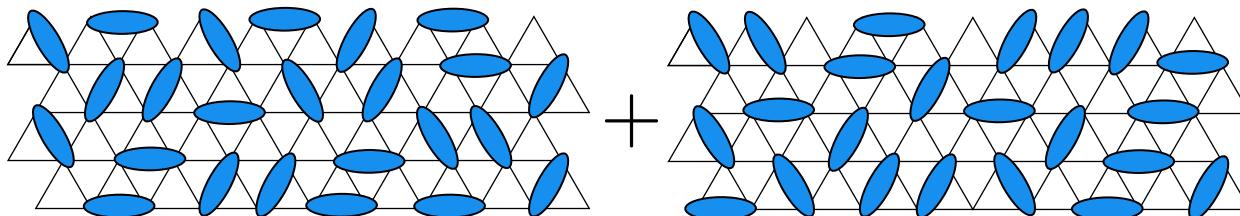
- Singular angular magnetoresistance in a magnetic Weyl semimetal
- Quantized thermal Hall effect in a nonabelian chiral spin liquid

Quantum Spin Liquid

Phil Anderson, 1973

a “quantum liquid” of spins

$$\text{blue oval} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$\Psi = \text{Diagram 1} + \text{Diagram 2} + \dots$$
A diagram showing a triangular lattice of spins. The spins are represented by blue ovals. The lattice is composed of two sublattices: one with spins pointing up and one with spins pointing down. The two sublattices are interwoven, forming a complex pattern of alternating up and down spins. The ovals are placed on the lattice points, representing the spins at each site.

Resonating Valence Bond state

Quantum Spin Liquid

Phil Anderson, 1973

a “quantum liquid” of spins

$$\text{blue oval} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

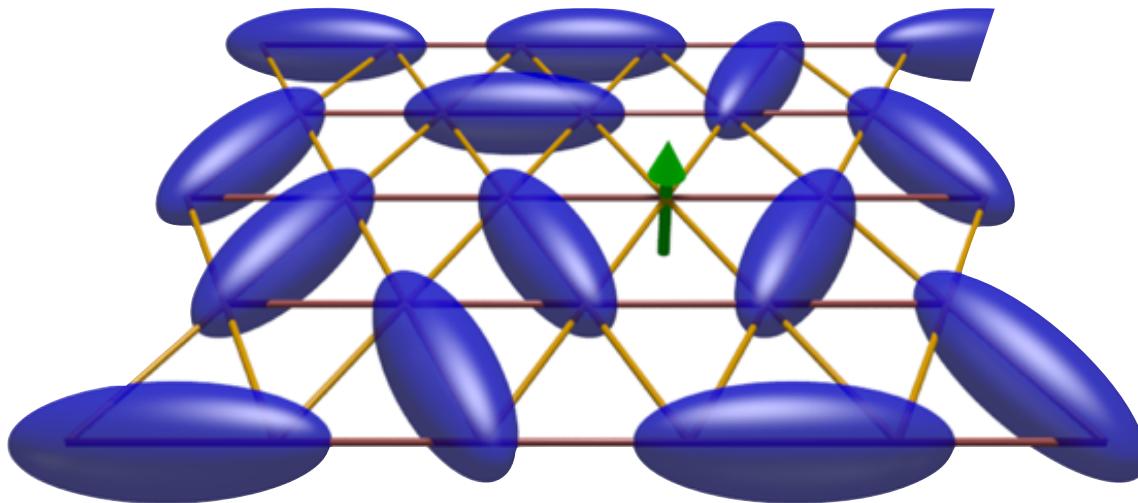
$$\Psi = \text{Diagram 1} + \text{Diagram 2} + \dots$$

The equation shows the wave function Ψ as a sum of two diagrams representing different spin configurations on a triangular lattice. Each diagram consists of a triangular lattice with blue ovals representing spins. In Diagram 1, the spins are arranged in a staggered pattern. In Diagram 2, the spins are arranged in a more regular, layered pattern. The ellipsis at the end of the sum indicates that there are more terms in the expansion.

“poster child” for UQM

Fractional quantum number

spinon

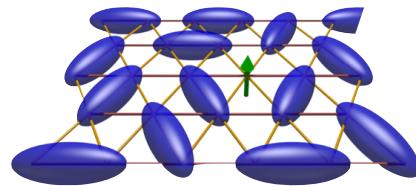


excitation with $\Delta S = 1/2$
not possible for any finite
cluster of spins

always created in pairs by any
local operator

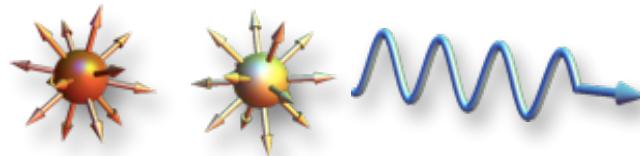
Classes of QSLs

- Topological QSLs



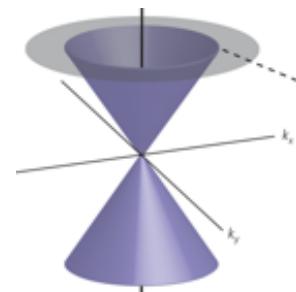
anyons,
spinons

- $U(1)$ QSL



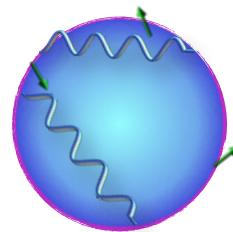
compact $U(1)$

- Dirac QSLs



QED_3

- Spinon Fermi surface



non-Fermi
liquid “spin
metal”

Smoking Gun?

Difficult to find incontrovertible and sharp indicator of a QSL!

A few possibilities

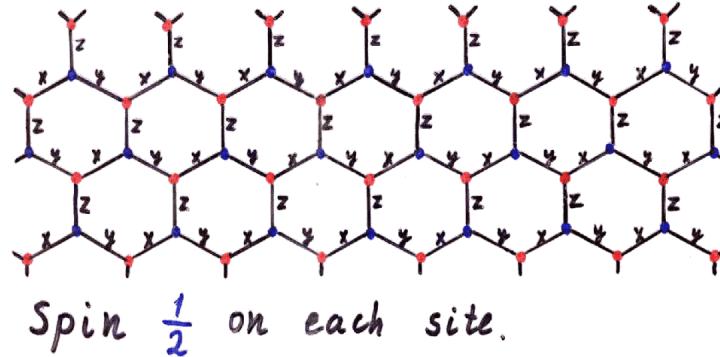
- T-linear thermal conductivity in spinon Fermi surface QSL **observed!**
- Transverse, linearly dispersing emergent photon mode in 3d U(1) QSL **not yet observed**

Kitaev model

Kitaev's honeycomb model

$$H = \sum_{i,\mu} K_\mu \sigma_i^\mu \sigma_{i+\mu}^\mu$$

1. The model



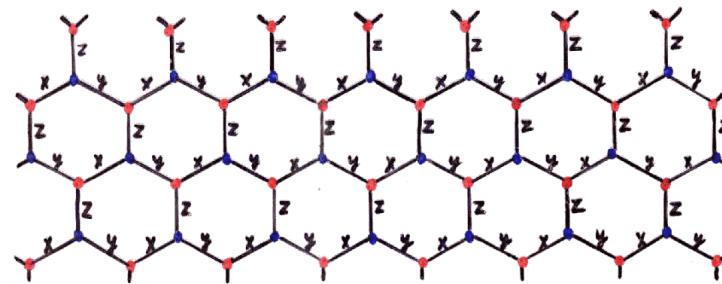
exact parton construction $\sigma_i^\mu = i c_i c_i^\mu$ $c_i c_i^x c_i^y c_i^z = 1$

effective quadratic Hamiltonian

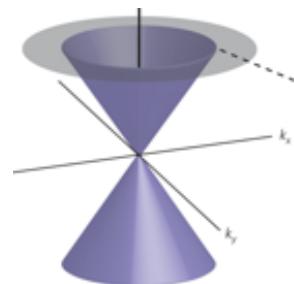
$$H = \sum_{i,\mu} i K_\mu c_i c_{i+\mu}$$

Gapless QSL

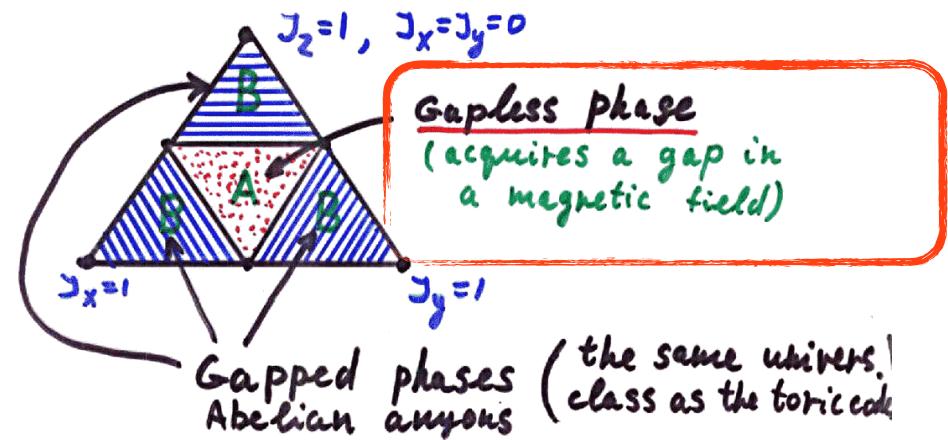
$$H = \sum_{i,\mu} i K_\mu c_i c_{i+\mu}$$



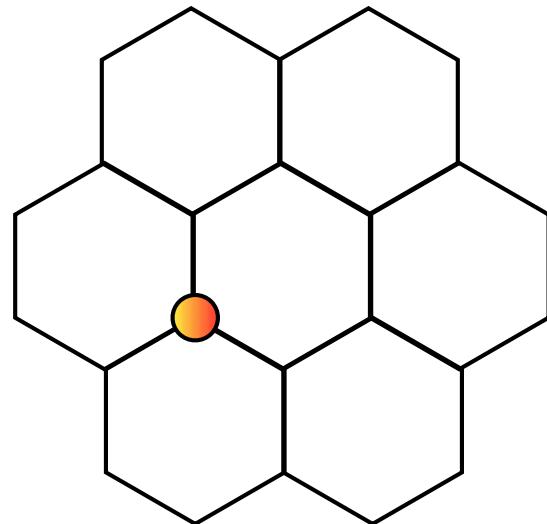
~1/4 of graphene



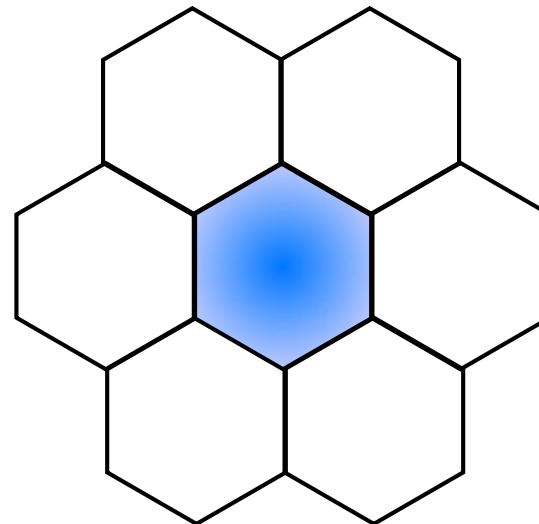
Phase diagram



Non-local excitations



Majorana ϵ



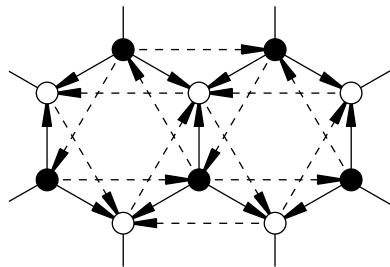
Flux e, m

In Kitaev's model:

- Majorana's dispersion $\sim K$ and Dirac-like
- Fluxes are localized with small gap

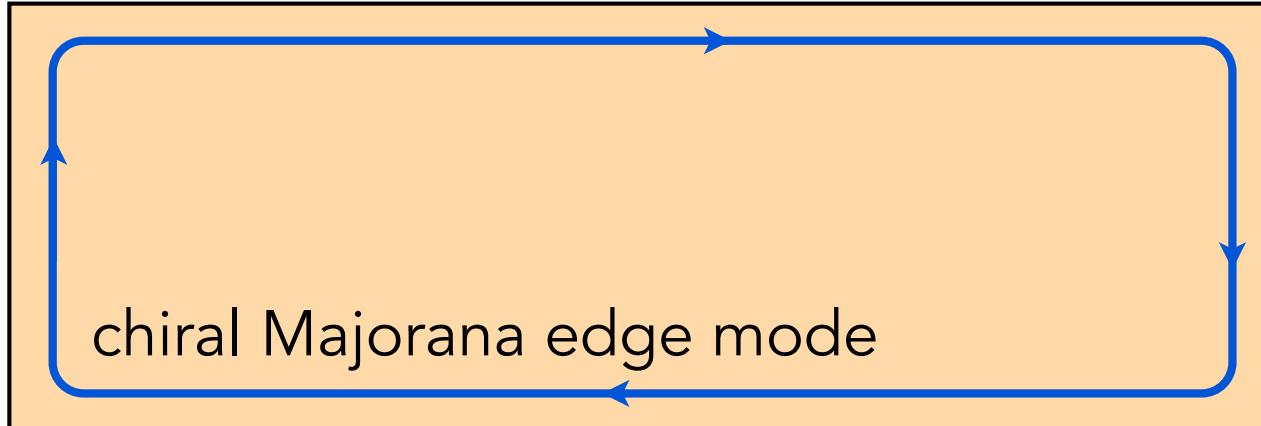
Non-Abelian Phase

- In an applied magnetic field, the Majoranas acquire a gap



$$H_{\text{eff}} = \frac{i}{4} \sum_{j,k} A_{jk} c_j c_k,$$
$$A = 2J(\text{---}) + 2\kappa(\text{---}),$$
$$\kappa \sim \frac{h_x h_y h_z}{J^2}.$$

field induces a fermion mass, very similar to the Haldane model (except Majorana)



$$H_e = -\frac{iv}{4} \int dx \eta \partial_x \eta$$

Quantum Hall Effect?

- No charge. Have to study heat transport!

T

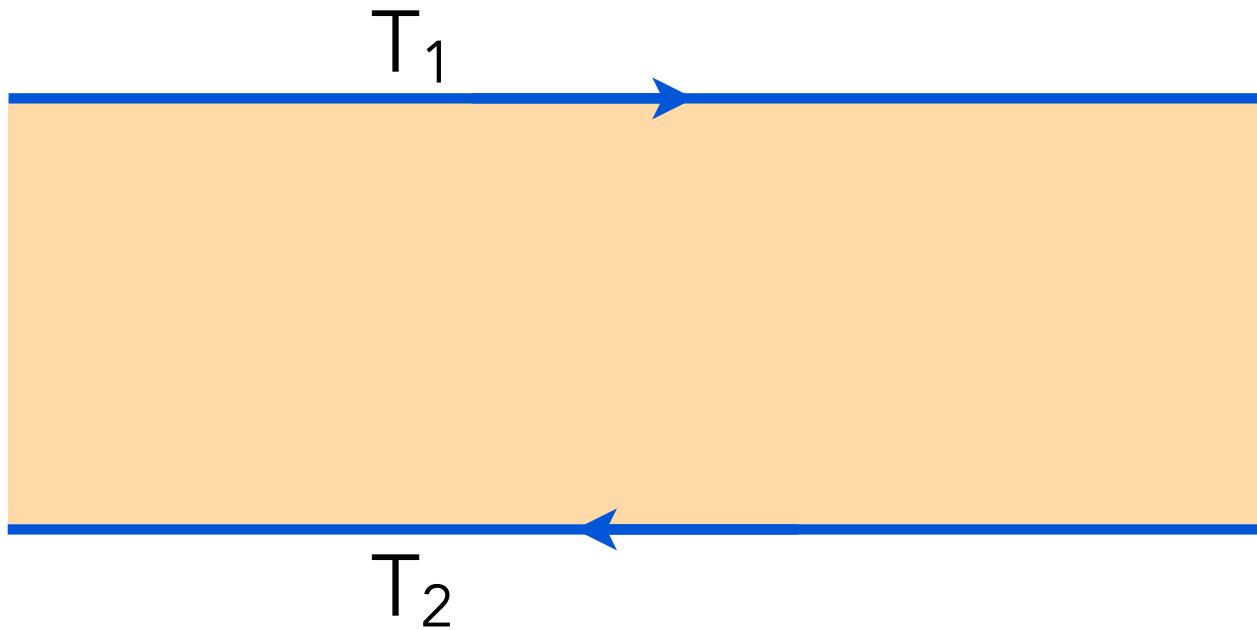
$$I = \int_0^\infty \frac{dq}{2\pi} v^2 q f(vq) = \frac{c\pi k_B^2}{12\hbar} T^2 \quad \text{central charge } c=1/2$$

c.f. $c=1$ for both IQHE and FQHE abelian states

implies the existence of bulk non-abelian excitations (the fluxes, bound to MZMs)

Quantum Hall Effect?

- No charge. Have to study heat transport!

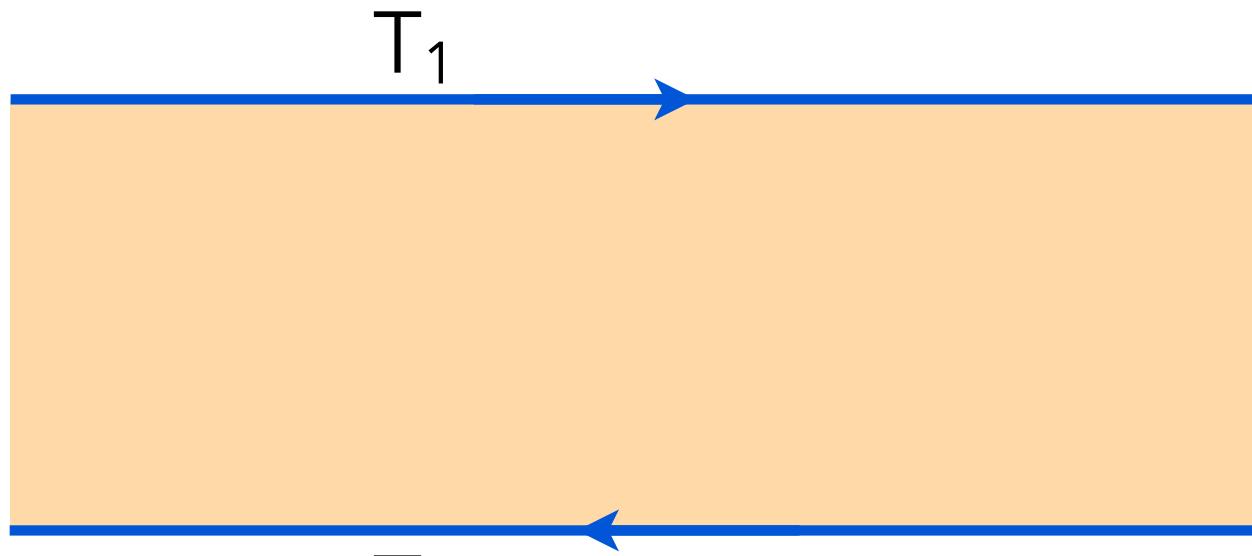


$$I = \frac{c\pi k_B^2}{12\hbar} (T_1^2 - T_2^2)$$

$$\approx \frac{c\pi k_B^2 T}{6\hbar} (T_1 - T_2)$$

Quantum Hall Effect?

- No charge. Have to study heat transport!



$$I_x = \kappa_H \Delta T_y$$

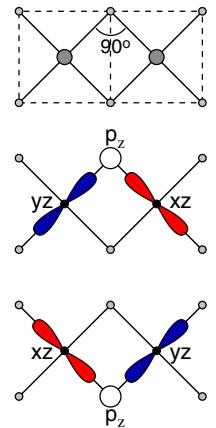
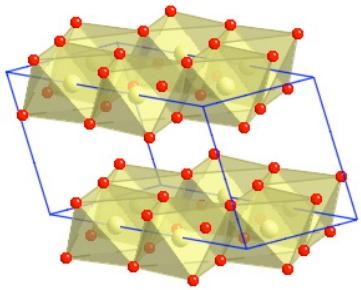
$$\kappa_H = \frac{\pi c k_B^2 T}{6 \hbar}$$

a universal prediction for chiral
“Ising anyon” phase: agnostic to
microscopic spin interactions

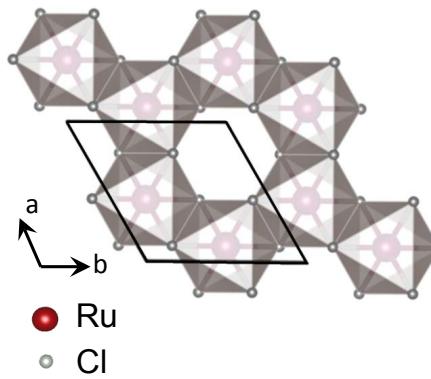
Kitaev Materials

Jackeli, Khaliullin
2009

Showed that Kitaev interaction can be large in edge-sharing octahedra with large spin-orbit-coupling



Na₂IrO₃,
(α, β, γ)-
Li₂IrO₃



α -RuCl₃

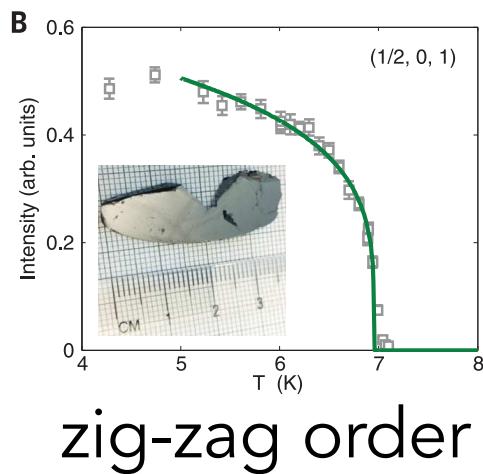
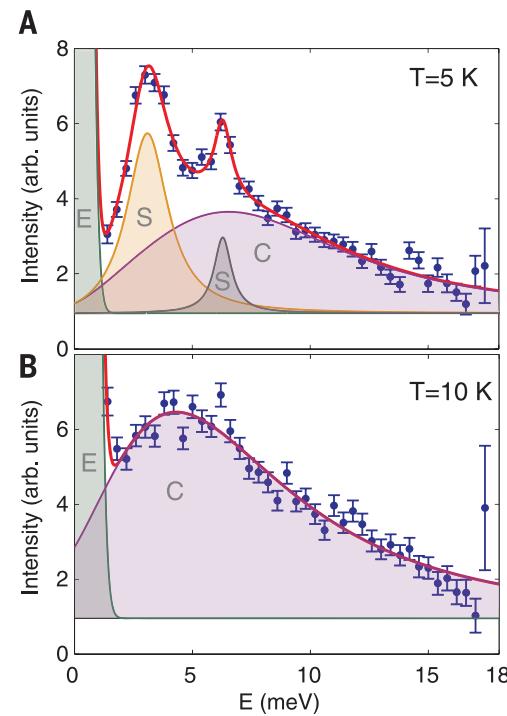
Y.-J. Kim...

Honeycomb and hyper-honeycomb structures

P.Gegenwart
H. Takagi
...

α -RuCl₃

Clearly not described by ideal Kitaev model,
but still interesting

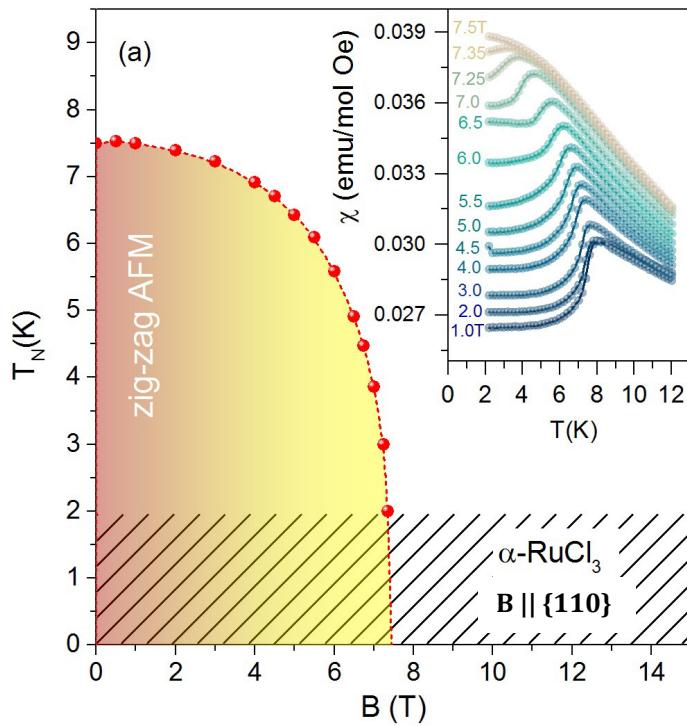


BUT: excitations to ~ 15 meV = 170 K

Suppressing order

With a magnetic field:

A. Banerjee *et al*, 2017

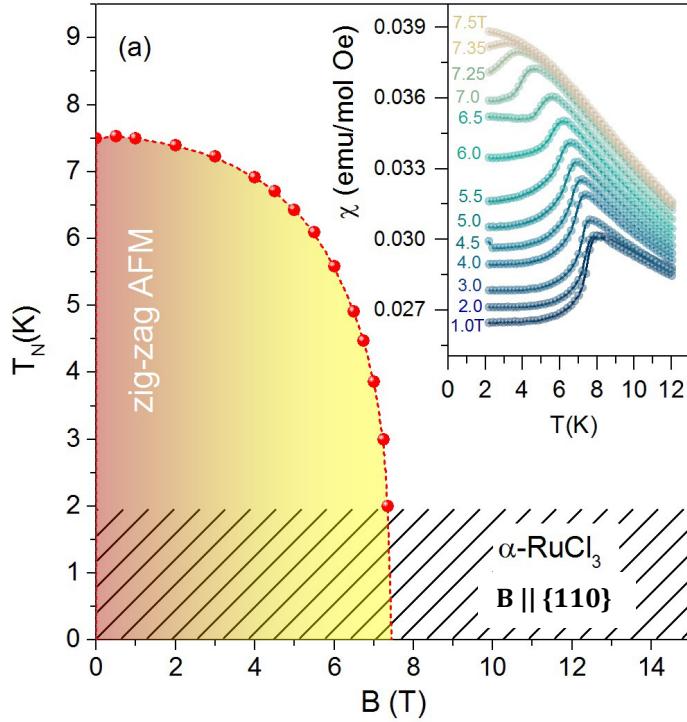


spin liquid or boring
paramagnet?

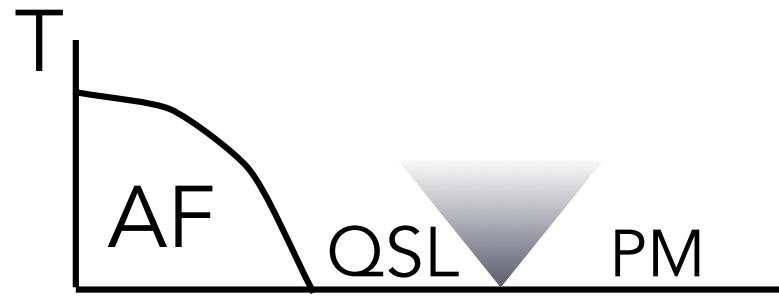
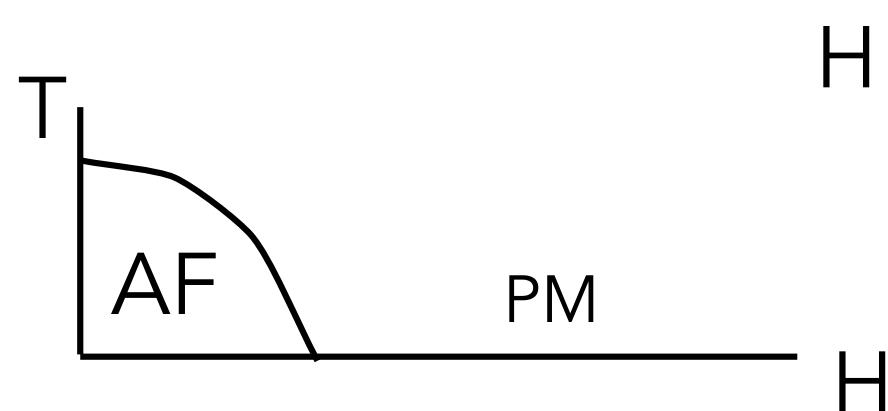
Suppressing order

With a magnetic field:

A. Banerjee *et al*, 2017

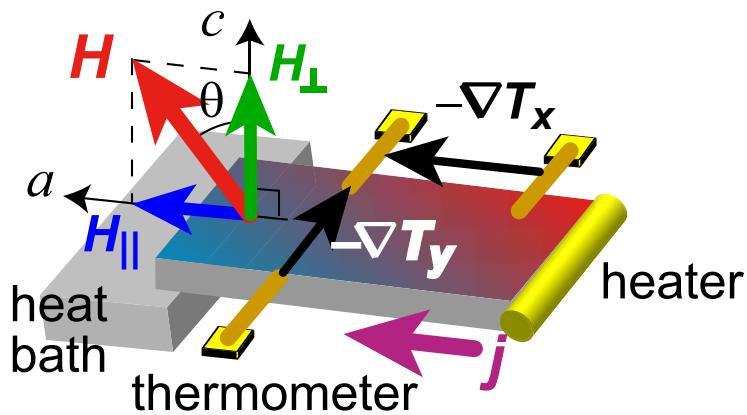
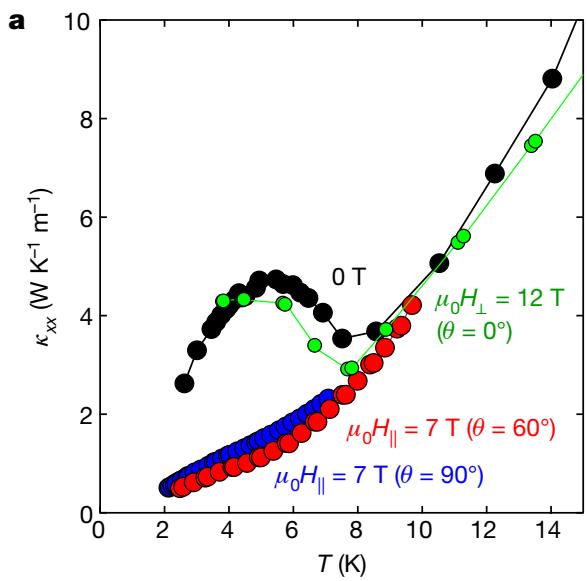


theoretical possibilities



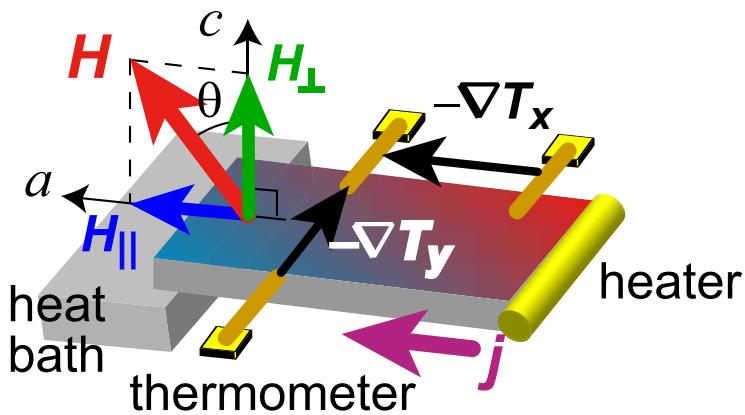
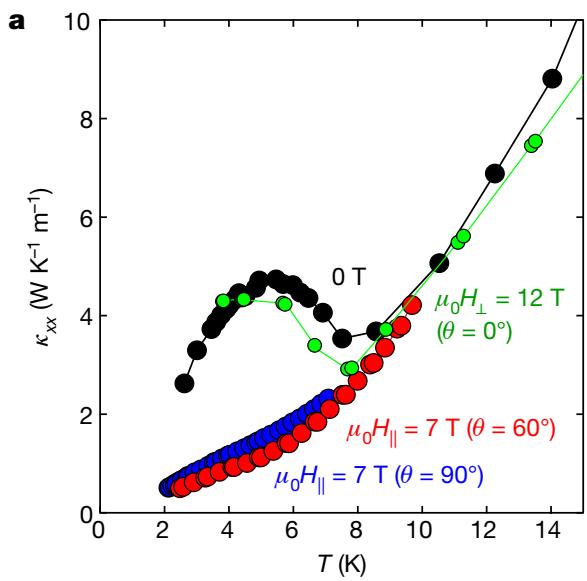
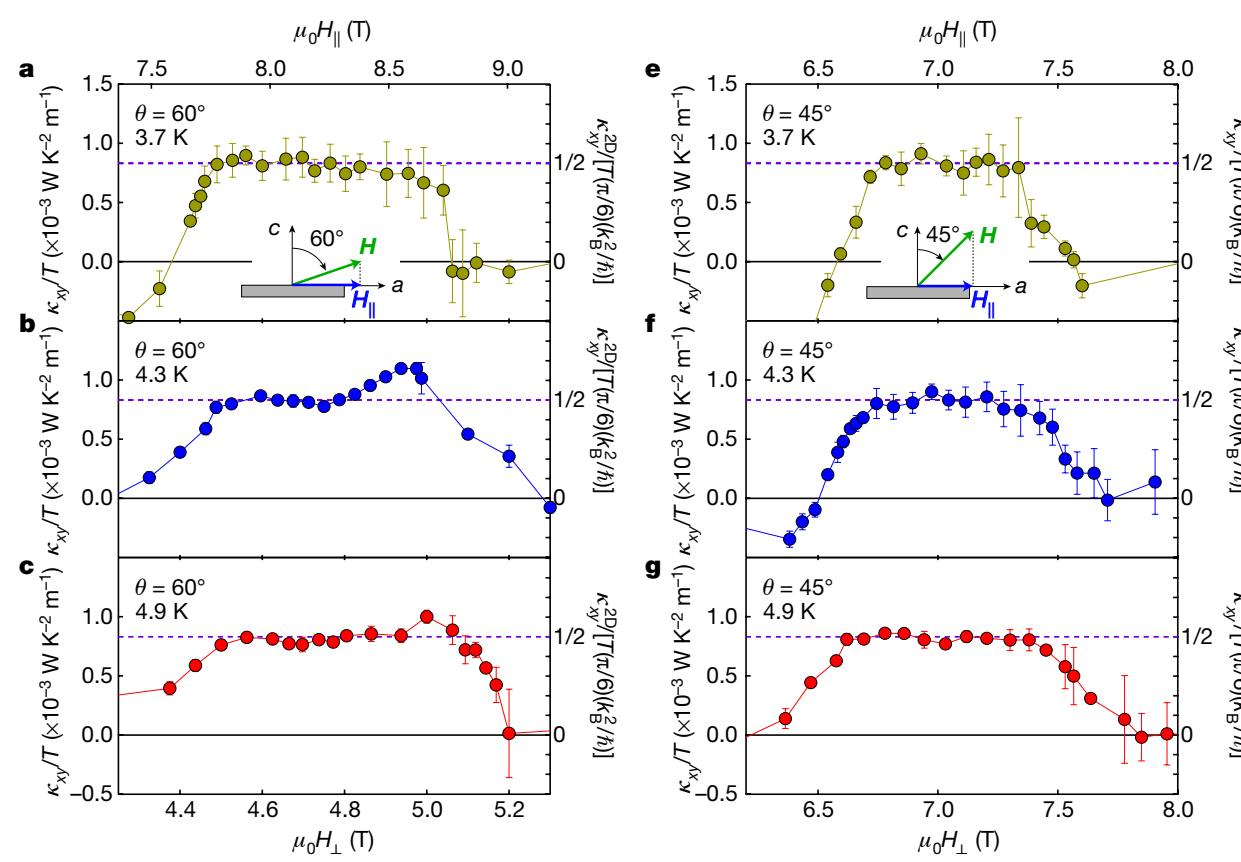
Thermal Hall Effect

Y. Kasahara *et al*, Nature 2018



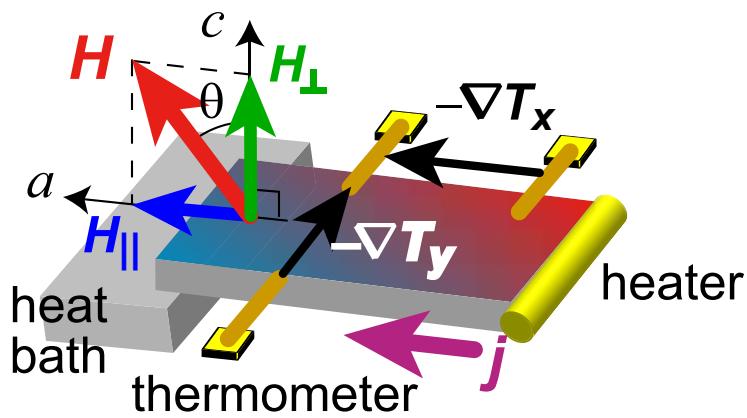
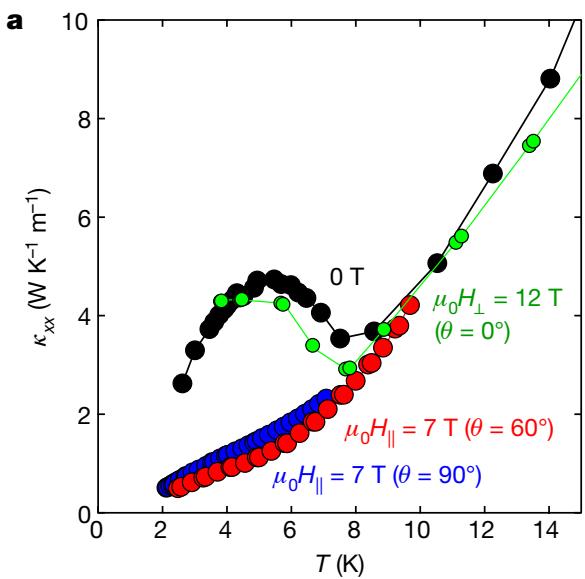
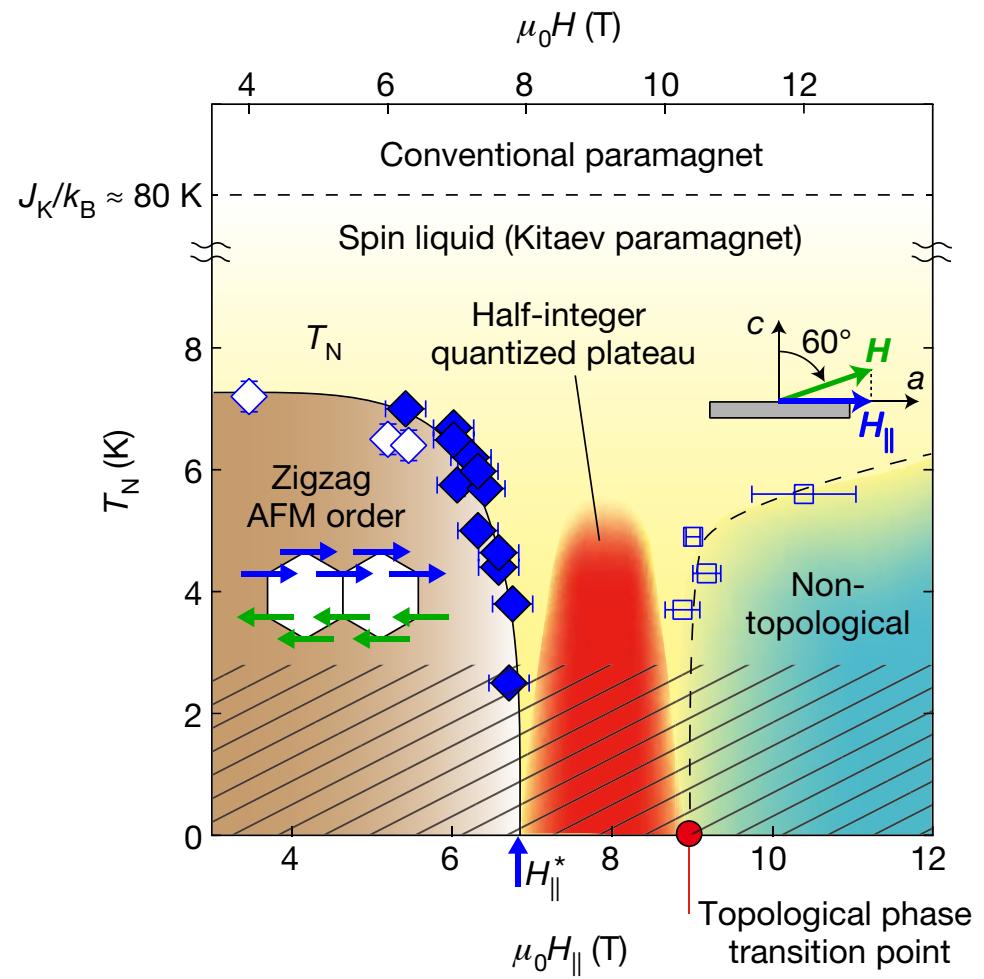
Thermal Hall Effect

Y. Kasahara et al, Nature 2018



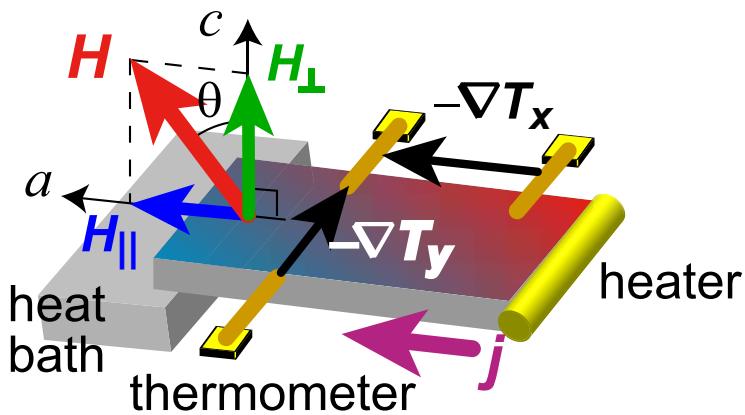
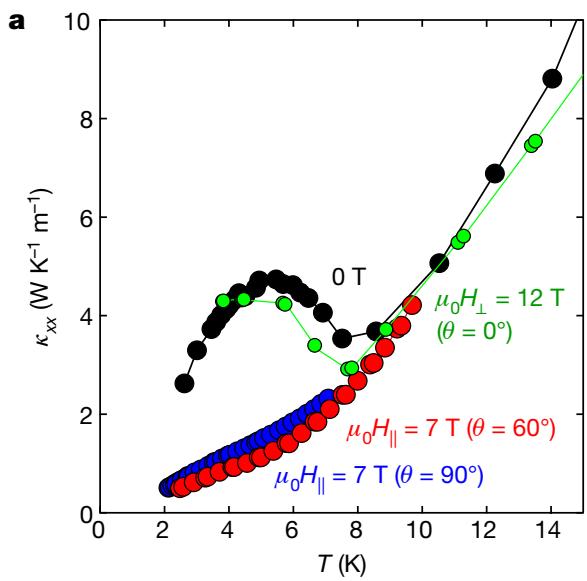
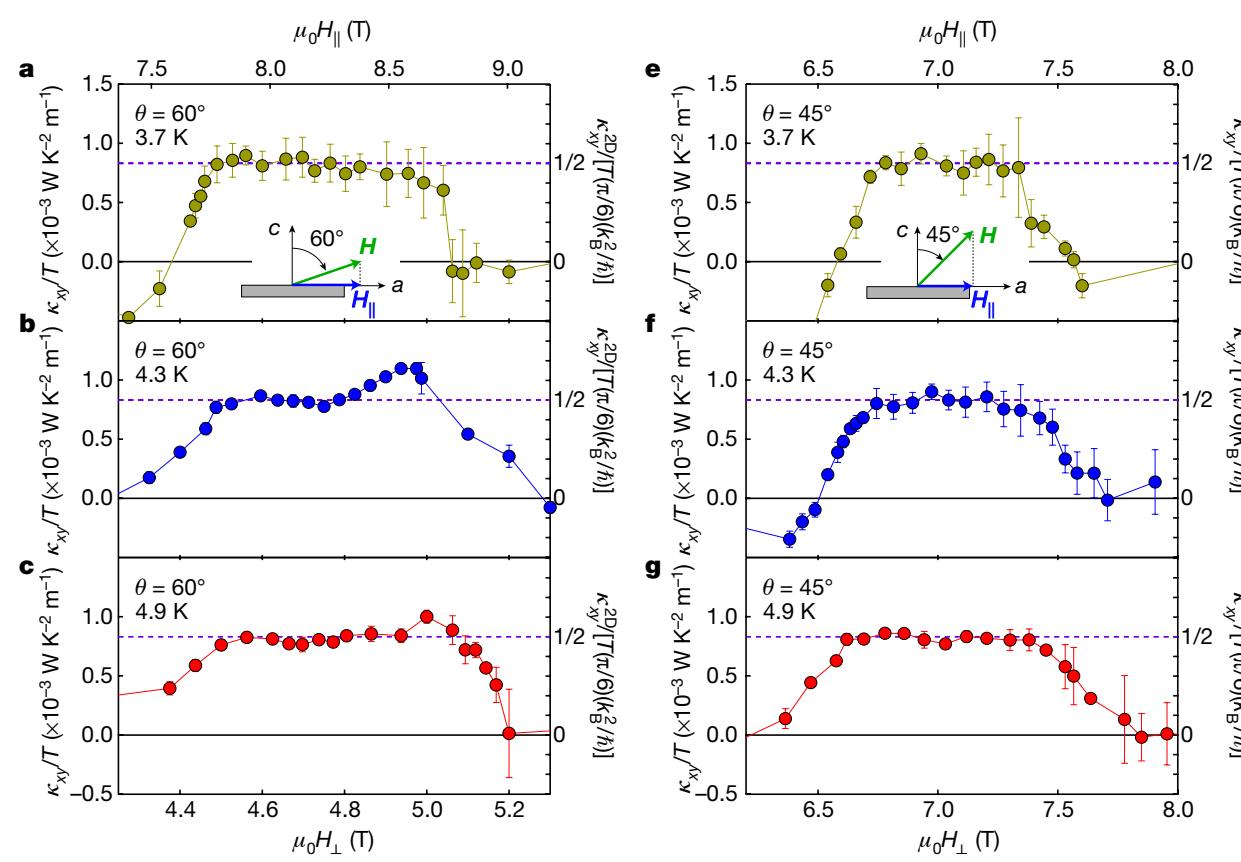
Thermal Hall Effect

Y. Kasahara *et al*, Nature 2018

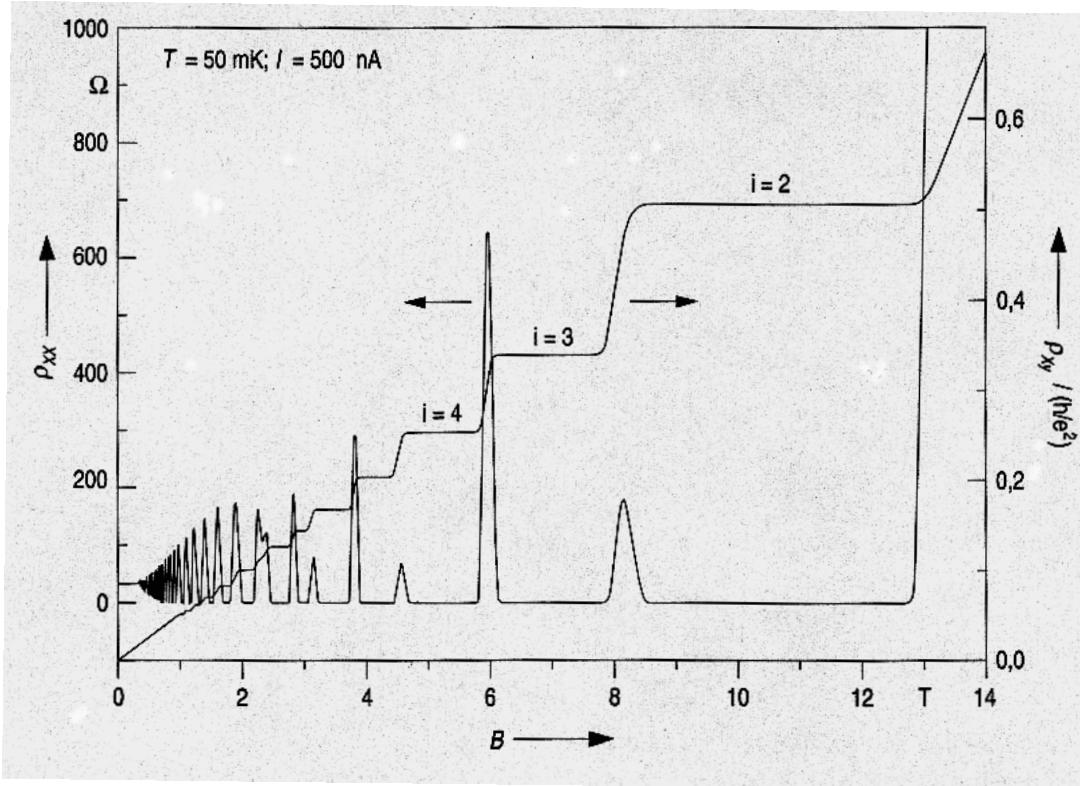


Thermal Hall Effect

Y. Kasahara et al, Nature 2018



Why worry?



Quantization is *only* visible when diagonal conductivity is small, i.e. Hall angle ~ 90 degrees

semicircle "law"

$$\sigma_{xx}^2 + \left(\sigma_{xy} - \frac{\sigma_1 + \sigma_2}{2} \right)^2 = \left(\frac{\sigma_1 - \sigma_2}{2} \right)^2$$

c.f. IQHE

But for RuCl_3 , thermal Hall angle $\sim 10^{-3}$!!

Theoretical Problem

From Y. Kasahara *et al*

In the plateau regime of κ_{xy} , no anomaly is observed in κ_{xx} , probably because phonon contributions largely dominate over fermionic excitations arising from spins in κ_{xx} in the whole temperature range^{28,29}.

Q: Can quantized thermal Hall effect persist when phonons dominate bulk conductivity?

A: **Yes**, and phonons actually *help* to make the effect observable.

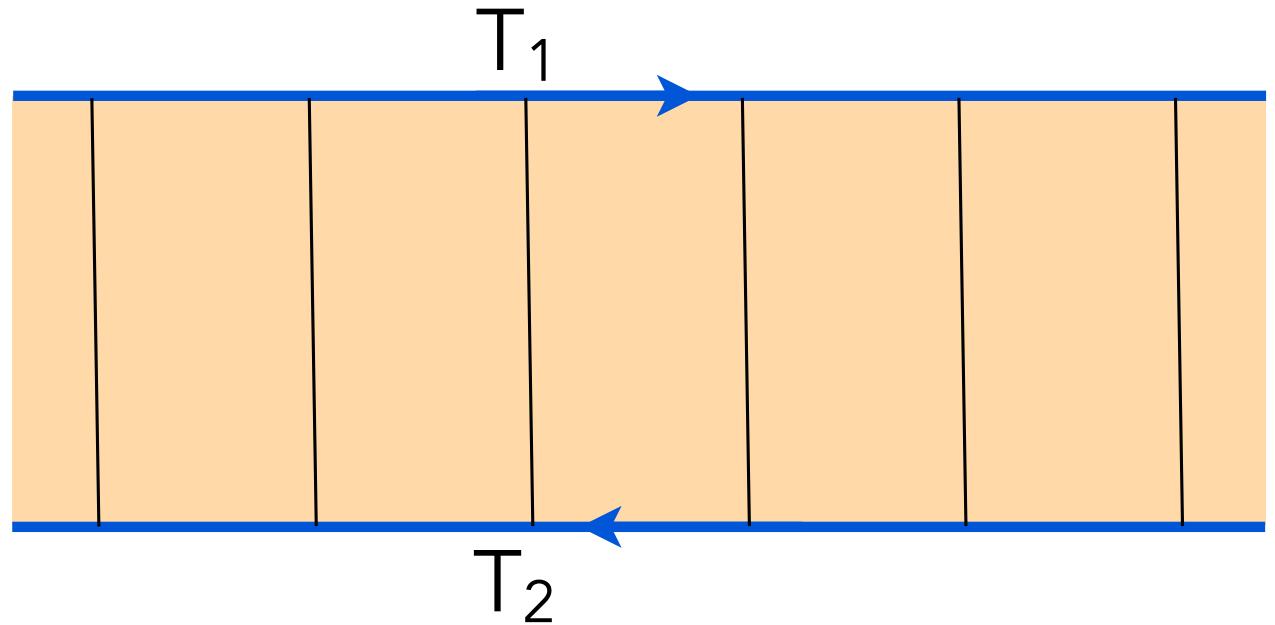
Theoretical Problem

Recall
derivation of
QTHE



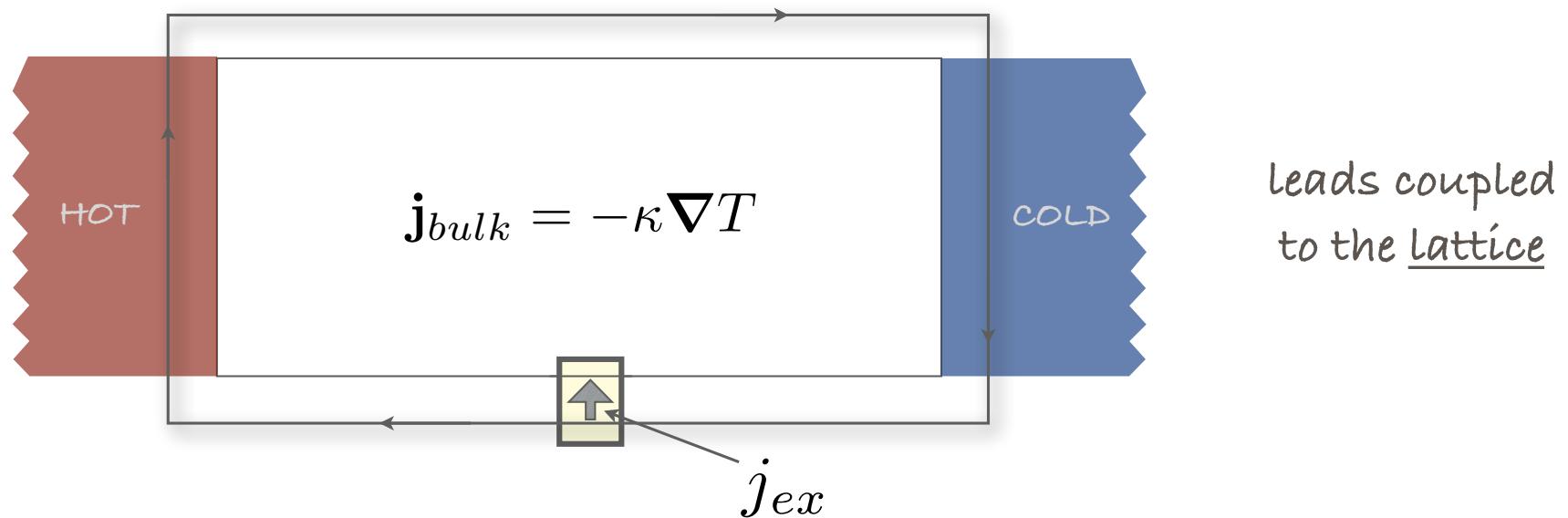
Theoretical Problem

Recall
derivation of
QTHE



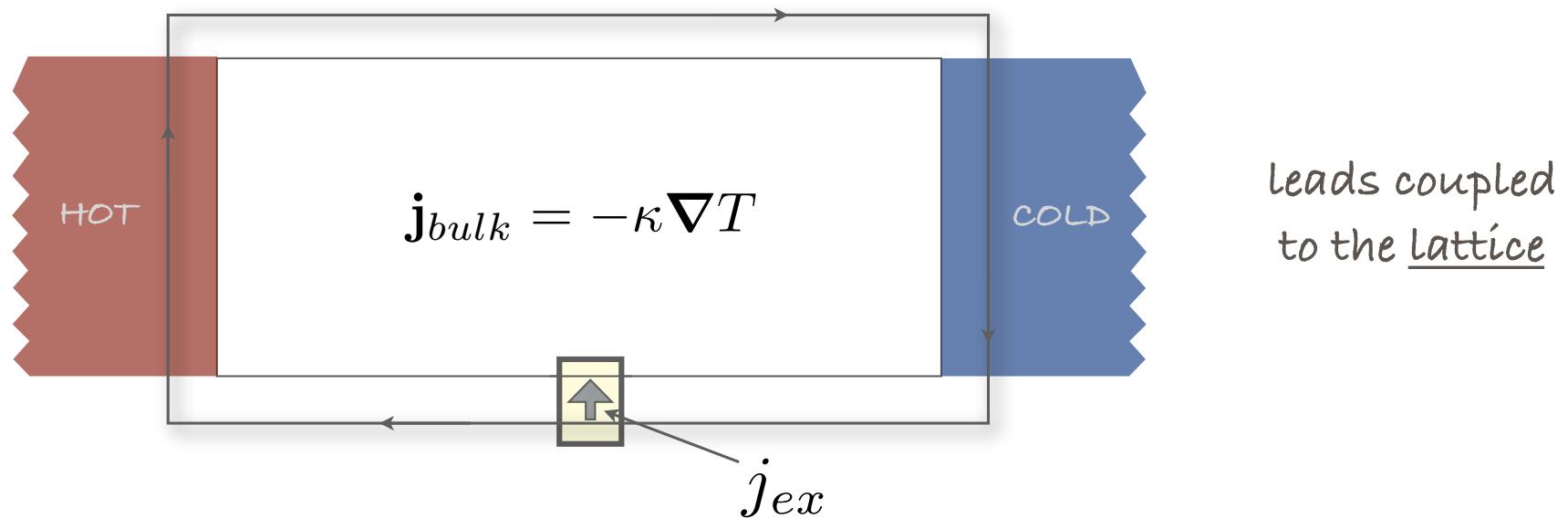
$\kappa_{xx} \gg \kappa_{xy}$: Temperature of phonons in *not* constant at the edge
?? Could edge be out of equilibrium with the
phonons and have constant T??
- but: in that case, which T is measured?

Formulation



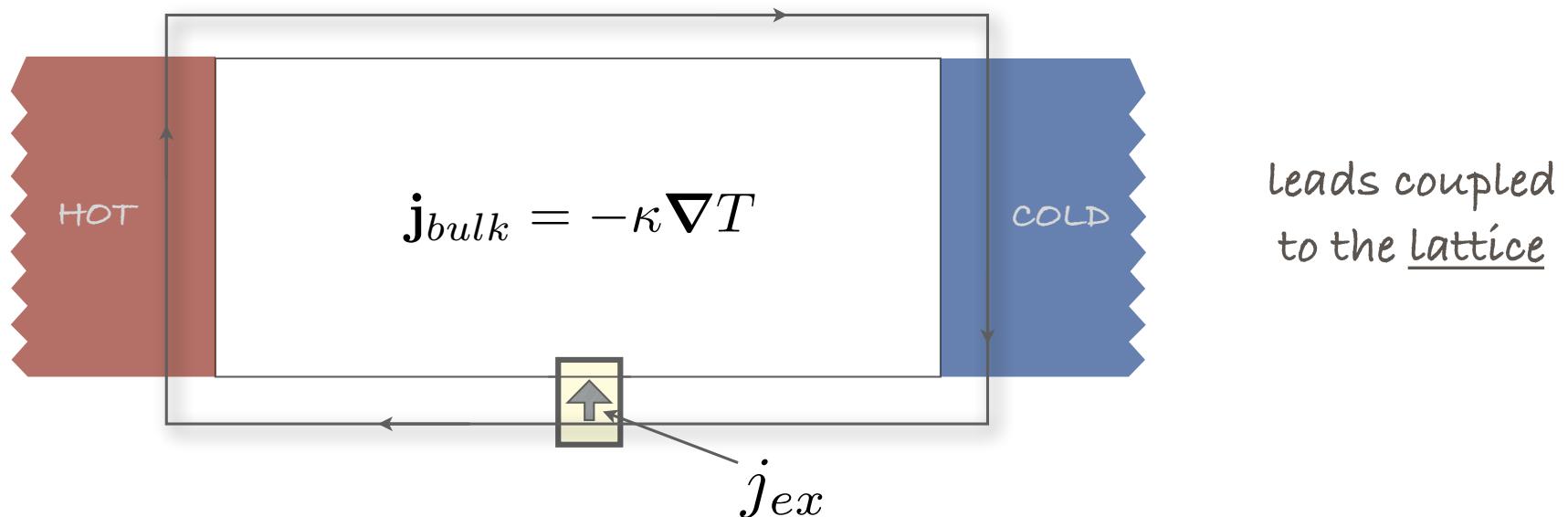
- Assume spins go into nonabelian QSL phase: bulk spin gap, chiral edge state
- Include bulk phonons with *no* Hall conductivity
- Majoranas and phonons can exchange energy at the edge of the sample

Formulation



- Variables:
 - $T_{ph}(x,y)$ = phonon temperature in bulk
 - $T_f(x,L_y)$ etc = fermion temperature at edge

Formulation

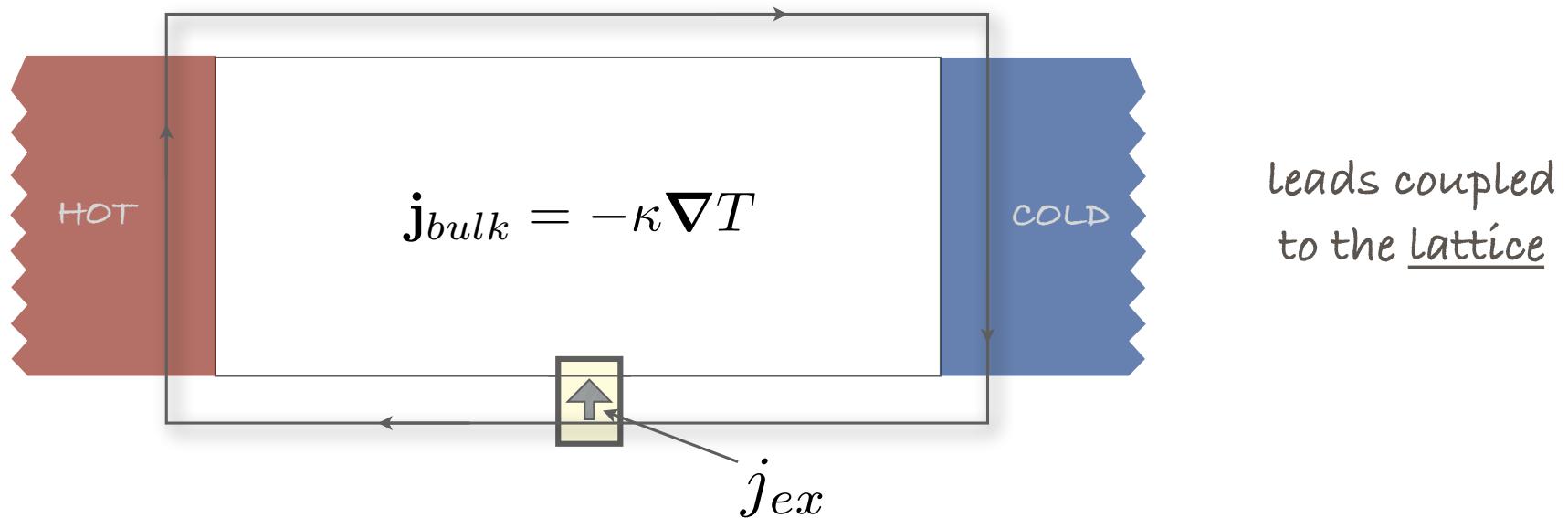


- Currents:

- Bulk $\mathbf{j}_{ph} = -\kappa \nabla T_{ph}$

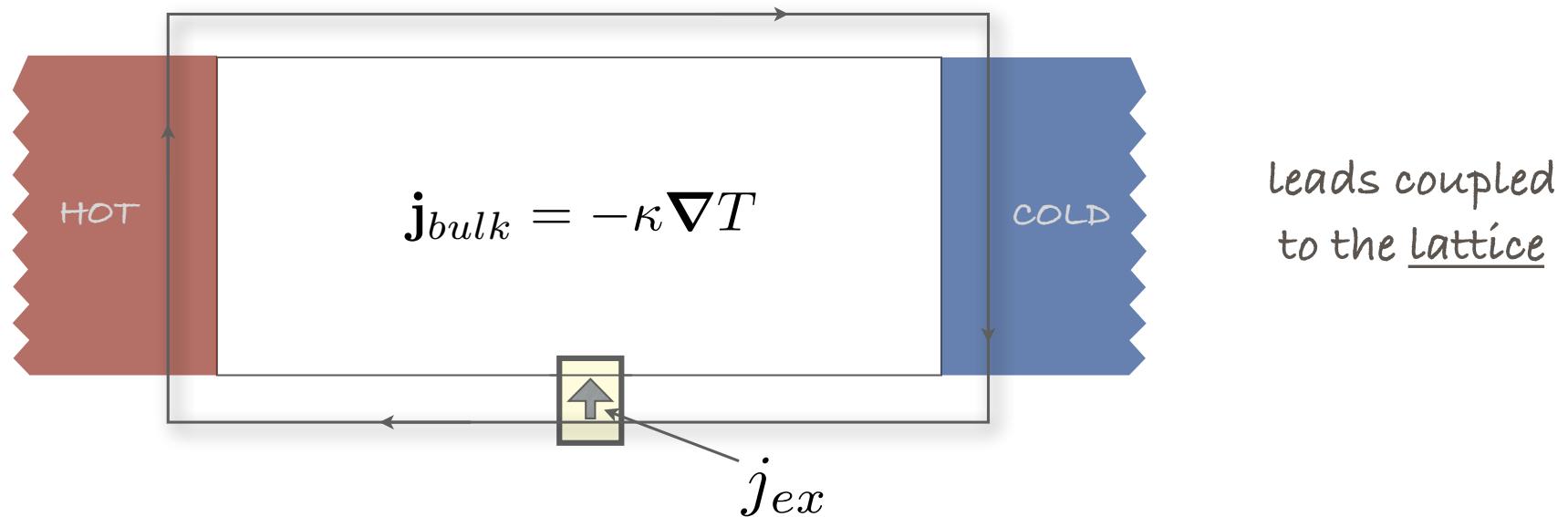
- Edge $I_f = \frac{\pi}{24} T_f^2$

Formulation



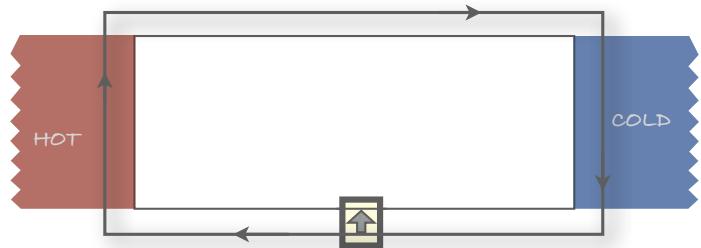
- Continuity:
 - Bulk $\nabla \cdot \mathbf{j}_{ph} = 0$
 - Edge $\partial_x I_f = \pm j_{ex}, \quad \pm j_{ph}^y(x, \pm y_0) = j_{ex}(x, \pm y_0).$

Formulation



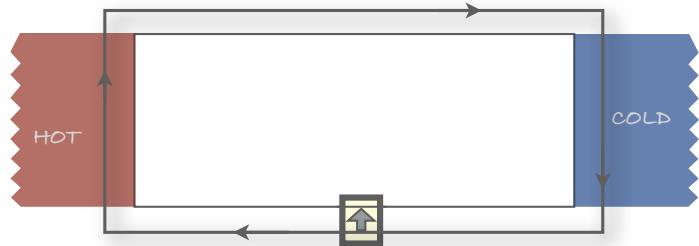
- Coupling:
- linear response $j_{ex} = \lambda(T)(T_{ph} - T_f)$

Formulation



- Full equations (for *infinite* Hall bar)
 - bulk $\nabla^2 T_{ph} = 0$
 - edge
$$\begin{aligned} \kappa_{xy}^q \partial_x T_f(x, \pm y_0) &= -\kappa \partial_y T_{ph}(x, \pm y_0) \\ &= \pm \lambda(T) (T_{ph} - T_f)|_{x, \pm y_0} \end{aligned}$$

Solution



- Solution

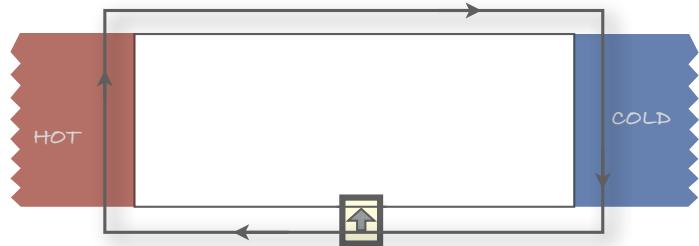
- Bulk $T_{ph}(x, y) = T_0 + \frac{\partial T_{ph}}{\partial x}x + \frac{\partial T_{ph}}{\partial y}y$

- edge $T_f(x, \pm y_0) = T_{1,\pm} + \frac{\partial T_{ph}}{\partial x}x$

$$\frac{\partial T_{ph}}{\partial y} = -\frac{\kappa_{xy}^q}{\kappa} \frac{\partial T_{ph}}{\partial x}$$

$$T_{ph} - T_f = \mp \frac{\kappa}{\lambda} \frac{\Delta T_y}{L_y}$$

Solution



- Solution

- Bulk $T_{ph}(x, y) = T_0 + \frac{\partial T_{ph}}{\partial x}x + \frac{\partial T_{ph}}{\partial y}y$

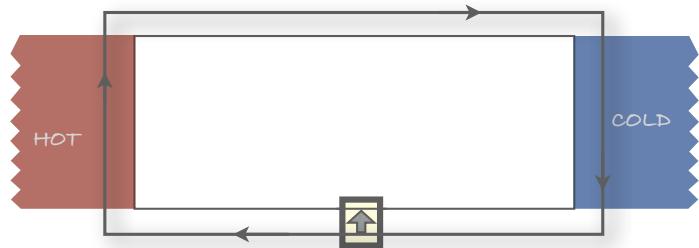
- edge $T_f(x, \pm y_0) = T_{1,\pm} + \frac{\partial T_{ph}}{\partial x}x$

$$\frac{\partial T_{ph}}{\partial y} = -\frac{\kappa_{xy}^q}{\kappa} \frac{\partial T_{ph}}{\partial x}$$

$$T_{ph} - T_f = \mp \frac{\kappa}{\lambda} \frac{\Delta T_y}{L_y}$$

phonon Hall angle corresponds to quantization! **Implies**
quantization in 3 probe experiment measuring T_{ph}

Solution



- Solution

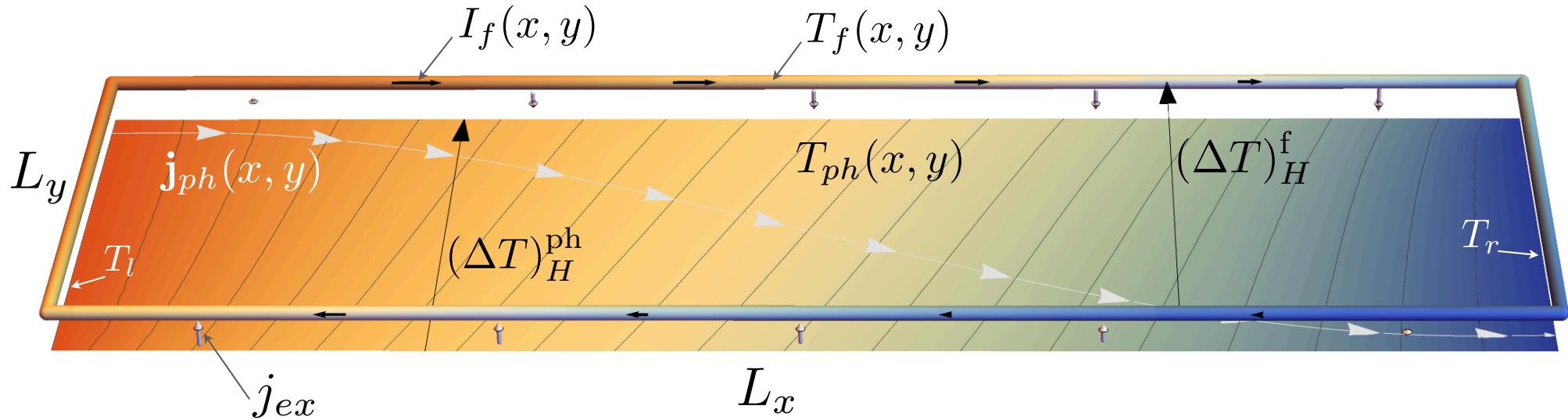
- Bulk $T_{ph}(x, y) = T_0 + \frac{\partial T_{ph}}{\partial x}x + \frac{\partial T_{ph}}{\partial y}y$
- edge $T_f(x, \pm y_0) = T_{1,\pm} + \frac{\partial T_{ph}}{\partial x}x$

$$\frac{\partial T_{ph}}{\partial y} = -\frac{\kappa_{xy}^q}{\kappa} \frac{\partial T_{ph}}{\partial x}$$

$$T_{ph} - T_f = \mp \frac{\kappa}{\lambda} \frac{\Delta T_y}{L_y}$$

Majorana temperature *not* equal to phonon one. It is actually better to measure phonon temperature!

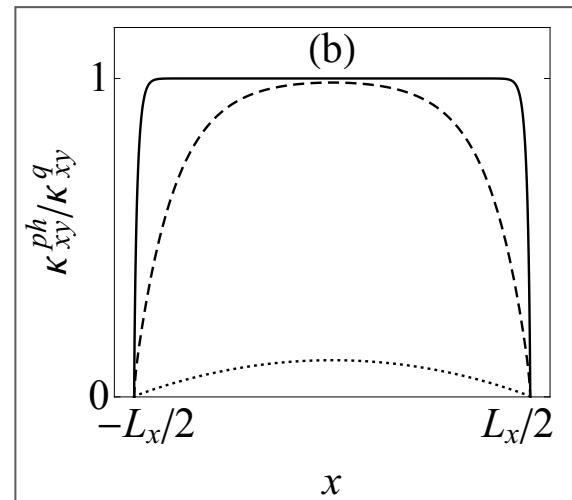
Finite Hall bar



- Solve coupled Laplace and boundary equations, with constant temperature leads.

- Reveals dependence on “thermalization length”

$$\ell_x = \frac{\kappa_{xy}^q}{\lambda}$$



$$L_y/L_x = 0.01$$

$$\ell_x/L_x = 0.01, 0.1, 1$$

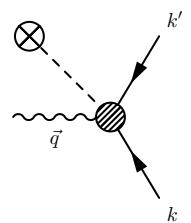
Bulk-edge coupling

local phonon strain couples
to Majorana kinetic energy

$$H_{int} = \frac{-igv_f}{4} \int dx \zeta(x) K_{ij} \partial_i u_j(x, y_0) \eta(x) \partial_x \eta(x),$$

We use kinetic equation to
calculate

$$\left(\frac{\partial \mathcal{E}}{\partial t} \right)_{ph \rightarrow f} = - \left(\frac{\partial \mathcal{E}_{ph}}{\partial t} \right) = - \sum_{q_x, q_y} \omega_{\vec{q}} \left(\frac{\partial g(\vec{q})}{\partial t} \right)_{coll},$$



Rate

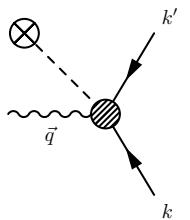
$$\left(\frac{\partial g(\vec{q})}{\partial t} \right)_{coll} = \frac{2\pi}{\hbar} \times 2 \sum_{k, k'} \{ \langle |\mathcal{M}^+(\vec{q}, k, k')|^2 \rangle_{dis} (1 + g_\omega) f_\epsilon f_{\epsilon'} \delta(-\omega_{\vec{q}} + \epsilon_k + \epsilon_{k'}) - \langle |\mathcal{M}^-(\vec{q}, k, k')|^2 \rangle_{dis} g_\omega f_\epsilon f_{\epsilon'} \delta(\omega_{\vec{q}} + \epsilon_k + \epsilon_{k'}) \}$$

Bulk-edge coupling

local phonon strain couples
to Majorana kinetic energy

$$H_{int} = \frac{-igv_f}{4} \int dx \zeta(x) K_{ij} \partial_i u_j(x, y_0) \eta(x) \partial_x \eta(x),$$

We use kinetic equation to
calculate $j_{ex} \propto \left(\frac{\partial \mathcal{E}}{\partial t}\right)_{ph \rightarrow f} = -\left(\frac{\partial \mathcal{E}_{ph}}{\partial t}\right) = -\sum_{q_x, q_y} \omega_{\vec{q}} \left(\frac{\partial g(\vec{q})}{\partial t}\right)_{coll},$

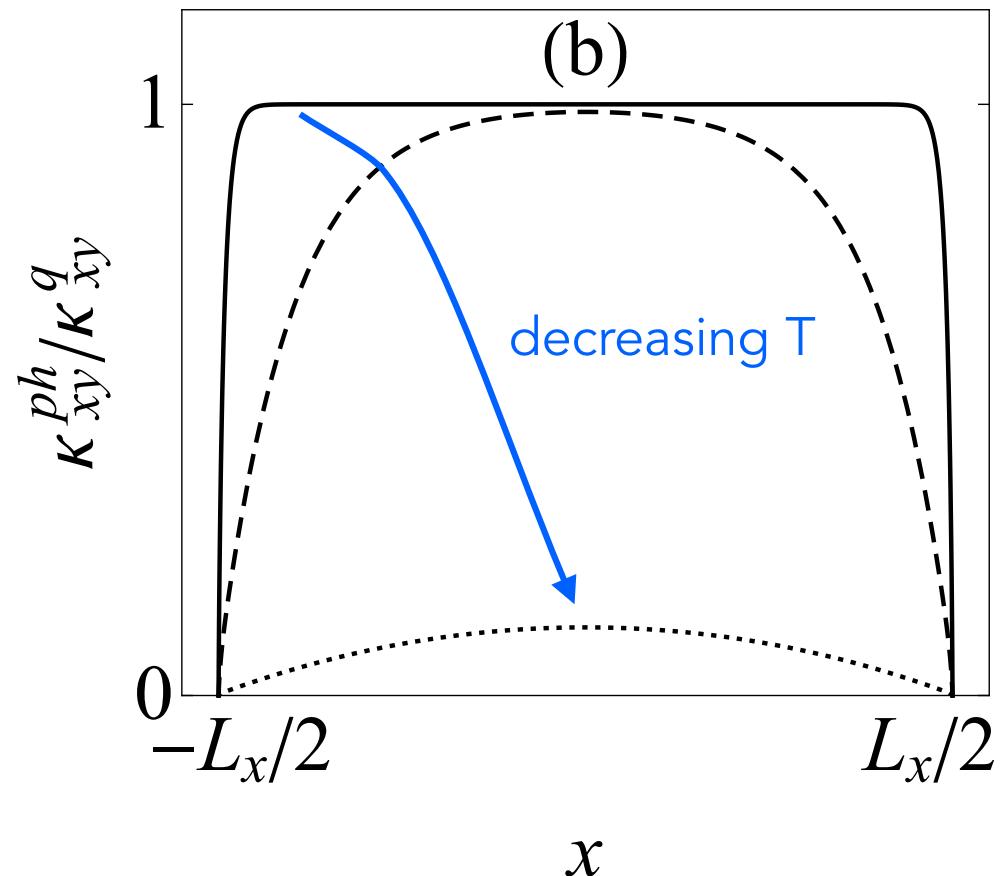


Result

$$\lambda = \frac{g^2 \zeta^2}{32(2\pi)^3 v_{ph}^4 v_f^2 \rho_0} f T^6$$

**strong T-dependence:
thermalization becomes
poor at low T.**

Prediction



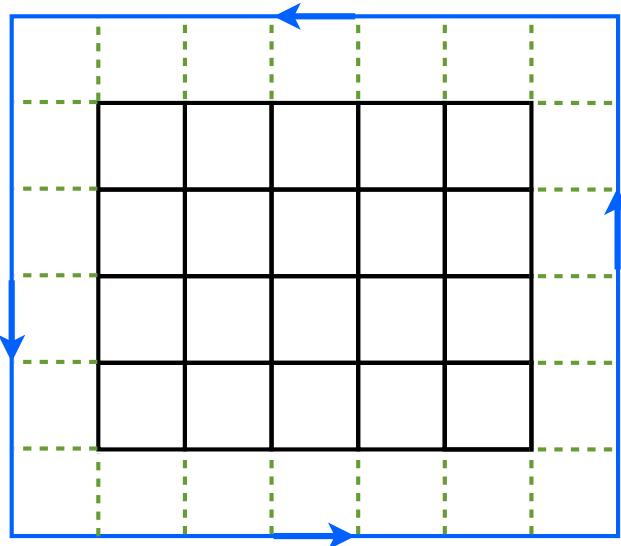
Expect *failure* of quantization at low enough temperature!

Disorder

- Experimental observation:
 - Quantization is observed only in the “best” samples, which have the largest *diagonal* thermal conductivity
 - Presumably, sample variations involve lattice disorder that affects the phonon transport
 - What is the effect on thermal Hall measurements?

Disorder

- Network model

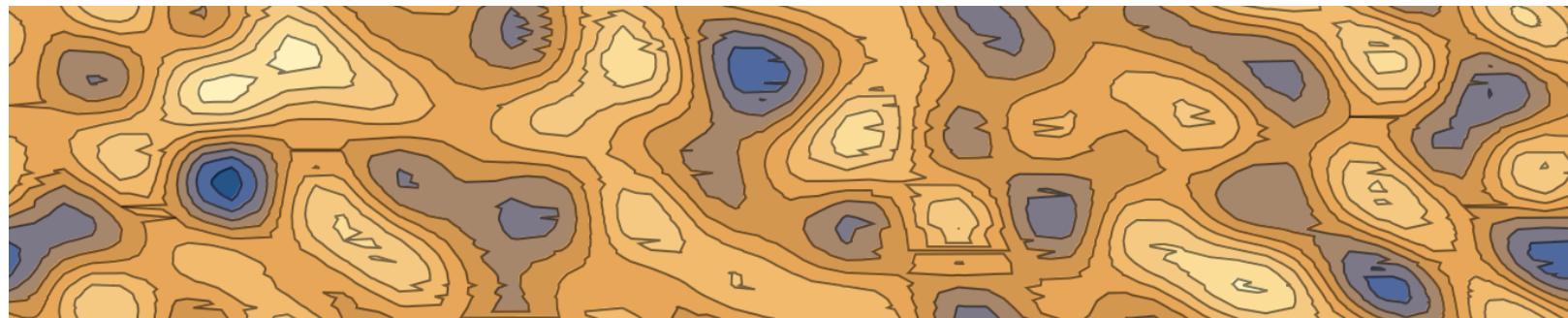


- resistor $I_{i \rightarrow j} = \kappa_{ij}(T_i - T_j)$
- chiral $I_{i \rightarrow j} = \pm \kappa_H(T_i + T_j)/2$
- resistor $I_{i \rightarrow j} = \lambda(T_i - T_j)$

- Disorder included as random resistors

Disorder

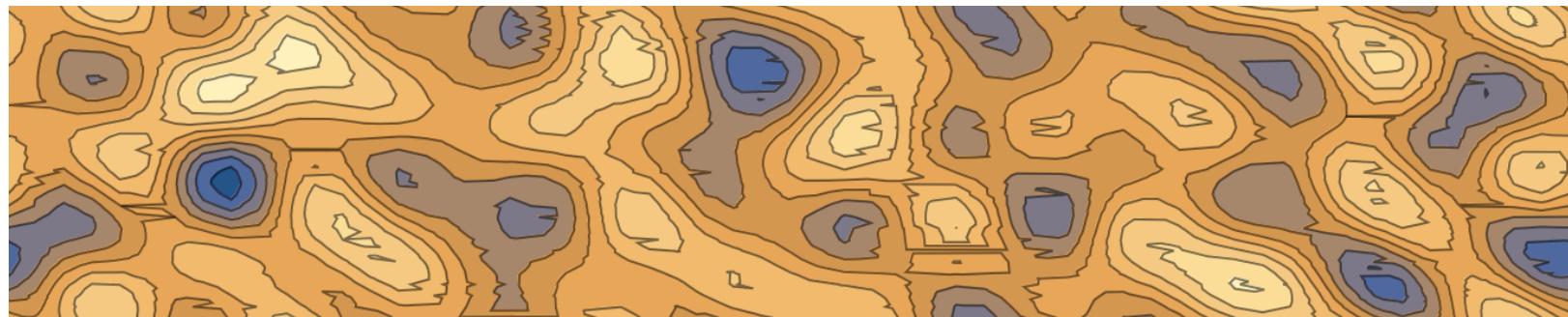
Input: smooth random conductivity



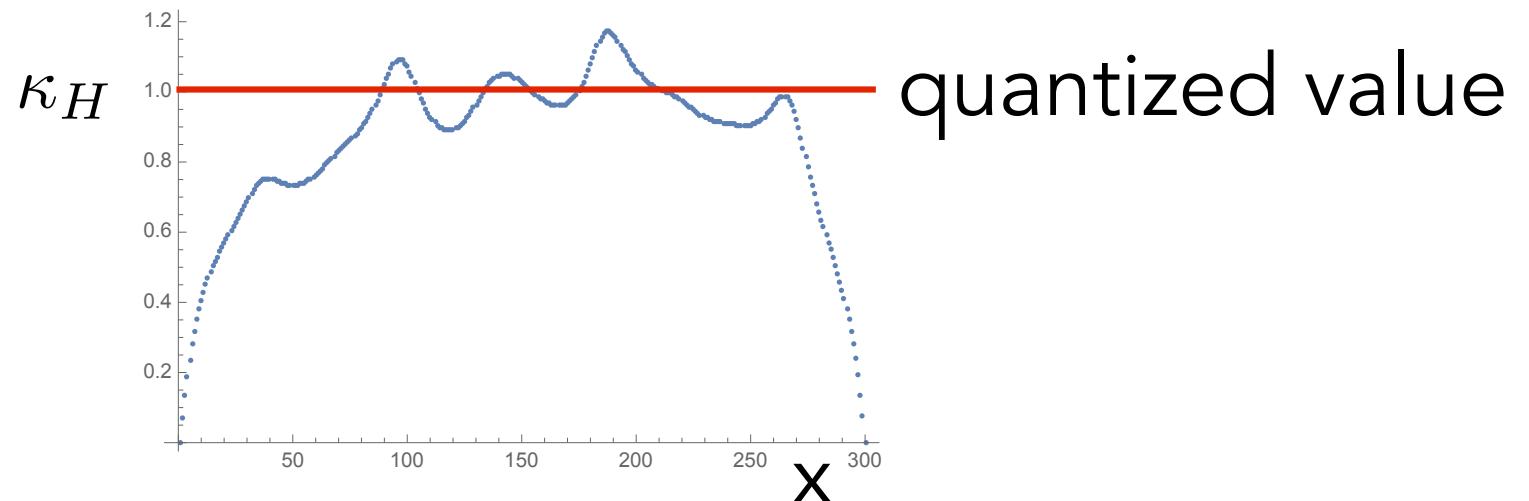
Output: Hall temperature gradient
(anti-symmetrized in field)

Disorder

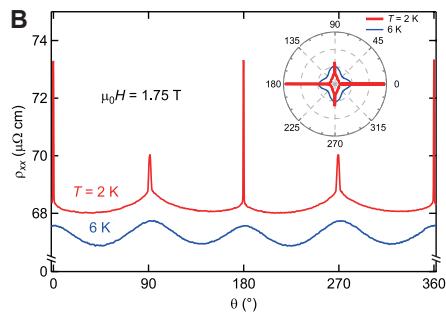
Input: smooth random conductivity



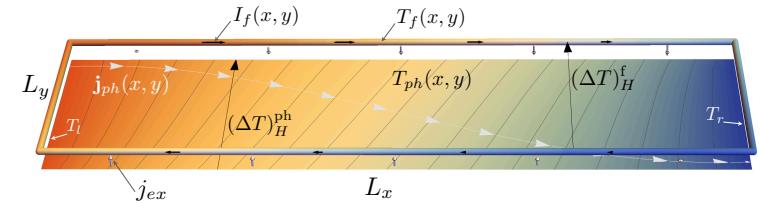
Output: Hall temperature gradient
(anti-symmetrized in field)



Summary



- Singular angular magneto-resistance: the result of SSB combined with the accidental but protected nature of Weyl points



- Quantized value of thermal Hall conductivity can be measured even when large phonon conductivity is present
- Quantization is only power-law good, and deviations are controlled by edge-bulk equilibration

ARXIV:1805.10532

U.S. DEPARTMENT OF
ENERGY

Office of
Science

GORDON AND BETTY
MOORE
FOUNDATION

UQM IS POINTLESS
YOU HAVE TO GO OUT
GET AN ACTUAL JOB
AND MAKE A LIVING
YOU CAN'T JUST LET
THE REST OF YOUR LIFE
BE A JOKE, A FAILURE.
YOU WILL END UP
A STARVING SCIENTIST.
CONTRIBUTE TO SOCIETY
INSTEAD OF WASTING TIME
YOU'RE WORTHLESS.

WITHOUT PASSION,
AND CREATE UQM
DOING WHAT YOU LOVE
BY BEING YOURSELF,
OTHER PEOPLE DEFINE
AND SAY YOU WILL
FOLLOW YOUR HEART.
HAPPY AND FREE, NOT
LOVE YOUR UQM AND
BY INSPIRING PEOPLE
LETTING OTHERS TELL YOU
YOU CAN CHANGE THE WORLD.

based on the original by Jasmine Kay Uy, 2015