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Quantum Materials
• What are they?  Materials where 

electrons are doing interesting 
quantum things

• The plan:

• Lecture 1: Concepts in Quantum 
Materials

• Lecture 2: Survey of actual materials



Themes of modern QMs

• Order

• Topology

• Entanglement

• Correlations

• Dynamics



Order: symmetry
• Symmetry: a way to organize matter

• A symmetry is some operation that leaves 
a system (i.e. a material) invariant 
(unchanged

• In physics, we usually mean it leaves the 
Hamiltonian invariant

U †HU = H
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Order and symmetry
• Why symmetry?

• It is persistent: it only changes through a phase transition

• It has numerous implications:

• Quantum numbers and degeneracies

• Conservation laws

• Brings powerful mathematics of group theory

• The set of all symmetries of a system form its 
symmetry group.  Materials with different symmetry 
groups are in different phases



Ising model
• A canonical example
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Symmetries in QMs
• Basic symmetries of our world:

• space-time (Lorentz/Poincare) symmetry

• spatial isotropy and translations

• time reversal

• Charge/particle number conservation

• Approximate symmetries (sometimes)

• spin-rotation

• various internal quantum numbers

• These things are broken down to varying degrees in different 
QMs
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Mn3B7O13I
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hydrogarnet ZIF-71-RHO Co-Squarate V6SnSi (NH4)[(Mo12O36)(AsO4)Mo(MoO)] NaCl LTA Spinel

Cystallography
• Crystal structure: 230 crystallographic space groups

• Classifies the arrangements of atoms (which break 
the symmetries of free space)

• Wallpaper groups in 2d (c.f. 2d materials)

• Basic input to many things

• Phonons, elasticity, band structure...

• LOADS of extremely useful stuff on Bilbao 
crystallographic server...

• Structural phase transition = change of space group.



Structural phase transition

J B Goodenough 

tilting of the CuO, octahedra-which are  tetragonal 
(c/a =- 1)"along a [ 1 lo] axis to transform  the  structure 
from  the  tetragonal  symmetry of figure l(a)  to  the 
orthorhombic symmetry of figure l(b) below IT; = 530 K 
[4]. Bending of the Cu-0-Cu bond angle from 180" 
permits  a  matching of the sizes of the  basal-plane  lattice 
parameters of the  two  intergrowth layers without  com- 
pression of the  Cu-0  bond length. 

2.4. The  T'-tetragonal  structure 

A t < 1 at high temperatures allows the  insertion of 
excess interstitial oxygen into the L a 2 0 2 + d  layers. 
However, a  Coulomb  repulsion between the  interstitial 
and c-axis oxide ions forces a strong relaxation of the 
c-axis oxygen neighbouring an interstitial, so only  a 
small concentration  can be accommodated before a 
phase  transition  occurs within the La20,+d layers. The 
layer transforms  from  a  rocksalt to a fluorite configu- 
ration by a  displacement of the c-axis oxygen to the 
interstitial  sites; in the absence of any c-axis oxygen, the 
oxygen is coordinated by only four Ln3+ ions (figure 2). 
Such  a  displacement is possible because of the  stability 
of Cu2+ ions in square-coplanar  coordination.  In  this 
T'-tetragonal  structure,  the excess oxygen occupies the 
c-axis sites;  the  normal  and  interstitial sites of the T- 
and  T-tetragonal  structures  are interchanged. The fluo- 
rite  La,O, layer has a  larger a axis, which increases the 
effective tolerance  factor t .  In fact, the  expansion  tends 
to place the CuO, planes  under  tension, so the 
Cu-0-Cu  bond angles remain 180" to lowest tem- 
peratures. Bending of the  Cu-0-Cu  bond in this  phase 
does  not  appear to be an  option; the  bond angles 
remain 180" to Ln = Gd,  and  other phases are formed 
on  substitution of smaller rare  earth ions. Significantly, 
the  T'-tetragonal  phases  can be doped  n-type,  but  not 
p-type. The  addition of antibonding  electrons  to  the 
180" Cu-0-Cu  bonds relieves the tensile stress; 
removal of antibonding  electrons would increase this 
stress. The maximum  n-type  doping with Ce  substitut- 
ions in Ln, -,Ce,CuO, decreases with the size of the 
Ln3+  ion; it is y = 0.25, 0.20 and 0.15 for Ln = 
La,,,,Nd,~,, , Nd  and  Gd respectively [13]. 

Figure 2. Structure of tetragonal (T') Nd,CuO, 

3. Electron  correlatlon  energies 

Substitution of a larger Ba2+  or  Sr2+ ion for La3+ in 
La,CuO, not only expands  the  mean A-0 bond length, 
but  also oxidises the CuO,  planes; removal of anti- 
bonding  electrons from the  plane  shortens  the Cu-0 
bond  length.  Consequently  the  tolerance  factor t 
increases with y in the system La,-,Sr,CuO,, so I;  
decreases with increasing y in the  phase  diagram of 
figure 3. Moreover, as  both t and  the  oxidation  state of 
the CuO, planes increases, the  driving force for insert- 
ing excess oxygen decreases, and  stoichiometric oxygen 
concentrations  are readily achieved in air in the  com- 
positional  range 0.07 < y < 0.15 whereas, for x < 0.07, 
it is necessary to anneal in N,  to avoid  insertion of 
excess oxygen. Annealing in 0, allows extension of the 
range of oxygen stoichiometry to y = 0.27; for y > 0.27, 
a high oxygen pressure  appears to be necessary to 
prevent oxygen loss [14,  151. Oxygen-deficient 
La, - ,S~,CUO,-~ has oxygen vacancies at the c-axis 
sites. 

A striking  feature of figure 3 is the  appearance of 
high-T, superconductivity in only a  narrow  composi- 
tional  range between an antiferromagnetic and a  metal- 
lic phase within what  appears  structurally to be a single 
range of Sr solid solution.  Moreover,  the Nee1 tem- 
perature TN of antiferromagnetic  La,CuO,+, is 
extremely sensitive to the  oxidation  state of the CuO, 
planes. A TN = 326 K has been observed in La,CuO, 
[16], but  the  introduction of excess oxygen commonly 
lowers TN to  about 240 K. In La,-,Sr,CuO,, the long- 
range  antiferromagnetic  order  disappears  near y = 0.02, 
a  low-temperature spin-glass transition  occurring in a 
narrow  transitional  range 0.02 < y < 0.05 between the 
antiferromagnetic  and  superconductive  compositional 
ranges. These  unusual  features signal a  change from 
strong electron  correlation energies in the  anti- 
ferromagnetic  compositions to weak electron  corre- 
lation energies in the metallic compositions;  it therefore 
becomes necessary to ask how the  magnitude of the 
copper  magnetic  moments pc" are  changing with y .  

Before turning  to the  experimental answer to this 
question,  it is  useful to review  briefly how the  electron 

Sr content x 

Flgure 3. Phase diagram  for  the system L~,-,S~,CUO,-~ 
p = y - 26. Adapted from [15]. 
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Chemical and structural relationships in  high-T, materials 

La,CuO, and Nd,CuO,;  the  former is a  parent  com- 
pound for p-type  superconductivity,  the  latter for n-type 
superconductivity. 

Stoichiometric La,CuO, has  the  tetragonal  (T) 
structure of figure l(a) at temperatures T > IT;; a  co- 
operative  tilting of the CuO,  octahedra  at lower tem- 
peratures (T < IT;) yields the  orthorhombic (0) structure 
of figure l(b) [3, 41. The phase  change at T = IT; is a 
typical second-order,  soft-mode  transition.  In both 
structures,  (Cu0,)'-  planes  (or  sheets T < IT;) alternate 
with two (Lao)' layers  having  the  rocksalt  structure. 
This  configuration  has  two  immediate  consequences 
that  are  common  to all the  p-type  copper oxide super- 
conductors: (i) the  layers  are  alternately  charged posi- 
tively and negatively, which creates an interlayer 
internal electric field that shifts the energies within one 
layer relative to those in the other;  and (ii) stabilisation 
of an intergrowth  structure  requires  a  matching of the 
bond  lengths  across  the interface of the  two layers. The 
significance of the  internal electric field  is illustrated 
below by a  trapping of mobile holes from  the CuO, 
planes in superconductors with excess or disordered 
oxygen in the YBa,Cu,O,+, structure  and by the 
varied influence of Pr  on the  superconductivity.  Here 
we emphasise  the structurakhemical consequences of 
bond  length  mismatch. 

A measure of the  bond  length  matching  across  the 
interlayer interface for the  tetragonal  structure of figure 
l(a) is the  tolerance  factor 

t = (A-o)/$(B-o) (3) 

where the  bond lengths A-0  and E O  have tradi- 
tionally been taken to be the  sum of the empirically 
determined,  room-temperature ionic radii, i.e. (RLa 
+ R,) and (Rcu + R,) in La,CuO,. But this  tradition, 

devised by Goldschmitt to predict which of the ABX, 
oxides and fluorides would have the  cubic-perovskite 
structure, deflects attention from the significance of the 
quite different thermal  expansion coefficients of the A-X 
and B-X bond  lengths. A t 2: 1 at the  temperature of 
formation  would result in a t < 1 at  room  temperature 
because the softer A-X bonds  have larger thermal 
expansion coefficients than  the  harder B-X bonds. In 
the layer structure of La,CuO,,  a t < 1 places the 
CuO, planes of the  tetragonal  phase  under  compression 
and  the (Lao), layers  under  tension.  This  bond  length 
mismatch is relieved in three successive steps. 

2.1. Electron ordering 

The Cu2 + : 3d9  configuration  contains  one hole in the 
3d shell. Ordering of the hole into the 3d,2-,2 orbital 
creates  four  shorter Cu-0 bonds in the  CuO, plane  and 
two  longer Cu-0 bonds to the  apical oxygen on the c 
axis. The  anomalously  large c/a ratio of T-tetragonal 
La,CuO, was recognised early [S] to be a manifesta- 
tion of this  electron  ordering. Clearly an oxidation  that 
removes more  antibonding  electrons  from  the  CuO, 
planes-whether g* or n*-shortens further  the in- 

plane Cu-0 bonds whereas a  reduction would add  anti- 
bonding c ~ , * ~ - , , ~  electrons and  thus  expand the  in-plane 
Cu-0  bonds against  the  internal compressive force. As 
a result, La,CuO, is readily oxidised, but  attempts  to 
reduce it have failed. 

2.2. Oxidation 

Even with electron  ordering,  a t < 1 occurs at tem- 
peratures high enough (T  > 400 "C) for the  insertion of 
interstitial oxygen between adjacent L a 0  planes;  the 
interstitial oxygen atoms occupy the sites coordinated 
by four La  and four c-axis oxygen [S]. A similar insertion 
of interstitial oxygen occurs in La,NiO, [7]. The  inter- 
nal electric field parallel to the  c axis stabilises an inter- 
stitial oxide ion 0,-, so holes are introduced into the 
CuO, planes. The interstitial oxide ions  expand  the 
La,02+a layers and  shorten  the  Cu-0  bond lengths in 
the CuO, planes, thus increasing the effective value of 
the  tolerance  factor t and suppressing  the driving force 
for further  oxidation.  Lowering  the  temperature to re- 
establish  the  driving force reduces the 02-- ion mobil- 
ity, so L ~ , C U O , + ~  prepared in 1 atm  air  has a 6 S 0.02 
in the bulk. Near the surface of the  particles or 
grains, however, a 6 > 0.02 may introduce filamentary 
superconductivity [8, 91. Under 23 kbar  and a high 
oxygen pressure, the  entire  antiferromagnetic semicon- 
ductor La,CuO, is transformed  into  the  superconduc- 
tor La,CuO,.,, [lo] ; under 300 bar oxygen pressure, 
La,CuO,,,, contains in the bulk both the semicon- 
ductor  and the  superconductor phases [l 1, 121. 

2.3. Symmetry lowering 

As t decreases with temperature below those tem- 
peratures where oxygen insertion is possible, the 
La,CuO, structure allows a  cooperative, nearly rigid 

( a )  Ibl 
Figure 1. Structures of (a) tetragonal (T) and (b)  
orthorhombic (0) La,CuO,. The arrows indicate the 
direction of the tilting of the CuO, octahedra. 
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tetragonal orthorhombic

“Order parameters” ~ soft 
phonon modes

Talk about order 
parameters



Magnetism
• Fundamental symmetry is time-reversal

• Any ordering of magnetic moments 
breaks this symmetry

Si ! �Si
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Magnetism
• Broken T-reversal systems are very rich: 

1651 magnetic space groups
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FIG, 3. Magnetic phase
diagram of CeSb for an in-
creasing field applied along
a [001] direction. The
dashed lines correspond
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which do not correspond to that of an usual meta-
magnet.

A. Low-temperature zone

At 4.2 K, when the magnetic field increases, the
phase S, (k=0.572=47) remains stable up to a field
of 21 kQe. At higher field a new phase S' appears
characterized by a propagation vector k = —,'. At
20.9 koe the coexistence of the phases S and S' in-

dicates a first-order transition. The phase S' dis-
appears at II=39 koe and in higher field the sys-
tem becomes completely saturated. Figure 5 gives
the field dependence of the intensity maximum of
the [20k] superlattice reflections together with the
[111]integrated intensity. The critical fields show
only a weak temperature dependence, however they
are affected by hysteresis effects which are quite
important for the S-S' phase change (about 9 kOe).
These results are in good agreement with magne-
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FIG. 4. Magnetic phase
diagram of CeSb for a de-
creasing field applied
along a [001] direction. An
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magnetization up or down
along the g-axis of a (001)
plane.
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dropping abruptly, due to the onset of magnetic order. The
transition corresponds to entering the antiferromagnetic phase
with paramagnetic layers, where there is no net magnetisation
and the zero-field cooling (ZFC) and field cooling (FC) curves do
not split. At around 8 K, there is a significant difference between
the ZFC and FC data, which signals the onset of the
antiferro–ferromagnetic (AFF) phase where all the Ce moments
order ferromagnetically within the layer.30 The electrical resistivity
(ρ(T)) of both CeSb and LaSb is shown in Fig. 1d. While LaSb
behaves as a simple metal, ρ(T) of CeSb is significantly enhanced.
Upon cooling there is a decrease of ρ(T) from 300 to 80 K below
which it increases reaching a maximum at 35 K. Figure 1e shows
the magnetic contribution to ρ(T) demonstrating that below 80 K
there is a logarithmic increase of the magnetic resistivity, likely
due to incoherent Kondo scattering, followed by a decrease below
35 K, presumably arising from the onset of coherence.

Angular-dependence of the magnetoresistance
A particularly important signature of Weyl fermions is a negative
magnetoresistance when the applied field is parallel to the current
direction, which arises due to a population imbalance between
Weyl fermions of different chiralities induced by a magnetic field,
resulting in a net current.34, 35 We therefore measured the
magnetoresistance of CeSb as a function of angle and tempera-
ture. Figure 2a displays ρ(T) measured in various applied fields
along [001], perpendicular to the current direction. In zero field, ρ
(T) continues to decrease down to the lowest temperature. Upon
applying a magnetic field there is a minimum of the resistivity
before it significantly increases at low temperatures, indicating a
very large positive magnetoresistance, before flattening at the
lowest temperatures. The magnetoresistance is shown in Fig. 2b at

several low temperatures. Below 10 K, there is an anomaly around
4.3 T, which indicates the transition from an AFF phase to a field-
induced FM state. At higher temperatures in the magnetic state,
the transition to the FM phase is pushed to higher fields which is
consistent with previous reports.30 While the data at 12 and 10 K
also show a positive magnetoresistance, at 6 K the enhancement
is significantly greater. The magnetoresistance continues to
become stronger with decreasing temperature, namely by a
factor of ≈520 at 0.3 K and 9 T with no indication of saturation,
similar to the isostructural non-magnetic compounds LaSb and
LaBi.36–38 Such a large positive magnetoresistance when the
current and field are perpendicular has been found in materials
proposed to display a chiral anomaly.13, 18, 19, 39, 40

We also measured the magnetoresistance upon varying the
angle θ between the current I and applied field B. As shown in
Fig. 2c, at 2 K the magnetoresistance undergoes a significant
decrease as θ is reduced, becoming negative near 0°. It can be
seen more clearly in Fig. 3a that when the current and applied
field are parallel, a negative magnetoresistance appears above the
transition from the AFF to the FM state. As the temperature is
increased, the decrease of the resistivity with field becomes less
rapid and starts to be observed at a higher field. At temperatures
below 10 K, the negative magnetoresistance is very sensitive to
the alignment of magnetic field and current and is destroyed by a
slight deviation from 0°, as shown by the 2 and 6 K data in Fig. 3b.
Similar features were also observed on measurements of another
sample where the current direction was rotated by an angle of
about 20° compared to the one in Fig. 3, indicating that the
behaviour is reproducible when the current direction with respect
to the crystal axes is changed (see Supplementary Information).
In the AFF state, the magnetoresistance remains positive and

shows a sharp drop at the transition to the FM state. This step-like

Fig. 1 a Possible routes for achieving Weyl fermions. b–e Crystal structure and characterisation of CeSb. a Schematic diagram for three means
of achieving Weyl fermions. Route I is via the breaking of inversion symmetry, route II is via breaking time reversal symmetry by applying a
magnetic field, and route III is via breaking time reversal symmetry in the magnetic state. b Crystal structure of CeSb. c Dc magnetic
susceptibility of CeSb in an applied field of 0.1 T measured upon warming after zero-field cooling (ZFC) and field cooling (FC) showing a
magnetic transition at around 17 K, and another one around 8 K to the antiferro–ferromagnetic (AFF) phase where the ZFC and FC curves split.
d Temperature dependence of the electrical resistivity of CeSb and LaSb. e Magnetic contribution to the resistivity of CeSb obtained by
subtracting the data for LaSb, plotted on a logarithmic temperature scale. The straight line indicates the logarithmic increase of the resistivity
with decreasing temperature below about 80 K, suggesting the presence of Kondo scattering

Weyl fermions in magnetic Kondo system CeSb
C Guo et al.
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Superconductivity
• Charge conservation symmetry is 

spontaneously broken in a SC

• Order parameter ~ “pair wavefunction”

• Many varieties of “orbital” state 
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s,p,d, p+ip, etc.



UPt3

• Several distinct superconducting 
phases

M. Norman, 2011



Twisted bilayer graphene

• Recent results (Y. Cao et al, 2018)
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Figure 3 | Magnetic field response of the superconducting states in 
MA-TBG. (a-b) Four-probe resistance as a function of density n and 
perpendicular magnetic field B⊥ in device M1 and M2 respectively. Apart 
from the similar dome structures around half-filling as in Fig. 2b-c,  
there are notably oscillatory features near the boundary between the 
superconducting phase and the correlated insulator phase. These 
oscillations can be understood as phase-coherent transport through 
inhomogeneous regions in the device (see Methods and Extended Data 

Fig. 1). (c) Differential resistance dVxx/dI versus dc bias current I for 
different B⊥ values, measured for device M2. (d) Rxx-T curves for different 
B⊥ values, measured for device M1. (e) Perpendicular and parallel critical 
magnetic field versus temperature for device M1 (50% normal state 
resistance). The fitting curves are plotted according to the corresponding 
formulas in Ginzburg-Landau theory for a 2D superconductor. 
Measurements in (a-c) are all taken at 70 mK.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

could be unconventional?



More subtle order
• Classic example: hidden order

The magnetic response is strongly Ising like, as there is a
magnetic signal only along c which begins to deviate from a
local-moment Curie-Weiss dependence below 150 K. The
! maximum at ! 60 K indicates the coherence temperature
T" and the formation of a heavy Fermi liquid. The HO
transition is hardly seen but it corresponds to the intersection
of the drop with the plateau below 20 K [cf. Pfleiderer,
Mydosh, and Vojta (2006)]. Clearly the susceptibility of
URu2Si2 is not that of a conventional bulk antiferromagnet.
Nevertheless, there are several uranium compounds that do
show a similar Ising-like behavior, for example, URhAl and
UCo2Si2 [see, e.g., Sechovský and Havela (1998) and
Mihalik et al. (2006)].

Although the HO transition always occurs at 17.5 K and is
robust, not dependent on sample quality, the low-temperature
properties are indeed sample dependent. In particular, the

resistivity "ðTÞ exhibits stronger decreases as the purity of
the starting U material is increased. A characteristic plot of
"ðTÞ for the two a and c directions in the body-centered
tetragonal (bct) unit cell of URu2Si2 (see below) is shown in
Fig. 4. There is a negative temperature coefficient d"=dT at
high temperatures, followed by a maximum at ! 75 K, sig-
naling the onset of lattice coherence, and then a dramatic drop
to low temperatures and superconductivity. Presently one can
find resistivity ratios of 500 or more in the best of today’s
samples. The explanation of the high-temperature resistivity
(T * 100 K) reaching ! 500 #! cm is open: either a strong
Kondo-like scattering of incoherent, atomic U spins takes
place or, since the resistivity is above the Joffe-Regel limit
kF‘ ’ 1 (the product of the Fermi momentum and the mean
free path), variable range hopping occurs. As the local
U spins disappear with the onset of coherence when the
temperature is lowered and the heavy-fermion state is cre-
ated, the spin (fluctuation) scattering is removed and a
coherent low-carrier state without significant scattering is
formed. The superconducting transition temperature Tc varies
significantly (between 0.8 and 1.5 K) with sample quality and
purity and appears to coexist on a microscopic scale with
the HO without disturbing it (Broholm et al., 1987; Isaacs
et al., 1990).

FIG. 3. Susceptibility ! of URu2Si2 with applied field (2 T) along
the a and c axes. Note the deviation from the Curie-Weiss law
(#eff ¼ 3:5#B=U; $CW ¼ &65 K) along the c axis below 150 K.
From Palstra et al., 1985.

FIG. 4. Top: Overview of the resistivity " along the a and c axes.
Bottom: Expanded view of the low-temperature resistivity illustrat-
ing the HO transition (To ¼ 17:5 K) and the superconducting one
(Tc ¼ 0:8 K). From Palstra, Menovsky, and Mydosh, 1986.

FIG. 2. Specific heat as a function of temperature for URu2Si2.
Top: C=T vs T2; bottom: C=T vs T with the superconducting
transition also shown. Note the large extrapolated specific-heat
coefficient % of 180 mJ=moleK2. From Palstra et al., 1985.
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Table 2. Summary of analytic theories and models proposed to explain the HO, with an emphasis
on the recent contributions. For proposals of specific multipolar magnetic order on the U ions, see
Table 3.

Barzykin and Gorkov (1995) three-spin correlations [45]
Kasuya (1997) uranium dimerisation [46]
Ikeda and Ohashi (1998) d-spin density wave [47]
Okuno and Miyake (1998) CEF and quantum fluctuations [48]
Chandra et al. (2002) orbital currents [49]
Viroszek et al. (2002) unconv. spin density wave [50]
Mineev and Zhitomirsky (2005) staggered spin density wave [51]
Varma and Zhu (2006) helicity (Pomeranchuk) order [52]
Elgazzar et al. (2009) dynamical symmetry breaking [53]
Kotetes et al. (2010) chiral d-density wave [54]
Dubi and Balatsky (2011) hybridization wave [55]
Pepin et al. (2011) modulated spin liquid [56]
Fujimoto (2011) spin nematic order [57]
Riseborough et al. (2012) unconv. spin-orbital density wave [58]
Das (2012) spin-orbital density wave [59]
Chandra et al. (2013) hastatic order [60]
Hsu and Chakravarty (2013) singlet-triplet d-density wave [61]

Table 3. Summary of proposals for a specific multipolar magnetic ordering on the uranium ion to
explain the HO, with an emphasis on the recent contributions. Note that different symmetries are
possible for high-rank multipoles, therefore some kind of multipoles appear more than once.

Nieuwenhuys (1987) dipole (21) order [62]
Santini and Amoretti (1994) quadrupolar (22) order [63]
Kiss and Fazekas (2005) octupolar (23) order [64]
Hanzawa and Watanabe (2005) octupolar order [65]
Hanzawa (2007) incommensurate octupole [66]
Haule and Kotliar (2009) hexadecapolar (24) order [67]
Cricchio et al. (2009) dotriacontapolar (25) order [68]
Harima et al. (2010) antiferro quadrupolar order [69]
Thalmeier and Takimoto (2011) E(1, 1)-type quadrupole [70]
Kusunose and Harima (2011) antiferro hexadecapole [71]
Ikeda et al. (2012) E−-type dotriacontapole [72]
Rau and Kee (2012) E-type dotriacontapole [73]
Ressouche et al. (2012) dotriacontapolar order [16]

Full explanation, critique and possible validation of theories listed in Tables 2 and 3 are
beyond the scope of this review. We will only briefly discuss a relevant theory according
to its relation to the given experiment. Finally, we treat the debate over the localized
description that relies on the experimental realization of a strong Ising-like anisotropy
in URu2Si2 that even occurs in dilute Th1−x Ux Ru2Si2. The huge Ising anisotropy of
quasiparticles in URu2Si2 has been emphasized as a hallmark of localized 5f character
[13,60]. Notwithstanding, here we will illustrate that an itinerant DFT description can also
explain the Ising anisotropy. Continuing along this line, we examine several recent itinerant
models.

from Mydosh + Openeer, 2014
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Electron nematic
REVIEW ARTICLE NATURE PHYSICS DOI: 10.1038/NPHYS2877

Figure 1 | Schematic phase diagram of hole-doped and electron-doped iron pnictides of the BaFe2As2 family. The blue area denotes stripe-type
orthorhombic magnetism, the red area denotes nematic/orthorhombic paramagnetic order, and the yellow area superconductivity. The green area
corresponds to a magnetically ordered state that preserves tetragonal (C4) symmetry, as observed recently 56. The dark red region denotes a regime with
strong nematic fluctuations. Dotted lines illustrate the magnetic and nematic transition lines inside the superconducting dome 73. Second-order
(first-order) transitions are denoted by solid (dashed) lines. The insets show the temperature-dependence of the nematic (') and magnetic (M) order
parameters in di�erent regions of the phase diagram: region (I) corresponds to simultaneous first-order magnetic and nematic transitions; region (II)
corresponds to split second-order nematic and first-order magnetic transitions; and region (III) corresponds to split second-order transitions. At x = 0 the
transitions are split, like in region (II), but their separation is small 5,6.

class points to a di�erent origin of the nematic phase (see Fig. 2 for
a schematic representation):

• Structural distortion: the lattice parameters a and b along the x
and y directions become di�erent 5. Such an order is normally
associated with a phonon-driven structural transition.

• Charge/orbital order: the occupations nxz and nyz (and on-
site energies) of the dxz and dyz Fe-orbitals become di�erent 15.
The appearance of such an order is normally associated with
divergent charge fluctuations.

• Spin order: the static spin susceptibility �mag(q) becomes
di�erent along the qx and qy directions of the Brillouin zone
before a conventional SDW state develops 7. The appearance
of such an order is normally associated with divergent
quadrupole magnetic fluctuations.

The fact that these three order parameters are non-zero in the
nematic phase leads to a dilemma, which can be best characterized
as a physics realization of the ‘chicken and egg problem’: all three
types of order (structural, orbital and spin-driven nematic) must
be present no matter which drives the nematic instability. This
follows from the fact that bi-linear combinations of the order
parameters that break the same symmetry (in our case, the
tetragonal symmetry of the system) are invariant under symmetry
transformations and must therefore appear in the Landau free
energy. Suppose that one of the three order parameters is the
primary one — that is, its fluctuations drive the nematic instability.
Let us call it  1 and the other two  2 and  3, respectively. The free
energy has the generic form

F [ 1, 2, 3] = 1
2
��1

1  2
1 + b

4
 4

1 +�12 1 2

+1
2
��1

2  2
2 +�13 1 3+

1
2
��1

3  2
3 +·· · (1)

Because the transition is driven by 1, the coe�cient ��1
1 , which,

above Tnem, corresponds to the inverse susceptibility of this order
parameter, vanishes at T =Tnem and becomes negative for T <Tnem,
whereas �2 and �3 remain finite and positive (although fluctuations
of  2 and  3 may shift Tnem slightly). For T < Tnem,  1 orders
on its own: h 1i = ±(���1

1 /b)1/2. If the coupling constants �ij in
equation (1) were zero, the other two fields  2 and  3 would not
order, but once the �ij are finite, a non-zero h 1i instantly induces
finite values of the secondary order parameters h 2i =��12�2h 1i,
h 3i = ��13�3h 1i. As a consequence, there is only one nematic
transition temperature at which all three h ii become non-zero (for
example, the lattice symmetry is broken at the same temperature
at which electronic nematic order emerges). Thus, it is not possible
to determine which causes the instability by looking solely at equi-
librium order parameters. A further experimental complication is
the presence of nematic twin domains below Tnem, which e�ectively
averages h 1i to zero. This problem can be circumvented by apply-
ing a small detwinning uniaxial stress 13,14, which acts as a conjugate
field to  1 and breaks the tetragonal symmetry at all temperatures,
similar to an external magnetic field applied on a ferromagnet.

One way to select the primary order is to carefully study
fluctuations in the symmetry-unbroken phase at T>Tnem. Because
the primary order parameter  1 acts as an external field for the
secondary order parameters,  2 and  3, fluctuations of the former
renormalize the susceptibilities of the latter. For small
�1i�i⌧1 (i=2,3) we have

�̃2⇡�2
�
1+�2

12�2�1
�

, �̃3⇡�3
�
1+�2

13�3�1
�

(2)

where �1 = h 2
1 i is the susceptibility of the primary field. The

renormalized susceptibilities of the secondary fields do diverge at
the nematic transition, however, for small enough �12 and �13, �̃2

and �̃3 begin to grow only in the immediate vicinity of Tnem, where
�1 is already large. If one can measure the three susceptibilities
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schematic of Fe122 materials from 
Fernandez et al,2014

symmetry is just 
tetragonal to 

orthorhombic, but 
seems to be that 

electrons, not lattice, 
are driving the order



Order questions
• What is the hidden order in URu2Si2?

• Is the pseudo-gap region of the cuprates 
a consequence of some hidden order?

• Are there mechanisms for unifying 
different orders in QMs - i.e. can you 
give a sharp meaning to intertwinement 
etc.?



Topology
Mathematical study of objects that can and cannot 

be smoothly transformed into one another



Topology
In physics, “knotted” states can become new 

phases of matter with robust properties



Topological invariant

W [C] = 1

2⇡i
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dz

z
2 Z
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Topology of order
• Spontaneously broken symmetry leads to topological 

defects: configurations of order parameter that cannot be 
smoothly “unwound”

discrete order: domain walls
XY/U(1) order: vortices

vector order: skyrmions/hedgehogs

The topological theory of defects in ordered ~acedia*&
N. D. Mermin
Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, New York 14853

Aspects of the theory of homotopy groups are described in a mathematical style closer to that of
condensed matter physics than that of topology. The aim is to make more readily accessible to physicists
the recent applications of homotopy theory to the study of defects in ordered media. Although many
physical examples are woven into the development of the subject, the focus is on Inathematical pedagogy
rather than on a systematic review of applications.
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Uber die Quantenmechanik  der Elek~ronen 
in Kristallgittern. 

Von Felix Bloeh in Leipzig. 

5lit 2 Abbildungen. (Eingegangen am 10. August 1928.) 

Die Bewegung eines Elektrons im Gitter wird untersucht, indem wir uns dieses 
durch ein zun~chst streng dreifaeh periodisches Kraftfeld schematisieren. Unter 
Hinzunahme der Fermischen Statistik auf die Elektronen gestattet unser Modell 
Aussagen fiber den von ihnen herrfihrenden AnteiI der spezi[ischen W~rme des 
Kristalls. Ferner wird gezeigt, dal] die Berficksichtigung der thermischen Gitter- 
schwingungen Gr51]enordnung and Temperaturabh~ingigkeit der elektrischen Leit- 
[~ihigkeit yon Metallen in qualitativer Ubereinstimmung mit der Erfahrung ergibt. 

E i n l e i t u n g .  Die Elekfronentheorie  der MetalLe hat  seit einiger 
Zeit  For~schritte zu verzeichnen, die in der Anwendung quantentheo- 
retischer Prinziplen auf das Elektronengas  begriindet sind. Zun~chst hat  
P a u l i *  unter  der Annahme, da~ die Metat lelektronen sieh vSll ig frel im 
Gi t te r  bewegen kOnnen und der F e r m i s c h e n * *  Sta t i s t ik  gehorchen, den 
temperaturunabh~nglgen Paramagnetlsmus der Alkal ien  zu erkl~ren ver- 
moeht. Die elektrischen und thermischen Eigenschaften des Elektronen- 
gases sind dann yon S o m m e r f e l d ,  H o u s t o n  und E c k a r ~ * * *  n~her 
untersucht worden. Die Tatsache freier Leitungse]ektronen wird  yon 
ihnen als gegeben betrachte t  und ihre Wechselwlrkung mi~ dem Git ter  
nur dureh eine zunachst ph~inomenologlsch elngefiihrte, dann yon 
H o u s t  o n**** strenger begrfindete freie Weg]ange mitbe1~ickslchtigt. 
Sehliel]lich hat  H e i s e n b e r g - ~  gezeigt, daL] im anderen Grenzfa]l, wo zu- 
n~chst  die Elekt ronen an die Ionen ]m Git ter  gebunden gedacht  und erst 
in nachster  N~herung die Austauschvorgange unter ihnen berficksichtigt 
werden, das fiir den Ferromagnet ismus entseheidende intermolekulare Feld  
seine Erk lgrung  finder. 

Hier  soll ein Zwisehenstandpunkt zwischen den beiden oben er- 
w~hnten Behandlungsweisen elngenommen werden, insofern, als tier Aus- 
tausch der Elekt ronen unberi icksichtigt  bleibt, sie dagegen nicht  einfach 

* W. PauJi ,  ZS. f. Phys. 41, 81, 1927. 
** E. F e r m i ,  ebenda 36, 902, 1926. 

*** A. Sommerfe ld ,  W. V. Hous ton ,  C. E c k a r t ,  ebenda 47, 1, 1928. 
**** W.V. Hous ton ,  ebenda 48, 449, 1928. 

"i" W. H e i s e n b e r g ,  ebenda 49, 619, 1928. 
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The Structure of Electronic Excitation Levels in Insulating Crystals
GREGORY H. WANNIER

Princeton University, Princeton, ¹mJersey*
(Received May 13, 1937}

In this article, a method is devised to study the energy spectrum for an excited electron con-
figuration in an ideal crystal. The con6guration studied consists of a single excited electron
taken out of a full band of N electrons. The multiplicity of the state is N'. It is shown that
because of the Coulomb attraction between the electron and its hole ¹"states are split off
from the bottom of the excited Bloch band; for these states the electron cannot escape its hole
completely. The analogy of these levels to the spectrum of an atom or molecule is worked out
quantitatively. The bottom of the 8loch band appears as "ionization potential" and the Bloch
band itself as the continuum above this threshold energy.

~OR several years, there have been two com-
peting pictures in use to describe the be-

havior of electrons in crystals. The one adopted
in most theoretical calculations and especially
successful for metals describes each electron by a
running wave, but Frenkel has shown that in
many cases the more elementary atomic picture
may be the better approximation. ' This ap-
parent contradiction has been removed by
Slater and Shockley, ' who showed with a simpli-
fied model that the two types of states actually
coexist in a crystal. I t is the purpose of the
present paper to treat this question in a quantita-
tive way, starting out from the actual Hamil-
tonian of the system.
%e shall restrict ourselves in this article to

insulators containing one electron in the lowest
excited state, and we shall study the energy
spectrum of this single configuration, neglecting
perturbations arising from other configurations.
As to the method we shall proceed in the fol-
lowing way:
(1) We shall construct orthogonal "atomic"

wave functions and express the energy matrix in
this vector system.
(2) The energy matrix contains many terms

having the periodicity of the lattice and a few
which have not; we shall develop a method
which takes them both into account.

(3) We shall derive some general results and
discuss their consequences.

1.BASIC %AVE FUNCTIONS AND ENERGY MATRIX

.It would no doubt be more satisfactory for
insulating crystals, to discuss the Hamiltonian
using atomic functions rather than Bloch func-
tions. But this line of attack has been hampered
by the fact that atomic functions are not
orthogonal. %e can, however, build up or-
thogonal functions having all the advantages of
atomic ones by starting out from a Bloch
approximation. Let us assume then that a Bloch
or Fock method has given us functions b(k, x) of
energy W(k). Then the required functions are

a(x—n) =1/(X)& P exp L—ik„n)b(k„, x),' (1)

where N is the number of cells in the crystal and
the k's are as usual determined by some bound-
ary condition.
Formula (1) applies to any set of Bloch func-

tions, but it might be interesting to get some
insight into the structure of the a' s. For this
purpose let us 6rst make the ad koc assumption
(valid for free electrons) that b is of the form

b(k„x)=exp Cik„x] b(x),

* I want to express my thanks to Princeton University
for the grant of its Swiss-American Exchange Fellowship
for the year 1936—37.' J. Frenkel, Phys. Rev. 1'7, 17 (1931); Physik. Zeits.
Sowjetunion 9, 158 (1936); Physik. Zeits, Sowjetunion 8,
185 (1935).

~ J. C. Slater and W. S. Shockley, Phys. Rev. SG, 705
(1936).

where the periodic factor b(x) is independent of k.
Then we find explicitly:

'The unit of length adopted in this article is the ele-
mentary translation in the direction of each of the crystal
axes. In some deductions the crystal is assumed to be
simple cubic, but this could easily be removed.

E

k x
Thouless, 1984



Chern number
• Bloch states

• Berry gauge field 

• Net Berry flux gives Chern number

 n(r) = eik·run,k(r)

~An = ihun|~rk|uni

~Bn = ~rk ⇥ ~An

qn =
1

2⇡

Z
d2k Bz

n 2 Z



Phase transitions
• There is no smooth way to go from one 

topological sector to another



IQHE
• Hall conductance measures Chern number

• Passage from one Chern number to 
another is a quantum phase transition

⇢
xy

=
h

ne2 ⇢
xx

peak signifies gapless 
quantum critical state

(with no order parameter!)



IQHE
• The boundary between states with 

different Chern number is gapless

chiral edge states cannot backscatter

q=0 q=1



IQHE
• The boundary between states with 

different Chern number is gapless

Bulk-boundary correspondence:

q=0 q=1

Chern Number = NR-NL



IQHE
• Edge states are “half” of the low energy 

excitations of a 1DEG

RL

k

E

Halperin, 1982

large distance



IQHE
• Edge states are “half” of the low energy 

excitations of a 1DEG

RL

k

E

Halperin, 1982

large distance

General rule: surface state of  a d-dimensional TI cannot be realized in a d-1 dimensional system



Summary - Chern 
Insulators

• Winding of the one-electron wavefunction over the 
Brillouin zone

• Quantified by a topological invariant: the Chern number, 
which coincides with Hall conductance

• States with different values of the topological invariant are 
different phases

• Tuning from one to another requires a quantum phase 
transition

• The interface between two different values has gapless 
“protected” edge states, which are “anomalous”: they 
could not exist in an isolated 1-dimensional system



Time-reversal symmetry
• Would be nice to have topological 

quantization in materials in “natural 
conditions”

• The Berry curvature is odd under time-
reversal

• This implies the Chern number vanishes

• For decades it was believed this meant 
electronic states are topologically trivial 
with TRS

B(�k) = �B(k)



Z2 TIs

• Even with TR symmetry, a different type of 
TI is possible (with spin-orbit coupling)

• 2d: “QSHE”

3d: L. Fu, C. Kane, E. Mele (2007); J. Moore, LB (2007)
2d: Kane, Mele (2005); Bernevig, Hughes, Zhang (2006)

• Roughly understood 
as opposite IQHE’s 
for up and down 
electrons



Z2 TIs

• Q = parity of band crossings between 
TRI momenta at the surface

3d: J. Moore, LB (2007); L. Fu, C. Kane, E. Mele (2007)
2d: Kane, Mele (2005); Bernevig, Hughes, Zhang (2006)
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Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu

E

EF

Conduction Band

Valence Band
Quantum spin 
Hall insulator ν=1

Conventional 
Insulator ν=0

(a) (b)

k0/a−π /a−π

FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin S

z

, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�
xy

. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J"

x

� J#
x

= �s

xy

E
y

with
�s

xy

= e/2⇡ – a quantum spin Hall e↵ect. Related ideas
were mentioned in earlier work on the planar state of

“trivial” “topological”
Full zone for TI



Z2 TIs
• In 3d, there are four Z2 parities

• 3 “weak” parities - describe layered 2d TIs

• 1 “strong” parity - describes intrinsically 
3d physics
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d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
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ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
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(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin S
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, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
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. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J"
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odd number 
of Dirac 

cones at any 
surface

J. Moore, LB (2007)
 L. Fu, C. Kane, E. Mele (2007)



Band inversion
• Different classes of bands cannot be 

smoothly deformed into one another

w/ SOCno SOC

Bi2Se3



Band inversion
• Different classes of bands cannot be 

smoothly deformed into one another

topological insulatornormal insulator

Bi2Se3



Single Dirac cone
• 1/4 Graphene

• 2d Dirac mass breaks TR

• Cannot be found in any 2d model

� = ⇡ � = 0



Single Dirac cone
• 1/4 Graphene

• 2d Dirac mass breaks TR

• Cannot be found in any 2d model

� = ⇡ not allowed

states decay into bulk



Single Dirac cone
• 1/4 Graphene

• 2d Dirac mass breaks TR

• Cannot be found in any 2d model

If time reversal is 
broken, the Dirac cone 

is gapped and TI 
becomes equivalent to 

trivial insulator

inversion
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new topological insulators / superconductors in one, two, and three dimensions
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et al, 2008

Kitaev, 2009
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Kitaev Chain
• 1d spinless “p-wave” superconductor

• Topological for |μ|< 2 t

2

implementation of the ideas introduced here would constitute
a critical step towards this ultimate goal.

I. MAJORANA FERMIONS IN ‘SPINLESS’ p-WAVE
SUPERCONDUCTING WIRES

We begin by discussing the physics of a single wire. Valu-
able intuition can be garnered from Kitaev’s toy model for a
spinless, p-wave superconducting N -site chain23:
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where c

x

is a spinless fermion operator and µ, t > 0, and
|�|ei� respectively denote the chemical potential, tunneling
strength, and pairing potential. The bulk- and end-state struc-
ture becomes particularly transparent in the special case23

µ = 0, t = |�|. Here it is useful to express
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0 . These expressions expose the
defining characteristics of Majorana fermions—they are their
own antiparticle and constitute ‘half’ of an ordinary fermion.
In this limit the Hamiltonian can be written as

H = �it
N�1X

x=1

�
B,x

�
A,x+1. (3)

Consequently, �
B,x

and �
A,x+1 combine to form an ordi-

nary fermion d
x

= (�
A,x+1 + i�

B,x

)/2 which costs en-
ergy 2t, reflecting the wire’s bulk gap. Conspicuously ab-
sent from H , however, are �

A,1 and �
B,N

, which represent
end-Majorana modes. These can be combined into an ordi-
nary (though highly non-local) zero-energy fermion dend =

(�
A,1 + i�

B,N

)/2. Thus there are two degenerate ground
states |0i and |1i = d†end|0i, where dend|0i = 0, which serve
as topologically protected qubit states. Figure 1(a) illustrates
this physics pictorially.

Away from this special limit the Majorana end states no
longer retain this simple form, but survive provided the bulk
gap remains finite23. This occurs when |µ| < 2t, where a
partially filled band pairs. The bulk gap closes when |µ| = 2t,
and for larger |µ| a topologically trivial superconducting state
without end Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.

Realizing Kitaev’s topological superconducting state exper-
imentally requires a system which is effectively spinless—
i.e., exhibits one set of Fermi points—and p-wave pairs at the
Fermi energy. Both criteria can be satisfied in a spin-orbit-
coupled semiconducting wire deposited on an s-wave super-
conductor by applying a magnetic field1,2 [see Fig. 1(b)]. The

FIG. 1: (a) Pictorial representation of the ground state of Eq. (1) in
the limit µ = 0, t = |�|. Each spinless fermion in the chain is
decomposed in terms of two Majorana fermions �

A,x

and �
B,x

. Ma-
joranas �

B,x

and �
A,x+1 combine to form an ordinary, finite energy

fermion, leaving two zero-energy end Majoranas �
A,1 and �

B,N

as
shown23. (b) A spin-orbit-coupled semiconducting wire deposited on
an s-wave superconductor can be driven into a topological supercon-
ducting state exhibiting such end Majorana modes by applying an
external magnetic field1,2. (c) Band structure of the semiconducting
wire when B = 0 (dashed lines) and B 6= 0 (solid lines). When µ
lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

simplest Hamiltonian describing such a wire reads

H =
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The operator  
↵x

corresponds to electrons with spin ↵, effec-
tive mass m, and chemical potential µ. (We suppress the spin
indices except in the pairing term.) In the third term, u denotes
the (Dresselhaus31 and/or Rashba32) spin-orbit strength, and
� = (�x,�y,�z

) is a vector of Pauli matrices. This coupling
favors aligning spins along or against the unit vector ê, which
we assume lies in the (x, y) plane. The fourth term represents
the Zeeman coupling due to the magnetic field B

z

< 0. Note
that spin-orbit enhancement can lead to33 g � 2. Finally, the
last term reflects the spin-singlet pairing inherited from the
s-wave superconductor via the proximity effect.

To understand the physics of Eq. (4), consider first B
z

=

� = 0. The dashed lines in Fig. 1(c) illustrate the band
structure here—clearly no ‘spinless’ regime is possible. In-
troducing a magnetic field generates a band gap / |B

z

| at
zero momentum as the solid line in Fig. 1(c) depicts. When
µ lies inside of this gap the system exhibits only a single pair
of Fermi points as desired. Turning on � which is weak com-
pared to the gap then effectively p-wave pairs fermions in the
lower band with momentum k and �k, driving the wire into
Kitaev’s topological phase1,2. [Singlet pairing in Eq. (4) gen-
erates p-wave pairing because spin-orbit coupling favors op-
posite spins for k and �k states in the lower band.] Quan-
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Topological semi-metals
• Another class of topological states are semi-metals, in which 

band touching is protected by topology

• Graphene: 2d Dirac fermion

• TaAs: 3d Weyl fermion

• Cd3Se2: 3d Dirac fermion

• Mn3Sn: 3d magnetic Weyl fermions

• many more!

• In these systems the touching points are like “topological 
defects”: singularities of Berry curvature

• Near the touching points, electrons have unusual dynamics: lots 
of potential for interesting physics!
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.
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Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).
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H = v~� · ~k
A two-component spinor in three 

dimensions: “half” of a Dirac fermion.
Weyl fermions have a chirality  and 

must be massless

Bandstructure HgTe
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gap
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B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

(Dirac semimetals also exist)
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improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.

AUGUST 15, 1937 PHYSICAL REVIEW VOLUM E 52

Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).
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from the curve.
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except the ones described above are vanishingly
improbable. In particular, the occurrence of
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
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Figure 4 | Magnetization dependence of the spontaneous Nernst e�ect for ferromagnetic metals and Mn3Sn. Full logarithmic plot of the anomalous
Nernst signal |Sji| versus the magnetization M for a variety of ferromagnetic metals and Mn3Sn measured at various temperatures and fields (Methods).
It shows the general trend for ferromagnets that |Sji| increases with M. The shaded region indicates the linear relation |Sji|=|Qs|µ0M, with |Qs| ranging
from ⇠0.05µV K�1 T�1 to ⇠1µV K�1 T�1. The Nernst signal data points obtained at various temperatures for Sample 1 (Mn3.06Sn0.94) for Bk[011̄0] and
for Sample 2 (Mn3.09Sn0.91) (blue filled circles) for Bk[011̄0] (green filled circle) do not follow the relation, and reach almost the same value as the largest
among ferromagnetic metals with three orders of magnitude smaller M.

several Weyl points nearby the Fermi level11,32. Our study further
highlights the complementary roles of anomalous Hall conductivity
�ji and transverse thermoelectric conductivity ↵ji in revealing the
topological character of band structure.

Finally, from the viewpoint of application for thermoelectric
power generation, ANE could be useful as it facilitates the
fabrication of a module structurally much simpler than the
conventional one using the Seebeck e�ect6. The orthogonal
orientation of the voltage output to the thermal heat flow (Fig. 1a)
enables a lateral series connection of a single kind of ferromagnet
with alternating magnetization direction (Fig. 1a inset). This
simplifies a thermopile structure to e�ciently cover the surface of
a heat source (Fig. 1a inset), in comparison with the conventional
thermoelectric module using the Seebeck e�ect, which consists
of a pillar structure of alternating p- and n-type semiconductors.
To increase power density, a thermopile should ideally cover the
entire surface of a heat source, and therefore, a micro-fabricated
thermopile array has to be arranged as densely as possible. However,
as long as a ferromagnet is used, their inherent stray fields may
perturb magnetization direction of neighbouring modules, and
limit the integration density.

Our discovery of a new class of material that produces almost
no stray fields but exhibits a large ANE is highly important
for the application toward thermoelectric power generation, and
it should allow us to design a thermopile with a much denser
integration of thermoelectric modules to e�ciently cover a heat
source than the ferromagnetic counterparts. While the observed
values in this work would be still far from the size necessary for
application, our study indicates that the magnetic Weyl metals such
as Mn3Sn should be particularly useful to obtain a larger ANE by
enhancing the Berry curvature at EF. Further studies to develop the
technology for application such as thin-film growth and coercivity
control of such magnets will be important to build a thermoelectric
power generator.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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anomalous Hall effect, 
Nakatsuji et al, 2015

anomalous Nernst effect, 
Ikhlas et al, 2017

Effects comparable to or exceeding 
ferromagnetic metals at room temperature



Topological band theory

• Lots more topology if you include all 
symmetries and atomic structure: “TCIs”
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Topological quantum chemistry
Barry Bradlyn1*, L. Elcoro2*, Jennifer Cano1*, M. G. Vergniory3,4,5*, Zhijun Wang6*, C. Felser7, M. I. Aroyo2 & B. Andrei Bernevig3,6,8,9

For the past century, chemists and physicists have advocated funda-
mentally different perspectives on materials: chemists have adopted 
an intuitive ‘local’ viewpoint of hybridization, ionic chemical bond-
ing and finite-range interactions, whereas physicists have described 
materials through band structures or Fermi surfaces in a non-local, 
momentum-space picture. These two descriptions seem disjoint, espe-
cially with the advent of topological insulators, which are exclusively 
understood in terms of the non-trivial topology of Bloch Hamiltonians 
throughout the Brillouin zone in momentum space. Despite the 
apparent success in predicting some (mostly time-reversal-invariant) 
topological insulators, conventional band theory is ill-suited to their 
natural treatment. Given the paucity of known topological insulators 
(fewer than 400 materials out of the 200,000 existent in crystal struc-
ture databases), one may ask whether topo logical materials are truly 
so rare, or if this reflects a failing of the conventional theory.

The topological properties of energy bands are intrinsically global 
in momentum space. The duality between real and momentum (direct 
and reciprocal) space suggests that the properties of bands that are 
non-local in momentum space will manifest locally in real space. Here 
we unify the real- and momentum-space descriptions of solids, to  
provide a powerful, complete and predictive band theory. Our  
procedure provides a complete understanding of the structure of energy 
bands in a material, and links the topological properties of the material 
to the chemical orbitals at the Fermi level. It is therefore a theory of 
topological quantum chemistry.

We develop the complete theory of topological bands in two main 
steps. First, we compile all of the possible ways energy bands in a solid 
can be connected throughout the Brillouin zone to obtain all realizable  
band structures in all non-magnetic space groups. Crystal symme-
tries place strong constraints on the allowed connections of bands. At 
high-symmetry points (ki) in the Brillouin zone, Bloch functions are 
classified by irreducible representations of the symmetry group of ki, 
which also determine the degeneracy. Away from these high-symmetry 
points, fewer symmetry constraints exist and some degeneracies are 
lowered. This result is central to the k · p approach1 to band structure, 

which provides a good description nearby the high-symmetry ki points. 
However, to determine the global band structure, the different k · p 
expansions about each ki need to be patched together. Group theory 
places constraints—‘compatibility relations’—on how this can be done. 
Each solution to these compatibility relations gives groups of bands 
with different connectivities, corresponding to different physically 
realizable phases of matter (trivial or topological). We solve all of the 
compatibility relations for all 230 space groups by mapping connectivity 
in band theory to the graph-theoretic problem of constructing multi-
partite graphs. Classifying the allowed connectivities of energy bands 
becomes a combinatorial problem of graph enumeration: we present a 
fully tractable, algorithmic solution.

Second, we develop the tools to compute the way in which the real-
space orbitals in a material determine the symmetry character of the 
electronic bands. Given only the Wyckoff positions and the orbital  
symmetry (s, p, d and so on) of the elements or orbitals in a material, 
we derive the symmetry character of all of the energy bands at all points 
in the Brillouin zone. We do this by extending the notion of a band  
representation, first introduced in refs 2 and 3, to the physically relevant 
case of materials with spin–orbit coupling (SOC) and/or time-reversal 
symmetry. A band representation consists of all energy bands (and 
Bloch functions) that arise from localized orbitals respecting the crystal  
symmetry (and possibly time-reversal symmetry). The set of band  
representations is strictly smaller than the set of groups of bands 
obtained from our graph theory4. We identify a special subset 
of ‘elementary’ band representations (EBRs)2,5, elaborated on in 
Supplementary Information, which correspond to the smallest sets 
of bands that can be derived from localized atomic-like Wannier  
functions6. The 10,403 different EBRs for all of the space groups, 
Wyckoff positions and orbitals are presented in ref. 7.

If the number of electrons is a fraction of the number of connected 
bands (connectivity) that form an EBR, then the system is a symmetry- 
enforced semimetal. The EBR method allows us to easily identify 
candidate semimetallic materials. We find that the largest possible 
number of connected bands in an EBR is 24 and hence the smallest 

Since the discovery of topological insulators and semimetals, there has been much research into predicting and 
experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust 
surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: 
topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. 
However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a 
fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, 
which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical 
bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global 
properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of 
momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry 
groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-
trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.
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Symmetry-based indicators of band topology in the
230 space groups
Hoi Chun Po1,2, Ashvin Vishwanath1,2 & Haruki Watanabe3

The interplay between symmetry and topology leads to a rich variety of electronic topological

phases, protecting states such as the topological insulators and Dirac semimetals. Previous

results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators,

demonstrate that symmetry labels can sometimes unambiguously indicate underlying band

topology. Here we develop a systematic approach to expose all such symmetry-based

indicators of band topology in all the 230 space groups. This is achieved by first developing

an efficient way to represent band structures in terms of elementary basis states, and then

isolating the topological ones by removing the subset of atomic insulators, defined by the

existence of localized symmetric Wannier functions. Aside from encompassing all earlier

results on such indicators, including in particular the notion of filling-enforced quantum band

insulators, our theory identifies symmetry settings with previously hidden forms of band

topology, and can be applied to the search for topological materials.
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Topological frontiers
• Can we realize a topological superconductor?

• What is the interplay between topological 
defects and topological bands?

• What are the robust signatures of topology in 
transport and other responses?

• Are there strongly interacting topological 
phases in real materials?



Ask Professor Joe

A) Device is sensing magnetic poles

B) It’s the chiral anomaly

C) Protection from backscattering leads to low resistance 
away from high symmetry directions

D) The field is sweeping across Ising ordered “nematic”-like 
phases resulting in domain wall resistance

E) Joe’s cell phone interfered with the signal from the cryostat
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SAMR in CeAlGe, a 
magnetic Weyl material

What’s going on??



Themes of modern QMs

• Order

• Topology

• Entanglement

• Correlations



Entanglement
| i = 1p

2
(|"#i � |#"i)EPR

entangled: cannot be written as 
a product state



Entanglement
| i = 1p

2
(|"#i � |#"i)EPR

??where is the information??



Many Body Entanglement

Phil Anderson, 1973



 





 = +...

Resonating Valence Bond state

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)



Many Body Entanglement

Phil Anderson, 1973



 





 = +...

Resonating Valence Bond state

a “quantum liquid” of spins

| i = 1p
2
(|"#i � |#"i)



Ordinary (local) Matter
We can consistently 

assign local properties 
(elastic moduli, etc.) 
and obtain all large-

scale properties

•Measurements far away do not affect one 
another

•From local measurements we can deduce the 
global state



Ordinary (local) Matter

| i = ⌦A| iA
Ground state is “essentially” 

a product state

no entanglement 
between blocks

Hamiltonian is local

H =
X

x

H(x) H(x) has local support near x

most insulators 
are like this



“Essentially” a product state?

| i = ⌦A| iA

phase space

• Adiabatic continuity

n.b. This is not true for gapless fermi systems



“Essentially” a product state?

• Entanglement scaling

⇢A = TrĀ| ih |

S(A) ⇠ �Ld�1 area law 

A

satisfied with exponentially small corrections

S(A) = �TrA (⇢A ln ⇢A)



Best example: ordered 
magnet

Hamiltonian H =
X

(ij)

JijSi · Sj
exchange is short-

range: local

ordered state | i ⇡
O
i

|Si · n̂i = +Si

block is a single 
spin



Quasiparticles
excited states ~ excited 

levels of one block

•local excitation can be created 
with operators in one block

•localized excitation has 
discrete spectrum with non-
zero gap, and plane wave 
forms sharp band  

•quantum numbers consistent 
with finite system: no 
emergent or fractional 
quantum numbers



Spin wave

!(k) ⇡ �� 2t cos k
x

a� · · ·

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

|fi = S+
k |ii



Quantum spin liquid


 





 = +...

Entanglement -> non-local excitation

+ · · · = “spinon”

“quasiparticle” above a non-zero gap



Fractional quantum number

excitation with ΔS = 1/2 
not possible for any finite 

cluster of spins

always created in pairs by any 
local operator



Anyons

spinon
“vison”

 ! � “mutual semions”

A characteristic of 
“intrinsic 

Topological Order”



Where does this name 
vison come from?

A) Because they occur at high pressures like in a vise

B) Vision was taken by the Marvel character

C) Vortex+Ising = vison

D) Named after the zoological name for the mink, 
because their long-range statistical interaction 
extends like the famous fur

E) I don’t know but why do people keep naming 
particles that don’t exist?



Topological phases

9.3. Anyons

Here, the diagram is different

(367)

e m

e m

= �

e m

e m

.

The # particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an # particle – behaves as a fermion! Basically if we make an
interchange of two #’s, we effectively wind a constituent e particle of one #

half-way around the m of the other # particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= �

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two e particles, described by some initial state |yiniti, such that, acting on
|yiniti, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = �1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = �1. We choose s1 and p1 to be adjacent,
comprising one # “particle”, and s2 and p2 to be adjacent, making up the
other # particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two # particles. We will do this by a sequence
of unitary transformations, so that

(369) |yfinali = U|yiniti,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single s

z
i and s

x
j operator to
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A. Kitaev

Anderson’s RVB state is thus an 
example of a “topological phase” - the 

best understood sort of QSL

X.-G. Wen

Understood and 
classified by anyons 
and their braiding 

rules in 2d

Warning: this is a 
different meaning of 
topological!

2017

(intrinsic)



 =
X

Robustness arises from topology: a QSL is a 
stable phase of matter (at T=0)

Stability



How stable is a topological QSL? Which 
of the choices below will make a 2d QSL 

become the same as a paramagnet?

A)Apply some weak strain 

B) Apply a small magnetic field

C)Add some weak randomness to the 
bonds

D)Beat the heck out of it with a hammer

E) Warm it up



Quantum spin liquid


 





 = +...

For ~500 spins, there are more amplitudes than 
there are atoms in the visible universe!

Different choices of amplitudes can realize 
different QSL phases of matter.



• Topological QSLs

• U(1) QSL

• Dirac QSLs

• Spinon Fermi surface

Varieties of QSLs
anyonic 
spinons 

electric+magnetic 
monopoles, photon

strongly 
interacting 

Dirac fermions

non-Fermi 
liquid “spin 

metal”



QSL experiments
• This is a difficult subject, if you want a 

challenge!

• Discuss three examples:

• Kagomé lattice herbertsmithite

• Organic triangular lattice

• alpha-RuCl3 Kitaev magnet



Kagomé antiferromagnet

H = J
X

hiji

Si · Sj + ...

V. Elser, 1989 + many many others

likely to be a QSL
Very large classical 

degeneracy



S=1/2 kagomé AF
• Rather definitive evidence for QSL by 

DMRG

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1 19,1 20,1 21,1 22,1 23,1 24,1 25,1 26,1 27,1 28,1 29,1 30,1 31,1 32,1 33,1 34,1 35,1 36,1 37,1 38,1 39,1 40,1 41,1 42,1 43,1 44,1 45,1 46,1 47,1 48,1 49,1 50,1 51,1 52,1 53,1 54,1 55,1 56,1 57,1 58,1 59,1 60,1 61,1 62,1 63,1 64,1 65,1 66,1 67,1 68,1 69,1 70,1 71,1 72,1 73,1 74,1 75,1 76,1 77,1 78,1 79,1 80,1 81,1 82,1 83,1 84,1 85,1 86,1 87,1 88,1 89,1 90,1 91,1 92,1 93,1 94,1 95,1 96,1 97,1 98,1 99,1 100,1 101,1 102,1 103,1 104,1 105,1 106,1 107,1 108,1 109,1 110,1 111,1 112,1 113,1 114,1 115,1 116,1 117,1 118,1 119,1

1,2 3,2 5,2 7,2 9,2 11,2 13,2 15,2 17,2 19,2 21,2 23,2 25,2 27,2 29,2 31,2 33,2 35,2 37,2 39,2 41,2 43,2 45,2 47,2 49,2 51,2 53,2 55,2 57,2 59,2 61,2 63,2 65,2 67,2 69,2 71,2 73,2 75,2 77,2 79,2 81,2 83,2 85,2 87,2 89,2 91,2 93,2 95,2 97,2 99,2 101,2 103,2 105,2 107,2 109,2 111,2 113,2 115,2 117,2 119,2

1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3 16,3 17,3 18,3 19,3 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3 30,3 31,3 32,3 33,3 34,3 35,3 36,3 37,3 38,3 39,3 40,3 41,3 42,3 43,3 44,3 45,3 46,3 47,3 48,3 49,3 50,3 51,3 52,3 53,3 54,3 55,3 56,3 57,3 58,3 59,3 60,3 61,3 62,3 63,3 64,3 65,3 66,3 67,3 68,3 69,3 70,3 71,3 72,3 73,3 74,3 75,3 76,3 77,3 78,3 79,3 80,3 81,3 82,3 83,3 84,3 85,3 86,3 87,3 88,3 89,3 90,3 91,3 92,3 93,3 94,3 95,3 96,3 97,3 98,3 99,3 100,3 101,3 102,3 103,3 104,3 105,3 106,3 107,3 108,3 109,3 110,3 111,3 112,3 113,3 114,3 115,3 116,3 117,3 118,3 119,3

2,4 4,4 6,4 8,4 10,4 12,4 14,4 16,4 18,4 20,4 22,4 24,4 26,4 28,4 30,4 32,4 34,4 36,4 38,4 40,4 42,4 44,4 46,4 48,4 50,4 52,4 54,4 56,4 58,4 60,4 62,4 64,4 66,4 68,4 70,4 72,4 74,4 76,4 78,4 80,4 82,4 84,4 86,4 88,4 90,4 92,4 94,4 96,4 98,4 100,4 102,4 104,4 106,4 108,4 110,4 112,4 114,4 116,4 118,4

1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 19,5 20,5 21,5 22,5 23,5 24,5 25,5 26,5 27,5 28,5 29,5 30,5 31,5 32,5 33,5 34,5 35,5 36,5 37,5 38,5 39,5 40,5 41,5 42,5 43,5 44,5 45,5 46,5 47,5 48,5 49,5 50,5 51,5 52,5 53,5 54,5 55,5 56,5 57,5 58,5 59,5 60,5 61,5 62,5 63,5 64,5 65,5 66,5 67,5 68,5 69,5 70,5 71,5 72,5 73,5 74,5 75,5 76,5 77,5 78,5 79,5 80,5 81,5 82,5 83,5 84,5 85,5 86,5 87,5 88,5 89,5 90,5 91,5 92,5 93,5 94,5 95,5 96,5 97,5 98,5 99,5 100,5 101,5 102,5 103,5 104,5 105,5 106,5 107,5 108,5 109,5 110,5 111,5 112,5 113,5 114,5 115,5 116,5 117,5 118,5 119,5

1,6 3,6 5,6 7,6 9,6 11,6 13,6 15,6 17,6 19,6 21,6 23,6 25,6 27,6 29,6 31,6 33,6 35,6 37,6 39,6 41,6 43,6 45,6 47,6 49,6 51,6 53,6 55,6 57,6 59,6 61,6 63,6 65,6 67,6 69,6 71,6 73,6 75,6 77,6 79,6 81,6 83,6 85,6 87,6 89,6 91,6 93,6 95,6 97,6 99,6 101,6 103,6 105,6 107,6 109,6 111,6 113,6 115,6 117,6 119,6

1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7 11,7 12,7 13,7 14,7 15,7 16,7 17,7 18,7 19,7 20,7 21,7 22,7 23,7 24,7 25,7 26,7 27,7 28,7 29,7 30,7 31,7 32,7 33,7 34,7 35,7 36,7 37,7 38,7 39,7 40,7 41,7 42,7 43,7 44,7 45,7 46,7 47,7 48,7 49,7 50,7 51,7 52,7 53,7 54,7 55,7 56,7 57,7 58,7 59,7 60,7 61,7 62,7 63,7 64,7 65,7 66,7 67,7 68,7 69,7 70,7 71,7 72,7 73,7 74,7 75,7 76,7 77,7 78,7 79,7 80,7 81,7 82,7 83,7 84,7 85,7 86,7 87,7 88,7 89,7 90,7 91,7 92,7 93,7 94,7 95,7 96,7 97,7 98,7 99,7 100,7 101,7 102,7 103,7 104,7 105,7 106,7 107,7 108,7 109,7 110,7 111,7 112,7 113,7 114,7 115,7 116,7 117,7 118,7 119,7

2,8 4,8 6,8 8,8 10,8 12,8 14,8 16,8 18,8 20,8 22,8 24,8 26,8 28,8 30,8 32,8 34,8 36,8 38,8 40,8 42,8 44,8 46,8 48,8 50,8 52,8 54,8 56,8 58,8 60,8 62,8 64,8 66,8 68,8 70,8 72,8 74,8 76,8 78,8 80,8 82,8 84,8 86,8 88,8 90,8 92,8 94,8 96,8 98,8 100,8 102,8 104,8 106,8 108,8 110,8 112,8 114,8 116,8 118,8

-0.200 -0.100 0.000 0.100 0.200 0.300 0.400

QSL

S. Yan et al, 2010

4

site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C⟩, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
⟨C|S⃗i|C⟩ = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)
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FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the

© Steve White

many other studies support 
existence of some QSL phase



Herbertsmithite
kagomé layers of Cu 

S=1/2 spins, separated 
by non-magnetic Zn

ZnCu3(OH)6Cl2

Heisenberg-like 
with J ~ 200K

this system remain important topics for further investiga-
tion. We also observe a small peak in the ac susceptibility
nearH ! 2 T at 50 mK which disappears upon warming to
705 mK. The overall susceptibility data indicate the ab-
sence of magnetic order or a spin gap down to 50 mK.

The specific heat C"T# of ZnCu3"OH#6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of a
few Kelvin and higher, the lattice contribution to the
specific heat (proportional to $T3) is the most significant
contribution, as shown in the inset. However, this contri-
bution diminishes at low temperatures, and below $5 K,
an additional contribution is clearly observed which arises
from the Cu spin system. Magnetic fields of a few Tesla can
significantly affect the low-T behavior, and fields of 10 T
and higher strongly suppress the specific heat below 3 K.
The difficulty in synthesizing an isostructural nonmagnetic
compound makes it hard to subtract the lattice contribution
precisely. However, the magnetic field dependence sug-
gests that the specific heat in zero applied field below 1 K is
predominately magnetic in origin. As a rough measure of
the spin entropy, the field-induced change in specific heat

below 3 K, obtained by subtracting the 14 T data from the
zero field data, accounts for about 5% of the total entropy
of the spin system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific heat
at low temperatures (T < 1 K) appears to be governed by a
power law with an exponent which is less than or equal to
1. In a 2D ordered magnet, magnon excitations would give
C$ T2. The kagomé-like compound SrCr8%xGa4&xO19
(SCGO) [18] and other 2D frustrated magnets [19] are
also observed to have C$ T2 even in the absence of
long-range order [20,21]. The behavior that we observe
in ZnCu3"OH#6Cl2 below 1 K stands in marked contrast.
We can fit our data to the power law C ! !T", though we
note that the exponent " is sensitive to the chosen range of
temperatures that are fit. The blue line in this figure repre-
sents a linear fit with " ! 1 over the temperature range
106 mK< T < 400 mK. The fitted value for ! is 240'
20 mJ=K2 Cu mole. If we include higher temperatures, the
red line represents a fit with " ! 2=3 over the temperature
range 106 mK< T < 600 mK. Extending the fitted range
to even higher temperatures can yield " values as low as
0.5.

Finally, inelastic neutron scattering measurements of the
low energy spin excitations were performed on deuterated
powder samples of ZnCu3"OD#6Cl2. High resolution mea-

 

FIG. 2 (color online). (a) The specific heat C"T# of
ZnCu3"OH#6Cl2 in various applied fields, measured using a
Physical Property Measurement System. Inset: C"T# plotted
over a wider temperature range in applied fields of 0 T (square)
and 14 T (star). (b) C"T# in zero field measured down to 106 mK.
The lines represent power law fits as described in the text.

 

FIG. 1 (color online). (a) The chemical transformation from
the pyrochlorelike lattice of Cu2"OH#3Cl to the kagomé layers of
ZnCu3"OH#6Cl2. (b) Magnetic diffraction scans of the two
systems at T ! 1:4 K (open) and 20 K (filled). The
Cu2"OH#3Cl data show magnetic Bragg peaks at Q ’ 0:70 and
Q ’ 0:92, which are absent for the ZnCu3"OH#6Cl2 data (which
have been shifted by 2300 counts=min for clarity). (c) Magnetic
susceptibility of ZnCu3"OH#6Cl2 measured using a SQUID
magnetometer plotted as 1=#, where mole refers to a formula
unit. The line denotes a Curie-Weiss fit. Inset: ac susceptibility
(at 654 Hz) at low temperatures measured at the NHMFL in
Tallahassee, FL.
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FIG. 1: (color online) (a) The in-phase component of the ac
susceptibility, measured at 100 Hz with an oscillating field of
17 Oe. (b) A scaled plot of the ac susceptibility data measured
at nonzero applied field, plotted as χ′

acT
α with α = 0.66 on

the y axis and µBH/kBT on the x axis. Inset: A scaled plot
of the dc magnetization, showing MT−0.34 vs µBH/kBT .

adequate. It should also be pointed out that in herbert-
smithite the entire bulk susceptibility obeys this scaling
relation, while in CeCu5.9Au0.1 it is only the estimated lo-
cal contribution, χL(T ) = [χ(T )−1−χ(T = 0)−1]−1, that
obeys scaling. A susceptibility of this form will imply a
similar scaling in the bulk dc magnetization of the sam-
ple, with MTα−1 expressible as a function of H/T . As
a complementary measurement, such a scaling is shown
in the inset to Fig. 1(b). The dc magnetization was
measured up to µ0H = 14 T at temperatures ranging
from T = 1.8 K to 10 K, and is plotted as MT−0.34 vs
µBH/kBT .
The inelastic neutron scattering spectrum of herbert-

smithite was measured on the time-of-flight Disk Chop-
per Spectrometer (DCS) at the NIST Center for Neu-
tron Research. A deuterated powder sample of mass
7.5 g was measured using a dilution refrigerator with
an incident neutron wavelength of 5 Å. Measurements
were taken at six different temperatures, with roughly
logarithmic spacing, ranging from 77 mK to 42 K. The
scattering data were integrated over a wide range of mo-
mentum transfers, 0.5 ≤ Q ≤ 1.9 Å−1, to give a mea-
sure of the local response. The momentum integrated
dynamic scattering structure factor, S(ω), is shown in
Fig. 2(a). Similar to previous reports on the neutron scat-
tering spectrum of herbertsmithite[11], the data show a

broad inelastic spectrum with no discernable spin gap
and only a weak temperature dependence for positive
energy transfer scattering. The negative energy trans-
fer scattering intensity is suppressed at low temperatures
due to detailed balance. The imaginary part of the dy-
namic susceptibility is related to the scattering struc-
ture factor through the fluctuation-dissipation theorem,
χ′′(ω) = S(ω)(1 − e−h̄ω/kBT ). The dynamic suscepti-
bility can then be determined in a manner similar to
that used previously[11]. For the two lowest tempera-
tures measured, detailed balance considerations will ef-
fectively suppress scattering at negative energy transfer
for values of |h̄ω| ≥ 0.15 meV. Thus these data sets are
averaged together and treated as background. This back-
ground is subtracted from the T = 42 K data, for which
the detailed balance suppression is not pronounced below
|h̄ω| = 2 meV. From this, χ′′(ω; T = 42 K) is calculated
for negative ω, and the values for positive ω are easily de-
termined from the fact that χ′′(ω) is an odd function of
ω. The dynamic susceptibility at the other temperatures
is calculated by determining the difference in scattering
intensity relative to the T = 42 K data set. It is rea-
sonably assumed that the elastic incoherent scattering
and any other background scattering are effectively tem-
perature independent. The calculated values of χ′′(ω)
at all measured temperatures are shown in Fig. 2(b).
The T = 42 K scattering data and χ′′(ω) were fit to
smooth functions for use in calculating the susceptibility
at other temperatures so that statistical errors would not
be propagated throughout the data; the smooth function
of χ′′(ω; T = 42 K) used in the calculation is also shown
in the figure.

The resulting values for χ′′(ω) follow a similar scaling
relation as the ac susceptibility, where the ratio h̄ω/kBT
replaces µBH/kBT . In Fig. 3 we show χ′′(ω)T 0.66 on the
y axis and the unitless ratio h̄ω/kBT on the x axis. The
scaled data collapse fairly well onto a single curve over
almost four decades of h̄ω/kBT . Here we have used the
same exponent α = 0.66 that was observed in the scal-
ing of the ac susceptibility. However, the error bars on
the data allow for a wider range of exponents (α = 0.55
to 0.75) with reasonable scaling behavior. The collapse
of the χ′′(ω) data is again reminiscent of the behav-
ior observed in certain heavy-fermion metals, including
the shape of the functional form of the scaling function.
Let us assume that χ′′(ω)Tα ∝ F (ω/T ). The heavy-
fermion metal CeCu5.9Au0.1 displays a scaling[21, 22]
that could be fit to the functional form F (ω/T ) =
sin[α tan−1(ω/T )]/[(ω/T )2 + 1]α/2. A fit to this func-
tional form is shown as a dashed blue line in Fig. 3. This
simple form does not fit the herbertsmithite data well for
low values of ω/T . Other heavy-fermion metals[23, 24],
display a scaling relation that can be fit to the functional
form F (ω/T ) = (T/ω)αtanh(ω/βT ); this functional form
is similar to that used to fit the dynamic susceptibility in
La1.96Sr0.04CuO4[25]. This functional form fits our data

Lots of early evidence 
for gaplessness
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FIG. 1: (color online) (a) The chemical transformation from
the pyrochlorelike lattice of Cu2(OH)3Cl to the kagomé lay-
ers of ZnCu3(OH)6Cl2. (b) Magnetic diffraction scans of the
two systems at T = 1.4 K (open) and 20 K (filled). The
Cu2(OH)3Cl data show magnetic Bragg peaks at Q ≃ 0.70
and Q ≃ 0.92 which are absent for the ZnCu3(OH)6Cl2 data
(which have been shifted by 2300 cts/min for clarity). (c)
Magnetic susceptibility of ZnCu3(OH)6Cl2 measured using a
SQUID magnetometer plotted as 1/χ, where mole refers to a
formula unit. The line denotes a Curie-Weiss fit. Inset: ac
susceptibility (at 654 Hz) at low temperatures measured at
the NHMFL in Tallahassee, FL.

investigation. We also observe a small peak in the ac
susceptibility near H = 2 T at 50 mK which disappears
upon warming to 705 mK. The overall susceptibility
data indicate the absence of magnetic order or a spin
gap down to 50 mK.

The specific heat C(T ) of ZnCu3(OH)6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of
a few Kelvin and higher, the lattice contribution to the
specific heat (proportional to ∼ T 3) is the most signif-
icant contribution, as shown in the inset. However this
contribution diminishes at low temperatures, and below
∼ 5 K, an additional contribution is clearly observed
which arises from the Cu spin system. Magnetic fields
of a few Tesla can significantly affect the low-T behavior,
and fields of 10 Tesla and higher strongly suppress the
specific heat below 3 K. The difficulty in synthesizing an
isostructural nonmagnetic compound makes it hard to
subtract the lattice contribution precisely. However, the
magnetic field dependence suggests that the specific heat
in zero applied field below 1 K is predominately magnetic
in origin. As a rough measure of the spin entropy, the

FIG. 2: (color online) (a) The specific heat C(T ) of
ZnCu3(OH)6Cl2 in various applied fields, measured using a
Physical Properties Measurement System. Inset: C(T ) plot-
ted over a wider temperature range in applied fields of 0 T
(square) and 14 T (star). (b) C(T ) in zero field measured
down to 106 mK. The lines represent power law fits as de-
scribed in the text.

field-induced change in specific heat below 3 K, obtained
by subtracting the 14 T data from the zero field data,
accounts for about 5% of the total entropy of the spin
system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific
heat at low temperatures (T < 1 K) appears to be gov-
erned by a power law with an exponent which is less than
or equal to 1. In a 2D ordered magnet, magnon excita-
tions would give C ∼ T 2. The kagomé-like compound
SrCr8−xGa4+xO19 (SCGO)[18] and other 2D frustrated
magnets[19] are also observed to have C ∼ T 2 even in the
absence of long-range order[20, 21]. The behavior that we
observe in ZnCu3(OH)6Cl2 below 1 K stands in marked
contrast. We can fit our data to the power law C = γT α,
though we note that the exponent α is sensitive to the
chosen range of temperatures that are fit. The blue line in
this figure represents a linear fit with α = 1 over the tem-
perature range 106 mK < T < 400 mK. The fitted value
for γ is 240 ± 20 mJ/K2 Cu mole. If we include higher
temperatures, the red line represents a fit with α = 2/3
over the temperature range 106 mK < T < 600 mK. Ex-
tending the fitted range to even higher temperatures can
yield α values as low as 0.5.

Finally, inelastic neutron scattering measurements of
the low energy spin excitations were performed on deuter-
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FIG. 1: (color online) (a)-(d) Inelastic neutron data on Herbertsmithite in the (HK0) and (HHL) scattering planes at T = 2K
for !ω = 0.4 meV and !ω = 1.3 meV. The bright spots at (110) and (003) arise from structural Bragg peaks. The diffuse spots
at (100), (00 3

2
) and ( 1

2
1
2
0) are magnetic in origin. Note that the (00 3

2
) diffuse spot is particularly pronounced at 0.4 meV,

while the magnetic scattering at 1.3 meV is nearly independent of L. (e)-(f) Plots of the calculated S(Q) in the (HK0) and the
(HHL) planes, representing antiferromagnetically correlated nearest neighbor impurities on the interlayer sites, as described in
the text.

used and subtracted from the corresponding sample mea-
surements.
Prior inelastic neutron scattering measurements on sin-

gle crystals by some of us [13] revealed a continuum of
scattering consistent with fractionalized spinon excita-
tions. That study primarily focused on energy trans-
fers from about 0.75 meV to 11 meV [13]. The response
in the (HK0) plane above 1 meV forms a continuum,
consistent with a singlet form factor involving nearest
neighbor kagome spins. Below this energy, though, the
momentum pattern was found to feature broad spots
with maxima at (100) and equivalent positions. Here, we
have acquired new data in the (HK0) scattering plane
at !ω = 0.4 meV and 1.3 meV, as shown in Fig. 1(a)
and (c). The Q-dependence of the scattering at fixed
energy transfer shows a distinct rotation relative to the
high energy dimer-like pattern with maxima near (23

2
30)

to a low energy pattern with maxima at (100). One can
imagine various ways in which enhanced scattering at
(100) might emerge: for example, kagome spins with dy-
namical q = 0 correlations (as observed in iron jarosite
KFe3(OH)6(SO4)2 [14]) as well as a ferromagnetic ar-
rangement of impurity spins within the interlayers could
give rise to such peaks. However, it may be necessary
to go beyond 2D models, since the interaction pathways
between the interlayer Cu impurities would imply corre-
lations along the c-direction as well.

Therefore, we have performed additional measure-
ments in the (HHL) scattering plane which allow us to
probe both intralayer and interlayer correlations. These
measurements reveal that the lowest energy fluctuations
have short range correlations along all three crystallo-
graphic directions. As shown in Fig. 1(b), diffuse peaks
are seen at the (00 3

2 ) and (12
1
20) positions for !ω =

0.4 meV. This intensity emerges below an energy scale
of ∼0.8 meV where an enhanced dynamic magnetic re-
sponse was previously reported [12, 13]. The diffuse peak
at L = 3

2 has the same position along L as the magnetic
Bragg peaks in iron jarosite [15, 16] where long-range
order yields a magnetic cell that is doubled along the c-
axis [17]. In contrast, the scattering at a higher energy of
!ω = 1.3 meV (Fig. 1d) shows little variation along the
L-direction, consistent with quasi-two-dimensional cor-
relations as expected for intrinsic kagome spins. This
new observation establishes a clear dichotomy between
the low energy 3D excitations (below 0.8 meV) and the
higher energy 2D excitations. The explicit observation
of quasi-2D correlations confirms that the spin excita-
tions measured above 1 meV by Han et al. [13] essen-
tially derive from the two-dimensional physics of a single
kagome lattice. Moreover, the dichotomy implies that
the physics at low energies (such as effects of weakly
coupled impurities) quickly diminishes at the higher mea-
sured energies. Hence, it appears neutron scattering can

T-H Han et al, 2015

claim to separate 
impurity signal 
below 0.7meV

Single 
crystal NMR
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Fig. 4. Intrinsic spin susceptibility χkagome and spin excitation gap Δ .  (A) Temperature 

dependence of χkagome deduced from 17K(a*) observed at Main1 in Bext = 3.2 T || a*.  The red 

dashed curve represents a theoretical prediction based on high temperature series expansion (28) 

with J = 180 K, matched at 295 K, whereas the solid curve is a guide to the eye. (B) Temperature 

and field dependences of 17K(a*) at low temperatures, with a fit to 17K(a*)~ T ⋅exp(−Δ /T )  in the 

temperature range up to 4.2 K (solid curves) and 10 K (dashed curves).  (C) Main1 lineshapes at 

4.2 K in Bext = 3.2, 6.1, and 9 T || a* plotted as a function of the normalized frequency f / fo −1  

(= 17K(a*)).  (D) The spin excitation gap, Δ(Bext), deduced from (B) for the fitting range up to 4.2 

K (filled circles) and 10 K (crosses).  Dashed and doted lines are the best fits under the constraint 

of S =1  and S =1/ 2 , respectively, whereas the solid line represents the best free parameter fit. 
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Organics

• Molecular materials which behave as 
effective triangular lattice S=1/2 
antiferromagnets with J ~ 250K

• significant charge fluctuations

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t
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Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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κ-(ET)2X β’-Pd(dmit)2

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating
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Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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Organics

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so
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Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).
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Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2
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The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)

Crossover

(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max

(1/T1T)max

Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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NMR lineshapes

1H NMR

Evidence for lack of static moments: f > 1000!

Y. Shimizu 
et al, 2003

!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.
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Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.

NATURE PHYSICS | VOL 6 | SEPTEMBER 2010 | www.nature.com/naturephysics 675

a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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Specific Heat
• C ~ γT indicates gapless behavior with 

large density of statesLETTERS

0 T
1 T
4 T
8 T

1 2 3 4 5

25

50

75

100

125

C p
T–

1  (
m

J 
K–2

 m
ol

–1
)

0

150

25

50

75

100

125

0 T
1 T
4 T
8 T

T 2 (K2) T 2 (K2)

0 6 1 2 3 4 50 6

C p
T–

1  (
m

J 
K–2

 m
ol

–1
)

0

150

   -(d8:BEDT-TTF)2Cu[N(CN)2]Br

   -(BEDT-TTF)2Cu[N(CN)2]CI

  '-(BEDT-TTF)2ICI2β

a b
κ

κ

Figure 2 Low-temperature heat capacities of �-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇥-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of ⇤-(BEDT-TTF)2Cu2(CN)3 and other
⇤-type BEDT-TTF salts. ⇤-(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
⇤-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇥-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the ⇤-type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
⇤-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the ⇥ term),
even in the insulating salt. The magnitude of ⇥ is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite ⇥ term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the ⇥
term in the present insulating state is intrinsic.

The well known Mott insulators ⇤-(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇥-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing ⇥ value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A ⇥ value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

S. Yamashita et al, 2008
is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-

ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind

of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are

separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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Low-temperature heat capacity (Cp) for EtMe3Sb and Et2Me2Sb salts. The main graph shows Cp T
!1 versus

T2 plots of the heat capacity. The inset shows a Cp T
!1 versus T2 plot around a broad hump structure for the
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M. Yamashita et al, 2010

Thermal conductivity
• Huge linear thermal 

conductivity indicates 
the gapless excitations 
are propagating, at 
least in dmit

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 
μm ≈1000 a !



U/t

frustration

metal

AF insulator
QSL

tr
ia

ng
ul

ar

ka
go

m
e 

la
tt

ic
e

e-  l
oc

al
iz

at
io

n

Charge fluctuations

organics?



Organics - Theory

• RVB/QSL state:

• Motrunich, Lee+Lee: (2005) “uniform 
RVB”

• It is described by a “Fermi sea” of 
spinons coupled to a U(1) gauge field

• The anomalous thermal conductivity 
may be a window into an emergent 
fermi surface in an insulator!
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Kitaev Materials

Jackeli, Khaliullin 
2009

Showed that Kitaev interaction can be 
large in edge-sharing octahedra with 

large spin-orbit-coupling

Na2IrO3, 
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Li2IrO3
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Figure 1 

α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Thermal Hall
• Very recent experiment on a-RuCl3

2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-

3

sponse with respect to the field direction. In this config-
uration, Hall response is determined by H⊥. Since the
magnitude of κxy is extremely small compared to κxx in
α-RuCl3, special care was taken to detect the intrinsic
thermal Hall signal [28]. The experimental error in de-
termining κxy caused by the uncertainty in measuring
the distance between the Hall contacts and the thickness
of the crystal is within ±2%. Figures 3a, b, and c depict
κxy/T at θ = 60◦ plotted as a function of H⊥ above H∗

∥
at low temperatures. Below 3.7K, the transverse thermal
gradient is hard to detect within our resolution.

In the AFM state, κxy/T is extremely small (see Ex-
tended Data Fig. 3). Upon entering the field-induced spin
liquid state, κxy/T , which is positive in sign, increases
rapidly. The most striking feature is that κxy/T attains
a plateau in the field range of 4.5T< µ0H⊥ <4.8-5.0T,
as displayed in Figs. 3a, b and c. The right axes repre-
sent κ2D

xy in units of quantum thermal Hall conductance
(π/6)(k2B/!)T , where κ

2D
xy = κxyd with the layer distance

d = 5.72 Å [22]. Remarkably, the plateau is very close to
the half of quantum thermal Hall conductance reported
in the integer quantum Hall system [17] within the error
of 3%, demonstrating the emergence of half-integer ther-
mal Hall conductance plateau. Above µ0H⊥ ≈ 5.0T,
κ2D
xy /T decreases rapidly and vanishes. At 4.3 and 4.9K,

slight increase of κ2D
xy /T is observed before the reduc-

tion, while it is absent at 3.7K. Although the plateau
behaviour seems to be preserved at 5.6K, κ2D

xy /T slightly
deviates from the quantized value. At higher tempera-
tures, the plateau behaviour disappears (Fig. 3d).

The temperature dependence of κxy/T at the magnetic
fields where the plateau is observed is shown in Fig. 4.
The half-integer thermal Hall conductance is observable
up to ∼5.5K, above which κxy/T increases rapidly with
T . As shown in the inset of Fig. 4, κxy/T decreases af-
ter reaching a maximum at around 15K and nearly van-
ishes above ∼ 60K (see Extended Data Fig. 4). In usual
Heisenberg systems, finite thermal Hall effect can appear
in spin-liquid states in the presence of Dzyaloshinsky-
Moriya interaction [29]. However, such an interaction in
α-RuCl3 is negligible as it is less than 5% of JK [30].
Moreover, the phonon thermal Hall conductivity is three
orders of magnitude smaller than the observed κxy/T in
the spin-liquid state and shows essentially different T -
dependence [31]. As the vanishing temperature of κxy/T
is close to Kitaev interaction, it is natural to consider that
the finite thermal Hall signal reflects unusual quasiparti-
cle excitations inherent to the spin liquid state governed
by the Kitaev interaction.

In Eq.(1), the coefficient q gives the chiral central
charge of the gapless boundary modes, which propagate
along one direction. Central charge represents a num-
ber of freedom of 1D gapless modes; it is unity for con-
ventional fermions, while it is 1/2 for Majorana fermions
whose degrees of freedom is half of conventional fermions.
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FIG. 3. Half-integer thermal Hall conductance
plateau. a-d, Thermal Hall conductivity κxy/T in tilted
field of θ = 60◦ plotted as a function of H⊥. The top axes
show the parallel field component H∥. The right scales rep-
resent the 2D thermal Hall conductance κ2D

xy /T in units of
(π/6)(k2

B/!). Violet dashed lines represent the half-integer
thermal Hall conductance, κ2D

xy /[T (π/6)(k
2
B/!)] = 1/2.

Integer quantum Hall system with the bulk Chern num-
ber ν has ν boundary modes with q = ν, while a Ki-
taev QSL with the Chern number ν has ν Majorana
boundary modes with q = ν/2. Thus the observed
half-integer thermal Hall conductance provides direct ev-
idence of the chiral Majorana edge currents. We also
note that the positive Hall sign is also consistent with


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T
= c

⇡
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k2
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~
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c=1/2 is expected for a 
chiral Majorana fermion 
edge, characteristic of 

“Ising anyons”
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Entanglement Issues
• Can you definitively identify highly 

entangled phases? How?

• Can you measure entanglement?

• What are the links between 
entanglement, thermalization, and 
hydrodynamics?



Correlation
• Many phenomena result from interactions that 

are neither topological nor simply described 
in terms of entanglement (which can be 
thought of as a particular type of correlation)

• Mott metal-insulator transition 

• Heavy electrons and non-Fermi liquids

• Fluctuating orders and pseudogaps

• Low dimensional systems



Mott Transition
• Hubbard model

H = �t
�

⇤ij⌅

c†i�cj� + U
�

i

ni�ni⇥

find therefore all the other atoms occupied, and in
order to get through the lattice have to spend a long
time in ions already occupied by other electrons.
This needs a considerable addition of energy and so
is extremely improbable at low temperatures.’’

These observations launched the long and continuing
history of the field of strongly correlated electrons, par-
ticularly the effort to understand how partially filled
bands could be insulators and, as the history developed,
how an insulator could become a metal as controllable
parameters were varied. This transition illustrated in
Fig. 1 is called the metal-insulator transition (MIT). The
insulating phase and its fluctuations in metals are indeed
the most outstanding and prominent features of strongly
correlated electrons and have long been central to re-
search in this field.

In the past sixty years, much progress has been made
from both theoretical and experimental sides in under-
standing strongly correlated electrons and MITs. In the-
oretical approaches, Mott (1949, 1956, 1961, 1990) took
the first important step towards understanding how
electron-electron correlations could explain the insulat-
ing state, and we call this state the Mott insulator. He
considered a lattice model with a single electronic or-
bital on each site. Without electron-electron interac-
tions, a single band would be formed from the overlap of
the atomic orbitals in this system, where the band be-
comes full when two electrons, one with spin-up and the
other with spin-down, occupy each site. However, two
electrons sitting on the same site would feel a large Cou-
lomb repulsion, which Mott argued would split the band
in two: The lower band is formed from electrons that
occupied an empty site and the upper one from elec-
trons that occupied a site already taken by another elec-
tron. With one electron per site, the lower band would
be full, and the system an insulator. Although he dis-
cussed the magnetic state afterwards (see, for example,

Mott, 1990), in his original formulation Mott argued that
the existence of the insulator did not depend on whether
the system was magnetic or not.

Slater (1951), on the other hand, ascribed the origin of
the insulating behavior to magnetic ordering such as the
antiferromagnetic long-range order. Because most Mott
insulators have magnetic ordering at least at zero tem-
perature, the insulator may appear due to a band gap
generated by a superlattice structure of the magnetic pe-
riodicity. In contrast, we have several examples in which
spin excitation has a gap in the Mott insulator without
magnetic order. One might argue that this is not com-
patible with Slater’s band picture. However, in this case,
both charge and spin gaps exist similarly to the band
insulator. This could give an adiabatic continuity be-
tween the Mott insulator and the band insulator, which
we discuss in Sec. II.B.

In addition to the Mott insulating phase itself, a more
difficult and challenging subject has been to describe
and understand metallic phases near the Mott insulator.
In this regime fluctuations of spin, charge, and orbital
correlations are strong and sometimes critically en-
hanced toward the MIT, if the transition is continuous
or weakly first order. The metallic phase with such
strong fluctuations near the Mott insulator is now often
called the anomalous metallic phase. A typical anoma-
lous fluctuation is responsible for mass enhancement in
V2O3, where the specific-heat coefficient g and the Pauli
paramagnetic susceptibility x near the MIT show sub-
stantial enhancement from what would be expected
from the noninteracting band theory. To understand this
mass enhancement, the earlier pioneering work on the
MIT by Hubbard (1964a, 1964b) known as the Hubbard
approximation was reexamined and treated with the
Gutzwiller approximation by Brinkmann and Rice
(1970).

Fermi-liquid theory asserts that the ground state and
low-energy excitations can be described by an adiabatic
switching on of the electron-electron interaction. Then,
naively, the carrier number does not change in the adia-
batic process of introducing the electron correlation, as
is celebrated as the Luttinger theorem. Because the
Mott insulator is realized for a partially filled band, this
adiabatic continuation forces the carrier density to re-
main nonzero when one approaches the MIT point in
the framework of Fermi-liquid theory. Then the only
way to approach the MIT in a continuous fashion is the
divergence of the single-quasiparticle mass m* (or more
strictly speaking the vanishing of the renormalization
factor Z) at the MIT point. Therefore mass enhance-
ment as a typical property of metals near the Mott insu-
lator is a natural consequence of Fermi-liquid theory.

If the symmetries of spin and orbital degrees of free-
dom are broken (either spontaneously as in the mag-
netic long-range ordered phase or externally as in the
case of crystal-field splitting), the adiabatic continuity
assumed in the Fermi-liquid theory is not satisfied any
more and there may be no observable mass enhance-
ment. In fact, a MIT with symmetry breaking of spin and
orbital degrees of freedom is realized by the vanishing of

FIG. 1. Metal-insulator phase diagram based on the Hubbard
model in the plane of U/t and filling n . The shaded area is in
principle metallic but under the strong influence of the metal-
insulator transition, in which carriers are easily localized by
extrinsic forces such as randomness and electron-lattice cou-
pling. Two routes for the MIT (metal-insulator transition) are
shown: the FC-MIT (filling-control MIT) and the BC-MIT
(bandwidth-control MIT).
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Physically, a Mott Insulator is one which 
is insulating due to interaction-induced 
localization, not due to band physics

This is a question of energy scales

Deep in the Mott state:
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Mott Transition
• And old subject

• But still a key theme, and now more accessible in 
new materials, via new approaches

e.g. 
perovskites

and CuO chains. The nominal valence of Cu on the
sheet and chain is estimated to be approximately 12.25
and 2.50, respectively (Tokura et al., 1988). In other
words, the holes are almost optimally doped into the
sheet to produce superconductivity in this stoichiometric
compound. The oxygen content on the chain site can be
reduced, either partially (0,y,1) or totally (y50),
which results in a decrease in the nominal valence of Cu
on the sheet, lowering the superconducting transition
temperature Tc and finally (y,0.4) driving the system
to a Mott insulator (or more rigorously, a CT insulator).
The nominal valence of the chain-site Cu in the y50
compound is 11 due to the twofold coordination, while
that for the y51 compounds is '12.5. Thus the nomi-
nal hole concentration or Cu valence in the sheet can
apparently be controlled by oxygen nonstoichiometry on
the chain site, yet it bears a complicated relation to the
oxygen content (y) and furthermore depends on the de-
tailed ordering pattern of the oxygen on the chain sites.

Filling control by use of nonstoichiometry (offstoichi-
ometry) has also been carried out for other systems, for
example V22yO3 (see Sec. IV.A.1) and LaTiO31y (Sec.
IV.B.1), which both show the Mott-insulator-to-metal
transition with such slight offstoichiometry as y<0.03.
The advantage of utilizing oxygen nonstoichiometry is
that one can accurately vary the filling on the same
specimen by a post-annealing procedure under oxidizing
or reducing atmosphere. Since vacancies or interstitials
may cause an additional random potential, the above
method is not appropriate for covering a broad range of
fillings.

3. Dimensionality control

Anisotropic electronic structure and the resultant an-
isotropy in the electrical and magnetic properties of d
electron systems arises in general from anisotropic net-
work patterns of covalent bondings in the compounds.

FIG. 64. A guide map for the synthesis of filling-controlled (FC) 3d transition-metal oxides with perovskite and layered perovskite
(K2NiF4-type) structures.

FIG. 65. A schematic metal-insulator diagram for the filling-control (FC) and bandwidth-control (BC) 3d transition-metal oxides
with perovskite structure. From Fujimori, 1992.
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Heavy Electrons
• Mass enhancement near Mott transition

system is steeply increased as the compound approaches
the metal-insulator (AFI-AFM) phase boundary. This
was considered as a hallmark of Brinkman-Rice-type
mass enhancement, although the Brinkman-Rice model
does not consider the SDW-like spin order. The critical
behavior is given by ⌃�⌃0�1⇥(U/Uc)�⇥1, where ⌃0 is
the ⌃ expected for the noninteracting V 3d in a band
and U is the intra-atomic Coulomb interaction with the
value Uc at the MIT (Brinkman and Rice, 1970). The
data presented in Fig. 74 are consistent with the assump-
tion that the ratio U/Uc varies linearly with P/Pc .

In the case of an FC-MIT, on the other hand, the ⌃
decreases as the V deficiency y approaches the MI phase
boundary. Carter et al. (1993) compared the different
cases, variations of y and P , by sorting the ⌃ into con-
tributions from the spin-fluctuation term (Moriya, 1979)
and the Brinkman-Rice term. Then the result could be
explained by assuming that the spin-fluctuation term in-
creases in proportion to the doping y , while the
Brinkman-Rice term is nearly unchanged. However, it is
not conceptionally clear whether the ⌃ can be consid-
ered as a sum of the two terms, which must have the
same physical origin, i.e., electron correlation. If further
doping were possible, the ⌃ would eventually show a
peak at the AFM(spin-density wave)-PM phase bound-
ary and then steeply decrease, as observed in another
doped Mott-Hubbard system, La1⇥xSrxTiO3 (see Sec.
IV.B.1). In a real V2⇥yO3 system, however, the spin or-
dering in the AFM phase is robust against y and no
paramagnetic metallic state at T�0 K emerges up to the
chemical phase separation (y⇤0.06; Ueda, Kosuge, and
Kachi, 1980; Carter et al., 1991). When the filling is con-
trolled for the AFM phase to approach the Mott insula-
tor by fixing U/t , ⌃ should rather decrease because
the electron and hole pockets with small Fermi surfaces
shrink further. This is in contrast to the mass divergence
expected for the MIT between the PM and AFI phases.
As discussed in Secs. II.C, II.G.1, and II.G.8, metal-
insulator transitions between the AFI and AFM phases
are categorized as �I-1�M-1� where the carrier number
vanishes at the MIT, and ⌃ may decrease toward the
MIT in three dimensions due to a vanishing density of
states at the band edge. When U/t is increased with fixed
filling, on the other hand, the mass and ⌃ may be quan-

titatively and strongly enhanced simply due to correla-
tion effects. However, we know of no reason for diver-
gence of ⌃ at the AFM-AFI boundary. The experimental
results shown in Fig. 74 appear to be consistent with
these arguments.

The effect of electron correlation in V2O3 and the re-
sultant temperature- and filling-dependent change in the
electronic state are also manifested by the optical con-
ductivity, as reported by Thomas et al. (1994) and Ro-
zenberg et al. (1995). Figure 75 shows the optical con-
ductivity spectra (essentially of the T�0 limit) for the
insulating V2⇥yO3 phase with MIT critical temperatures
Tc�154 K (y�0) and Tc�50 K (perhaps y�0.13,
though not specified in the original report). Although
the experimental data were analyzed based on the cal-
culated result for a BC-MIT of the infinite-dimensional
Hubbard model, the experimental conditions imply that
the dominant character may not be BC-MIT but FC-
MIT.

The temperature-dependent MIT in pure V2O3 be-
tween the low-temperature antiferromagnetic insulating
phase and the high-temperature paramagnetic metallic
phase was studied using a high-resolution photoemission
technique as shown in Fig. 76 (Shin et al., 1995). In the
insulating phase below T�155 K, the total width of the
lower Hubbard band was ⇧3 eV, considerably larger
than that (⇧0.5–1 eV) deduced from the optical study
by Thomas et al. (1994). The low-intensity region near
EF in the insulating phase has a width of ⇧0.2 eV, much
smaller than the band gap (⇧0.6 eV) deduced from an
optical study of a sample with the same transition tem-
perature but twice the transport activation energy (⇧0.1
eV; McWhan and Remeika, 1970). Since the insulating
phase of V2O3 is a p-type semiconductor due to a small
number of V vacancies, the Fermi level should be lo-
cated closer to the top of the occupied valence band

FIG. 74. T-linear electronic specific-heat coefficient ⌃ vs the
oxygen deficiency y at ambient pressure as well as vs the pres-
sure P at y�0.013. From Carter et al., 1993, 1994.

FIG. 75. Optical conductivity spectra of V2⇥yO3 in the metallic
phase (full lines) at T�170 K (upper) and T�300 K (lower).
The inset contains the difference of the two spectra ⌥⇥(⌅)
�⇥170 K(⌅)⇥⇥300 K(⌅). Diamonds indicate the measured dc
conductivity. Dotted lines indicate ⇥(⌅) of insulating phase
with y�0.013 at 10 K (upper) and y�0 at 70 K (lower). From
Rozemberg et al., 1995.
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law was used to fit the x!T " curve for the LAlO3
compounds over the entire temperature range measured.

However, the curve fitting to a Curie-Weiss law above

100 K gave C ! 3.6 for L ! Pr31 and Nd31, which is

close to the free-ion values 3.58 !Pr31" and 3.62 !Nd31".
Subtraction of the polynomial for x!T " of LAlO3 gave

a very consistent result for the x!T " of the NiO3 array

of PrNiO3 and NdNiO3. In the case of Nd0.5Sm0.5NiO3,

subtraction of the polynomial did not work as well at

low temperatures. Therefore, a fit to the Curie-Weiss law

above 100 K was used. Fortunately, all the transitions we

addressed occur above 100 K.

Figures 2–5 show x!T ", x21!T ", and r!T " for the NiO3
array of LaNiO3, PrNiO3, NdNiO3, and Nd0.5Sm0.5NiO3,

respectively. Both Landau diamagnetism and Van Vleck

paramagnetism are relatively small in magnitude compared

with our measured x!T ". Therefore, no correction was
made for these two contributions to x!T ". In a homoge-
neous model, the temperature dependence of x!T " for the
NiO3 array may be attributed to the electronic states near

the Fermi energy.

Interpretation of the x!T " data begins with the observa-
tion that the low-spin Ni (III) ions contribute a single elec-

tron each to an orbitally twofold-degenerate s! band. A

quarter-filled band should experience ferromagnetic corre-

lations which introduce a Stoner enhancement in addition

to the mass enhancement due to strong electron-electron

interactions. A distinction between these two enhance-

ments is that the electronic specific-heat parameter g
increases with mass enhancement, but not with Stoner

enhancement [9]. By measuring both x!T " and the elec-
tronic specific heat at low temperatures, Sreedhar et al.

[2] determined a Stoner factor S ! 0.58, well below the

S ! 1 for a ferromagnetic instability. The curvature of the
temperature dependence of x!T " for mass enhancement
is opposite to that for Stoner enhancement. Mott [10] was

FIG. 2. Temperature dependence of resistivity r, magnetic
susceptibility x, and its reciprocal x21!T " for LaNiO3.

the first to point out this distinction, but he was unable to

find a suitable experimental example to test his prediction

that a flattening of the ´k vs k dispersion at the Fermi

energy of a mass-enhanced metallic system would give a

temperature dependence below a temperature Td .

Qualitatively, the x!T " data for LaNiO3 in Fig. 2 ap-

pears to fit the Mott prediction for a homogeneous elec-

tronic system. However, a weak temperature dependence

persisting above the apparent Td # 200 K in Fig. 2 does
not conform to the Mott picture. Alternatively, the x!T "
curve of Fig. 2 may be described by a two-electronic-phase

model in which x ! ax0 1 bxCW , where x0 is the sus-

ceptibility of a mass-enhanced, conductive parent phase

and xCW is a Curie-Weiss component coming from strong-

correlation fluctuations within the parent phase. We [11]

have used this formulation to interpret a similar tempera-

ture dependence of x!T " found for the La12xNdxCuO3
perovskite system. Moreover, the model is supported

by the evidence from our transport measurements [3] for

strong-correlation fluctuations in the metallic phase of the

LNiO3 family. A Td # 200 K was also found in the

La12xNdxCuO3 system; why it should occur at this tem-

perature in both systems is not clear. One possibility is

that the boundary of the host phase is where the mass en-

hancement gives a Td # 200 K; further narrowing of the
band introduces more and more of the strong-correlation

second phase and hence a greater temperature dependence

of x!T " above Td . Indeed, the temperature dependence of

x!T " at T . Td increases on narrowing the bandwidth in

Figs. 2–5.

In Figs. 3–5, the onset of the rise in r!T " on cooling
is a measure of the transition temperature Tt . The ther-

mal hysteresis of Tt decreases as Tt increases, and the

transition becomes second order (no thermal hysteresis at

Tt) in Nd0.5Sm0.5NiO3, which has a Tt . TN (see Figs. 1

FIG. 3. r!T", x!T", and x21!T" for PrNiO3, the line is a guide
to the eye.
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Heavy Fermions
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4f-Virtual-Bound-State Formation in CeA13 at Low Temperatures
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Specific-heat and electrical-resistivity measurements in CeA13 below 0.2 K reveal enor. —
mous magnitudes of the linear specific-heat term C = 1'T (1'=1620 mJ mole/K ) and the T
term in p=AT (@=35pu cm/K). We conclude that the 4f electrons obey Fermi statis-
tics at low temperatures because of the formation of virtual bound 4f states.

In the intermetallic compound CeA1, both the
lattice parameters and the susceptibility at high
temperatures suggest that the Ce ion is in a 3+
state. The lack of magnetic order at low tem-
peratures is interpreted as being caused by a
partial admixture of the nonmagnetic 4+ state.
Such behavior has been explained in different
ways in the past. A model distinguishing be-
tween "atomic" and "bandlike" 4f electrons has
been suggested by Gschneidner. ' More recently,
CeAl, has often been cited as an example of a
mixed valence- -or interconfigurational fluctua-
tion (ICF)—compound'; and in another approach,
Mott' has explained the peculiar properties of
CeAl, based on a Kondo-type theory. The pur-
pose of this note is to present new data on the
very-low-temperature properties of CeAl, and
to show that they can be understood using Frie-
del's' classic theory of virutal bound states.
All measurements were performed in dilution

refrigerator s except the thermal-expansion mea-
surement, which was done in a 'He cryostat.
The data were taken by standard techniques us-
ing a cerium-magnesium-nitrate magnetic-sus-
ceptibility ther mometer. Only polycrystalline
samples were investigated; they were cut from
a 20-g button-that was are melted in argon and
annealed at 900 C for 3 weeks. X-ray analysis
showed the proper structure (hexagonal, Ni, Sn-
type). The specific-heat results are shown in
Fig. 1. Below 150 mK, the specific heat varies

0.10

K+

0.01

100 200
T (mK)

500

FIG. 1. Specific heat of CeA13 at very low tempera-
tures in zero field (o, b,) and in 10 kOe (Q).

linearly with temperature and yields an extreme-
ly large y value of 1620 mJ/mole K'. It remains
practically unchanged in a field of 10 koe except
at the lowest temperatures where the nuclear
Zeeman specific heat of the Al nuclei is seen
(the Ce"' and Ce"' isotopes have no nuclear
spin). This behavior is to be contrasted with
what one would have expected from the lowest-
].ying Ce" Kramers doublet state, namely a
strong field-dependent magnetic specific heat
with entropy R ln2/mole. Interpolating our data
with previous specific-heat measurements down
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FIG. 2. (a) Susceptibility of polycrystalline CeA13 in
different magnetic fields below 1.5 K. (b) Linear ther-
mal-expansion coefficient of a polycrystalline sample
of CeA13 below 10 K.

to 1.2 K, ' we find that the entropy from 0 to 1 K
is only 27%%up of A ln2 and is thus reduced below its
classical value. The results of Ref. 5 indicated
that the first excited doublet lies about 10 K
above the ground state and that again about 20%
of the entropy for this doublet is missing.
Susceptibility measurements on CeA1, down to
0.5 K have been presented before by Edelstein
et al.' At high temperatures, ' Curie-Weiss be-
havior, characteristic of Ce", is observed. At
low temperatures, the suseeptibiltiy gradually
flattens out. We observe a very weak suscepti-
bility maximum around 0.6 K [shown in Fig. 2(a)]
which is field independent up to 5 kOe and which
we believe to be a genuine property of CeA1„
rather than an impurity effect. Below 0.1 K we
find y =0.036 emu/mole.
The very low-temperature resistivity is shown

in Fig. 3. It displays an unusually strong and
exact T' dependence. In p =p, +AT', A equals
35 pQ cm/K'. This temperature dependence con-
tinues up to 0.3 K. At higher temperatures, a
somewhat slower and more linear increase is
observed. '
In order to search for a valence change from

Ce'+ to Ce" we have measured the thermal con-
traction from 295 to 4.2 K as well as the thermal-
expansion coefficient below 10 K. At 295 K, the
lattice parameters of CeAl, are characteristic
of Ce".' The volume change —AV/V upon cool-
ing to 4.2 K is 1.5&& 10 ', much less than the one
expected for a 3+ to 4+ valence change which
would result in a volume collapse of order (4-10)
&& 10 '. The low-temperature thermal-expansion
coefficient [shown in Fig. 2(b)] is anomalous in
that it changes sign at 0.65 K and seems to go
through a negative maximum below 0.3 K.
The specific-heat, susceptibility, and resis-

tivity data of CeA1, at very low temperature all
demonstrate conclusively that the 4f electrons of
the Ce" ions obey Fermi statistics in this re-
gion. The high-temperature data, "on the other
hand, can be explained Iluite well (except at the
lower temperatures) by assuming Boltzmann
statistics of uncoupled 4f states ('E,i, ) which are
crystal-field split into three Kramers doublets.
If the low-temperature behavior were due to rap-
id fluctuations between the Ce" and Ce" states,
we would expect the volume of the crystal to
shrink anomalously upon cooling from room tem-
perature, which is not observed. A natural ex-
planation of the low-temperature behavior is the
formation of virtual bound 4f states of widths
narrower than the crystal-field splitting. From
the ambivalent nature of Ce it is known that the
energy of its 4f state is close to the Fermi ener-
gy; in the case of CeA1, we postulate that its lo-
cation is right at the Fermi energy and that the
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higher than typically found for epitaxial nickelate films. It indicates
low levels of disorder such as cation off-stoichiometry or bulk
oxygen vacancies, which we confirm using post-growth high-
pressure oxygen annealing (Supplementary Discussion 1), enabling
metallic transport even in ultrathin 3 u.c. films. Reducing the thick-
ness by just one further u.c., however, causes the ARPES spectral
weight near EF to be suddenly suppressed, the occupied bandwidth
to be substantially broadened, and the films to become insulating by
transport. For a single LaNiO3 layer the resistivity becomes too high
to be measured with our apparatus, and we observe no spectral
weight at the Fermi level, indicating the opening of a full
charge gap. While the resistivity of 2 u.c. films decreases following
high-pressure oxygen annealing, healing some surface oxygen
vacancies and time-dependent film degradation, the films
remain insulating. This confirms that oxygen vacancies do not
drive the MIT observed here21 (Supplementary Discussion 1).
Moreover, the direct correlation between the transport and spectro-
scopic properties of our films strongly supports that we have uncov-
ered an intrinsic thickness-driven transition in 2-u.c.-thick LaNiO3
epitaxial films, consistent with the MIT observed in bilayer
LaNiO3/LaAlO3 superlattices5.

Our momentum-resolved spectroscopic observations allow us to
rule out several further possible causes of this MIT. The bandwidth
is independent of film thickness from 50 u.c. down to 3 u.c.
(Fig. 3b), which is incompatible with a Mott transition in

the Brinkman–Rice scenario where a smooth divergence of the
effective mass would be expected. This also rules out the possibility
of bandwidth narrowing by quantum size effects, which would
again be expected to induce more gradual changes in the electronic
structure22,23. We can exclude that strong localization16 is respon-
sible for the MIT in our samples. Our resistivity measurements
do show signs of weak localization at 3 u.c. below 35 K, but
the inelastic mean free path of carriers that we estimate from
momentum distribution curve peak widths at the Fermi level is
largely thickness-independent, remaining above 8 Å, even for
the 2 u.c. sample, comparable with the film thickness and
easily exceeding the Ioffe–Regel limit24 expected for a
localization-driven MIT.

Our measurements instead reveal that the MIT is correlated with
a sudden breakdown of Fermi liquid-like quasiparticles at 2 u.c. As
indicated by energy distribution curves at the Fermi wavevector, kF
(Fig. 3a), samples ≥3 u.c. support coherent quasiparticle-like exci-
tations, indicated by the pronounced peak at EF, with only a small
incoherent tail at higher binding energies. In contrast, decreasing
the film thickness to 2 u.c. causes a pronounced suppression of
the coherent peak, with almost all of the spectral weight transferred
to incoherent excitations at higher binding energies. To describe this
quantitatively, we define an effective quasiparticle residue, Z′

(Fig. 3b, Supplementary Discussion 2). We find this to be indepen-
dent of film thickness down to 3 u.c., below which it suddenly drops
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Figure 1 | Giant quasiparticle mass renormalization in LaNiO3. a, Three-dimensional Fermi surface of bulk LaNiO3, predominantly derived from Ni eg orbitals,
as predicted by DFT calculations (Supplementary Discussion 3). Our experimental measurements probe almost two-dimensional projections about the planes
shown through the bulk Brillouin zone. Corresponding simulations derived from our calculations (bottom left) are well matched by our experimental ARPES
measurements (bottom right) of a 50 pseudocubic unit cell (u.c.) sample measured using He Ia (kz ≈ 0.7p/a) and He IIa (kz ≈ 0.3p/a) light (see also
Supplementary Fig. 9). b, Measured E versus k dispersions, shown for an 8 u.c. thick sample along the red line in a, are renormalized by a factor of seven
from the corresponding DFT calculations, as illustrated by comparing fits to momentum distribution curves with the scaled DFT calculation on the
magnified view shown in the inset. c, The imaginary part of the self-energy extracted from momentum distribution curve peak widths and the (background
subtracted) energy distribution curve at kF are both well described by the same analytic self-energy of a three-dimensional Fermi liquid (green lines,
Im[S(v)]¼b(v2þ (pkBT)2)þSimp, b¼ 79 eV21, Simp¼0.27 eV). Error bars indicate the uncertainty in extracting the imaginary part of the self-energy
from our fits to momentum distribution curves, incorporating statistical errors in peak fitting, systematic errors and sample-to-sample variations. d, Together,
our spectroscopic measurements are indicative of the spectral function A(k, v) of a model strongly correlated Fermi liquid, as shown by energy distribution
curves (magnified near EF in the inset) simulated from our bare DFT band, assuming a Fermi liquid self-energy with a mass renormalization of 7 and
b¼ 79 eV21 as in our experimental measurements. The impurity term has been set to 20 meV to aid visualization.
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example: LaNiO3 - just on the metallic side of Mott transition in bulk

R ! La [4,21], which comprises two sets of spirals polar-
ized perpendicular to the propagation vector q0 [blue arrows
in Fig. 3(f)]. Whereas the magnetic structure of 2 u.c.-LNO
confined between LAO layers under compressive strain is
compatible with the one in the bulk [Fig. 3(c)], the data
sets on all samples grown under tensile-strain conditions
[Fig. 3(a)], and the one of a pure NNO film grown under
compressive strain [Fig. 3(b)], indicate distinctly different
magnetic structures.

In analyzing the azimuthal scans of Fig. 3, we consid-
ered both collinear antiferromagnetic structures with spa-
tial variation of the moment amplitude and spiral structures
analogous to the one in bulk RNiO3 with identical ampli-
tude on every lattice site [see Figs. 3(a) and 3(b)]. Model
calculations [11,12] show that the relative stability of these
two structures depends on factors that are difficult to
compute from first principles, such as the on-site correla-
tion strength. The comprehensive data sets displayed in
Fig. 3 allow an experimental test of these predictions.
Whereas collinear structures turned out to be incompatible
with the data [see dashed lines in Figs. 3(a) and 3(b)],
calculations based on spiral states yield excellent descrip-
tions of all three distinct data sets [solid lines in Figs. 3(a)
and 3(b)]. These structures can be derived from the
structure of bulk RNiO3 by adjusting the direction of the
moments in the two sublattices. In the best fits for all samples
under tensile strain, the moments are symmetrically tilted
from the [001] axis by 28! 2" [red arrows in Fig. 3(d)], and
remain coplanar with those of the bulk structure [26]. The
magnetic structure of the NNO sample under compressive
strain, on the other hand, comprisesmoments along [110] and

½110$ [green arrows in Fig. 3(e)]. Note the striking difference
between the polarization plane of this sample and the one of
the LNO-LAO SL shown in Fig. 3(f), which was grown on

the same substrate (LSAO) and exhibits the same in-plane
lattice parameter.
In order to uncover the origin of the surprising variability

of the helical polarization plane, we used x-ray absorption
spectroscopy with linearly polarized x rays near the Ni L2

edge to determine the relative occupation of the Ni
d-orbitals, which controls the magnetocrystalline anisotropy
via the spin-orbit coupling [27,28]. Figures 3(g)–3(i) display
the difference of the absorption spectra for photons polar-
ized parallel and perpendicular to the substrate surface for
three representative samples, normalized by the averaged
energy integral. Taking advantage of the sum rule for linear
dichroism, we have converted the energy integrals into the
ratio of eg hole occupation numbers X % n3z2&r2=nx2&y2

[29]. The SLs and films grown under tensile strain show
1:03 ' X ' 1:14, corresponding to an enhanced electron
occupation of the dx2&y2 orbital [Fig. 3(g)]. Since orbital

moments in this situation will point along z, the experimen-
tally observed canting of the spin moments towards this
direction [Fig. 3(d)] is a natural consequence of the intra-
atomic spin-orbit coupling. Conversely, the preferential
d3z2&r2 occupation (X ¼ 0:97) found in the compressively
strained NNO film [Fig. 3(h)] accounts for the observed spin
polarization in the x, y plane [Fig. 3(e)]. In the compres-
sively strained LNO-LAO SL, our data show that the equal
population of dx2&y2 and d3z2&r2 found in bulk nickel oxides

is restored [Fig. 3(i)], consistent with prior reports on related
SLs [9] and with the bulklike magnetic structure of this
sample [Fig. 3(f)]. This requires a mechanism that counter-
acts the effect of compressive strain observed in the NNO
film on the same substrate. Such a mechanism has been
identified in model calculations for LNO-based SLs,
[14,15,17] which indicate that the confinement of the
LNO conduction electrons to the x, y plane by the insulating
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FIG. 2 (color online). (a) Scans around q0 ¼ ð1=4; 1=4; LÞ at T ¼ 10 K and E ¼ 853:4 eV for SLs with composition LNO-LAO,
LNO-DSO, and N ¼ 2 consecutive LNO unit cells show a magnetic Bragg reflection, while those with N ¼ 3, 4 do not. The inset
shows a reciprocal-space map of the scattered intensity from the N ¼ 2 SL. (b) Comparison between the x-ray absorption spectroscopy
(XAS) and the photon-energy dependence of the magnetic Bragg intensity at q0 close to the Ni L3 (2p ! 3d) edge, which shows
almost identical line shapes for two azimuthal angles c ¼ 0, 30". (c) Temperature dependence of the magnetic Bragg intensity at q0 in
LNO-based SLs with N ¼ 2 (symbols), compared to representative dc electrical conductance measurements (taken by a standard four-
probe method) for N ¼ 2 and N ¼ 4 SLs (dashed lines).
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nearly to zero. We note that a temperature-dependent loss of quasi-
particle coherence has previously been associated with an onset of
insulating c-axis transport in several layered oxides25. Our

measurements here show that a similar mechanism can lead to a
dimensionality-driven MIT in ultrathin correlated metals.

These findings are in striking contrast to previous photoemission
studies that suggested a much more gradual loss of quasiparticle
weight starting at films ≥10 u.c. (refs 18,19), and its total suppres-
sion by "4 u.c. While such a slow crossover was attributed to
gradual localization19, our sharp momentum distribution curves at
EF, as well as the sudden collapse of quasiparticle residue we find
at 2 u.c., instead points to an instability of LaNiO3 to an underlying
charge/spin order in two dimensions. The total loss of weight of the
eg states is accompanied by a shift of the occupied t2g and O 2p states
to higher binding energies in our single u.c. sample (Fig. 2g),
notably similar to that observed through the temperature-driven
MIT into a charge-ordered ground state in NdNiO3 (ref. 27). This
suggests that a similar charge and/or spin ordering triggers the
thickness-driven MIT we observe in LaNiO3.

We note that experimental signatures of spin order, accompany-
ing a MIT, have recently been observed in dimensionally confined
bilayer LaNiO3/LaAlO3 superlattices5,26, while bulk rare-earth
(RE) RE2–xSrxNiO4 with x ≈ 1 (a quasi-two-dimensional analogue
of LaNiO3) lies on the borderline of metallic and insulating
charge- and spin-ordered phases28. Unlike mesoscopic superlattices
or macroscopic bulk crystals, however, our work demonstrates how
control between such ordered insulating and metallic phases can be
achieved in a material with a total thickness on the order of only
1 nm. This highlights the power of dimensional engineering in
ultrathin correlated oxides and suggests its potential for controlling
novel electronic phases for use in functional nanoscale electronics.
Recent calculations further support this picture, suggesting a
pronounced stabilization of magnetically ordered insulating
phases in bilayer (2 u.c.) and monolayer (1 u.c.) LaNiO3 as
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metal (≥3 u.c.) to a broad dispersive band with a pronounced loss of quasiparticle coherence (2 u.c.), to a fully gapped insulator (1 u.c.). The angle-resolved
spectra were background subtracted as described in Supplementary Discussion 2. The inset to g shows the near-EF angle-integrated spectra on a magnified
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The in-plane resistivit ('
y p,&) of La2—,Sr,Cu04 has been studied over a wide temperature (4-1000 K)

and composition ran e (0&x &0.35). T"g . &. The much discussed T-linear resistivity is observed only in the
narrow composition region associated with optimal superconductivity. In the und d dn e un er ope range

CC

, we o serve rst indications of resistivity saturation and anal th dana yze e resistivity as indicative of
a small Fermi surface. In the overdo ed ran
cr

p ge (x) 0.2), p,b follows a novel power-law dependence,
p~ T, over the entire temperature range up to 1000 K.

PACS numbers: 74.70.Vy, 72. 15.Qm
The unusual charge dynamics in the layered cuprates

has been widely recognized to be a key for the under-
standing of high-temperature superconductivity and has
promoted a number of theoretical models for 2D strongls rong y
correlated electron systems [1,2]. One of the hallmarks
of the charge dynamics is the nearly T-linear in-plane
resistivity (p,b ) over a remarkably wide temperature
range, from just above T, to near 1000 K, which is corn-
monly observed in most cuprates showing the optimum
superconductivity [1-4]. Closely related with this is the
I/ro decay of the free carrier conductivity at optical fre-
quencies, which reAects an anomalous frequency-
dependent scattering rate proportional to co at least up to
0.5 eV, instead of ru as would be expected for a conven-2

tional Fermi liquid [5]. Lacking so far, however, is a reli-
able experimental study of p,b over a wide temperature
range on well characterized materials when the hole con-
centration is varied from far below to far above the op-
timum composition for superconductivity.
Here we report the electrical resistivity up to 1000 K

on high-quality La2—„Sr„Cu04 single-crystal thin films
and polycrystalline materials, not only for the supercon-
ducting phase but also at lower and higher doping level.
We find that the T-linear behavior for the resistivity over
a wide temperature range is confined to a narrow compo-
sition range for optimum superconductivity. A well-
d fiefined decrease of the resistivity slope occurs above room
temperature in the underdoped region, below x-0.1. In
the overdoped region above x-0.2, a novel power-law
dependence, p=po+AT", n-1.5, not T linear or T,
dominates the resistivity over a wide temperature range
up to —1000 K. This is in contrast to earlier suggestions
of conventional behavior in this composition ranrange.
hese results not only indicate a close correlation be-

tween the T-linear scattering and superconductivity, but
also provide a crucial test for theoretical models of the
charge transport in Cu02 sheets.
The c-axis-oriented single-crystal thin films with

thicknesses of 3500-8000 A were grown on SrTi03(100)
substrates [6]. The polycrystalline samples were pre-
pared through solid-state reaction processing [7]. The
resistivity measurements were performed using the con-
ventional four-probe method or the Van der Pauw tech-
nique [8]. The high-temperature measurements above
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300 K were conducted in a quartz tube furnace under 02
flow. In order to check for possible 02 desorption effects,
we performed measurements under N2/Oq mixed gas flow—3(Po, -10 atm) for representative compositions. No
difference was observed between the two runs up to 1000
K for 0.05 &x &0.2, and at least up to 800 K for x )0.2,
indicating no oxygen desorption up to these temperatures

2975

LSCO Takagi et al, 1992 BaFe2(As1-xPx)2, Hayes et 
al, 2016

T-linear resistivity/scattering rate:
•Many materials
•Often nearby to unconventional superconductivity
•Symptom of a different type of metal? Or of a 
quantum critical point?
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p~ T, over the entire temperature range up to 1000 K.

PACS numbers: 74.70.Vy, 72. 15.Qm
The unusual charge dynamics in the layered cuprates

has been widely recognized to be a key for the under-
standing of high-temperature superconductivity and has
promoted a number of theoretical models for 2D strongls rong y
correlated electron systems [1,2]. One of the hallmarks
of the charge dynamics is the nearly T-linear in-plane
resistivity (p,b ) over a remarkably wide temperature
range, from just above T, to near 1000 K, which is corn-
monly observed in most cuprates showing the optimum
superconductivity [1-4]. Closely related with this is the
I/ro decay of the free carrier conductivity at optical fre-
quencies, which reAects an anomalous frequency-
dependent scattering rate proportional to co at least up to
0.5 eV, instead of ru as would be expected for a conven-2

tional Fermi liquid [5]. Lacking so far, however, is a reli-
able experimental study of p,b over a wide temperature
range on well characterized materials when the hole con-
centration is varied from far below to far above the op-
timum composition for superconductivity.
Here we report the electrical resistivity up to 1000 K

on high-quality La2—„Sr„Cu04 single-crystal thin films
and polycrystalline materials, not only for the supercon-
ducting phase but also at lower and higher doping level.
We find that the T-linear behavior for the resistivity over
a wide temperature range is confined to a narrow compo-
sition range for optimum superconductivity. A well-
d fiefined decrease of the resistivity slope occurs above room
temperature in the underdoped region, below x-0.1. In
the overdoped region above x-0.2, a novel power-law
dependence, p=po+AT", n-1.5, not T linear or T,
dominates the resistivity over a wide temperature range
up to —1000 K. This is in contrast to earlier suggestions
of conventional behavior in this composition ranrange.
hese results not only indicate a close correlation be-

tween the T-linear scattering and superconductivity, but
also provide a crucial test for theoretical models of the
charge transport in Cu02 sheets.
The c-axis-oriented single-crystal thin films with

thicknesses of 3500-8000 A were grown on SrTi03(100)
substrates [6]. The polycrystalline samples were pre-
pared through solid-state reaction processing [7]. The
resistivity measurements were performed using the con-
ventional four-probe method or the Van der Pauw tech-
nique [8]. The high-temperature measurements above
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lines, the in-plane resistivity (p,b) of single-crystal films with

orientation; solid lines, the resistivity (p) of polycrystal-
line materials. Note, p~ (h/e~)d=1. 7 mQcm.

300 K were conducted in a quartz tube furnace under 02
flow. In order to check for possible 02 desorption effects,
we performed measurements under N2/Oq mixed gas flow—3(Po, -10 atm) for representative compositions. No
difference was observed between the two runs up to 1000
K for 0.05 &x &0.2, and at least up to 800 K for x )0.2,
indicating no oxygen desorption up to these temperatures
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6. Path integral methods
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and non-divergent for all parameters if the interactions are short-ranged. The
two frequency integrals can be done successively by contours. The result is
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This result is quite nice, because it can be easily analytically continued, tak-
ing iw ! w + id. Since everything but the id is real, we readily see that the
imaginary part of the self-energy is simple (the real part is not so simple):
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One physical interpretation obtains if we take w = e
k

– this is called the
“on-shell” condition. We can think of this as representing an electron with
energy w > 0 and momentum k, which may decay into two electrons with
momentum q, q

0 and a hole with (missing) momentum q + q

0 � k. The theta
functions enforce that the states are available for the two electrons produced,
i.e. they are above the Fermi energy and so initially empty, and likewise the
hole state is initially occupied – had we chosen w < 0 the electrons and holes
are swapped. The self-energy gives the rate of the decay process.

To see that this physical interpretation is sensible, consider the retarded
Green’s function including the self-energy

(203) GR(k, w) =
1

w � e
k

� S(k, w)� id
.

Expressing S = S0 + iS00 in terms of real and imaginary parts, and taking the
imaginary part of GR, we obtain

(204) r(k, w) =
�2S00(k, w)

(w � e
k

� S0(k, w))2 + (S00(k, w))2 .

From this, when the imaginary part of the self-energy is small, there is a sharp
peak in the spectral function at the renormalized energy w = #

k

which is the
solution of

(205) #
k

= e
k

+ S0(k, #
k

).

We may expand around this solution in the vicinity of the peak, assuming
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What is the mechanism of 
the strange metal?

A) Electron nematic quantum criticality

B) It’s dual to a black hole in anti-de-Sitter 
space

C) Dynamical mean field theory

D)Interaction with an emergent gauge field

E) Measurement error



Hydrodynamic flow
• Low density, ultra-clean fluids - here 

graphene: e-e scattering creates 
viscous flow

lines show the corresponding nmin(T ) for this
sample; the DF is found within this regime, indi-
cating the coexistence of thermally populated
electrons and holes. Disorder and electron-phonon
scattering serve as lower and upper limits, respec-
tively, on the temperature range over which the
DF can be observed.
We investigate the effect of impurities on hydro-

dynamic transport by comparing the results ob-
tained from samples with varying disorder. Figure
3A shows nmin as a function of temperature for
three samples used in this study. nmin(T = 0) is
estimated as 5 × 109, 8 × 109, and 10 × 109 cm–2,
respectively, in samples S1, S2, and S3. All devices
show qualitatively similar DF behavior: For sam-
ples S1, S2, and S3, the largest values of L=L0

measured in the DF regime are 22, 12, and 3,
respectively (Fig. 3B). Cleaner samples not only
have a more pronounced peak but also have a
narrower density dependence (Fig. 3C), as pre-
dicted (5, 6).
More quantitative analysis of LðnÞ in our ex-

periment can be performed by employing a quasi-

relativistic hydrodynamic theory of the DF, incor-
porating the effects of weak impurity scattering
(5, 6, 18)

L ¼ LDF

½1þ ðn=n0Þ2&2
ð2Þ

where

LDF ¼ H vFlm
T 2smin

ð3Þ

and

n2
0 ¼ H smin

e2vFlm
ð4Þ

Here, vF is the Fermi velocity in graphene, smin is
the electrical conductivity at the CNP, H is the
fluid enthalpy density, lm is the momentum re-
laxation length from impurities, and n0 is the
density scale over which L varies appreciably.
Two parameters in Eq. 2, lm andH , are undeter-

mined for any given sample. For simplicity, we
assume that we are well within the DF limit,
where lm andH are approximately independent
of n. We fit Eq. 2 to the experimentally measured
LðnÞ for all temperatures and densities in the
DF regime to obtain lm andH for each sample
(Fig. 3C). lm is estimated to be 1.5, 0.6, and
0.034 mm for samples S1, S2, and S3, respec-
tively. For the system to be well described by
hydrodynamics, lm should be long compared
with the electron-electron scattering length of
~0.1 mm that is expected for the DF at 60 K (19).
This is consistent with the pronounced signa-
tures of hydrodynamics in S1 and S2, but not in
S3, where only a glimpse of the DF appears in
thismore disordered sample.We also observe in S1
that LðnÞ dips substantially below L0: its mini-
mum is ∼ L0=3. L < 1 occurs inEq. 2 forn ≫ n0.
The inset to Fig. 3C shows the fitted enthalpy
density as a function of temperature compared
with that expected in clean graphene (dashed line)
(19), excluding renormalization of the Fermi ve-
locity. In the cleanest sample,H varies from 1.1
to 2.3 eV/mm2 in the hydrodynamic regime. This
enthalpy density corresponds to ~20meV or ~4kBT
per charge carrier—about a factor of 2 larger than
the model calculation without disorder (19). The
sharp temperature and impurity dependence ob-
served in L is a prediction of these hydrodynamic
models. These effects and the magnitude of L are
inconsistent with alternative models for WF vio-
lations, including bipolar diffusion in graphene
(21, 42). Furthermore, recent experiments report
monotonic behavior in thermopower as a func-
tion of T (43), implying that phonon drag is not
responsible for the peak in ke that we observe as
a function of T.
To fully incorporate the effects of disorder, a

hydrodynamic theory that treats inhomogeneity
nonperturbatively is necessary (41, 44). The en-
thalpy densities reported here are larger than the
theoretical estimation obtained for disorder-free
graphene, consistent with the picture that chem-
ical potential fluctuations prevent the sample from
reaching theDiracpoint.Althoughwe find thermal
conductivity well described by (5, 6), electrical
conductivity increasesmore slowly than expected
away from the CNP, a result consistent with hydro-
dynamic transport in a viscous fluid with charge
puddles (41).
In a hydrodynamic system, the ratio of shear

viscosity h to entropydensity s is an indicator of the
strength of the interactions between constituent
particles. It has been suggested that the DF can
behave as anearly perfect fluid (19): h/s approaches
Kovtun et al.’s conjecture that ðh=sÞ=ðℏ=kBÞ ≳ 1=4p
(where ħ is Planck’s constant divided by 2p) for a
strongly interacting system (45). Anonperturbative
hydrodynamic framework can be employed to es-
timate h (41). A directmeasurement of h is of great
interest.
Beyond a diverging thermal conductivity and

an ultralow viscosity, other peculiar phenomena
are expected to arise in this plasma. Themassless
nature of the Dirac fermions is expected to result
in a large kinematic viscosity, despite a small shear
viscosity h. Observable hydrodynamic effects have
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Fig. 3. Disorder in the DF. (A)
Minimum carrier density as a function
of temperature for all three samples. At
low temperatures, each sample is
limited by disorder. At high temper-
atures, all samples become limited by
thermal excitations. Dashed lines are a
guide for the eye. (B) Lorentz ratio of
all three samples as a function of bath
temperature. The largest WF violation is
seen in the cleanest sample. (C) The
gate dependence of the Lorentz ratio is
well fit to the hydrodynamic theory of
(5, 6). Fits of all three samples are
shown at 60 K. All samples return to
the FL value (black dashed line) at high
density. The inset graph shows the
fitted enthalpy density as a function of
temperature and the theoretical value
in clean graphene (black dashed line).
The schematic inset illustrates the
difference between heat and charge
current in the neutral Dirac plasma.

Fig. 2. Breakdown of the WF law
in the DF regime.The Lorenz ratio
is shown as a function of the charge
carrier density and bath temper-
ature. Near the CNP and for tem-
peratures above the disorder
(charge puddle) regime but below
the onset of electron-phonon cou-
pling, the Lorenz ratio is measured
to be an order of magnitude
greater than the FL value of
1 (blue). The WF law is observed to
hold outside of the DF regime. All
data from this figure are taken from
sample S1. Green dotted lines show
the corresponding nmin(T) for this sample.
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Luttinger liquids
• One dimension: it is known that all 

metals are “strange”
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these nanometre-sized structures7±10,13,14. Individual tubes, for
example, are either semiconducting or conducting, depending on
their chirality7,8, whereas electron transport through ropes is
typically dominated by a single metallic nanotube within the
rope9. The latter observation is in agreement with the Ænding that
most of the nanotubes in a rope are semiconductors and thus
insulating at the low temperatures of transport measurements7,8.
Electrical connections to nanotubes and nanotube ropes can be

achieved by either depositing electrode metal over the top of the
tubes (`end-contacted' samples), or by placing the tubes on top of
predeÆned metal leads (`bulk-contacted' samples). We use both
geometries to study the transport properties of nanotube ropes.
Figure 1 gives an example of the measured two-terminal conduc-
tance, G, as a function of gate voltage, Vg, for a bulk-contacted
metallic rope at different temperatures. The Coulomb oscillations15

that occur each time an electron is added to a nanotube within the
rope are clearly visible at low temperatures. The temperature
dependence of the oscillations yields a charging energy U for this
sample of 1.9meV. At temperatures above 20K, the thermal energy
exceeds the charging energy (that is, kBT . U , where kB is Boltz-
mann's constant and T the absolute temperature). This results in the
Coulomb oscillations being nearly completely `washed out', render-
ing the conductance independent of gate voltage. The dependence
on temperature is illustrated in Fig. 1 inset, which shows the
conductance dropping steeply as the temperature is lowered, extra-
polating to G à 0 at T à 0.
Figure 2 shows G as a function of Ton a double logarithmic scale

for two bulk-contacted and two end-contacted nanotube ropes
(Fig. 2a and b, respectively). The measured data (solid lines) show
approximate power-law behaviour, G ~ Ta, for the four samples
shown. However, the range of temperature over which this beha-
viour occurs is limited by the effects of Coulomb blockade at low

temperatures. After correcting for the known temperature depen-
dence due to the Coulomb blockade15, the corrected data (dashed
lines) show power-law behaviour over a greater temperature range,
with slightly different exponents. Above T < 100K, G begins to
saturate for some samples. This saturation is observed in many, but
not all, of the samples studied.
The corrected data obtained for the bulk-contacted samples show

approximate power-law behaviour from 8 to 300Kwith exponents
abulk < 0:33 and 0.38. In the case of the end-contacted samples, the
corrected data show approximate power-law behaviour from 10 to
100Kwith exponents aend < 0:6 for both samples. The upper inset
to Fig. 2a shows the exponents determined from the temperature
dependence of a variety of samples. Exponents marked with `x' and
`o' are for bulk- and end-contacted tubes, respectively. The former
show a systematically lower exponent than the latter samples with
aend < 0:6 and abulk < 0:3.
The two insets in Fig. 3 show the measured differential con-

ductance dI/dVas a function of the applied bias voltageV. The upper
inset in Fig. 3a shows results for a bulk-contacted sample (see lower
inset) at different temperatures, plotted on a log±log scale. In linear
response, dI/dV is proportional to a (temperature-dependent)
constant, G(T) from Fig. 2. At high biases, dI/dV increases with
increasing V. The curves at different temperatures fall onto a single
curve in the high-bias regime. As this curve is roughly linear on a
log±log plot, it implies that the differential conductance is described
by a power law, dI=dV ~ Va, where a à 0:36. At the lowest
temperature T à 1:6K, this power-law behaviour occurs over two
decades in V, from 1 to 100mV.
The upper inset in Fig. 3b shows dI/dV as a function of V for

an end-contacted sample (see lower inset) at several temperatures.
The conductance is again a temperature-dependent constant at
low biases eV p kBT, whereas at higher biases dI/dV increases. The

Figure 2 Conductance G plotted against temperature T for individual nanotube

ropes. The data areplotted on a log±log scale. a, Data for ropes that are deposited

over pre-deÆned leads (bulk-contacted); b, data for ropes that are contacted by

evaporating the leads on top of the ropes (end-contacted). Sketches depicting the

measurement conÆguration are shown in the lower insets. The plots show both

the raw data (solid line) and the data corrected for the temperature dependence

expected from the Coulomb blockade (CB) model (dashed line). We correct the

data by dividing the measured G(T) by the theoretically expected temperature

dependence in the CBmodel. This correction factor depends only onU/kBT, and,

because U can be independently measured from the temperature dependence

of the Coulomb oscillations, the correction procedure requires no adjustable

parameters. If the CB were the only source of the temperature dependence, the

dashed lines would be horizontal. Instead they have a Ænite slope, indicating an

approximate power-law dependence on T. The upper inset to a shows the power-

law exponents inferred for a variety of samples. Open circles denote end-

contacted samples, and crosses denote bulk-contacted ones.

Figure 3 The differential conductance dI/dVmeasured at various temperatures.

Inset in a, dI/dV curves taken on a bulk-contacted rope at temperaturesT à 1:6K,

8K, 20K and 35K. Inset in b, dI/dV curves taken on an end-contacted rope at

temperatures T à 20K, 40K and 67K. In both insets, a straight line on the log±log

plot is shown as a guide to the eye to indicate power-law behaviour. The main

panels a andb show thesemeasurements collapsed onto a single curve by using

the scaling relations described in the text. The solid line is the theoretical result

Ætted to the data by using g as a Ætting parameter. The values of g resulting in the

best Æt to the data are g à 0:46 in a and g à 0:63 in b.

electron spectral function develops power-law singularities instead of quasiparticle pole: 
many manifestations in spectroscopy, transport

the red dashed line. We compare this with the
theoretical prediction for noninteracting electrons,
shown in Fig. 3A, where a similar dark blue fea-
ture also occurs. However, the latter tracks the 1D
parabola along its length. In contrast, the feature in
Fig. 3B disperses away from the 1D parabola. Be-
cause features in the conductance reflect singular

features in the spectral function, we can conclude
that the 1D parabola and the red dashed line track
the dispersion of two independent excitations, which
in the TLL framework correspond to the spinon and
holon, for spin and charge excitations, respectively.

To confirm this interpretation, we have calcu-
lated the tunneling spectra for a TLL coupled to a

2D system of electrons. The framework for these
calculations already exists in the literature (15, 16),
so we only describe the relevant details here. To
compute the tunneling current, we require the spec-
tral function of a TLL, which in general depends
on four parameters: the spinon and holon velocities
vs and vr, respectively, plus two exponents gs and

Fig. 2. (A and B) Color-scale plots of G versus Vdc and B at
lattice temperatures of 1 K and 40 mK, respectively (device A, for
Vwg = −0.62 V). Black lines (solid and dashed) indicate the
locations of singularities predicted by the noninteracting model
for tunneling between the wires and the 2DEG, whereas the
green dash-dotted lines indicate the locations of the singularities
associated with the parasitic 2D-2D tunneling. There is an addi-
tional abrupt decrease in G along the line indicated. In addition,
G is suppressed at zero bias, labeled ZBA; this is another sign of
interactions. (C) dG/dB (device A, for Vwg = −0.60 V). The non-
interacting parabolae are shown as in (A) and labeled 1D or 2D
to indicate which dispersion is being probed. The straight red line
indicates the locus of the abrupt change in G indicated in (A) and
(B) and is a factor of ~1.4 steeper than the 1D parabola at Vdc = 0.
This feature clearly moves away from the 1D parabola. We identify
it with the TLL charge excitation (holon), whereas the 1D parabola
tracks the spin excitation (spinon).
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Fig. 3. Comparison of
dG/dB for experiment
and theory. (A) For non-
interacting electrons, all
features track the non-
interacting parabolae
(disorder broadening G =
0.6 meV). (B) dG/dB
measured at high reso-
lution while sweeping B,
for device B. The red
linemarks a feature that
does not track the non-
interacting parabolae
and is absent in (A). Cal-
culation of G (C) and
dG/dB (D) for noninter-
acting electrons and a
TLL. The dimensionless
bias v= eVdc/EF2D = 0.12;G is indicated for each curve. For the TLL, the spinon velocity vs = vF1D and the chosen holon velocity vr =1.4vF1D. Spin and charge excitations
are labeled S and C, respectively. F labels the noninteracting 2D dispersion curve. (E) dG/dB as a function of B and v, showing the same charge feature (C) as in the
experiment (B).
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QM Materials
• Topological materials

• HgTe, Bi2Se3, 
Bi2Te3,Sb2Te3, TaAs, 
Cd2Se3, WTe2, 
MoTe2

mostly s+p electron 
materials.  Very extended, 

highly overlapping orbitals.  
Weak correlations.  Heavy 

for strong SOC.  



QM Materials
• Topological materials

• HgTe, Bi2Se3, 
Bi2Te3,Sb2Te3, TaAs, 
Cd2Se3, WTe2, 
MoTe2

• Mn3Sn, Mn3Ge, 
YbPtBi, CeAlGe, 
Co2MnGa

New ingredients in recent 
materials: partially filled 3d 
and 4f orbitals: correlations!

Specifically these ions host local moments 



Local moments
• Most magnetism in QMs 

comes from either 3d 
transition metal ions or 
4f rare earths.  These 
have relatively localized 
orbitals which don’t 
overlap strongly with 
neighbors and have 
strong Coulomb 
repulsion, which 
localizes electrons best. 



Local moments
• In 3d transition metals, 

usually magnetism is fairly 
isotropic, i.e. spins are 
“Heisenberg like”, because 
crystal fields split the d 
orbitals and spin-orbit 
coupling is relatively weak 
(Co is most common 
exception, when very 
localized).  Exchange 
interactions between spins 
vary from quite strong 
(1000K) to quite weak (1K).



Local moments
• In 4f lanthanides, spin-orbit 

coupling is dominant over 
crystal fields and so 
magnetic moments 
become large 
(incorporating orbital 
moment) and often very 
anisotropic (due to large 
SOC).  They have complex 
multiplet structures, and 
weak exchange 
interactions.  



QM Materials
• Quantum spin liquids 

and interesting 
insulating 
antiferromagnets

• ZnCu3(OH)6Cl2, a-
RuCl3, Pr2Zr2O7, 
Cs2CuCl4, Yb2Ti2O7 



QM Materials
• Correlated metals/

Mott transitions

• RTiO3,RVO3,RNiO3,
RMnO3,RCoO3,...

• Cd2Os2O7,Nd2Ir2O7,
Sr2IrO4,Sr2RuO4,..

• URu2Si2,CeAl3,....

transition metals and 
rare earths mostly.  



QM Materials
• Twisted graphene, 

organics “break the 
mold”

• Become correlated 
because large unit 
cell suppresses 
hopping/bandwidth

• “designed” QMs
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