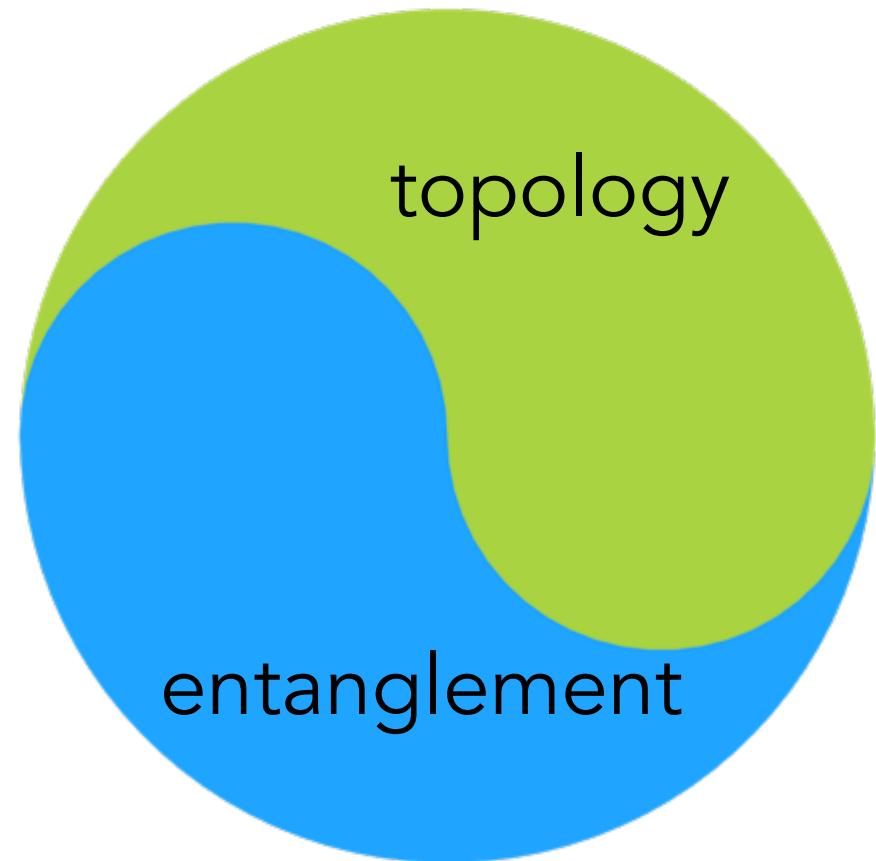


Strongly interacting Fermi liquids and the SYK model

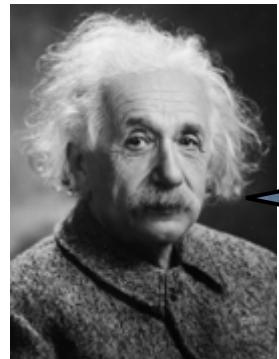
Leon Balents, KITP, UCSB

Xue-Yang Song
Beijing -> Harvard

Chao-Ming Jian
KITP/Microsoft Q



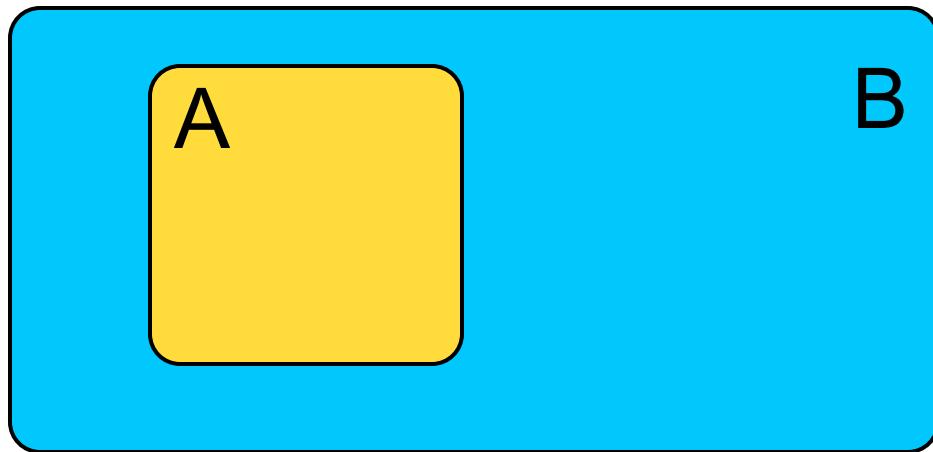
Quantum Entanglement



spukhafte Fernwirkung!

Degrees of Entanglement

How much does A depend on B?



$$\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$$

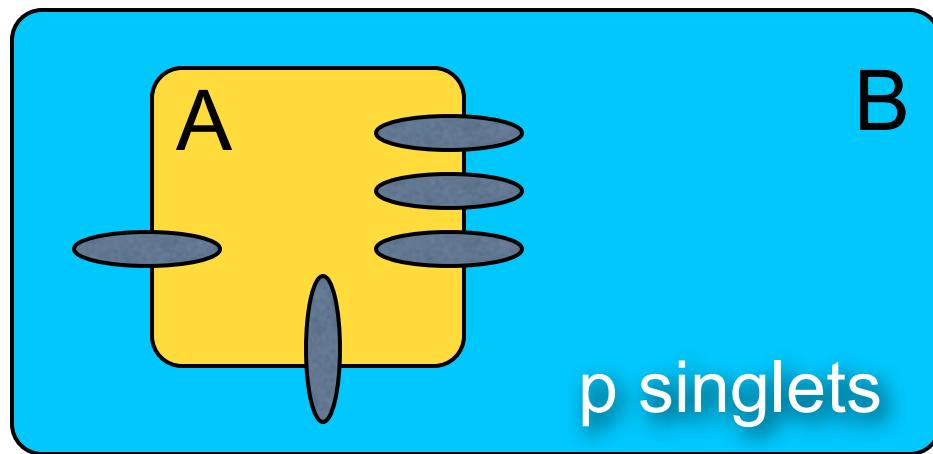
von Neumann "entanglement entropy" $S(A) = -\text{Tr} [\rho_A \ln \rho_A]$

$$S(A) > 0 \rightarrow$$

$$|\psi\rangle \neq |\psi\rangle_A \otimes |\psi\rangle_B$$

Degrees of Entanglement

How much does A depend on B?



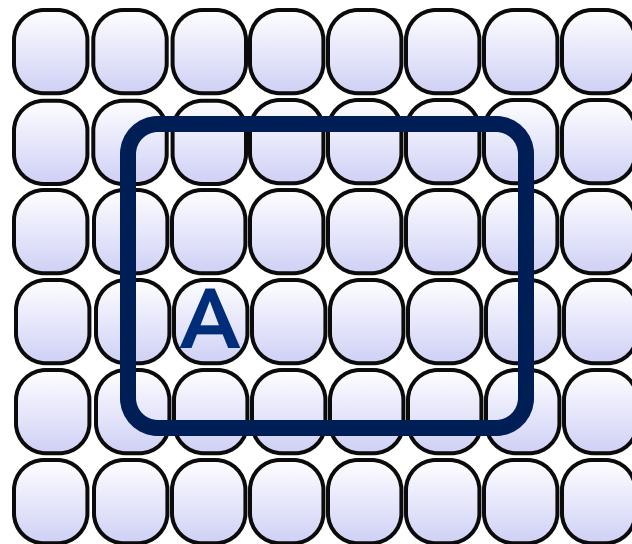
$$\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$$

von Neumann "entanglement entropy"

$$\begin{aligned} S(A) &= -\text{Tr} [\rho_A \ln \rho_A] \\ &= p \ln 2 \end{aligned}$$

Degrees of Entanglement

- Extensive system



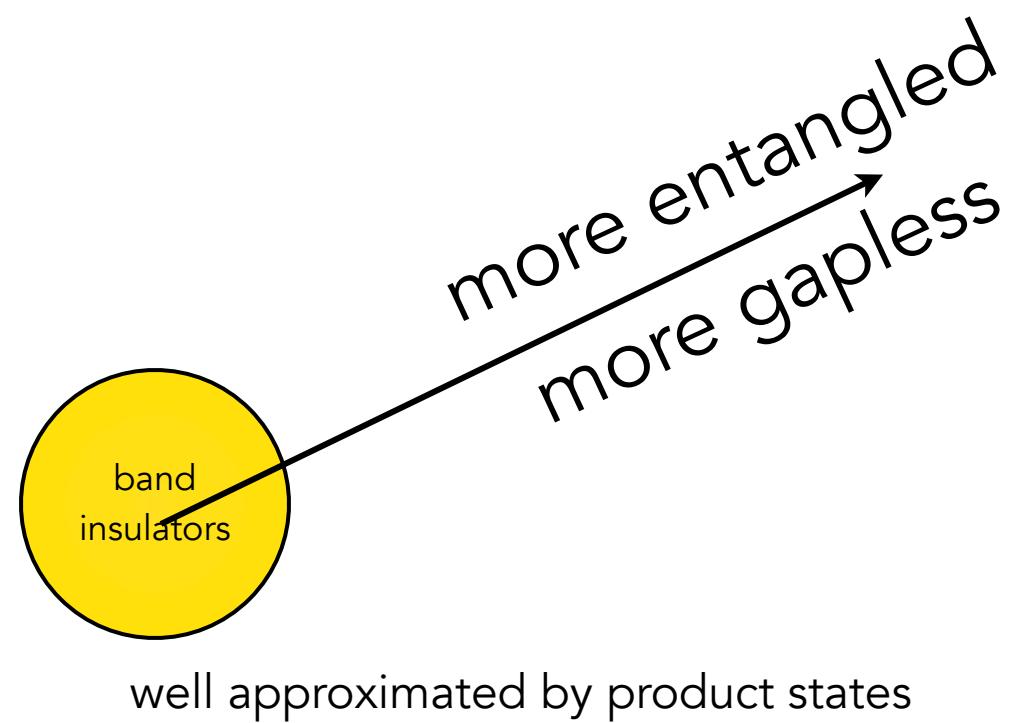
$$\rho_A = \text{Tr}_{\bar{A}} |\Psi\rangle\langle\Psi|$$

$$S(A) = -\text{Tr}_A (\rho_A \ln \rho_A)$$

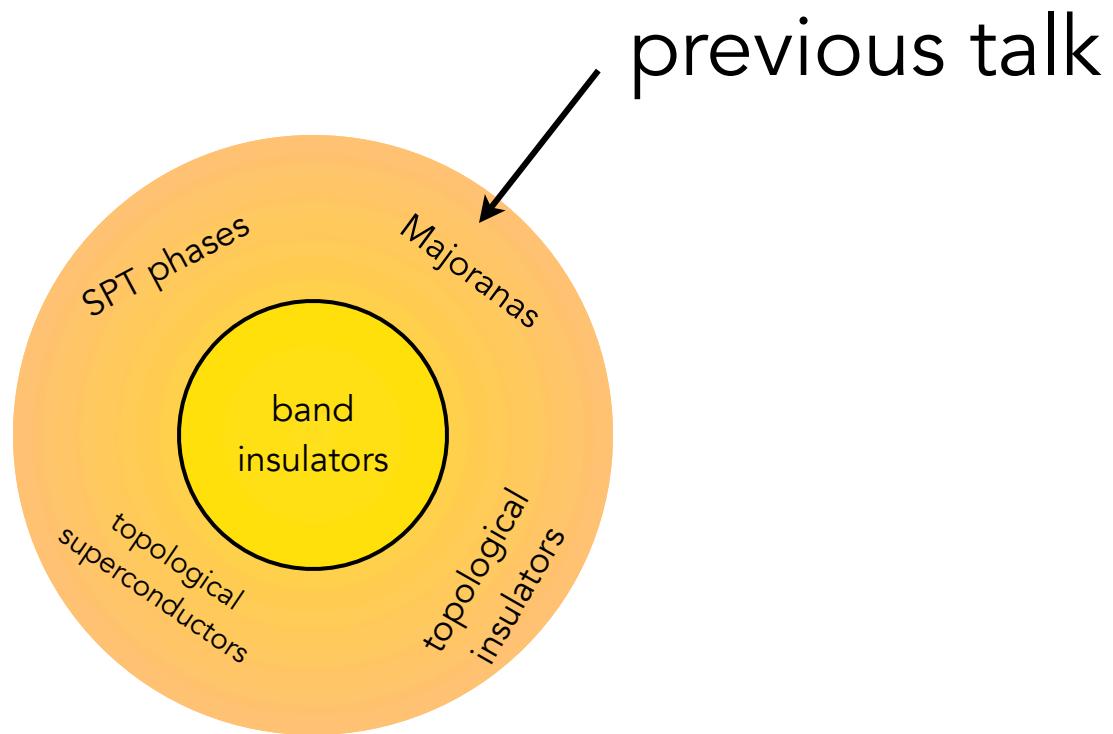
$$S(A) \sim \sigma L^{d-1} \quad \text{area law}$$

True for any “product-like” state

Degrees of Entanglement

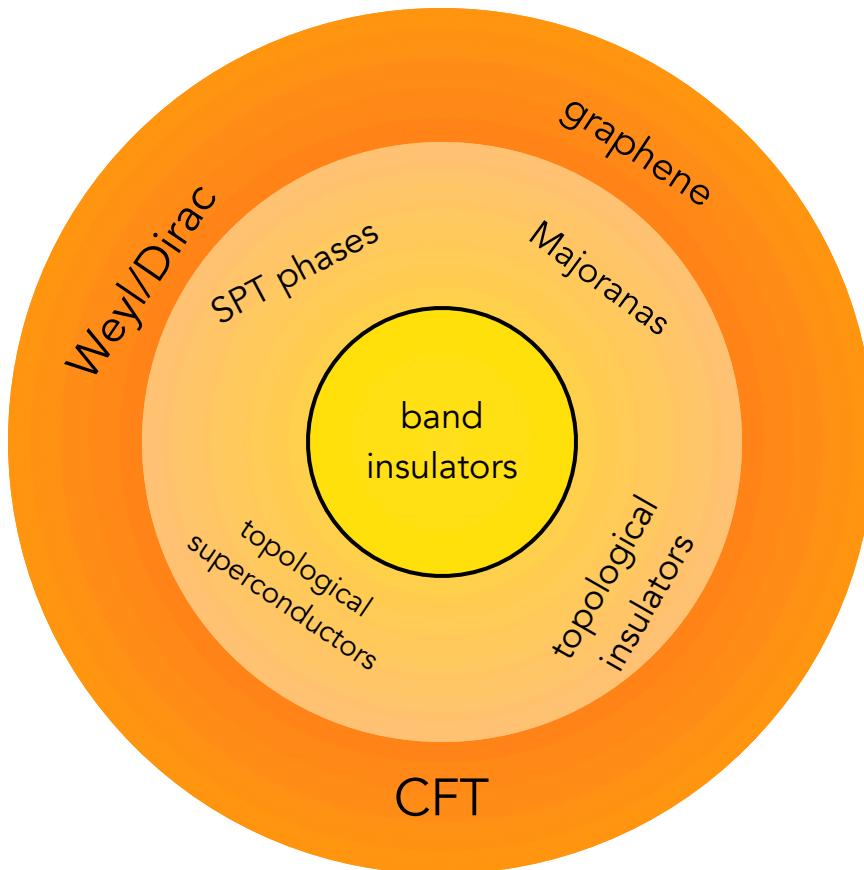


Degrees of Entanglement



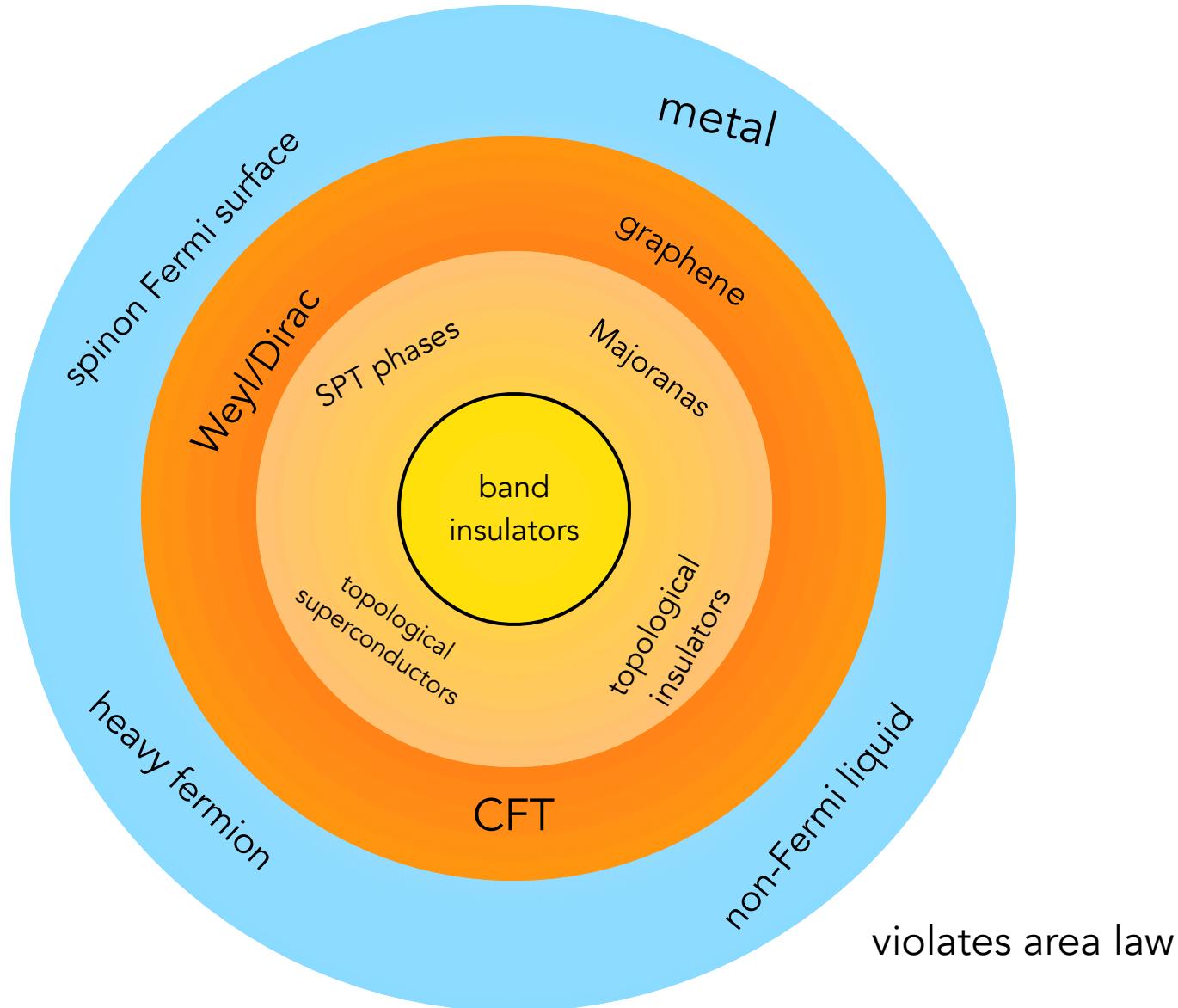
well approximated by product states (but some little errors are unavoidable)

Degrees of Entanglement

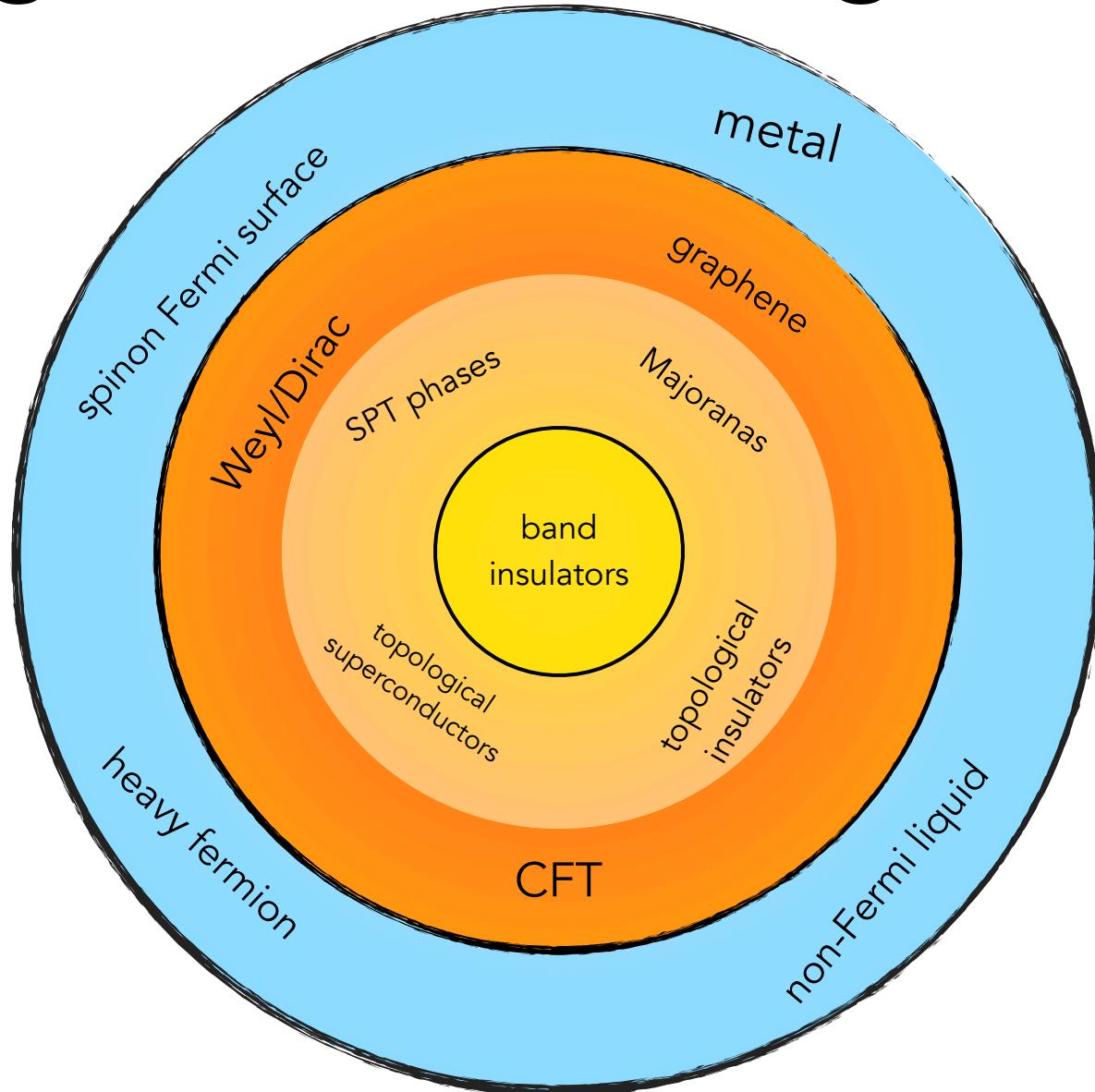


very badly approximated by product states
but still obeys area law

Degrees of Entanglement



Degrees of Entanglement



This talk

Metals Conduct

$$\mathbf{j} = \underline{\sigma} \mathbf{E}$$

$$\mathbf{j}_e = -\underline{\kappa} \nabla T$$

- Arguably most important aspect of quantum materials: electrical and thermal conductivity (and crossed coefficients)
- Sensitive, versatile
- Probes extreme long wavelength, low frequency

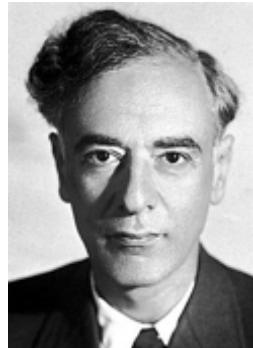
Theory

- *Understanding* of transport mainly through **quasiparticle** picture
- Boltzmann equation:

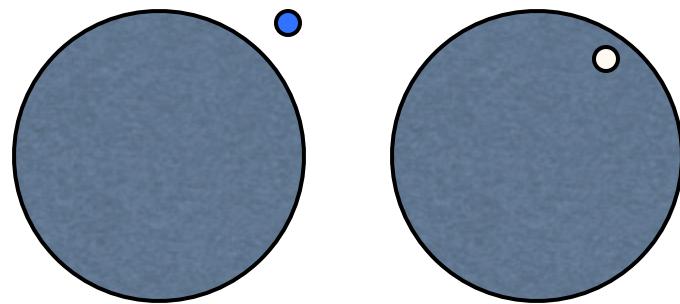
$$[\partial_t + \mathbf{v}_n(\mathbf{k}) \cdot \nabla_r - e\mathbf{E} \cdot \nabla_k] f_n = \frac{\partial f_n}{\partial t} \Big|_{\text{collision}}$$

Linearizing this around equilibrium gives conductivities in terms of band velocities and scattering rates

Fermi Liquid Theory



Landau provided justification for
quasiparticle picture in metals
when $T \ll E_F$

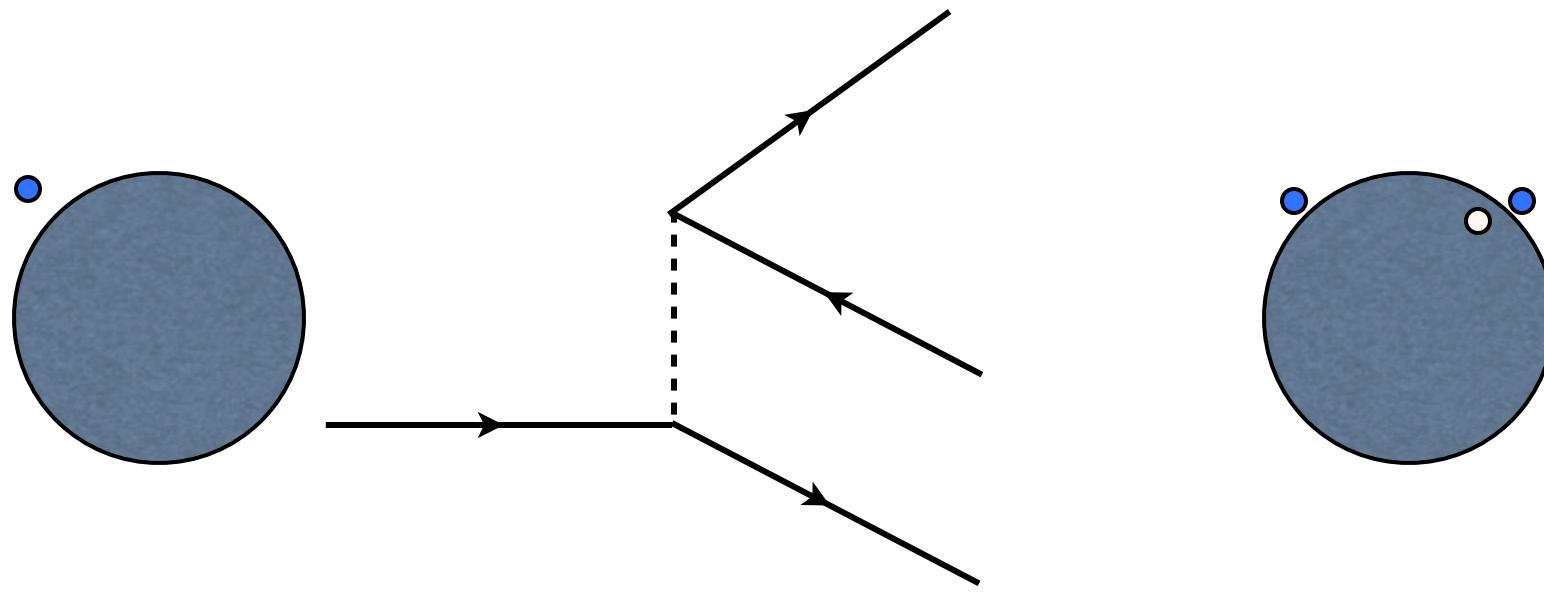


Low energy excitations act like
electrons and holes but with
wavefunction dressing ($Z < 1$), effective
mass, and Landau interactions

$$E = \sum_k \epsilon_k \delta n_k + \frac{1}{2V} \sum_{k,k'} U_{k,k'} \delta n_k \delta n_{k'}$$

scattering is weak because
not so many low energy qp
states to scatter to

Scattering



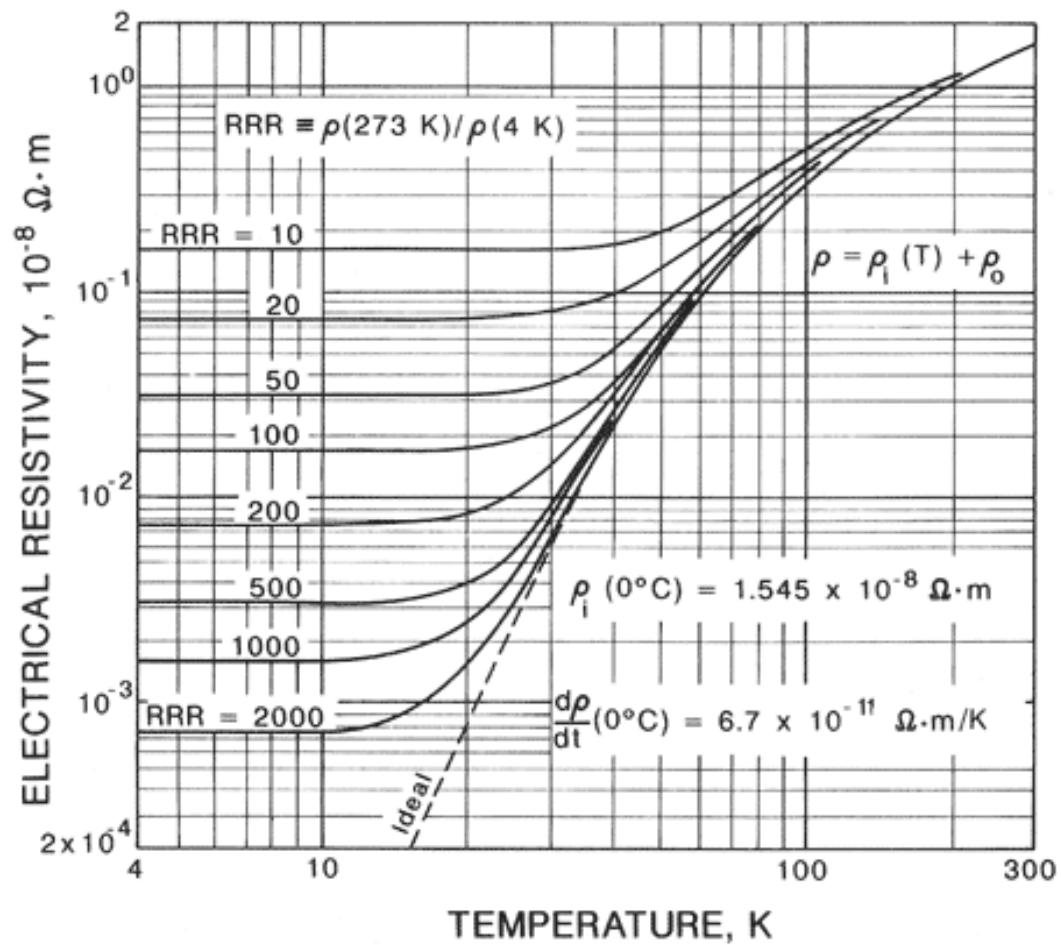
phase space $\sim (T/E_F)^2$

Typical metal?

$$E_F \sim 10^4 \text{ K}$$

$$\rho(T) - \rho(0) \sim AT^2$$

for $T \ll E_F$



(Cu)

Heavy Fermi Liquids

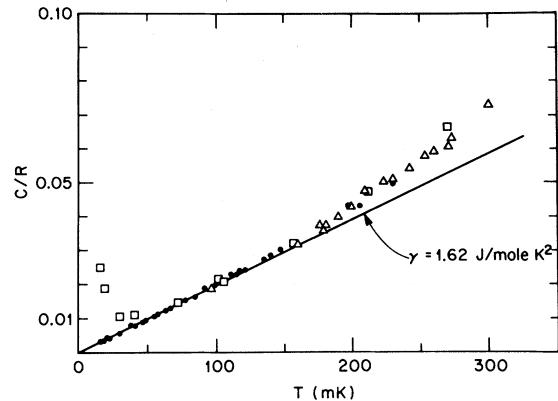


FIG. 1. Specific heat of CeAl_3 at very low temperatures in zero field (\bullet, Δ) and in 10 kOe (\square).

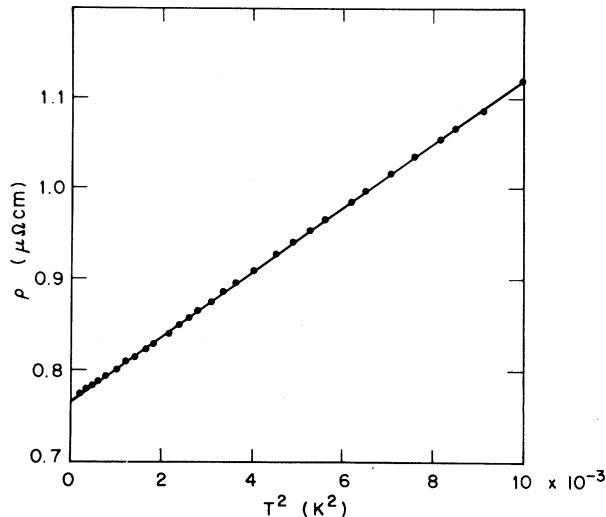


FIG. 3. Electrical resistivity of CeAl_3 below 100 mK, plotted against T^2 .

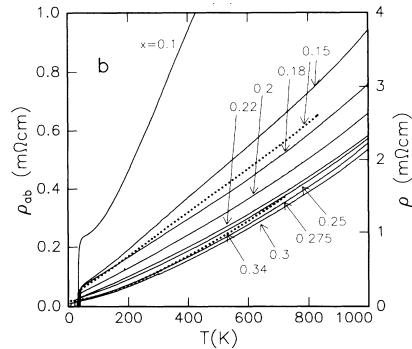
$$C \sim \gamma T$$

$$\rho(T) - \rho(0) \sim AT^2$$

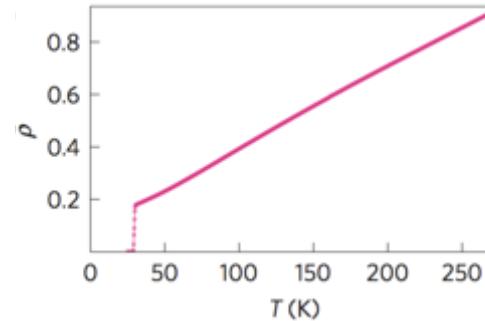
Both γ and A huge

Behave like Fermi liquid with tiny E_F and large electron mass, but only for $T \ll E_F$

Non-Fermi Liquids



LSCO Takagi *et al*, 1992



$\text{BaFe}_2(\text{As}_{1-x}\text{P}_x)_2$, Hayes *et al*, 2016

$$\frac{1}{\tau} \sim T ?$$

T-linear resistivity:

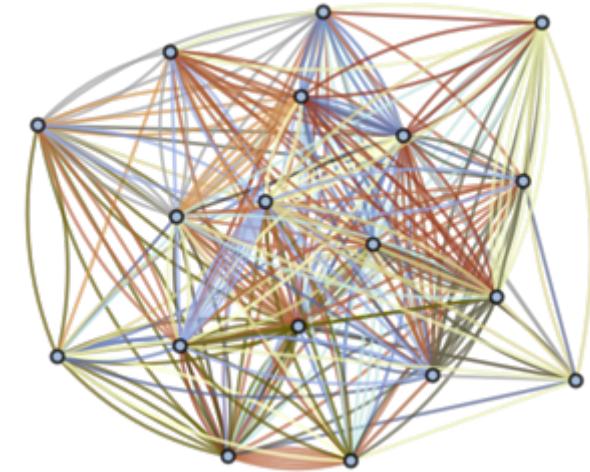
- Many materials
- Often nearby to unconventional superconductivity
- Symptom of a different type of metal?
- If no quasiparticles exist, what is the starting point?

Sachdev-Ye-Kitaev model

A toy *exactly soluble* model
of a non-Fermi liquid

$$H = \sum_{i < j, k < l} U_{ijkl} c_i^\dagger c_j^\dagger c_k c_l$$

$$\overline{|U_{ijkl}|^2} = \frac{2U^2}{N^3}$$



Like a strongly interacting quantum dot
or atom with complicated Kanamori
interactions between many “orbitals”

SYK Model

Sachdev-Ye, 1993: Model has a soluble large-N limit

$$\Sigma = \begin{array}{c} \text{---} \\ \text{---} \end{array} + O(1/N)$$

In equations: very similar to DMFT:

$$G(i\omega_n) = \frac{1}{i\omega_n - \Sigma(i\omega_n)}$$

$$\Sigma(\tau) = -U^2 G(\tau)^2 G(-\tau)$$

Solution:

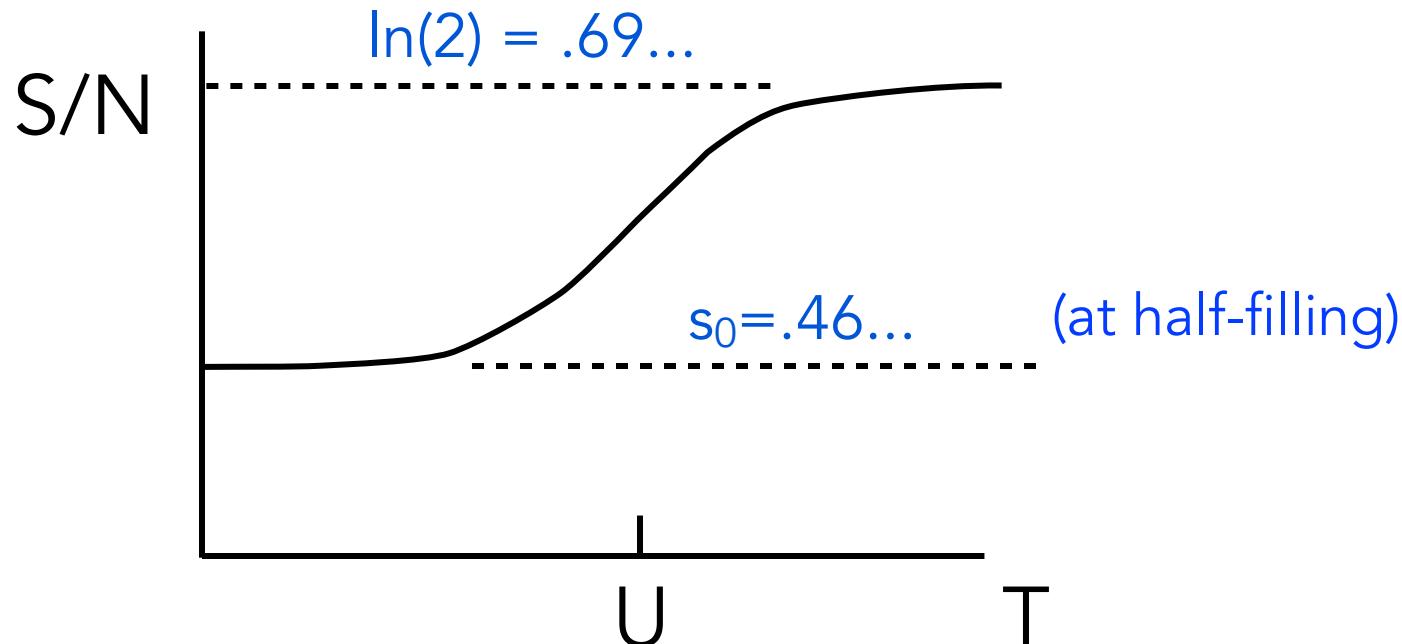
$$G(i\omega) \sim 1/\sqrt{\omega}$$

not a pole: **non-Fermi liquid**

SYK Model

Why not quasiparticles?

Georges, Parcollet, Sachdev, 2001: ground state entropy!



Many states available for scattering
“level spacing” $\sim U \exp(-Ns_0)$

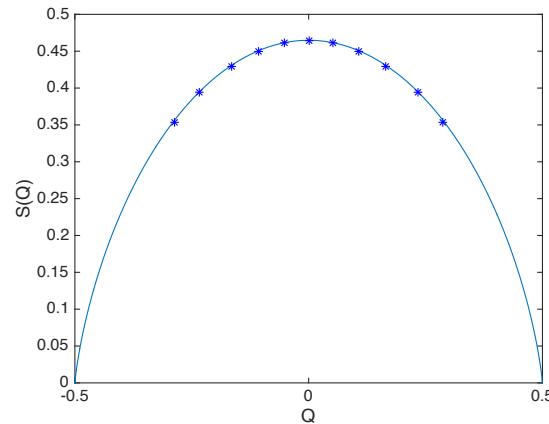
Density dependence

$$H \rightarrow H - \mu \mathcal{N}$$

$$\mathcal{N} = \sum_i c_i^\dagger c_i$$

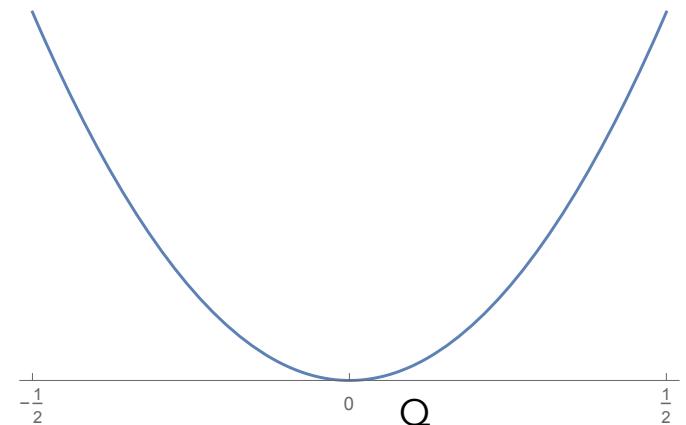
$$\mathcal{Q} = \frac{\mathcal{N}}{N} - \frac{1}{2}$$

Entropy



Davison et al, arXiv:1612.00849

Energy

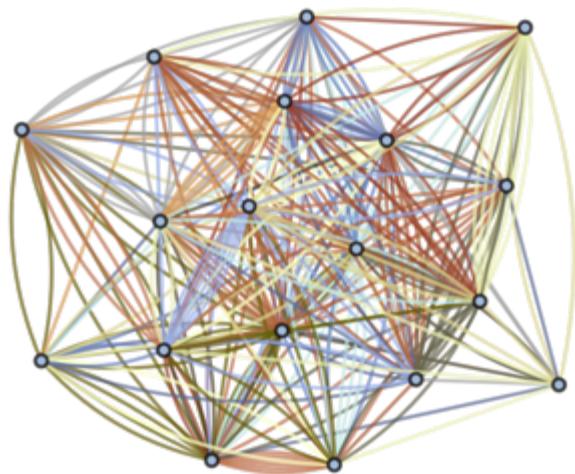


schematic

- Compressibility is constant at $T=0$

$$K = \left. \frac{\partial \mathcal{Q}}{\partial \mu} \right|_{\mu=0} = \frac{1.04}{U}$$

SYK Summary



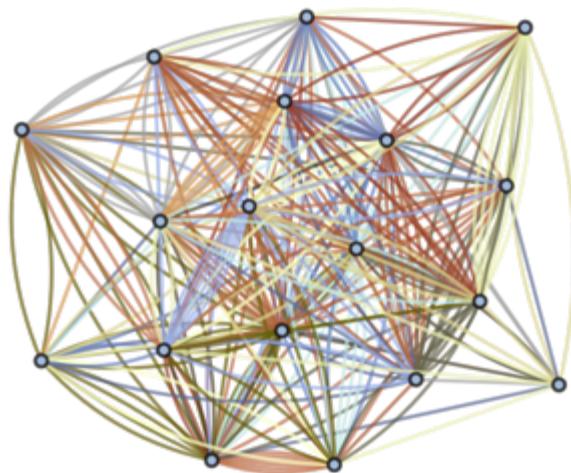
- Compressible
- Ground state entropy
- Non-Fermi liquid

$$K(T = 0) = \frac{1.04}{U}$$

$$S(T = 0)/N = .46 \dots$$

$$G(i\omega) \sim 1/\sqrt{\omega}$$

SYK Summary



- Compressible
- Ground state entropy
- Non-Fermi liquid

$$K(T = 0) = \frac{1.04}{U}$$

$$S(T = 0)/N = .46 \dots$$

$$G(i\omega) \sim 1/\sqrt{\omega}$$

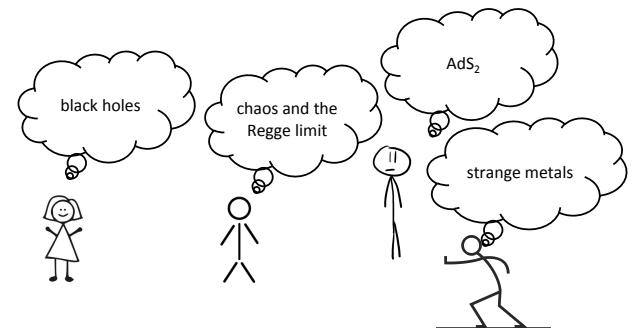
*circa
2015*

Chaos

$$\langle [\mathcal{O}(0), \tilde{\mathcal{O}}^\dagger(t)]^2 \rangle \sim \frac{1}{N} e^{\lambda_L t}$$

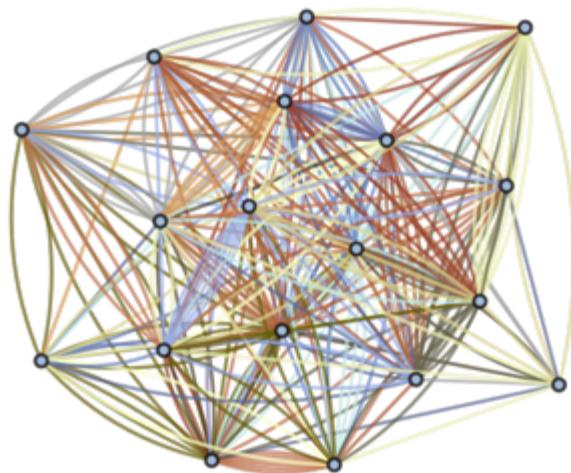
$$\lambda_L = \frac{2\pi k_B T}{\hbar}$$

Holography



slide from D. Stanford, IAS, 2017

SYK Summary



- Compressible
- Ground state entropy
- Non-Fermi liquid

circa
2015

Chaos
 $\langle [\mathcal{O}(0), \tilde{\mathcal{O}}^\dagger(t)]^2 \rangle$

$$\lambda_L = \frac{2\pi k_B T}{\hbar}$$

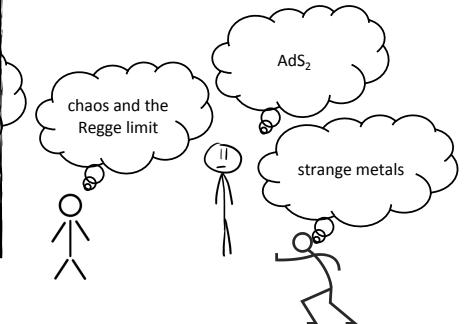
See David Gross'
and Vlad
Rosenhaus'
lectures next week

$$K(T = 0) = \frac{1.04}{U}$$

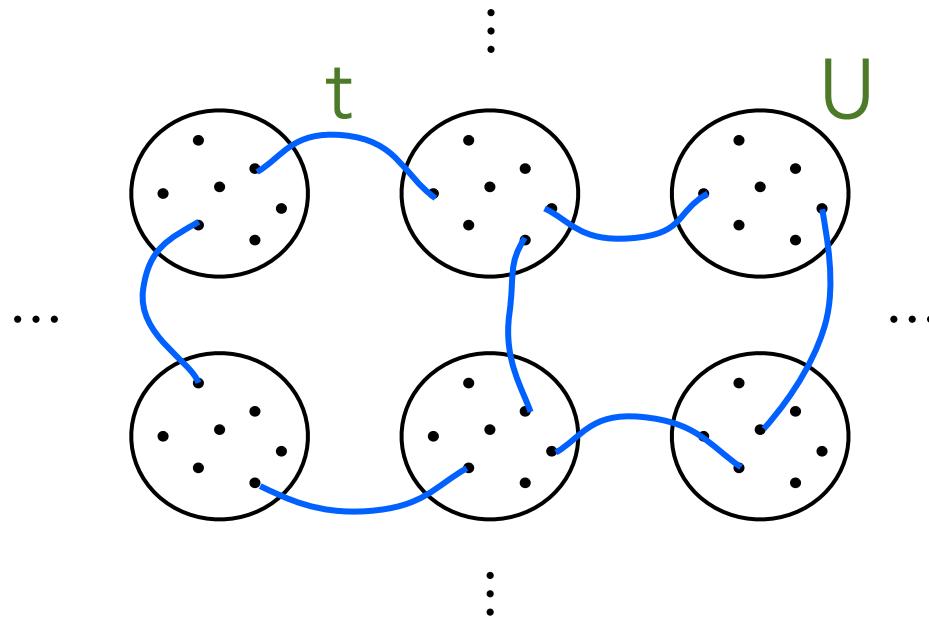
$$S(T = 0)/N = .46 \dots$$

$$G(i\omega) \sim 1/\sqrt{\omega}$$

lography



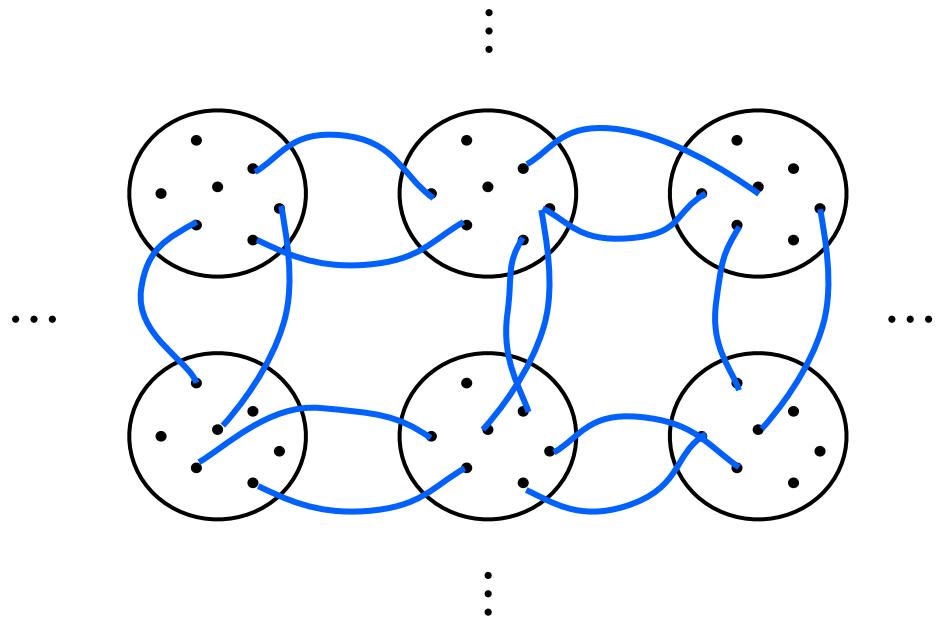
Building a metal



$$H = \sum_x \sum_{i < j, k < l} U_{ijkl,x} c_{ix}^\dagger c_{jx}^\dagger c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ij,xx'} c_{i,x}^\dagger c_{j,x'}$$

$$\overline{|t_{ij,x,x'}|^2} = t_0^2/N$$

Building a metal



Other work: 2-electron hopping

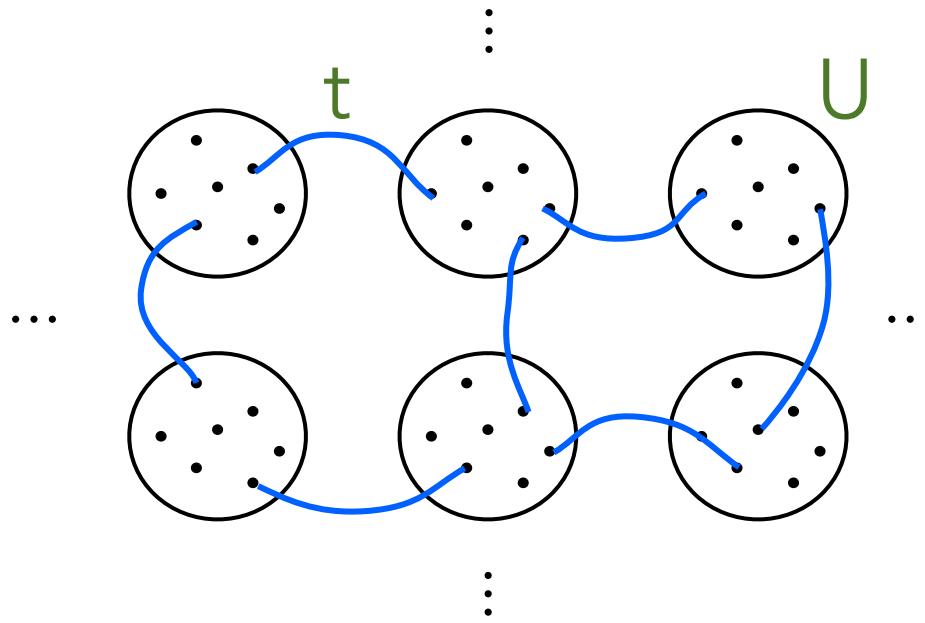
Y.Gu *et al*, arXiv:1609.07832

R. Davison *et al*, arXiv:1612.00849

$$H = \sum_x \sum_{i < j, k < l} U_{ijkl,x} c_{ix}^\dagger c_{jx}^\dagger c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ijkl,xx'} c_{i,x}^\dagger c_{j,x}^\dagger c_{k,x'} c_{l,x'} + \text{h.c.}$$

Omitting *relevant* 1-electron hopping leaves system NFL even at T=0

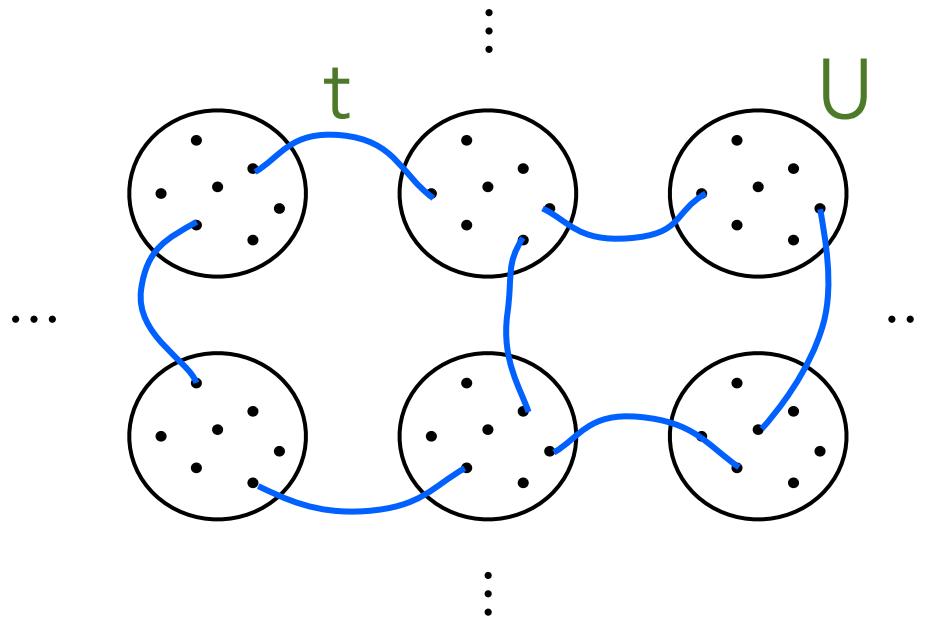
Building a metal



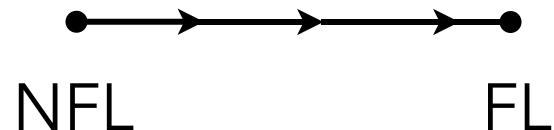
$$H = \sum_x \sum_{i < j, k < l} U_{ijkl,x} c_{ix}^\dagger c_{jx}^\dagger c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ij,xx'} c_{i,x}^\dagger c_{j,x'}$$

competition!
 $t/U \ll 1$ interesting

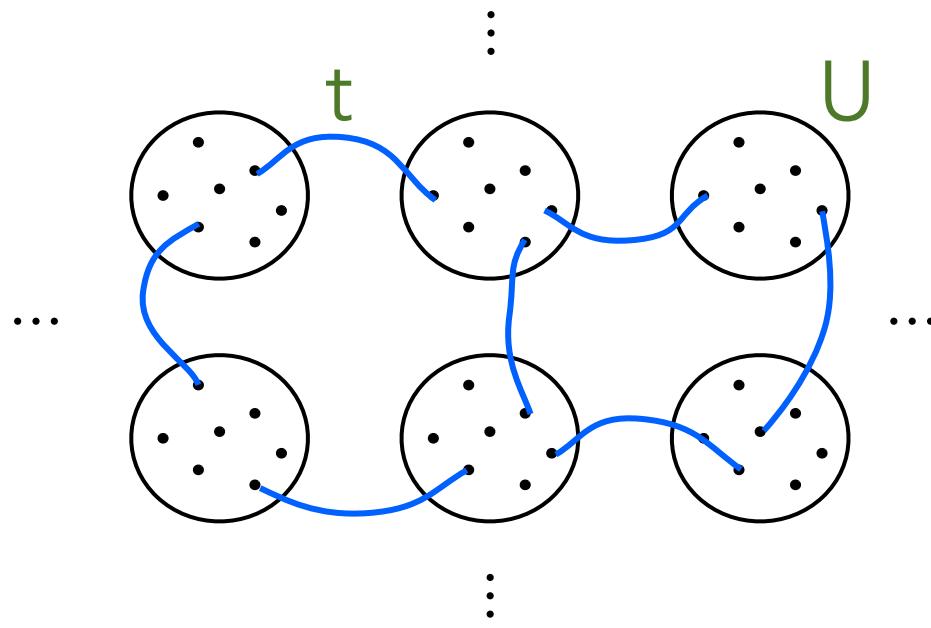
Building a metal



$$H = \sum_x \sum_{i < j, k < l} U_{ijkl,x} c_{ix}^\dagger c_{jx}^\dagger c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ij,xx'} c_{i,x}^\dagger c_{j,x'}$$



Self-consistent equations

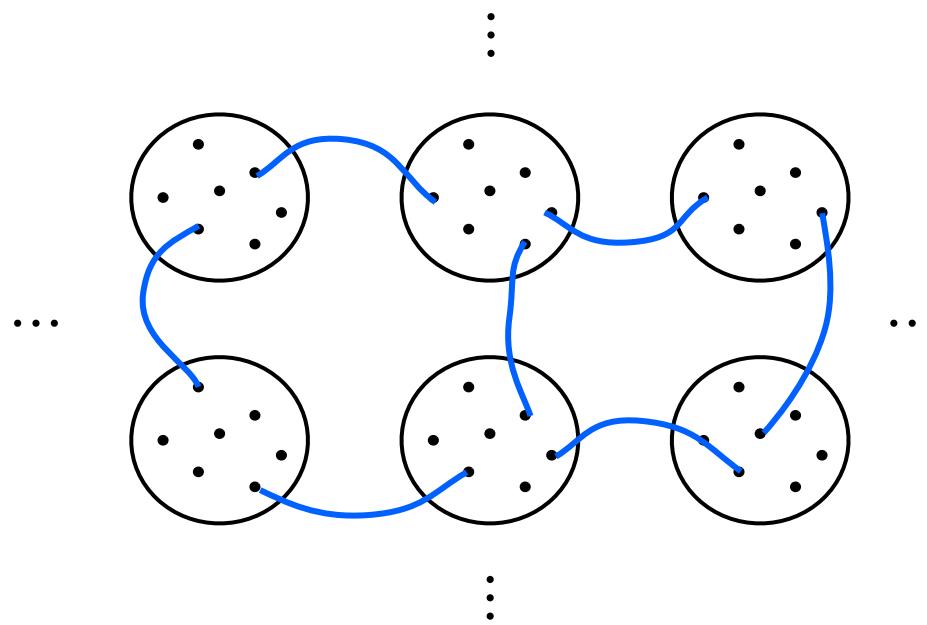


$$G(i\omega_n)^{-1} = i\omega_n + \mu - \Sigma_4(i\omega_n) - zt_0^2 G(i\omega_n),$$
$$\Sigma_4(\tau) = -U_0^2 G(\tau)^2 G(-\tau),$$
$$\bar{G}(i\bar{\omega}) = \tilde{t} G(i\omega)$$

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999

Coherence scale



Rescaling

$$\bar{\omega} = \frac{\omega}{\tilde{E}_c}, \quad \bar{\tau} = \tau \tilde{E}_c,$$

$$\bar{G}(i\bar{\omega}) = \tilde{t}G(i\omega) \quad \bar{\Sigma}(i\bar{\omega}) = \Sigma(i\omega)/\tilde{t}$$

$$\tilde{t} = \left(\frac{z}{2}\right)^{\frac{1}{2}} t$$

$$\bar{G}(i\bar{\omega}) = \frac{\tilde{t}}{U} i\bar{\omega} - \bar{\Sigma}(i\bar{\omega})$$

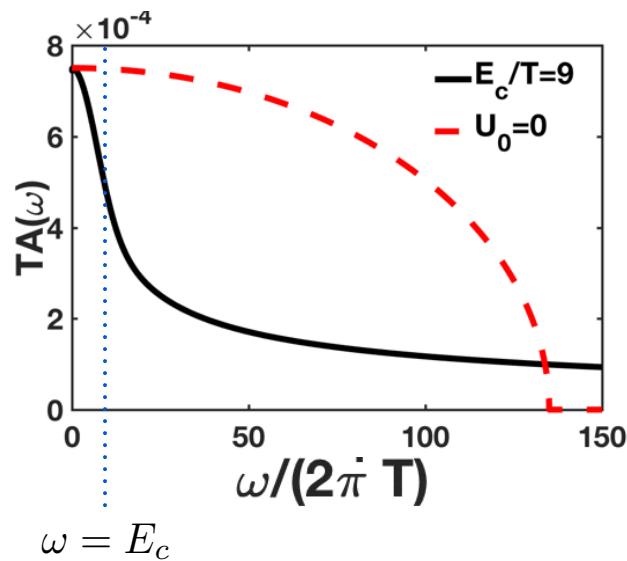
$$\bar{\Sigma}(\bar{\tau}) = -\bar{G}(\bar{\tau})^2 \bar{G}(-\bar{\tau}) + 2\bar{G}(\bar{\tau}),$$

For $t \ll U$, a single universal coherence scale appears

$$\tilde{E}_c = \frac{\tilde{t}^2}{U}$$

Coherence scale

We solve these equations in a real time Keldysh formulation numerically and determine asymptotics analytically.

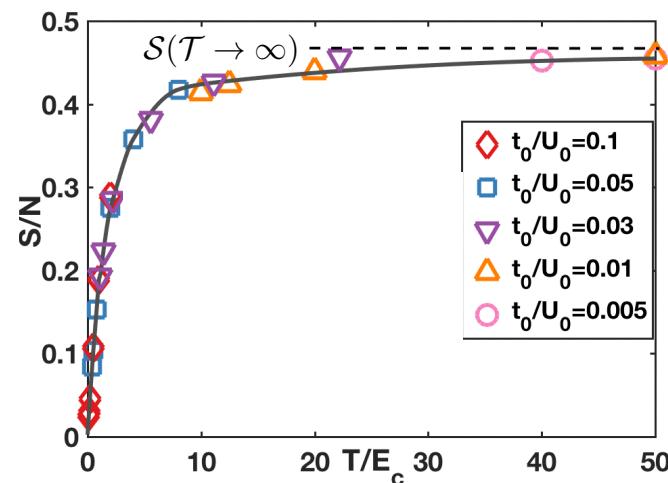
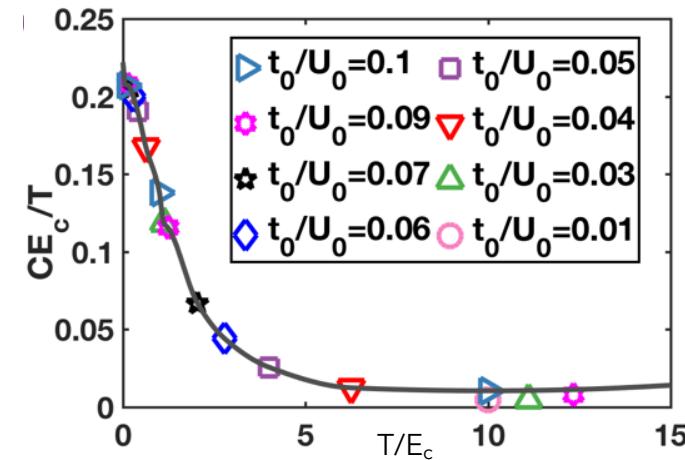


Narrow “coherence peak” appears in spectral function: heavy quasiparticles form for $T \ll E_c$

Quasiparticle weight $Z \sim t/U$

Entropy

Level repulsion: entropy is released for $T < E_c$!



Universal scaling forms

$$S/N = S(T/E_c)$$

$$C/N = T/E_c S'(T/E_c)$$

$$\gamma \equiv \lim_{T \rightarrow 0} \frac{C}{T} = \frac{S'(0)}{E_c}$$

Sommerfeld
enhancement

$$m^*/m \sim U/t$$

Compressibility

For $t \ll U$, compressibility is almost unaffected by hopping

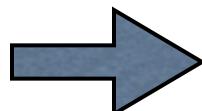
$$K = \left. \frac{\partial \mathcal{Q}}{\partial \mu} \right|_{\mu=0} = \frac{1.04}{U} \ll \gamma \sim \frac{U}{t^2}$$

??How to reconcile with Sommerfeld enhancement??

- Fermi liquid theory: compressibility is renormalized by Fermi liquid parameter $F = g(E_F) U_{FL}$

$$\gamma/K = \frac{\pi^2}{3}(1 + F)$$

$$\gamma/K \sim (U/t)^2$$

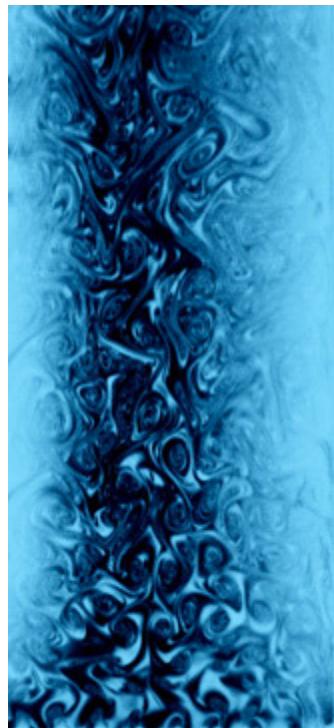


$$F \sim \left(\frac{U}{t} \right)^2 \gg 1$$

Transport

Quasiparticle picture applies only for $T \ll E_c$

More generally, we use hydrodynamics



$$\sigma = \lim_{\omega \rightarrow 0} \lim_{p \rightarrow 0} \frac{-i\omega}{p^2} D_{Rn}(p, \omega)$$

- ◆ Calculate density response using Keldysh method.
- ◆ Do analogously for thermal conductivity

N.B. Because of randomness, momentum is not a hydrodynamic variable

Transport

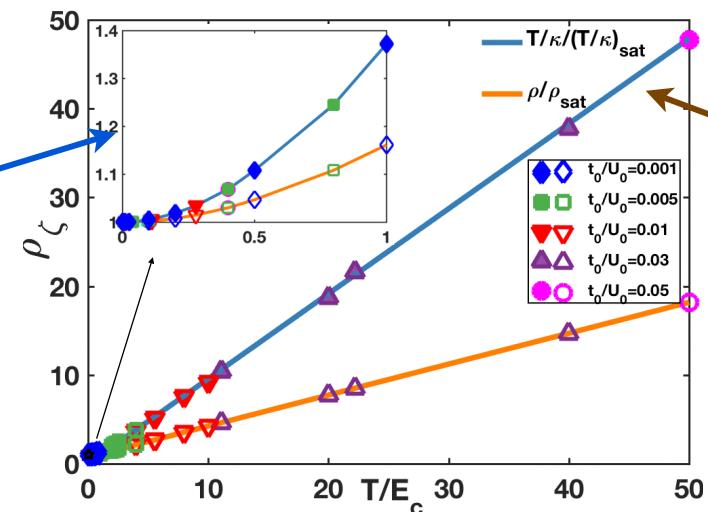
Generalized
resistivity

$$\rho_c = 1/\sigma \quad \rho_e = T/\kappa$$

scaling

$$\rho_\zeta(t_0, T \ll U_0) = \frac{1}{N} R_\zeta\left(\frac{T}{E_c}\right)$$

Fermi liquid
 $R = R_0 + A T^2$
for $T \ll E_c$

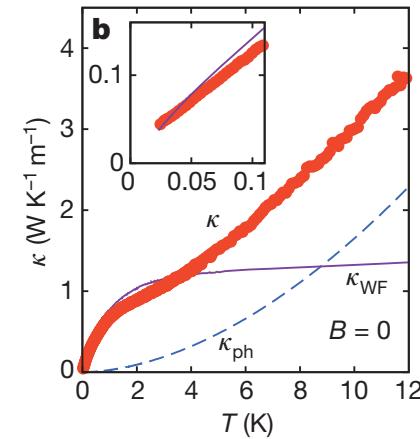


Linear in T for
 $E_c \ll T \ll U$

Crossover from heavy FL to strange metal

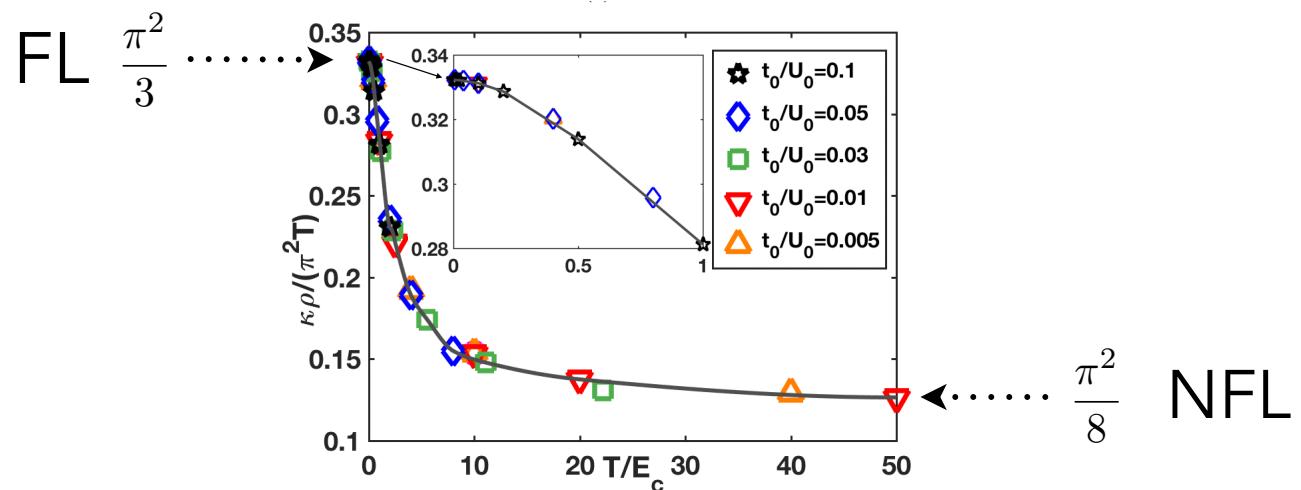
Wiedemann-Franz ratio

Lorenz $L = \frac{\kappa}{\sigma T}$
 $= \pi^2/3$ for a Fermi liquid

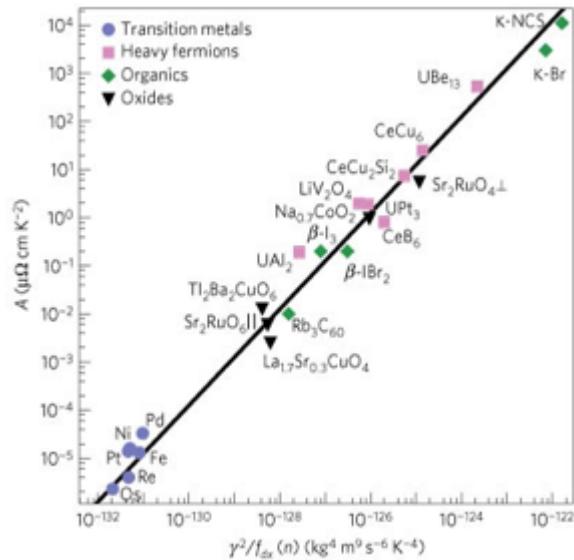


YbRh₂Si₂, Pfau et al (2012)

SYK lattice:
 $L = \mathcal{L}(T/E_c)$



Kadowaki Woods ratio



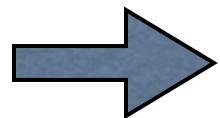
$$\rho_\zeta(T \ll E_c) \approx \rho_\zeta(0) + A_\zeta T^2,$$

$$KW = A/\gamma^2 \quad \text{approximately constant for many metals}$$

Scaling implies:

$$A \sim 1/(NE_c^2)$$

recall $\gamma \sim 1/E_c$



$$KW = A/(N\gamma)^2 \sim 1/N^3$$

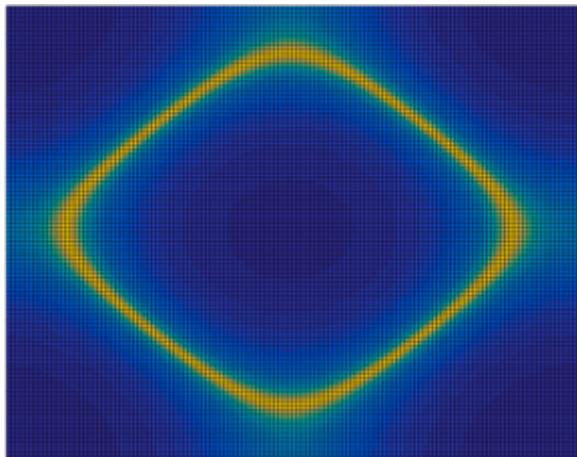
independent of t, U!

SYK metal

- Small coherence scale $E_c = t^2/U$
- Heavy mass $\gamma \sim m^*/m \sim U/t$
- Small QP weight $Z \sim t/U$
- Kadowaki-Woods $A/\gamma^2 = \text{constant}$
- Linear in T resistivity and T/κ
- Lorenz ratio crosses over from FL to NFL value

Future

- Extension to translationally invariant systems?



Fermi surface emerging in interacting tensor model by
Aavishkar Patel

- SYK lattice, tensor models,...
- Momentum space differentiation and realistic applications?
- Relation to methods like DCA, cluster DMFT?

Future

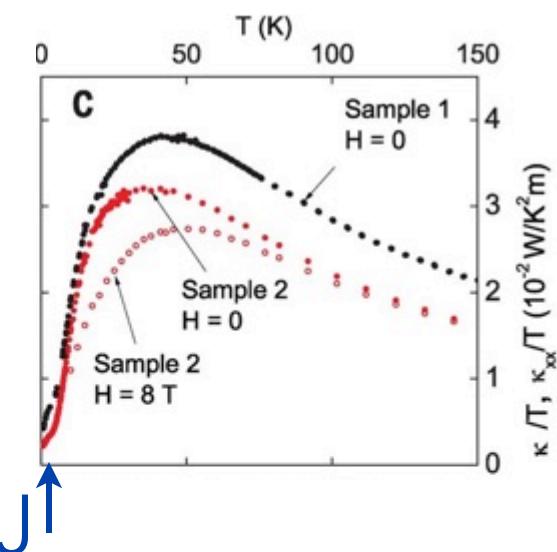
- Bosons/spins

$$H = \frac{1}{2} \sum_{\langle ij \rangle} \sum_{\mu\nu} J_{ij}^{\mu\nu} S_i^\mu S_j^\nu$$

- no obvious free particle starting point
- $E_F \rightarrow J$ much smaller

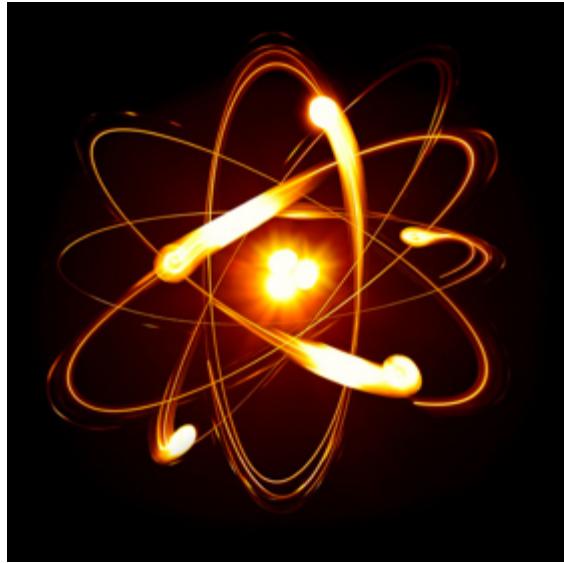
Many (most?) measurements have $T > J$
and are not in the QP regime

e.g. $Tb_2Ti_2O_7$



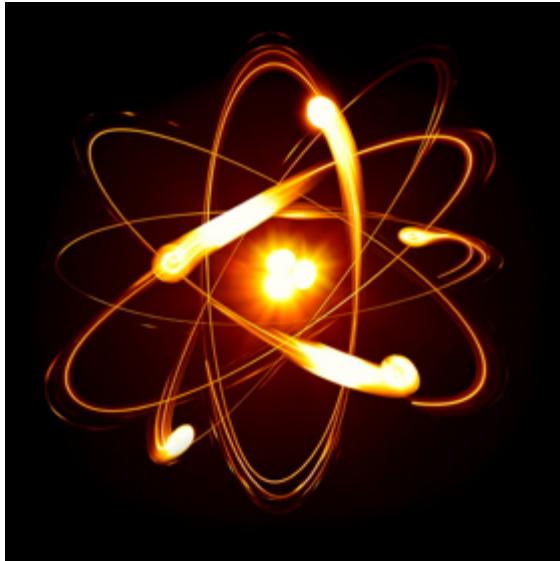
Future

- Deeper implications for many-body physics
 - Entropy and non-Fermi liquid behavior?
 - Many body chaos and dynamics?
 - Really learning something about correlated electrons from black holes?



Electrons

Black holes



Electrons



Black holes

Thanks

