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Quantum Entanglement

spukhafte Fernwirkung!



Degrees of Entanglement

BA
⇢A = TrB | ih |

von Neumann “entanglement entropy”

How much does A depend on B?

S(A) = �Tr [⇢A ln ⇢A]

S(A) > 0 | i 6= | iA ⌦ | iB



Degrees of Entanglement

BA
⇢A = TrB | ih |

von Neumann “entanglement entropy”

How much does A depend on B?

S(A) = �Tr [⇢A ln ⇢A]

p singlets

= p ln 2



•Extensive system

⇢A = TrĀ| ih |

S(A) ⇠ �Ld�1 area law 

A S(A) = �TrA (⇢A ln ⇢A)

True for any “product-like” state

Degrees of Entanglement



band 
insulators

Degrees of Entanglement

more entangled

more gapless

well approximated by product states



to
po

lo
gi

ca
l 

in
su

la
to

rs

SPT phases Majoranas
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previous talk
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superconductors

well approximated by product states (but some little 
errors are unavoidable)



band 
insulators

graphene

to
po

lo
gi

ca
l 

in
su

la
to

rs

SPT phases Majoranas

Degrees of Entanglement

W
ey

l/D
ira

c

CFT

topological 

superconductors

very badly approximated by product states
but still obeys area law
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Metals Conduct

• Arguably most important aspect of quantum 
materials: electrical and thermal conductivity 
(and crossed coefficients)

• Sensitive, versatile

• Probes extreme long wavelength, low 
frequency

j = �E je = �rT



Theory
• Understanding of transport mainly 

through quasiparticle picture

• Boltzmann equation:

[@t + vn(k) ·rr � eE ·rk] fn =
@fn
@t

����
collision

Linearizing this around equilibrium gives conductivities 
in terms of band velocities and scattering rates



Fermi Liquid Theory
Landau provided justification for 
quasiparticle picture in metals 

when T << EF

Low energy excitations act like 
electrons and holes but with 

wavefunction dressing (Z<1), effective 
mass, and Landau interactions

E =
X

k

✏k�nk +
1

2V

X

k,k0

Uk,k0�nk�nk0
scattering is weak because 
not so many low energy qp 

states to scatter to



Scattering

phase space ~ (T/EF)2



Typical metal?

EF ~ 104 K

⇢(T )� ⇢(0) ⇠ AT 2

for T<<EF

(Cu)



Heavy Fermi Liquids
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from the Fokker-Planck operator corresponding to the
Langevin equation (1) (see W. R. Schneider, to be pub-
lished) .
H. Mori, Prog. Theor. Phys. Jpn. 33, 423 (1965).
"R.Kubo, in Many Body Theory: Tokyo Summer In-

stitute Lectures in TheoxeticaE Physics, $965, edited
by R. Kubo (Benjamin, New York, 1966), Pt. 1.
Schneider, Ref. 9.
K. Funke and A. Jost, Ber. Bunsenges. Phys. Chem.

7-5, 436 (1971).

4f-Virtual-Bound-State Formation in CeA13 at Low Temperatures

K. Andres and J. E. Graebner
BeEE Laboratories, Murray HiEE, Neu Jersey 07974

and

H. R. Ott
Laboratorium fur FesthorPerphysih, Eidgeno ssis'che Technische Hochschule,

IIo'nggezbexg, Zurich, Ssritze&Eand
(Received 25 August 1975)

Specific-heat and electrical-resistivity measurements in CeA13 below 0.2 K reveal enor. —
mous magnitudes of the linear specific-heat term C = 1'T (1'=1620 mJ mole/K ) and the T
term in p=AT (@=35pu cm/K). We conclude that the 4f electrons obey Fermi statis-
tics at low temperatures because of the formation of virtual bound 4f states.

In the intermetallic compound CeA1, both the
lattice parameters and the susceptibility at high
temperatures suggest that the Ce ion is in a 3+
state. The lack of magnetic order at low tem-
peratures is interpreted as being caused by a
partial admixture of the nonmagnetic 4+ state.
Such behavior has been explained in different
ways in the past. A model distinguishing be-
tween "atomic" and "bandlike" 4f electrons has
been suggested by Gschneidner. ' More recently,
CeAl, has often been cited as an example of a
mixed valence- -or interconfigurational fluctua-
tion (ICF)—compound'; and in another approach,
Mott' has explained the peculiar properties of
CeAl, based on a Kondo-type theory. The pur-
pose of this note is to present new data on the
very-low-temperature properties of CeAl, and
to show that they can be understood using Frie-
del's' classic theory of virutal bound states.
All measurements were performed in dilution

refrigerator s except the thermal-expansion mea-
surement, which was done in a 'He cryostat.
The data were taken by standard techniques us-
ing a cerium-magnesium-nitrate magnetic-sus-
ceptibility ther mometer. Only polycrystalline
samples were investigated; they were cut from
a 20-g button-that was are melted in argon and
annealed at 900 C for 3 weeks. X-ray analysis
showed the proper structure (hexagonal, Ni, Sn-
type). The specific-heat results are shown in
Fig. 1. Below 150 mK, the specific heat varies

0.10

K+

0.01

100 200
T (mK)

500

FIG. 1. Specific heat of CeA13 at very low tempera-
tures in zero field (o, b,) and in 10 kOe (Q).

linearly with temperature and yields an extreme-
ly large y value of 1620 mJ/mole K'. It remains
practically unchanged in a field of 10 koe except
at the lowest temperatures where the nuclear
Zeeman specific heat of the Al nuclei is seen
(the Ce"' and Ce"' isotopes have no nuclear
spin). This behavior is to be contrasted with
what one would have expected from the lowest-
].ying Ce" Kramers doublet state, namely a
strong field-dependent magnetic specific heat
with entropy R ln2/mole. Interpolating our data
with previous specific-heat measurements down
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FIG. 3. Electrical resistivity of CeA13 below 100 InK,
plotted against T .
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FIG. 2. (a) Susceptibility of polycrystalline CeA13 in
different magnetic fields below 1.5 K. (b) Linear ther-
mal-expansion coefficient of a polycrystalline sample
of CeA13 below 10 K.

to 1.2 K, ' we find that the entropy from 0 to 1 K
is only 27%%up of A ln2 and is thus reduced below its
classical value. The results of Ref. 5 indicated
that the first excited doublet lies about 10 K
above the ground state and that again about 20%
of the entropy for this doublet is missing.
Susceptibility measurements on CeA1, down to
0.5 K have been presented before by Edelstein
et al.' At high temperatures, ' Curie-Weiss be-
havior, characteristic of Ce", is observed. At
low temperatures, the suseeptibiltiy gradually
flattens out. We observe a very weak suscepti-
bility maximum around 0.6 K [shown in Fig. 2(a)]
which is field independent up to 5 kOe and which
we believe to be a genuine property of CeA1„
rather than an impurity effect. Below 0.1 K we
find y =0.036 emu/mole.
The very low-temperature resistivity is shown

in Fig. 3. It displays an unusually strong and
exact T' dependence. In p =p, +AT', A equals
35 pQ cm/K'. This temperature dependence con-
tinues up to 0.3 K. At higher temperatures, a
somewhat slower and more linear increase is
observed. '
In order to search for a valence change from

Ce'+ to Ce" we have measured the thermal con-
traction from 295 to 4.2 K as well as the thermal-
expansion coefficient below 10 K. At 295 K, the
lattice parameters of CeAl, are characteristic
of Ce".' The volume change —AV/V upon cool-
ing to 4.2 K is 1.5&& 10 ', much less than the one
expected for a 3+ to 4+ valence change which
would result in a volume collapse of order (4-10)
&& 10 '. The low-temperature thermal-expansion
coefficient [shown in Fig. 2(b)] is anomalous in
that it changes sign at 0.65 K and seems to go
through a negative maximum below 0.3 K.
The specific-heat, susceptibility, and resis-

tivity data of CeA1, at very low temperature all
demonstrate conclusively that the 4f electrons of
the Ce" ions obey Fermi statistics in this re-
gion. The high-temperature data, "on the other
hand, can be explained Iluite well (except at the
lower temperatures) by assuming Boltzmann
statistics of uncoupled 4f states ('E,i, ) which are
crystal-field split into three Kramers doublets.
If the low-temperature behavior were due to rap-
id fluctuations between the Ce" and Ce" states,
we would expect the volume of the crystal to
shrink anomalously upon cooling from room tem-
perature, which is not observed. A natural ex-
planation of the low-temperature behavior is the
formation of virtual bound 4f states of widths
narrower than the crystal-field splitting. From
the ambivalent nature of Ce it is known that the
energy of its 4f state is close to the Fermi ener-
gy; in the case of CeA1, we postulate that its lo-
cation is right at the Fermi energy and that the
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C ⇠ �T

⇢(T )� ⇢(0) ⇠ AT 2

Both γ and A huge

Behave like Fermi liquid with tiny 
EF and large electron mass, but 

only for T<<EF



Non-Fermi Liquids
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ystematic Evolution of Temperature-Dependent Resistivit in La2 Sr Cu04

H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr.
AT& TBell Laboratories, Murray Hill, New Jersey 07974

(Received 8 May 1992)

The in-plane resistivit ('
y p,&) of La2—,Sr,Cu04 has been studied over a wide temperature (4-1000 K)

and composition ran e (0&x &0.35). T"g . &. The much discussed T-linear resistivity is observed only in the
narrow composition region associated with optimal superconductivity. In the und d dn e un er ope range

CC

, we o serve rst indications of resistivity saturation and anal th dana yze e resistivity as indicative of
a small Fermi surface. In the overdo ed ran
cr

p ge (x) 0.2), p,b follows a novel power-law dependence,
p~ T, over the entire temperature range up to 1000 K.

PACS numbers: 74.70.Vy, 72. 15.Qm
The unusual charge dynamics in the layered cuprates

has been widely recognized to be a key for the under-
standing of high-temperature superconductivity and has
promoted a number of theoretical models for 2D strongls rong y
correlated electron systems [1,2]. One of the hallmarks
of the charge dynamics is the nearly T-linear in-plane
resistivity (p,b ) over a remarkably wide temperature
range, from just above T, to near 1000 K, which is corn-
monly observed in most cuprates showing the optimum
superconductivity [1-4]. Closely related with this is the
I/ro decay of the free carrier conductivity at optical fre-
quencies, which reAects an anomalous frequency-
dependent scattering rate proportional to co at least up to
0.5 eV, instead of ru as would be expected for a conven-2

tional Fermi liquid [5]. Lacking so far, however, is a reli-
able experimental study of p,b over a wide temperature
range on well characterized materials when the hole con-
centration is varied from far below to far above the op-
timum composition for superconductivity.
Here we report the electrical resistivity up to 1000 K

on high-quality La2—„Sr„Cu04 single-crystal thin films
and polycrystalline materials, not only for the supercon-
ducting phase but also at lower and higher doping level.
We find that the T-linear behavior for the resistivity over
a wide temperature range is confined to a narrow compo-
sition range for optimum superconductivity. A well-
d fiefined decrease of the resistivity slope occurs above room
temperature in the underdoped region, below x-0.1. In
the overdoped region above x-0.2, a novel power-law
dependence, p=po+AT", n-1.5, not T linear or T,
dominates the resistivity over a wide temperature range
up to —1000 K. This is in contrast to earlier suggestions
of conventional behavior in this composition ranrange.
hese results not only indicate a close correlation be-

tween the T-linear scattering and superconductivity, but
also provide a crucial test for theoretical models of the
charge transport in Cu02 sheets.
The c-axis-oriented single-crystal thin films with

thicknesses of 3500-8000 A were grown on SrTi03(100)
substrates [6]. The polycrystalline samples were pre-
pared through solid-state reaction processing [7]. The
resistivity measurements were performed using the con-
ventional four-probe method or the Van der Pauw tech-
nique [8]. The high-temperature measurements above

10.
La2 „Sr„Cu04
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poly(right scale)
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FIG. 1. The temperature dependence of the resistivity for
La2 —Sr„Cu04. (a) 0&x(0.15, (b) 0.1(x&0.35. Dotted
lines, the in-plane resistivity (p,b) of single-crystal films with

orientation; solid lines, the resistivity (p) of polycrystal-
line materials. Note, p~ (h/e~)d=1. 7 mQcm.

300 K were conducted in a quartz tube furnace under 02
flow. In order to check for possible 02 desorption effects,
we performed measurements under N2/Oq mixed gas flow—3(Po, -10 atm) for representative compositions. No
difference was observed between the two runs up to 1000
K for 0.05 &x &0.2, and at least up to 800 K for x )0.2,
indicating no oxygen desorption up to these temperatures

2975

LSCO Takagi et al, 1992 BaFe2(As1-xPx)2, Hayes et 
al, 2016

T-linear resistivity:

•Many materials
•Often nearby to uncoventional superconductivity
•Symptom of a different type of metal?
•If no quasiparticles exist, what is the starting point?

1

⌧
⇠ T ?



Sachdev-Ye-Kitaev model
A toy exactly soluble model 

of a non-Fermi liquid 

Like a strongly interacting quantum dot 
or atom with complicated Kanamori 

interactions between many “orbitals”

H =
X

i<j,k<l

Uijkl c
†
i c

†
jckcl

|Uijkl|2 =
2U2

N3



SYK Model
Sachdev-Ye, 1993: Model has a soluble large-N limit

⌃ = +O(1/N)

G(i!n) =
1

i!n � ⌃(i!n)

In equations: very similar to DMFT:

⌃(⌧) = �U2G(⌧)2G(�⌧)

Solution:

G(i!) ⇠ 1/
p
! not a pole: non-Fermi liquid



SYK Model

Georges, Parcollet, Sachdev, 2001: ground state entropy!
Why not quasiparticles?

S/N

T

ln(2) = .69...

s0=.46...

U
Many states available for scattering

(at half-filling)

“level spacing” ~ U exp(-Ns0)



Density dependence
H ! H � µN N =

X

i

c†i ci

Entropy

Q =
N
N

� 1

2
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FIG. 5. The entropy S(Q) obtained from the exact results [35] in Section IIC 3 (full line), and by the

numerical solutions (stars).

Fig. 5, they are in excellent agreement with the exact analytic results [35]. In the frequency domain

computation, we used the cuto↵ N = 2 ⇥ 106. The points in Fig. 5 are at moderate values of Q,

and our numerics did not converge for |Q| near 1/2.7
For the compressibility, numerically near µ = 0 and at T = 0, we find that K = 1.04/J =

1.04/(
p
2J ); With q = 4, this is of the same order of the large q result: K = q2/(16J ) = 1/J .

Appendix F: Normal mode analysis of the SYK model

This appendix will generalize the analysis of Maldacena and Stanford [47], and describe the

structure of the e↵ective action for fluctuations directly from the action in Eq. (C14). We will

work here in an angular variable

' = 2⇡T ⌧ (F1)

which takes values on a temporal circle of unit radius. We also use the notation '12 ⌘ '1 � '2.

We begin with the saddle-point solution of Eq. (C14), the Green’s function G
s

('). In the scaling

7 At large µ, we always find the free Green’s function G0 = 1
i!n+µ

to be solution. The reason can be understood

by the self-energy obtained from the free solution

⌃0(i!n

) = �J2

�2

X

!n=!1+!2�!3

G0(i!1)G0(i!2)G0(i!3) = � J2

i!
n

+ µ

1

(2 cosh �µ

2 )2

Notice the exponential suppression at low temperature. This means at any finite µ, at zero temperature, the free

one is always a solution. Numerically we are always at small finite temperature to represent the zero temperature

result, but when µ becomes large, the exponential suppression will make the free Green’s function converge well

within the fixed tolerance. 40

Davison et al, arXiv:1612.00849

Energy

schematic
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•Compressibility is constant at T=0

K =
@Q
@µ

����
µ=0

=
1.04

U



SYK Summary
• Compressible

• Ground state entropy

• Non-Fermi liquid

K(T = 0) =
1.04

U

S(T = 0)/N = .46 . . .

G(i!) ⇠ 1/
p
!



SYK Summary
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• Ground state entropy

• Non-Fermi liquid

K(T = 0) =
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S(T = 0)/N = .46 . . .
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!
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~

HolographyThe SYK model is a strongly interacting quantum system that is
solvable at large N.
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut
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Other work: 2-electron hopping
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0 + h.c.

Omitting relevant 1-electron hopping leaves system NFL even at T=0

Y.Gu et al, arXiv:1609.07832
R. Davison et al, arXiv:1612.00849
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Self-consistent equations

2

t0 = 0, the U2
0 term is invariant under ⌧! b⌧ and c! b�1/4c,

c̄ ! b�1/4c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 ! bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. We expect the renormalization flow is to the
SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U2
0 ! b�1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N
P

i cix⌧c̄ix⌧0 and a La-
grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
(@⌧ � µ)�(⌧1 � ⌧2) + ⌃x(⌧1, ⌧2)

⇤
+

Z �

0
d⌧1d⌧2

⇣
�
X

x

2
66664
U2

0

4
Gx(⌧1, ⌧2)2Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)

3
77775

+t2
0

X

hxx0i
Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)

⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the

......

...
...

Ḡ(i!̄) = t̃G(i!)

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with 
double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999
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where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n
, and adding back �T ln(1+eµ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N
@N
@µ or K = �1/( @

2F
@2 N

N
). The plot in Fig. 1 shows the results using the first derivative

method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).

VI. HEAVY FERMI LIQUID PHENOMENOLOGY

A. Quasi-particle residue and “Bad” Fermi liquid

The saddle point condition for imaginary-time Green’s function is (assuming zero chemical potential,t̃0 ⌘
p

zp
2
t0, Ẽc ⌘ t̃2

0
U0

)

G(i!)�1 = i! � ⌃(i!), ⌃(⌧) = �U2
0G(⌧)2G(�⌧) + 2t̃2

0G(⌧). (6.1)

Rescaling functions as

!̄ =
!

Ẽc
, ⌧̄ = ⌧Ẽc, Ḡ(i!̄) = t̃0G(i!), ⌃̄(i!̄) =

⌃(i!)
t̃0
. (6.2)

The saddle point equation is formatted as

Ḡ(i!̄)�1 =
Ẽc

t̃0
(i!̄ � t̃0

Ẽc
⌃̄(i!̄)) ⇡ ⌃̄(i!̄),

⌃̄(⌧̄) = �Ḡ(⌧̄)2Ḡ(�⌧̄) + 2Ḡ(⌧̄), (6.3)

that, given Ẽc
t̃0
⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
it contains no parameters, must have a residue of O(1). From the scaling in (6.2), it follows that the width of the “coherence
region” attributed to quasiparticle formation in Ā(!̄) is multiplied by Ẽc in A(!) (i.e. in physical units) and the quasiparticle
residue of our model (i.e., the integral of A(!) within the “coherence region”) is Z ⇠ Ẽc

t̃0
= t̃0

U0
⌧ 1 which is characteristic of a

“bad” Fermi liquid.

B. Grand canonical potential in Fermi liquid theory, compressibility and Sommerfeld coe�cient

In Landau’s Fermi liquid theory, the energy is a functional of a series of “quasi-particle” states labeled by a, b, we have

E � µN =
X

a

"ana +
1
2

X

a,b

fab(na � n0
a)(nb � n0

b) � µ
X

a

na = const +
X

a

("a � f̄
X

b

n0
b � µ)na +

1
2

f̄ (
X

a

na)2 (6.4)

where na, n0
a denotes the occupation number of the quasiparticle state and superscript 0 denotes the occupation number of the

“reference” state one starts with to define "a, fab, and we take it here to be the state with µ = 0,i.e., hnaiµ=0 = n0
a. In the second

identity we use f̄ to replace fab for simplicity.
Define Ea = "a� f̄

P
b n0

b, we have for the partition function in grand canonical ensemble as (introduce a hubbard-stratonovich
variable �)

Z =
X

e��(E�µN) =
X

na=0,1

Y

a

e��(Ea�µ)na e�
� f̄
2 (
P

a na)2

=
X

na=0,1

Z s
�

2 f̄
d�e�i��

P
a na� �2 f̄ �

2Y

a

e��(Ea�µ)na =

Z s
�

2 f̄
d�e�

�
2 f̄ �

2Y

a

[1 + e��(Ea�µ+i�)]. (6.5)

The saddle point condition for � reads

i�s

f̄
=
X

a

1
1 + e�(Ea�µ+i�s)

(6.6)
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that, given Ẽc
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For t≪U, a single universal coherence scale appears
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3

Fermi liquid is extremely strongly interacting. Comparing to
the e↵ective mass, one has F ⇠ (m⇤/m)2.

Real time formulation- While imaginary time formula-
tion is adequate for thermodynamics, it encounters di�-
culties in addressing transport due to di�culty of analytic
continuation to zero real frequency in the presence of the
emergent low energy scale Ec. Instead we reformulate the
problem in real time using Keldysh path integral. The
Keldysh formalism calculates the partition function Z = Tr[⇢U]

Tr[⇢]

with ⇢ = e��(H�µN) and U the identity evolution operator
U = e�i(H�µN)(t0�t f )e�i(H�µN)(t f�t0) describing evolving for-
ward from t0 ! t f (with Keldysh label +) and backward
(Keldysh label �) identically. Paralleling the imaginary-time
development, we introduce collective variables Gx,ss0 (t, t0) =
�i
N
P

i cs
ixtc̄

s0
ixt0 and ⌃x,ss0 with s, s0 = ± labeling Keldysh con-

tour, and integrate out the fermionic fields to obtain Z̄ =R
[dG][d⌃]eiNS K [32], with the Keldysh action

iS K =
X

x

ln det[�z(i@t + µ)�(t � t0) � ⌃x(t, t0)] �
X

ss0

Z t f

t0
dtdt0
hX

x

U2
0

4
ss0Gx,ss0 (t, t0)2Gx,s0 s(t0, t)2 �

X

x

⌃x,ss0 (t, t0)Gx,s0 s(t0, t)

+
X

hx0xi
t2
0 ss0Gx,ss0 (t, t0)Gx0,s0 s(t0, t)

i
(6)

where ⌃x in the determinant is to be understood as the ma-
trix [⌃x,ss0 ] and �z acts in Keldysh space. We obtain the nu-
merical solution to the Green’s functions[32] by solving for
the saddle point of S K . We plot in Fig. 2 the spectral weight
A(!) ⌘ �1

⇡ Im GR(!) (GR is retarded Green function) at fixed
U0/T = 104 for Ec/T = 0, 0.09, 1, 9, which illustrates the
crossover between the SYK4 and Fermi liquid regimes. For
! � Ec, we observe the quantum critical form of the SYK4
model, which displays !/T scaling, evident in the figure from
the collapse onto a single curve at large !/T . At low fre-
quency, the SYK4 model has A(! ⌧ T ) ⇠ 1/

p
U0T , whose

divergence as T ! 0 is cut-o↵ when T . Ec. This is seen
in the reduction of the peak height in Fig. 2,

p
U0T A(! = 0),

with increasing Ec/T . On a larger frequency scale (inset), the
narrow “coherence peak”, associated with the small spectral
weight of heavy quasiparticles, is clearly visible.

We now turn to transport, and for simplicity focus on
particle-hole symmetric case hereafter. The strategy is to ob-
tain electrical and heat conductivities from the fluctuations of
charge and energy, respectively, using the Einstein relations.
We first consider charge, and study the low-energy U(1) phase
fluctuation '(x, t), which is the conjugate variable to particle
number density N(x, t), around the saddle point of the action
S K . Allowing for phase fluctuations around the saddle point
solution amounts to taking

Gx,ss0 (t, t0)! Gx,ss0 (t � t0)e�i('s(x,t)�'s0 (x,t0))

⌃x,ss0 (t, t0)! ⌃x,ss0 (t � t0)e�i('s(x,t)�'s0 (x,t0)), (7)

where Gx,ss0 (t � t0) and ⌃x,ss0 (t � t0) are the saddle point solu-
tions. Expanding (6) to quadratic order in 's, S K = S sp

K + S ',
yields the lowest order e↵ective action for the U(1) fluctu-
ations. This is most conveniently expressed in terms of the
“classical” and “quantum” components of the phase fluctua-

tions, defined as 'c/q = ('+ ± '�)/2 and in Fourier space:
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0) term in (6). The function �(p) encodes the
band structure for the two-fermion hopping term, dependent
on lattice details, and the ellipses represent O('2

q) terms which
do not contribute to the density correlations (and are omitted
hereafter –see [32] for reasons). The coe�cients ⇤1(t) and
⇤2(t) are expressed in terms of saddle point Green’s functions
in [32]. We remark here that any further approximations, e.g.,
conformal invariance, are not assumed to arrive at action (8),
and hence this derivation applies in all regimes.
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green’s function for T/Ec = 9 with free fermion limit result.
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We solve these equations in a real time Keldysh formulation 
numerically and determine asymptotics analytically.
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c̄ ! b�1/4c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 ! bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. We expect the renormalization flow is to the
SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U2
0 ! b�1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1
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The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the
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tion. By standard reasoning, this implies a cross-over from
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SYK2 regime. Indeed keeping the SYK2 term invariant fixes
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0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
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�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the

m⇤/m ⇠ U/t

Sommerfeld 
enhancement



Compressibility
For t≪U, compressibility is almost unaffected by hopping

K =
@Q
@µ

����
µ=0

=
1.04

U

??How to reconcile with Sommerfeld enhancement??

• Fermi liquid theory: compressibility is renormalized 
by Fermi liquid parameter F = g(EF) UFL
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the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the

�/K ⇠ (U/t)2

⌧ � ⇠ U

t2

F ⇠
✓
U

t

◆2

� 1



Transport
Quasiparticle picture applies only for T≪Ec

More generally, we use hydrodynamics

� = lim
!!0

lim
p!0

�i!

p2
DRn(p,!)

✦ Calculate density response 
using Keldysh method. 

N.B. Because of randomness, momentum is not a hydrodynamic variable

✦ Do analogously for thermal 
conductivity



Transport
Generalized 

resistivity
⇢c = 1/� ⇢e = T/

4

which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
X

p

Z +1

�1
d!'c,!(i!2 � D'p2!)'q,�!. (9)

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. Thescaling
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where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
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large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. The
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Wiedemann-Franz ratio
Lorenz L =



�T
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where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form
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where the temperature coe�cient of resistivity A⇣ =
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large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
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independent for a wide range of correlated materials[35, 36].
We find here A'
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FL

NFL

Although the two transport quantities in ZrZn2 have different tem-
perature dependencies, with L/L0 , 1, their extrapolated T 5 0 limits
satisfy the Wiedemann–Franz law.

YbRh2Si2 provides a unique opportunity to study the fate of Landau
quasiparticles at QCPs beyond the spin-fluctuation description and,
likewise, the nature of the critical fluctuations associated with the
Kondo breakdown. The compound is also advantageous because
superconductivity is absent down to at least 0.01 K (ref. 21), unlike
the case of CeCoIn5. This not only exposes the properties in the imme-
diate vicinity of the antiferromagnetic QCP but also facilitates the
characterization of the quasiparticles through the Lorenz ratio.
YbRh2Si2 is a magnetically anisotropic metal; the possibility of
quasi-two-dimensional transport necessitates the use of in-plane
transport to probe any quasiparticle breakdown28. The present study
therefore focuses on the thermal and electrical transport within the
tetragonal plane.

The thermal conductivity k(T) was measured between 0.025 K and
12 K and is shown in Fig. 1b for B 5 0. For comparison, the electronic
thermal conductivity calculated from the measured electrical resistivity
r(T) through the Wiedemann–Franz law, kWF(T) ; L0T/r(T), is also
presented. Above 4 K, k(T) exceeds kWF(T) due to the contribution of
phonons to the heat transport, kph(T) (see Supplementary
Information). Below 4 K, kph(T) is suppressed, and k(T) becomes
smaller than kWF(T) down to about 0.035 K and somewhat larger at
even lower temperatures (inset to Fig. 1b).

In order to investigate the Wiedemann–Franz law, we extrapolate
the Lorenz ratio L(T)/L0 ; r(T)/w(T) to T 5 0 (here w(T) is the ther-
mal resistivity). Because a QCP is a singular point in the phase dia-
gram, and given that there are temperature scales that vary as a
function of the control parameter and vanish at the QCP, the com-
bination of isofield and isothermal scans is crucial for the extrapolation
(Supplementary Information section VI).

Figure 2 depicts the low-temperature behaviour of both the elec-
trical resistivity r(T) and thermal resistivity w(T) 5 L0T/k(T) at zero
field, B 5 0.06 T < Bc and B . Bc. Here w(T) has the same unit as r(T).
Similar results at other magnetic fields are given in Supplementary Fig. 4.
This comparison shows that w(T) exceeds r(T) over a wide range of
temperature and field. Figures 3a, b and c, d display, respectively, the
difference w(T) 2 r(T) and the Lorenz ratio for the data shown in
Fig. 2a–d. Corresponding plots for the data shown in Supplementary
Fig. 4 are presented in Supplementary Fig. 5a–d.

Below T 5 0.15 K, at B $ 0.6 T, w(T) 5 r(T) within the experi-
mental resolution. This is illustrated for B 5 1 T in Fig. 3b, which
shows that w(T) 2 r(T) approaches zero in this range of T and B,
and in Fig. 3d, which demonstrates that L(T)/L0 5 1 within the experi-
mental error. In this high-field range, bothDr(T) 5 [r(T) 2 r0] / T2

and [w(T) 2 w0] / T2 below the Fermi-liquid crossover temperature,
marked by arrows in Fig. 2 and Supplementary Fig. 4. Here, r0 and w0

are the residual (T R 0) electrical and thermal resistivities, which are
identical within about 1%. These results establish the validity of the
Wiedemann–Franz law in the Fermi-liquid phase for B $ 0.6 T. For
0.2 T # B # 0.6 T, the results shown in Fig. 2c and Supplementary Fig.
4d–f suggest similar Fermi-liquid behaviour at lower temperatures.

The system is in the quantum critical regime21 at B 5 0 and T >
0.1K, where w(T) . r(T). Both r(T) and w(T) decrease linearly with
temperature below about 0.3 K which allows extrapolation of the
quantum critical behaviour of r(T) and w(T) to the T 5 0 limit, giving
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Figure 2 | Thermal and electrical resistivity curves at low temperatures.
a–d, Thermal resistivity w(T) 5 L0T/k(T) (red filled circles) and electrical
resistivity r(T) (blue dots) below T 5 0.5 K for B 5 0 (a), B 5 0.06 T
(b), B 5 0.3 T (c) and B 5 1 T (d), B H c. Arrows in c and d indicate the
crossover to Fermi-liquid behaviour (from Fig. 1a). Because TN is very low
(0.07 K), it is an experimental challenge to elucidate the intrinsic behaviour of
the thermal transport in the antiferromagnetic regime. We have therefore made
special efforts to not only extend the heat-transport measurements at B 5 0
down to temperatures as low as 0.025 K, but also to reduce the statistical error of
the data by performing substantially more temperature scans than at finite
fields. The extrapolation specified by the dashed lines in a and b corresponds to
the trajectory C1 and one close to C, respectively (see Supplementary Fig. 8a).
Representative error bars (s.d.) are shown for a few selected temperatures.
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Figure 1 | Phase diagram and thermal conductivity of YbRh2Si2.
a, Temperature–magnetic field (T–B) phase diagram, indicating the
antiferromagnetic phase (AF) boundary (TN, solid line) and the crossovers
between non-Fermi-liquid and Fermi-liquid (FL) regimes (TFL, dashed line) as
well as between small and large Fermi surfaces (T*, double-dashed line). The
crossover width at T* is proportional to temperature (red shaded region) (from
ref. 24). The magnetic field, B, was applied within the basal tetragonal, easy
magnetic plane, H c. Arrows indicate fields at which combined thermal and
electrical transport measurements were performed (Fig. 2a–c). The
Wiedemann–Franz law is strictly defined only in the T 5 0 limit and is expected
to describe the electronic transport of a Fermi liquid. This is illustrated in the
low-T transport properties of the field-induced paramagnetic phase, B . Bc

(Fig. 2c, d). It is also expected in the antiferromagnetic phase, B , Bc: here, at
finite temperature the electronic thermal conductivity, kel, is masked by a
contribution due to magnons, km (see text). However, as T R 0, km vanishes
such that the heat transport is purely electronic, and the Wiedemann–Franz law
is valid. b, Thermal conductivity, k, as a function of temperature, T, at zero field
(red data points). The solid purple line displaying kWF(T) 5 L0T/r(T) was
obtained under the assumption of the Wiedemann–Franz law to hold in the
whole range of temperatures T # 12 K; here, r(T) is the electrical resistivity and
L0 5 (pkB)2/3e2 is Sommerfeld’s constant. The dashed blue line shows the
phonon contribution kph(T), as discussed in the Supplementary Information.
Inset, same data below T 5 0.1 K.
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= π2/3 for a Fermi liquid

YbRh2Si2, Pfau et al (2012)

L = L(T/Ec)

SYK lattice:



Kadowaki Woods ratio

4

which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
X

p

Z +1

�1
d!'c,!(i!2 � D'p2!)'q,�!. (9)

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. The

A ⇠ 1/(NE2
c )

recall � ⇠ 1/Ec

KW = A/(N�)2 ⇠ 1/N3
independent of 

t,U!

KW = A/�2 approximately constant 
for many metals

Scaling implies:



SYK metal

•Small coherence scale Ec=t2/U
•Heavy mass 𝛾~m*/m ~ U/t
•Small QP weight Z ~ t/U
•Kadowaki-Woods A/𝛾2 = constant
•Linear in T resistivity and T/κ
•Lorenz ratio crosses over from FL to NFL value



Future
•Extension to translationally invariant systems?

Fermi surface emerging in 
interacting tensor model by 

Aavishkar Patel

• SYK lattice, tensor models,...
• Momentum space differentiation and realistic 

applications?
• Relation to methods like DCA, cluster DMFT?



Future
•Bosons/spins

H =
1

2

X

hiji

X

µ⌫

Jµ⌫
ij Sµ

i S
⌫
j

• no obvious free particle starting point
• EF → J much smaller

Many (most?) measurements have T>J 
and are not in the QP regime

J

e.g. Tb2Ti2O7



Future
•Deeper implications for many-body physics

• Entropy and non-Fermi liquid behavior?
• Many body chaos and dynamics?
• Really learning something about correlated 

electrons from black holes?



Electrons

Black holes



Electrons

Black holes
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