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l-breaking TR-breaking
Weyls Weyls

TaAs, NazBi, TaP, WTe,, ... R,Ir,O7?, Mn3(Sn/Ge), RAIGe



Why magnetic Weyls?

® Possibility to observe AHE

® |nteresting correlation physics of
magnetism

® Ability to affect electrons in situ by
modifying magnetic configuration

® Probe static and dynamical effects of real
space topological defects



Anomalous Hall Effect

Unique property of a magnetic Weyl semimetal
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Antiterromagnetic Weyls

Pyrochlore Mn3Sn,
iridates Mn3Ge
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Quasiparticles

Expect that any magnetically ordered system
is described at first order by mean-field
quasiparticle Hamiltonian

H = Hband_zh CI%

a

effective Zeeman “exchange” field

C’L

due to local ordered moment

Think of free-electron structure associated
with each magnetic configuration



Mn3Sn family

large ordered

C ‘ . .
antiferromagnetic
moment
~ 2 Us /Mn
© R ® R 9 e tiny FM moment:
[1210] [0001]
002 MB/Mn

two kagomé layers of
Mn, related by inversion

Tn ~ 420K

Nagamiya et al, 1982



Energetics: triangle

' E=J(S1 S+ 8y S5+ S35
+D% - (Sy x Sy + Ss x S5+ S5 x Si)
—KZ(m-Si)Q

J > D> K Hierarchy of interactions

® J: spins at 120° angles and M=0

® D: spins are “anti-chiral” in XY plane

® K: weak canting toward easy axes creates tiny
moment and fixes in-plane angle



Textures

= [1ple’” F ~ /d% {g(ve)Q — A cos 69}

sine-Gordon model with 6-fold anisotropy
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Textures

= [1ple’” F ~ /d% {g(ve)Q — A cos 69}

soliton = domain wall connecting
neighboring minima of cosine
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equipotentials from R

solution of Laplace’s
. ><> B
equation for a Hall bar
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with two domains

Could use this DW as a switch??



Domain formation
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Domain formation
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Domain wall bound states

ARPES of domain wall

seems challenging to say
the least!
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® Transport: enhanced intrinsic Hall
conductivity within a DW?
®STM: signatures of bound states in LDOS?



CeAlGe

e tetragonal
e Ce 4f' moments

e Semi-metallic band
structure
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. Band structure
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r >Ny, Z T X, Z

e bandwidth ~1eV

* no large Fermi surface: true semi-metal

* large rare-earth d-orbital content: substantial coupling to rare
earth moments



Ce moments

Ce3* typically Ising-like Kramers doublet
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T b T= effective S=1/2 spin below
Tzﬁ T T T ~10meV ~ 100K energy scale
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Ce AgySi;  Ce Au,Si,  Ce PdySi;  Ce Ru,Si,  Ce Cu,Siy 4{1 COﬂfIguratIOh, |arge Orbltal
e.g. A. Severing et al, 1989 ~ component and hence strong
magnetic anisotropy
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Intensity (arb. units)

Magnetic order
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Kondo lattice scales

H = Hband_|_JKZS C,

RKKY

JKN \/JRKKyEF ~100meV?



Summary: key features

® Semi-metal

® Small bandwidth ~ 1eV

® Large Jk ~ 100meV

® Strong magnetic anisotropy/SOC
® |ow Ty ~ 5K



Magnetization

M || [100]

M || [001]

* In-plane field shows
ferromagnetic
component

e Out of plane field
paramagnetic

e [f you look carefully,
hints of more transitions



Resistivity
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enhancement at
intermediate fields
and low T
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Resistivity
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; very narrow angular dependence!



Suzuki Angular Magneto-Resistance



Suzuki Angular Magneto-Resistance

Savary Angular Magneto-Resistance



Suzuki Angular Magneto-Resistance

Savary Angular Magneto-Resistance

Singular Angular Magneto-Resistance

SAMR



Pxx (M Ccm)

72k noH=175T

Symmetry

180

0

Effect is tied to crystalline
axes. Yet appears only
below critical temperature.

Must be some effect of space

group symmetry breaking. Unique

to <|00> axis?




Symmetry

symmetry (h*, h¥, h?) h doesn’t break sym. explicitly if (Ng, Ny, N) N breaks spont. if
TR (—he, hy,—hz) h=0 (=Nz,—Ny,,—N.) N#0
Cy (—hg, —hy, hs) hy =hy =0 (=Nz,—Ny, N,) N, #0or N, #0
mo10 (—h$,h s z) hx :hz =0 (—Nz,Ny,—NZ) Nm #0 or Nz #0
mlOOXTR (_ T yyhz> hr =0 (_NzyNy;Nz> NCE 7é 0
mM100 (h T h hz) hy:hz:() (Nx,—Ny,—NZ) Ny;&Oor NZ#O
mo10 X TR (hg, hy, h.) hy =0 (Ng,—Ny, N.) N, #0
CyxTR (hay By, hz) h,=0 (Ng, Ny, —N) N, #0
my10* X Coy (—hy, —hg,—h) hy, = —hy and h, = (Ny, Ny, N,) N, # N,
mno*xTR ( hy, hx, z) hy = —hz (Ny,Nx, _Nz) Nm # Ny or Nz # 0
C4C1C* X TR (=hy, he,—h) h=0 (Ny,—Ng,N.) Ny #0or Ny, #0
Cy* (—hy, he, hs) hy =hy =0 (Ny,—N,,—N.) N #0
Cy*xTR (hy, h —h;) h=0 (—Ny,N;,N.) Ny #0or Ny, #0
C,CyCy* (hy, —hg, h) hy =hy =0 (=Ny,N,,—N,) N#0
mi10* (hy,h —h;) hy = hy, and h, =0 (=Ny,—N,,N.) N, # —N,
mue* X CoxTR (hy,hy,hs) he = hy, (=N,,—N,,—N.) N, #—N,or N. £0

Table 2: All transformations for h.
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Table 2: All transformations for h.

Fields along <100> axes preserve this
‘'magnetic mirror” symmetry
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Minimal model

/\_/ Two Ce sublattices

A A\;%/A “intra-unit cell antiferromagnet”

N\ —— B =J (S5 + SYSE) + LSiSh+ > [D(53)?



Minimal model

\/\/ Two Ce sublattices

R /

“intra-unit cell antiferromagnet”

M B =J(S%S% + SYSY) + J.55Sz +Z

2D > J, —J, == in-plane (XY) spins



Spin Flop

GIA
Standard
Heisenberg or XY \ /
antiferromagnet
~N—"
—




Minimal model

\/\/ Two Ce sublattices
A /\\Vlki “intra-unit cell antiferromagnet”
B \

A B = Ju(SLSE + SYSY) + 1SiSh+ > [D(SI)? —H-m,],

g-tensor anisotropy

gz 9y
my, = gaSa gA = 9y gB = Ja
gz gz



Minimal model

\/\/ Two Ce sublattices
W

B A I

A V “intra-unit cell antiferromagnet”

B ——

AT oSS+ SiY) + 5385+ 30 (D (57— Hom,).
H = (H,0,0)

E=J,(S55% + SYSY%) — H@SS + g,5%)



Spin Flop

CRREN
With g-factor
anisotropy and H \ /

along (100) w_ \




Spin Flop

T
moto X TR '\/

broken




Domains

TR

Moi10 X TR
broken
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Minimal model

\/\/ Two Ce sublattices
A /\\Vlki “intra-unit cell antiferromagnet”
B \

A B = Ju(SLSE + SYSY) + 1SiSh+ > [D(SI)? —H-m,],

g-tensor anisotropy
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Domains

Moi10 X TR

broken
explicitly
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Phase diagram
},
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Canted phase forms 4 “infinitely
thin” wedges



Phase diagram
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Phase D
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Resistivity

Extra resistance comes from domain walls

PL . ’q! Dot = p + Pdw
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Size of the effect depends on size of pgu
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Domain wall

Strong anisotropy/Ising order:
narrow domain walls

N
N~

Crudely, effective potential for electrons is
"abrupt”: strong scattering if Fermi energy is low



Phase space

L andauer-Buttiker: one channel for each transverse momenta

> 2 BUT sum only includes modes that

G = n— : . :
295 exist at Fermi energy on both sides

n=1



Phase space

Fermi surfaces differ by mgi0 * TR l
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Weyl points

: " O domain
+° S | ow symmetry,
v o Trieted  SOC: Weyl point
[ locations depend
%7 oo 2.0 0900 on domain
g &

(from DFT-fit tight-binding model)



Phase space

Fermi surfaces differ by mgi0 * TR l
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projection to interface BZ

Only overlapping portions contribute!



Phase space

Fermi surfaces differ by mgi0 * TR l
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GORDON AND BETTY

MOORE

FOUNDATION
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Super Amazing Magneto-Resistance: a Other talks:
new effect in a SOC semimetal e C44.00001
?One of many new effects related to e K10.00001

topological defects in semimetals? e K10.00002



