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Outline 
• Where can correlations enrich topology?

• Three types of topology: band topology, 
Berry phase topology, intrinsic topological 
order 

• Correlations in two of three:

• Correlated Weyl semimetals

• Quantum spin liquids
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FIG. 1. Schematic illustration of the non-interacting tight-binding
model for nodal loop semimetals on a tetragonal lattce. (a) Lattice
structure and hoping terms, the thick black arrow indicate surface
electric field which generates Rashba SOC denoted by �R (b)-(d),
nodal loops projected onto the (001) surface BZ, with the shaded
region indicating the drumhead surface states, (b) for t2 < t1, (c)
t2= t1, and (d) t2>t1

normal to the nodal loop is applied, in the low-temperature
limit (T ! 0) the bulk quantum oscillation is characterized
by a logarithmic divergence of the magnetic susceptibility
which is periodic in 1/B. The logarithmic divergence occurs
whenever a quantized magnetic orbit exactly overlaps with the
nodal loop, and correspondingly the Landau levels become
gapless at k

z

= 0. The logarithmic divergence of magnetic
susceptibility and the gapless Landau spectrum indicates that
this is a magnetic-field-driven quantum phase transition [25].
Such an interesting phenomena may be a new experimental
feature characterizing NLSMs.

Non-interacting tight-binding model We first construct a
non-interacting TB model on a tetragonal lattice with both
T and P symmetries in the absence of SOC. As schemat-
ically shown in Fig. 1(a), there are two sublattices denoted
by A and B in each primitive cell, and the hopping from A
to B along the positive (negative) z direction is denoted by
t1 (t2). Moreover, there is intra-sublattice in-plane hopping
t0 and inter-sublattice in-plane hopping t3. Without the in-
plane hoppings, the system can be considered as arrays of 1D
Su-Schrieffer-Heeger (SSH) chains [43, 44], and the in-plane
hoping t3 couple these chains together so that there is inverted
band around only of the eight time-reversal invariant momenta
(TRIM), and the nodal loop is centered around the TRIM with
inverted band order.

The size and shape of the nodal loop is controlled by t1, t2
and t3, while t0 makes bulk nodal energy varying on the loop,
and makes the otherwise flat drumhead surface states disper-

sive. Hereafter we fix t1=0.8, t3=0.2, t0=0.01, and t2>0
is the only variable in the non-interacting case. In particular,
when t2 <t1, there is a circular nodal loop centered at the X
((⇡,⇡,⇡)) point. If the surface is truncated at the A sublat-
tice, one obtains drumhead surface states inside the projected
nodal loop centered at X as shown in Fig. 1(a). If t2 = t1,
the nodal loop is of diamond shape and connects the TRIM X
and M ((⇡, 0,⇡)); surface states fill the region inside the dia-
mond as shown in Fig. 1(b). When t2 > t1, the nodal loop is
centered at Z ((0, 0,⇡)) and the corresponding surface states
fill the region outside the projected nodal loop (Fig. 1(c)). It
worth to note that for fixed bulk hopping parameters the drum-
head surface states can be either inside or outside the projected
nodal loop depending on surface terminations, which is es-
sentially due to the properties of 1D SSH chains. Therefore,
surface states covering a large area of surface BZ as shown in
Fig. ??(c) can also be realized when t1 < t2 if the system is
terminated at B sublattice.

Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable
Rashba SOC splittings in the surface states. Such surface
Rashba splittings have been observed in the surfaces of non-
magnetic and magnetic metals [45–47], as well as semicon-
ductor heterostructures [48]. Thus we also take the sur-
face Rashba effects into account by adding a Rashba-type
first-neighbor spin-dependent hopping within the atomic layer
closest to the vacuum, whose amplitude is denoted by �

R

as
shown in Fig. 1(a). The surface bandstructures for t2/t1 =
0.75 and t2/t1=1.25 both with ((c)-(d)) and without ((a)-(b))
the surface Rashba SOC are shown in Fig. 2. As clearly seen
from the figure, the spin-degenerate drumhead surface states
are splitted by such surface SOC [49], and we expect that the
effects of Coulomb interactions in these two situations (with
and without surface SOC) would be very different.

Hubbard interactions without surface SOC We first con-
sider the situation without surface Rashba splitting, and ap-
ply Hubbard interactions, H

U

= U
P

i

n̂
i"n̂i#, to the non-

interacting TB model introduced above. As the Coulomb in-
teraction at the surface is expected to be strongly screened due
to the large surface density of states (DOS), a Hubbard-type
local interaction is a good description if we are mainly inter-
ested in the effects on surface states [50]. On the other hand,
unlike the surface states of topological insulators, there is no
simple low-energy effective Hamiltonian describing the drum-
head surface states of NLSMs. Thus we have to construct a
slab and apply Hubbard interactions to all the electrons in the
slab, so that the bulk and surface states are treated on equal
footing. Hereafter we only consider half-filled systems, i.e.,
there are two electrons per primitive cell (including spin de-
grees of freedom), and we say the system is charge homoge-
neous if there is one electron at each site, and the correspond-
ing charge density is set to 0.

The self-consistent HF approximation is adopted to treat the
Hubbard interaction, i.e.,

Un̂
i"n̂i# ! Uhn̂

i"in̂i# + Un̂
i"hn̂i#i � Uhn̂

i"ihn̂i#i (1)

3

FIG. 2. Surface bandstructures of the non-interacting tight-binding
model without surface SOC (a)-(b), and with surface SOC (c)-(d). (a)
t2=0.75t1, and (b) t2=1.25t1; (c) t2=0.75t1, �R=0.0625t1, and
(d) t2=1.25t1, �R=0.0625t1. The energy bands are plotted along
the high-symmetry path marked by the thick black lines in Fig. 1(b)

where n̂
i�

refer to the density operator of electrons with spin
� (� =", #) at site i, hn̂

i�

i is the self-consistent mean field ap-
plied to the electrons of �� at site i, and U denotes the ampli-
tude of the Hubbard repulsion. The linear tetrahedron method
[51] is implemented as an interpolation scheme so that the
self-consistent calculations can be carried out with improved
numeric efficiency.

The HF ground states for a 100-layer (50 primitive cells
in z direction) slab is shown in Fig. 3(a). When U = 0,
the system is in the NLSM phase without any spontaneous
symmetry breaking in the charge and spin sector; when U ⇠
15%� 20% t1, the system enters into a surface CDW (de-
noted by “surf CDW” in the figure) phase with the charge
order strongly localized at the surface. Fig. 3(b) shows the
local charge density along the z direction for U = 0.5t1 and
t2 = 1.25t1. Clearly there are positive (negative) charges lo-
calized at the top (bottom) surface, which oscillate with z and
decays exponentially into the bulk.

To study the nature of phase transition from the homoge-
neous NLSM phase to the surface CDW phase, we also calcu-
late the charge susceptibility of a 60-layer slab in the random
phase approximation (RPA) [52, 53]. The generalized RPA
susceptibility �RPA can be expressed as

�RPA = (1� �(0)U)�1�(0) (2)

where �(0) and U are the matrices representing the bare sus-
ceptibility and the Coulomb interaction. To be specific, the
bare susceptibility can be calculated from the non-interacting

(b)

(a)
(a)

FIG. 3. (a) Phase digram of the NLSMs with Hubbard interactions in
the t2�U parameter space. (b) The local charge density distribution
in the surface CDW phase when t2=1.25t1 and U=0.5t1.
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where the Greek letters represent the spin indices, while l
and l0 label the lattice sites; k is the wavevector of the non-
interacting Bloch functions, and the sum over Matsubara fre-
quency !

n

can be taken analytically. kB is the Boltzman con-
stant and T is the temperature; kBT is fixed as 1/100 in the
following RPA calculations. The interaction matrix for Hub-
bard interactions is defined as:

Ul,l
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Then the RPA charge susceptibility (�⇢) is expressed as

�⇢(q)
l,l

0 =�RPA(q)""l,""l0 + �RPA(q)##l,""l0+

�RPA(q)""l,##l0 + �RPA(q)##l,##l0 (5)

Fig. 4(a) shows the eigenvalues of �⇢(q) as a function of
q when t2 = t1 and U = 0.25t1. There are a large num-
ber of quasi-degenerate bands with small amplitudes, and two
degenerate bands with much larger amplitudes. By check-
ing the corresponding eigenvectors, one find that the quasi-
degenerate bands with small amplitudes are from the bulk

surface instabilities at 
relatively small U

c.f. ZrSiS, PbTaSe2  

Jianpeng Liu +LB, 
in preparation
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

H0 =

Z
dx

2X

l=1
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, (3)

where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:

H0 =

Z
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⇠
ei✓l±i⇡�l . For free 1d fermions without interaction, the
Luttinger parameter K = ⇡.
Coulomb interactions H

int

are conveniently handled in
the bosonization framework. Using the representation of
the fermion density n

l

⇠ @
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, one obtains:

H
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(5)
where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H

v

is

T. Yoshida Mo-S4-5
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.
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Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).
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TaAs

generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.
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The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k-point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise

0.8 10.60.40.20
-1

-0.5

0

0.5

1

φ
π

-1

-0.5

0

0.5
1

φ
π

Z

Γ

S

N

Σ

Z

S

ΣS

Σ

(b)(a)

(c) (d)

FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror planes. (a) 3D view of the nodal rings (in the
absence of SOC) and Weyl points (with SOC) in the BZ. (b) Side view from [100] and (c) top view from [001] directions for the nodal
rings and Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points off the mirror planes (see
movie in Supplemental Material [36]). (d) Top panel: Flow chart of the average position of the Wannier centers obtained by Wilson-loop
calculation for bands with mirror eigenvalue i in the mirror plane ZNΓ. (d) Bottom panel: The flow chart of the Wannier centers obtained
by Wilson-loop calculation for bands in the glide mirror plane ZXΓ. There is no crossing along the reference line (the dashed line),
indicating the Z2 index is even.
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• Striking properties:
• Surface Fermi arcs
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Experiment
• Striking properties:

• Surface Fermi arcs
• ABJ “anomaly”: strong negative MR for I ∥ B

is weak, positive, and usually not very sensitive to the
magnetic field direction. Therefore, the negative and highly
anisotropic MR has been regarded as the most prominent
signature in transport for the chiral anomaly, and it
indicates the existence of 3D Weyl points. In addition,
the chiral anomaly can also generate other fascinating
phenomena, i.e., the anomalous Hall effect and the nonlocal
transport properties [5,12].
Using first-principle calculations, Weng et al. [23]

predicted that a family of binary compounds represented
by TaAs are time-reversal-invariant 3DWSMs with a dozen
pairs of Weyl nodes that are generated by the absence of an
inversion center. The exotic Fermi arch on the surface and
Weyl nodes in the bulk have been identified by angle-
resolved photoemission spectroscopy and microwave
transmission measurements [27–30]. Materials in the
TaAs family are completely stoichiometric and nonmag-
netic, providing an almost ideal platform for the study of
the chiral anomaly in WSM. In this work, we perform
transport studies of the TaAs single crystal down to 1.8 K,
with a magnetic field up to 9 T. Ultrahigh mobility
(μe ≈ 1.8 × 105 cm2V−1 s−1 at 10 K) has been found with
a multiband character. Extremely large positive MR
(≈80000% at 1.8 K in a field of 9 T) is discovered for a
magnetic field perpendicular to the current (or the external
electric field). Ultrahigh mobility and large MR in the same
material have also been detected by Zhang et al. [31].
Unfortunately, in the configuration of B==I, their MR data
remain positive in the whole magnetic field up to 9 T. In our
work, when the magnetic field is rotated to be parallel to the
current, notable negative MR has been observed, demon-
strating the chiral anomaly effects in this particular
material. Strong SdH oscillations have been found from
a very low magnetic field, from which two sets of
oscillation frequencies can be extracted, indicating two
types of carriers, in good consistency with our first-
principles calculations.

II. CRYSTAL STRUCTURE
AND MEASURING METHOD

TaAs crystallizes in a body-centered-tetragonal NbAs-
type structure with a nonsymmorphic space group of
I41md, in which the c axis is perpendicular to the ab
plane [see Fig. 1(a)]. The lattice parameters are a ¼ b ¼
3.4348 Å and c ¼ 11.641 Å [32]. Because of the lack of
inversion symmetry, first-principles calculations predicted
a dozen pairs of Weyl points in the Brillouin zone (BZ)
[23]. A schematic diagram of theoretically predicted Weyl
nodes projected on the (001) facet can be seen in Fig. 1(b).
In this study, the single crystals of TaAs were grown by
chemical vapor transport. A polycrystalline TaAs that
previously reacted was filled in the quartz ampoule using
2 mg=cm3 of iodine as the transporting agent. After
evacuating and sealing, the ampoule was kept at the growth

temperature for three weeks. Large polyhedral crystals with
dimensions up to 1.5 mm are obtained in a temperature
field of ΔT ¼ 1150 °C − 1000 °C. Figure 1(c) shows the
x-ray diffraction (XRD) from a TaAs crystal oriented with
the scattering vector perpendicular to the (001) plane. The
inset is the morphology of a representative crystal looking
down the [001] direction. The crystal was polished into a
rectangular sample (1 × 0.3 × 0.08 mm3) for magneto-
resistance and Hall resistivity measurements using four-
point probe and alternating current transport methods in the
Quantum Design PPMS. The electric current is always
applied parallel to the (001) plane along the a or b axis in
our studies. For MR (or Hall resistivity) measurements, any
additional Hall (or resistive) voltage signals due to the
misalignment of the voltage leads have been corrected by
reversing the direction of the magnetic field. First-
principles calculations are performed by using the
OpenMX [33] software package. The choice of a
pseudo-atomic orbital basis set with Ta9.0-s2p2d2f1 and
As9.0-s2p2d1, the pseudopotential and the sampling of BZ
(10 × 10 × 10k grid) have been checked. The exchange-
correlation functional within a generalized gradient
approximation parametrized by Perdew, Burke, and
Ernzerhof has been used [34]. The optimized lattice

FIG. 1. Structure and symmetry of a TaAs single crystal.
(a) The crystal structure of TaAs with a nonsymmorphic space
group of I41md. Blue and violet balls represent a Ta atom and an
As atom, respectively. (b) Schematic diagram of a dozen pairs of
Weyl points projected on the (001) facet. “þ” and “−” denote
Weyl points with positive and negative chiralities, respectively.
The circles show that there are two Weyl points with the same
chirality projected on the same point in the (001) facet. Γ, X, and
M are the high symmetry points in the Brillouin zone. (c) X-ray
diffraction pattern of a TaAs single crystal. The inset shows an
optical image of a typical sample at the millimeter scale.
(d) Schematic diagram of bulk Landau levels of a pair of Weyl
nodes. The dotted lines represent the zeroth quantum Landau
Level with “þ” (blue) and “−” (red) chiralities in a magnetic field
parallel to the electric current.
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constants a ¼ b ¼ 3.4824 Å, c ¼ 11.8038 Å, and atomic
sites are in agreement with the experimental values.

III. RESULTS AND DISCUSSION

A. Magnetoresistance measurements

Figure 2 presents the MRmeasured at 1.8 K by tilting the
magnetic field (B) at an angle (θ) with respect to the electric
current (I). The Hall signal has been removed by averaging
the ρxx data over positive and negative field directions. As
shown in Fig. 2(a), when the magnetic field is applied
perpendicular to the current (B⊥I, θ ¼ 0 °), a surprising
positive MR of up to 80000% is observed. Near zero field,
MR exhibits quadratic field dependence, which soon
changes to almost linear dependence at a very low field
without any trend towards saturation up to 9 T. This giant
conventional MR strongly relies on θ and decreases
considerably with increasing θ. When the magnetic field
is rotated parallel to the electric current (θ ¼ 90 °), we
observe negative MR, strong evidence of Weyl fermions in
TaAs. Elaborate measurements at different angles around
θ ¼ 90 ° are implemented and presented in Fig. 2(b). As
shown in the main panel, by rotating θ from 87 ° to 91.8 °,
negative MR arises in the cases of θ between 88 ° and

91.5 °, and it reaches a maximum (−30%) at θ ¼ 90 °
(B==I). This can also be intuitively viewed as a conse-
quence of the steep downturn of MR in the magnetic field
range 1 T < B < 6 T (and −1 T < B < −6 T). In this
range, for clarity, the minima of MR curves at different
angles are listed in the inset of Fig. 2(b). The largest value,
as expected, occurs at θ ¼ 90 °. We note that the negative
MR in Fig. 2(b) disappeared as we rotated the field about
2 ° away from the current. This seems hard to believe.
However, it makes sense when we recall that the conven-
tional positive MR (B⊥I) of TaAs is very large (≈80000%
at 1.8 K in a field of 9 T) and increases remarkably with an
increasing magnetic field. So, a slightly imperfect align-
ment of the magnetic field and the current in the sample will
arouse a large perpendicular component and obscure the
negative MR, especially in a large field. Thus, the negative
MR is confined to about "2 ° of B==E. In other words, in a
system with smaller positive MR (at θ ¼ 0 °), we may
observe larger negative MR (at θ ¼ 90 °) in a wide
magnetic field range. Indeed, larger negative MR has been
observed in Na3Bi [35] and TaP [36], which have much
smaller positive MR than that of TaAs at θ ¼ 0 °.
The origin of the negative MR in TaAs can be

explained by the chiral anomaly in the semiclassical

FIG. 2. Angular and field dependence of MR in a TaAs single crystal at 1.8 K. (a) Magnetoresistance with respect to the magnetic field
(B) at different angles between B and the electric current (I) (θ ¼ 0 °–90 °). The inset zooms in on the lower MR part, showing negative
MR at θ ¼ 90 ° (longitudinal negative MR), and it depicts the corresponding measurement configurations. (b) Magnetoresistance
measured in different rotating angles around θ ¼ 90 ° with the interval of every 0.2 °. The negative MR appeared at a narrow region
around θ ¼ 90 °, and most obviously when B==I. Either positive or negative deviations from 90 ° would degenerate and ultimately kill
the negative MR in the whole range of the magnetic field. Inset: The minima of MR curves at different angles (88 °–92.2 °) in a magnetic
field from 1 to 6 T. (c) The negative MR at θ ¼ 90 ° (open circles) and fitting curves (red dashed lines) at various temperatures. T ¼ 1.8,
10, 25, 50, 75, and 100 K. (d) Magnetoresistance in the perpendicular magnetic field component, B × cos θ. The misalignment indicates
the 3D nature of the electronic states.
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Magnetic Weyl semimetals
Movable Weyl points have their own interest

2

focus on the “minimal Weyl semi-metal” which break TR
but preserves P, with two Weyl fermions of opposite chi-
ralities at wavevectors K⃗0 and −K⃗0, related to each other
by spatial inversion. K⃗0 is a generic point in BZ away
from TR invariant momenta.
We consider an arbitrary perturbation to the system

of two Weyl fermions. As long as the perturbation is
so smooth that the momentum transfer is much smaller
than 2|K⃗0|, the two Weyl fermions remains decoupled.
The effective Hamiltonian of the lefthanded Weyl fermion
under perturbation is HL = !vf σ⃗ · k⃗ + δHL, with δHL

a generic 2 × 2 Hermitian matrix. To the leading order
one can ignore the k dependence and consider δHL as
a constant term. Then δHL can always be expanded
to the form δHL = !vf σ⃗ · a⃗L + a0L with the last term
proportional to identity. Adding this to the Weyl fermion
Hamiltonian we find HL = !vf (k⃗ + a⃗L) · σ⃗ + a0L with
aµL = (a0L, a⃗L) behaving as a gauge field. Similarly
one can define the gauge field aµR minimally coupled
to the righthanded Weyl fermions with the Hamiltonian
HR = −!vf (k⃗ + a⃗R) · σ⃗ + a0R. The two Weyl fermions
can be described together by a 4× 4 Hamiltonian:

H = !vf
(

(k⃗ + A⃗) · σ⃗τz + a⃗ · σ⃗
)

+ a0τz +A0 (1)

with Aµ = (aµL + aµR)/2 behaving like the electromag-
netic gauge field, and aµ = (aµL − aµR)/2 the chiral
gauge field. Aµ and aµ have different properties under P
and TR. For example if the perturbation we consider is
a fluctuation of a ferromagnetic moment, only a⃗ will be
induced which is TR odd and P even.
As known from the quantum field theory, when a Weyl

fermion is coupled to a gauge field, the charge conser-
vation is broken at the quantum field level, leading to
the axial anomaly[1, 24], which can be described by the

anomaly equation ∂µjµL(R) = (−) 1
32π2 ϵλρµνf

L(R)
λρ fL(R)

µν

where fL(R)
µν = ∂µaνL(R)−∂νaµL(R). Since the gauge field

aµL(R) of lefthanded (righthanded) Weyl fermion is re-
lated to the gauge field Aµ and aµ, the anomaly equation
can also be rewritten as ∂µjµL(R) = (−) 1

32π2 ϵλρµν (Fλρ +
(−)fλρ)(Fµν+(−)fµν), where Fµν = ∂µAν−∂νAµ is elec-
tromagnetic field strength and fµν = ∂µaν−∂νaµ is chiral
gauge field strength. Let’s define the charge current as
jµ = jµL+ jµR and the axial current as jµ5 = jµR− jµL.
When A⃗ and a⃗ coexist, we find both the axial current
and charge current are nonconserved with the anomaly
equations

∂µj
µ5 = −

1

16π2
ϵλρµν(FαβFµν + fλρfµν), (2)

∂µj
µ =

1

8π2
ϵλρµνfλρFµν . (3)

The equation (2) is the axial current anomaly[4, 21]
but with the additional term induced by chiral gauge
field, while the equation (3) indicates the conservation of
charge current is also broken due to the combination ef-
fect of chiral gauge field and electromagnetic field, which

(a)

kz kz

E E

(b) (c)R

FIG. 1: (a) “Chiral magnetic field” can be generated by
the magnetic vortex configuration in a topological insulator
cylinder. Here the vector b⃗ indicates the direction of the “chi-
ral magentic field”. The Landau level spectrum of a massless
Dirac fermion is plotted (b) for a uniform magnetic field B⃗

and (c) for a uniform “chiral magentic field” b⃗.

is the main focus of this paper. At the first glance, the
breaking of the charge conservation seems something un-
physical. Here we emphasize that the Weyl fermion de-
scription is only a low energy effective theory and the
high energy part is not taken into account. Let’s de-
fine jµb = − 1

2π2 ϵµνλρaν∂λAρ, and the right-hand side of
equation (3) can be written as a total derivative of jµb ,
and the charge conservation law ∂µ (jµ + jµb ) = 0 is re-
covered if jµb is regarded as a current from the high en-
ergy part which is neglected in our description. Actu-
ally we notice that the spatial component of jµb is given

by j⃗b = − 1
2π2 a⃗ × E⃗ with the electric field E⃗, exactly

corresponding to the anomalous Hall response of Weyl
fermion, as first derived in Ref [20]. To make our dis-
cussion concrete, we first propose a realization of Weyl
fermions and chiral gauge field in magnetically doped
topological insulators, before discussing the physical con-
sequence of this anomaly equation.

Material realization - It is first suggested that Weyl
fermions can be realized in pyrochlore iridates[12], and
later another material HgCr2Se4 is also proposed[13].
However both the materials include multiple Weyl
fermions with the number larger than 2, making the sys-
tem complicated, therefore it is desired to have a system
with the minimal number of Weyl fermions, which actu-
ally can be achieved by magentically doped topological
insulators[14, 16]. By substituting the atoms, it is pos-
sible to tune the band gap of topological insulators, and
even induce the phase transition between trivial and non-
trivial phases, which has been realized in TlBi(S1−δSeδ)2
recently[25–27]. Near the transition point, the bulk gap
is minimized and can be overcomed by the exchange cou-
pling from magnetic doping. The ferromagnetism in the
Cr or Fe doped Bi2Te3 and Sb2Te3 has been observed
in experiment[28–30], therefore the magnetically doped
Bi2Se3 and TlBiSe2 family of materials are the suitable
platform for the realization of minimal number of Weyl
fermions. Here we adopt the four band model[31, 32]

Chao-Xing Liu et al, 2012magnetic fluctuations 
generate a dynamical 

chiral gauge field for Weyl 
fermions, by shifting Weyl 

points
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Magnetic Weyl semimetals

generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.
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Magnetic Weyl semimetals

generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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structure of TaAs calculated by GGA with the spin-orbit coupling.
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those
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FIG. 2. (Color online) Mean-field phase diagram (toxy = 1) as
a function of U , the Hubbard coupling, and the direct hopping
parameters. The magnetic transitions from the TIs (metal) are first
(second) order.

bulk gap in the former. Second, the magnetic phase transition
resulting from increasing U in the metal (TI) is second (first)
order. Also, the magnetic order emerging from the TIs differs
from the one found upon increasing U in the metal. In the
latter case, we find an all-in/all-out configuration, while in
the former, the ground state is threefold degenerate (modulo
the trivial degeneracy j → − j ): all three states result from the
all-in/all-out state by performing π/2 rotations on the moments
in the unit cell. These rotations occur within either one of the
planes bisecting the three triangles meeting at each corner
of the tetrahedron. The order emergent in both TI states is the
same. In Sec. IV, we discuss how the different magnetic orders
and the position of the transitions are actually connected to the
corresponding ordering in the spin model obtained at large
U : as tσ is tuned, the induced Dzyaloshinskii-Moriya (DM)
interaction alternates between the only two symmetry-allowed
possibilities on the pyrochlore lattice, leading to different
ordering.

C. Topological semimetal

By examining the spectra of the ordered phases, we discover
that the so-called topological semimetal (TSM) is realized23

in the range tσ ! −1.67 and for a finite window of U .
This semimetallic phase has a Fermi “surface” composed of
points, each with a linearly dispersive spectrum of Weyl or
two-component fermions, and may be considered as a three-
dimensional (3D) version of the Dirac points of graphene. The
Hamiltonian near one such Weyl point takes the form

H = v0 · q +
3∑

i=1

vi · qσi , (4)

where q = k − k0 is the deviation from the Weyl point at k0.
The Pauli matrices σi represent the two bands involved in the
touching, not (pseudo)spin. One can assign a chiral “charge” to
these fermions via the triple product of the three velocities: c =
sgn(v1 · v2 × v3). The massless nature of the two-component
Weyl fermions is robust against local perturbations, which is
not the case in two dimensions (2D). As explained in Ref. 11,

FIG. 3. (Color online) Evolution of the spectrum as a function of
U . At intermediate U , in (a), we can see a Weyl point along the # − L

line, while in (b), the spectrum naively seems insulating because the
Weyl points lie away from high-symmetry k points. The dashed line
is the Fermi level.

the only way to introduce a gap is to make two Weyl fermions
with opposite chirality meet at some point in the Brillouin zone
(BZ). For this reason, they are topological objects (see also the
discussion below regarding the surface states). Further details
relating to the TSM can be found in Refs. 11,12,19,24, and 25.

The TSM appears in for both AF orders. In both cases, we
find a total of eight Weyl points coming necessarily in four
inversion-symmetry related pairs. The location and migration
of these Weyl points depends on the magnetic order. Let us
first examine the TSM phase present in the all-in/all-out state.
In this case, the eight Weyl points are born out of the quadratic
touching at the # point as the local moments spontaneously and
continuously acquire a finite value with increasing U > Uc.
Each pair of Weyl points lies on one of the four high-symmetry
lines joining # to the four L points, as can be seen in Fig. 3.
For this reason, we only get 8 touchings, in contrast to Ref. 11,
where 24 Weyl points are obtained. In their case, they live off
the high-symmetry lines so that each point is tripled by the
threefold rotational symmetries about the # − L lines. Weyl
points of opposite chirality annihilate at the four L points as U
is increased. As they annihilate and create a gap, the parities
of the highest occupied states at these TRIMs change sign.

Let us now consider the TSM arising from the TI, where
we again have eight Weyl points. The major difference is that
they do not occur along high-symmetry lines, as can be seen
in Fig. 3. We do not get 24 Weyl points because the magnetic
order breaks the threefold rotational symmetries, which are
preserved by the all-in/all-out state. We have explicitly located
the Weyl points by looking at both the spectrum and density
of states, which shows a characteristic (E − EF )2 scaling.

The Weyl points do not annihilate at TRIMs, in contrast
to the noncollinear TSM. As a result, there is no parity flip
associated with the termination of the TSM phase when, upon
increasing U , the system becomes insulating.
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FIG. 1. (color online). (a) Pyrochlore lattice formed by Ir
atoms with arrows representing spin moments in the all-in/all-
out magnetic structure. (b) fcc unit cell with the local coor-
dinate axes and the energy diagram under SOC (⇣) and the
trigonal crystal field (�tri). (c) LDA band structure together
with the density of states projected on the je↵ basis. The
broken line shows the total density of states.

tional [29, 30]. We use the code QMAS (Quantum MA-
terials Simulator) [31], which is based on the projector
augmented wave method [32], and the two-component
formalism [33, 34]. The experimental crystal structure
at 290 K is taken from Ref. 35. In our DMFT calcula-
tions, electron correlation e↵ects are taken into account
by introducing the Slater-Kanamori interaction
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in the standard parameterization U
↵↵↵↵

= U , U
↵�↵�

=
U � 2JH, U

↵��↵

= U
↵↵��

= JH (↵ 6= �), with ↵ (�)
and � (�0) being orbital and spin indices, respectively.
U and JH are the on-site repulsion and the Hund’s cou-
pling, respectively. We choose J/U = 0.1, which is moti-
vated by a first-principles estimate for the related com-
pound Na2IrO3 (U=2.72 eV, JH = 0.23 eV) [27]. Within
DMFT, one has to solve a three-orbital quantum impu-
rity problem with o↵-diagonal and complex hybridization
functions. We employ a numerically exact continuous-
time quantum Monte Carlo impurity solver based on the
hybridization expansion [36, 37]. In previous studies, the
quantum impurity models for 5d electrons have been sim-
plified to avoid a severe sign problem, e.g., by omitting
o↵-diagonal hybridization functions and some interaction
terms in the je↵ basis [38]. Since pyrochlore iridates have
large inter-band hybridizations, we solve our impurity
problem without such approximations. The sign prob-
lem is reduced by rotating the single-particle basis of the
hybridization function [39].

Figure 1(c) shows the computed LDA band structure.
The upper half-filled manifold, which is usually identified
as the je↵=1/2 manifold, has an overlap with the lower
manifold in energy space, although the bands are sepa-
rated at each k point. The je↵=1/2 manifold has four
Kramers degenerate bands since a unit cell contains four
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U (eV)
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100
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300
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T
(K

)

(a)

all-in/all-out order

metal insulator

FIG. 2. (color online). (a) U -T phase diagram. There is a
first-order transition between the magnetic insulator and the
paramagnetic metal at low T and small U . The blue shaded
region denotes the hysteresis region associated with this tran-
sition. The metal-insulator crossover in the high-T param-
agnetic phase is shown by a broken line. The hashed region
represents the first-order Mott transition and its hysteresis
region in paramagnetic DMFT calculations. (b) temperature
dependence of the angular and magnetic moment along the
local [111] axis and the spectral weight at ! = 0. The moment
values of the je↵=1/2 and �1 doublets are shown by dotted
and broken lines, respectively (see the text).

Ir atoms. We constructed a tight-binding model based on
t2g-orbital-like maximally localized Wannier functions.
The SOC ⇣ and the trigonal crystal field �tri are es-
timated to be ⇣ = 0.40 eV and �tri = 0.23 eV [40].
These values are consistent with an estimate by a quan-
tum chemistry calculation [24]. As shown in Fig. 1(b),
the t2g manifold splits into three doublets under ⇣ and
�tri. The wavefunction of the highest doublet �1 is given
by �1± = �0.977|1/2,±1/2i�0.212|3/2,±1/2i in the je↵
basis |je↵ , j111e↵ i. We denote by ĵ111e↵ the e↵ective angu-
lar momentum along the local [111] axis [see Fig. 1(a)].
The |1/2,±1/2i have about 50% reduced spin and or-
bital moments compared to the ideal atomic values 1/3µB

and 2/3µB, because the Wannier functions have substan-
tial weights on neighboring oxygen atoms. On the other
hand, the magnetic moments are enhanced by the hy-
bridization between the je↵=1/2 and je↵=3/2 manifolds
by �tri. As a result, the doublet �1 has spin and orbital
moments of 0.346µB and 0.422µB. To illustrate the ef-
fects of itinerancy, we plot the density of states projected
on the je↵ basis. The contributions of |1/2,±1/2i and
|3/2,±3/2i, which are not mixed by �tri, have compara-
ble weight near the Fermi level, which indicates that the
inter-atomic hybridization also plays a substantial role.

Next, we discuss the U -T phase diagram obtained by
the DMFT calculations [Fig. 2(a)]. There is a dome-
shaped all-in/all-out magnetically ordered phase at large

H. Shinaoka et al, 2015
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[10,12–14], while Pr2Ir2O7 is metallic down to 0.3 K and
shows no long-range magnetic ordering except for the
freezing of Pr-4f or Ir-5d moments at 0.12 K [15].
Despite these experimental investigations on the electronic
or magnetic properties for these systems, the origin of MIT
has been left elusive.

In this study, we have systematically investigated the
evolution of the charge dynamics as well as the transport,
magnetic, and thermal properties in the course of MIT for
the pyrochlore-type Nd2Ir2O7 and its Rh-doped analogs
Nd2ðIr1"xRhxÞ2O7. Rh doping is done to finely tune the
interplay between the SOI and the electron correlation, and
hence to drive the insulator-metal transition at the ground
state. The observed features suggest that the MITs for the
present system can be viewed as the phase changes among
the correlated metal, the Weyl semimetal, and the narrow
gap Mott insulator, as characterized by the strong SOI and
electron correlation.

The high-quality polycrystalline samples of
Nd2ðIr1"xRhxÞ2O7 with x ¼ 0, 0.02, 0.05, and 0.10 were
prepared by a solid-state reaction under high pressure
(3 GPa and 1200 %C). The dense and hard samples with
least grain-boundary effect as prepared by the high-
pressure method are particularly suitable for the optical
reflectance and transport measurements. We have con-
firmed by powder x-ray diffraction that all the samples
imply no detectable impurity phase, and the lattice con-
stant of the Rh-doped compounds satisfies Vegard’s law, as
shown in Fig. 1(f). The resistivity, specific heat, and mag-
netization were measured with the physical property mea-
surement system (Quantum Design). Reflectivity spectra in
the temperature range from 5 to 290 K were measured
between 0.005 and 5 eV by Fourier transform- and grating-
type spectrometers. The spectra above 5 eV were measured
at room temperature with the use of synchrotron radiation
at UV-SOR, Institute for Molecular Science. The optical
conductivity spectra were obtained by Kramers-Kronig
(KK) analysis with suitable extrapolation procedures.
The optical conductivity spectra below 10 meV were ob-
tained by terahertz (THz) time-domain spectroscopy
(TDS) in a transmission configuration [16] without resort-
ing to KK analysis (for details of the experimental setup for
the present THz TDS, see Sec. II Ref. [16]).

The temperature dependence of resistivity for Nd2Ir2O7

(x ¼ 0) is shown in Fig. 1(a), along with those for x¼0:02,
0.05, and 0.10. First, we focus on the MIT in Nd2Ir2O7

(x ¼ 0). With lowering temperature, the resistivity for
x ¼ 0 monotonically decreases down to 50 K and then
shows a divergent behavior below 30 K. In Fig. 1(b), we
show the temperature dependence of magnetization mea-
sured by field-cooling (FC) and zero-field-cooling (ZFC)
processes. The magnetization curve measured in the FC
process shows an upturn at TN, while that measured in the
ZFC process shows no clear anomaly with previous reports
[10]. As shown in Fig. 1(g), the ordering of the Ir-5d

moment manifests itself as a !-type peak at TN in the
specific heat curve for x ¼ 0. A recent neutron scattering
study indicates that the Nd-4f moment starts to order
below 15 K [11]. Since the energy of the crystal field
(CF) splitting between the ground state and the first excited
state is estimated to be 26 meV (& 300 K) [11], a broad
hump-like structure around 10 K may be attributed not to
CF excitation but to the magnetic ordering of Nd-4f mo-
ments. We note that the entropy change except the contri-
bution from phonon below 20 K is larger than R ln2, the
value corresponding to the entropy released by the mag-
netic ordering of Nd-4f moments as observed in spin-ice
systems [17]. The excess entropy change may originate
from the coupled Ir-5d moments, reflecting the exchange
interaction between Nd-4f and Ir-5d moments.
Figure 2(a) displays the optical conductivity spectra for

Nd2Ir2O7 (x ¼ 0) at various temperatures above 50 K as
well as at 10 K. At 290 K, a broad absorption band is
observed around 1 eV, as shown in the inset to Fig. 2(a).
Since the optical conductivity spectra above 1 eV show
minimal temperature dependence, we henceforth focus on
the low energy range below 1 eV. At room temperature, the
spectral shape below 0.5 eV is fairly flat except for the
sharp peaks due to the optical phonons below 0.08 eV,

FIG. 2 (color online). (a) Optical conductivity spectra at vari-
ous temperatures for Nd2Ir2O7. The filled circles denote dc
conductivities. The inset shows the spectra at 290 K and 50 K
up to 2 eV. The triangle indicates the absorption band around
1 eV. (b) Optical conductivity spectra below 50 K. The inset
show the magnified view of the spectra in the far-infrared region
as deduced by time-domain terahertz spectroscopy.
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those
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Weyl points move to zone boundary and annihilate with increasing order?
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2

TOPOLOGICAL AND MAGNETIC PHASES OF . . . PHYSICAL REVIEW B 85, 045124 (2012)

FIG. 2. (Color online) Mean-field phase diagram (toxy = 1) as
a function of U , the Hubbard coupling, and the direct hopping
parameters. The magnetic transitions from the TIs (metal) are first
(second) order.

bulk gap in the former. Second, the magnetic phase transition
resulting from increasing U in the metal (TI) is second (first)
order. Also, the magnetic order emerging from the TIs differs
from the one found upon increasing U in the metal. In the
latter case, we find an all-in/all-out configuration, while in
the former, the ground state is threefold degenerate (modulo
the trivial degeneracy j → − j ): all three states result from the
all-in/all-out state by performing π/2 rotations on the moments
in the unit cell. These rotations occur within either one of the
planes bisecting the three triangles meeting at each corner
of the tetrahedron. The order emergent in both TI states is the
same. In Sec. IV, we discuss how the different magnetic orders
and the position of the transitions are actually connected to the
corresponding ordering in the spin model obtained at large
U : as tσ is tuned, the induced Dzyaloshinskii-Moriya (DM)
interaction alternates between the only two symmetry-allowed
possibilities on the pyrochlore lattice, leading to different
ordering.

C. Topological semimetal

By examining the spectra of the ordered phases, we discover
that the so-called topological semimetal (TSM) is realized23

in the range tσ ! −1.67 and for a finite window of U .
This semimetallic phase has a Fermi “surface” composed of
points, each with a linearly dispersive spectrum of Weyl or
two-component fermions, and may be considered as a three-
dimensional (3D) version of the Dirac points of graphene. The
Hamiltonian near one such Weyl point takes the form

H = v0 · q +
3∑

i=1

vi · qσi , (4)

where q = k − k0 is the deviation from the Weyl point at k0.
The Pauli matrices σi represent the two bands involved in the
touching, not (pseudo)spin. One can assign a chiral “charge” to
these fermions via the triple product of the three velocities: c =
sgn(v1 · v2 × v3). The massless nature of the two-component
Weyl fermions is robust against local perturbations, which is
not the case in two dimensions (2D). As explained in Ref. 11,

FIG. 3. (Color online) Evolution of the spectrum as a function of
U . At intermediate U , in (a), we can see a Weyl point along the # − L

line, while in (b), the spectrum naively seems insulating because the
Weyl points lie away from high-symmetry k points. The dashed line
is the Fermi level.

the only way to introduce a gap is to make two Weyl fermions
with opposite chirality meet at some point in the Brillouin zone
(BZ). For this reason, they are topological objects (see also the
discussion below regarding the surface states). Further details
relating to the TSM can be found in Refs. 11,12,19,24, and 25.

The TSM appears in for both AF orders. In both cases, we
find a total of eight Weyl points coming necessarily in four
inversion-symmetry related pairs. The location and migration
of these Weyl points depends on the magnetic order. Let us
first examine the TSM phase present in the all-in/all-out state.
In this case, the eight Weyl points are born out of the quadratic
touching at the # point as the local moments spontaneously and
continuously acquire a finite value with increasing U > Uc.
Each pair of Weyl points lies on one of the four high-symmetry
lines joining # to the four L points, as can be seen in Fig. 3.
For this reason, we only get 8 touchings, in contrast to Ref. 11,
where 24 Weyl points are obtained. In their case, they live off
the high-symmetry lines so that each point is tripled by the
threefold rotational symmetries about the # − L lines. Weyl
points of opposite chirality annihilate at the four L points as U
is increased. As they annihilate and create a gap, the parities
of the highest occupied states at these TRIMs change sign.

Let us now consider the TSM arising from the TI, where
we again have eight Weyl points. The major difference is that
they do not occur along high-symmetry lines, as can be seen
in Fig. 3. We do not get 24 Weyl points because the magnetic
order breaks the threefold rotational symmetries, which are
preserved by the all-in/all-out state. We have explicitly located
the Weyl points by looking at both the spectrum and density
of states, which shows a characteristic (E − EF )2 scaling.

The Weyl points do not annihilate at TRIMs, in contrast
to the noncollinear TSM. As a result, there is no parity flip
associated with the termination of the TSM phase when, upon
increasing U , the system becomes insulating.

045124-3
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If so, Weyl points are too mobile!
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• Seems that the antiferromagnetic phase forms a 
closed region at small B and T.
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semimetal? Maybe a magnetic Weyl state?
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• Is the absence of Weyl points really due to 

this mean-field picture of moving nodes?
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FIG. 2: (a) Brillouin zone for Nd
2

Ir
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O
7

. (b) Band dispersion
map crossing �, divided by the Fermi function at the mea-
sured temperature (T=75K). The arrow indicates the inten-
sities implying an expected conduction-band. EDCs (T=15K)
measured at (k

x

, k
y

)=(0,0) with low-energy photons (c1) and
high-energy photons (d1), corresponding to k

(111)

s in the 1st
and 3rd Brillouin zone, respectively. (c2,d2) The same data
as in (c1) and (d2), respectively, but symmetrized about E

F

.
Arrows and bars mark peaks in the spectra.

the metallic phase of pyrochlore iridiates.

The special features of Nd
2

Ir
2

O
7

beyond those of
Pr

2

Ir
2

O
7

are expected to be observed in the magnetic
phase. In Fig. 3, we examine the temperature evolu-
tion of band dispersion through T

MI

, measured along a
momentum cut across � (a light blue arrow in the inset
of Fig.3(c)). Figure 3(a1) plot the dispersion maps for
MI36K symmetrized about E

F

. To visualize the temper-
ature variation more clearly, we take the 2nd derivative
for these images in Fig. 3(a2). We find that the Fermi
node state becomes gapped with decreasing temperature
below T

MI

(⇠ 36K). The temperature variation is also
seen in the Fermi surface mapping along a k

x

� k
y

sheet
(red plane in the inset of Fig.3(c)); the strong intensity
at � coming from the Fermi node (Fig. 3(d1), T=50K)
vanishes below T

MI

(Fig. 3(d2), T=11K). This behavior
is further examined in Figs. 3(b1) and 3(b2), where the
spectra for T = 47K and 1K are extracted from the im-
ages in Fig.3(a1). The electronic structure in the metallic
phase (Fig. 3(b1)) consists of well-defined quasiparticle
peaks (red bars). In contrast, the insulating phase (Fig.
3(b2)) shows non-dispersive flat band, and only the broad
spectra lacking long-lived elections are detected, pointing
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FIG. 3: (a1) Band dispersion map crossing � at h⌫=10.5eV
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. Blue dashed
curves are a guide for eyes on the band dispersion. (a2) Sec-
ond derivative of the images in (a1). (b1,b2) Symmetrized
EDCs extracted from the images in (a1) for the metallic phase
(T=47K) and the insulating phase (T=1K), respectively. (c)
Temperature dependence of the band dispersion determined
from the spectral peaks or shoulders (red bars in (b1) and
(b2)). (d1,d2) Spectral intensities at E

F

along a momentum
sheet crossing � (red region in the inset of (c)), measured
for the metallic phase (T = 50K) and the insulating phase
(T =11K), respectively.

to the correlation-induced Mott localization. This cir-
cumstance contrasts to the insulating phase of Sr

2

IrO
4

with a clear dispersion of relatively sharp spectra [2]. The
transition with temperature is exhibited in Fig. 3(c), at
which the band dispersions determined from the spectral
peaks (or shoulders) are plotted.

In order to clarify the nature of gap formation
in Nd

2

Ir
2

O
7

, we investigate the detailed variation of
spectral-shape at � upon cooling through the magnetic
transition. Figure 4(a1-c1) plot the symmetrized EDCs
from above to below T

MI

for the three samples (MI19K,
MI25K, and MI36K). The single peak seen in the spec-
tra splits to two peaks (black arrows) upon cooling be-
low T

MI

. Please note that the tracing of peak posi-
tions slightly underestimate the “real” onset temperature
of the gap, especially in the 3D materials with spectra
broadened due to an imperfect sample surface and the k

z

broadening in ARPES. Still we find that the gap opening
occurs with an energy shift of quasiparticle peaks as in a
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FIG. 4: (a1-c1) Temperature evolution of symmetrized EDCs
for three samples (MI19K, MI25K, and MI36K) measured at
the � point. (d1) The same data as in (c1), before sym-
metrization. (a2-d2) The same data as in (a1-c1) without
an o↵set. (e) Temperature dependence of spectral wight loss
(W

loss

) near E
F

. The W
loss

is determined as a negative area of
di↵erence spectra as shown in the inset. (f) Temperature de-
pendence of the magnitude of energy gap (arrows in (a1-c1))
estimated from the spectral peak positions in (a1-c1).

band gap insulator, implying that magnetic order triggers
it [49]. This is actually compatible with a recent discov-
ery of the metal transition driven by an external magnetic
field in Nd

2

Ir
2

O
7

[46, 47], revealing that a destruction of
all-in all-out magnetic configuration restores the metal-
lic transport. With a further decrease of temperature,
our data shows that the quasiparticle peak significantly
suppressed, and it totally disappears at the lowest tem-
perature, leaving only a broad spectrum. This variation
is also visible in the raw EDCs (Fig. 4(d1)). As extracted
in Fig. 4(f), the gap magnitude reaches ⇠30-40meV
at the lowest temperature (T=1K), which is compara-
ble with that estimated by the optical conductivity [32].

We emphasize that the gap formation in Nd
2

Ir
2

O
7

di↵ers
from the Mott insulating case of Nd

2

IrO
3

[33] showing no
change in the gap value across the magnetic transition
temperature. Rather the Nd

2

Ir
2

O
7

seems to stay in the
intermediate regime between Slater-type and Mott-type
insulators, as proposed for the layered iridates [50–53].
The peak suppression is examined in Fig. 4(a2-d2) for

more details, where the spectra of Fig. 4(a1-d1) are nor-
malized to the intensities around -0.3eV and overlapped
with each other. The spectral weight at E

F

is gradu-
ally depleted on cooling down to the lowest temperature.
This feature is more clearly demonstrated in Fig. 4(e) by
plotting a spectral loss near E

F

(W
loss

) associated with
the gap formation; we subtract the spectral intensities
at the highest temperature from those at lower temper-
atures, and estimate an energy integration of negative
values in the di↵erence spectra for each temperature (see
the inset of Fig. 4(e)). The pseudogap-like spectral loss
signifies that the band gap insulator emerging just below
T
MI

develops to Mott insulator in the ground state.
Theory predicts that the all-in all-out magnetic order

converts the semimetallic phase with a quadratic band-
touching to a Weyl semimetal [6, 7, 21, 40]. The clear in-
dication for it was, however, not detected in our ARPES
measurements, presumably because of the following mul-
tiple limitations. Firstly, this state is predicted to be very
sensitive to the Hubbard repulsion U; that is, the Weyl
points move from the � point toward the zone boundary
to pairwise annihilate before an insulating phase eventu-
ally appears at a su�cient U. Consequently the quanti-
tative width of the Weyl state can be extremely narrow
in phase space [17]. Likewise, the Weyl points should
promptly migrate along the (111) direction with temper-
ature, which causes a di�culty in their detection.
The Mott-type localization might also limit the Weyl

semimetal phase in an even narrower phase space. Ac-
cording to the DMFT calculations [48], the Weyl state
is easily taken over by the correlation-induced Mott in-
sulator at low temperatures. Importantly our ARPES
data show such an electron localization with poorly de-
fined excitations at low temperatures. Nonetheless, our
data show that the energy gap opens while maintaining
the quasiparticle peak in the spectra (see Figs.4(a-c)),
even though this situation is fulfilled only slightly be-
low T

MI

. This implies that there is a crossover from
Slater- to Mott-type insulating state in the magnetic
phase in Nd

2

Ir
2

O
7

, and the well-defined excitations of
Weyl fermions should be limited in a very narrow re-
gion of temperature, where the quasiparticles can sur-
vive. While the spin-resolved ARPES would be able to
distinguish these states, it is beyond the scope of this
paper.
In conclusion, we use ARPES and find that the metal-

lic state of Nd
2

Ir
2

O
7

has a quadratic Fermi node touching
the Fermi level at �. We observe a drastic variation in
the spectral shape upon cooling through the transition

T>Tc: like Pr

T=Tc: no precursor - Slater

T < Tc: gap developing

T << Tc: remarkably flat

loss of quasiparticle peak

Slater to Mott 
crossover?

Rather than moving nodes, we observe loss of quasiparticle as gap opens

M. Nakayama  et al, arXiv:1603.06095



ARPES
• Is the absence of Weyl points really due to 

this mean-field picture of moving nodes?
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FIG. 2: (a) Brillouin zone for Nd
2

Ir
2

O
7

. (b) Band dispersion
map crossing �, divided by the Fermi function at the mea-
sured temperature (T=75K). The arrow indicates the inten-
sities implying an expected conduction-band. EDCs (T=15K)
measured at (k

x

, k
y

)=(0,0) with low-energy photons (c1) and
high-energy photons (d1), corresponding to k

(111)

s in the 1st
and 3rd Brillouin zone, respectively. (c2,d2) The same data
as in (c1) and (d2), respectively, but symmetrized about E

F

.
Arrows and bars mark peaks in the spectra.

the metallic phase of pyrochlore iridiates.

The special features of Nd
2

Ir
2

O
7

beyond those of
Pr

2

Ir
2

O
7

are expected to be observed in the magnetic
phase. In Fig. 3, we examine the temperature evolu-
tion of band dispersion through T

MI

, measured along a
momentum cut across � (a light blue arrow in the inset
of Fig.3(c)). Figure 3(a1) plot the dispersion maps for
MI36K symmetrized about E

F

. To visualize the temper-
ature variation more clearly, we take the 2nd derivative
for these images in Fig. 3(a2). We find that the Fermi
node state becomes gapped with decreasing temperature
below T

MI

(⇠ 36K). The temperature variation is also
seen in the Fermi surface mapping along a k

x

� k
y

sheet
(red plane in the inset of Fig.3(c)); the strong intensity
at � coming from the Fermi node (Fig. 3(d1), T=50K)
vanishes below T

MI

(Fig. 3(d2), T=11K). This behavior
is further examined in Figs. 3(b1) and 3(b2), where the
spectra for T = 47K and 1K are extracted from the im-
ages in Fig.3(a1). The electronic structure in the metallic
phase (Fig. 3(b1)) consists of well-defined quasiparticle
peaks (red bars). In contrast, the insulating phase (Fig.
3(b2)) shows non-dispersive flat band, and only the broad
spectra lacking long-lived elections are detected, pointing
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FIG. 3: (a1) Band dispersion map crossing � at h⌫=10.5eV
(a light blue arrow in the inset of (c)) for various tempera-
tures. The images are symmetrized about E

F

. Blue dashed
curves are a guide for eyes on the band dispersion. (a2) Sec-
ond derivative of the images in (a1). (b1,b2) Symmetrized
EDCs extracted from the images in (a1) for the metallic phase
(T=47K) and the insulating phase (T=1K), respectively. (c)
Temperature dependence of the band dispersion determined
from the spectral peaks or shoulders (red bars in (b1) and
(b2)). (d1,d2) Spectral intensities at E

F

along a momentum
sheet crossing � (red region in the inset of (c)), measured
for the metallic phase (T = 50K) and the insulating phase
(T =11K), respectively.

to the correlation-induced Mott localization. This cir-
cumstance contrasts to the insulating phase of Sr

2

IrO
4

with a clear dispersion of relatively sharp spectra [2]. The
transition with temperature is exhibited in Fig. 3(c), at
which the band dispersions determined from the spectral
peaks (or shoulders) are plotted.

In order to clarify the nature of gap formation
in Nd

2

Ir
2

O
7

, we investigate the detailed variation of
spectral-shape at � upon cooling through the magnetic
transition. Figure 4(a1-c1) plot the symmetrized EDCs
from above to below T

MI

for the three samples (MI19K,
MI25K, and MI36K). The single peak seen in the spec-
tra splits to two peaks (black arrows) upon cooling be-
low T

MI

. Please note that the tracing of peak posi-
tions slightly underestimate the “real” onset temperature
of the gap, especially in the 3D materials with spectra
broadened due to an imperfect sample surface and the k

z

broadening in ARPES. Still we find that the gap opening
occurs with an energy shift of quasiparticle peaks as in a
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FIG. 4: (a1-c1) Temperature evolution of symmetrized EDCs
for three samples (MI19K, MI25K, and MI36K) measured at
the � point. (d1) The same data as in (c1), before sym-
metrization. (a2-d2) The same data as in (a1-c1) without
an o↵set. (e) Temperature dependence of spectral wight loss
(W

loss

) near E
F

. The W
loss

is determined as a negative area of
di↵erence spectra as shown in the inset. (f) Temperature de-
pendence of the magnitude of energy gap (arrows in (a1-c1))
estimated from the spectral peak positions in (a1-c1).

band gap insulator, implying that magnetic order triggers
it [49]. This is actually compatible with a recent discov-
ery of the metal transition driven by an external magnetic
field in Nd

2

Ir
2

O
7

[46, 47], revealing that a destruction of
all-in all-out magnetic configuration restores the metal-
lic transport. With a further decrease of temperature,
our data shows that the quasiparticle peak significantly
suppressed, and it totally disappears at the lowest tem-
perature, leaving only a broad spectrum. This variation
is also visible in the raw EDCs (Fig. 4(d1)). As extracted
in Fig. 4(f), the gap magnitude reaches ⇠30-40meV
at the lowest temperature (T=1K), which is compara-
ble with that estimated by the optical conductivity [32].

We emphasize that the gap formation in Nd
2

Ir
2

O
7

di↵ers
from the Mott insulating case of Nd

2

IrO
3

[33] showing no
change in the gap value across the magnetic transition
temperature. Rather the Nd

2

Ir
2

O
7

seems to stay in the
intermediate regime between Slater-type and Mott-type
insulators, as proposed for the layered iridates [50–53].
The peak suppression is examined in Fig. 4(a2-d2) for

more details, where the spectra of Fig. 4(a1-d1) are nor-
malized to the intensities around -0.3eV and overlapped
with each other. The spectral weight at E

F

is gradu-
ally depleted on cooling down to the lowest temperature.
This feature is more clearly demonstrated in Fig. 4(e) by
plotting a spectral loss near E

F

(W
loss

) associated with
the gap formation; we subtract the spectral intensities
at the highest temperature from those at lower temper-
atures, and estimate an energy integration of negative
values in the di↵erence spectra for each temperature (see
the inset of Fig. 4(e)). The pseudogap-like spectral loss
signifies that the band gap insulator emerging just below
T
MI

develops to Mott insulator in the ground state.
Theory predicts that the all-in all-out magnetic order

converts the semimetallic phase with a quadratic band-
touching to a Weyl semimetal [6, 7, 21, 40]. The clear in-
dication for it was, however, not detected in our ARPES
measurements, presumably because of the following mul-
tiple limitations. Firstly, this state is predicted to be very
sensitive to the Hubbard repulsion U; that is, the Weyl
points move from the � point toward the zone boundary
to pairwise annihilate before an insulating phase eventu-
ally appears at a su�cient U. Consequently the quanti-
tative width of the Weyl state can be extremely narrow
in phase space [17]. Likewise, the Weyl points should
promptly migrate along the (111) direction with temper-
ature, which causes a di�culty in their detection.
The Mott-type localization might also limit the Weyl

semimetal phase in an even narrower phase space. Ac-
cording to the DMFT calculations [48], the Weyl state
is easily taken over by the correlation-induced Mott in-
sulator at low temperatures. Importantly our ARPES
data show such an electron localization with poorly de-
fined excitations at low temperatures. Nonetheless, our
data show that the energy gap opens while maintaining
the quasiparticle peak in the spectra (see Figs.4(a-c)),
even though this situation is fulfilled only slightly be-
low T

MI

. This implies that there is a crossover from
Slater- to Mott-type insulating state in the magnetic
phase in Nd

2

Ir
2

O
7

, and the well-defined excitations of
Weyl fermions should be limited in a very narrow re-
gion of temperature, where the quasiparticles can sur-
vive. While the spin-resolved ARPES would be able to
distinguish these states, it is beyond the scope of this
paper.
In conclusion, we use ARPES and find that the metal-

lic state of Nd
2

Ir
2

O
7

has a quadratic Fermi node touching
the Fermi level at �. We observe a drastic variation in
the spectral shape upon cooling through the transition

T>Tc: like Pr

T=Tc: no precursor - Slater

T < Tc: gap developing

T << Tc: remarkably flat

loss of quasiparticle peak

Slater to Mott 
crossover?

Rather than moving nodes, we observe loss of quasiparticle as gap opens

M. Nakayama  et al, arXiv:1603.06095

This is one of several indications of 
strong correlation effects, that 
suggest that there may be subtleties 
beyond the mean field picture



Prospects
It may be possible to weaken the order 

sufficiently to expose the Weyl points, and 
perhaps also explore quantum criticality3
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FIG. 2: (color online). (a) Temperature dependence of resis-
tivity for (SmyNd1−y)2Ir2O7, and (b) its enlarged view in the
temperature range from 0 K to 200 K. (c) Temperature de-
pendence of resistivity for (Nd1−xPrx)2Ir2O7. The solid lines
are resistivity of trained state measured at 0 T on warming
run after 14 T-field cooling and the broken ones are that of
untrained state measured after zero-field cooling. The inset
shows the magnetic field dependence of resistivity for several
compositions. Starting from the zero field-cooled (untrained)
state, these curves were measured for increasing and decreas-
ing magnetic field scans as shown by arrows.

order nature accompanying T hysteresis is not discerned
apart from the sharp change of resistivity in the present
system. Since the similar reduction of resistivity in an
intermediate T region was also observed in the study on
pressure effect for R=Eu[40], the observed paramagnetic
insulator-metal transition can be attributed neither to
the increased disorder nor to the phase separation.
Figure 2 (c) displays the T dependence of resistivity for

(Nd1−xPrx)2Ir2O7. The resistivity for x=0-0.7 conspicu-
ously increases below respective TN. Importantly, all the
AIAO insulators of (Nd1−xPrx)2Ir2O7 show the differ-
ence of resistivity between the trained (14 T-magnetic-
field cooled) and untrained (zero-field cooled) states at-
tributable to the existence of metallic state on the AIAO
DWs[33, 34]. The realization of metallic DWs is mani-
fested also by the magnetic field dependence of resistiv-
ity shown in the inset of Fig. 2 (c); irreversible behav-
iors of resistivity between field increasing and decreasing
scans starting from the untrained states are due to the
field alignment of the AIAO-type magnetic domain. The
critical field for such elimination of DWs decreases as
x increases, indicating the gradual decline of magnetic
anisotropic energy.
The r vs. T phase diagram for (SmyNd1−y)2Ir2O7

and (Nd1−xPrx)2Ir2O7 based on the transport results
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FIG. 3: (color online). (a) Contour map in the plane
of R ionic radius (r) and temperature for resistivity in
(SmyNd1−y)2Ir2O7 and (Nd1−xPrx)2Ir2O7 by the interpola-
tion of the experimental data shown in Fig. 2. Dots denote
the transition temperature. PM, PI, and AFI stand for the
paramagnetic metal, paramagnetic insulator, and antiferro-
magnetic insulator phase, respectively. The broken line as
the border of PI and PM is the guide to the eyes. (b) The
ratio of resistivity between trained (ρt) and untrained (ρut)
state as a function of R ionic radius.

(Figs. 1 and 2) is shown in Fig. 3 (a). Metallic state
with no magnetic order is apparent down to 2 K for
large r (Pr-rich regime; x > 0.8), whereas others ex-
hibit thermal transitions from paramagnetic metal (PM,
dρ/dT > 0) or paramagnetic insulator (PI, dρ/dT < 0)
to antiferrromagnetic insulator (AFI) below TN. In par-
ticular, for (SmyNd1−y)2Ir2O7 (0.6 < y < 0.8) the reen-
trant insulator-metal-insulator transition is observed as
argued above. TN increases rapidly with the decline of
r in the range from 1.121 Å(x=0.7) to 1.079 Å(y=1).
This indicates that the TN is intimately linked to the
U which changes almost linearly with varying r in the
pyrochlore oxides, being consistent with the theoretical
prediction[19].

We have also plotted the ratio of resistivity of trained
to untrained state (ρt/ρut) as a function of r in Fig. 3 (b).
The ρt/ρut can be regarded as the ratio of conductance
between DWs and bulk on the basis of a simple picture of
parallel circuit[33]. The ρt/ρut markedly increases with
decreasing r and reaches maximum at Nd2Ir2O7 likely
due to the smaller value of bulk conductivity. Subse-
quently, it decreases significantly as r decreases, implying
that the conductance of DWs decreases with increasing

K. Ueda et al, 2015
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Three types of topology
Topological Spin Liquid

topology of entanglement

“intrinsic topological 
order”

This type of topological phase can 
only exist with strong correlations. It 
reflects extreme entanglement of the 

many-body states

• Wen (1989): some many-body systems exhibit an “order” which 
is sensitive to the topology of the spatial manifold

• This type of order is completely robust: does not need any 
symmetry

Topological orders through experiments (1990)

Topological order can be defined “experimentally” through two
unusual topological probes (at least in 2D)

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : | ↵i ! | 0
↵i = T↵� | �i

- 90� rotation S : | ↵i ! | 00
↵i = S↵� | �i

• T , S , define topological order “experimentally”.

• T , S is a universal probe for any 2D topological orders, just like
X-ray is a universal probe for any crystal orders.

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement
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break the 2d space: forms a 
gapless edge 

break the 1d curve: forms a 
gapped exotic quasiparticle 



Where is iTO?
• Fractional quantum Hall effect is both 

an iTO state and a TI (Chern insulator)

• Other main candidates are quantum 
spin liquids

 





| i =
ZnCu3(OH)6Cl2

“RVB” state on 
kagomé lattice?

still seeking definitive id
Young Lee, Takashi Imai,...
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and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 
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Non-local excitations

Majorana Flux" e,m

gapless Dirac gapped 
GS 

flux states 



Kitaev Materials
Jackeli, Khaliullin Showed that Kitaev interaction can be 

large in edge-sharing octahedra with 
large spin-orbit-coupling
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Exact spin correlations

�z
i i =

In the soluble model:
• The spin creates two fluxes 
• Spectral weight is zero below the flux gap
• Correlations vanish beyond NNs

gap

very boring

But fortunately it is not physical

J. Knolle et al, 2014



Inexact but correct (universal) answer

Xue-Yang 
Song

Yi-Zhuang 
You

Generically: spin 
correlations are gapless 

and structured

3rd yr ugrad
Peking U.

postdoc
UCSB

(gapless contribution should be added 
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Quantum spin ice
• For non-Kramers ions, e.g. Pr3+

With a lot more work one can show 
that both types of quantum terms 
favor a massive superposition: a 

quantum spin liquid state
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in general, we expect it to 
assist the intrinsic quantum 

exchange terms.

GENERIC QUANTUM SPIN ICE PHYSICAL REVIEW B 86, 104412 (2012)

Finally, to render the mean-field problem solvable, we
replace the constraint |!r| = 1 by the softened constraint
⟨|!r|2⟩ = 1, and implement the latter by including a Lagrange
multiplier term for each sublattice into the action S!.

Using this formulation, the mean-field Hamiltonian allows
one to calculate ⟨HQED⟩ [Eq. (11)] and minimize this varia-
tional energy. We found and compared several self-consistent
solutions of the gMFT equations, which are subsets of the
general Ansatz given above. First, we considered two limits
allowing for pairing, or A-B sublattice mixing, but not both,

(i) ξµ = 0, χ
A(B)
0 ̸= 0, χA(B)

µν ̸= 0, (30)

(ii) ξµ ̸= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both these
cases, we find that the minimum-energy solutions always have
either vanishing pairing/sublattice mixing (i.e., describe the
U (1) QSL) or exhibit spinon condensation.

However, both condensed solutions are unnatural, insofar
as once a single ! field is condensed, all the expectation
values χ

A/B
0 ,χ

A/B
i ,ξµ would be expected to be nonzero.

Guided by the above cases, we found a self-consistent Ansatz
where all these were allowed to be nonvanishing, with the
relations χA

0 = χB
0 ,

∑
µ ̸=ν γµνχ

B
µν =

∑
µ ̸=ν γ ∗

µνχ
A
µν ̸= 0 and

ξ0 = ξi = −ξj = −ξk ̸= 0, for {i,j,k} and permutation of
{1,2,3}. This more general Ansatz describes both condensed
and uncondensed states, and was found to capture all the
physical minimum-energy solutions.

2. Spinon condensation

In the gMFT scheme used here, Higgs phases in which
the single spinon field is condensed, ⟨!r⟩ ̸= 0, also occur.
This may appear surprising since the single spinon field was
not introduced explicitly as an order parameter [see Eqs. (13)
and (14)]. Instead, spinon condensation occurs, as discussed
in Ref. 15, via the same mechanism as does Bose-Einstein
condensation in the noninteracting Bose gas. In particular,
when a condensate is present, the Lagrange multiplier λ adjusts
itself self-consistently so that the minimum energy spinon state
lies, in the thermodynamic limit, at precisely zero energy.
For large but finite volume, a nonintensive part of the λ
leads to and controls the condensate, manifesting itself via
off-diagonal long-range order in the spinon Green’s function.
This is discussed in more detail in Appendix. Captured in this
way, spinon condensation does not introduce any additional
self-consistent variables, and only requires careful treatment
of any zero energy modes and the infinite volume limit. This
in turn means that the above Ansätze describe Higgs phases as
well, for appropriate values of parameters.

C. Gauge mean-field theory phase diagram

We minimized the variational energy using the above
Ansatz numerically (see Appendix for the formulation of the
variational energy). In fact, the self-consistent gMFT equations
are solved for any local minima of the variational energy, so
it is sufficient to search for the global minimum of the latter.
That determines the T = 0 phase diagram as a function of
J±/Jzz > 0 and J±±/Jzz (we assume Jzz > 0 throughout).
Note that by a canonical transformation, S± → ±iS±, we

U 1 QSL AFQ

noncoplanar FQ

Spin Ice

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

J J zz

J
J

zz

FIG. 3. Phase diagram of two dimensionless parameters J±/Jzz

vs J±±/Jzz. Four distinct phases exist: classical spin ice (at the origin),
U (1) QSL, AFQ, and FQ. (more details in the main context)

can always choose J±± > 0, without loss of generality. The
results are shown in Fig. 3.

The full phase diagram contains three distinct phases
in addition to the classical point corresponding to the
nearest-neighbor spin ice: a deconfined U (1) QSL phase
and two Higgs phases, corresponding to XY ferropseudospin
(antiferroquadrupolar) and antiferropseudospin (noncoplanar
ferroquadrupolar) orders. Unfortunately, the Z2 spin liquid
phase with nonzero pairing but a spinon gap is never
the minimum-energy solution. The QSL or Coulomb
phase occurs in the small J±,J±± region, consistent with
perturbative expectations. In this model, infinitesimal J±
and/or J±± interactions melt the classical spin ice, creating
a dynamical photon excitation and emergent quantum
electrodynamics. This phase is found to be more stable against
J±± than to Jz±, the latter having been studied already in
Ref. 15.

The Higgs or ordered phases merit some further description.
With increasing J±/Jzz but J±± = 0, the U (1) QSL phase
remains stable until J±

Jzz
|c ≈ 0.19, at which spinons start to

condense at a wave vector k0 ≡ 0 for both A and B sublattices.
This induces a classical XY order categorized in Table II and
has the ordering structure shown in Fig. 4(a). This phase has
already been obtained by a classical MF analysis,10 and in
gMFT for J±± = 0.15 From Eqs. (17) and (18), the spinon
condensate at k0 yields a ferroic ordering of the XY component
of pseudospins, for instance, given by

⟨S⃗i⟩ ≈
∣∣φk0

∣∣2
x̂i , (32)

for pseudospin on sublattice i. It spontaneously breaks the
threefold rotational symmetry while the twofold rotational
symmetries are preserved. This ferropseudospin ordering
structure is interpreted as an antiferroquadrupolar order for
Pr3+ case as is clear from Eq. (3) and the relation

∑3
i=0 x̂i = 0.

Namely, it produces an f -electron distribution shown in
Fig. 4(a). When J±± > 0 is sufficiently large and J± is small,
the QSL becomes unstable to a different Higgs phase, with
spinon condensation at k̃0 ≡ 2π (100) or the symmetry-related
points, on both A and B sublattices. Note that quantitatively
the QSL phase is wider in the J±± direction than in the J± one:
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Summary
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