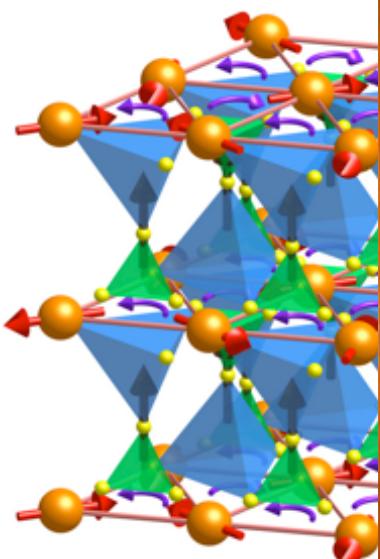
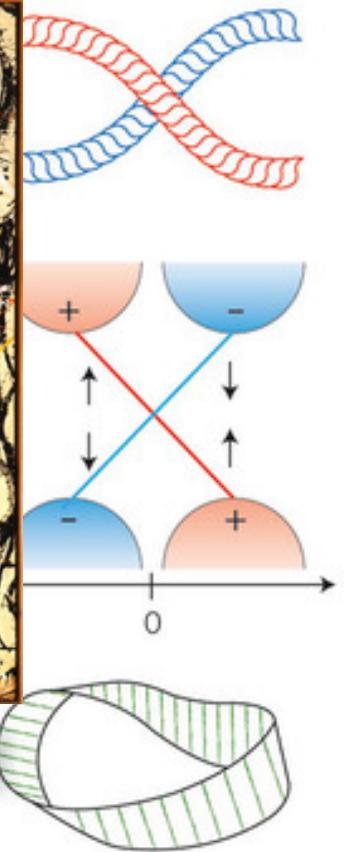


When topology meets SCES

Leon Balents, KITP

Seeking a convergence?



Jackson Pollack, Convergence, 1952

SCES

Topology

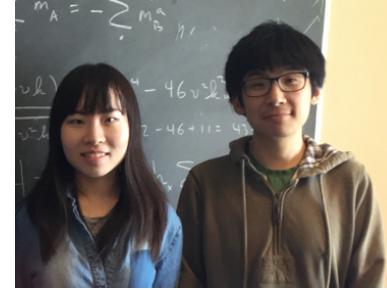
People

Ru Chen

Lucile
Savary

Eun-Gook
Moon

Sung-Bin
Lee



宋雪洋 **尤亦庄**
Xue-Yang Yi-Zhuang
Song You

T. Hsieh

H. Ishizuka

Jianpeng Liu

S. Nakatsuji

T. Kondo

Z. Tian

S. Shin

Yong-Baek Kim

Shigeki Onoda

Jay-Z

Outline

- Where can correlations enrich topology?
- Three types of topology: band topology, Berry phase topology, intrinsic topological order
- Correlations in two of three:
 - Correlated Weyl semimetals
 - Quantum spin liquids

Three types of topology

Topological Insulator
topology of filled bands

“symmetry protected
topological order”

Topological Semimetal
topology of k-surfaces

“Berry phase topology”

Topological Spin Liquid
topology of entanglement

“intrinsic topological
order”

Three types of topology

Topological Insulator
topology of filled bands

“symmetry protected
topological order”

Topological Semimetal
topology of k-surfaces

“Berry phase topology”

Topological Spin Liquid
topology of entanglement

“intrinsic topological
order”

+ Correlations??

Three types of topology

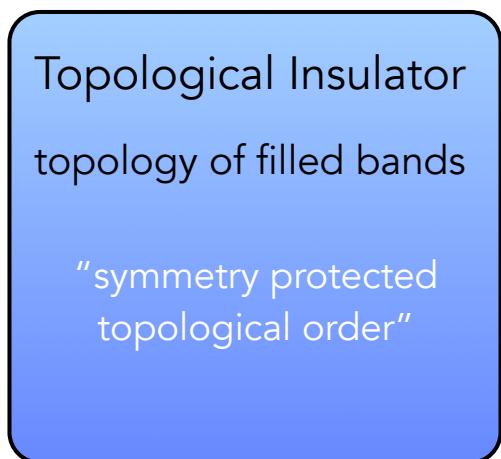
Topological Insulator
topology of filled bands
“symmetry protected
topological order”

+ Correlations:

◆ Topological Kondo Insulator SmB_6 ?

C. Broholm
Lu Li
S. Sebastian
S. Wirth
J. Denlinger

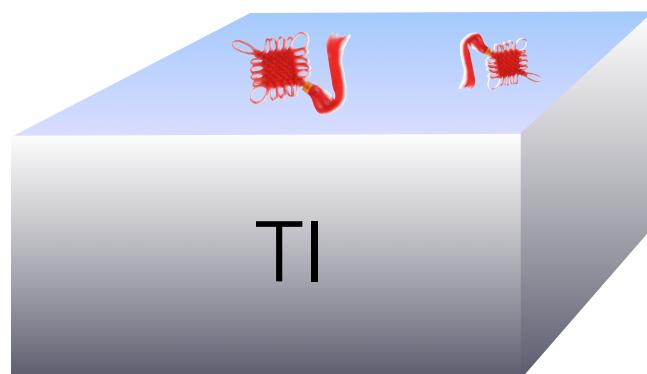
Three types of topology



+ Correlations:

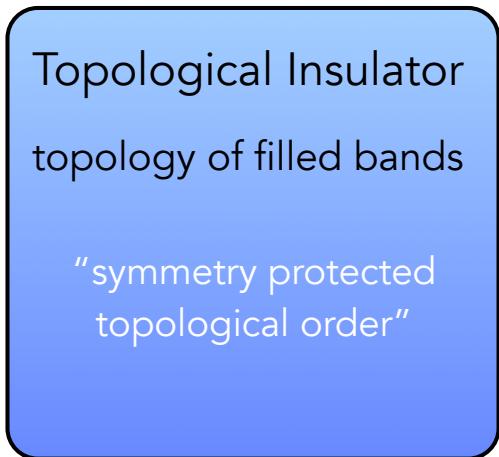
- ◆ Topological Kondo Insulator SmB_6 ?
- ◆ Surface states may be more correlated than bulk

surface state with gapped non-abelian anyons

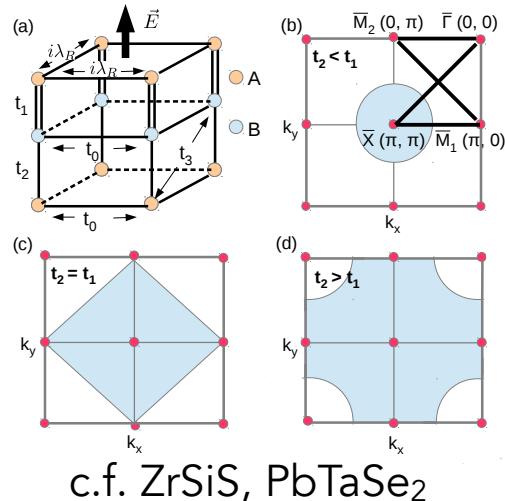


C. Wang *et al*, 2013
L. Fidkowski *et al*, 2013
M.A. Metlitski *et al*, 2013
P. Bonderson *et al*, 2013

Three types of topology

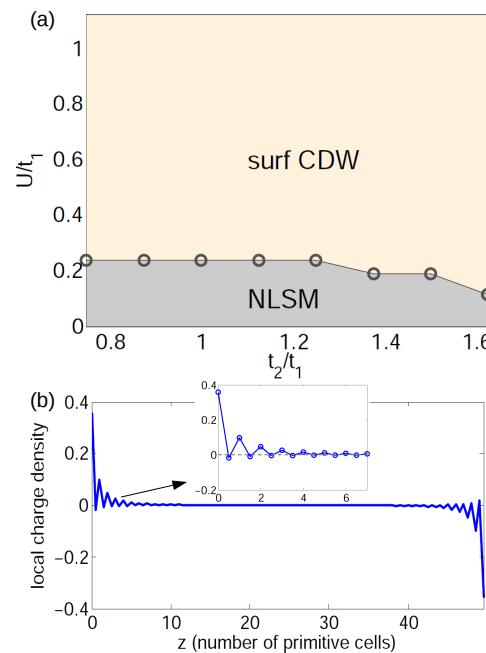


nodal-loop semimetals w/
quasi-flat surface bands



+ Correlations:

- ◆ Topological Kondo Insulator SmB_6 ?
- ◆ Surface states may be more correlated than bulk



Jianpeng Liu +LB,
in preparation

Three types of topology

Topological Insulator
topology of filled bands
“symmetry protected
topological order”

+ Correlations:

- ◆ Topological Kondo Insulator SmB_6 ?
- ◆ Surface states may be more correlated than bulk
- ◆ Bosonic SPT states

Symmetry protected topological order

From Wikipedia, the free encyclopedia

Symmetry Protected Topological order (SPT order)^[1] is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.

To derive the results in a most-invariant way, renormalization group methods are used (leading to equivalence classes corresponding to certain fixed points).^[1] The SPT order has the following defining properties:

(a) distinct SPT states with a given symmetry cannot be smoothly deformed into each other without a phase transition, if the deformation preserves the symmetry.
(b) however, they all can be smoothly deformed into the same trivial product state without a phase transition, if the symmetry is broken during the deformation.

Using the notion of quantum entanglement, we can say that SPT states are short-range entangled states with a symmetry (by contrast: for long-range entanglement see topological order, which is not related to the famous EPR paradox). Since short-range entangled states have only trivial topological orders we may also refer the SPT order as Symmetry Protected “Trivial” order.

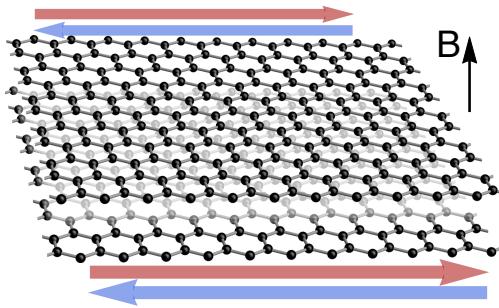
Contents [hide]

- 1 Characteristic properties of SPT order
- 2 Relation between SPT order and (intrinsic) topological order
- 3 Examples of SPT order
- 4 Group cohomology theory for SPT phases
- 5 A complete classification of 1D gapped quantum phases (with interactions)
- 6 See also
- 7 References

A big subject for theorists

Three types of topology

Topological Insulator
topology of filled bands
“symmetry protected
topological order”



+ Correlations:

- ◆ Topological Kondo Insulator SmB_6 ?
- ◆ Surface states may be more correlated than bulk
- ◆ Bosonic SPT states

Symmetry protected topological order

From Wikipedia, the free encyclopedia

Symmetry Protected Topological order (SPT order)^[1] is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.

To derive the results in a most-invariant way, renormalization group methods are used (leading to equivalence classes corresponding to certain fixed points).^[1] The SPT order has the following defining properties:

- distinct SPT states with a given symmetry cannot be smoothly deformed into each other without a phase transition, if the deformation preserves the symmetry.
- however, they all can be smoothly deformed into the same trivial product state without a phase transition, if the symmetry is broken during the deformation.

Using the notion of quantum entanglement, we can say that SPT states are **short-range entangled** states with a symmetry (by contrast: for long-range entanglement see **topological order**, which is not related to the famous **EPR paradox**). Since short-range entangled states have only trivial **topological orders** we may also refer the SPT order as Symmetry Protected “Trivial” order.

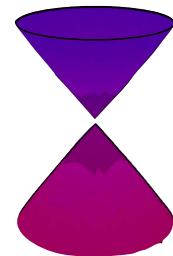
Contents [hide]

- 1 Characteristic properties of SPT order
- 2 Relation between SPT order and (intrinsic) topological order
- 3 Examples of SPT order
- 4 Group cohomology theory for SPT phases
- 5 A complete classification of 1D gapped quantum phases (with interactions)
- 6 See also
- 7 References

Weyl semimetal

Topological Semimetal
topology of k -surfaces
"Berry phase topology"

$$H = v\vec{\sigma} \cdot \vec{k}$$



937

PHYSICAL REVIEW

Accidental Degeneracy in the Energy Bands of Crystals

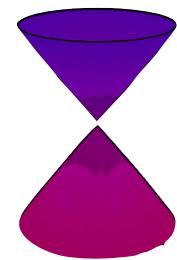
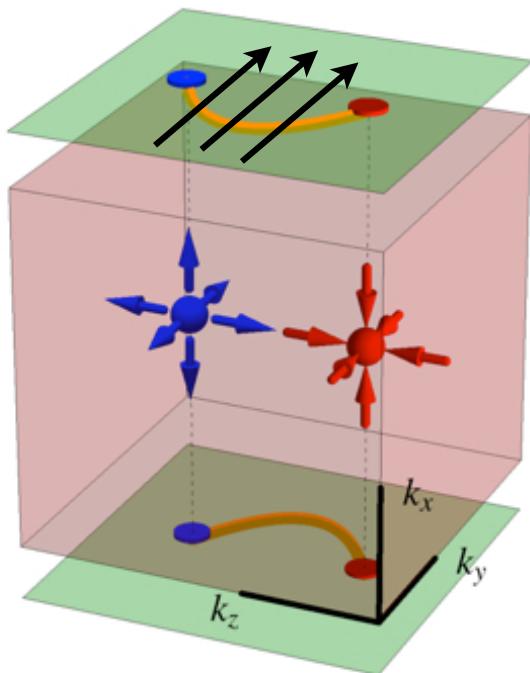
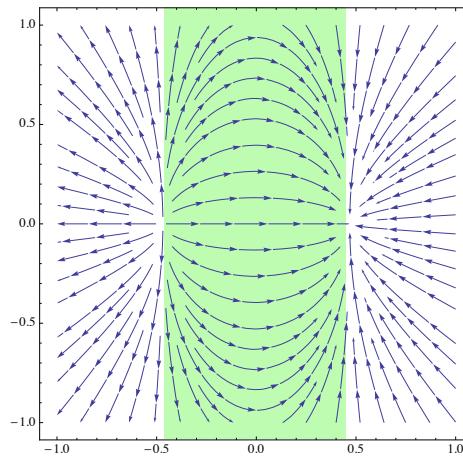
CONYERS HERRING
Princeton University, Princeton, New Jersey
(Received June 16, 1937)

For a crystal without an inversion center, the energy separation $\delta E(\mathbf{k} + \mathbf{\kappa})$ in the neighborhood of a point \mathbf{k} where contact of equivalent manifolds occurs may be expected to be of the order of κ as $\kappa \rightarrow 0$, for all directions of $\mathbf{\kappa}$.

Weyl semimetal

Topological Semimetal
topology of k -surfaces
“Berry phase topology”

$$H = v\vec{\sigma} \cdot \vec{k}$$

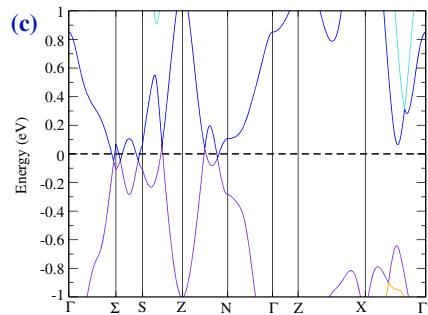
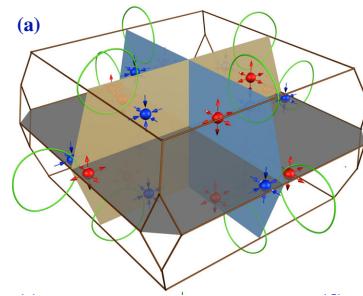


Weyl points are
“monopoles” of
Berry curvature:
topology in k -
space!

S. Murakami, 2007
X. Wan *et al*, 2011
A. Burkov+LB, 2011

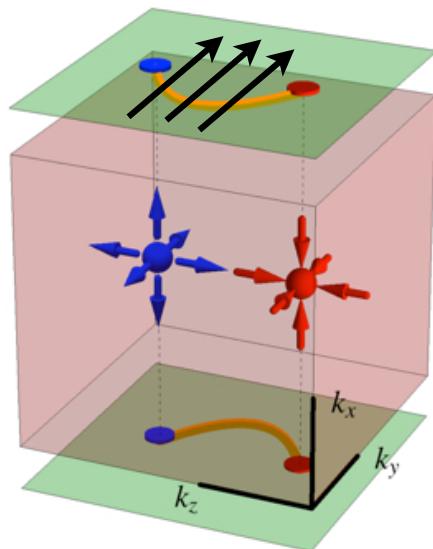
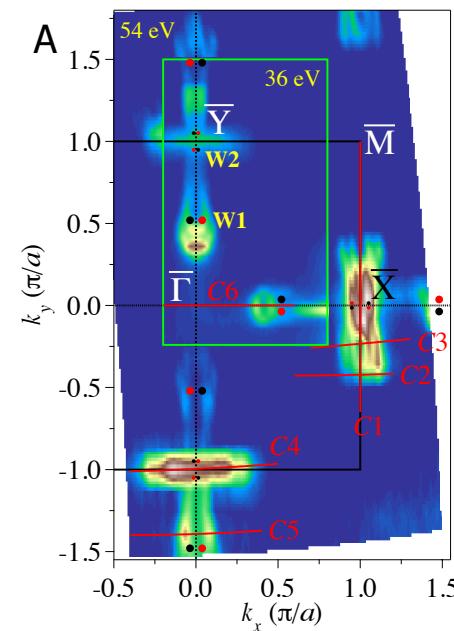
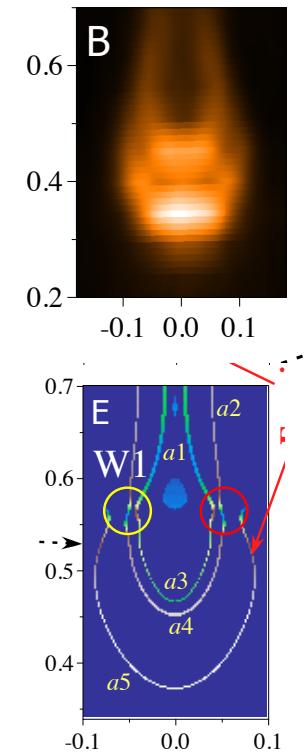
Experiment

TaAs



Prediction:
Hongmin Weng *et al*, 2015

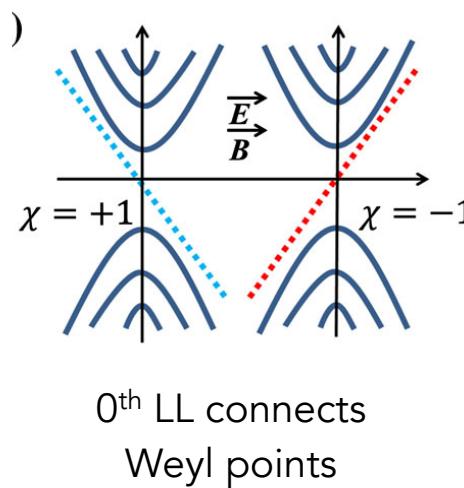
- Striking properties:
 - Surface Fermi arcs



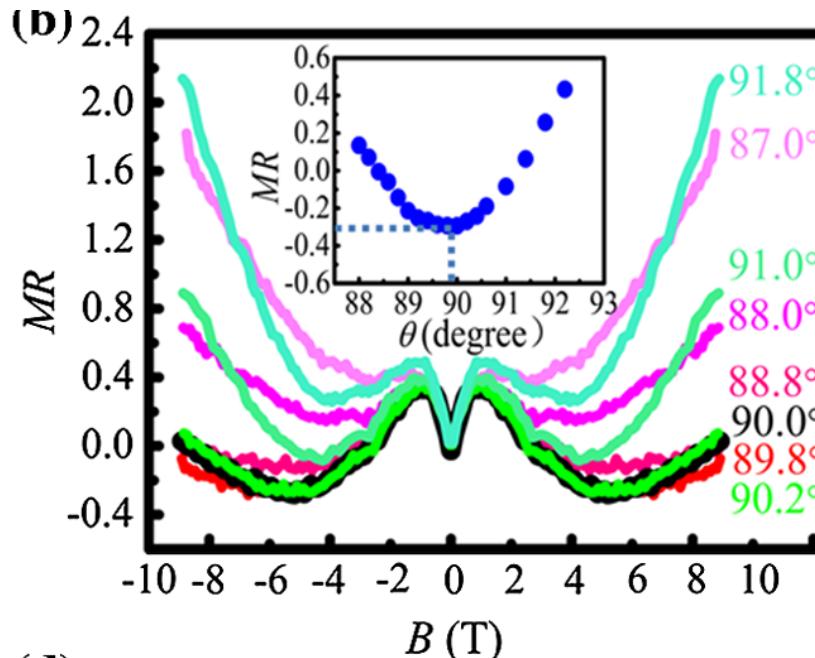
B.Q. Lv *et al*, 2015

Experiment

- Striking properties:
 - Surface Fermi arcs
 - ABJ “anomaly”: strong negative MR for $I \parallel B$



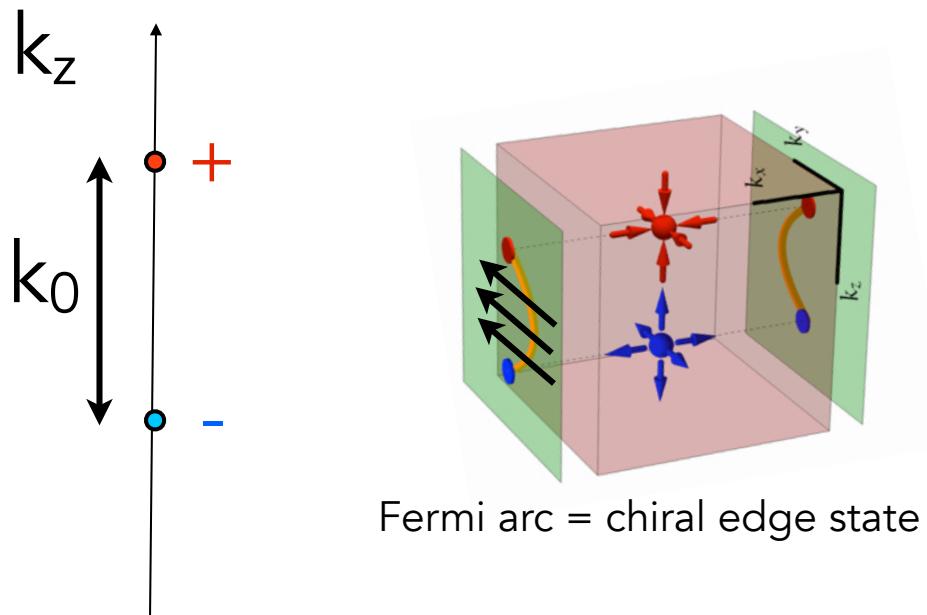
Nielson + Ninomiya ,1983
Zyuzin+Burkov, 2012
Son+Spivak, 2013



Xiaochun Huang *et al*, 2015

Anomalous Hall Effect

The third striking property of a Weyl semimetal



$$\sigma_{xy} = \frac{e^2}{h} \frac{k_0}{2\pi}$$

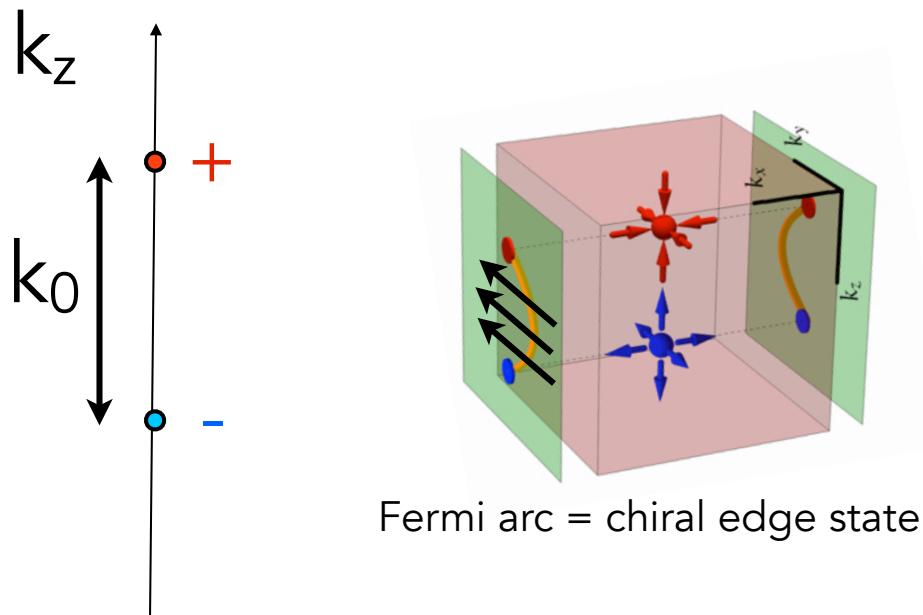
semi-quantum AHE

obviously breaks time-reversal symmetry

→ need a magnetic material

Anomalous Hall Effect

The third striking property of a Weyl semimetal



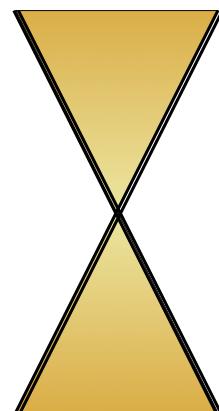
$$\sigma_{\mu\nu} = \frac{e^2}{2\pi h} \epsilon_{\mu\nu\lambda} Q_\lambda$$
$$\vec{Q} = \sum_i \vec{k}_i q_i + \vec{Q}_{RLV}$$

semi-quantum AHE

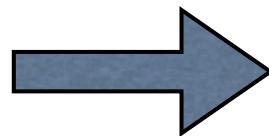
obviously breaks time-reversal symmetry

→ need a magnetic material

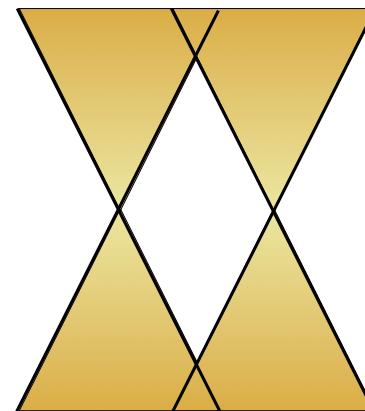
Magnetic Weyl semimetals



Dirac

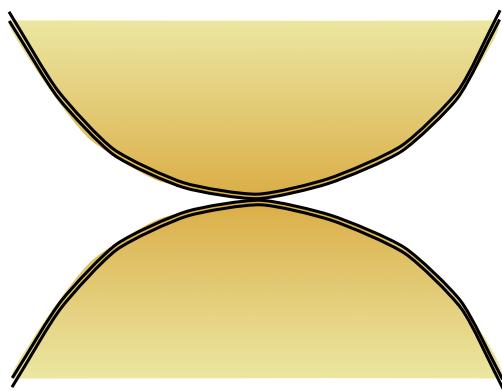


M or B



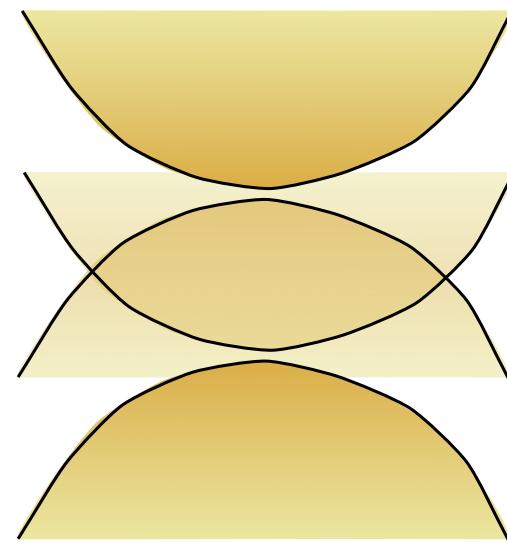
Weyl

Magnetic Weyl semimetals

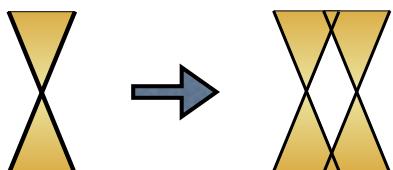


QBT

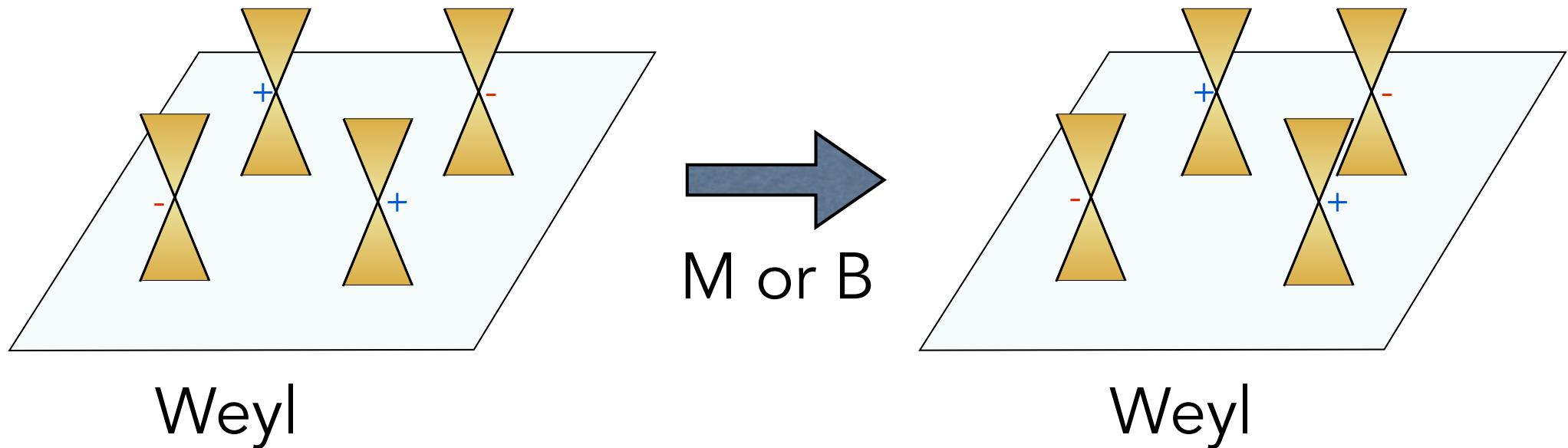
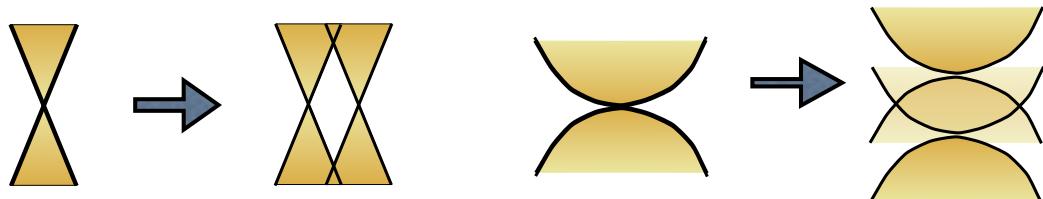
→
M or B



Weyl



Magnetic Weyl semimetals

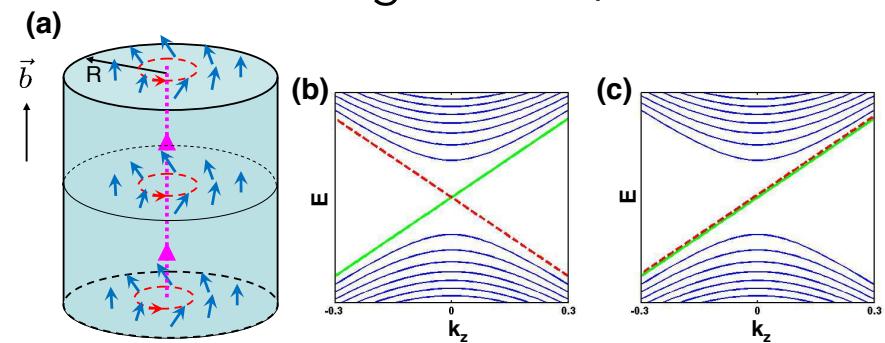
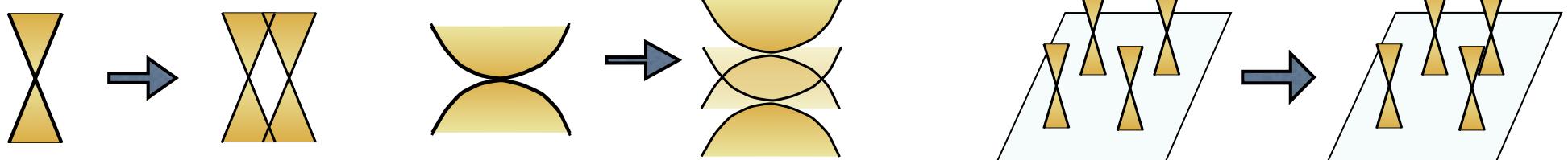


Magnetic Weyl semimetals

Movable Weyl points have their own interest

magnetic fluctuations
generate a *dynamical*
chiral gauge field for Weyl
fermions, by shifting Weyl
points

Chao-Xing Liu et al, 2012



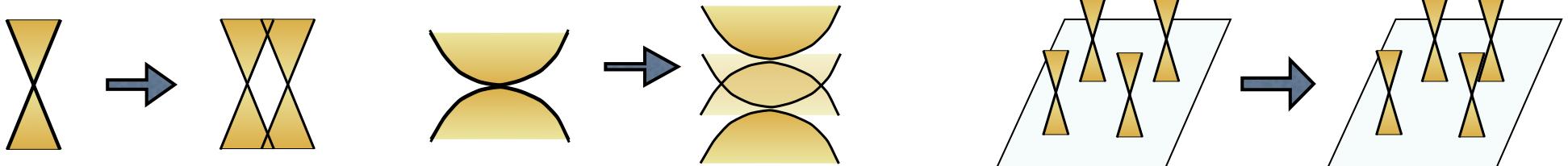
Magnetic Weyl semimetals

Exercise: how far can we move Weyl points?

We'll see that this is why we need SCES

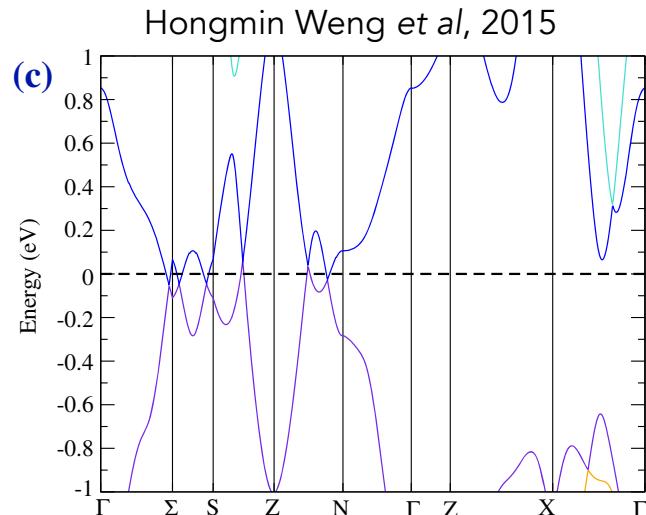
Dirac/Weyl: $\hbar v_F \Delta k \approx E_Z$

QBT: $\frac{\hbar^2 (\Delta k)^2}{2m^*} \approx E_Z$



Magnetic Weyl semimetals

Suppose you modify, e.g. magnetically dope, TaAs

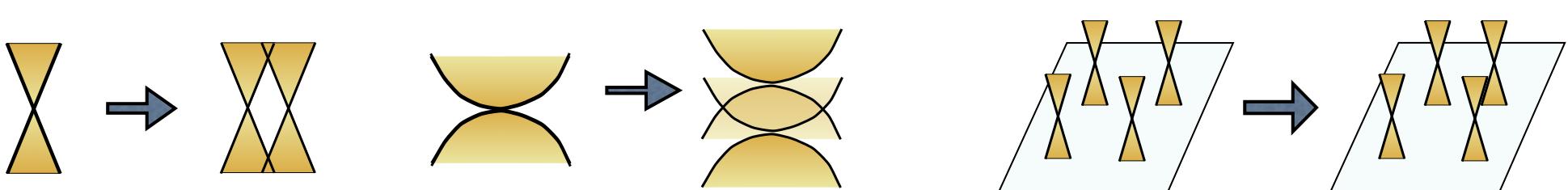


$$\Delta k \approx E_Z / (\hbar v_F)$$

$$\hbar v_F \approx 2 \text{ eV} \text{ \AA} \quad E_Z < 1000 \text{ K}$$

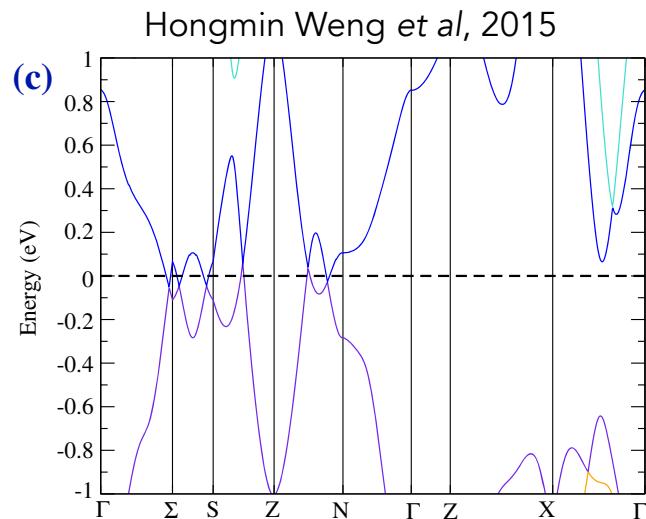
$$\Delta k < 0.04 \text{ \AA}^{-1}$$

Result: Weyl points move < 1/50th of the zone



Magnetic Weyl semimetals

Suppose you modify, e.g. magnetically dope, TaAs

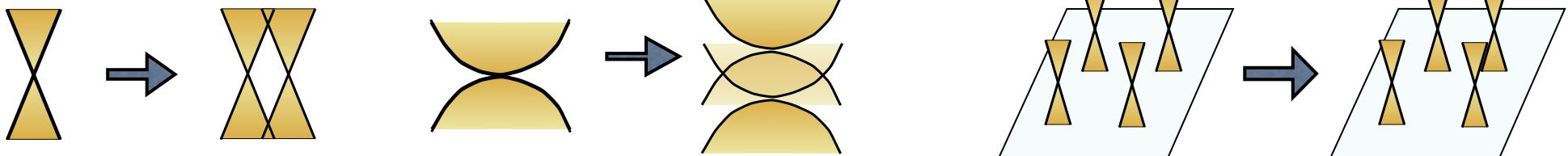


$$\Delta k \approx E_Z / (\hbar v_F)$$

$$\hbar v_F \approx 2 \text{ eV} \text{ \AA} \quad E_Z < 1000 \text{ K}$$

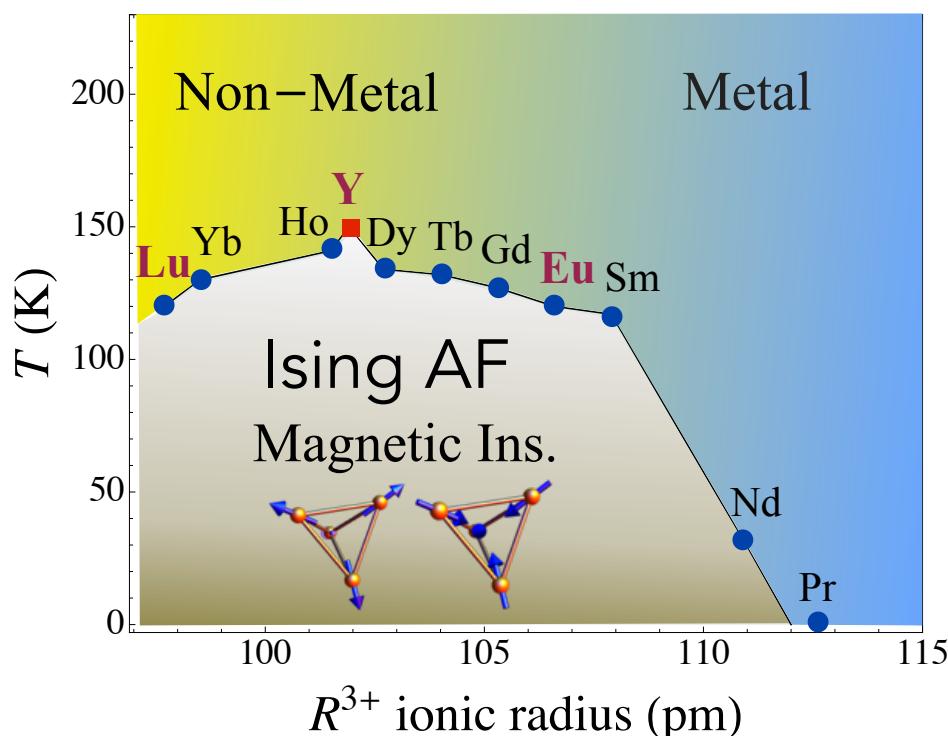
$$\Delta k < 0.04 \text{ \AA}^{-1}$$

Result: Weyl points move $< 1/50^{\text{th}}$ of the zone
need a narrower band



Pyrochlore iridates

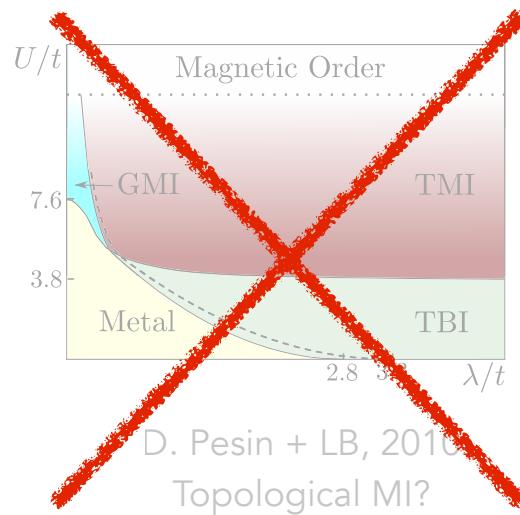
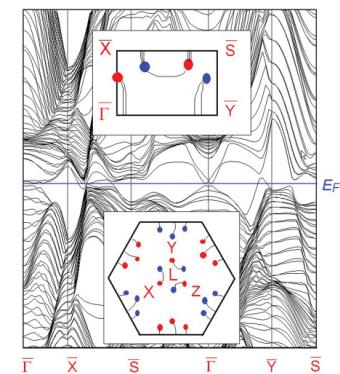
- A good place to look for correlated Weyls



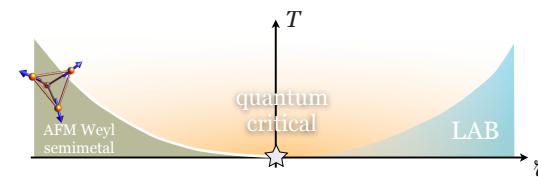
Yanagashima+Maeno, JPSJ 2001

K. Matsuhira et al, JPSJ 2011

W. Witczak-Krempa et al, ARCMP 2013



X. Wan et al, 2011
AF Weyl semimetal?

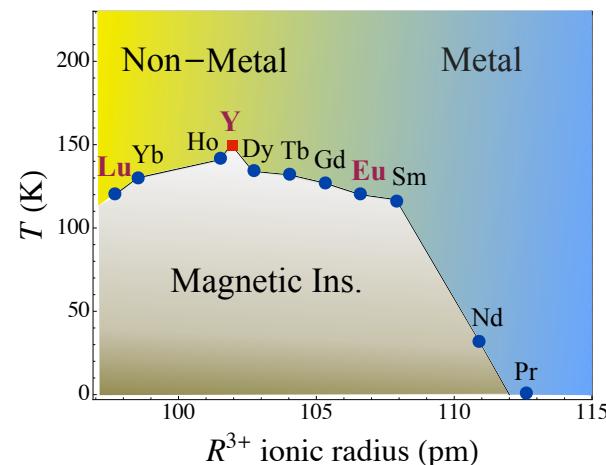


L. Savary et al, 2014 - topological QCP?

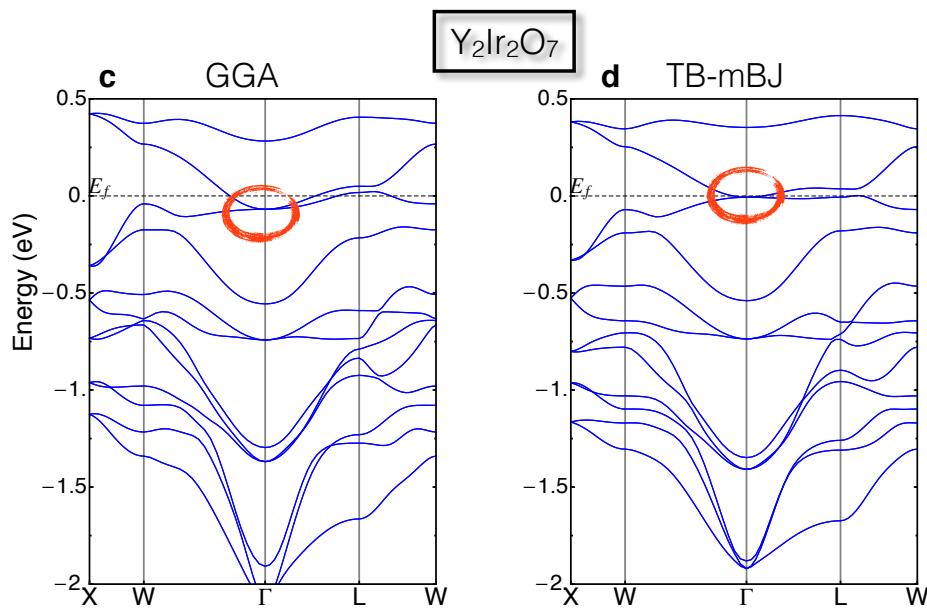
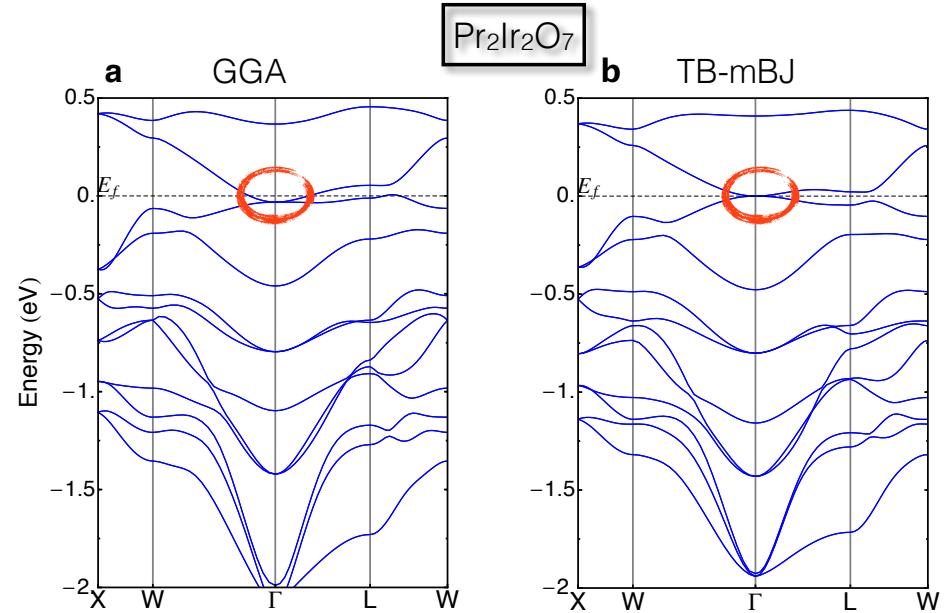
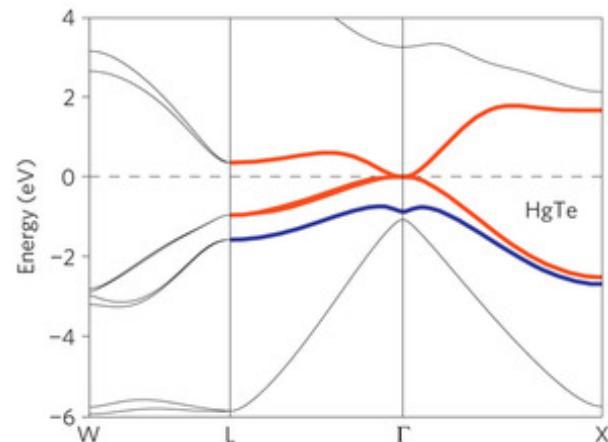
Ingredients

- Semimetallic electronic structure ✓
- Magnetism via Ir e-e Hubbard interactions ✓
- Rare earth moments?

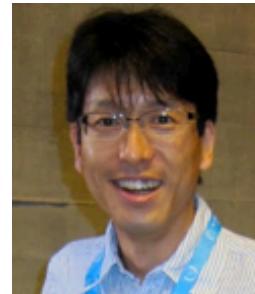
probably not important?



Paramagnetic electronic structure



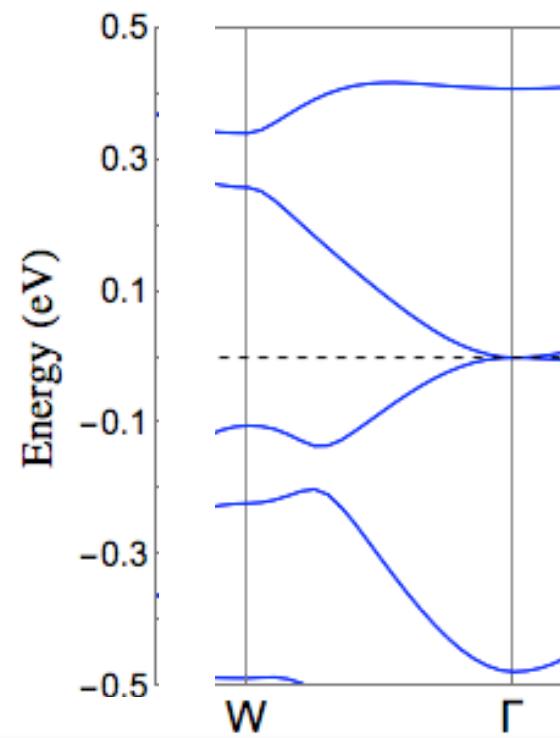
Γ_8 4-dimensional irrep
guaranteed by cubic symmetry
and time reversal



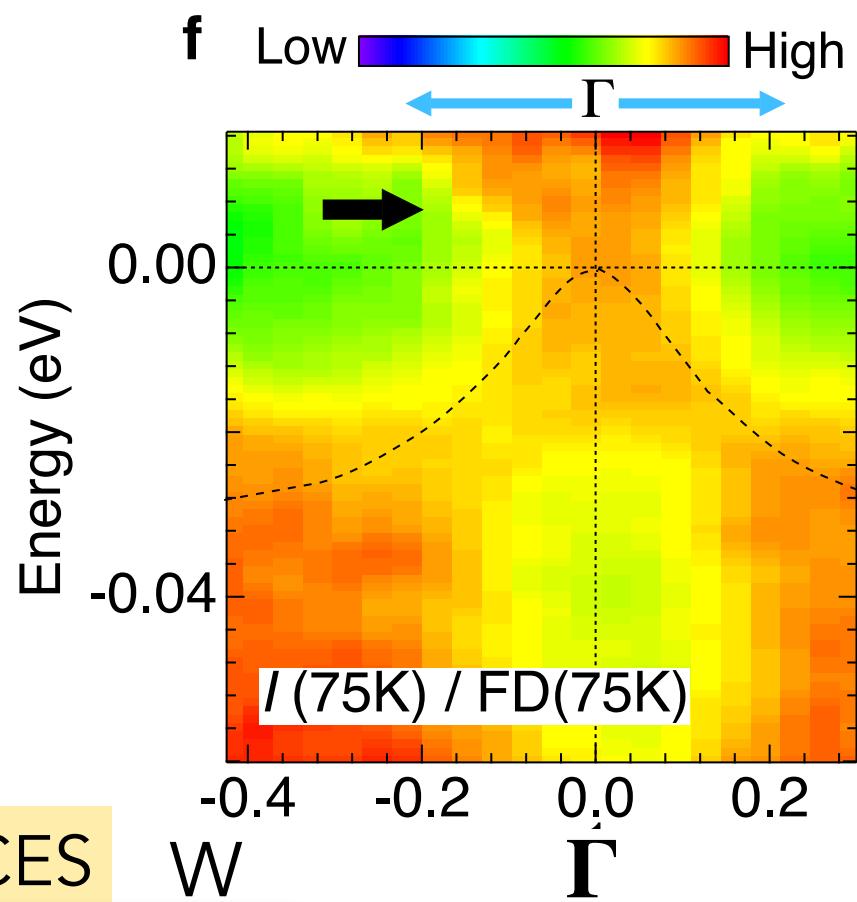
ARPES

T. Kondo *et al*, Nat. Comm., 2015

$\text{Pr}_2\text{Ir}_2\text{O}_7$ S. Nakatsuji

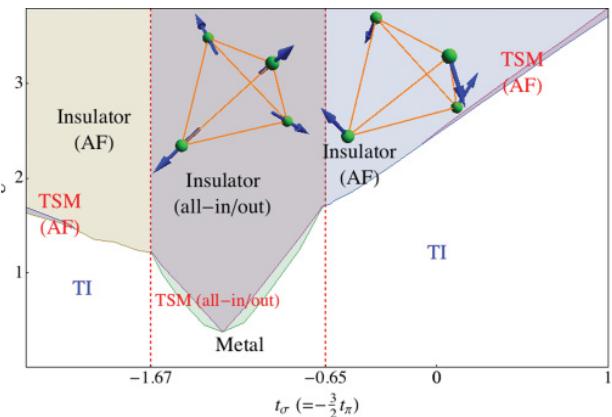


SCES



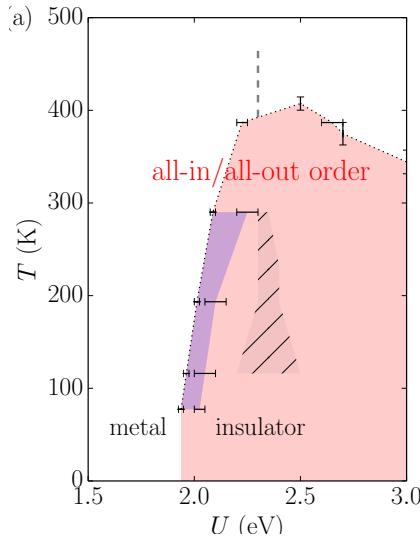
✓ Bandwidth reduced by 3-5 from DFT

Magnetism: theory



W. Witzak-Krempa + YB Kim, 2012

Hartree-Fock

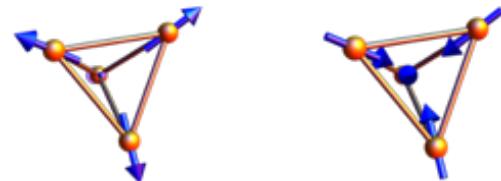


H. Shinaoka *et al*, 2015

DMFT

Jay-Z model

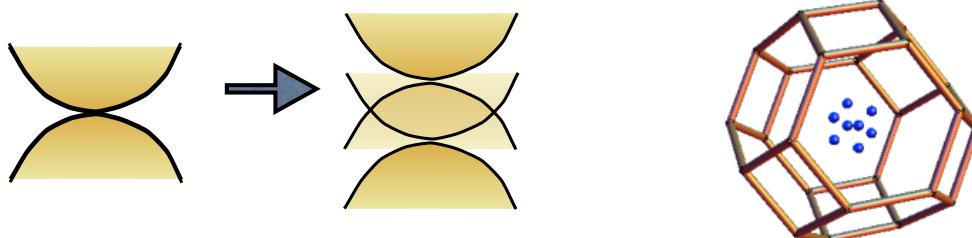
$$H = J_z \sum_{\langle i,j \rangle} S_i^z S_j^z$$



$J_z < 0$: all-in/all-out order
superexchange

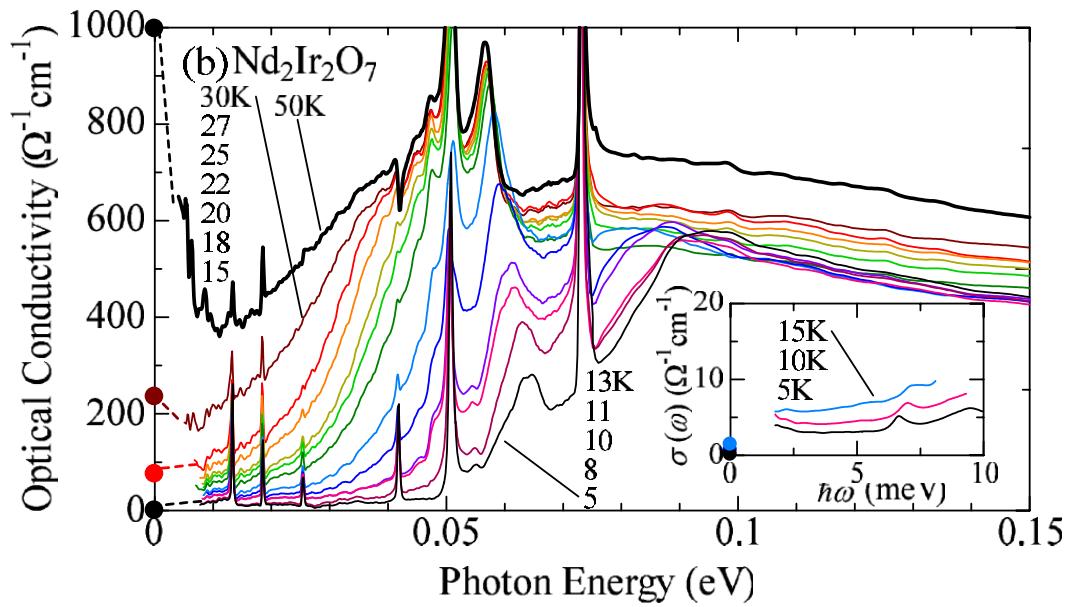
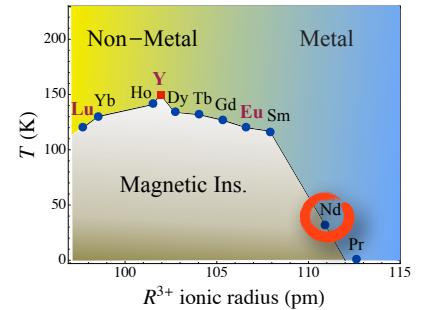
- General agreement: transition to AlAO Ising AF order

We expect this to lead to Weyl points



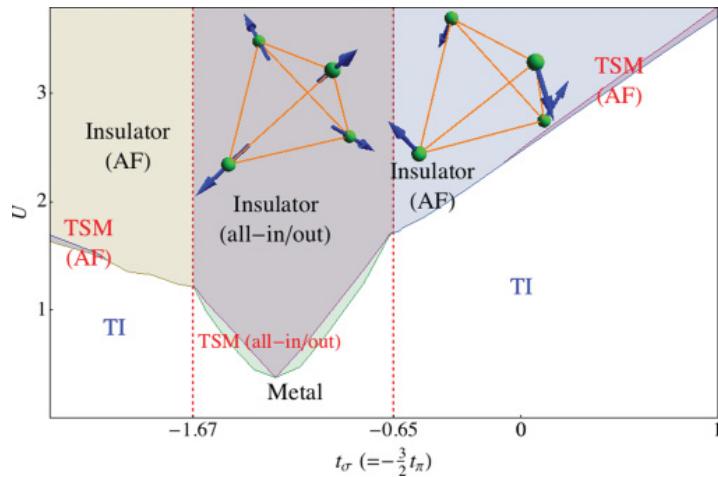
Weyl not?

K. Ueda *et al*, 2012



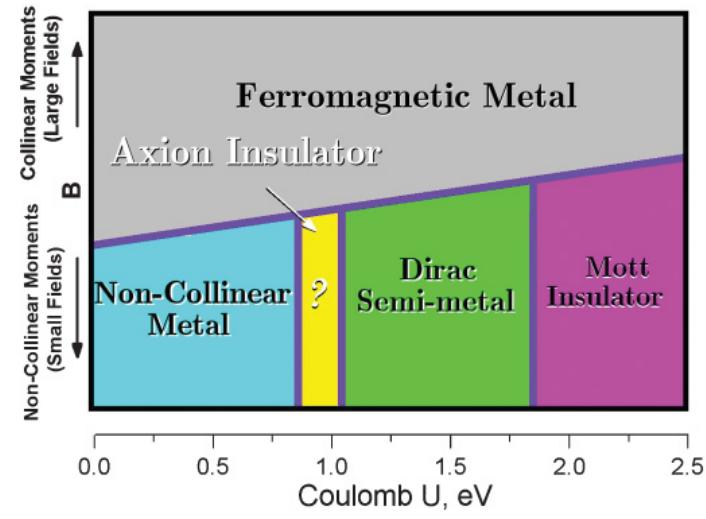
charge gap \sim
45meV

Moving Weyl Points



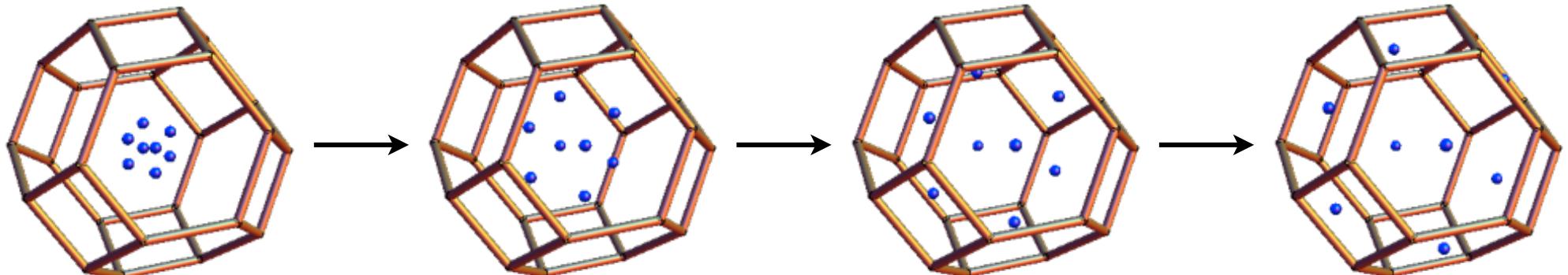
W. Witzak-Krempa + YB Kim, 2012

VS



X. Wan et al, 2011

Weyl points move to zone boundary and annihilate with increasing order?

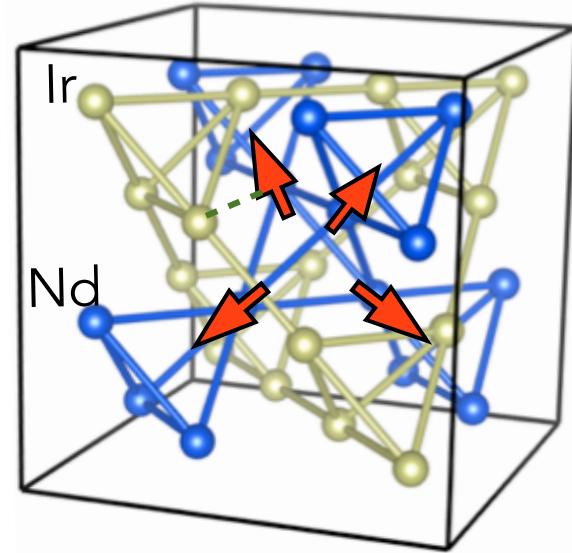


If so, Weyl points are *too* mobile!

Nd physics

Nd spins provide anisotropic
“exchange enhancement”

- Large moment couples strongly to field
- Polarized Nd act back on Ir via $J_{\text{Ir-Nd}} \sim 10 \text{ meV}$
- Maximum effect: $B \parallel (100)$
 - aligns all Nd moments

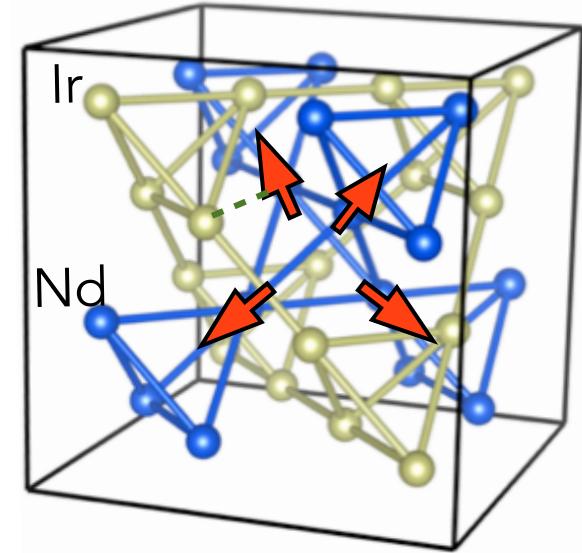


Nd physics

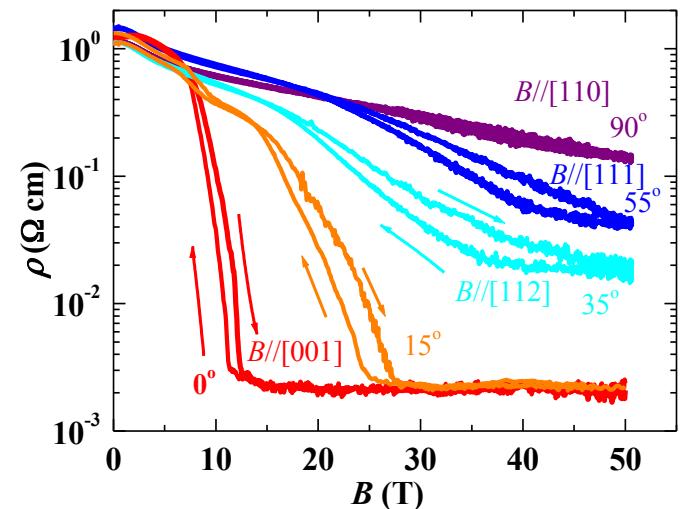
Nd spins provide anisotropic
“exchange enhancement”

- Large moment couples strongly to field
- Polarized Nd act back on Ir via $J_{\text{Ir-Nd}} \sim 10 \text{ meV}$
- Maximum effect: $B \parallel (100)$
 - aligns all Nd moments

Result: MIT

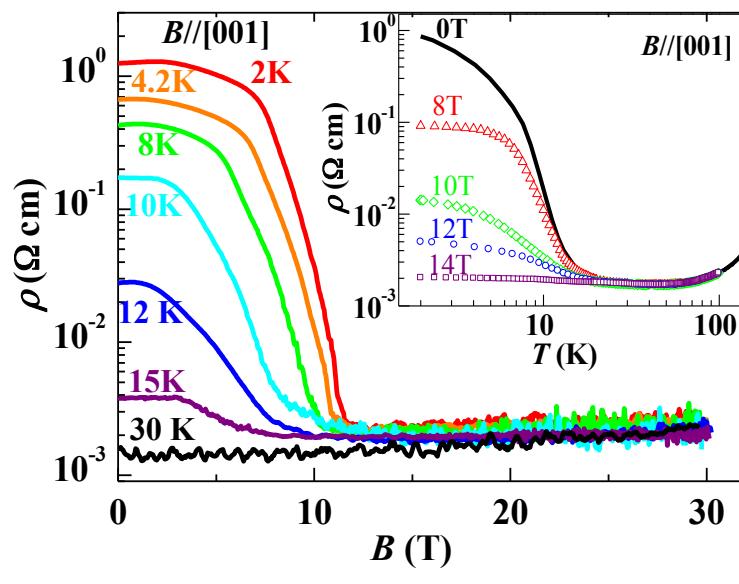
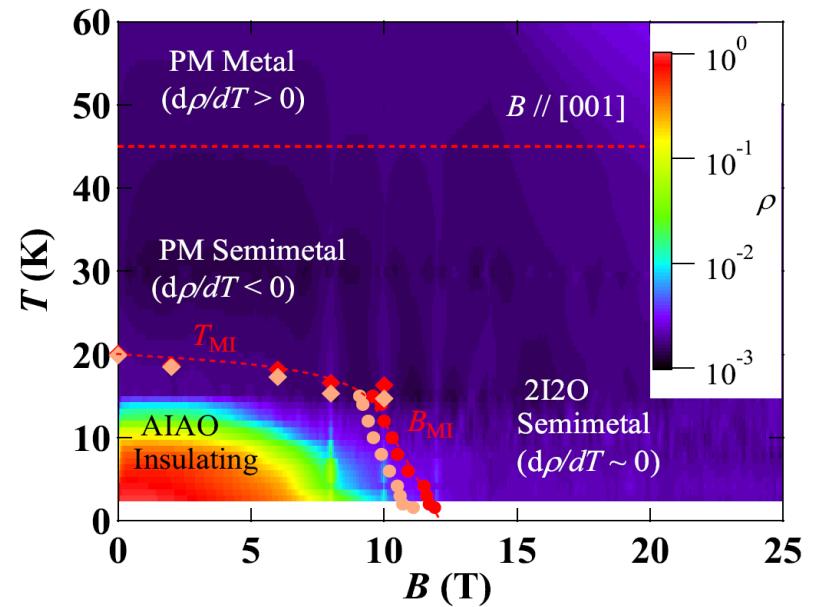


Zhaoming Tian et al, Nature Physics, 2015



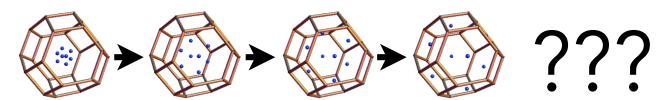
also K. Ueda et al, 2015

Metal-Insulator Transition

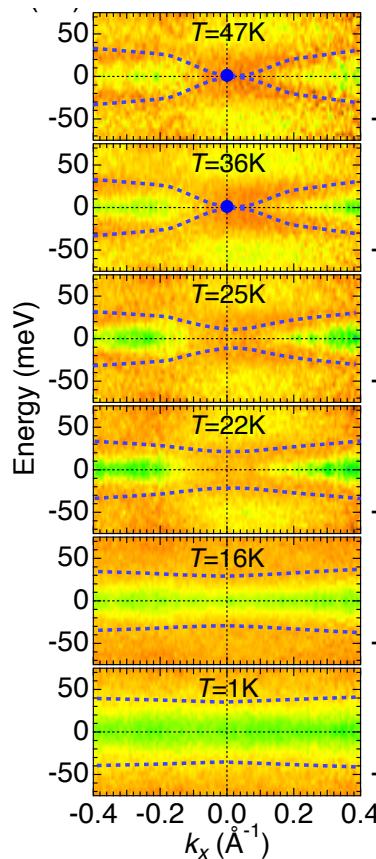


- Seems that the antiferromagnetic phase forms a closed region at small B and T .
- Not known: what is the nature of the high-field semimetal? Maybe a magnetic Weyl state?

ARPES



- Is the absence of Weyl points really due to this mean-field picture of moving nodes?



$T > T_c$: like Pr

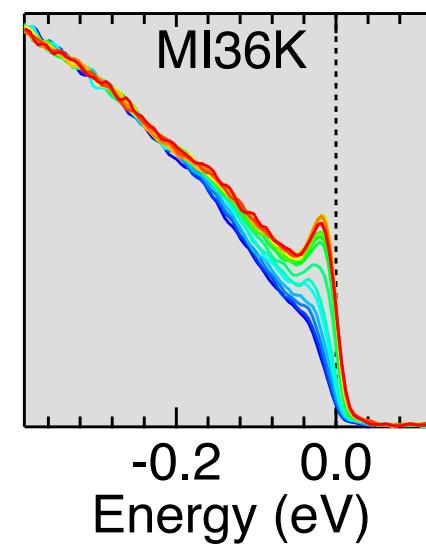
$T = T_c$: no precursor - Slater

$T < T_c$: gap developing

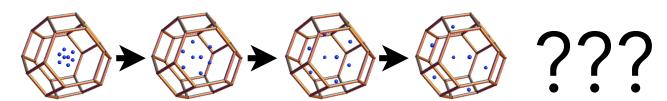
Slater to Mott
crossover?

$T \ll T_c$: remarkably flat

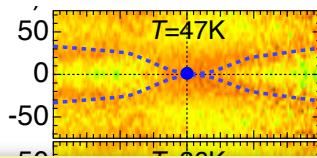
Rather than moving nodes, we observe loss of quasiparticle as gap opens



ARPES

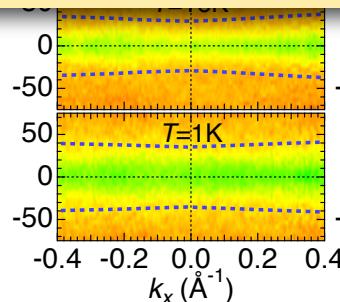


- Is the absence of Weyl points really due to this mean-field picture of moving nodes?



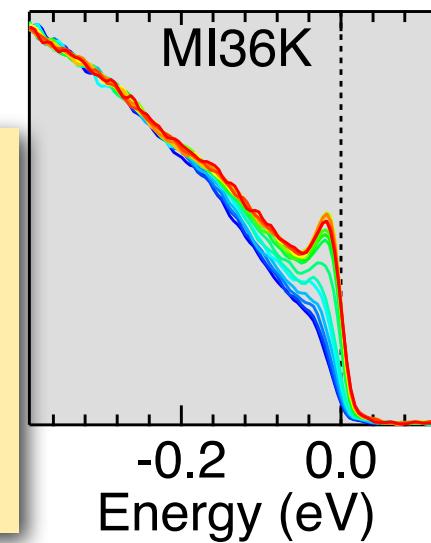
$T > T_c$: like Pr

This is one of several indications of **strong correlation effects**, that suggest that there may be subtleties beyond the mean field picture



$T \ll T_c$: remarkably flat

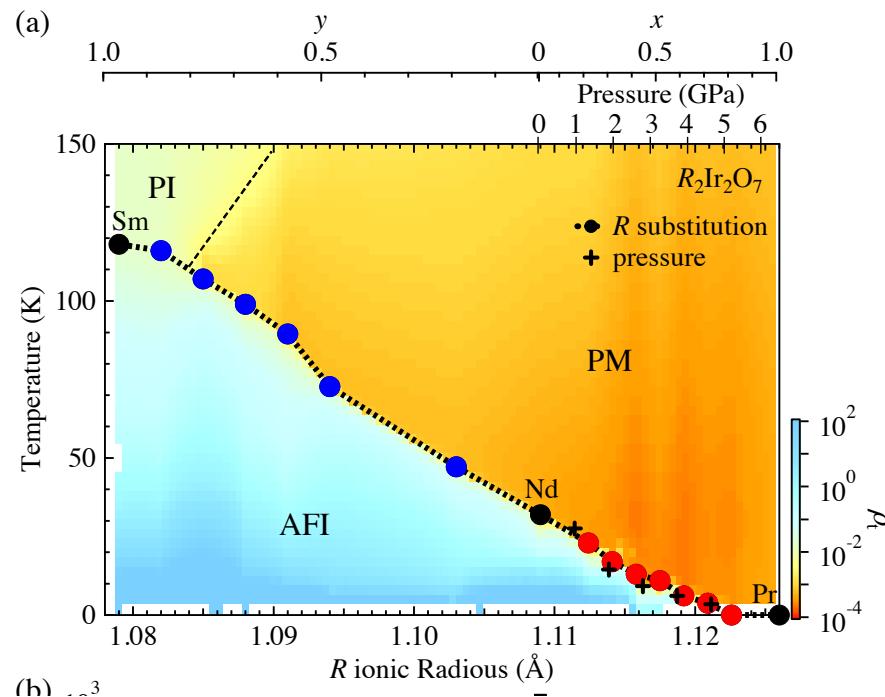
Rather than moving nodes, we observe loss of quasiparticle as gap opens



loss of quasiparticle peak

Prospects

It may be possible to weaken the order sufficiently to expose the Weyl points, and perhaps also explore quantum criticality



K. Ueda *et al*, 2015

nodal quantum criticality distinct
from the Hertz problem

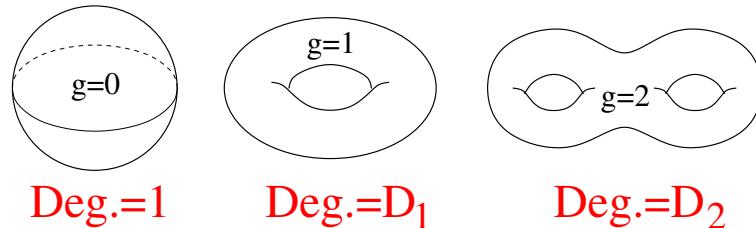
L. Savary *et al*, 2014

Three types of topology

Topological Spin Liquid
topology of entanglement
“intrinsic topological
order”

This type of topological phase can *only* exist with strong correlations. It reflects extreme entanglement of the many-body states

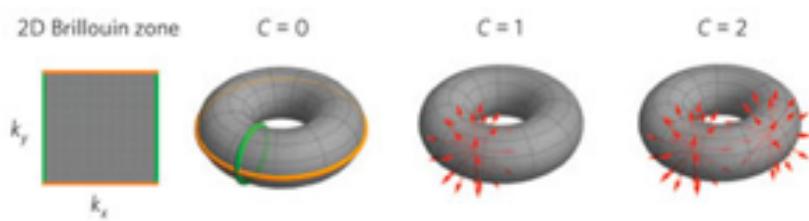
- Wen (1989): some many-body systems exhibit an “order” which is sensitive to the topology of the *spatial* manifold



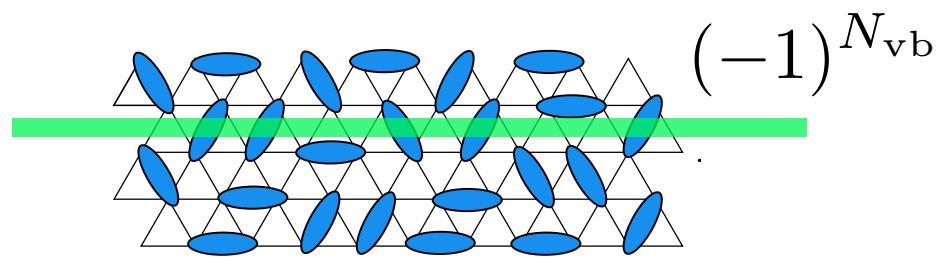
- This type of order is *completely robust*: does not need any symmetry

TI versus iTO

Topological invariants: a non-local integral over an extended manifold



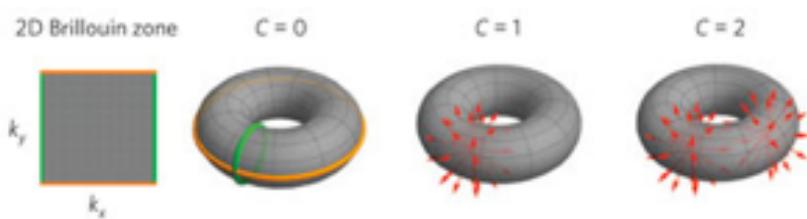
Chern number: integral over
2d k space whose value
differentiates **phases**



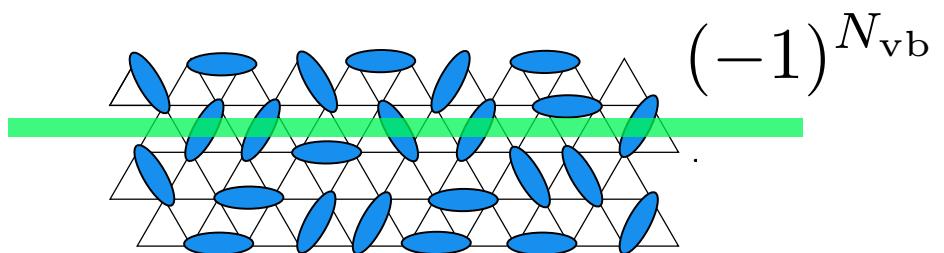
Wilson loop: integral over a
1d real space curve whose
value differentiates **states** in
the same phase

TI versus iTO

Topological invariants: a non-local integral over an extended manifold



Chern number: integral over **2d k space** whose value differentiates **phases**



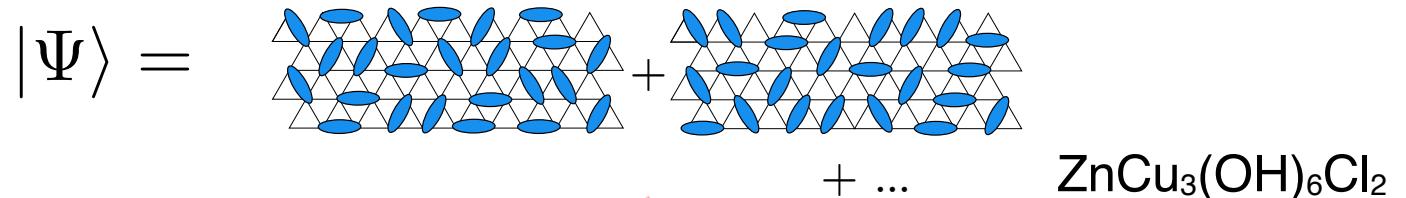
Wilson loop: integral over a **1d real space** curve whose value differentiates **states** in the same phase

break the 2d space: forms a **gapless edge**

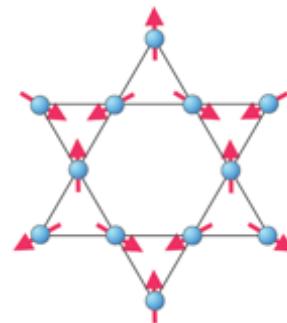
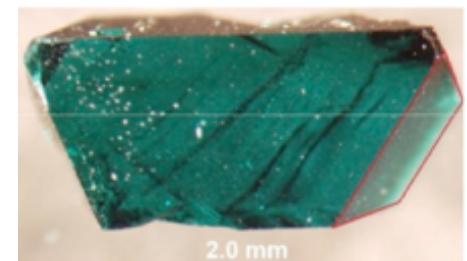
break the 1d curve: forms a **gapped exotic quasiparticle**

Where is iTO?

- Fractional quantum Hall effect is both an iTO state and a TI (Chern insulator)
- Other main candidates are *quantum spin liquids*



“RVB” state on
kagomé lattice?
still seeking definitive id

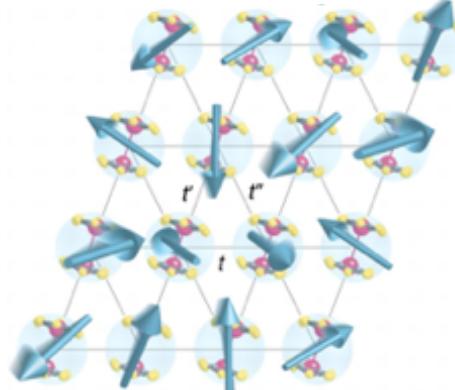


Young Lee, Takashi Imai,...

Spin liquid candidates?

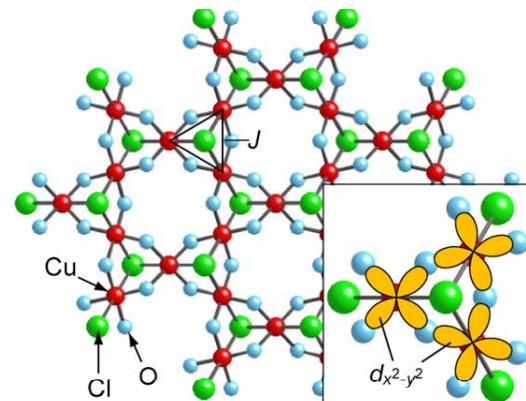
Top experimental platforms

K. Kanoda

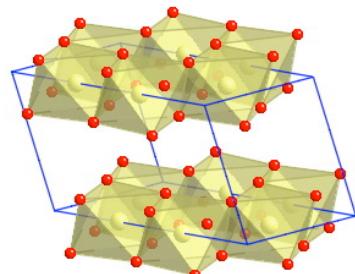


Organics

M. Fu



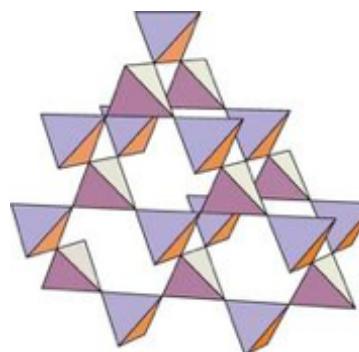
Herbertsmithite



Y.-B. Kim

Kitaev materials

Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3
 $\alpha\text{-RuCl}_3$



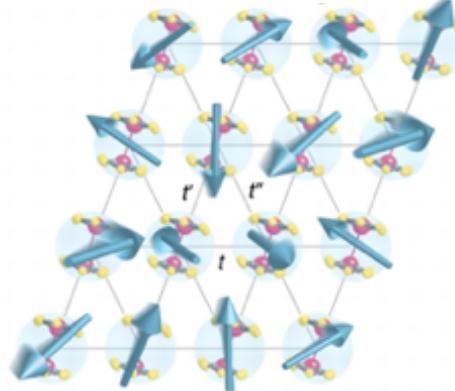
Quantum spin ice

$\text{Yb}_2\text{Ti}_2\text{O}_7$
 $\text{Pr}_2\text{Zr}_2\text{O}_7$
...

G. Chen
Y. Tokiwa

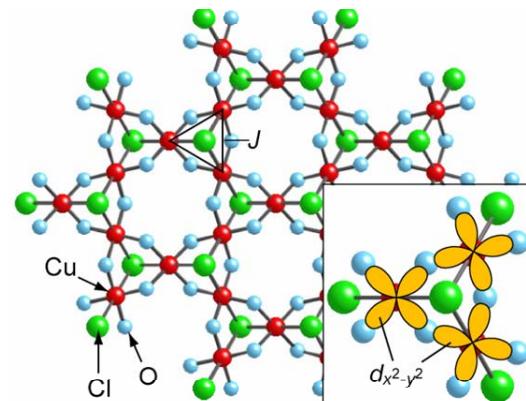
Top experimental platforms

K. Kanoda



Organics

M. Fu



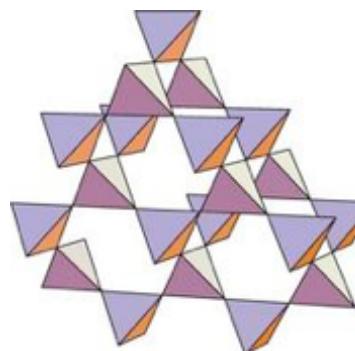
Herbertsmithite



Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3
 $\alpha\text{-RuCl}_3$

Y.-B. Kim

Kitaev materials



$\text{Yb}_2\text{Ti}_2\text{O}_7$
 $\text{Pr}_2\text{Zr}_2\text{O}_7$
...

G. Chen
Y. Tokiwa

Quantum spin ice

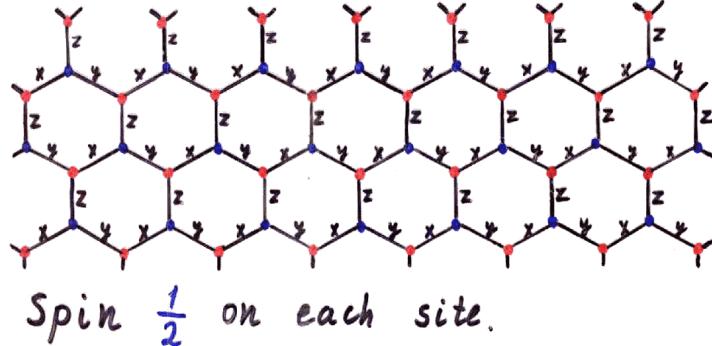
Kitaev model

Kitaev's honeycomb model

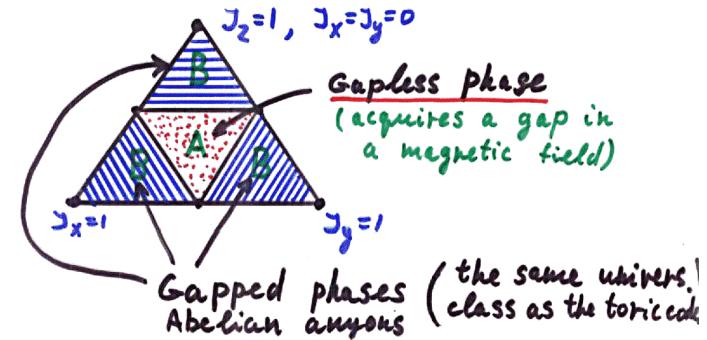
$$H = \sum_{i,\mu} K_\mu \sigma_i^\mu \sigma_{i+\mu}^\mu$$

KITP, 2003

1. The model

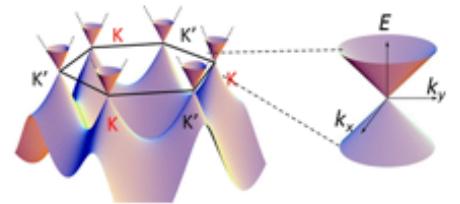


Phase diagram

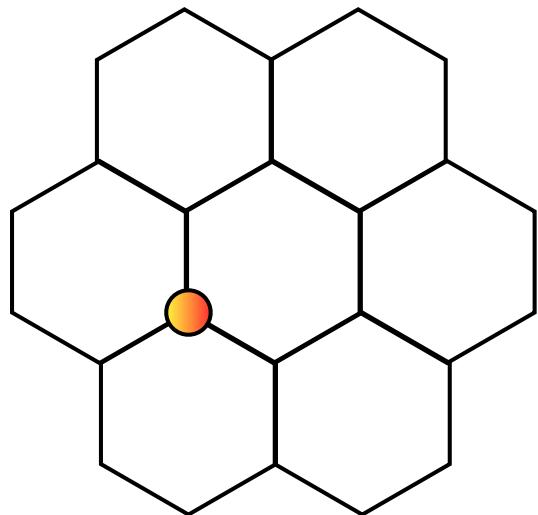


exact parton construction $\sigma_i^\mu = i c_i c_i^\mu$ $c_i c_i^x c_i^y c_i^z = 1$

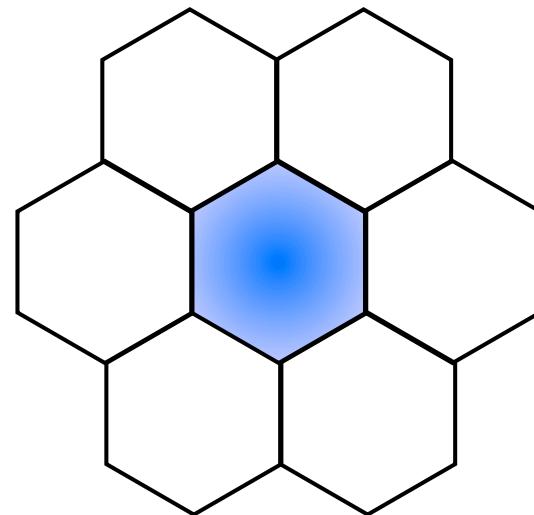
physical Majoranas $H_m = K \sum_{\langle ij \rangle} i c_i c_j$



Non-local excitations



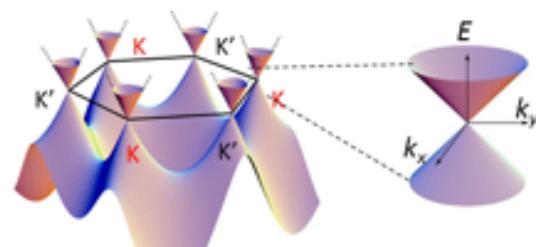
Majorana ε



Flux e, m

flux states

GS



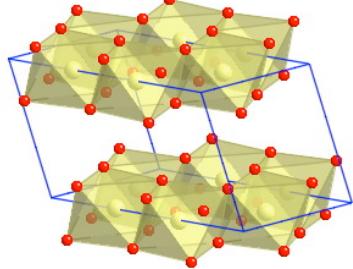
gapless Dirac

gapped

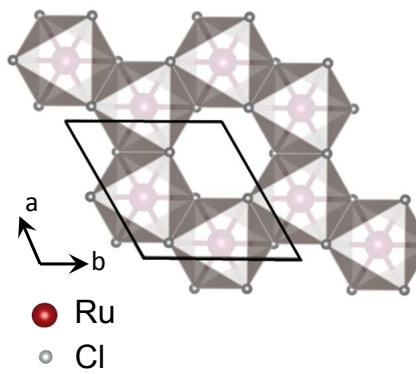
Kitaev Materials

Jackeli, Khaliullin

Showed that Kitaev interaction can be large in edge-sharing octahedra with large spin-orbit-coupling

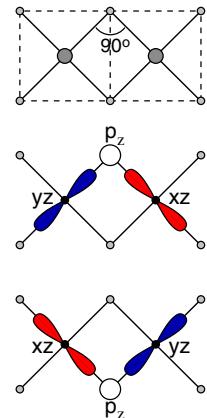


Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3

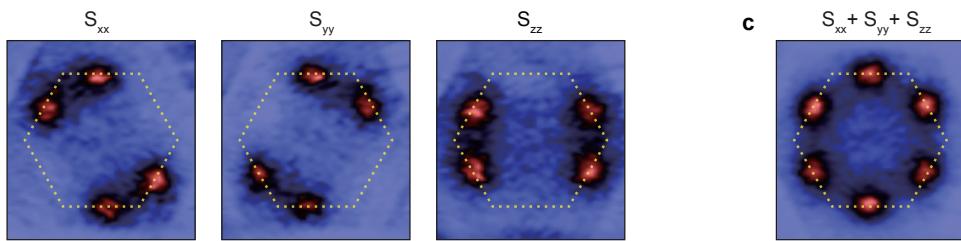


$\alpha\text{-RuCl}_3$

Honeycomb and hyper-honeycomb structures

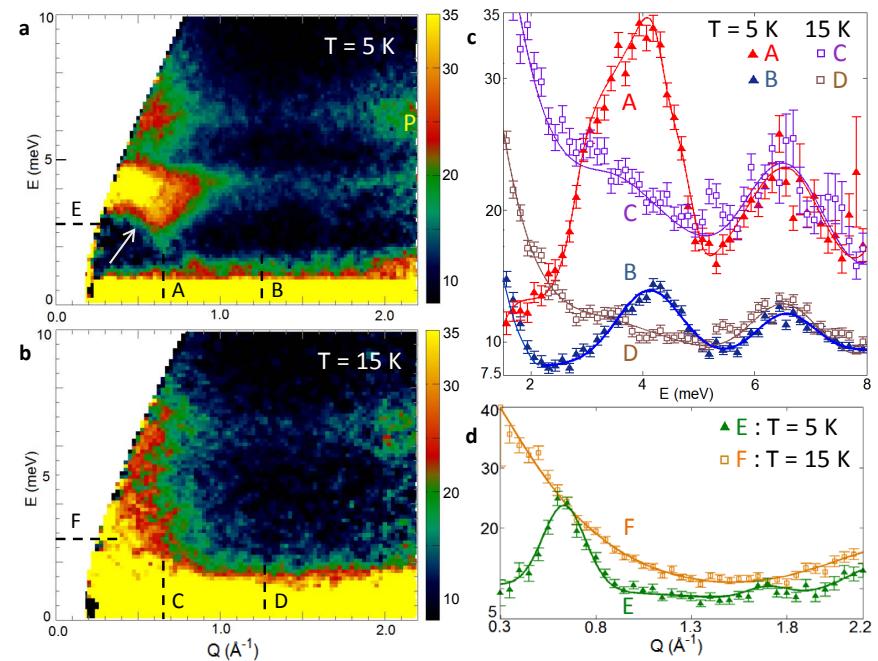


Kitaev Materials



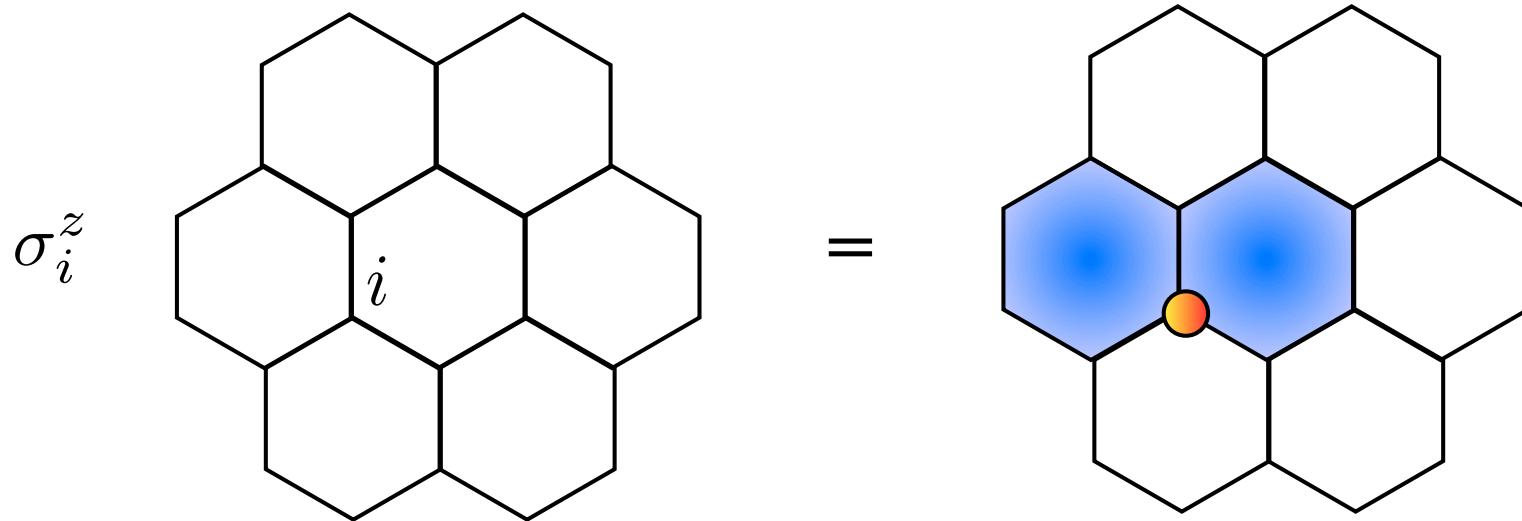
direct evidence for
direction-dependent
anisotropic exchange
from diffuse magnetic
x-ray scattering in
 Na_2IrO_3 (BJ Kim group)

there is pretty strong evidence
of substantial Kitaev exchange
in quite a few materials



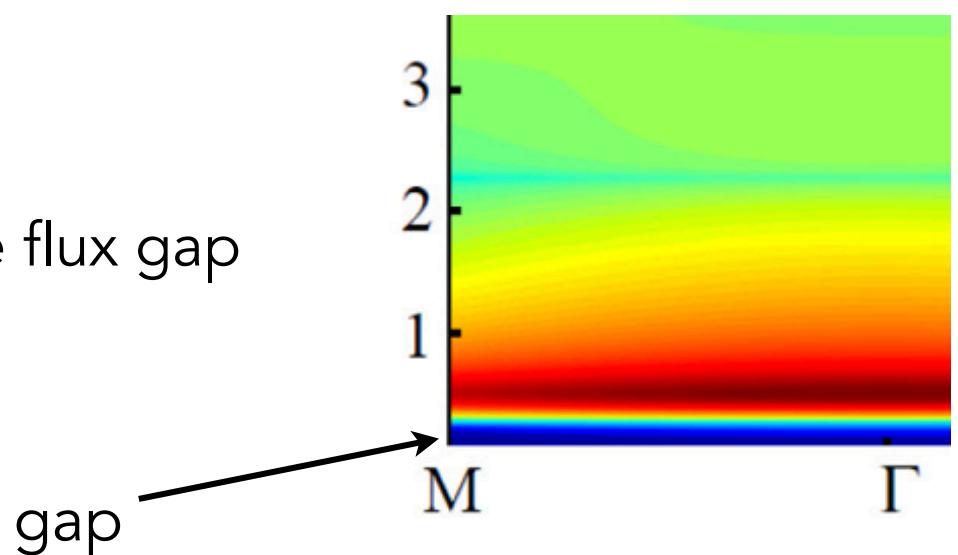
Observation of gapped
continuum mode persisting
above T_N in $\alpha\text{-RuCl}_3$
consistent with Majoranas
(A. Banerjee *et al*)

Exact spin correlations

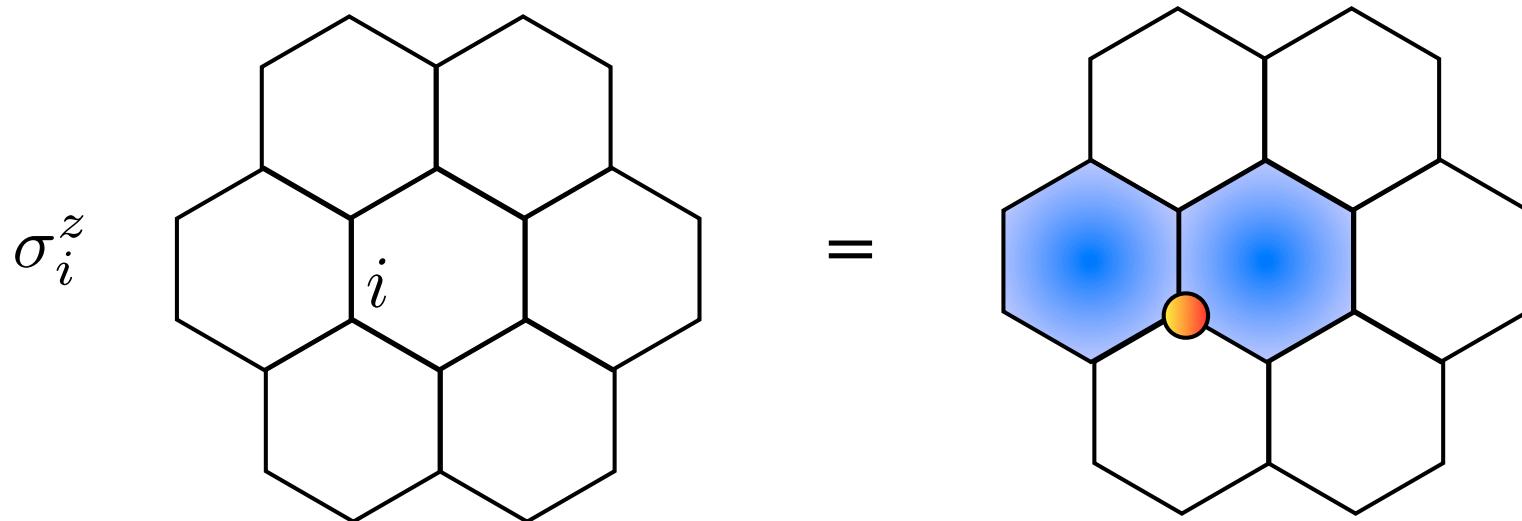


In the soluble model:

- The spin creates two fluxes
- Spectral weight is zero below the flux gap
- Correlations vanish beyond NNs



Exact spin correlations



In the soluble model:

- The spin creates two fluxes
- Spectra
- Correla

But fortunately it is not physical

very boring

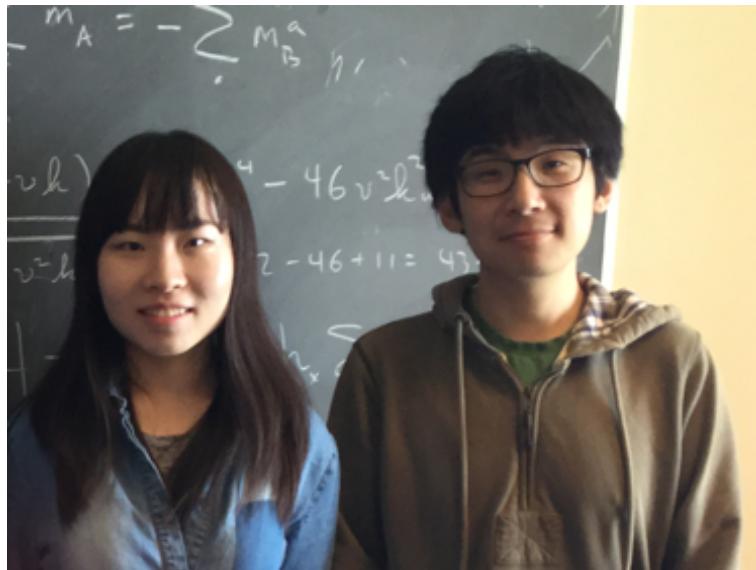
gap

gap

M

Γ

Inexact but correct (universal) answer



宋雪洋
Xue-Yang
Song

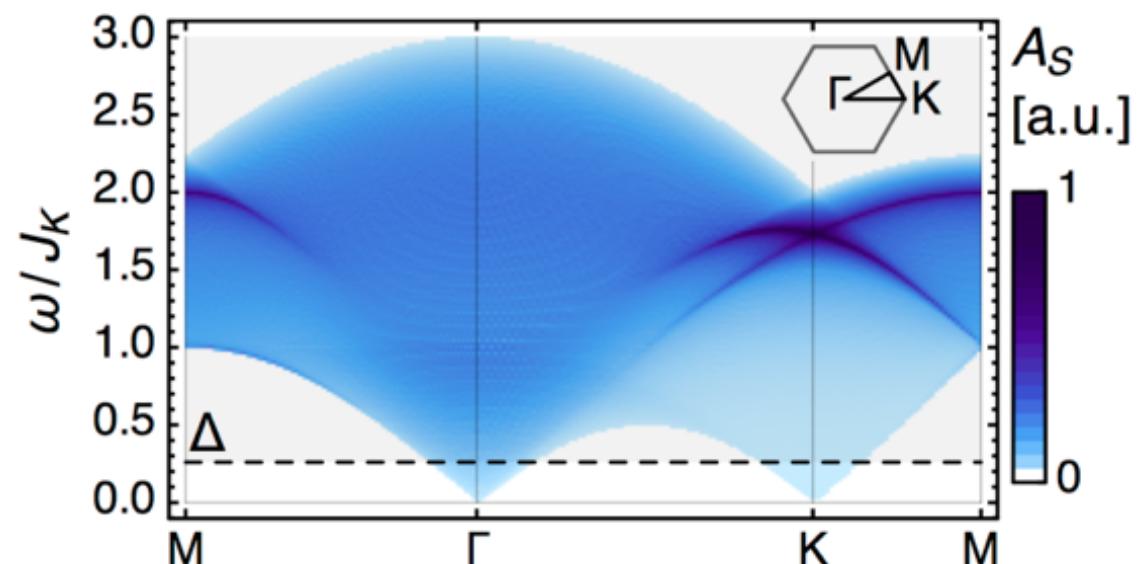
3rd yr ugrad
Peking U.

尤亦庄
Yi-Zhuang
You

postdoc
UCSB

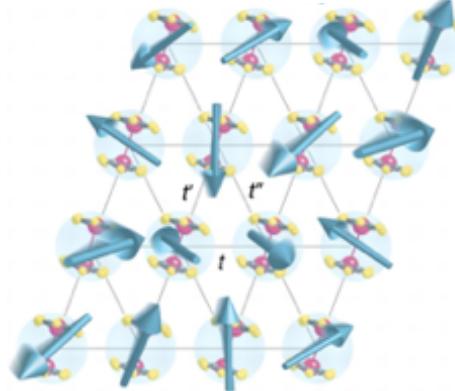
Generically: spin
correlations are *gapless*
and *structured*

(gapless contribution should be added
to the other one, which is like the
“incoherent” part in a Fermi liquid)

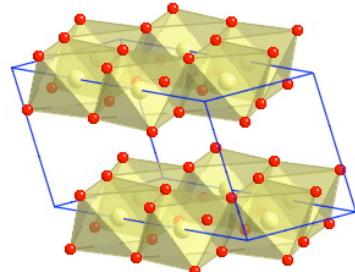


Top experimental platforms

K. Kanoda



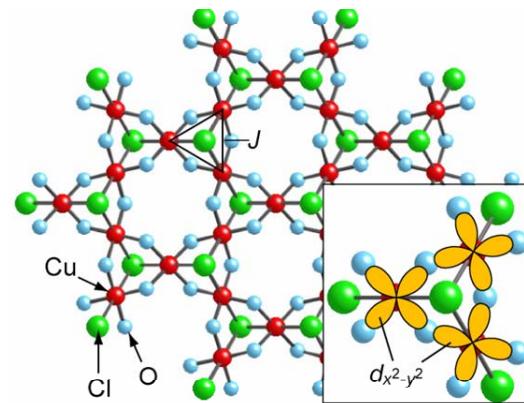
Organics



Y.-B. Kim

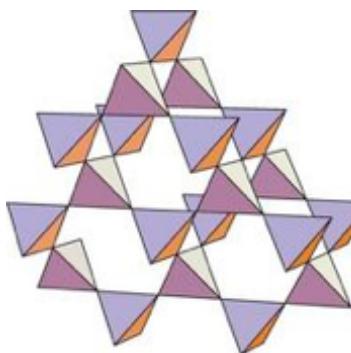
Kitaev materials

M. Fu



Herbertsmithite

Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3
 $\alpha\text{-RuCl}_3$



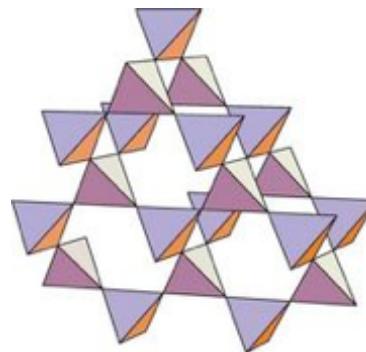
$\text{Yb}_2\text{Ti}_2\text{O}_7$
 $\text{Pr}_2\text{Zr}_2\text{O}_7$
...

G. Chen
Y. Tokiwa

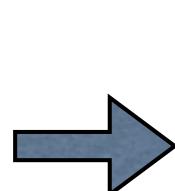
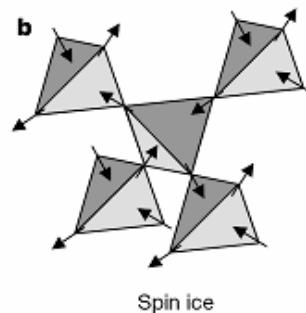
Quantum spin ice

Quantum spin ice

- Quantum $S=1/2$ spins on pyrochlore lattice



$$H = J_{zz} \sum_{\langle ij \rangle} S_i^z S_j^z + H_Q$$



+ Quantum fluctuations

2in-2out states

Quantum spin ice

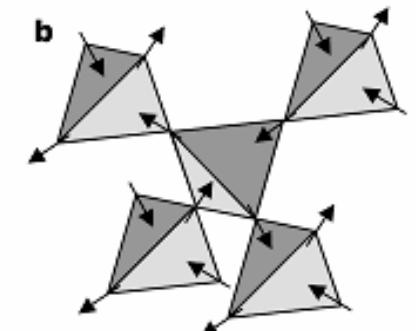
- For non-Kramers ions, e.g. Pr^{3+}

$$H_Q = \sum_{\langle ij \rangle} \underbrace{[-J_{\pm} S_i^+ S_j^- + \text{h.c.} - J_{\pm\pm} \gamma_{ij} S_i^+ S_j^+ + \text{h.c.}]}_{\text{intrinsic exchange}} - \sum_i \underbrace{[h_i S_i^+ + \text{h.c.}]}_{\text{extrinsic crystal fields}}$$

With a lot more work one can show that *both* types of quantum terms favor a massive superposition: a quantum spin liquid state

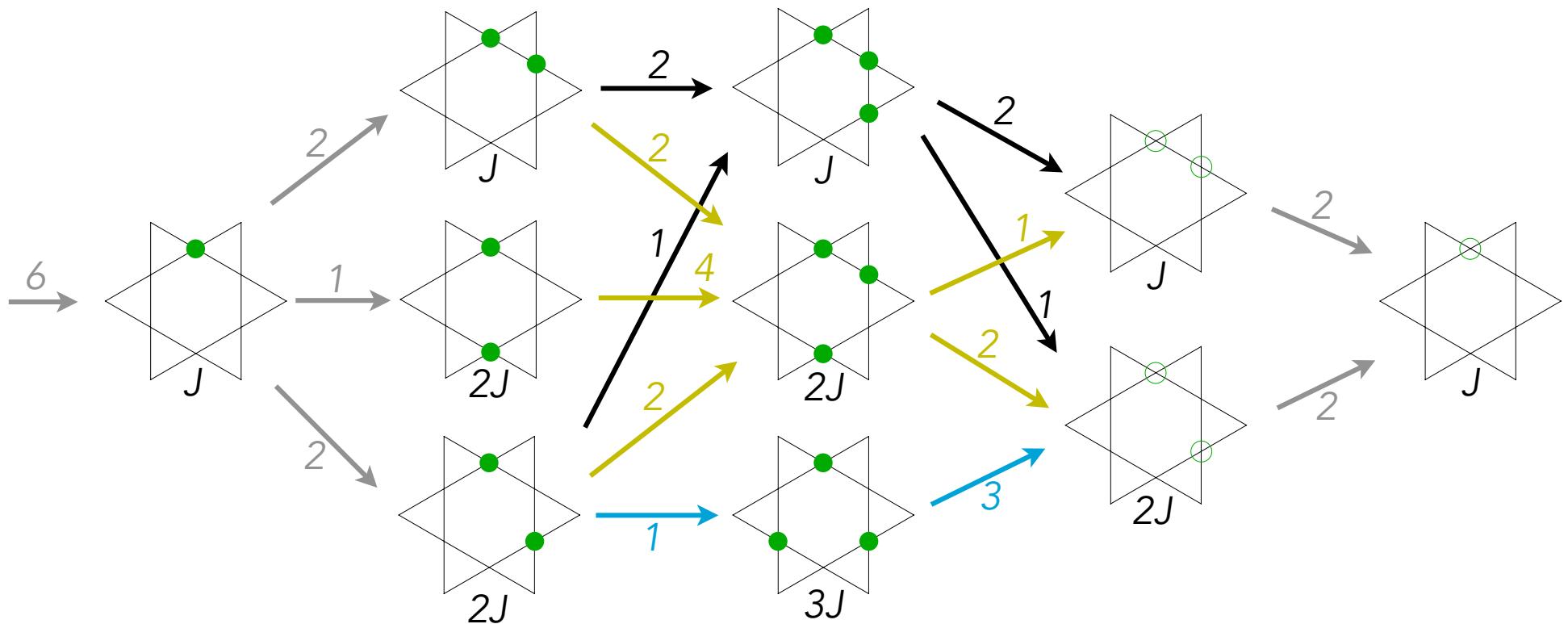
M. Hermele, MPA Fisher, L.B., 2004; A. Banerjee *et al*, 2008;
L. Savary + LB, 2012; SB Lee *et al*, 2012...

$$|\Psi\rangle = \sum$$



Perturbation theory

e.g. random crystal fields h_i



Leading result of disorder is to induce quantum "ring exchange"

"dynamics from disorder"

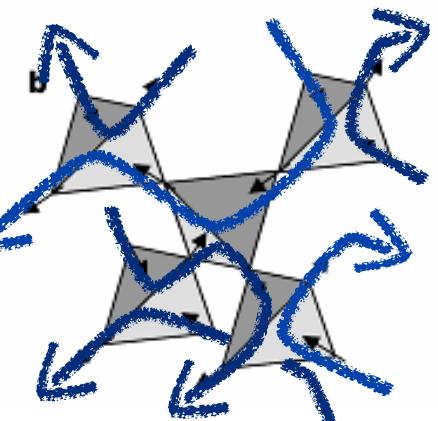
Quantum spin ice

- For non-Kramers ions, e.g. Pr^{3+}

$$H_Q = \sum_{\langle ij \rangle} \underbrace{[-J_{\pm} S_i^+ S_j^- + \text{h.c.} - J_{\pm\pm} \gamma_{ij} S_i^+ S_j^+ + \text{h.c.}]}_{\text{intrinsic exchange}} - \sum_i \underbrace{[h_i S_i^+ + \text{h.c.}]}_{\text{extrinsic crystal fields}}$$

U(1) QSL: fluctuating “field lines”
and emergent electromagnetism

$$|\Psi\rangle = \sum$$



M. Hermele, MPA Fisher, L.B., 2004; A. Banerjee *et al*, 2008;
L. Savary + LB, 2012; SB Lee *et al*, 2012...

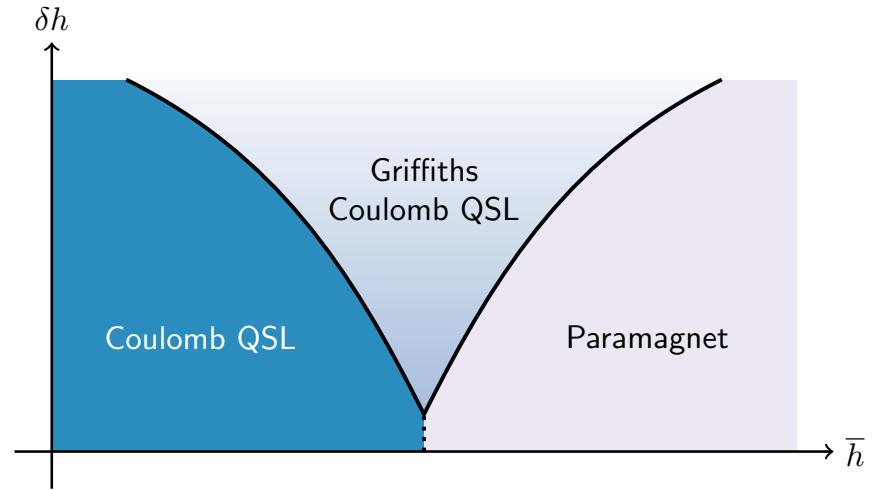
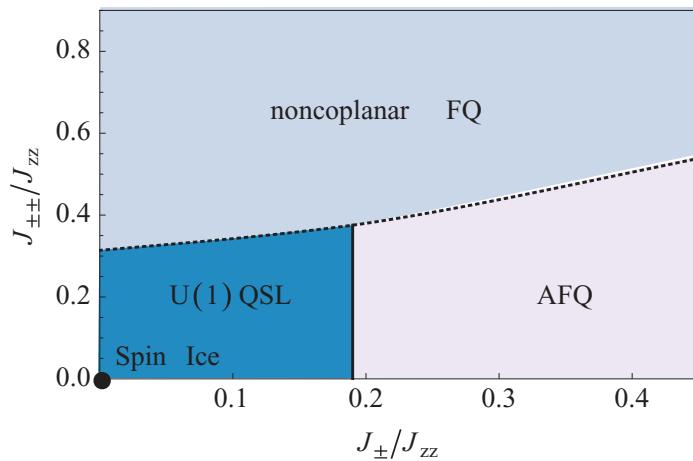
Quantum spin ice

a surprise: in the non-Kramers case, **disorder alone** can generate the QSL

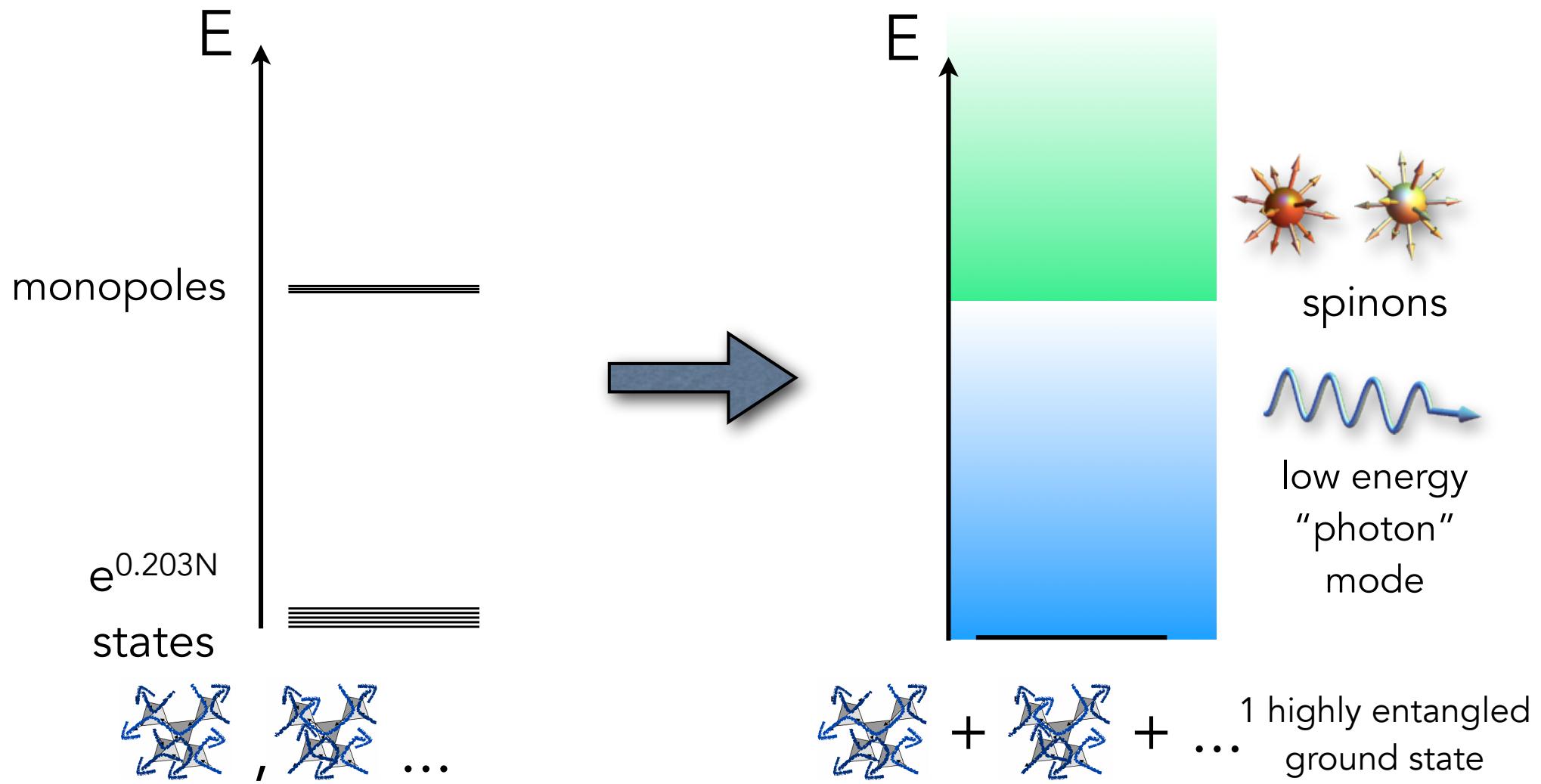
L. Savary + LB, arXiv:1604.04630

in general, we expect it to assist the intrinsic quantum exchange terms.

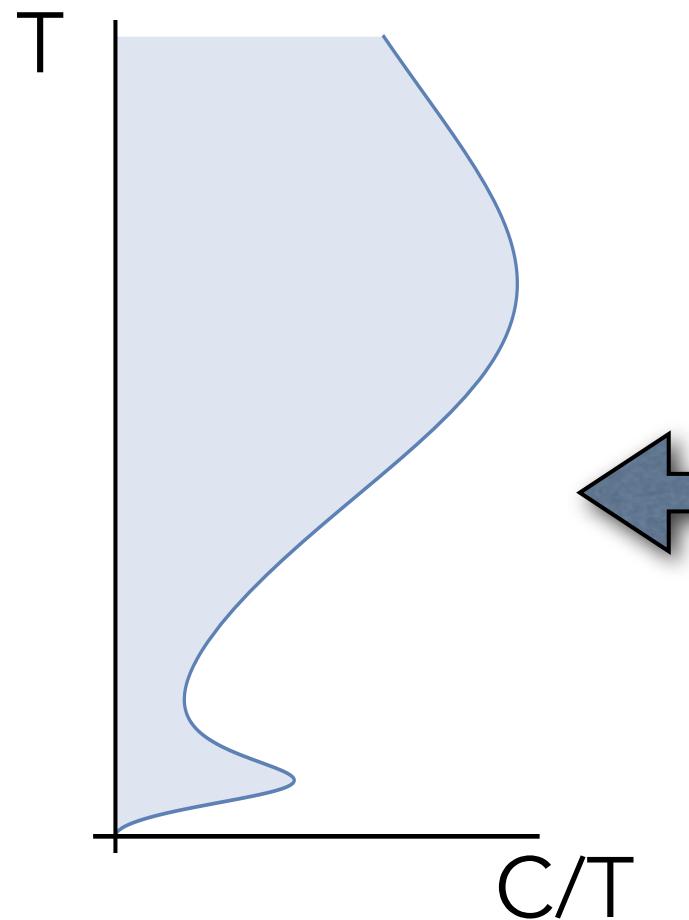
SB Lee *et al*, 2012



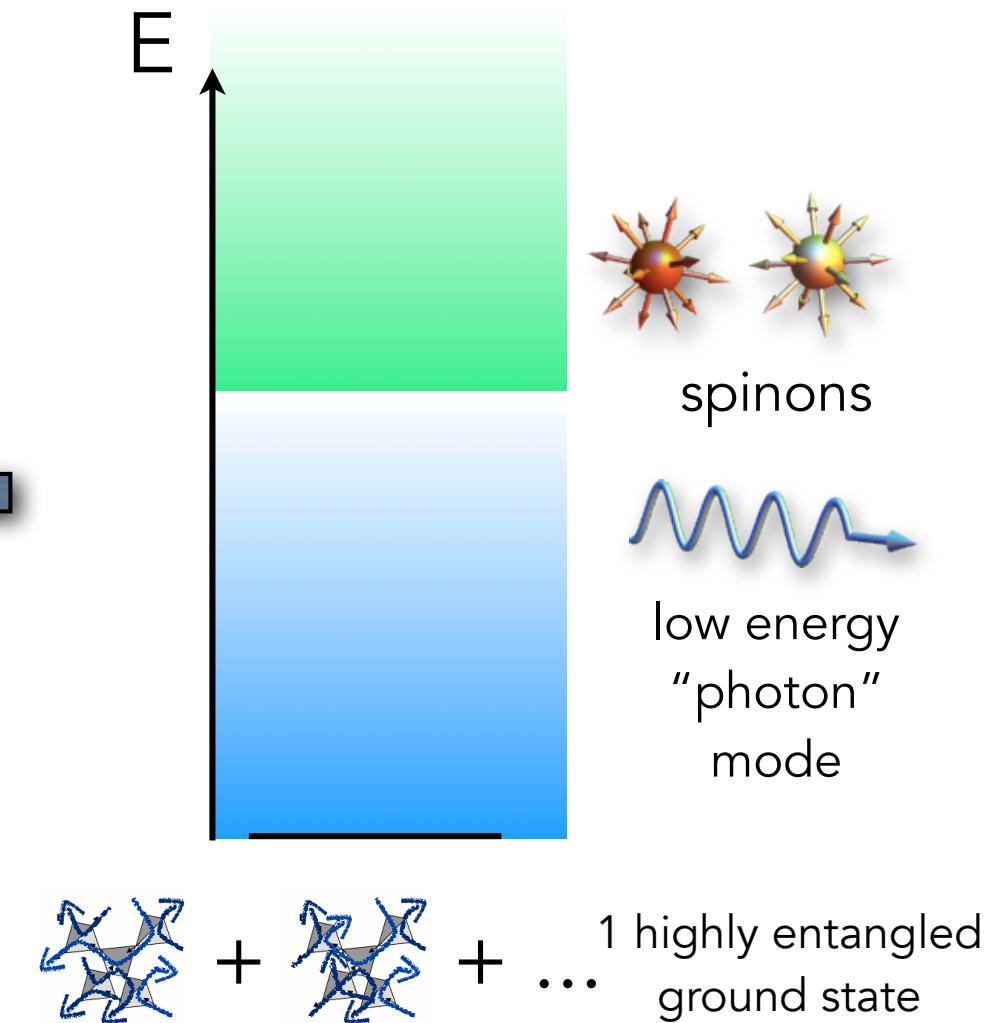
Quantum spin ice



Quantum spin ice

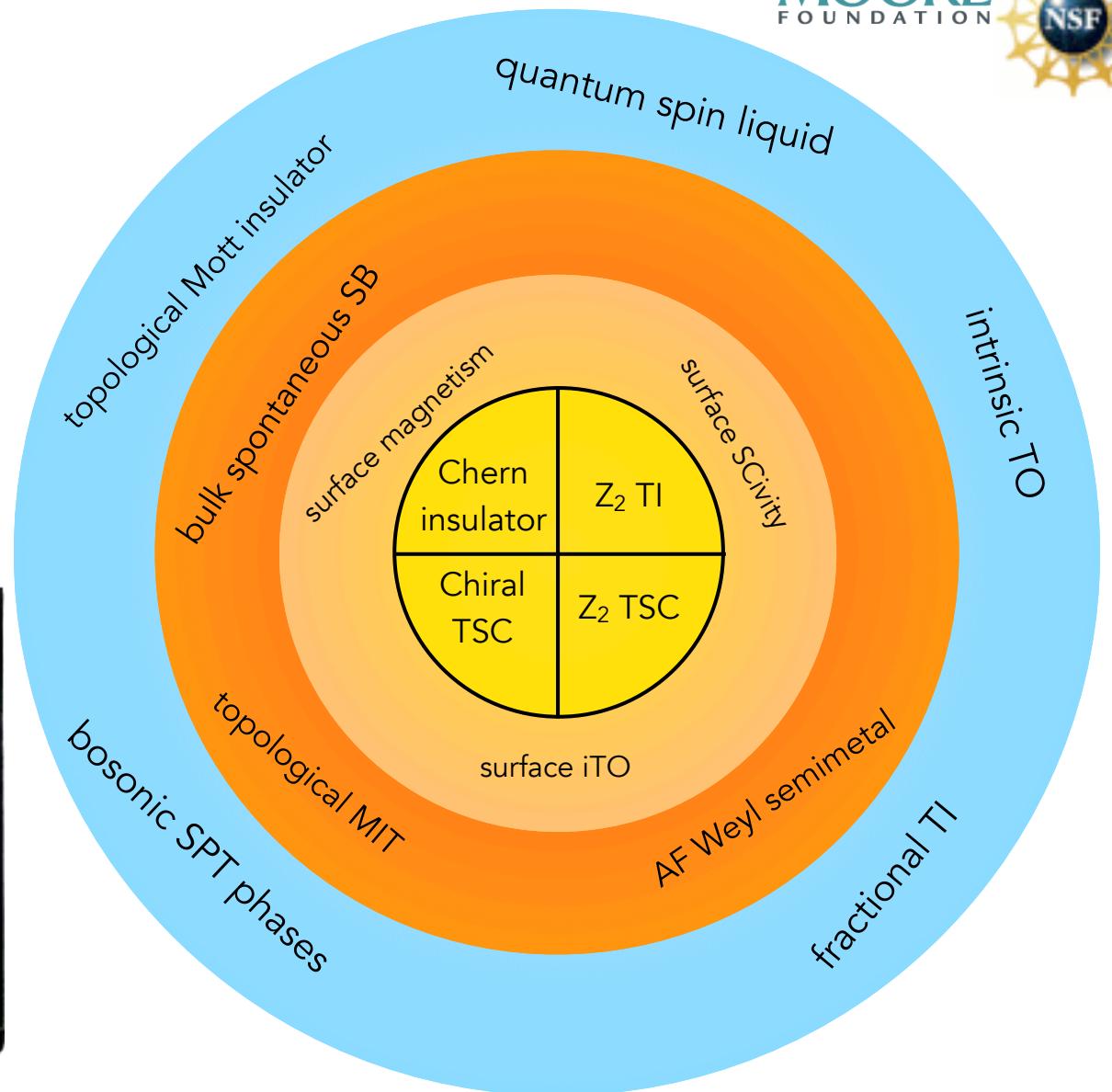
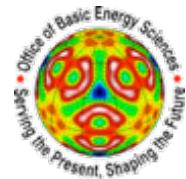


c.f. Y. Tokiwa We-S12-5



Summary

- Together, topology and SCES can help to achieve enlightenment.



GORDON AND BETTY
MOORE
FOUNDATION

