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Topological everything

® Chern insulator

® 7/, topological insulator

® topological crystalline insulators
® topological superconductors

® Dirac semi-metals

® Weyl semi-metals

® Line node semi-metals

® Fermi surface



Why correlations?

w/0 Iinteractions

We like correlations

because we dream of a
more colorful world
| Chern 2,
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Why correlations?

e Distinct surface states
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Why correlations?

e Distinct surface states
e Control of bulk
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Why correlations?

e Distinct surface states
e Control of bulk

topology by

spontaneous i

symmetry breaking @
e Entirely new phases

requiring strong
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Why correlations?
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This talk: how does this play out in a real example?



A (B) sublattice

A=Y,Ln «<—— f-electron moments, except
B=Ir when A =Y, Eu
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Pyrochlore iridates

e Continuous magnetic/metal-insulator
transitions (compatible with Ising)
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Pyrochlore iridates

e Continuous magnetic/metal-insulator
transitions (compatible with Ising)
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Ingredients ot a theory

e Unusual electronic structure
® |r e-e Hubbard interactions

e Rare earth moments?
probably not?
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T. Kondo et al, Nat. Comm., 2015

Paramagnetic electronic

structure
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Energy (eV)

T. Kondo et al, Nat. Comm., 2015

Paramagnetic electronic
structure
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Proximate phases
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ARPES

T. Kondo et al, Nat. Comm., 2015 E ;
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Ordering: theory
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® General agreement: transition to AIAO Ising AF order

4+ Quantum critical theory of this transition
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I quasiparticle picture applies at low energy, a weakly
ordered AIAO state must be a Weyl semimetal
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e \Weyl semimetal?
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Weyl not?

K. Ueda et al, 2012

Optical Conductivity (Q'cm™

L (ONGILO, |
! I/

n.b. Gap ~ 18T

charge gap ~
45meV




Weyl not?

K. Ueda et al, 2012
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If quasiparticle picture applies at low energy, a weakly
ordered AIAO state must be a Weyl semimetal

+ Not weakly ordered?
+ No quasiparticles?
+ Weyl with very small DOS?



Weak or not?
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Could this have happened already for Nd?



Zhaoming Tian et al, Nature Physics, 2015

Transport
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To explore this in more
detail, let’s look at
transport

® Seems to b with hard gap

continuous
4

® thermal tra

® However, abrupt first order transition
appears at low T in a field

® Insulator-metal transition only occurs for
fields along (100)



Zhaoming Tian et al, Nature Physics, 2015

Metal-Insulator Transition
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® First order transition at low temperature: mechanism of
MIT is vanishing of condensation energy, not gap closing.

® Anisotropy: clear indication that Nd plays a direct role in
the MIT - probably this is a unique feature for R=Nd



*Much of gap (45meV) is due to Nd-Ir
exchange

e|ntrinsic g-tensor anisotropy of Nd
explains anisotropy of MIT

(100) field achieves maximum Nd polarization of 2in-2out type, “opposite” to AIAO Ising order



Anisotropy

® Nd sensitivity to direction is transferred to Ir

Hy = Z Si  Jia - Ta  acts like hot ~10meV local field on Ir
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Domains

® | arge magnetic moment of Nd allows
manipulation of domains
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c.f. K. Ueda et al (2014)

conducting domain walls!



M. Nakayama et al, unpublished-- coming soon!
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Quasiparticles?

® Already observed bandwidth reduction
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in PralroO7 - what happens for Nd?
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In strong Mott localized regime non-trivial band topology is unlikely



Summary

® Pyrochlore iridates show a

rich phenomenology with
nodal and gapped states,
metal-insulator transitions,
and strong anisotropic
response

Correlations induce
antiferromagnetism but also
Mott localization, which,
helped by Nd f-moments,
seems to subdue the Wey!
fermions expected from the
former alone

Quite a bit still to explore!
Correlated materials prove
surprising and challenging
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