
• Calculate quantum corrections to energy 
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• Solve two-body Schrödinger equation

A mechanism for kindred and camouflaged 
orders in a simple model
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Origins of quantum complexity?
• Frustration and phase competition
• Emergent symmetry
• Quantum criticality
• Bad luck
• Here: bound states and quantum droplets
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Fig. 1. (Color online) Crystal structure of LiCuVO4. Cu-O chains separated by VO4 tetrahedra and

Li+ ions are along the b direction. ∠ Cu-O-Cu ∼ 90◦ indicates the ferromagnetic interaction.

constants and η is Luttinger parameter.9) Recent numerical studies exhibit magnetization vs

J1/J2 phase diagram and the quadrupole phase in fact persists down to rather low magnetic

field.9–11) In addition the phase consists of two states, SDW2 in lower field where ⟨sz0s
z
l ⟩

is dominant and nematic in higher field where ⟨s+0 s
+
1 s

−

l s
−

l+1⟩ is dominant. In both states

transverse two spin correlation is short ranged and decays exponentially.

In most quasi-1D magnet weak interchain interaction induces magnetic LRO at low tem-

perature but it inherits quantum nature. In case of VC phase, spiral order in which the

magnitude of the magnetic moment is strongly suppressed due to quantum fluctuation would

be induced. In case of SDW2, LRO of the longitudinal spin correlation would appear with

propagating wave vector k2 = 2kF .12) The former is a good analogue for classical spin system

but the latter is a totally novel state induced by frustration and quantum fluctuation.

LiCuVO4
13) is one of the model compound for the frustrated ferromagnetic chain. As

shown in Fig. 1 the CuO plaquette forms 1D S = 1/2 chain in the crystallographic b direction.

Considering the bond angle of Cu-O-Cu ∼ 90◦, nearest neighbor interaction is presumed to be

ferromagnetic14, 15) and next nearest neighbor (NNN) interaction be antiferromagnetic(AF).

The magnetic susceptibility showed typical behavior of 1D frustrated magnet, i.e., broad max-

imum due to AF short-range fluctuation at Tmax = 28K16) was observed. At T ≤ TN = 2.3 K

incommensurate magnetic order with propagation vector ksp = (0 0.532 0) was identified.17)

Neutron diffraction elucidates the spiral structure in the ab plane at zero field17) and also at

small field H ≤ 3.5 T.18) The magnetic moment is strongly suppressed as small as 0.25µB
19)

∼ 0.31µB.17) Inelastic neutron scattering showed enhanced spin dispersion in the b∗ direc-

tion and small one in others.20) Exchange parameters have been estimated from independent

experiments including the magnetic dispersion,20) the continuum excitation,21) and magneti-
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1d S=1/2 chain
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NaCuMoO4(OH) as a Candidate Frustrated J1–J2 Chain Quantum Magnet
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In a frustrated J1–J2 chain with the nearest-neighbor ferromagnetic interaction J1 and the next-
nearest-neighbor antiferromagnetic interaction J2, novel magnetic states such as a spin-nematic state
are theoretically expected. However, they have been rarely examined in experiments because of the
difficulty in obtaining suitable model compounds. We show here that the quasi-one-dimensional
antiferromagnet NaCuMoO4(OH), which comprises edge-sharing CuO2 chains, is a good candidate
J1–J2 chain antiferromagnet. The exchange interactions are estimated as J1 = −51 K and J2

= 36 K by comparing the magnetic susceptibility, heat capacity, and magnetization data with the
data obtained using calculations by the exact diagonalization method. High-field magnetization
measurements at 1.3 K show a saturation above 26 T with little evidence of a spin nematic state
expected just below the saturation field, which is probably due to smearing effects caused by thermal
fluctuations and the polycrystalline nature of the sample.

Low-dimensional quantum spin systems with geomet-
rical frustration and/or competing magnetic interactions
have attracted much attention in the field of magnetism.
Low dimensionality, quantum fluctuations, and frustra-
tion are three ingredients that may effectively suppress
conventional magnetic order and lead us to unconven-
tional magnetic order or exotic ground states such as a
quantum spin liquid[1, 2].
A frustrated J1–J2 chain of spin 1/2 defined as

H = J1
∑

l

sl · sl+1 + J2
∑

l

sl · sl+2 − h
∑

l

szl (1)

provides us with an interesting example: the competi-
tion between the nearest-neighbor (NN) ferromagnetic
interaction J1 and the next-nearest-neighbor (NNN) an-
tiferromagnetic interaction J2 causes various quantum
states in magnetic fields h[3–7]. Realized in low fields
is a long-range order of vector chirality defined as (sl ×
sl+n)z (n = 1, 2). As the field increases, spin correlations
change markedly because bound magnon pairs are stabi-
lized by ferromagnetic J1. The bound magnon pairs form
a spin density wave (SDW) in medium fields, whereas, in
high fields just below the saturation of magnetization,
they exhibit Bose–Einstein condensation into quantum
multipolar states[8–11]. One of the multipolar states ex-
pected just below the saturation is a quadrupolar state
of magnon pairs called a spin nematic state, analogous
to nematic liquid crystals.
To explore these quantum states theoretically pre-

dicted for the frustrated J1–J2 chain, many experimen-
tal studies have been performed on quasi-1D compounds

∗ knawa@issp.u-tokyo.ac.jp
† Present address: Department of Applied Physics, Graduate
School of Engineering, Nagoya University, Chikusa, Nagoya 464-
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TABLE I. Candidate compounds for the J1–J2 chain system.
Listed are the nearest-neighbor intrachain interaction J1, the
next-nearest-neighbor interaction J2, the bond angles of Cu-
O-Cu paths for J1, the antiferromagnetic transition temper-
ature at zero field TN, and the saturation field Hs.

Compound J1, J2 ∠ Cu-O-Cu TN Hs

(K) (deg) (K) (T)
Li2ZrCuO4[12, 13] −151, 35 94.1 6.4 -

Rb2Cu2Mo3O12[14, 15] −138, 51 89.9, 101.8 < 2 14
91.9, 101.1

PbCuSO4(OH)2[16–18] −100, 36 91.2, 94.3 2.8 5.4
LiCuSbO4[19] −75, 34 89.8, 95.0 < 0.1 12

92.0, 96.8
LiCu2O2[20–22] −69, 43 92.2, 92.5 22.3 110
LiCuVO4[23–31] −19, 44 95.0 2.1 44.4
NaCuMoO4(OH) −51, 36 92.0, 103.6 0.59 26

such as Li2ZrCuO4[12, 13], Rb2Cu2Mo3O12[14, 15],
PbCu(SO4)(OH)2[16–18], LiCuSbO4[19], LiCu2O2[20–
22], and LiCuVO4[23–31], the key parameters of which
are listed in Table I. These compounds commonly
have edge-sharing CuO2 chains made of CuO6 octahe-
dra. NN Cu spins are magnetically coupled with each
other through two superexchange Cu–O–Cu paths with
approximately 90◦ bond angles, while NNN Cu spins are
coupled through two super-superexchange Cu–O–O–Cu
paths. Thus, according to the Goodenough–Kanamori
rule, J1 should be ferromagnetic while J2 can be antifer-
romagnetic. This is in fact the case for these candidate
compounds, which causes frustration in the J1–J2 chains.

Among these compounds, the most often studied is
LiCuVO4 with J1 = −19 K and J2 = 44 K[25]. It has
been shown using large single crystals that LiCuVO4 ex-
hibits an incommensurate helical order at low fields[25–
29], which may be a 3D analogue of the vector chirality
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Emergent multipolar spin correlations in a fluctuating spiral: The frustrated ferromagnetic
spin-1

2 Heisenberg chain in a magnetic field
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We present the phase diagram of the frustrated ferromagnetic S= 1
2 Heisenberg J1−J2 chain in a magnetic

field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A
vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases
up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive
spiral states toward spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light
on previously discovered spin-multipolar phases in two-dimensional S= 1

2 quantum magnets in a magnetic
field.

DOI: 10.1103/PhysRevB.80.140402 PACS number!s": 75.10.Jm, 75.30.Kz, 75.40.Cx, 75.40.Mg

Spiral or helical ground states are an old and well-
understood concept in classical magnetism,1 and several ma-
terials are successfully described based on theories of spiral
states. For low spin and dimensionality however quantum
fluctuations become important and might destabilize the spi-
ral states. Given that spiral states generally arise due to com-
peting interactions, fluctuations are expected to be particu-
larly strong.

A prominent instability of spiral states is their intrinsic
twist #Si!S j$ !vector chirality".2 It has been recognized that
finite temperature3 or quantum4 fluctuations can disorder the
spin moment #Si$ of the spiral, while the twist remains finite.
Such a state is called p-type spin nematic.5 In the context of
quantum fluctuations such a scenario has been confirmed re-
cently in a ring-exchange model,6 while possible experimen-
tal evidence for the thermal scenario has been presented in.7

The twist also gained attention in multiferroics, since it
couples directly to the ferroelectricity.8

In this Rapid Communication we provide evidence for the
existence of yet a different instability of spiral states toward
spin-multipolar phases. The basic idea is that many spin-
multipolar order parameters are finite in the magnetically
ordered spiral state, but that under a suitable amount of fluc-
tuations the primary spin order is lost, while a spin-
multipolar order parameter survives. We demonstrate this
mechanism based on the magnetic field phase diagram of a
prototypical model, the frustrated S= 1

2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic
next nearest-neighbor interactions. Furthermore we show
that this instability provides a natural and unified understand-
ing of previously discovered two-dimensional spin-
multipolar phases.9,10

To be specific, we determine numerically the phase dia-
gram of the following Hamiltonian:

H = J1%
i

Si · Si+1 + J2%
i

Si · Si+2 − h%
i

Si
z, !1"

and we set J1=−1, J2"0 in the following. Si are spin-1/2
operators at site i, while h denotes the uniform magnetic
field. The magnetization is defined as mª1 /L%iSi

z. We em-

ploy exact diagonalizations !EDs" on systems sizes up to
L=64 sites complemented by density matrix renormalization
group !DMRG" !Ref. 11" simulations on open systems of
maximal length L=384, retaining up to 800 basis states.

The classical ground state of Hamiltonian !1" is ferromag-
netic for J2#1 /4 and a spiral with pitch angle $
=arccos!1 /4J2"! &0,% /2' otherwise. The Lifshitz point is
located at J2=1 /4. In a magnetic field the spins develop a
uniform component along the field, while the pitch angle in
the plane transverse to the field axis is unaltered by the field.

The zero field quantum mechanical phase diagram for
S= 1

2 is still unsettled. Field theoretical work predicts a finite,
but tiny gap accompanied by dimerization12,13 for J2&1 /4,
which present numerical approaches are unable to resolve.
The classical Lifshitz point J2=1 /4 is not renormalized for
S= 1

2 , and the transition point manifests itself on finite sys-
tems as a level crossing between the ferromagnetic multiplet
and an exactly known singlet state.14 The theoretical phase
diagram at finite field has recently received considerable
attention,15–17 triggered by experiments on quasi one-
dimensional cuprate helimagnets.18–20 One of the most pecu-
liar features of the finite size magnetization process is the
appearance of elementary magnetization steps of
'Sz=2,3 ,4 in certain J2 and m regions. This has been attrib-
uted to the formation of bound states of spin flips, leading to
dominant spin-multipolar correlations close to saturation. A
detailed phase diagram is however still lacking.

We present our numerical phase diagram in the J2 / (J1( vs.
m /msat plane in Fig. 1. At least five different phases are
present. The low magnetization region consists of a single
vector chiral phase !gray". Below the saturation magnetiza-
tion we confirm the presence of three different multipolar
Luttinger liquid phases !red, green, and blue". The red phase
extends up to J2→(,16 and its lower border approaches
m=0+ in that limit. All three multipolar liquids present a
crossover as a function of m /msat, where the dominant cor-
relations change from spin-multipolar close to saturation to
spin-density wave !SDW" character at lower magnetization.
One also expects a tiny incommensurate p=2 phase close to
the p=3 phase,17 which we did not aim to localize in this
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LiCuVO4

Model: Frustrated ferromagnet
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“molecular condensate”

n>1: camouflaged order
{ n } = kindred orders

S =

Z
dxd⌧

�
isA

B

[m̂] + �|@
x

m̂|2 +K|@2
x

m̂|2 + u|@
x

m̂|4 � hm̂

z

 

Lifshitz NLsM

WZW/Berry 
phase term

tunes 
QCP

two symmetry allowed 
interactions at O(q4)

z=4 QCP h = � = 0
u < 0 from quantum fluctuations

Saddle point
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r
K
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✓
u

K
,
hK

�2

◆

semi-classical limit
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0

metamagnetism

�1 <
u

K
< � 1
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Quantum effects

• Quantum first order transitions can have 
hidden richness

• Finite coexistence domains become 
multi-magnon bound states (classical 
texture becomes quantum collective 
excitation)

" = �( u
K + 1

4 )

generalizations and applications to 
d=2,3 forthcoming

2

 and �, quartic in derivatives, which is crucial in the follow-
ing. The � term has been ignored in previous field theoretic
approaches[16, 17].

The action (2) needs a condition for stability against large
gradients of m̂. Starting from constraint m̂ · m̂ = 1, it is easy
to obtain |@2

xm̂|2 > |@xm̂|4, which is enough to show stability
is present so long as � +  > 0. This means negative � in (2)
is allowed so long as � > �.

The action describes several distinct dynamical regimes.
For � < 0, the excitations above the ground states are quadrat-
ically dispersing spin waves, ! ⇠ kz , characterized by the
dynamical critical exponent z = 2, which is easily seen by
equating the linear ⌧ derivative in AB with the second spatial
derivative in the � term. For � = 0, the dynamics changes to
z = 4. For � > 0, the theory is more non-trivial, and there is
even a z = 1 regime (see below).

Asymptotic solubility: Physically, the absence of fluctua-
tions in the FM state suggests a saddle point approximation
may apply near to it. Indeed, a simple rescaling x ! p

/� x0

and ⌧ ! ⌧ 0/�2 transforms the action into suggestive form
(we defined v = ��/ and h0

= h/�2)

S =

r



�

Z

dx0d⌧ 0
�

isA0
B [m̂]� sign(�)|@x0m̂|2 + |@2

x0m̂|2

�v|@x0m̂|4 � h0m̂z

 

, (4)

which shows that near the critical point, when �/ ⌧ 1, the
action is large in dimensionless terms so that a saddle point
analysis becomes asymptotically correct on approaching the
Lifshitz point. Because |�| appears only in the prefactor of the
action in Eq. (4), the phase diagram at the saddle point level
and only the dimensionless parameters v and h0 control the
saddle point. Note that v < 1 defines the stability region of
the theory.

FIG. 1. Saddle point result for the magnetization m(h) for different
values of interaction parameter v, which is shown next to each curve.

The saddle point of Eq. (2) with minimum action describes
a cone (umbrella) state:

m̂
sp

= (' cos qx,' sin qx,
p

1� '2

), (5)

with 0  '  1 and q functions of the parameters of the ac-
tion. Solutions with both sign of q are degenerate, which re-
flects spontaneous breaking of reflection symmetry and chiral
order: ẑ · m̂

sp

⇥ @xm̂sp

= '2q 6= 0. For sufficient large field,

h > hc, the solution is simply the ferromagnetic one, with
' = 0. On reducing the field, there are two possible behav-
iors. For � > �/4 (v < 1/4), a continuous transition occurs
at the critical field hc = h

0

= �2/(2). The “order param-
eter” ', which represents the local moment transverse to the
magnetic field, increases smoothly from zero below h

0

. This
corresponds to the point of local instability of the FM phase to
single magnons, which Bose condense when their energy van-
ishes at h

0

. For � < �/4 (v > 1/4), the transition occurs
discontinuously at hc > h

0

, at which point the ferromagnetic
state is still locally stable. The order parameter jumps to a
non-zero value 'c for h = hc � 0

+. This is a metamagnetic
transition, described by

'2

c =

2

p
v � 1

v
, hc =

�2

8
p
v(1�p

v)
, q2c =

�

4(1�p
v)

,

(6)
which hold for 1/4 < v < 1. Due to the aforementioned scale
invariance, the metamagnetic line extends for all � at the sad-
dle point level. The saddle point gives direct predictions for
experiment such as the magnetization m =

p

1� '2 shown
in Fig. 1.

Quantum corrections: Fluctuations beyond the saddle point
have several types of effects. One innocuous effect is that of
phase fluctuations within the “cone phase”: configurations of
form of Eq. (5) with qx ! qx + ✓ have small action when
✓(x, ⌧) has small space-time gradients. Fluctuations of ✓ are
thereby described by a free boson theory with central charge
c = 1, which converts the long-range cone order into power-
law spin correlations, but preserves the chiral order. These
properties characterize a “vector chiral” phase (VC), identi-
fied previously in the FFHC.

A more drastic effect of fluctuations is to move the phase
boundaries and even introduce new phases. We show below
that quantum fluctuations lower the energy difference between
the cone and FM states, eventually inducing a metamagnetic
endpoint.

To proceed, we write the magnetization m̂ in the co-moving
system of coordinates

m̂ =

r

2� ⌘̄⌘

s
[

⌘̄ + ⌘

2

p
s
ê
1

+ i
⌘̄ � ⌘

2

p
s
ê
2

] + (1� ⌘̄⌘

s
)ê

3

, (7)

where the rotating dreibein êj(x) are chosen as follows:
ê
1

⇥ ê
2

= ê
3

⌘ m̂
sp

. The fields ⌘̄, ⌘ describe magnons, trans-
verse fluctuations of the magnetization. To quadratic order the
action in Eq. (2) becomes S =

R

d⌧
⇥R

dx ⌘̄@⌧⌘ +H
fluct

⇤

,
which shows that ⌘̄, ⌘ are canonical Bose operators, and
H

fluc

(⌘̄, ⌘) is a Hamiltonian. Fourier transforming it into
momentum space shows that H

fluc

contains both normal and
anomalous terms:

H
fluc

=

X

k

2Ak⌘̄k⌘k +Bk(⌘k⌘�k + ⌘̄k⌘̄�k). (8)

Here coefficients Ak, Bk are functions of momentum k and
depend on parameters �,, v, h and ' of the saddle point ac-

⌘ becomes quantum boson field

E
FM

� E
cone

⇠ "3�2 � "2�5/2

study in expansion in

Ramifications

2-body bound state 
disappears after 

metamagnetic endpoint




