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1 What this course is about

Lecture 1 (1.5h)
September 24th, 2015 One of the advantages of teaching an advanced graduate course is the flexibil-

ity to interpret the subject. In the past this class has really been mostly about
techniques - we teach coherent states, path integrals, perturbation theory, etc.,
a set of many body tools used often by theorists. These tools have a lot in com-
mon with those in quantum field theory (QFT). Indeed, another way to teach
this class is as ”QFT for condensed matter physics”. This is a popular sort of
approach. It somehow embodies the view that QFT is an ideal of beauty in
physics, and that it is the ultimate that we could hope to achieve in condensed
matter physics (or elsewhere). A lot of theorists really believe this - maybe
they are right. There are a couple of nice courses online that I found which
seem to take this view. They make good reading:

• There is this class ”Demystifying quantum field theory” by Ashvin Vish-
wanath at Berkeley.

• Here is another class, ”Whence quantum field theory” by John Mc-
Greevy at UCSD.

There’s a lot to like about these classes. They approach QFT from a decid-
edly CM perspective, and hit quite a few modern topics. Moreover, they focus
a fair amount on physics rather than technique.

I want to take this a bit further, really putting the physics front and center,
and so this course is going to be about:

”Universal and non-universal properties of matter”

In my view QFT is just one technique to understand this subject. Actually
the more one studies QFT the less one is sure of where it is even well-defined.
The real subject of this class - properties of matter - is always defined. It
includes but transcends QFT. (where the subject gets hazy is when gravity
and quantum mechanics come together, and there, well, nobody really knows
what is going on and we will not enter there). If you love QFT, well great,
good for you. You are not alone.

So here are the general topics:
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• The thermodynamic limit: We will for the most part be interested in
matter in the thermodynamic limit, i.e. in systems with at least one spa-
tial dimension very large, with a finite number of degrees of freedom per
unit volume. This limit gives rise to emergent phenomena and universal
behaviors.

• Phases of matter: Solid, liquid, gas - you’ve heard of this. We will talk
about what constitutes a phase, what the properties of phases are, and
examples of important phases.

• Entanglement: How quantum are different states of matter? We’ll look
a bit into how quantum information theory informs the study of matter.

• Quasiparticles: What are the excitations of quantum ground states? Of-
ten they behave like particles.

• Correlation and response: What do we actually measure in condensed
matter? How is it related to what we can calculate?

• Functional integral techniques: You gotta know this stuff. But I hope
we don’t need to spend too much time on it.

• Transfer matrix: How to turn quantum problems into classical stat mech
ones and vice versa

• Symmetry breaking: One of the most basic and pervasive phenomena
in nature

• Physical examples: Quantum Ising model, bosonic superfluids and Mott
insulators, AKLT chain, toric code

2 Quantum Ising model

First we are going to look at an iconic simple model of a quantum many
body system: the transverse field Ising model. It is very simple. We take a set
of sites i, and on each site we put a spin-1/2 system, i.e. a two-dimensional
Hilbert space spanned by | ↑〉 = |+ 1〉 and | ↓〉 = | − 1〉. The full space is a
direct product of these, i.e. by states of the form |s1〉 ⊗ |s2〉 · · · ..., where each
s1 = ±1-. We define Pauli matrices in the usual way σ

µ
i acting on site i, that is

really σ
µ
i = 1⊗ 1⊗ · · · ⊗ σµ ⊗ 1 · · · . Then the Hamiltonian is written as

(1) H = −J ∑
〈ij〉

σz
i σz

j − h ∑
i

σx
i ,

Here 〈ij〉 means the first sum is over nearest-neighbor pairs of sites on a
lattice. For our purpose you can think of a hypercubic lattice, where sites are
specified by integer coordinates i = (n1, n2, . . . , nd) in d dimensions. We’ll take
J ≥ 0 (a ferromagnetic Ising coupling).

Why is this a good model? It is simple, but it also satisfies a lot of basic
physical requirements:
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2. Quantum Ising model

• It has a finite number of degrees of freedom (read finite-dimensional
Hilbert space) locally

• It is local: H is a sum of terms, each of which acts only on sites near one
another. Implicitly to define this we needed the direct product structure
of the Hilbert space, so that a local operator (like σ

µ
i ) acts only within a

few members of the direct product.

• It has an Ising symmetry: H is invariant under the unitary transforma-
tion which takes σ

µ
i → −σ

µ
i for µ = y, z. This is generated by the unitary

(and Hermitian) operator U = ∏i σx
i , which clearly commutes with H.

• It has translational symmetry: H is unchanged by taking σ
µ
i → σ

µ
i′ , where

i’(i) is just the site i translated by some lattice vector (i.e. vector with
integer components). So every site ”looks” the same.

The first, second, and last properties are things we are going to nearly
always assume in this course. The third is a particular example of a symmetry,
the simplest we can imagine.

2.1 Limits

Weak exchange

Now let us consider the two extreme limits. Suppose J = 0. Then σx
i commutes

with H and is a good quantum number = ±1 for each site. The ground state
(we take h > 0 without loss of generality) is the state with σx

i = +1 on all
sites. Schematically,

(2) |0〉 = | →→ · · · →〉.

This ground state is unique, and is invariant under all the symmetries of H.
Consequently, it is sometimes called a “quantum paramagnet”. Importantly,
it is a product state – there is no quantum entanglement. What are the exci-
tations? The simplest ones, which we would call elementary excitations, are
states in which a single spin is flipped. These have energy +2h compared to
the ground state,

|i〉 = | → · · · →←i→ · · · →〉,
= σz

i |0〉.(3)

These states are odd under the Ising symmetry. They are not translationally
invariant, but we can form plane wave combinations, which we will do mo-
mentarily. The next higher excitations are two-particle ones, which we could
write as, for example,

(4) |i, j〉 = σz
i σz

j |0〉,

which has energy +4h. Note that |i, j〉 = |j, i〉 which means that the spin flips
are identical particles, in the quantum sense: if we exchange two particles, it
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2.1. Limits

is not a linearly independent state. Indeed the lack of a sign would indicate
that these particles are bosons.

Now let us consider the effect of J in perturbation theory. To obtain the
first order correction to the energies, we just need to consider matrix elements
of the J term within each degenerate manifold at J = 0. As the J = 0 states
are eigenstates of σx

i , each term in J flips two spins from + to − or vice versa.
Hence in the ground state manifold there is no energy shift,

(5) ∆E0 = O(J2),

Now let us look at the one particle states. Here there are non-zero matrix
elements. Specifically

(6) 〈j|σz
k σz

l |i〉 = δikδjl + δilδjk − δklδij,

which means that the flipped spin can be ”moved” from one site to its neigh-
bor (the last negative term is just there to cancel double counting if k = l
which is trivial). Writing

(7) |ψ〉 = ∑
i

ψi|i〉,

we obtain

(8) −J ∑
j∈NN(i)

ψj = ∆Eψi.

This is like a one-particle Schrödinger equation. It is solved by defining plane
waves,

(9) ψj = eik·rj ,

i.e.

(10) |k〉 = ∑
j

eik·rj |j〉,

which gives

(11) ∆E(k) = −2J
d

∑
µ=1

cos kµ.

This we see describes a ”band” for a particle which has a minimum energy at
k = 0, and bandwidth of 4Jd. The gap is slightly reduced, by −2Jd, from the
value of +2h at J = 0. The plane wave nature means that these particles prop-
agate, and the energy shift is the kinetic energy of the particle. The minimum
energy excitation occurs at k = 0, and has the energy (note that there is no
shift in the ground state energy to linear order in J)

(12) εqp(k = 0) = 2h− 2dJ.
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2. Quantum Ising model

So we see that the gap between the group state and the minimum energy
quasiparticle decreases with J, at least when J is small.

Suppose we look not at the energy but at the wavefunction of the ground
state. Then there is a first order effect. As usual, this is obtained as

(13) |0〉′ = |0〉+ (E0 − H0)
−1H′|0〉+ O(J2),

where H0 is the transverse field term and H′ is the J term. This gives

(14) |0〉′ = |0〉+ (J/4h)∑
〈ij〉
|i, j〉+ O(J2).

We see that pairs of nearby particles are mixed into the modified ground
state wavefunction at this order. We can say that these are ”virtual pairs” of
particles. Note that there are no actual excitations in this state. It is still the
ground state, it is a unique state, and the energy is not even shifted at this
order.

Weak field

Now consider the opposite limit, h = 0. Now σz
i is a good quantum number

instead of σx
i . To minimize the energy, all spins should be aligned in a ground

state: the energy is just −J times the number of aligned bonds. There are now
two ground states,

(15) | ↑↑ . . . ↑〉 and | ↓↓ · · · ↓〉.

These are the ferromagnetic states with positive and negative magnetization.
Each of these is not invariant under the Ising symmetry: this is the symptom
of spontaneous symmetry breaking. We could if we wanted to choose different
linear combinations,

(16) |cat±〉 = 1√
2
(| ↑↑ . . . ↑〉 ± | ↓↓ · · · ↓〉) .

These “cat” states are eigenstates of the symmetry, that is U|cat±〉 = ±|cat±〉.
Back in quantum mechanics class, we were taught that we can always choose
Hamiltonian eigenstates to also be eigenstates of a complete set of commut-
ing symmetry generators. So in this sense the cat states are “better” than
the simpler-looking ferromagnetic states. However, in physical terms they are
usually worse. The problem is that the cat states consist of superpositions
of macroscopically different states. There are local operators (e.g. σz

i ) which
distinguish the two ferromagnetic components. Consequently any local mea-
surement can “collapse” a cat state into one of the two ferromagnetic states.
Since these measurements can occur anywhere in the system, even if there is
a very low probability to make this measurement locally, the probability adds
up over the whole system and when there are many sites, collapse becomes
almost certain. So the cat states are very fragile.

Another important feature is that the two ferromagnetic components are
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2.1. Limits

“super-orthogonal” (I made up that term!). Not only are they orthogonal, but
if we act with any local operator on one ferromagnetic state the result re-
mains orthogonal to the opposite magnetization state. This means that in any
superposition of the two ferromagnetic states, expectation values of local op-
erators behavior probabilistically: they involve only diagonal matrix elements
of the two components. So even if somehow a cat state is realized, we can
understand its properties just by classically weighting properties of the two
ferromagnetic states.

The low energy excited states are those in which a small number of bonds
are misaligned, and the excitation energy of such a state is +2J times the num-
ber of misaligned bonds. What is the smallest number of such bonds? Above
one dimension, and forgetting about boundaries, the minimum number is 2d,
and correponds to just flipping one spin,

(17) |i〉↑ = σx
i | ↑ · · · ↑〉,

and similarly we can construct the state |i〉↓ with all the spins flipped. These
states correspond to the smallest “domain” of flipped spins. Their excitation
energy is +4Jd. The state |i〉↑ is a “quasiparticle” for the ferromagnetic state,
similar to |i〉 in Eq. (3) for the quantum paramagnet.

Higher excited states consist of flipping larger domains. For example, if we
flip two neighboring spins, it results in 4d− 2 misaligned bonds (the minus
two is because the bond between the two flipped spins is not misaligned),
hence excitation energy (8d− 4)J. If instead we flip two non-adjacent spins,
then the energy is 2 × 4Jd = 8Jd. Note that the excitation energy for two
adjacent spin flips is less than that of the two separated spin flips in both
cases. We can therefore consider the adjacent spin flip state as a bound state of
two elementary quasiparticles.

One dimension is special. If we consider two adjacent flipped spins we see
that the exciation energy above the ground state is identical to that of a single
flipped spin. It costs no energy to flip the second spin! In fact, we can continue
to flip more spins, growing the domain of flipped spins as much as we want,
with no energy cost. What this means is that in one dimension, we got the
minimum energy excited state wrong. In fact, we can (in an infinite system
or one with open boundaries) arrange for only one not two misaligned bonds,
which has an energy cost of 2J instead of 4J like the single spin flip state. To
do this, we flip a semi-infinite string of spins:

(18) |i + 1/2〉↑↓ = | ↑ · · · ↑i↓i+1 · · · ↓〉.

This state is a domain wall or soliton, which connects the two different sym-
metry broken states. We can imagine a domain wall in any ferromagnet, but
only in one dimension does this state have finite energy – in general it has an
energy propertional to the cross-sectional area of the domain wall. In 1d, it is
actually the lowest energy excited state. Lecture 2 (1.5h)

September 29th, 2015We’ll come back to 1d later; for now let us go back to d > 1. Here, the sit-
uation seems fairly similar to that in the small J limit, except for the existence
of two degenerate ground states in this case. We can carry through similar
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2. Quantum Ising model

manipulations to see the perturbative effects of the transverse field, just as we
looked at the perturbative effects of J in Sec. 2.1. That is, we take H0 to be
the exchange term and H′ the transverse field term, opposite to the previous
case. There is a small twist compared to the small J case, which is that the first
order energy shift of all eigenstates is zero. This is because H′ flips only one
spin which always changes the zeroth order energy (In d > 1). Thus energy
shifts occur first at second order in h and we need to be a little more sophis-
ticated. We will now indulge in this exercise, which is a bit painful. The only
real point here is to show that the gap for the quasiparticle state decreases with
h. If you don’t care how this is shown, then you can skip ahead to Eq. (28). If
you do care, maybe you can check my algebra – there is a high probability of
some sloppy mistake.

In general, we can use the following procedure. Consider the subspace of
all unperturbed states of a given energy E0, and define the projector P onto
this subspace. Then consider an exact eigenstate |Ψ〉 which connects to this
subspace as H′ is taken to zero. Then we can define |Ψ0〉 = P|Ψ〉 as the
component of the exact wavefunction in the “bare” ground state subspace. It
satisfies the equation

(19)

[
E0 + PH′

∞

∑
n=0
RnP

]
|Ψ0〉 = E|Ψ0〉,

where

(20) R = (E− H0)
−1(1−P)H′

is called the “resolvent”. Eq. (19) appears to give an effective Hamiltonian
for the problem. It is not quite a Hamiltonian since the object in the square
brackets depends upon E through the resolvent in Eq. (20). Hence it is really
a non-linear eigenvalue problem. However, to any given order in perturbation
theory, E may be expanded in a series as well to obtain a true Hamiltonian
form. The leading order energy shift of any given state is obtained by replac-
ing E→ E0 inside R and taking the first non-zero term in the sum over n.

Now we can apply this to the ground state first. Here the space spanned
by P is one dimensional so the effective Hamiltonian is a number. The first
non-zero term is just n = 1:

(21) H(GS)
eff = E0 + PH′(E0 − H0)

−1H′P .

Now H′ just flips a spin so the eigenvalue of H0 is increased from E0 by 4dJ,
and to get back to the original space (so as not to be annihilated by the left-
most P operator, the same spin must be flipped back. Hence we have

(22) EGS = E0 − N
h2

4dJ
,

where the factor of N comes from the sum over possible sites of the flipped
“virtual” spin.
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2.1. Limits

Now consider the energy shift of the quasiparticle states. This time P
should be taken to be the projector onto the N-dimensional subspace of states
|i〉↑. We have

(23) H(qp)
eff = Eqp

0 + PH′(Eqp
0 − H0)

−1H′P .

Here again the right-most H′ flips one spin (we will call this the “first” spin
flipped) and the left-most one flips another. Consider the action of this Hamil-
tonian upon a quasiparticle state |i〉↑. There are several possibilities:

1. The first spin flipped (call it j) is neither i nor one of its neighbors, and
the second spin flipped is again j. Then the denominator Eqp

0 − H0 =
−4dJ.

2. The first spin flipped is neither i nor one of its neighbors, but the second
spin flipped is spin i. AgainEqp

0 − H0 = −4dJ.

3. The spin j is a neighbor of i, and the second spin flipped is also j. The
energy denominator is 4dJ − (8d− 4)J = −4(d− 1)J.

4. The spin j is a neighbor of i, and the second spin flipped is i. The energy
denominator is 4dJ − (8d− 4)J = −4(d− 1)J.

5. The spin j is i, and the second spin flipped is arbitrary (call it k). The
energy denominator is +4dJ.

So we obtain

H(qp)
eff |i〉↑ = E(qp)

0 |i〉↑ −
h2

4dJ
(N − (2d + 1))|i〉↑

− h2

4dJ ∑
|j−i|>1

|j〉↑

− h2

4(d− 1)J
(2d)|i〉↑

− h2

4(d− 1)J ∑
|j−i|=1

|j〉↑

+
h2

4dJ ∑
k
|k〉↑.(24)

Each line corresponds to a line in the list above. We can simplify by rewriting
the term in the second line as ∑|j−i|>1 |j〉↑ = ∑k |k〉↑ −∑|j−i|=1 |j〉↑ − |i〉↑. This

allows us to cancel the final term and write (using Eq. (22) and E(qp)
0 = EGS +
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2. Quantum Ising model

4dJ)

H(qp)
eff |i〉↑ =

[
EGS + 4dJ +

h2

4dJ
(2d + 1)− h2

4(d− 1)J
(2d) +

h2

4dJ

]
|i〉↑

(25)

−
[

h2

4(d− 1)J
− h2

4dJ

]
∑
|j−i|=1

|j〉↑

=

[
EGS + 4dJ − h2

2d(d− 1)J

]
|i〉↑ −

h2

4d(d− 1)J ∑
|j−i|=1

|j〉↑.(26)

This now has the form of a hopping Hamiltonian for the quasiparticle. By
going to momentum space, as in Eq. (10), we obtain

(27) εqp(k) = Eqp − EGS = 4dJ − h2

2d(d− 1)J
− h2

4d(d− 1)J ∑
µ

2 cos kµ.

The minimum energy quasiparticle has kµ = 0, with the energy

(28) εqp(0) = 4dJ − 1
d(d− 1)

h2

J
.

We see that the gap to the lowest energy quasiparticle above the ferromagnetic
state decreases with increasing h, just as the corresponding gap did in the
paramagnetic state with increasing J (albeit quadratically in the present case).

Putting this together with the results of the previous section, we observe
that both the ferromagnetic and paramagnetic phases exhibit a gap, at least
in their extreme limits, but that this gap decreases moving toward the inter-
mediate regime. In fact, we will argue later that the gap is always non-zero
except at a special value of J/h, which defines the point at which the param-
agnetic and ferromagnetic phases meet. This is a continuous quantum phase
transition, or quantum critical point.

There is one new feature we can think about, which is the possible splitting
of the ground state degeneracy between the up and down polarized states. We
do not expect this degeneracy for h 6= 0 in a finite system. In general we only
expect degeneracies in a finite system if symmetry demands it. It is not the
case here. Quantum mechanics tells us we can choose eigenstates with definite
values of U = ±1, which are the cat states in Eq. (16). But there is no reason
they need to have the same energy. You can see that the ground state energy
does not exist in general by an argument of reductio ad absurdem. Take just two
sites, with Hamiltonian H = −Jσz

1 σz
2 − hσx

1 − hσx
2 . It is straightforward to find

the ground state, which has the form

(29) |ψ0〉 =
1√
2
[cos θ (| ↑↑〉+ | ↓↓〉) + sin θ (| ↑↓〉+ | ↓↑〉)] ,

where tan θ = (
√

J2 + 4h2 − J)/2h. This is smoothly connected to the |cat+〉
state, which it becomes as h → 0. The first excited state is exactly the |cat−〉
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Figure 1: Energy gap in the Ising model (schematic).

state. The energy gap is E1 − E0 =
√

J2 + 4h2 − J ≈ 2h2/J for h � J. We can
understand this result from degenerate perturbation theory. The ground state
is split by at O(h2) as two spin flips are required to connect the up and down
polarized ferromagnetic states. While an exact solution is more complicted
for a larger system, we may anticipate from the perturbation theory argument
that the splitting between ground states in general is of order J(h/J)N , for a
lattice with N sites (we are using the logic of Eq. (19)). This vanishes exponen-
tially with the volume of the system. So the cat states are exponentially close
in energy, and both are well separated from the quasiparticle states. We see
that the phenomena of spontaneous symmetry breaking is robust in the large
system size limit.

What did we learn?

By looking at the two limits, we have made a few observations. Let me sum-
marize the key points:

• The quantum Ising model has two phases, paramagnetic and ferromag-
netic. Each phase has a limit in which the ground state becomes a prod-
uct state, with zero entanglement.

• The lowest energy excitations near these limits are quasiparticles, which
behave like particles hopping on the lattice. They have a definite energy-
momentum relation.

• A quasiparticle costs a non-zero minimum energy to produce: we say
there is an energy gap. The gap is reduced upon perturbing from either
zero entanglement limit. In fact, though we did not show it, the gap is
non-zero everywhere except at the phase transition point.

• In the ferromagnetic phase, the Ising symmetry is spontaneously broken,
and the low ground state and low energy states are separated into two
sectors (opposite magnetization) which are disconnected by any local
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2. Quantum Ising model

operator. In a finite system, the sectors mix to form cat states, but the
splitting between these states is exponentially small in volume, and they
are very fragile with respect to perturbations.

2.2 Phase diagram and mean field theory

Above we found the behavior in the two extreme limits. From these limits,
we notice a clear qualitative difference. In the small J limit, the ground state
is invariant or even under the Ising symmetry and unique. Moreover, all the
low energy states can be assigned definite Ising parity: the single quasiparticle
states are odd under U, two quasiparticle states are even, etc. There is no de-
generacy in the thermodynamic limit of states of different parity. In the small
h limit, the ground state is two-fold degenerate, and the “natural” eigenstates
have indefinite parity. Even if we choose to form parity eigenstates, we find
that states with different parity are degenerate in the thermodynamic limit.

The difference between these two situations is qualitative, provided we
maintain the Ising symmetry of H. Indeed, it turns out that the two limits
are separated by a quantum phase transition. Let us look at this in a simple
approximation. We saw that in both limits, the ground is becomes a product
state. So we can hope that this provides a reasonable description of the physics
in between. Let’s assume this is the case, and solve the problem variationally.
We take a trial state

(30) |ψ〉 = ⊗i|φ〉i,

where |φ〉 is some arbitrary, normalized, single spin state. Then the variational
energy is

(31) Evar = 〈ψ|H|ψ〉 = −J ∑
〈ij〉

(mz)2 − h ∑
i

mx = N
[
−Jd(mz)2 − hmx

]
,

where N is the number of sites, and mµ = 〈φ|σµ|φ〉. One can also interpret this
approximation in terms of a “mean field” Hamiltonian which just represents
decoupled spins:

(32) Hmf = −∑
i

heff · σ.

such that |ψ〉 is the ground state of Hvar. One has simply m = heff/|heff|. As
the overall magnitude of heff does not enter, we can choose to write heff = hx̂+
hexẑ, where hex is called the exchange field. It coincides with the Curie-Weiss
average (mean) field seen by a single spin due to the exchange interaction J.
Consequently we can refer to this approximation as Mean Field Theory (MFT).
There are many formulations of MFT and we will encounter some others later
in the course.

It is easy to show that the magnetization obeys the constraint |m| =√
∑µ(mµ)2 = 1. So we can choose mx = cos θ and mz = sin θ (there is no
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advantage to taking non-zero my), and the energy becomes

(33) Evar/N = −Jd sin2 θ − h cos θ = −Jd + Jd cos2 θ − h cos θ.

Note that the energy is even in θ: this is the Ising symmetry mz → −mz.
Minimizing with respect to θ we find

(34) mz = sin θ =


0 h > 2dJ

±
√

1−
(

h
2dJ

)2
h < 2dJ

One sees that MFT predicts a phase transition at h = 2dJ between the para-
magnetic and ferromagnetic phases. The magnetization mz is non-analytic at
the transition, exhibiting a square root singularity. Non-analyticities are char-
acteristic of phase transitions (we have a whole course on this – Physics 220).
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Figure 2: Magnetization in mean field theory

3 Entanglement

3.1 Block picture

We’re going to take a bit of time now to try to generalize/abstract from our
treatment of the quantum Ising model. We already saw that, at least in the
two extreme limits, the ground state becomes a product state, its excitations
are quasiparticles, and they have a gap. To what extent are these robust prop-
erties? Clearly the exact ground state away from the two extremes is not ex-
actly a product state, but the latter two properties seem to persist, at least in
perturbation theory. Are these observations connected?1

It is rather natural to think that they are. Why might the ground state be
a product state? Note we mean not necessarily a product over single sites,
but over blocks. This works if the connections between the blocks are not so

1A warning: we will discuss these questions in physical terms, without very much rigor – I
am not capable of it.
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3. Entanglement

important. You might even think this is always the case (warning: it is not),
because the Hamiltonian is local. The terms in H connect only neighboring
sites. In a variational sense, only the expectation value of single spins and
nearest-neighbor pairs matters. So we can do a perfectly good job optimizing
the energy of nearly all terms in the Hamiltonian with such a product state.
We miss only terms that straddle the boundaries. So if we can find a decent
way to smooth these boundaries, and connect the blocks just a little, we can
expect to get a good energy.

The physical implication of a block product state is that a finite subsystem
of just a few spins captures the essentials of the system. This then directly con-
nects to the nature of the excitations. An excitation within any single block is
like an excited state of a finite quantum system: its energy is always non-zero.
This is why we expect that a product-like state should have an excitation gap.
How is this “particle-like”? Well, the minimum energy state we can make in
such a block-like system is just to excite a single block. This is a localized ex-
citation: by measuring local operators we can tell which block it is in. Outside
that block, the system remains in its ground state. This is physically like a
particle in the vacuum. We are free to introduce superpositions of states with
the excitation in different blocks, and thereby create plane wave states. In this
way, we create states with a well-defined dispersion, i.e. a definite excitation
energy for a given momentum.

With this picture, it is also natural that these properties are robust to
small perturbations. A perturbation within a block obviously just makes small
changes to the block ground and excited states, but this preserves the product
nature. A small coupling between blocks can be treated perturbatively, and be-
cause of the gap between the ground and excited states, only small excitations
of neighboring blocks are introduced into the ground state. We may need to
expand the blocks slightly to write the new ground state in block form, but
we can expect it still has one, approximately.

We can also think in terms of energies. We can expect that a finite (not
infinitesimal) perturbation is needed to close a finite excitation gap. We in-
deed saw explicitly that the quasiparticle gaps in the Ising model suffered
only infinitesimal decreases under infinitesimal introduction of perturbations
around the product state limit. We emphasize that this is really only natural
once you accept both the product state/finite size picture of the ground state
and excitations and you assume locality of the Hamiltonian. This is because H
is in fact a sum of a number of terms of order the system volume, which di-
verges in the thermodynamic limit. So the absolute change in the Hamiltonian
is large even if you make a tiny change in a parameter such as J or h. Indeed,
the absolute ground state energy is proportional to N, and so is the change in
this quantity. To get the change in the excitation energy of a quasiparticle in
Sec. 2.1, this large quantity needed to cancel in the difference of energies of
ground and excited states. That it does so is due to locality.

So what do we conclude from these, admittedly vague, arguments? Lo-
cal quantum systems can have ground states that are well-approximated by
products of finite blocks. In this situation, we generically expect a gap to all
excitations, and that the lowest excitations are quasiparticle-like. These prop-
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3.2. Entanglement measures

erties should be robust: i.e. they should persist under arbitrary local pertur-
bations that are not too large. The region of parameter space where this does
persist defines a zero temperature phase of matter. The Ising paramagnet and
ferromagnet are examples of two such phases. Lecture 3 (1.5h)

October 1st, 2015

3.2 Entanglement measures

To begin to sharpen up the vagueness of the previous subsection, let us refine
the notion of something that is “almost” a product state. A strict product state
is one of the form

(35) |ψ〉 = |ψA〉 ⊗ |ψB〉,

where A and B are disjoint subsystems and the Hilbert space has a direct
product form. Here because of locality, we speak of subsystems that are spa-
tially disjoint, i.e. A is a collection of some lattice sites, and B is the rest. In
such a state, measurements of operators that reside entirely within A are com-
pletely independent of those in B. We say there is zero entanglement between
A and B.

Any state that cannot be written as such a product state is said to be entan-
gled. A measure of this entanglement is provided by entanglement entropy.
For any state, we can define a density matrix,

(36) ρ = |ψ〉〈ψ|.

This is a pure state density matrix, i.e. a projection operator. It has a very
simple eigenvalue spectrum: one eigenvalue is 1 and all the others are 0. Now
we can construct a reduced density matrix,

(37) ρA = TrB ρ.

If |ψ〉 is a product state as in Eq. (35), then ρA is also a pure state density
matrix, but otherwise it is not. So any deviation from the pure state eigenvalue
spectrum can be used to measure the entanglement of A and B. The most
common measure is called the von Neumann entanglement entropy

(38) S = −Tr [ρA ln ρA] .

By construction 0 and 1 eigenvalues contribute zero to S. In general, S ≥ 0 and
is bounded by ln 2 times the smaller of the two dimensions of subspaces A or
B. An instructive example to get intuition for S is to consider a state |ψ〉 which
is a product of n entangled pairs of spins (e.g. singlets 1√

2
(| ↑↓〉 − | ↓↑〉)), with

one spin of each pair living in A and the other in B, times a state which is
a product of components in the remainder of A and B. For such a state, one
finds S = n ln 2.

With the tool of entanglement entropy, we can try to diagnose product-like
states. If we had a perfect product state, then if we subdivide the system in
such a way as to cleanly separate all blocks within A or B, then S = 0. How-
ever, we do not a priori know where the blocks are. Moreover, we can expect
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3. Entanglement

that even an approximate product state has some mixing of states across the
boundaries between blocks. What we do expect is that if we take regions A
and B to be very large, they will each contain many blocks entirely within
them (the idea is that the blocks have some fixed size, while the size of A or
B can be made as big as we want). Then the contribution to S comes entirely
from the blocks on or near the boundary between A and B. Hence we expect
that S is proportional to the area of the boundary between A and B, i.e.

(39) S ∼ s0Ld−1 + · · · ,

where s0 is some constant and L is the linear size of region A. This is the
area law of entanglement. We generically expect it for any product-like state.
Unfortunately, the converse is not true: non-product states also can obey the
area law. So the area law is not enough to discriminate, in general, between
other types of states. In fact, we can exhibit many examples of non-product
states, even in phases with zero gap, where the area law is obeyed. One way
to distinguish these is to look at the subleading (· · · ) terms in Eq. (39), but
we will discuss others. If you want to read more about the area law, there is a
review article here. Conversely, there are (gapless) ground states that violate
the area law. We will come to that later.

More refined measures of entanglement are possible. Most generally, given
a partition into subsystems A and B, we can write the full ground state in a
Schmidt decomposition:

(40) |ψ〉 = ∑
i

ci|iA〉|iB〉,

where |iA〉 is an orthonormal set in A and |iB〉 is an orthonormal set in B. The
ci are “Schmidt coefficients” which can be chosen real (by choice of phase of
the states) and 0 ≤ ci ≤ 1, and ∑i c2

i = 1. The entanglement entropy is just
S = −∑i pi ln pi, where pi = c2

i are the eigenvalues of the reduced density
matrix. The set of these eigenvalues – called the entanglement spectrum –
constitutes a characterization of entanglement which is independent of the
basis choice in A and B. One can use the entanglement spectrum to more
finely distinguish different types of states.

3.3 Matrix product states

In one dimension, the area law reduces to a simple constant behavior at large
L. Unlike in higher dimensions, it is believed that in 1d, the area law does
guarantee the product-like nature of a state. Specifically, any state obeying an
area law can be smoothly deformed into a product state, provided no sym-
metry is imposed upon the state during the deformation (we will come back
to this point). Moreover, it has been proven that any gapped system in one
dimension obeys the area law – see this reference.

So it is somewhat natural to focus on wavefunctions which obey the area
law in one dimension. This is actually a very restrictive assumption. It turns
out that if we were to randomly guess a wavefunction of a large system, it
would have zero probability of displaying an area law. Moreover, if we con-
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3.3. Matrix product states

sider eigenstates that are far from the ground state (i.e with an excitation
energy of order εLd, with ε > 0), then these generically obey a volume law
(i.e. S ∼ Ld) rather than an area law – and these are by far the majority
of eigenstates. Anyway, because imposing an area law on a state is so re-
strictive, there is an efficient “compression” of the representation of area law
wavefunctions. This is given, in one dimension, by the Matrix Product State
(MPS) construction. We can think of an MPS as a (major) improvement on
the idea of a block product state – it realizes the area law while at the same
time maintaining translational invariance, allowing quite general states, in-
cluding ones that are not quite product-like. An MPS is written as follows.
Consider a direct product Hilbert space of spins spanned by a basis of states
|s1〉 ⊗ · · · ⊗ |sN〉 = |s1 · · · sN〉. A completely general state would be written as

(41) |ψ〉 = ∑
s1···sN

ψ(s1, · · · , sN)|s1 · · · sN〉,

where ψ(s1, · · · , sN) is a set of qN complex numbers, if the spins have q basis
states per site (e.g. q = 2 for our Ising model). This is an exponentially large
amount of information when N is large. In an MPS, this is reduced drastically,
by taking a specific form for these coefficients,

(42) ψ(s1, · · · , sN) = Tr [A1(s1)A2(s2) · · · AN(sN)] ,

where Ai(s) is an m×m dimensional matrix – m is called the inner dimension,
or bond dimension, of the MPS. Note that we do not need to even assume
translational invariance here. Even so, the number of parameters in Eq. (42)
is much smaller than for a general state. Each matrix has m2 elements, and
there are q matrices for each site, and N such matrices, so the total number
of such state is qm2N. If one further assumes translational invariance, so that
all the matrices are identical, then the factor of N is removed. According to
rigorous results, one obtains an excellent approximation to the exact ground
state wavefunction of a gapped, and hence area law, wavefunction by taking
a finite m2 So one is left with a finite number of parameters to describe such
states!

It is nice to check that this wavefunction makes sense for some physical
situation. Let’s look at the quantum Ising model of Sec. 2.1. There we already
worked out the perturbative form of the wavefunction in the weak exchange
limit, J � h, in Eq. (14), which we transcribe here for the case of one dimen-
sion:

(43) |0〉′ = |0〉+ (J/4h)∑
i
|i, i + 1〉+ O(J2).

More explicitly in terms of spins, it is

(44) |ψ〉 = | → · · · →〉+ (J/4h)∑
i
| → · · · →i−1←i←i+1→ · · · →〉+ O(J2).

2I am a little unclear on exactly what an “excellent approximation” means, but maybe you
can figure out it from these papers: MPS represent ground states and An area law for one-dimensional
quantum systems.
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3. Entanglement

In fact, to this order, we can reproduce this wavefunction straightforwardly
with an m = 2 MPS. We need just the elements:

1 1

→
= 1,(45)

1 2

←
=

2 1

←
=

√
J

4h
,(46)

and all other matrix elements zero. With this choice, it is easy to see that
Eq. (44) is reproduced to O[(J/h)]. The MPS with these elements of course
has higher order terms in J/h, which we did not check in perturbation theory,
but any property we calculate to leading order will be properly reproduced.
At the same time, the MPS so obtained has very nice properties, and can be
thought of as a more physical “resummation” of terms in the perturbation
theory to elevate Eq. (44) to a more appropriate wavefunction which has a
good thermodynamic limit.

OK back to generalities. While proving that the MPS form is always good
is not easy, it is reasonable, and the converse, that an MPS always obeys the
area law, is simple. Suppose we subdivide the system into some interval A of
L spins within the full system, so that say A contains sites 1 through L. Then
we can write Eqs. (41,42) as

(47)

|ψ〉 = ∑
ab

(
∑

s1···sL

[A(s1) · · · A(sL)]ab |s1 · · · sL〉
)
⊗
(

∑
sL+1···sN

[A(sL+1) · · · A(sN)]ba |sL+1 · · · sN〉
)

,

which we can immediately see has the Schmidt form of Eq. (40) with just m2

Schmidt components. Thus the entanglement entropy is bounded above by
S ≤ 2 ln(m), and hence must obey the area (constant) law.

Clearly studying MPS’s drastically simplifies the problem of studying quan-
tum states. They are fun to work with too. An MPS has a nice graphically
representation. It is most easily seen by writing out the matrix multiplication
in Eq. (42) explicitly:

(48) |ψ〉 = ∑
s1···sN

∑
i1·iN

Ai1i2(s1)Ai2i3(s2) · · · AiN i1(sN)|s1 · · · sN〉.

We can draw each matrix as a “node” (I’ll draw a circle) with three lines
emerging from it: two internal legs representing the two matrix indices i, i′ and
one external leg representing the physical spin index s. The internal indices
must be paired up with a neighboring matrix which we represent by connect-
ing those lines. Indices on connected lines must match, and are summed. We
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3.3. Matrix product states

arrive at, for an infinite system

(49) |ψ〉∞ = .

For a finite system with periodic boundary conditions, the picture is instead

(50) |ψ〉N =

There are a lot of nice manipulations one can do with MPS’s. For exam-
ple, one can write down expectation values pretty easily. Let us first find the
expectation value of the identity – i.e. the normalization of the state (this of
course gives some normalization condition on A(s)). Formally, we have

(51) 〈ψ|ψ〉 = ∑
s1···sN

∑
i1·iN

∑
j1···jN

A∗j1 j2(s1)Ai1i2(s1) · · · A∗jN j1(sN)AiN i1(sN),

which is shown graphically as

(52) 〈ψ|ψ〉 = .

This object has the same structure as a one-dimensional partition function of
a classical statistical mechanics model, where the ia and ja variables, i.e. the
internal states of the MPS, are the “spins” of this fictitious classical system.
Indeed one can define a transfer matrix

(53) Tij;i′ j′ = ∑
s

A∗jj′(s)Aii′(s) = ≡ ,

where now the double line means a composite index, or spin variable, com-
posed of a pair of the original states (i, j). The norm, or partition function, is
then a product over those transfer matrices,

〈ψ|ψ〉 =

= Tr
(

TN
)

,(54)

where I added a trace in the second line which really means I should have
wrapped around the loose ends, but I was lazy in drawing. We see this is
something relatively easy to calculate, since it depends only upon the eigen-
values of T, which is a finite (m2 × m2) matrix. For a large system it is com-
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pletely dominated by the largest eigenvalue of T.

We can also calculate expectation values of operators easily. For example,
if we have two local operators Oi and Oj which act only on the sites i and j,
then their expectation value amounts to two insertions in the diagram:

〈ψ|OiOj|ψ〉 =

=

= Tr
(

TN−|i−j|M[O]T|i−j|M[O]
)

,(55)

where

(56) M[O]ij;i′ j′ = ∑
s1s2

A∗jj′(s
′)〈s′|O|s〉Aii′(s)

is the modification of the transfer matrix by the operator O. From this we can
write the correlation function in terms of the eigenstates of T:

〈OiOj〉 =
Tr
(

TN−|i−j|M[O]T|i−j|M[O]
)

Tr (TN)

→N→∞

m2

∑
n=1

(
tn

t0

)|i−j|
|〈n|M[O]|0〉|2,(57)

where |n〉 and tn are the eigenstates and eigenvalues of T, ranked with t0 >
t1 > · · · . We see that correlations are the sum of exponentials. This is an
expected property in a gapped state.Lecture 4 (1.5h)

October 6th, 2015

3.4 Tensor Network States

MPS are great in one dimension. There is a natural analog in higher dimen-
sion, which we may expect to describe gapped phases in that case. This is a
tensor network state. We can write such a state as

(58) |ψ〉 = ∑
{si}

∑
abc···

[
Tabcd(s1)Tae f g(s2) · · ·

]
|s1 · · · sN〉,

where now Tabcd(si) are tensors defined on the physical sites i. Just as for MPS,
there are internal “states” or indices, indicated here by roman letters a, b, · · · ,
which are paired off and summed. This is an example of a Tensor Network
State (TNS), specifically known as a Projected Entangled Pair State, or PEPS.
It also has a graphical representation, which is indeed much more convenient
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here than the explicit writing of tensors:

(59) |ψ〉 = .

Here we have drawn each “external” leg representing a physical spin index
si as a wiggly line, to differentiate them from the internal ones. This helps
for clarity in this two-dimensional drawing. In general, evaluating matrix ele-
ments between TNS reduces to some d-dimensional statistical mechanics-like
problem, i.e. a sum over discrete variables on the lattice with weights that are
a product of local terms. However, there is no guarantee that the weights are
positive definite, which allows for more richness.

TNS have some properties that are similar to MPS. They build in the area
law. However, there is no guarantee that TNS have exponential correlations in
d > 1. This is because a discrete stat mech model in d ≥ 2 can have ordered or
quasi-long-range ordered phases, and sustain classical critical points. There
is also no proof that a TNS can represent an arbitrary gapped state. In fact
it seems difficult or impossible to properly represent so-called chiral phases,
such as integer quantum Hall states.

3.5 More on product-like states

While the TNS of the last subsection are attractive from many perspectives,
they are not necessarily product-state-like. Actually quite interesting states
including states with intrinsic topological order, which we’ll talk about later, can
be represented as TNS. So if we are interested in defining product-like states,
we need to do something else.

I’m not aware of any explicit general way to describe such a state. But
we can define it implicitly. Pretty much the idea is just a fancier version of the
perturbation theory we employed earlier in Sec. 2.1: we say that a ground state
is product-like if it can be obtained by perturbation theory from some product
state. Perturbation theory is just some smooth interpolation between the initial
product state and the final ground state, where all the intermediate states are
also “good” ground states. The formalization of this is that the ground state
is obtained by a local unitary U acting on a product state,

(60) |Ψ〉 = U(t)|0〉,

where |0〉 is a strict product state, and U is a unitary operator. But not just
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any unitary operator, it should be of the form

(61) U(t) = Tτe−i
∫ t

0 dτH(τ),

where H(τ) is a sum of finite local hermitian operators (which might depend
upon τ), and t is finite (e.g. t = 1 by choice of normalization of H). The local-
ity is important: it is what guarantees that the state obtained in this way is not
highly entangled. We can think of U as enacting a finite time quantum evolu-
tion under the “Hamiltonian” H from an initial product state . We expect that
under evolution by a local Hamiltonian, any information can only propagate
over a finite length in a finite time. This includes entanglement. This is why
we expect that |Ψ〉 defined this way remains “product-like”.

Actually this statement has been proven. It goes by the name of a Lieb-
Robinson bound, which says that in fact information propagates no faster than
a finite “velocity” per unit time evolution by a local Hamiltonian. We can
think of this in many ways (take a look at the wiki page for example to see
the actual statement of the bound). But one which is intuitive is to think about
the evolution of some local operator by U:

(62) O(t) = U(t)†OU(t).

What is actually proven is this:

(63) ‖
[
O(t),O′

]
‖ ≤ ce−a(|X−Y|−vLR|t|),

where c, a and vLR are constants, and |X − Y| is the distance between the
support of the operator O (at t = 0) and that of the operator O′. The double
lines denote the operator norm.

We can interpret this more explicitly as follows. Suppose O is a product
of spin operators over some local region, for example a single spin at site i,
O = σx

i . Under evolution by U(t), it will become a sum of terms which can
be expressed as products of operators involving multiple sites,

(64) σx
i (t) = ∑

j
cijµ(t)σ

µ
j + ∑

jk
cijkµν(t)σ

µ
j σν

k + ∑
jkl

cijklµνλ(t)σ
µ
j σν

k σλ
l + · · ·

What the Lieb-Robinson bound tells us is that terms in this sum (i.e. the coeffi-
cients c·) which involve any spin j far from i decay exponentially with the dis-
tance |i− j| when this distance is larger than some “Lieb-Robinson velocity”
vLR, i.e. when |i− j| > vLRt (and I think in fact even the sum of all such terms).
In general, the “non-locality” of an operator generated by such local Unitary
time evolution is restricted to distances less than vLRt. The Lieb-Robinson ve-
locity itself is a non-universal property reflecting the Hamiltonian H defining
the time evolution, but it is finite. The Lieb-Robinson result is pretty cool, as
it produces something like the “light cone” you would have in relativistic sys-
tems, even though the problem is entirely non-relativistic. I would say it is
extremely intuitive, and in no way surprising. But it is still remarkable to me
that it actually proven rigorously.
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What does this mean for product-like states? Well, if Eq. (60) holds, then
we know that in |0〉, which is a strict product state, all connected correlation
functions (which means correlation functions of operators with zero average)
are zero. Correspondingly, correlations in |Ψ〉 can be regarded as correlations
of dressed operators evolved by U in |0〉. The Lieb-Robinson result implies
that these decay at least exponentially to zero at long distance. So the correc-
tions to quantities like this, relative to a strict product state, are very weak.

We can also turn this around. We can always write a strictly single-site
Hamiltonian which has |0〉 as its ground state, which is just the sum of pro-
jection operators onto the ground state of each site. Now we know that |Ψ〉 is
the ground state of this single-site Hamilton evolved by U. According to the
Lieb-Robinson result, this Hamiltonian for which |Ψ〉 is the ground state is a
sum of terms which are quasi-local, i.e. whose terms involving many spins
decay exponentially with the number of spins. So in this way one can find a
quasi-local “parent” Hamiltonian for any finite time local unitary evolution of
a product state.

OK, this has been a bit formal, and we will move away from formality
now. What is the upshot? Well, the main thing to understand is that product-
like states are rather stable, and, up to exponential corrections, are what we
may expect for many Hamiltonians. Correlations in these states decay expo-
nentially. Soon we will encounter states that do not have purely exponential
correlations. This requires an explanation!

4 From Ising model to scalar field theory

So far we have tackled the quantum mechanics of the transverse field Ising
model head-on. In general this is a hard model to solve except in some special
limits, where we could do perturbation theory. Based on those limits we made
some guesses as to general properties, and discussed how that is captured in
some of the modern language of quantum information. We could go a lot
further with this, but we will turn now to a different language, that of the
effective action.

You might well have been a little dissatisfied with the MPS and TNS treat-
ment, since it focuses so much on ground states. We gave hand-waving argu-
ments that connect the ground state to excited states, but this was not very
explicit. Can we describe all of this together in one framework? And maybe
get a better argument that the simple properties of the FM and PM states of
the Ising model hold everywhere except an isolated critical point?

A good step in this direction is to think about a formulation of the full
statistical mechanics of the problem in terms of an “effective action”. This is a
very general way to study quantum systems. It makes an extremely powerful
connection between the quantum physics of a d-dimensional model and a
classical statistical mechanics problem in d + 1 dimensions. Let’s construct
one such relation for our quantum Ising model. I should tell you that there
are many ways to do this. I am going to choose a somewhat unconventional
route, in order to get quickly to a “scalar field theory”, which recovers the
mean field approximation in a simple way. I’ll probably comment on other
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ways later.

Consider the quantum partition function,

(65) Z = Tr
[
e−βH

]
,

where H is the quantum Ising Hamiltonian in Eq. (1). From this we can obtain
the full thermodynamics of H, and by making small modifications, calculate
just about anything else we want. Now the difficulty with this is that we do
not know how to diagonalize H, so it is hard to use the eigenbasis for the trace.
It is also hard to evaluate the trace in a simple basis like σz or σz eigenstates,
because H contains both types of operators. So there is no really easy way to
do the trace. The basic strategy to deal with this is to try to separate the σz

and σz terms, which then each can be dealt with easily. The problem is that,
in general, the exponential of a sum of non-commuting operators is not the
product of exponentials of the terms of the sum. However, if the terms in the
sum are small, then this is true to leading order. So what we can do is to break
up the exponential into a product of small terms,

(66) Z = Tr

e−∆τHe−∆τH · · · e−∆τH︸ ︷︷ ︸
β/∆τ terms

 ,

where we introduce the seemingly odd notation ∆τ for a small number. Here
we are allowed to break up the exponential since H commutes with itself.
Now in the limit ∆τ → 0, we can split each exponential into its constituent
parts,

(67) Z = lim
∆τ→0

Tr
[
e−∆τHX e−∆τHZ e−∆τHX e−∆τHZ · · · e−∆τHX e−∆τHZ

]
,

with HX = −h ∑i σx
i and HZ = −J ∑〈ij〉 σz

i σz
j . It is helpful to introduce the

exchange matrix Jij which is equal to J when i, j are nearest neighbors and 0
otherwise. Then

(68) HZ = −1
2 ∑

ij
Jijσ

z
i σz

j = −1
2

σz · J · σz,

if we want to use matrix notation.

An expression like Eq. (67) is the standard route to constructing a path
integral. It is called “Trotterizing” the exponential. Now we have a couple of
choices. The most common one is at this point to insert resolutions of the
identity between each exponential in the σz

i basis. This expresses Z in terms
of a large sum over discrete classical Ising spins which are indexed by both i
and a new index τ that labels the insertion. We call τ the “imaginary time”.
The result is an anisotropic classical Ising model in d + 1 dimensions. This is
very direct, but the downside of this approach is that it is not so easy to take
the ∆τ → 0 limit: it is hard to take a continuum limit of discrete variables.Lecture 5 (1.5h)

October 8th, 2015
So instead we will make a different choice. We will not insert a resolution
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of the identity at all. Instead let’s use an identity:

(69) e
1
2 x·M·x =

1√
det (2πM)

∫
dy e−

1
2 y·M−1·y ex·y.

Here x, y are n-component vectors, and M is an n× n symmetric matrix, and
the integral is over each component of y, taken along the entire real axis.
Actually we can relax the latter requirement and can take it along any infinite
open contour such that the integral converges. In actual applications, we often
have to do this implicitly. Don’t worry too much about this.3 This identity is
sometimes called a Hubbard-Stratonovich transformation. I drew a box around
this because it is so extremely useful and important you should memorize it.
We can apply it here

e−∆τHZ = e
1
2 (∆τσz)·

(
1

∆τ J
)
·(∆τσz)

=

(
det (

2π

∆τ
J)
)−1/2 ∫

dφ e−
1
2 φ·
(

∆τ J−1
)
·φ eφ·σz∆τ

= Const.×
∫
[dφi] e−

1
2 ∑ij J−1

ij φiφj∆τ+∑i φiσ
z
i ∆τ .(70)

Here we used the square bracket symbol to indicate integration over the full
set of φi. Now we use this identity to rewrite each factor of e−∆τHZ in Eq. (67).
In doing so, we introduce β/∆τ separate integrations over a set of φi. So to dis-
tinguish these dummy integration variables, we label them by their position
in the product, introducing a τ label: φi → φiτ . Then we have

Z = lim
∆τ→0

Const.×
∫
[dφiτ ]∏

τ

(
e−

1
2 ∆τ ∑ij J−1

ij φiτφjτ

)
×Tr

[
e−∆τHX e∆τ ∑i φiτn σz

i e−∆τHX e∆τ ∑i φiτn−1
σz

i · · · e−∆τHX e∆τ ∑i φiτ1
σz

i
]

,(71)

where τa = a∆τ, and a = 1 · · · n with n = β/∆τ. Now we notice that the
sites i have been decoupled, so we can take the trace separately for each i, and
taking the ∆τ → 0 limit gives

Z = Z0

∫
[dφi(τ)]e

−
∫ β

0 dτ 1
2 J−1

ij φiφj ∏
i

Tri

[
Tτe−

∫ β
0 dτHi(τ)

]
,(72)

where we defined φi(τ) = φiτ , Z0 is a constant and

(73) Hi(τ) = −hσx
i − φi(τ)σ

z
i .

By moving the trace term into the exponential, we can formally write this as

3If you do worry, it will probably confuse you a lot, but in the end it can be resolved. It used
to bother me a lot when I first encountered this. To really do it right in the physical applications
requires a rather clever choice of contours, but in fact it does not matter.
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4. From Ising model to scalar field theory

a statistical mechanical-like problem with an “effective action”,

(74) Z = Z0

∫
[dφiτ ]e−S[{φi(τ)}],

with

(75) S[φ] =

β∫
0

dτ
1
2

J−1
ij φiφj −∑

i
ln z[φi],

with

(76) z[φ] = Tr
[

Tτe−
∫ β

0 dτ (−hσx−φ(τ)σz)

]
.

Formally, at this point, we can declare at least a partial victory. In Eqs. (74-76),
we have reformulated the quantum Ising partition function as a functional
integral over a scalar variable φi(τ) on the sites of a discrete lattice and con-
tinuous time, weighted by a factor e−S. This is a partially discretized scalar
field theory. The action S, however, is a somewhat overly complicated func-
tional of the scalar field. Can we understand it?

We can recognize z[φ] as a single-spin partition function. This hints at a
relation to mean field theory. To pursue this, let us consider the saddle point
approximation. The quantity S[φ] is a functional of the full set of configura-
tions φi(τ). From Eq. (74) we can see that the configuration with maximal S
gives the largest contribution to Z. The saddle point approximation basically
consists of approximating the full integral by this leading term. So what is
the saddle point? Well it should be found by differentiating, δS/δφi(τ) = 0.
This is a functional derivative. We can obtain it using the chain rule and
δφj(τ

′)/δφi(τ) = δijδ(τ − τ′). We find

(77) ∑
j

J−1
ij φj(τ)− 〈σz

i (τ)〉 = 0,

where

(78) 〈σz
i (τ)〉 =

Tr
[

Tτ σz
i (τ)e

−
∫ β

0 dτHi(τ)
]

z[φi]
.

It is really natural to expect that at the saddle point φi is independent of τ.
Then this all simplifies since Hi becomes τ-independent. Then we see that the
expectation value in Eq. (78) is just the standard expectation value of a spin in
the single-site Hamiltonian Hi. And moreover from Eq. (77) we get simply

(79) φi = ∑
j

Jij〈σz
j 〉.

So the saddle point φi has the interpretation of the mean exchange field on
site i due to the Ising coupling to other spins. Hence “mean field theory”. At

26



zero temperature, β → ∞, the expectation value becomes just the quantum
one in the ground state of Hi, so that

(80) 〈σz
i 〉 =T=0

φi√
h2 + φ2

i

.

Using this in Eq. (79) gives a set of self-consistent equations for φi, whose
solution is identical to the one we gave in Sec. 2.2 by assuming a product form
for the ground state. They are related by the condition φi = φ = 2dJmz, and
〈σz

i 〉 = mz – Exercise: check that using this in Eq. (80) one recovers Eq. (34).

This might seem like a really complicated way to redo MFT. But it has the
advantage that it is pretty easy to look at the corrections to MFT, by consid-
ering fluctuations. From the point of view of Eq. (74), this is just the proper
way to approximate the integrals. What we are assuming is that the integral
is dominated by the region near the saddle point, i.e. near the mean field so-
lution. So we should write φi(τ) = φ

(0)
i + ϕi(τ), and expand the action to

leading order in ϕ, and then carry out the integral. So formally we have

(81) S[{φi(τ)}] ≈ S[{φ(0)] + δS,

with δS of order ϕ2 since the first derivative vanishes at the saddle point. To
obtain δS we expand Eq. (75) to second order. With a little work, we see that

(82)

δS =

β∫
0

dτ
1
2

J−1
ij ϕi ϕj−

1
2 ∑

i

∫
dτdτ′

[
〈Tτ σz(τ)σz(τ′)〉 − 〈σz〉2

]
ϕi(τ)ϕi(τ

′).

Let us for example consider this in the PM phase, where φ
(0)
i = 0. Then

〈σz〉 = 0, and the mean field Hamiltonian is just Hi = −hσx
i . We have, for

τ > τ′,

〈Tτ σz(τ)σz(τ′)〉 = 〈→ |σze−H(τ−τ′)σz| →〉
= e−2h(τ−τ′).(83)

So by symmetry the argument of the exponential above is generally −2h|τ −
τ′|. So we find

(84) δS =

β∫
0

dτ
1
2

J−1
ij ϕi ϕj −

1
2 ∑

i

∫
dτdτ′ e−2h|τ−τ′ |ϕi(τ)ϕi(τ

′).

Lecture 6 (1.5h)
October 13th, 2015

To go further we need to be a bit more explicit about the matrix J−1. As
usual it is defined by the condition that J−1 J = 1, which in components means
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4. From Ising model to scalar field theory

(85) ∑
j

J−1
ij Jjk = δik.

Now to solve this let us make the ansatz that

(86) J−1
ij =

∫ ddk
(2π)d

eik·(ri−rj)

J̃(k)
.

Inserting this in Eq. (85) we have

(87)
∫ ddk

(2π)d
1

J̃(k) ∑
j

Jjkeik·(ri−rj) = δik.

We carry out the sum over j using the explicit form of Jjk which is equal to J
when j, k are nearest neighbors, i.e.

(88)
∫ ddk

(2π)d
1

J̃(k)

d

∑
µ=1

J
(

eik·(ri−rk−x̂µ) + eik·(ri−rk+x̂µ)
)
= δik,

which simplifies to

(89)
∫ ddk

(2π)d

[
∑d

µ=1 2J cos kµ

J̃(k)

]
eik·(ri−rk) = δik.

We recognize that if the quantity in the square brackets is chosen to be unity,
then the left hand side produces the desired Kronecker delta. Hence we con-
clude that

(90) J̃(k) =
d

∑
µ=1

2J cos kµ.

Now it is convenient to Fourier transform the field,

(91) ϕi(τ) =
∫ ddk

(2π)d
dω

2π
eik·ri+iωτ ϕ(k, ω).

The factors of 2π in the measure are a nice convention. This is just a change of
variables in the functional integral defining the partition function. Plugging
this into Eq. (84) we obtain

(92) δS =
∫ ddk

(2π)d
dω

2π

1
2

[
1

J̃(k)
− 4h

ω2 + 4h2

]
ϕ(k, ω)ϕ(−k,−ω).

We are mostly interested in the long-time and long-distance behavior (this
is a recurring theme), so it is sensible to expand the quantity in the square
brackets in small momentum and frequency. This is essentially the same as
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taking a “continuum limit”. We obtain

(93) δS =
∫ ddk

(2π)d
dω

2π

Z
2

[
ω2 + v2k2 + m2

]
ϕ(k, ω)ϕ(−k,−ω),

where

(94) m2 = 4h2
(

h
2dJ
− 1
)

, v2 =
h3

d2 J
, Z =

1
4h3 .

This is the action of a very famous quantum field theory: the relativistic free
scalar field. The overall coefficient Z can be absorbed in a normalization of
ϕ, while v and m have interpretations of the “speed of light” and “mass”,
respectively, in that context. Here v indeed represents a characteristic velocity,
while m represents a energy gap, which we can at least see dimensionally since
it has dimensions of frequency which is the same (with h̄ = 1) as energy in
quantum mechanics.

From the point of view of the functional integral, we are to use Eq. (93) for
example to calculate the partition function via

(95) Z = e−S0

∫
[dϕ(k, ω)]e−δS[ϕ].

Since the quantity in the square brackets in Eq. (93) governs how fast the expo-
nential weight e−δS decays with ϕ, we can say fluctuations around the saddle
point are largest when this quantity is smallest. In the long-wavelength low-
frequency limit, this is controlled by m. Hence when m vanishes, fluctuations
become very large. Inspecting Eq. (94) we see that m vanishes only when
h = 2dJ (note: we must take h ≥ 2dJ since we assumed that 〈σz

i 〉 = 0). That
is, the mass remains non-zero throughout the PM phase and vanishes just at
the phase transition to the FM state. The upshot is that we expect that the
saddle point approximation and the quadratic expansion is qualitatively good
everywhere in the PM phase, and it is only the phase transition point and its
features that may require more careful treatment.

On the other hand it is pretty clear that if we do go exactly to the transition
point, m = 0, then Eq. (93) is inadequate. This is because a constant shift of all
ϕ costs zero action, so integrating over this “center of mass” coordinate will
lead to a divergence. It is not physical though, and arises only because we
truncated the effective action to quadratic order. To cure it, and write a theory
that is valid even up to the critical point, we should include higher order terms
in ϕ (which is equal to φ for h > 2dJ). We can do this in a couple of ways.
The most obvious is just to continue the perturbation theory expansion of
z[φ] to higher order. We’ll take a slightly less obvious path. Since the problem
occurs for constant ϕ, we can just assume ϕ is independent of τ in evaluating
z[φ = ϕ]. In that case, Eq. (76) is greatly simplified. We have

(96) z[ϕ] = Tr
[
e−β(−hσx−ϕσz)

]
.

Since the operator in the exponential is time-independent, we can just diago-
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5. Stuff that can be measured

nalize it once, and evaluate the trace in this basis:

(97) z[ϕ] = eβ
√

h2+ϕ2
+ e−β

√
h2+ϕ2 →β→∞ eβ

√
h2+ϕ2

,

taking the zero temperature limit. Hence in this limit we obtain, for constant
ϕ,

(98) S[ϕ] =

β∫
0

dτ

{
1
2

J−1
ij ϕi ϕj −∑

i

√
h2 + ϕ2

i

}
, for ∂τ ϕi = 0.

If we perform the same manipulations as before, taking the continuum limit,
we obtain to quadratic order every term exactly as in Eqs. (93-94), except the
ω2 one, which is of course absent by assumption for constant ϕ. But we can
straightforwardly expand this further in ϕ, to obtain the quartic correction

(99) S4 = ∑
i

ϕ4
i

8h3 →
∫

ddx
ϕ4

8h3 ,

with of course still higher order terms of order ϕ6 etc. Transforming Eq. (93)
back to real space and imaginary time τ, we obtain

(100) S =
∫

ddxdτ

{
Z
2

[
(∂τ ϕ)2 + v2(∇ϕ)2 + m2 ϕ2

]
+ uϕ4 + · · ·

}
,

where we defined u = 1
8h3 . This is the famous ϕ4 or scalar field theory. It is

believed to describe properly all the long-distance and long-time properties of
the quantum Ising model, both away from and arbitrarily close to its transition
point. It also describes the long-distance properties of the classical Ising model
in d + 1 dimensions, in a similar fashion. You will study this thing, perhaps ad
nauseum, in Physics 220.

5 Stuff that can be measured

5.1 Types of measurements

So we talked about both fundamental physics and formalism. What do we
do with any of this? Ultimately we would like to address experiments. One
of the unique aspects of condensed matter physics is the amazing variety of
experimental probes, which is both revealing – because you can learn so very
much about a system – and bewildering – because it is hard to know what
all these different measurements really tell you. While this is not supposed
to a course about condensed matter phenomena (we have 223ab for that), you
should understand a bit about how many body theory connects to experiment.
I’ll try to divide the types of experiments into different categories:

1. Thermodynamics: There are measurements that study extensive, equi-
librium properties. This includes heat capacity, magnetization, and com-
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5.1. Types of measurements

pressibility (or pressure versus volume). All these quantities can be cal-
culated from the free energy or partition function. Consequently they
are very fundamental but also have very little specific information.

2. Correlations: A different sort of measurement is to just “watch” a sys-
tem somewhere. We can study different local operators, like our spins σ

µ
i

in the Ising model. We might measure the spin at some site at some time,
and then another one at another position at the same time or a later time.
The outcome of any one such measurement, according to quantum me-
chanics, is actually stochastic, and we can only predict the probabilities
of possible outcomes. However, we often do many such measurements
in parallel, and really look at the average. This is a correlation function.
These are very natural objects theoretically.

3. Spectra: Some measurements specifically identify energies of excited
states, or rather the energies of transitions between states. Obviously the
Lyman spectra of atoms is a canonical example. In many-body systems,
there is an awfully large set of levels, and the existence of thermody-
namics tells us that in principle there are energy levels spread over a
range of energies of order volume. But it is hard to impart that much en-
ergy, and you cannot measure it precisely. So we reserve spectroscopic
measurements to discuss energy changes that are order one, i.e. finite
in the thermodynamic limit, or in other words, transitions which do not
change the energy density. Such measurements can be made by “scat-
tering” type measurements, or by adding or removing electrons from
a system. Or they might be made by turning on a classical field which
is resonant with some excitation. A priori a measurement of spectra is
very clean to think about theoretically. We just need to find the low-lying
energy levels.

4. Linear Response: Instead of just watching a system, we can perturb it
just a bit. If our perturbation is weak, then we can use time-dependent
perturbation theory to see how it responds. Usually the response to a
weak perturbation is linear. That might fail if we take an extreme limit:
T → 0, ω → 0 and k → 0 simultaneously – this is because in that
limit you probe macroscopic response of an infinite number of coher-
ent degrees of freedom, and that infinity can induce a divergence, i.e.
a non-linear response. But usually linear response is good. Some scat-
tering measurements can be understood as linear response, if the thing
which we scatter off the solid interacts weakly with it. In addition, mea-
surements like conductivity or susceptibility are linear response probes.
There is a general theoretical framework for relating linear responses to
correlation functions, which we can try to calculate theoretically.

5. Real time dynamics: We can also try to monitor some property of a sys-
tem continuously in time, usually in combination with driving the sys-
tem somehow either continuously or with some pulse. This for example
is what one does in nuclear magnetic resonance (NMR) or muon spin
resonance (µSR). Lots of measurements in ultra-cold atoms are like this.
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5. Stuff that can be measured

These are some of the most complex experiments to try to think about.
The full quantum dynamics of a many-body system is hard!!! Unless
there is some simplification (which there usually is in NMR for exam-
ple), we will not be able to say much that is general, and it is difficult to
do real calculations.

Somewhat surprisingly, the second, third, and fourth types of measurements
are all related.Lecture 7 (1.5h)

October 15th, 2015

5.2 Correlation functions

We can consider a variety of correlation functions. The different definitions
can be a bit bewildering sometimes. Don’t worry too much about this: all of
them are pretty similar, and it is not so important, at least initially, to know
all the differences. So many different ones have been defined just because
they are used so often, it can be convenient. Unfortunately, conventions are
not entirely uniform, so you should be a bit careful what people are talking
about, when it comes down to the details.

By principles of statistical mechanics, the expected value of any quantity
is

(101) 〈Q〉 = 1
Z

Tr
(

e−βHQ
)

.

A correlation function is just the case where Q is a product of local operators,
which may be measured at different times

(102) C(x− x′, t− t′) = 〈O(x, t)O(x′, t′)〉,

where the spatial argument indicates that the operator has support only in the
region around that coordinate, and, as usual, time evolution proceeds accord-
ing to

(103) O(x, t) = eiHtO(x)e−iHt.

For a translationally invariant system, the correlation function depends only
on the space and time differences, as indicated in Eq. (102). So Eq. (102) defines
a simple “real time” correlation function, i.e. it reflects an actual time evolution
of a quantum system.

Another popular real time correlation function is defined in terms of the
commutator

(104) Dret(x− x′, t− t′) = −i〈
[
O(x, t),O(x′, t′)

]
〉Θ(t− t′).

Here I included several conventional factors: the −i which helps to make it
real, since the commutator of Hermitian operators changes sign under com-
plex conjugation, and multiplied it by the Θ function to make it non-zero only
for t > t′. We define it this way because in this form it arises in linear response
theory. It is called the retarded correlation function.
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5.3. Spectral representations

A third useful correlation function which we will often encounter is the
imaginary time one. What occurs most often is the imaginary time ordered cor-
relation function,

(105) C(x− x′, τ − τ′) = 〈Tτ O(x, τ)O(x′, τ′)〉,

where

(106) O(x, τ) = eHτO(x)e−Hτ .

and Tτ is the time-ordering symbol, so that, explicitly,

(107) C(x− x′, τ − τ′) =

{
〈O(x, τ)O(x′, τ′)〉 τ > τ′

〈O(x′, τ′)O(x, τ)〉 τ < τ′

The imaginary time-ordering is not especially physical, but it is what is “spit
out” by the path integral prescription. Indeed this is so much the case that we
will often omit the Tτ in writing Eq. (105).

5.3 Spectral representations

Real time correlation function

Quantum mechanics allows us to write correlation functions in terms of eigen-
states, at least as a matter of principle. For example, consider the real time
correlation function in Eq. (102). Making the time evolution explicit, we have

(108) C(x, t) = 〈eiHtO(x)e−iHtO(0)〉.

Then we can evaluate the trace in the eigenbasis, and use a resolution of the
identity in the middle of the expression in the same basis to get

(109) C(x, t) =
1
Z ∑

m,n
〈m|O(x)|n〉〈n|O(0)|m〉e−i(En−Em)te−βEm .

You can see that the energy level differences appear as complex exponentials.
By Fourier transforming we can single out specific frequencies,

(110)

C(x, ω) =
∫

dt eiωtC(x, t) =
1
Z ∑

m,n
〈m|O(x)|n〉〈n|O(0)|m〉e−βEm δ(ω− (En−Em)).

So if we can calculate the Fourier transform of the correlation function, we can
in principle extract at least energy level differences. In translationally invariant
systems, we can make this a bit nicer. Let us define a translation operator Tx,
so that

(111) O(x) = T−1
x O(0)Tx.
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5. Stuff that can be measured

Provided T−1
x HTx = H (which defines translational invariance), we can choose

the energy levels to be eigenstates of Tx, and introduce this label explicitly,
|n〉 → |k, n〉, where

(112) Tx|k, n〉 = eik·x|k, n〉.

Making these substitutions in Eq. (110), we obtain

(113)

C(x, ω) =
1
Z ∑

m,n
∑
q,p
〈p, m|O(0)|q, n〉〈q, n|O(0)|p, m〉ei(k−p)·xe−βEm δ(ω− (En−Em)).

Then, Fourier transforming in space as well,

C(k, ω) =
∫

ddx C(x, ω)e−ik·x

=
1
Z ∑

m,n
∑
q,p
|〈q, n|O(0)|p, m〉|2 e−βEm(2π)dδ(k− (q− p))δ(ω− (En − Em)).(114)

Things are particularly nice at zero temperature, where the sum over m re-
duces to just the ground state. Typically we can assume it has p = 0. Then

(115) C(k, ω) = ∑
n

∑
q
|〈q, n|O(0)|0〉|2 (2π)dδ(k− q)δ(ω− εn),

where εn = En− E0 is the excitation energy of the state n. Here we can see that
the result is just the sum of delta functions that select states with a given exci-
tation energy and a given momentum, weighted by a positive function which
is just the square of a matrix element. This is called a spectral representation and
the weight is a spectral weight.

For future use, we can obtain a spectral representation slightly differently,
by Fourier transforming Eq. (102) directly in both coordinates. One obtains

(116) C(k, ω) =
1

VZ ∑
m,n
|〈m|Ok|n〉|2 e−βEm δ(ω− En + Em),

where V is the volume. This is of course equivalent to Eq. (114), which one
can see by expressing O(x = 0) =

∫
ddk/(2π)dOk and using a little algebra.

Retarded correlation function

Let’s write a spectral representation for the retarded correlation function in
Eq. (104). We have

(117)

D(x− x′, t− t′) =
−i
Z ∑

m,n
〈m|O(x)|n〉〈n|O(x′)|n〉

(
e−βEm − e−βEn

)
e−i(En−Em)(t−t′)Θ(t− t′).
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5.3. Spectral representations

We get this by writing out the commutator and inserting complete sets of
states in each of the two terms. Now let’s Fourier transform with respect to
both x and x′ (i.e. multiply by eik·(x−x′) and integrate over both coordinates.
We obtain

(118)

VD(k, t− t′) =
−i
Z ∑

m,n
|〈m|Ok|n〉|2

(
e−βEm − e−βEn

)
e−i(En−Em)(t−t′)Θ(t− t′),

where V is the volume. Fourier transforming now with respect to time, we
add an infinitesimal factor e−δ(t−t′) with δ = 0+ to guarantee convergence.
This gives

(119) D(k, ω) =
1

VZ ∑
m,n
|〈m|Ok|n〉|2

(
e−βEm − e−βEn

)
ω− (En − Em) + iδ

.

Now we get a spectral representation by taking the imaginary part,

(120) − 1
π

Im D(k, ω) =
1

VZ ∑
m,n
|〈m|Ok|n〉|2

(
e−βEm − e−βEn

)
δ(ω− En + Em).

So the imaginary part of the retarded correlation function is directly related
to the spectrum of the system, i.e. it is non-zero only a frequencies that cor-
respond to possible transitions between levels. We’ll see why this is the case
soon. In the zero temperature limit this simplifies to

(121) − 1
π

Im D(k, ω) =T=0
1
V ∑

n
|〈0|Ok|n〉|2 sign(ω)δ(|ω| − εn).

By comparing Eq. (120) to Eq. (116), we can relate the ordinary and re-
tarded correlation functions. Specifically by using the delta function in Eq. (120)
to write En = Em + ω, we obtain

(122) − 1
π

Im D(k, ω) =
(

1− e−βω
)

C(k, ω).

We will see in the next section that D describes the linear response of the sys-
tem to a perturbation of a force, and hence the work done by the perturbation,
i.e. dissipation. Hence this relation is considered a fluctuation-dissipation rela-
tion – it relates a linear response quantity describing dissipation (D) to one
which describes fluctuations (C).
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5. Stuff that can be measured

Imaginary time correlation function

So finally, we can look at the Imaginary time correlation function in Eq. (105).
First let us be explicit and take τ′ = 0, τ > 0. Then

(123) C(x, τ) =
1
Z

Tr
(

e−βHeτHO(x)e−τHO(0)
)

From this, note that if we take τ = β,

(124)

C(x, β) =
1
Z

Tr
(
O(x)e−βHO(0)

)
=

1
Z

Tr
(

e−βHO(0)O(x)
)
= C(x, τ = 0−),

using cyclicity of the trace. So the imaginary time correlation function is a
β-periodic function of τ. This means that it has discrete Fourier components
ωn = 2π

β n, with integer n. These are called “Matsubara” frequencies. With
that knowledge we can proceed with the spectral representation. Getting tired
of it yet??

We multiply by eiωnτ and integrate τ from 0 to β:

(125)

C(x, ωn) =

β∫
0

eiωnτC(x, τ) =
1
Z ∑

m,n
〈m|O(x)|n〉〈n|O(0)|m〉e−βEm

1− e−β(En−Em−iωn)

En − Em − iωn
.

I apologize for the two different uses of n – in the subscript of the Matsubara
frequency and to label states. It should be clear which is which from context.
In momentum space, this becomes

(126) C(k, ωn) =
1

VZ ∑
m,n
|〈m|Ok|n〉|2

e−βEm − e−βEn

En − Em − iωn
,

where I used eiβωn = 1 which is true for discrete Matsubara frequencies, and
multiplied through the e−βEm factor. Comparing Eq. (126) to Eq. (119), we see
that there is a very simple relation:

(127) C(k, ωn)→iωn→ω+iδ −D(k, ω).

This is a useful result because it means that we can calculate the Matsubara
correlation function (which is what we naturally obtain using path integrals,
for example) and then by carrying out the “analytic continuation” in Eq. (127),
we obtain the retarded correlation function. And the retarded one is quite
physical, as we will soon see. Unfortunately, if one does not have an explicit
form for the Matsubara correlation function, it can be difficult to carry out this
analytic continuation (think about it!!).
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5.4. Linear response

Summary

We can obtain spectral representations of any correlation function we want,
which basically give them as a weighted sum of matrix elements of exact
eigenstates, organized by momentum and energy. The spectral weights, writ-
ten this way, have definite signs, which reflect the positivity of squared matrix
elements. This means that such correlation functions are not arbitrary func-
tions. They are special because they arise from unitary time evolution. Using
the spectral representation we can see directly how to relate various different
correlation functions.

5.4 Linear response

Let us think about the response of our system to some perturbation. This
consists of starting with some initial Hamiltonian H (which we assume is
time-independent) and adding a perturbation δH(t), which can be time de-
pendent. We suppose δH(t) = 0 for t < t0. Then we can consider the time
evolution operator from time t0 to some later time t, which is a time-ordered
exponential:

(128) U(t, t0) = Te−i
∫ t

t0
dt′ (H+δH(t′))

Since the perturbation is small, we can try to expand it in δH. This is a lit-
tle tricky because of the time ordering, but we can do it by breaking the
time-ordered exponential into a Trotter product, expanding each piece, and
recollecting them. We obtain

(129) U(t, t0) = e−iH(t−t0) − i
t∫

t0

dt′ e−iH(t−t′)δH(t′)e−iH(t′−t0) + O(δH2).

Now we can consider the time-dependent expectation value of some operator

(130) 〈O(t)〉 = 〈U(t0, t)OU(t, t0)〉.

Inserting Eq. (129), we obtain, to linear order

O(t) = eiH(t−t0)Oe−iH(t−t0)

−i
t∫

t0

dt′
[
eiH(t−t0)Oe−iH(t−t′)δH(t′)e−iH(t′−t0) − eiH(t′−t0)δH(t′)eiH(t−t′)Oe−iH(t−t0)

]
+ O(δH2),

(131)

which can be recollected by defining operators whose the time evolution is
with respect to H not including δH, as in Eq. (103) – this is called the “inter-
action picture” in textbooks:

(132) O(0)(t) = eiH(t−t0)Oe−iH(t−t0),
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5. Stuff that can be measured

etc. Then we obtain from Eq. (131) and Eq. (132), taking the expectation value,

(133) 〈O(t)〉 = 〈O〉 − i
t∫

t0

dt′ 〈
[
O(0)(t), δH(0)(t′)

]
〉+ O(δH2).

The right hand side expresses the result of the perturbation explicitly in terms
of time-dependent correlation functions of the unperturbed system.Lecture 8 (1.5h)

October 20th, 2015 Now let us take a specific form of the perturbation. Let’s assume

(134) δH(t) =
∫

ddx′ h(x′, t)O(x′).

Here I indicate only the explicit time-dependence, not any Heisenberg depen-
dence. Then we find

(135) δ〈O(x, t)〉 = −i
t∫

t0

dt′
∫

ddx′ 〈
[
O(0)(x, t),O(0)(x′, t′)

]
〉h(x′, t′).

If we assume h(x′, t′) = 0 for t′ < t0, we can extend the lower limit fo the
integration to minus infinity, and extend the upper limit to plus infinity by
adding a Theta function to the integrand. The result is

(136) δ〈O(x, t)〉 =
∫

ddx′dt D(x− x′, t− t′)h(x′, t′).

This is the central result of linear response. It shows that the linear change of
an expectation value with respect to a perturbation is given by the retarded
correlation function of the operator which is observed and the one which
constitutes the perturbation. In Fourier space, it is simply

(137) δ〈O(k, ω)〉 = D(k, ω)h(k, ω).

5.5 Example application to Ising model and φ4 theory

OK, that’s a lot of technical stuff. Let’s go back to our field theory of the
quantum Ising model. We saw in Sec. 2 that the low energy excitations of the
two phases, away from the QCP, are quasiparticles. I claim this is captured by
the scalar field theory. Now we have learned how to extract excitations from
correlation functions, so we are ready to see what excitations are actually
encoded in the field theory.

Relation to neutron scattering

We are going to examine the correlation functions of the field ϕ, in the scalar
field theory, which we can interpret using the formalism of the previous sub-
section. This is a nice exercise. But it is not just an exercise. It essentially gives
the correlation function of the spin operator σz of the original Ising model.
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5.5. Example application to Ising model and φ4
theory

That, in turn, is actually just what is measured in one of the classic experi-
mental probes of magnetism: neutron scattering. The neutron interacts with
electrons through its magnetic moment, which is coupled linearly to any mag-
netic moments in the material. A Fermi’s Golden rule treatment of this inter-
action gives the rate to scatter a neutron with a change of momentm k and
change of energy E as

(138)
d2σ

dEdΩ
∝ ∑

αβ

(
δαβ −

kαkβ

k2

)
Sαβ(k, ω = E),

where

(139) Sαβ(k, ω) =
∫

ddxdt ei(k·x−ωt)〈Mα(x, t)Mβ(0, 0)〉,

which is nothing but a real-time correlation of the form in Eq. (108), with
Mα the magnetization operator. One can rationalize this by remembering that
Fermi’s golden rule give a rate proportional to the square of a matrix element,
which is precisely the form that the spectral representation, Eq. (115) gives.
The prefactor is the result of the dipole-dipole interaction. We see that S(k, ω),
which is called the inelastic structure factor, gives a direct measurement of
the spectrum of excitation created by the magnetization operator. In a simple
spin system, Mα is just proportional to the spin operator, so that the neutron
structure factor is determined from the σz − σz correlation function.

Gaussian integrals and Wick’s theorem

Let’s start with the free field theory, u = 0, in Eq. (93). The action is quadratic
at this level, so we can calculate with it. To do so, we need to quickly talk
again about Gaussian integrals. Recall Eq. (69). Write two equalities by taking
M = K−1, once with x = 0 and once with x unchanged, and take the ratio.
One obtains

(140)
〈
ex·y〉

y ≡
∫

dye−
1
2 y·K·yex·y∫

dye−
1
2 y·K·y

= e
1
2 x·K−1·x.

This gives the expectation value for an arbitrary exponential of a linear func-
tion of the field (the integration variable, in this case y). We can get from it any
polynomial expectation value, by just Taylor expanding both sides, and equat-
ing coefficients of xi. You can think of the expectation value of the exponential
thus as a generating function for the correlators of y. Most fundamentally,

(141) 〈yiyj〉 = (K−1)ij ≡ Gij.

Higher orders are also straightforward, for example

(142) 〈yiyjykyl〉 = GijGkl + GikGjl + GilGjk.

39



5. Stuff that can be measured

One can see that this result can be obtained by taking the sum of all possible
partitions of the y variables into pairs, and for each partition replacing the
pair by its fundamental correlation G via Eq. (141). This rule is called “Wick’s
theorem”.

Free field correlations

OK, that’s all we need. Now let us consider the basic correlation function in
the scalar field theory:

(143) Cϕϕ(x− x′, τ − τ′) = 〈ϕ(x, τ)ϕ(x′, τ′)〉 ≡
∫
[dϕ]e−S[ϕ]ϕ(x, τ)ϕ(x′, τ′)∫

[dϕ]e−S[ϕ]
.

We can use Eq. (141) to calculate this. Here K is the kernel of the quadratic
form in the scalar theory. It is simplest in Fourier space, Eq. (93). From this,
we can read off the Fourier transform

(144) Cϕϕ(k, ωn) =
1
Z

1
ω2

n + v2k2 + m2 .

Now in the quantum theory, Eq. (143) should be interpreted as the imaginary
time Green’s function, Eq. (105), whose Fourier transform is the Matsubara
Green’s function, Eq. (126). So we can obtain the retarded Green’s function
using Eq. (127), which gives

(145)

Dϕϕ(k, ω) =
1
Z

1
(ω + iδ)2 − v2k2 −m2 =

1
Z

1
ω2 − v2k2 −m2 + isign(ω)δ

,

where I use δ to always indicate a positive infinitesimal, but not any specific
value. The spectral function is obtained from the Imaginary part, Eq. (121),
which gives

(146)

− 1
π

ImD(k, ω) =
sign(ω)

Z δ(ω2− v2k2−m2) =
sign(ω)

Z
δ(|ω| −

√
m2 + v2k2)

2
√

m2 + v2k2
.

We see that there is an excitation with a sharply defined energy ε(k) =√
m2 + v2k2. The coefficient of the delta-functions gives the matrix element

in Eq. (121), i.e. the overlap of the state ϕ|0〉 with the exact excitation (|n〉 in
the formal expression). The coefficient is called the “quasiparticle weight”.

Perturbation expansion

Now it is interesting to compute some corrections when the uϕ4 term is in-
cluded. The idea is simple: start with Eq. (143) and expand both numerator
and denominator in a series in u. Let’s start with the denominator, which is
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theory

the partition function itself:

(147)

Z =
∫
[dϕ]e−S[ϕ] =

∫
[dϕ]e−S0[ϕ]

(
1− u

∫
ddxdτ ϕ4 +

u2

2

∫
ddxddx′dτdτ′ ϕ4

x,τ ϕ4
x′ ,τ′ + · · ·

)
,

where S0 = S(u = 0) is the quadratic part of the action. By dividing by the
first term, it becomes

(148)

Z = Z0

(
1− u

∫
ddxdτ

〈
ϕ4

x,τ

〉
0
+

u2

2

∫
ddxddx′dτdτ′

〈
ϕ4

x,τ ϕ4
x′ ,τ′

〉
0
+ · · ·

)
,

where the average is with respect to S0. We can evaluate this if we want, but
it will actually not be necessary. Let us instead look at the expansion of the
numerator. In a similar way, we have

N =
∫
[dϕ]e−S[ϕ](ϕx,τ ϕx′ ,τ′) = Z0

( 〈
ϕx,τ ϕx′ ,τ′

〉
0

−u
∫

ddx1dτ1

〈
ϕx,τ ϕx′ ,τ′ϕ

4
x1,τ1

〉
0
+

u2

2

∫
ddx1ddx′2dτ1dτ′2

〈
ϕx,τ ϕx′ ,τ′ϕ

4
x1,τ1

ϕ4
x2,τ2

〉
0

)
(149)

Now we can take the ratio, and expand expand the full expression consistently
to second order

〈ϕx,τ ϕx′ ,τ′〉 =
N
Z

(150)

=
〈

ϕx,τ ϕx′ ,τ′
〉

0 − u
∫
1

(〈
ϕx,τ ϕx′ ,τ′ϕ

4
1

〉
0
−
〈

ϕx,τ ϕx′ ,τ′
〉

0

〈
ϕ4

1

〉
0

)
+

u2

2

∫
1,2

( 〈
ϕx,τ ϕx′ ,τ′ϕ

4
1 ϕ4

2

〉
0
+ 2

〈
ϕx,τ ϕx′ ,τ′

〉 〈
ϕ4

1

〉 〈
ϕ4

2

〉
0

−
〈

ϕx,τ ϕx′ ,τ′
〉 〈

ϕ4
1 ϕ4

2

〉
0
− 2

〈
ϕx,τ ϕx′ ,τ′ϕ

4
1

〉 〈
ϕ4

2

〉
0

)
,

where we have abbreviated x1, τ1 by 1 and similarly abbreviated the integral
measures. Let us look just at the term linear in u. Using Wick’s theorem,

〈ϕx,τ ϕx′ ,τ′〉 =
〈

ϕx,τ ϕx′ ,τ′
〉

0

−u
∫
1

(〈
ϕx,τ ϕx′ ,τ′

〉
0

〈
ϕ4

1

〉
0
+ 12 〈ϕx,τ ϕ1〉0

〈
ϕx′ ,τ′ϕ1

〉
0

〈
ϕ2

1

〉
0
−
〈

ϕx,τ ϕx′ ,τ′
〉

0

〈
ϕ4

1

〉
0

)
+ O(u2)

=
〈

ϕx,τ ϕx′ ,τ′
〉

0 − 12u
∫
1

〈ϕx,τ ϕ1〉0
〈

ϕx′ ,τ′ϕ1
〉

0

〈
ϕ2

1

〉
0
+ O(u2).

(151)
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5. Stuff that can be measured

Note that after we applied Wick’s theorem, the expression simplified quite a
bit, due to cancellations between the numerator and denominator. This type
of cancellation is general and has a graphical interpretation, which we will
come to. We can rewrite this result in terms of the “bare” correlation function
in Eq. (143), which we will now call C0:

(152)

C(x− x′, τ− τ′) = C0(x− x′, τ− τ′)− 12uC(0, 0)2
∫
1

C0(x− x1, τ− τ1)C0(x1− x′, τ1− τ′)+O(u2).

One can recognize the second term as a convolution, which tells us that
Fourier transform will simplify it: the Fourier transform of a convolution is
the product of Fourier transforms. Hence

(153) C(k, ωn) = C0(k, ωn)− 12uC(0, 0)2C0(k, ωn)
2 + O(u2).

This can be rearranged in an a priori funny but standard way:

C(k, ωn) = C0(k, ωn)
[
1− 12uC(0, 0)2C0(k, ωn)

]
= C0(k, ωn)

1
1 + 12uC(0, 0)2C0(k, ωn)

=
1

C−1
0 (k, ωn) + 12uC(0, 0)2

≡ 1
C−1

0 (k, ωn) + Σ
,(154)

where we have ensured each line is equivalent to previous one only to order
u, and defined the “self energy”

(155) Σ = 12uC(0, 0)2.

Formally, we can always define Σ so that the left hand side and final form on
the right hand side are exactly equal.

(156) C(k, ωn) ≡
1

C−1
0 (k, ωn) + Σ(k, ωn)

.

So it is perfectly fine to trade the exact correlation function for an exact self-
energy. It turns out that the perturbation series for the self-energy is simpler
than that for the correlation function itself. This is another simplification on
top of the cancellations already observed between the numerator and denom-
inator.

To linear order in u, we obtained a rather trivial result: the self-energy
is a constant, independent of frequency and momentum. It can therefore be
interpreted as a renormalization of the mass m2, i.e. to this order

(157) C(k, ωn) =
1
Z

1
ω2 + v2k2 + m2 + ∆m2 ,
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5.5. Example application to Ising model and φ4
theory

with ∆m2 = 12uC(0, 0)2/Z > 0. This means that the energy gap of the quasi-
particles is increased by the correction. We can associate the point at which the
energy gap vanishes with the QCP. This indicates that the location of the QCP
is shifted, in such a way that the domain of the PM phase is increased relative
to the free theory, i.e. relative to MFT. This makes physical sense: quantum
fluctuations suppress the tendency to order. Lecture 9 (1.5h)

October 22nd, 2015

Second order terms and a quick primer on diagrammatics

A non-trivial self-energy occurs at O(u2). It becomes helpful to introduce the
notion of diagrams. The idea is as follows. Every polynomial in ϕ can be
thought of as a “vertex” out of which several “lines” emerge, each line indi-
cating a factor of ϕ,

(158) ϕ2
x,τ = , ϕ4

x,τ = , etc.

We can use the vertex to indicate fields that share a point in space-time. Then
diagramatically, the Green’s function is

(159) C0(x− x′, τ − τ′) = 〈ϕx,τ ϕx′ ,τ′〉0 = 〈 〉 .

For an expectation value in a free (quadratic) theory, the rules of Wick’s the-
orem apply. This is where the diagrams become useful. Wick’s theorem ba-
sically says that the result of an expectation value is given by the sum of all
ways of connecting the lines in pairs. For two fields this is trivial,

(160) C0(x− x′, τ − τ′) = ,

so we can recognize every line connecting a pair of vertices as a correlation
function or “propagator”. Now we can do perturbation theory graphically, for
example for the partition function:

(161) Z = Z0

〈
1− u

∫
1

1 +
u2

2

∫
1,2

1 2 + · · ·
〉

Using Wick’s theorem, this becomes

(162) Z = Z0

1− u
∫
1

3× +
u2

2

∫
1,2

[
9×

1 2
+ 4!×

1 2

]
+ · · ·

 .

Here I included factors which count how many different pairings lead to the
same term. Often we will just skip writing the integrals and labels, and leave
those implied, and so write just

(163) Z = Z0

(
1− 3u +

u2

2

[
9× + 4!×

]
+ · · ·

)
.
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Notice that the first term in the square brackets is “disconnected”, and is just
the square (up to the prefactor) of the term at previous order. This causes
it to cancel if we look at a more physical object, like the “free energy”, or
the logarithm of Z. This is an example of a “linked cluster” theorem. The
expansion of ln Z contains only connected diagrams. A similar result holds
for the expansion of the correlation function itself, which as we saw, requires
expanding both the numerator and denominator in Eq. (143). Upon combining
those series, a cancellation of disconnected terms occurs. One finds

(164)

C = − 12u× +
u2

2
×
[

144× + 288× + 192×
]
+ · · ·

Note that I have drawn only the connected terms, which means that the “ex-
ternal” vertices (from the two ϕ fields defining C) and all the internal vertices
are connected.

The self-energy has an additional simplification. Here we take all the terms
in the correlation function, and first remove the two external legs (see how
this worked in Eq. (154)), and then drop all those which are “one particle re-
ducible”, which means that they can be separated into two parts by removing
a single line. This causes us to drop both the first term (the free correlation
function) and the third term (first one inside the square brackets) in Eq. (164):

(165) Σ = 12u× − u2

2

[
288× + 192×

]
+ · · · ,

where I’ve drawn thin short lines to indicate where the legs were that were re-
moved. The diagrammatic rules for the self-energy simplify things a lot. There
would have been a lot more terms had we looked directly at the correlation
function, for example. Anyway, we can see from Eq. (165) that there are two
terms in the self-energy at O(u2). The first one is, like the O(u) term, a con-
stant, and so just another trivial shift of m2. The second O(u2) term is not a
constant, and so is more interesting.

Second order self-energy and three-particle contributions

Let’s sketch what this thing actually looks like, to get a bit of physics out
of it. In real space/time, it is simple because it is just the product of three
correlation functions:

(166)
1 2

= C0(x1 − x2, τ1 − τ2)
3.
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theory

But the correlation function is much easier to understand in momentum and
freqency space. So we need to Fourier tranform this:

(167) Σ(2)(k, ωn) = = −96u2
∫

ddxdτ C0(x, τ)3eik·x+iωnτ

Now we can write

(168) C0(x, τ) =
∫ ddka

(2π)d
dωa

2π
C0(ka, ωa)e−ika ·x−iωaτ ,

using subscripts a = 1, 2, 3 for each factor of C0. Then doing the integral over
space, we obtain

(169) Σ(2)(k, ωn) = −
96u2

Z3

∫
1,2,3

∫
dτ

3

∏
a=1

e−iωaτ

ω2
a + v2k2

a + m2 × eiωnτδ(k−∑
a

ka).

Now we can do all the frequency integrals which gives

(170) Σ(2)(k, ωn) = −
12u2

Z3

∫
ka

∫
dτ

1
Z3 eiτωn

e−|τ|∑a εa

ε1ε2ε3
δ(k−∑

a
ka),

with εa =
√

m2 + v2k2
a is the (bare) quasiparticle energy. Now one can do the

τ integral to get

(171)

Σ(2)(k, ωn) = −
12u2

Z3

∫
ka

1
ε1ε2ε3

[
1

iωn + ∑a εa
+

1
−iωn + ∑a εa

]
δ(k−∑

a
ka).

This expression is nice because we can see that the integrand is very well be-
haved when Re[ωn] is smaller than 3m in absolute value. When it is larger,
the integrand sums over poles, leading to a branch cut structure on the real
frequency axis. This is very physical. It is particularly nice to analytically con-
tinue, which is straightforward here because the frequency is explicit, and to
look at the Imaginary part:

(172)
1
π

ImΣ(2)(k, ω > 0) = −12u2

Z3

∫
ka

1
ε1ε2ε3

δ(ω−∑
a

εa)δ(k−∑
a

ka).

This tells us that there are contributions arising from states of three quasi-
particles, when ω and k are equal to the sum of the energy and momentum,
respectively, of the three quasi-particles. The imaginary part in Σ translates
to an imaginary part in C, through the relation between them. It indicates
that interactions produce additional spectral weight in the correlation function
corresponding to three particle states – see Fig. 3. The interpretation is that, in
the interacting theory, the exact quasiparticle states are “dressed”, so that the
“bare” quasiparticle state created by the operator ϕ has overlap not only with
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6. Bosons, superfluidity, etc.

an exact one-quasiparticle state but also with exact 3-quasiparticle states.4

m

3m

k

ω

Figure 3: Schematic intensity plot of spectral function for the scalar field the-
ory in the paramagnetic phase. At zero momentum, a delta-function quasipar-
ticle peak appears at ω = m, and the three-quasiparticle continuum appears
for ω ≥ 3m.

6 Bosons, superfluidity, etc.
Lecture 10 (1.5h)
October 27th, 2015 Up to now we focused on the situation of a discrete (Ising) symmetry, in

which, except if one tunes to a QCP, the system is gapped and the ground
state is “strictly” product-like: we expect that the area law of entanglement
entropy is obeyed with corrections that become exponentially small in the size
of the subregion defining the partition, when this is taken large. A gap to all
excitations is rather generic in the situation of discrete symmetry (though we
will eventually encounter exceptions). However, in the presence of continuous
symmetry, excitations with arbitrarily low energy can emerge, as we will see.
This goes along with the phenomena of spontaneously broken continuous
symmetry. This abstract concept underlies the physical phenomena of Bose-
Einstein condensation and superfluidity.

6.1 Second quantization, coherent states, and coherent state path integral

Second quantization

We need to set up a bit of formalism. Hopefully you are already familiar with
some of it. The most basic is second quantization. I quickly review it here,
without proving the statements. You can find them all over. For a system of
particles, we learn in elementary quantum mechanics how to write a many-
electron Schrödinger equation. We introduce N coordinates xi and momenta

4It has zero overlap with exact two-quasiparticle states because quasiparticles carry the Ising
parity, and so only odd parity states mix with odd parity states.
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pi, and write a general Hamiltonioan as

(173) HN =
N

∑
i=1

h(1)(xi, pi) +
1
2 ∑

i 6=j
h(2)(xi, pi; xj, pj),

where the superscripts indicate one-body and two-body terms, and as usual,
in the coordinate representation, pi = −i∇i. The Schrödinger equation is

(174) HNΨ(x1, · · · , xN) = EΨ(xi, pi).

For identical bosons, for which we consider only symmetric wavefunctions, we
can employ second quantization (we can do it for Fermions too, but Andreas
says not to tell you about that!). Now we introduce the many-particle Fock
space, in which the number of particles is arbitrary (H = H0 +H1 +H2 + · · · ,
where HN is the Hilbert space of N particles, including the space spanned by
the vacuum state, H0 = {c|0〉}). The second quantized Hamiltonian H =
H0 ⊕ H1 ⊕ H2 ⊕ · · · is written

(175) H = ∑
ij
〈j|h(1)|i〉a†

j ai +
1
2 ∑

ijkl
〈kl|h(2)|ji〉a†

k a†
l aiaj,

where the states |i〉 form an arbitrary orthonormal basis of single particle
states, and we introduced creation/annihilation operators satisfying

(176) [aj, a†
k ] = δjk.

The interpretation is that a†
j creates a particle in state j, and aj annihilates

one. The number of particles in state j is nj = a†
j aj. The vacuum state |0〉 is

annihilated by all aj:

(177) aj|0〉 = 0.

For ordinary bosons in free space, for example cold atoms in a trap, we could
take

(178) h(1)(x, p) =
p2

2m
+ U(x), h(2)(x, x′) = V(x, x′),

where U(x) is some one-particle (e.g. trapping) potential, and V(x, x′) is an
interaction. In this case, it is convenient to use a real-space basis, i.e. |i〉 = |x〉
of states localized at a point in space (i.e. delta-function wavefunctions), and
ai → ψ(x) – the label i becomes the continuous coordinate x, and we have

(179)

H =
∫

ddxψ†(x)
(
−∇

2

2m
+ U(x)

)
ψ(x)+

1
2

∫
ddxddx′ψ†(x)ψ†(x′)V(x, x′)ψ(x′)ψ(x),
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where

(180) [ψ(x), ψ†(x′)] = δ(d)(x− x′).

In general, one can go back from Eq. (179) to Eq. (175) by the change of basis
formula,

(181) ψ(x) = ∑
i

φi(x)ai,

where φi(x) = 〈x|i〉 is the wavefunction of state i.

Coherent states

Coherent states are useful in various applications. They can serve as a way to
understand the classical limit of harmonic oscillators. They are also useful to
construct path integrals. We’ll use this. A coherent state is an eigenstate of an
annihilator operator:

(182) a|φ〉 = φ|φ〉,

where we consider just a single mode, and suppress the label (i etc.) – with
many single particle states we just use a direct product of these things. The
parameter φ can be complex, since a is not hermitian. One can explicitly find
such a state as follows:

(183) |φ〉 = eφa† |0〉,

where |0〉 is the vacuum state. If you expand the exponential you will see that
the coherent state is a superposition of all particle numbers. Of course, by
complex conjugation,

(184) 〈φ| = 〈0|eφ∗a.

And of course

(185) 〈φ|a† = φ∗〈φ|.

How does the raising operator act on a ket? We can differentiate Eq. (183) to
obtain

(186) a†|φ〉 = ∂

∂φ
|φ〉.

Note that a† behaves similarly to the usual momentum operator in this basis.
It is important to note that since a is not hermitian, different coherent states
are not orthogonal. In fact, one can show by Taylor expanding or other means
that

(187) 〈φ|φ′〉 = eφ∗φ′ .
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We will need the resolution of the identity,

(188) 1 =
∫ dφ∗dφ

2πi
e−φ∗φ|φ〉〈φ|.

Here we have written the measure in a standard way, which is slightly formal.
It is defined as though φ∗ and φ are independent variables. Equivalently, we
can write φ = Reφ + iImφ, and φ∗ = Reφ− iImφ, and then use the change of
variables formula

(189) dφ∗dφ = dReφdImφ

∣∣∣∣ ∂(φ∗, φ)

∂(Reφ, Imφ)

∣∣∣∣ = 2i dReφ dImφ.

The resolution of the identity differs from the usual one because the states
are not orthonormal. You can prove it by using the definitions, Eq. (183) and
Eq. (184), writing out the exponentials explicitly as sums over number eigen-
states, and then carrying out the integral. Using Eq. (188), we can easily find
an expression for the trace,

(190) TrO =
∫ dφ∗dφ

2πi
e−φ∗φ〈φ|O|φ〉.

All these formula are readily elevated to the full space of many single-particle
states. We replace |φ〉 → |φ1, φ2, · · · 〉 = |{φ}〉. Usually, though it may be
confusing, we will just denote this by the same symbol |φ〉. Then the key
identities are

(191) 〈φ|φ′〉 = e∑i φ∗i φ′i ,

(192) 1 =
∫

∏
i

dφ∗i dφi

2πi
e−∑i φ∗i φi |φ〉〈φ|,

and

(193) TrO =
∫

∏
i

dφ∗i dφi

2πi
e−∑i φ∗i φi 〈φ|O|φ〉.

Coherent state path integral

Now we can use the coherent states to construct a path integral for the parti-
tion function. With bosons, it is usual to consider the grand canonical parti-
tion function Z = Tre−β(H−µN), where N is the number of boson and µ is the
chemical potential. Since we can write N = ∑i ni = ∑i a†

i ai, we can easily ab-
sorb the chemical potential into h(1). So henceforth we will not write the −µN
explicitly: it is included in H which is then a “grand canonical Hamiltonian”.

We follow the usual strategy to construct the path integral. First write the
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trace in the desired basis, which here is the coherent states:

(194) Z =
∫

∏
i

dφ∗i dφi

2πi
e−∑i φ∗i φi 〈φ|e−βH |φ〉.

Now we split up the exponential into a Trotter product, and insert a resolution
of the identity in between each term. We thereby get

(195) Z =
∫
[dφ∗][dφ]

β−∆τ

∏
τ=0

e−∑i ∑
β−∆τ
τ=0 φ∗i (τ)φi(τ)

β−∆τ

∏
τ=0
〈φ(τ + ∆τ)|e−∆τH |φ(τ)〉,

where we introduced the imaginary time label as we did earlier in Sec. 4, and
we define φ(β) = φ(τ) since the outer bra and ket are the same in the trace.
The measure is now being left implicit, but there is in fact an integral over
complex φ for each i and each τ. Now for infinitesimal ∆τ, we can expand
the exponential to linear order and it is simple to evaluate provided we have,
as in Eq. (175), all creation operators on the left, and annihilation operators in
the right, in each term of H. This is called normal ordering, and we will assume
that H is normal ordered. If not, one can reorder the terms in H to normal
order them. Normal ordering is good because the ai operators on the right
act on a ket, and each gives a factor of φi(τ), while the a†

i acts on the left to
produce a factor of φ∗i (τ + ∆τ), hence

(196) 〈φ(τ + ∆τ)|e−∆τH |φ(τ)〉 = e−∆τH(φ∗(τ+∆τ),φ(τ))e∑i φ∗i (τ+∆τ)φi(τ).

When Eq. (196) is inserted in Eq. (195), the second exponential in Eq. (196)
will combine wiht the first exponential in Eq. (195), since neither involves H.
One obtains

(197) Z =
∫
[dφ̄][dφ]e−∑iτ(φ̄i(τ)−φ̄i(τ+∆τ))φi(τ)e−∆τ ∑iτ H(φ̄,φ),

where we are suppressing the detailed labels of φ inside the Hamiltonian. We
also defined φ̄ = φ∗ which looks nicer. At this point, we can take the ∆τ → 0
limit to obtain

(198) Z =
∫
[dφ̄][dφ]e−S,

where the boundary condition φi(β) = φi(0) is assumed, and the action is

(199) S =

β∫
0

dτ

[
∑

i
φ̄i∂τφi + H(φ̄, φ)

]
.

In taking ∆τ → 0, we can a priori neglect the difference between the imag-
inary time of the φ∗ argument and the φ argument of H. This is sometimes
important if some operator ordering issue arises, but usually it is ok.
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6.2. The superfluid state

6.2 The superfluid state

Consider a collection of bosons, for simplicity with a fixed density in the con-
tinuum. This is described by the Hamiltonian of Eq. (179). This time around
we will discuss the physics in the opposite order that we did in the Ising
model – starting with the path integral formulation. Later we will go back to
think about the actual wavefunction.

Effective action

Applying the formalism of the previous subsection, we see that the partition
function for the system of bosons can be written as a path integral,

(200) Z =
∫
[dψ][dψ]e−S[ψ,ψ],

with the action

(201)

S =

β∫
0

dτ

{∫
ddx ψ

(
∂τ −

∇2

2m
− µ

)
ψ +

1
2

∫
ddxddx′ |ψ(x)|2V(x− x′)|ψ(x′)|2

}
.

Here we consider a translationally-invariant system with no one-body poten-
tial, for simplicity. Now let us look for a saddle point. It is extremely natural
to expect the dominant saddle point is constant in time and space, the former
because we expect a stationary state, and the latter because we seek to describe
a uniform gas or Bose fluid. For such a configuration the action simplies to

(202) S = βV
[
−µ|ψ|2 + 1

2
Ṽ(0)|ψ|4

]
,

where Ṽ(q) =
∫

ddx eiq·xV(x). It is obviously minimized by |ψ0|2 = µ/Ṽ(0)
for µ > 0 and ψ = 0 otherwise. In general, we should tune the chemical po-
tential so that the expectation value of the density operator gives the physical
boson density,

(203) 〈ψ†(x)ψ(x)〉 = N/V ≡ n.

If we evaluate the left-hand side at the saddle point level, then obviously
this requires µ > 0, but in fact fluctuations around the saddle point give a
non-zero left-hand side even for µ < 0 at T > 0, which describes a free of
quasi-free Bose gas above its Bose-Einstein condensation temperature. Here
we will focus on T = 0, where the µ > 0 saddle point is the correct one. Lecture 11 (1.5h)

October 29th, 2015An interesting feature of this case is the degeneracy of the saddle point.
Minimizing the action fixes the magnitude of ψ but not its phase:

(204) ψ0 =

√
µ

Ṽ(0)
eiθ ,
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where θ is arbitrary. This reminds one of the two-fold degeneracy of the
ground state of the Ising model in the ferromagnetic phase, and indeed a
corresponding two-fold degeneracy of saddle points in the path integral for-
mulation of that problem. Now we are taught that the overall phase of the
wavefunction is not physical, so the meaning of this degeneracy is not so
clear. This is not exactly the phase of the many-body wavefunction, but it
seems similar. Formally, the boson Hamiltonian has a conserved total num-
ber, N =

∫
ddx ψ†(x)ψ(x), which generates the U(1) phase-rotation symmetry

via U(χ) = eiχN :

(205) U(1) : ψ(x)→ eiχψ(x).

This is why the value of the action is independent of θ. It is pretty obvious too
that 〈ψ〉 = 0 in any state with fixed particle number. So the meaning of the
phase in Eq. (204) is certainly tricky.

Number-phase representation and sound mode

One can recognize that, although the overall phase is not physical, a phase
difference is. This means that a phase gradient has physical meaning. We can
expect that if a configuration with proper magnitude and constant phase min-
imizes the action, then a configuration with a small phase gradient will have
a small action, and hence be important in the path integral. Motivated by this,
we can try the change of variables

(206) ψ(x) =
√

n(x)eiθ(x).

This transformation has a unit Jacobean in the path integral. So

(207) Z =
∫
[dn][dθ]e−S[n,θ],

and by some simple algebra, one obtains

S[n, θ] =

β∫
0

dτ
{ ∫

ddx
[

in∂τθ +
n

2m
|∇θ|2 + |∇n|2

8mn
− µn

]

+
1
2

∫
ddxddx′ n(x)V(x− x′)n(x′)

}
.(208)

Here we used spatial integration by parts, neglecting boundary terms, to sim-
plify the parts arising from the boson’s kinetic energy. The saddle point in
these variables corresponds to n = n0 = µ/Ṽ(0) and θ constant. Let’s ex-
pand around the saddle point, by writing n = n0 + δn, and keeping terms of
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O(δn2, θ2, δnθ). We have S = S0 + δS, with

δS =

β∫
0

dτ
{ ∫

ddx
[

in0∂τθ + iδn ∂τθ +
n0

2m
|∇θ|2 + |∇δn|2

8mn0

]

+
1
2

∫
ddxddx′ δn(x)V(x− x′)δn(x′)

}
.(209)

The n0∂τθ term is a total derivative and can be neglected here. The remainder
is a quadratic form and is simplified by Fourier tranformation

δS =
∫ ddk

(2π)d
dωn

2π

{1
2
(Ṽ(k) +

k2

4mn0
)δnk,ωn δn−k,−ωn

+
n0k2

2m
θk,ωn θ−k,−ωn + ωnδnk,ωn θ−k,−ωn

}
.(210)

We can write this in a matrix form

δS =
∫ ddk

(2π)d
dωn

2π

1
2
(
δn θ

)
k,ωn

(
Ṽ(k) + k2

4mn0
ωn

−ωn
n0k2

m

)(
δn
θ

)
−k,−ωn

.

(211)

Now it is clear that the correlation functions of δn and θ are just given by the
inverse of this matrix. Since the excitations are related to poles of the correla-
tion functions, these occur when the determinant of this matrix vanishes, i.e.

(212)
(

Ṽ(k) +
k2

4mn0

)
n0k2

m
+ ω2

n = 0,

and using iωn → ω we see that excitations occur at

(213) ω =

√(
Ṽ(k) +

k2

4mn0

)
n0k2

m
.

This is kind of a nice formula. If we consider large momentum k � 4mn0Ṽ,
we obtain simply ω ∼ k2/(2m), the dispersion of a free boson. At small k,
however, Ṽ(k) ≈ Ṽ(0)� k2/(4mn0) and we have

(214) ω ∼ vk,

with v =
√

n0Ṽ(0)/m. Eq. (214) describes an acoustic, or sound-like mode,
with linear dispersion and obviously no excitation gap. The absence of an
excitation gap is a direct consequence of the degeneracy of the saddle point.
Because the action of a uniform phase is independent of this phase, the action
of a slowly varying gradient is very small, since locally it is approximately the
same as a constant phase, and the interactions are local (we assumed some
degree of locality when we declared at Ṽ(0) is finite – for example the Fourier
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transform of a Coulomb interaction diverges at small momentum like 1/k2 in
three dimensions). The sound mode corresponds to an excitation with such a
small gradient.

We can see this more explicitly by going back to Eq. (209), and making
approximations equivalent to the small k limit. At long wavelengths, we can
approximate V(x − x′) ≈ Ṽ(0)δ(d)(x − x′), and neglect the |∇δn|2 term, as
well as the total derivative term we neglected earlier. Then we have

(215) δS ≈
∫

ddx dτ

{
Ṽ(0)

2
(δn)2 + iδn ∂τθ +

n0

2m
|∇θ|2

}
.

Here we can see that a density fluctuation is penalized by a constant “mass”,
i.e. a quadratic term which does not vanish at small momenta and frequencies,
while the action for small gradients of θ is small. To this end, we can integrate
out δn:

(216) Z = Z0

∫
[dδn][dθ]e−δS[δn,θ] = Z̃0

∫
[dθ]e−Sθ [θ],

which is easy to do because it is just a Gaussian integral. We obtain then an
action for θ alone:

(217) Sθ =
∫

ddx dτ

[
1

2Ṽ(0)
(∂τθ)2 +

n0

2m
|∇θ|2

]
.

This is just the action of a free massless scalar boson. We obtained something
similar for the Ising model at its quantum critical point (with ϕ instead of θ),
but here we found this for an arbitrary parameter in the ordered phase. More-
over, in the Ising model, even at the QCP, there was a correction in the form
of a ϕ4 term, which is important because it lacks any gradient. No such term
is possible here, because of the U(1) symmetry in Eq. (205): the action must
be invariant under θ → θ + χ. Thus correction terms must involve powers of
space-time gradients of θ, rather than θ itself. This suppresses their effects at
low energy and in fact makes the predictions of the simple free action robust.

This means that the linear acoustic mode is a generic and universal feature
of the superfluid. It is an example of a Goldstone mode. Goldstone modes oc-
cur whenever continuous symmetries are spontaneously broken. In the boson
context, even though the global phase is not meaningful, the presence of the
Goldstone “sound” mode gives a physical significance to the U(1) symmetry
breaking.

We can also think about the sound mode as a quasiparticle of the super-
fluid. To relate to the spectrum, we can consider the Green’s function of θ.
This is mathematically identical to the Green’s function C0 of ϕ we obtained
in Sec. 5.5 for the Ising scalar field, except with m = 0. This indeed shows
that there is a mode with ω = v|k|, and moreover that this mode contributes
a delta-function to the spectral weight of the θ − θ correlator. Thus we can
indeed regard the sound mode as a branch of quasiparticles, and, in the cur-
rent approximation, these quasiparticles are infinitely sharp, i.e. they have a
delta-function spectral weight, just as the quasiparticles did in the Ising case.
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In general, the width of the peak representing a quasiparticle excitation in
a spectral function is related to the lifetime of the excitation. If it can decay,
then the peak will not be infinitely sharp, but have a width which is given by
the decay rate, i.e. the inverse lifetime. For the Ising quasiparticle, the lifetime
is truly infinite, because there are no lower-energy excitaitons into which to
decay. However, here, because the quasiparticle states extend down to zero
energy, decay is a priori possible. So we should not really expect an infinite
lifetime. How large a lifetime is long enough? Typically, we regard a quasi-
particle as well-defined if its width in energy is narrower than its mean en-
ergy. This means that it survives long enough before decaying for its quantum
wavefunction to undergo more than one phase oscillation. Lecture 12 (1.5h)

November 3rd, 2015

Lifetime of phonon

Let’s see if we can actually get the lifetime of the sound mode or phonon. To
do so, we will need to add a few terms to the minimal action, in order to allow
the mode to decay. Symmetry allows the following modifications, which have
the minimal number of powers of θ and derivatives:

(218) Sθ =
∫

ddx dτ

[
1
2
(∂τθ)2 +

1
2
|∇θ|2 + α

2
|∇2θ|2 + iλ∂τθ|∇θ|2

]
.

Here I rescaled coordinates so that the coefficients of the two leading terms
are just 1/2, which simplifies later calculations. The α term is still quadratic
in θ, and so can be included exactly. It modifies the zeroth order correlation
function to

(219) C0(k, ωn) =
1

ω2
n + ε2

k
,

with

(220) εk =
√

k2 + αk4 ≈ |k|+ α

2
|k|3.

The λ term is cubic in θ, and so can only be handled perturbatively. To get a
decay, we need to consider the self-energy. The leading diagram is O(λ2),

(221) Σ =

I guess I need to explain in more detail how to calculate these things. There
are certain “rules” for translating such diagrams into integrals directly in mo-
mentum space. I will not go into it for the moment, and just write down a
result

(222) Σ(k, ωn) ∝ λ2
∫

q,Ωn

[
ωn(q2 + 2k · q) + Ωn(k2 + 2k · q)

]2
(Ω2

n + ε2
q)((ωn + Ωn)2 + ε2

k+q)
.
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The two denominators are simply the Fourier transform of the two Green’s
functions represented by the lines. The numerator is a result of all the deriva-
tives in the λ term – you can at least count them and see that there are six
powers total of frequency and momentum, which corresponds to the two λ
terms that went into this diagram. We can do the Ωn integral by completing
the contour in the upper half plane, and evaluating the residue due to two
poles. This gives

(223)

Σ(k, ωn) ∝ λ2
∫
q

(k2 + 2k · q)2ε2
qεk+q + (q2 + 2k · q)2εk+qω2

n + εq[(k2 + 2k · q)2ε2
k+q + (k2 − q2)2ω2

n]

2εqεk+q(εq + εk+q − iωn)(εq + εk+q + iωn)

Now we can analytically continue and extract the imaginary part. If we con-
sider iωn → ω + iδ and ω > 0, we obtain a delta-function constraining ω =
εq + εk+q (another delta-function contributes only for negative frequency):

(224)

ImΣ(k, ω > 0) ∝ λ2
∫
q

[(q2 − k2)εq + (q2 + 2k · q)εk+q]
2

εqεk+q
δ(ω− εq − εk+q).

We can understand this physically as corresponding to the creation of two
quasiparticles which split the total momentum k into parts q and k + q. To
interpret the imaginary part, let us write the correlation function including it:

−ImD(k, ω) = Im

[
1

−ω2 + ε2
k + iΣ′

]

=
−Σ′

(ω2 − ε2
k)

2 + (Σ′)2
.(225)

To examine the peak, let ω = εk + δω, then for δω � εk, we obtain

(226) −ImD(k, ω) ≈ −Σ′

4ε2
k [(δω)2 + (Σ′/εk)2]

,

so we see that the inverse lifetime, or decay rate is

(227)
1
τ
=
|Σ′(k, ω = εk)|

εk
.

Therefore, evaluating Eq. (224) and dividing by the energy,

(228)
1
τ

∝
λ2

εk

∫
q

[(q2 − k2)εq + (q2 + 2k · q)εk+q]
2

εqεk+q
δ(εk − εq − εk+q).

Now the delta-function constraint is going to pick out some subspace of the
full q integration. We are interested in the small k limit, for which the αk3 term
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in Eq. (220) is a small perturbation. So let’s first consider what would happen if
we set α = 0 entirely. Then the constraint becomes |k| = |q|+ |k+ q|. Squaring
this out, we find that this is satisfied only when k · q = −kq, which requires
that q is antiparallel to k. This is kind of a singular limit: we would expect
generally that the single delta function would reduce the d-dimensional q
integration to a d − 1-dimensional one. But it seems that for α = 0 in three
dimensions it reduces the 3-dimensional integral to a one-dimensional one
(over the modulus q). In 1d it seems to reduce the integral from the full space
to a half-space. So in general we need to include α to get sensible results.

We will ignore d = 1 for now. In d > 1, for small k we expect that the
solution of the constraint will be given by wavevectors q which are close to
but not exactly antiparallel with k. Without loss of generality, take k = kẑ
and q = qzẑ + q⊥, with q⊥ · ẑ = 0. If we assume k � 1 and qz = O(k) and
|q⊥| � k, qz, we obtain, for qz < 0,

(229) εk − εq − εk+q ≈ −3αkqz(k + qz) +
kq2
⊥

2qz(k + qz)
.

For qz > 0 the quantity is always large and position, so the delta-function
cannot be satisfied. Define a dimensionless variable by letting qz = −kr. This
gives

(230) εk − εq − εk+q ≈ k3

[
3αr(1− r)−

q2
⊥

2k4r(1− r)

]

We see that the delta-function is satisfied when

(231) r(1− r) =

√
1

6α

q⊥
k2 .

Since the left-hand side is bounded above by 1/4 (when r = 1/2), we require

(232) q⊥ <

√
6αk2

4
,

which shows that we were indeed consistent assuming q⊥ � k, |qz|. Note that
we get a non-zero result only when α > 0, which is a recognized feature of
such problems (see Chernyshev+Zhitomirsky for much more than you really
want to know). To proceed, let us change variables to

(233) x = − qz

k

(
1 +

qz

k

)
= r(1− r), w =

q⊥√
6αk2

.

Making these substitutions in Eq. (228), and replacing εk → k, we obtain, up
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to a proportionality constant

1
τ
∼ λ2k2d−2α(d−1)/2

1/4∫
0

dx√
1− 4x

∞∫
0

dd−1w k4x δ[3αk3(x−w2/x)]

∼ λ2k2d−1α(d−3)/2.(234)

This means that the quasiparticle peak has a width in energy of order k3 or
k5 in two or three dimensions, respectively, which is much smaller than the
mean energy k. This is a typical behavior of a quasiparticle excitation in a
gapless system: the peak has an intrinsic width, but it narrows as the energy
is lowered toward zero, so that in this limit it becomes sharp compared to its
energy. At order one energy, there is a priori no reason for the quasiparticle to
be sharp, and it will not be, unless interactions are for some reason weak on
microscopic scales.

The one dimensional case is much more subtle and has actually been a
subject of recent research.

Persistent flow

The sound mode is an elementary excitation of the uniform state. But phase
gradients play another role: they can comprise non-trivial topological textures
in the superfluid. Indeed these textures are why the superfluid is “super”.
Now we consider time-independent configurations of θ, which describe dis-
tinct states of the system. One can understand this by considering the partition
function at “large” temperature, i.e. small β. When β is sufficiently small, then
gradients of θ as a function of imaginary time become too costly in action, and
the τ-independent configurations dominate. Hence

Z =
∫
[dθ(x, τ)]e

−
∫

ddx dτ
[

1
2Ṽ(0)

(∂τθ)2+
n0
2m |∇θ|2

]

≈
∫
[dθ(x)]e−β

∫
ddx n0

2m |∇θ|2 .(235)

This has the form of a classical partition function. We should expect that at
non-zero temperature, there is some “decoherence”, which reduces the system
to an effective classical one on long scales. We see that in this classical limit,
however, the phase itself survives as a new variable describing the superfluid.
We recognize from Eq. (235) the “free energy”

(236) F =
∫

ddx
n0

2m
|∇θ|2.

So we can think of equilibrium configurations of the superfluid as described
by different functions θ(x). The coefficient determining the energy of a phase
gradient, n0, is known as the superfluid density.

Now consider an annular container, i.e. a superfluid confined within two
concentric cylinders. The phase θ is defined within the superfluid. Now con-
sider a loop C that lies within the superfluid and encircles the inner cylinder
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C

Figure 4: Superfluid confined to an annulus. The circulation around the coun-
tour C is quantized.

clockwise, returning to its original point. This is a non-trivial loop insofar as
it cannot be smoothly deformed to a small loop or point without leaving the
space. The line integral of the phase gradient must be an integer multiple of
2π, since the phase itself is defined only modulo 2π:

(237)
1

2π

∮
C

∇θ · dx ∈ Z.

The integer defined by this integral is called the winding number. The differ-
ent winding number states are really distinct physical configurations of the
system. Due to the quantization of this line integral, a “trivial” configuration
in which the integral vanishes is disconnected from a non-trivial one it which
it is non-zero. This affords “topological” stability to the latter configurations.
Note that constant θ, i.e. zero phase gradient, minimizes the free energy in
Eq. (236), so configurations with non-zero winding number have higher en-
ergy than the ground state, and hence are only metastable. But they have
extremely long lifetime. This is because any smooth time evolution of the sys-
tem cannot change this winding number, since it is a topological invariant.
Instead, some non-smooth evolution is required – we will see how this works
later.

Now this is a bit abstract, but it is time to associate some physics to the
phase gradient. In fact, the phase gradient has a natural interpretation in terms
of the local superfluid velocity. To see this, consider a uniform phase gradient,
θ = k · x. This corresponds to a plane wave form of ψ, suggesting non-zero
momentum. More formally, we can write the boson number current operator,
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(238) J =
−i
2m

(
ψ†∇ψ −∇ψ† ψ

)
.

This satisfies the continuity equation for particle conservation

(239) ∂tn +∇ · J = 0.

Now inserting Eq. (206) in Eq. (238), we obtain

(240) J =
n
m
∇θ.

It is conventional to define J = nvs, with the superfluid velocity

(241) vs =
h̄
m
∇θ.

Here for fun I restored the h̄ (= 1) on the right hand side. Using Eq. (241), the
integer winding number in Eq. (237) can be rewritten

(242)

∮
vs · dx
h/m

∈ Z,

which expresses the quantization of circulation in units of h/m.

Vortices

Now we can understand that for an annular container, a persistent flow can
exist, and it is very difficult for it to decay because this decay must happen
somehow through abrupt steps, due to the quantization of circulation. But
what about an ordinary cylindrical container, like a bucket? There is a nice
experiment you can think of. Take the bucket in the normal state, i.e. at higher
temperature, and spin up the fluid so that it is flowing around the center. If
you wait it will gradually slow and stop. But suppose before that happens
you cool it quickly to low temperature, within the superfluid phase. Now the
circulation around any loop is supposed to be quantized. And if the fluid is
still flowing it obviously it is non-zero if you take a circle around the center of
the bucket. The thing is, that it also should be independent of the exact shape
of the loop, so you can smoothly shrink the loop until it is almost a point. For
such a small loop, the integral defining the circulation must vanish. Which
says that the fluid cannot be rotating!

Something is fishy. If we carry out the cooling carefully the total angular
momentum of the system remains conserved, so it must remain rotating. So
what’s the problem? Well, we have assumed that the superfluid phase θ is
defined everywhere, which is the case if |ψ| is non-zero everywhere. What
actually happens is that in the rotating fluid the superfluidity is destroyed in
some locations, i.e. |ψ| = 0 at some locations. These locations define defects
in the superfluid, and around these defects there can be circulation. In two
dimensions, such a defect is a point vortex, around which the phase θ winds
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by a multiple of 2π. In three dimensions, the defect is a curved vortex line, such
that the phase winds by a multiple of 2π on any curve encircling the defect.
A rotating superfluid in a bucket is supported by an array of vertical vortex
lines, whose net effect mimics rigid-body-like rotation of the superfluid.

Figure 5: Vortices form a lattice in a rotating superfluid.
Lecture 13 (1.5h)
November 5th, 2015

Lifetime of persistent flow

Once we understand vortices, we can appreciate the stability of persistent
flow in the annulus. Basically if a flow is set up with N quanta of circulation
in the annulus, it is as though we have a large “supervortex” of strength N,
or equivalently, N elementary vortices, inside the hole (central cylinder) of the
annulus. The circulation decays by these vortices escaping from the hole. That
is, a vortex line must be slowly exit the central cylinder, move through the
bulk of the superfluid, and then excape out the outer wall. After this process,
the circulation will be reduced by one quantum. The process is energetically
favorable: the reduction of circulation reduces the angular momentum of the
fluid, and hence its kinetic energy. However, there is an energy barrier which
must be overcome. This is basically because the core of a vortex costs energy:
the superfluid at the center of the vortex must be converted to normal fluid,
even though the equilibrium state is superfluid, which means that the normal
fluid is higher in energy. There is also a hydrodynamic contribution due to the
profile of velocity around the vortex.

So what is the energy of a vortex? Well we can use the free energy of
Eq. (236). Consider an ideal straight vortex line along the z axis. The phase θ
is constant as a function of z and winds proportionally to the angle φ in the
plane normal to z. The magnitude of the phase gradient is constant around a
circle of constant radius r (distance from the vortex core), and since it winds
by 2π around the circle, we have |∇θ| = 1/r. Then the free energy is

(243) Fvortex =

L∫
0

dz
R∫

a

2πrdr
h̄2n0

2m
1
r2 =

πh̄2n0L
m

ln(R/a).

Here we restored the needed factor h̄2, included a short-distance cutoff a rep-
resenting the radius of the core, and approximated the geometry of the system
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as a cylinder of height L and radius R around the vortex. Roughly we should
take L the depth of the annular container and R of order the width of the
channel. Putting in numbers for He, and approximating the logarithm by one,
we obtain

(244) FHe
vortex & 0.1K×

(
L

1Å

)
.

For even a not very deep container where L ∼ 1µm, this is already pro-
hibitively large compared to temperature, which must be below the superfluid
transition temperature of helium is 2.2K. This means that thermal activated es-
cape of vortices, which is proportional to the Arrhenius factor e−F/kBT , will be
extremely slow.

6.3 Superfluid wavefunctions

We’ve used the path integral formulation to discuss the phenomena of su-
perfluidity, the gapless Goldstone phonon mode, and other consequences of
the emergent macroscopic phase. Let’s now go back and understand some of
these things in the quantum formulation in terms of wavefunctions. We under-
stood the superfluid phase in the path integral by starting with a very simple
saddle point ψ(x, τ)→ ψ0 =

√
n0. What is the analog wavefunction? Remem-

bering that the path integral was constructed in the coherent state basis, this
corresponds to a product of coherent states at each site,

|ψ0〉 = ∏
x
|φ(x) = ψ0〉 = ∏

x
eψ0ψ†(x)|0〉

= e
∫

ddx ψ0ψ†(x)|0〉,(245)

where we have not normalized the state. It is instructive to carry out a change
of basis using Eq. (181) to momentum eigenstates. This gives

(246)
∫

ddx ψ†(x) =
√

Va†
k=0,

where V is the volume of the system. Then

(247) |ψ0〉 = e
√

Na†
0 |0〉,

where N = n0V is the number of bosons. We can also write this out in Fock
space

(248) |ψ0〉 =
∞

∑
n=0

Nn/2

n!

(
a†

0

)n
|0〉 =

∞

∑
n=0

√
Nn

n!
|n〉k=0,

where the kets are states with n bosons in the k = 0 state. Obviously this
is a state of uncertain boson number. For a closed system obviously we can
choose exact eigenstates to have definite boson number. We can ask how bad
the problem is – i.e. how peaks is the distribution of boson numbers? To do
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so, let us examine the weight using Stirling’s formula:

(249)

√
Nn

n!
= e1/2[n ln N−ln(n!)] ∼ e1/2[n ln N−n ln n+n],

which decays at large enough n since the n ln n term dominates, but grows
at small n. So it is peaked at some n, which by differentiation we find is just
n = N. Expanding around this we obtain, near the peak,

(250)

√
Nn

n!
∼ e

N
2 −

(n−N)2
4N ,

which indicates that the number fluctuations are of order
√

N, and so large,
but still small compared to N itself. If we take just the largest component,
or equivalently project onto the component with exactly N particles, we have
simply

(251) PN |ψ0〉 ∝
(

a†
0

)N
|0〉.

This is just the ground state of non-interacting bosons, i.e. a Bose-Einstein
Condensate (BEC). It is about as featureless as you could imagine. Indeed,
one can ask about the first-quantized wavefunction of the BEC. It is

Ψ(x1, · · · , xN) = 〈x1 · · · xN |ψ0〉
= 〈0|ψ(x1) · · ·ψ(xN)|ψ0〉 = Const.(252)

Can’t be more simple than that! It means there are absolutely no correlations
between the positions of particles. This is an expression of the uncertainty
principle: the momentum of the bosons is completely certain, so their conju-
gate positions must be completely uncertain.

Actually the non-interacting limit is so simple that it is a little pathological.
It does not have a linearly dispersing Goldstone mode, and the chemical po-
tential exactly vanishes. Basically there is an infinite compressibility, i.e. there
is no energy cost to add particles. If you look at Eq. (213) where we described
the sounds mode, you see that it becomes quadratic in the limit V(k) → 0,
which is the non-interacting one. So we can expect that the BEC wavefunction
is a little bit off from a generic superfluid one.

Obviously we need to build in some correlations between the boson posi-
tions to correct Eq. (252). To get an idea of how to do this, we can go back
to our path integral theory and take a look at the fluctuations of the boson
density. We can from Eq. (215), and since we are interested in the density, in-
steading of proceeding to Eq. (217) by integrating out δn, we do the opposite
and integrate out θ. We obtain

(253) Z ∝
∫
[dδn]e−Sn ,
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with

(254) Sn =
∫ ddk

(2π)d
dωn

2π

1
2

[
Ṽ(0) +

m
n0

ω2
n

k2

]
δnk,ωn δn−k,−ωn .

This means that the density-density correlations have the form

(255) 〈δnk,ωn δnk′ ,ω′n〉 =
(2π)d+1δ(d)(k + k′)δ(ωn + ω′n)

Ṽ(0) + m
n0

ω2
n

k2

.

Now suppose we measure the correlations of the density in the ground state
|ψ〉. This gives the equal time correlations:

(256) 〈ψ|δnkδnk′ |ψ〉 = 〈δnk(τ)δnk′(τ)〉,

where δn(x) = ψ†(x)ψ(x) − n0 and δnk is its Fourier transform. The equal
time correlation function is the Fourier transform of the frequency domain
one, hence

〈ψ|δnkδnk′ |ψ〉 =
∫ dωn

2π

(2π)dδ(d)(k + k′)

Ṽ(0) + m
n0

ω2
n

k2

=

√
n0k2

4mṼ(0)
(2π)dδ(d)(k + k′)(257)

Note this has a non-analytic dependence upon k – it is proportional to |k|.
Fourier transforming to real space implies that there is a power-law depen-
dence,

(258) 〈ψ|δnxδnx′ |ψ〉 ∼
1

|x− x′|d+1 ,

at large separations. This is of course very different from the BEC wavefunc-
tion. To remedy it, we can multiply the BEC wavefunction by what is called a
“Jastro factor” to create the desired correlations:

(259) |ψ〉FB = exp
[
−1

4

∫
ddxddx′v(x− x′)δnxδnx′

]
|ψ0〉.

Alternatively we can write in first quantized form

(260) Ψ(x1, · · · , xN) ∝ exp

[
−1

2 ∑
i<j

v(xi − xj)

]
.

Honestly I do not know the exact history but this type of wavefunction is
associated with Feynmann and Bijl. We are to adjust v(x) to get the desired
density-density correlations to match Eqs. (257,258). This is pretty easy since
actually |ψ0〉 is totally uniform. It means that the expectation value of density
operators is just a classical gas, with an effective Boltzmann weight which is
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that of a gas with interaction potential v(x− x′). Since the weight is quadratic
in δn, this is just a Gaussian integral, and so it can be done easily. This implies
that the density-density correlation function is just

(261) 〈ψ|δnkδnk′ |ψ〉 =
(2π)dδ(d)(k + k′)

ṽ(k)
.

Then by comparison to Eq. (257) we have ṽ(k) =
√

4mṼ(0)
n0k2 , and hence

(262) ṽ(x) ∼

√
4mṼ(0)

n0

1
|x|d−1 .

We have established that a power-law form of the Jastrow factor is necessary
to reproduce the density correlations of the superfluid. This shows explicitly
that the superfluid state is not quite product-like.

Entanglement entropy

This will also relate to our earlier discussion of entanglement and ground
states of quantum systems. We argued in Sec. 3 that for gapped systems, the
ground state has the form of a product-like state, and conversely, product-
like states imply the existence of a gap. This means that the ground state of
a superfluid is somewhat different from a product state. We can expect it has
some “extra” entanglement that a gapped phase does not have.

To get an idea of this, let us calculate the entanglement entropy for the BEC
state. This is not the same as for the true superfluid state, but it gives an idea,
and it is a bit of an easier exercise. We use the fixed particle number state of
Eq. (251):

(263) |ψ〉 = 1√
N!

(
a†

0

)N
|0〉.

Now we can consider the partition of space into a region A with volume VA
and the rest, called B, with volume VB = V − VA. Let’s define y = VA/V
the volume fraction, 0 < y < 1. Then we can define two new operators,
aA = 1/

√
VA
∫

A ddxψ(x) and aB = 1/
√

VB
∫

B ddxψ(x). Then a0 =
√

yaA +√
1− yaB. So

(264) |ψ〉 = 1√
N!

(√
ya†

A +
√

1− ya†
B

)N
|0〉.
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Expanding this out, we obtain

|ψ〉 =
1√
N!

N

∑
n=0

(
N
n

)
yn/2(1− y)(N−n)/2

(
a†

A

)n (
a†

B

)N−n
|0〉

=
1√
N!

N

∑
n=0

(
N
n

)√
n!
√
(N − n)! yn/2(1− y)(N−n)/2|n〉A ⊗ |N − n〉B

=
N

∑
n=0

√(
N
n

)
yn/2(1− y)(N−n)/2|n〉A ⊗ |N − n〉B

≡
N

∑
n=0

cn|n〉A ⊗ |N − n〉B,(265)

with

(266) pn = c2
n =

(
N
n

)
yn(1− y)N−n.

Eq. (265) is just a Schmidt decomposition with the probabilities pn. Hence we
can obtain the entanglement entropy by just calculating S = −∑n pn ln pn.
Physically, this is just a classical expectation value, S = −〈ln pn〉, with respect
to the probability measure pn. Now let us consider the large volume limit, i.e.
both VA and V large but y fixed, and likewise fixed density N/V, and hence
the fraction of particles in region A, x = n/N becomes almost equal to the
volume fraction y, so x is also fixed. We write n = xN. Then

(267)

pn → p(x) =
(

N
xN

)
yNx(1− y)N(1−x) → 1√

2πNy(1− y)
exp

[
−N

(x− y)2

2y(1− y)

]
,

where we used the leading approximation to the binomial distribution for
large numbers, which is of course Gaussian. This says that x is sharply peaked
around y with a variance 〈(x− y)2〉 = y(1− y)/N. Now we have

S = −〈ln pn〉 → ln
√

2πNy(1− y) + N
〈

N
(x− y)2

2y(1− y)

〉
= 1 +

1
2

ln(2πn0VA(1−VA/V)))(268)

∼ d
2

ln(n0LA) + const.,(269)

where the last line holds for a region of linear size LA embedded in a much
larger region (VA/V → 0).

We observe two things. First, there is no area law term, which would be
proportional to Ld−1

A . This is missing due to the triviality of the BEC state. We
should expect that even including interactions perturbatively we would re-
cover an area law contribution. More importantly, the correction to the (zero)
area law term is non-analytic and logarithmic in length LA. In general, any con-
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tribution to the entanglement entropy which is neither of area law form nor
exponentially suppressed in size (i.e. decaying faster than any power law) in-
dicates a non-product-like state. The additive logarithmic contribution above
is such an example. It arises, clearly, due to relatively large number fluctua-
tions in the BEC.

This result is very close to but not identical to that of the superfluid. In the
latter, there is also an additive logarithmic term in the entanglement entropy,
but with a different coefficient: (d− 1)/2 instead of d/2 (see arXiv:1112.5166v2,
where this is obtained with a lot more work than for the BEC). The coefficient
is a little smaller than in the BEC, which makes sense since the number fluc-
tuations are suppressed somewhat by interactions. Lecture 14 (1.5h)

November 10th, 2015

Anderson tower of states

So far we’ve skirted around an issue: how does the superfluid manage to
break the U(1) particle conservation symmetry anyway? We know that for
any finite closed system, the number of bosons must be conserved. So clearly
the ground state must be a particle number eigenstate. This implies that under
the U(1) symmetry, the state transforms at most by a phase. This property in
turn implies that any observable which is not particle number conserving
must have a zero expectation value. Thus 〈GS|ψ|GS〉 is certainly zero. How
are these features compatible with broken symmetry in the thermodynamic
(infinite volume) limit?

The way it works is that, for very large but not infinite systems, levels
with almost the same particle number become almost degenerate. In the infinite
volume limit, the separation of these levels becomes negligibly small, and we
can form superpositions of finite volume eigenstates with indefinite particle
number. These states correspond to the symmetry broken ones. Let’s look
at this in detail. Consider the action of Eq. (215). We can “undo” the path
integral construction to write the Hamiltonian this represents. To do so, we
recognize the term iδn∂τθ as the “Berry phase” term arising from the overlap
of momentum and coordinate-like basis states. It implies that as operators δn
and θ are conjugate variables,

(270)
[
δn(x), θ(x′)

]
= iδ(x− x′).

The rest of the action gives the time integral of the Hamiltonian,

(271) H =
∫

ddx
[

Ṽ(0)
2

(δn)2 +
n0

2m
|∇θ|2

]
.

Now we can make the following canonical transformation (assuming periodic
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boundary conditions in finite volume)

δn(x) = ∑
k 6=0

√
ωk

2VṼ(0)

[
a†

keik·x + ake−ik·x
]
+

δN
V

,(272)

θ(x) = −i ∑
k 6=0

√
Ṽ(0)
2Vωk

[
a†

keik·x − ake−ik·x
]
+ Θ,(273)

where V is the system volume, and ak and a†
k are ladder operators,

(274) [ak, a†
k′ ] = δk,k′ ,

and δN is an integer-valued operator,

(275) δN =
∫

ddx δn(x),

which just counts the total number of bosons in the system. It is conjugate to
the zero mode operator Θ, i.e.

(276) [δN, Θ] = i.

Also ωk = v|k| is the phonon energy. Plugging this into the Hamiltonian, we
obtain

(277) H =
Ṽ(0)
2V

(δN)2 + ∑
k 6=0

ωk

(
a†

kak +
1
2

)
.

We see that the spectrum consists not only of the phonon modes, which begin
at an excitation energy 2πv/L arising from the smallest quantized momentum
|k| = 2π/L, but also a set of “zero mode” states due to non-zero integer
values of δN, which begin at an energy Ṽ(0)/V = Ṽ(0)/Ld. We see that
the zero mode states have much lower energy than the phonons for large L.
This shows the very near degeneracy of states with different particle number,
which go together to produce the symmetry broken states. One often makes
a plot of the energy levels, with δN as the x axis, and energy on the y axis.
Then the lowest levels lie on a rather flat parabola with very small curvature,
and for each x value, there is a column of higher energy levels corresponding
to the excitation of the phonon modes. The collection of levels is called the
“Anderson tower” of states.

Off-diagonal long range order etc.

From the above discussion, we can see that it is the “zero mode”, Θ, with
k = 0 which restores the quantization of total boson number in a finite sys-
tem. We can ask, for a large but finite system, how do we characterize then the
broken symmetry? One way is to observe the behavior of the Anderson tower
of states. But we can also try to look more directly for the symmetry breaking.
In a finite system with definite number, we cannot ever get a non-zero expec-
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tation value of the boson field, i.e. clearly 〈ψ(x)〉 = 〈ψ†(x)〉 = 0. What is the
alternative? The answer is to look at the two-point correlation function,

(278) G(x− x′) = 〈ψ(x′)ψ†(x)〉.

This can be considered the two-particle density matrix. It is also the equal-
time boson Green’s function. Since the product of the two operators conserves
the total number of bosons in the system, it is non-zero. We can ask about
the long-distance behavior of this function. The idea is that when x and x′ are
far apart (further than some correlation length), the two points are basically
independent, and we define this to give the product of two expectation values:

(279) lim
|x−x′ |→∞

G(x− x′) ≡ |〈ψ〉|2.

Of course for a finite system we cannot take the infinite separation limit, but
we are ok so long as the system size is large compare to some relevant correla-
tion length ξ, i.e. we want ξ � |x− x′| � L. If we like we can take successive
limits, with first L→ ∞ and then |x− x′| → ∞.

If the limit in Eq. (279) is non-zero, we say that there is Off-Diagonal Long
Range Order (ODLRO). It is “off diagonal” because G so defined gives the
off-diagonal term in the density matrix. The term long range order should
be self-explanatory. It means that the correlations between ψ(x′) and ψ†(x)
persist when the points are infinitely far apart – hence “long range”.

How does this connect to the discussion of the Anderson tower? Well, we
saw that for a large but finite system the number quantization involved only
the zero mode θ(k = 0) and the conjugate N variable. This represents quan-
tum fluctuations of the phase which are constant in space. Such fluctuations
drop out completely from G(x− x′), so we can see that ODLRO is perfectly
consistent with the Anderson tower.

Note that we actually could apply the same type of thinking, of symmetry
breaking as a long-distance limit of a correlation function, to the Ising model.
Everything is analogous. Due to the Ising symmetry, in a finite system we
must have 〈σz

i 〉 = 0. However, we can define the magnetization by the limit,

(280) lim
|i−j|→∞

〈σz
i σz

j 〉 ≡ m2.

When this is non-zero we say there is Long Range Order (LRO) in the Ising
model. We saw in Sec. 2 and subsequent discussions that the quantum Ising
model has LRO in one dimension and higher. Obviously in zero dimensions,
i.e. for a finite system, there is no real symmetry breaking in this case. At
non-zero temperature, the Ising model has symmetry breaking only in d ≥ 2
(I think I did not actually discuss this yet, but I will do so in the next Section).
So we can see the trend that in lower dimensions, spontaneous symmetry
breaking is less stable.

Spontaneous breaking of continuous symmetry, like in the bose fluid, is
less stable than the discrete symmetry breaking of the Ising model. The reason
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6. Bosons, superfluidity, etc.

is that fluctuations are possible into states of arbitrarily low energy, since there
is no gap in the superfluid phase, in contrast to the Ising model, where there
is a gap everywhere except at the QCP. This is true whenever a continuous
symmetry is spontaneously broken, because there is a Goldstone mode. We
can expect these fluctuation effects are stronger in lower dimensions. So we
can ask, how low in dimension can we go and still spontaneously break the
U(1) symmetry? In the language of this section, in how low a dimension does
ODLRO persist?

We can address this by just calculating G(x). The answer, as in the quan-
tum Ising model, depends on whether we are at zero or non-zero temperature.
To do the calculation, we go back to the number-phase representation, and let
ψ(x) =

√
n0eiθ(x), keeping fluctuations of θ but not of n, following the logic

that led to the phase action, Eq. (217). Then we have

(281) G(x) = n0

〈
ei(θ(x)−θ(0))

〉
.

We should evaluate this expectation value using the quadratic action Sθ in
Eq. (217). A basic rule, which follows from the formulae we already derived
for Gaussian integrals, e.g. Eq. (140), is that, if O is a linear function of the
fields, then

(282)
〈

eO
〉
= exp

[
〈O〉+ 1

2

(
〈O2〉 − 〈O〉2

)]
.

Applying this here, we obtain

(283) G(x) = n0 exp
[
−1

2

〈
(θ(x)− θ(0))2

〉]
.

Using the Matsurbara method, we obtain

(284)
1
2

〈
(θ(x)− θ(0))2

〉
=

1
β ∑

ωn

∫ ddk
(2π)d

1− cos k · x
ω2

n
Ṽ(0) +

n0k2

m

.

Now we can consider zero and non-zero temperature. At T = 0, the sum over
frequencies is converted to an integral, which is easily done, to obtain

(285)
1
2

〈
(θ(x)− θ(0))2

〉
T=0

=

√
mṼ(0)

4n0

Λ∫
0

ddk
(2π)d

1− cos k · x
|k| .

It is always good to check that you get a finite integral after doing such a
calculation! The integral should be cut off at large k by some microscopic
scale Λ ∼ 1/a0, related to the distance between bosons etc. At small k the
integral is generally well-behaved because the cosine factor goes to unity for
small k. So for fixed x, everything is fine. We are interested in large x, to see
if there is ODLRO. At large x, the cosine term oscillates rapidly and will be
negligible except at very small k. Since this is a small region of the integration
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6.3. Superfluid wavefunctions

domain, we can try the naive limit |x| → ∞ by just dropping the cosine. By
power counting, we can see that the integral remains finite provided d > 1.
This means that this correlation function has a finite limit, and hence G(x)
remains non-zero at infinite distance. So ODLRO persists at T = 0 for d > 1.

For d = 1, there is a problem. The naı̈ve limit of dropping the cosine does
not work! If we do it, we obtain a logarithmically divergent integral. In fact,
in one dimension, we have

(286)
Λ∫
−Λ

dk
2π

1− cos kx
|k| ∼ 1

π
ln(Λ|x|), for Λ|x| � 1.

This implies that the boson Green’s function decays to zero at infinity, but it
does so as a power law:

(287) G(x) ∼ 1
(Λ|x|)η ,

with η =

√
mṼ(0)
4π2n0

. This power law behavior is known as (Off-Diagonal) Quasi-

Long Range Order, or ODQLRO. It is intermediate between what would be ex-
pected in a truly disordered phase, such as in a bose gas at high temperature,
where G(x) decays exponentially at long distance, and the case of ODLRO,
where it decays only to a finite value. This behavior indicates that one dimen-
sion is a special dimension for zero temperature superfluids, what is known
as the (zero temperature) lower critical dimension, which separates true LRO
from the complete absence of symmetry breaking in lower dimensions.

Now consider T > 0. Then the sum in Eq. (284) remains discrete. We
should analyze the long-distance behavior of this expression. Similarly to be-
fore, at large x the cosine oscillates rapidly and we can naı̈vely neglect it.
Then the integrand is singular only for one term in the sum, ωn = 0. So we
expect that the long-distance properties are dominated by this zero Matsubara
frequency mode, and write

(288)
1
2

〈
(θ(x)− θ(0))2

〉
∼|Λx|�1

kBTm
n0

Λ∫
0

ddk
(2π)d

1− cos k · x
k2 .

The divergence at k = 0 is worse now than at T = 0. We see that the integral
grows logarithmically with |x| in d = 2 instead of d = 1:

(289)
1
2

〈
(θ(x)− θ(0))2

〉
T>0,d=2

∼ kBTm
2πn0

ln(Λ|x|),

leading to ODQLRO in d = 2 at T > 0 (i.e. the same behavior as Eq. (287), but
with

(290) η2d(T) =
kBTm
2πn0

.
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7. Domain walls, the 1+1d Ising model, and duality

In one dimension at T > 0 the correlation function in Eq. (288) grows linearly
with |x|, and so G(x) decays exponentially. There is no superfluidity in any
sense in one dimension at non-zero temperature.

The behavior of the boson Green’s function is nice theoretically, but it is a
bit formal. It does not tell us whether there is superfluidity in 1d at T = 0 or in
2d at T > 0 in the sense of superflow, e.g. persistent currents, zero viscosity,
etc. This is a subtle question and the answer is, not really, but the behavior
may be almost superfluid like, depending upon what exactly you measure. To
explain further is beyond the level of discussion I’d like to give here in this
class.Lecture 15 (1.5h)

November 12th, 2015

7 Domain walls, the 1+1d Ising model, and duality

So far we have discussed the quantum Ising model and the bose gas, and
looked at their ground state and elementary excitations. We were able to show
in both cases that, away from any phase transition, the low energy excitations
are quasiparticle like. This means they behave like particles, for example one
can form a wave packet out of them, and one can assign a definite energy-
momentum relation to them. In the Ising model’s disordered phase, the quasi-
particle is a spin flip relative to the field, while in its ordered phase, at least
in d > 1 it is a spin flip relative to the ferromagnetic background. Both of
these are not only quasiparticle-like but also local, insofar as a single excita-
tion can be created by a local operator, i.e. a single σz

i or σx
i operator in these

two cases. In the superfluid, the phonon is also local, which we know because
the density-density correlation function contains a delta-function peak, which
implies that a single phonon can be create by the density operator. So in all
cases we have local quasiparticle excitations.

This is not necessarily the case in all phases of matter, even in gapped ones.
Indeed we already had a hint of this in Sec. 2.1, where we saw that in a one-
dimensional Ising model in its ordered phase, the minimum energy excitation
is actually a domain wall or soliton. It is (as we will see) a quasiparticle, and
in most respects behaves just the other quasiparticles we discussed, except
for one important difference. It is not local. This means that there is no local
operator which can create a single domain wall. This is simply because an
infinite number of spins must be flipped to create a single domain wall, and
so the operator which does it must be (semi)-infinite.

7.1 Ising duality

Actually we can make this all very explicit through what is called a duality
transformation. We begin with the 1d quantum Ising Hamiltonian,

(291) H = ∑
i

[
−Jσz

i σz
i+1 − hσx

i
]

.

Let us try to change variables from the σ basis which describes the spins
to ones which describe domain walls. A complete basis of states is the set of
eigenstates of σz

i for all i. Each element of the basis is specified by a string of N
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7.1. Ising duality

bits, with N sites, with each bit given by state of σz
i . Now for each such string,

i.e. classical arrangement of Ising spins, we can determine whether each bond,
connecting neighboring spins, is satisfied or not. If it is satisfied, i.e. the two
spins are parallel, we say there is no domain wall there. If it is not, i.e. the two
spins are anti-parallel, we say there is a domain wall there. Mathematically,
we can assign a “dual” spin τx

i+ 1
2
= ±1 to each bond according to

(292) τx
i+ 1

2
= σz

i σz
i+1,

where τx = +1 if there is no domain wall, and τx = −1 is there is a domain
wall. Let’s assume for the moment periodic boundary conditions. Then given
σz

i values we uniquely determine the τx
a values. The converse is almost true.

Suppose we are given a set of τx
a values for all bonds. Then we can assign the

first spin σz
1 arbitrarily, and then by knowing τx

1/2 we obtain from Eq. (292)
σz

2 , and by induction, the remaining spins. But with periodic boundary condi-
tions, we must get back to the same original spin. This means there must be a
constraint,

(293) ∏
a

τx
a =

N

∏
i=1

τx
i+ 1

2
= 1.

This just means physically that in a periodic system, there is always an even
number of domain walls: each domain has two ends. If this constraint is satis-
fied, then there are two linearly independent physical spin states for each set
of τx

a variables.

To fix this, we can take advantage of the symmetry of the problem. The
Ising symmetry means that H commutes with the generator of the symmetry,

(294) U = ∏
i

σx
i = ±1.

So we can work with states of fixed eigenvalue of U = ±1. This choice of U
is the additional quantum number we need to make the set of domain wall
variables complete. In other words we can trade

(295) {σz
i } ↔ {U, τx

a },

with the constraint of Eq. (293). It is interesting to note the similarity of
Eq. (293) to Eq. (294). The difference is that only one sign, the positive one, of
the product over τx

a is physical, while both signs of the product over σx
i are

physical.

Now let us look at the conjugate variables. The operator σx
i flips the ith

spin, which therefore creates or annihilates domain walls on two bonds which
share site i. Thus we expect that

(296) σx
i = µiτ

z
i− 1

2
τz

i+ 1
2
,
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7. Domain walls, the 1+1d Ising model, and duality

where µi = ±1 is a c-number, not an operator. Independent of the choice
of µi, this achieves the desired sign flip since τz

a anticommutes with τx
a . The

parameters µi are almost arbitrary and just represent a convention. There is a
constraint, however, when we recognize that we work in a subspace of fixed
U. By explicitly multiplying, we have

(297) U = ∏
i

µi,

so we must choose the µi to obtain the desired value (±1) of U. For the even
parity sector, U = +1, we can take simply µi = 1. For the odd parity sector,
U = −1, we can choose for example µ1 = −1 and µi = +1 for i > 1.

One can check that Eq. (296) and Eq. (292) are consistent. That is, if we as-
sume that σz

i and σx
i anticommute on the same site and commute on different

ones, then the same holds for τz
a and τx

z . It is almost obvious due to the sym-
metry of these two equations. You might be dis-satisfied with Eq. (296), since
it expresses σx

i in terms of τz
a and not the other way around. What is a for-

mula for τz
a in terms of σx

i ? Well, strictly speaking there is none! The reason is
that the physical space obeys the constraint of Eq. (293). Only operators which
preserve this constraint are physical. A single τz

a operator anticommutes with
∏a τx

a and so violates the contraint: there is no way to create a single domain
wall. Instead, a pair of domain walls can be created, and there is a good for-
mula for this:

(298) τz
a τz

b = ∏
Min(a,b)<i<Max(a,b)

µiσ
x
i .

If we are a little bit cavalier – not very by physicists’ standards – we can
imagine “pushing” one domain wall off to −∞ and writing a formula for a
single domain wall operator in an infinite system,

(299) τz
a ” = ” ∏

i<a
µiσ

x
i .

This formula is correct in the sense that if we apply it to any product of an
even number of τz

a operators it gives the right answer. It is rather physical: to
create a single domain wall we need to flip a semi-infinite string of spins to
the left of the wall. The nice thing about Eq. (299) is that it makes it explicit
that τz

a is a non-local operator.

We expect the ground state will be in the even parity sector. So let’s assume
U = +1 and proceed – this only captures half the states. Then we can take
µi = +1 and simplify the calculations. It is straightforward to use Eq. (292)
and Eq. (296) to rewrite the Hamiltonian, H± = P±HP±, with P± = (1±U)/2
the projection operator onto the U = ±1 sector. We obtain

(300) H+ = ∑
a

[
−Jτx

a − hτz
a τz

a+1
]

.

Remarkably, this has an identical form to H written in terms of the original
spins, but with h ↔ J. We say that the transformation from σ to τ variables
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7.2. Two-soliton continuum

is a duality transformation, and the one dimensional quantum Ising model is
self-dual.

The duality implies that if the model with parameters (J, h) is critical, then
so is the model with parameters (h, J). Now from Sec. 2.2 we expect that there
is single quantum critical point. If this is the case, then we can determine
its location exactly: the only possible unique point is h = J. So we conclude
that hc = J for the 1d quantum Ising model! Recall that in MFT we found
hc = 2dJ = 2J in one dimension. So we see that the mean field result is off by
a factor of two. It makes sense that the true hc is smaller than the mean field
one, since MFT underestimates fluctuations.

7.2 Two-soliton continuum

What else can we do with the duality? Well, because it interchanges h and J,
it interchanges the ferromagnetic and paramagnetic phases. That is, the phys-
ical ferromagnetic phase in which 〈σz

i 〉 6= 0 corresponds to the apparently
paramagnetic phase of the dual theory, where 〈τz

a 〉 = 0.5 This means that to
study the domain wall excitations of the original Ising model, which exist in
the FM phase, we can study the paramagnetic phase of the dual Hamiltonian,
Eq. (300). This is a slight simplification since deep in the FM limit, h � J,
the dual Hamiltonian in Eq. (300) is to leading order just a decoupled sum
over “fields” τx

a on individual dual sites. A single domain wall of the origi-
nal model corresponds in the h = 0 limit to a configuration with τx

b = +1
everywhere except for a single site with τx

a = −1, where the domain wall re-
sides. This is mathematically identical to the single spin-flip excitation of the
original problem.

Now we can use the duality mapping to investigate the spin-spin corre-
lation function, to look to see what happens to the quasiparticle peak in the
FM phase. Recall that in the PM phase, we calculated the spin-spin corre-
lation function using field theory methods in Sec. 5.5. As a consequence of
local spin-flip quasiparticles, the corresponding spectral function has a delta-
function pole, c.f. Fig. 3. Now let us consider the spin-spin correlation function
in the PM phase. Specifically, consider the σx correlation function,

(301) C(x, t) = 〈σx
i+x(t)σ

x
i (0)〉,

and the corresponding spectral function obtained by Fourier transformation
(we use real-time dynamics here just to keep it simple). According to the
duality transformation, we have

(302) C(x, t) = 〈τz
i+x+ 1

2
(t)τz

i+x− 1
2
(t)τz

i+ 1
2
(0)τz

i− 1
2
(0)〉.

This formula is correct and involves no µi factors at zero temperature because
the ground state has U = +1 and also σx

i commutes with U and so the inter-
mediate states are also in this sector. If we imagine inserting a complete set
of intermediate states, we see that contributions occur from states which have

5Strictly speaking, we should use correlation functions instead of expectation values, to avoid
using a single unphysical τz

a operator.
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7. Domain walls, the 1+1d Ising model, and duality

overlap with two dual “spin flips” acting on the ground state.

−π 0 π

4J − 4h

4J

4J + 4h

k

ω

Figure 6: Domain of spectral weight from two-soliton excitations

Let us evaluate this a little schematically. In the dual Hamiltonian, the
small h limit corresponds to the small exchange one, and we obtained the
wavefunction and energy of a single dual spin flip excitation in Eq. (10) and
Eq. (11). In the current notation, specializing to d = 1, we have:

(303) |k〉 ∝ ∑
a

eikxa τz
a |0〉,

which has an energy, using the duality dictionary, of ε(k) = 2J − 2h cos k.
Now we expect that the Fourier transform C(k, ω) obtains contributions from
states with two dual spin flips, with total momentum k and total energy ω.
The weight of each such contribution is the square of a matrix element, |M| ∼
|〈k1k2|τi+ 1

2
τi− 1

2
|0〉|2, which is something like the probability to find the two

particles one site apart. Let us assume this is momentum independent. Then
we will have, approximately

S(k, ω) ∼
∫

dq δ(ω− ε(q)− ε(k− q)),

∼
∫

dq δ(ω− 4J − 4h cos(k/2) cos(q)),

∼
Θ[4h| cos k

2 | − |ω− 4J|]√
(4h cos k

2 )
2 − (ω− 4J)2

.(304)

We see that there is a continuum of weight for 4J − |4h cos k
2 | < ω < 4J +

|4h cos k
2 |. There is no quasiparticle pole in sight! This is a sign of non-local

quasiparticles. Because the elementary domain walls are non-local, they can-
not be created singly by any local operator, so a dominant continuum should
be expected in any correlation function, not only that of the σx

i operator, which
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7.2. Two-soliton continuum

we studied here.
We won’t do it now, but I should point out that the one dimension quan-

tum Ising model is actually exactly soluble by what is called a Jordan-Wigner
transformation, which is a non-local change of variables which converts the
problem to a free fermion chain. Using this method one can calculate the
ground state energy and σx

i correlation functions exactly. In that way one can
obtain the two-soliton continuum without any approximations, and confirm
the above result. We might return to this solution when we talk about intrinsic
topological order. Lecture 16 (1.h)

November 17th, 2015

Confinement

It is interesting to ask what happens in the presence of a small applied longi-
tudinal field, by adding to the Hamiltonian the term

(305) H′ = −∑
i

h‖σ
z
i .

We suppose h‖ � J, h, so it is really a weak perturbation. Yet it is important
because it explicitly breaks the Ising symmetry. Consequently, it splits the
degeneracy of the two ferromagnetic ground states, even at the classical level.
The energy difference between the two states is a small number, 2h‖ per site.
The total energy difference between the two ground states is 2h‖N, which
becomes arbitrarily large for a large system. So the “wrong” ground state is
pushed up to infinite energy in the thermodynamic limit.

What about the excitations? Well, because of the field, the classical energy
of a domain wall is no longer independent of its length. So an isolated domain
wall in an infinite system also has infinite energy. This means that completely
non-local excitations are no longer possible: the solitons are confined. Let us
look at how this works in a little more detail.

Start by thinking classically, i.e. h = 0, and we have a single domain of
length `. It has an energy cost of 4J for the two endpoints plus a contribution
of 2h‖` from the domain. So there is a linear “confining potential” between
the two domain walls. The lowest energy configuration is just when ` = 1, i.e.
a single flipped spin (` = 0 is just the ground state). Now when h > 0, this is
not quite correct, because the walls have kinetic energy, and so their zero point
energy competes with the confining potential. It is possible to write down a
lattice Schrödinger equation for the two domain wall states, just by project-
ing the full Hamiltonian into the manifold of these states. But we will do
something simpler. Let’s assume h‖ � h, so that the kinetic energy actually
dominates. Then the solitons are “almost” free, although when they get really
far apart they will eventually feel the confining potential. Let us focus on the
lowest energy two soliton states, with energy close to 4J − 4h. This originates
from two domain walls whose momenta are both close to k = 0. So we can ex-
pand the dispersion relation around k = 0 and approximate it by an effective
mass. The energy of two domain walls with momenta k1 and k2 is then

(306) ε(k1, k2) ≈ 4J − 4h +
k2

1
2m

+
k2

2
2m

,
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k

ω

Figure 7: Breakup of bottom of the two-soliton continuum into magnon-like
bound states.

with m = 1/(2h). Now we can write a continuum Schrödinger equation in-
cluding the effect of the parallel field:

(307)

[
4J − 4h− 1

2m
∂2

∂x2
1
− 1

2m
∂2

∂x2
2
+ h‖|x1 − x2|

]
ψ(x1, x2) = εψ(x1, x2).

In terms of the relative wavefunction, we have ψ(x1, x2) = eik(x1+x2)/2ψ(x1 −
x2), with

(308)
[
− 1

2m∗
∂2

∂x2 + h‖|x|
]

ψ(x) = ∆εψ(x),

where m∗ = m/2 is the reduced mass, and ∆ε = ε− (4J − 4h + k2

4m ). We note
that we should restrict to x > 0, because since the FM ground state is definite
(all spins up), the domain wall which flips up to down with increasing x must
always be to the left of the one which flips down to up with increasing x. So
we have ψ(x ≤ 0) = 0, and this is the Schrödinger equation for a particle in
a linear (triangular) potential well and a hard wall, whose solutions are Airy
functions. The spectrum is

(309) ∆εn =

(
h2
‖

2m∗

)1/3

|zn|,

where the zn are the zeros of the Airy function. We can understand the behav-
ior by dimensional analysis. A bound state confined to a length ` has a kinetic
energy of order 1/m∗`2 which should be balanced by the potential energy h‖`.
Equating the two we obtain ` ∼ 1/(m∗h‖)1/3, and then forming the energy
h‖` we obtain the prefactor in Eq. (309).
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This means that the continuum in Eq. (304) breaks up into a series of sharp
peaks, representing a whole set of bound states formed by the linear confining
potential (see Fig. 7). Each bound state is quasiparticle-like, but the narrow
spacing of the peaks, and consequent small weight in each peak, is a remnant
of the non-locality of the excitation in zero applied parallel field.

Amazingly, this sequence of Airy-function states has actually been seen in
experiment. Please look at the beautiful experimental paper (and especially
Figure 3B) by R. Coldea et al.

8 Symmetry protected topological phases

Thus far, everything we discussed seemed to be fully determined by symmetry
– of the Hamiltonian and of the ground state. In our Ising model, the Hamilto-
nian had Z2 symmetry and the ground state might or might not preserve this
symmetry, which thereby determined two phases, and only two phases, of the
model. Similarly, the Bose gas at low temperature breaks the U(1) symmetry
of the Hamiltonian, while at high temperature it does not, and these are the
only two phases of that problem.

However, this is not the only way to distinguish phases. There can be mul-
tiple phases with exactly the same symmetry. This might already seem famil-
iar from experience with H2O: water can be liquid or gas which both have
the same symmetry but you can observe a phase transition when water boils.
However, classical liquids and gases are really the same phase insofar as one
can, by applying both pressure and temperature, connect the two continu-
ously. A stronger distinction is possible: there can be two phases of exactly
the same symmetry which can never be connected continuously. These can
fully legitimately be called different phases.

This distinction is by construction “topological”. In general we consider
some space of allowed (with some specified symmetries, plus locality) Hamil-
tonians (e.g. coupling constants) which have non-critical ground states. For
example, we could require that they are gapped (which is a bit of a too strong
requirement in general but is the easiest to define). The existence of multi-
ple phases in the sense that there are states that cannot be deformed into
one another continuously means that the space of Hamiltonians with the gap
requirement contains disconnected components.

This is rather abstract, and formal since the space of Hamiltonians is obvi-
ous very large. But topology enters into the discussion in other, less abstract,
ways. Actually we already encountered topology a little bit when we talked
about vortices in the Bose superfluid. These are topological defects in an U(1)
order parameter. So they describe excitations or metastable configurations of
the ordered state. The equilibrium or ground state itself does not contain any
vortices, or any topological aspects. Here we discuss topological characteriza-
tions of the ground state itself. One of the consequences of the existence of
multiple distinct phases with the same symmetry is that it is difficult to bring
them together spatially. That is, a boundary between two of these topologically
distinct phases with the same symmetry often has some kind of “breakdown”
phenomena associated with it. Something unexpected happens there, most of
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8. Symmetry protected topological phases

phase 1 phase 2

Figure 8: Space of non-critical ground states of local Hamiltonians with some
given symmetry, in the case of a Z2 topological classification. You can think
of the space of Hamiltonians itself, or of for example tensor network states.
It is important to impose that the states are potential ground states of some
physical, i.e. local, Hamiltonian, and that they are not at some phase transition.
A strong requirement might be that there is a gap above the ground state.

the time.
It has become extremely popular theoretically to classify phases, i.e. to give

an exhaustive accounting for the different phases that can occur in some given
symmetry class, and usually with some additional constraints. This is also
exhausting, and we do not have time for it, nor do I have the inclination. We
will instead proceed by example.Lecture 17 (1.5h)

November 19th, 2015

8.1 One dimensional topological insulator

One of the first places that topology of ground states entered condensed mat-
ter was in the Su-Schrieffer-Heeger model which was supposed to describe
electronic states of some polymers. It makes a nice illustration of topology,
though it is really physics of non-interacting particles, not many-body physics
as we are supposed to be studying in this course. Still it is a simple place to
start, and it connects pretty nicely to our next example.

Basic model: one dimensional topological insulator with chiral symmetry

A, n B, n A, n+1

t1 t2

Figure 9: 1d lattice with 2 site basis.

So let us consider a particle, which could be an electron, hopping in a
one dimensional lattice. Our lattice has a two site unit cell, so we define two
sublattices, type A and B, which alternate. We label them A, n and B, n, as
shown in Fig. 9. The state with the particle on site n of type A is |A, n〉 and
similarly for the B sublattice. We consider the Schrödinger equation:

H|A, n〉 = v|A, n〉 − t1|B, n〉 − t2|B, n− 1〉,
H|B, n〉 = −v|B, n〉 − t2|A, n + 1〉 − t1|A, n〉.(310)

where v is a staggered on-site potential and t1 and t2 are real hopping ampli-
tudes. The eigenstates of this model are easily found by using Bloch’s theorem.
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8.1. One dimensional topological insulator

We write

(311) |ψk〉 = ∑
n

∑
a=A,B

uaeikn|a, n〉,

and observe that this is an eigenstate provided

(312) H(k)u = εu,

with

(313) H(k) =
(

v −t1 − t2e−ik

−t1 − t2eik −v

)
,

and

(314) u =

(
uA
uB

)
.

If we impose some extra symmetry, we can require v = 0. The simplest thing
to do is to impose chiral symmetry, which is requires

(315) σzH(k)σz = −H(k), (chiral symmetry).

In real space, this corresponds to the condition that hopping is only between
the two sublattices, never within one sublattice.

It is straightforward to diagonalize H(k). The eigenvalues are simply

(316) ε±(k) = ±|t1 + t2eik| ≡ ±| f (k)|,

with f (k) = t1 + t2eik. There are two bands which are separated at each k
by a energy difference 2| f (k)| unless f (k) = 0, where touching occurs. Such
vanishing really requires two conditions, since f (k) is a complex function, so
that both its real and imaginary parts must vanish. The vanishing occurs only
when k = 0, π and requires |t2| = |t1|.

Winding number

Now with the condition v = 0, we can see that there are actually distinct
classes of Hamiltonians, which differ in topology. In particular, provided the
gap never closes, then | f (k)| > 0 for all k, and hence we can define the the
phase θ(k) via f (k) = | f (k)|eiθ(k). For a smooth f , θ(k) is defined modulo
an overall constant integer multiple of 2π. Then we can consider a winding
number,

(317) w =
1

2π

2π∫
0

dk
dθ

dk
,
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8. Symmetry protected topological phases

which must be an integer. Equivalently, we can define f̂ (k) = f (k)/| f (k)|,
which has unit modulus. Then

(318) w =
−i
2π

2π∫
0

dk f̂ ∗
d
dk

f̂ .

By inspection, for |t2| < |t1|, w = 0. However, if |t2| > |t1|, then w = 1. In
principle, we could obtain higher winding numbers, if we included longer-
range hopping (between sites of opposite sublattices).

Note that if we take t1 = t2, then the system is at a quantum phase transi-
tion between topological phases. At that point f (k) vanishes at k = π (k = −π
is equivalent), so there are gapless excitations whose energy vanishes linearly
with q = k− π: this is a one-dimensional Dirac fermion.

Boundary states and Dirac equation

What is the significance of the winding number? By construction it separates
band structures into different classes. It turns out that the boundary between
different classes of insulators has a protected state there. Let’s look at this
explicitly. Let us consider a Hamiltonian of the form in Eq. (310), but with
spatially-dependent hopping, t1 → t1(n) and t2 → t2(n), and let us further-
more assume chiral symmetry v = 0 and moreover (which is a useful simpli-
fication) that |t1| − |t2| � |t1|, |t2|. This means that the system is everywhere
close to the phase transition between the two topological phases. In this case,
we can focus on the states near k = π. So we modify Eq. (310) to make t1 and
t2 functions of n, and use the ansatz

(319) |ψ〉 = ∑
n

∑
a=A,B

ua(x = n)(−1)n|a, n〉,

where the small wave-vector q is accounted for by variations of ua(x) ∼ eiqx.
Now we apply the Hamiltonian to this state:

H|ψ〉 = ∑
n

∑
a

ua(x = n)(−1)nH|a, n〉

= ∑
n

∑
a

ua(x = n)(−1)n (−t1| − a, n〉 − t2| − a, n− a〉) ,

= −t1 ∑
n

∑
a

u−a(x = n)(−1)n|a, n〉+ t2 ∑
n

∑
a

u−a(x = n− a)(−1)n|a, n〉

= ∑
n

∑
a
(−t1u−a(x = n) + t2u−a(x = n− a)) (−1)n|a, n〉,

≈ ∑
n

∑
a

(
−(t1 − t2)u−a(x = n)− t2a

d
dx

u−a(x = −n)
)
(−1)n|a, n〉,

where in the last line we assumed that ua(x) is a slowly-varying function
of x, which is equivalent to assuming q is small. We also used the notation
a = A = 1 and a = B = −1 to keep the algebra compact. Imposing the
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8.1. One dimensional topological insulator

eigenstate condition, H|ψ〉 = ε|ψ〉, we find

−(t1 − t2)u−a(x = n)− t2a
d

dx
u−a(x = −n) = εua(x).(320)

Collecting this into the spinor u in Eq. (314), we have

(321) Hu ≡
[
−(t1 − t2)σ

x − it2σy d
dx

]
u = εu,

which defines the continuum Hamiltonian

(322) H = −ivσy d
dx
−mσx,

with

(323) v ≈ t1 ≈ t2, m = t1 − t2 � t.

Here we will consider v constant, but m = m(x) varying from m = −M for
x → −∞ and m = +M for x → +∞, which describes an interface between
the two topological phases. Note that if we consider m constant, then the
eigenstates of Eq. (322) are just plane waves with energy ±

√
m2 + v2q2, which

is consistent with the lattice solution. What happens if m changes sign? Then
it seems possible there is some special state localized near where the sign
change happens. Let us look for an eigenstate of H with zero energy ε = 0.
Then Hu = 0 implies (

−m(x)− v
d

dx

)
uB = 0,(324) (

−m(x) + v
d

dx

)
uA = 0.(325)

The solutions are

uB(x) = uB0e−
∫ x

0 dx′ m(x′)
v ,(326)

uA(x) = uA0e+
∫ x

0 dx′ m(x′)
v .(327)

Now we see that for m(x)→ ±M for x → ±∞, only the uB solution is normal-
izable if M > 0, and conversely only the uA solution is normalizable if M < 0.
If instead we had taken m(x) not to change sign, neither solution would have
been normalizable. We see that when the mass m(x) changes sign, there is
one and only one bound state at zero energy. This lies inside the gap for de-
localized plane-wave states far from the boundary. This phenomena of a zero
energy mode when the mass gap changes sign in the 1d Dirac equation is a
well-known phenomena, discovered by Jackiw and Rebbi and others.

The existence of a zero energy bound state is a robust topological feature
guaranteed at the interface between the two topological insulators when chiral
symmetry is preserved. One way to understand the robustness beyond the
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8. Symmetry protected topological phases

above continuum Dirac treatment is to think about chiral symmetry directly.
It implies that, provided the chiral symmetry is preserved, even in the discrete
lattice model with inhomogeneous hopping, states come in pairs with energy
ε and −ε. The zero energy state is special: the chiral symmetry does not map
this to another state. Such a state is “locked” to zero energy because if it were
to shift away from zero it would need to bifurcate into two states, and you
cannot make two states out of one. The only way for the state to disappear
is for the energy gap to close, at which point other zero energy states appear
and can pair up with this one. Of course, a zero energy state, so long as there
is a gap, must be a bound state, since it lies in the forbidden region for bulk
propagating states. This argument does not tell you that there must be a zero
energy state in a given model with chiral symmetry, but it does tell you that
once it is present, it is robust to arbitrary perturbations.

0

g

ε

Figure 10: Schematic evolution of the spectrum of a boundary between two
topological phases (or an endpoint of the non-trivial one) with chiral symme-
try, as a function of some Hamiltonian g. A zero energy bound state is robust
because it cannot split and any other bound states approach it in pairs. It can
be removed only if the continuum (shaded region) of unbound states moves
to zero energy, signaling a bulk phase transition, shown here at g = 1.

A physical picture for the two topological phases can be given by an illus-
tration, Fig. 11, which accurately describes the two extreme limits t1 � t2 and
t2 � t1. The two bands correspond to bonding and anti-bonding states on
the strong bonds, which are shifted relative to one another by one site in the
two phases. One can see that at the end a chain in which the strong bonds are
broken, or at the interface between two chains, there is a site left out, which
corresponds to an additional state for a particle, which is neither a bonding or
anti-bonding state, and in fact has zero energy.Lecture 18 (1.5h)

November 24th, 2015
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8.1. One dimensional topological insulator

(a)

(b)

(c)

Figure 11: Topological phases in one dimension. In (a) and (b), two possible
phases are shown, corresponding to different winding numbers in the chiral
symmetry class. The states are visualized as bonding or antibonding states on
the strong bonds, indicated by ellipses. For a properly terminated chain, which
preserves chiral symmetry, one of the phases has zero energy bound states
at the ends (shown as open circles), while the other does not. The interface
between the two phases, shown in (c), also has a zero energy bound state
(again if chiral symmetry is preserved at the interface).

Polarization and Berry phase

We can obtain the distinction between these two topological classes by looking
at states instead of wavefunctions. We notice that for the lower energy band,
with energy ε−(k), the periodic part of the Bloch wavefunction is

(328) u ≡ |u〉 = 1√
2

(
1
f̂

)
.

Then we see that

(329) w = −2
γ

2π
,

with

(330) γ =

2π∫
0

dk 〈u|i∂k|u〉.

The object γ is known as the Zak phase. According to the prior result, it is
quantized to be either zero or π.

Let us further discuss the Zak phase. It actually is an example of a Berry
phase. This is because the integral is over the full Brillouin zone, which makes
it a periodic orbit: we can choose the states |ψk〉 to be smooth periodic func-
tions of k. You can think of it as the geometrical phase accumulated by a
particle as it moves in momentum space, for example if it were driven by a
very weak electric field. The quantization can be understood in more gen-
eral terms, provided we assume inversion symmetry. First of all, regardless of
symmetry, there is an ambiguity in the definition, Eq. (330), of the Zak phase.
This is because one can always choose different phase conventions for the
Bloch wavefunctions, which may depend upon k. Two conventions differ by
the “gauge transformation” |u〉 → eiχ(k)|u〉, with χ(k) a 2π-periodic function
of k. This implies γ is defined only up to a multiple of 2π. Now consider the
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8. Symmetry protected topological phases

implications of inversion symmetry. This maps k → −k and interchanges A
and B sublattices. It implies that the state σx|u,−k〉 is a good eigenstate of
H(−k) with the same energy as |u, k〉. However, a priori the state we obtain
this way may differ in phase convention from our starting one. Hence we have

(331) σx|u,−k〉 = eiχ(k)|u, k〉,

where again χ(k) should be a 2π-periodic function. Starting from the defini-
tion of the Zak phase, we change k→ −k in the integral and apply Eq. (331)

γ = −
2π∫
0

dk 〈u,−k|i∂k|u,−k〉

= −
2π∫
0

dk 〈u,−k|σxi∂kσx|u,−k〉

= −
2π∫
0

dk 〈u, k|e−iχ(k)i∂k

(
eiχ(k)|u, k〉

)

= −γ +

2π∫
0

∂kχ(k) = −γ + 2πq,(332)

with some integer q. This implies that γ = 0, π modulo 2π.
Note that inversion symmetry leads to a Z2 classification, i.e. there are

only two distinct topological phases, while for chiral symmetry in principle
there is an integer winding number (though only two values of it are realized
for this simple model).

A physical interpretation of the Zak phase is in terms of electric polarization
of the electronic system, if all the states in the lower band are occupied. To
understand this, you can consider a Wannier function,

(333) |X〉 =
2π∫
0

dk
2π

eikX |ψk〉,

As is well-known, Wannier states for bands separated by gaps are well-localized
functions and form a complete and orthonormal basis (by including all values
of X). Now one can measure the mean particle position in such a Wannier
state, 〈X|x̂|X〉. One obtains, by using Eq. (311),

(334) 〈X|x̂|X〉 = γ

2π
.

This is the Wannier center, and we see it can be 0 or 1/2. It is entirely consistent
with the pictures of Fig. 11(a,b), and simply corresponds to the two choices of
the center of the bonds. The Zak phase, or equivalently the Wannier center, is
a property of the entire band, not of a single momentum state. For electrons, if
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8.2. AKLT/Haldane chain

the Fermi energy is in the gap separating the two bands, then all these states
are occupied, and this can be considered a ground state property. This is an
example of a topological distinction between ground states.

These arguments tell us that there are two distinct topological classes of
bands. This means that there should still be a gap closing (phase transition)
if one evolves from one class to another. Let us check this. If our lattice has
inversion symmetry, then we require in general

(335) σxH(k)σx = H(−k).

Such a Hamiltonian in general has the form

(336) H(k) =
(

ε0(k) + v(k) f (k)
f ∗(k) ε0(k)− v(k)

)
,

with f ∗(k) = f (−k), ε0(k) = ε0(−k) and v(k) = −v(−k). The band gap
is ∆ =

√
v2 + | f |2, so that now f can vanish without the gap closing. This

means the previous argument about integer quantization of w is no longer
valid. However, so long as the gap does not close, the Zak phase in Eq. (330)
is still non-zero and it is quantized to either 0 or π. If we try to vary from one
class of states to the other, we will need to pass f (π) through zero (it is real
at k = π since π and −π are equivalent, so it can be varied through zero here
by changing a single parameter). However, by the same reasoning, v(π) = 0,
so a gap will close if we do this.

Now we can ask if there are robust bound states at the ends of inversion
symmetry protected TIs. The answer is – I think – that this is not in general
guaranteed, because inversion symmetry can be broken at the boundary. For
an end of a 1d chain this is obvious, and inversion symmetry is always bro-
ken. For an interface between the two types of TIs, it is possible to preserve
inversion symmetry around a site at the boundary (see for example Fig. 7(c)).
In that case there may be a protected bound state, but I am not sure.

8.2 AKLT/Haldane chain

In the topological insulator example, the many body ground state is a Slater
determinant, i.e. it is described by a set of filled single particle levels. Con-
sequently, the topology of the ground state with a gap is equivalent to the
topology of the filled bands. However, this is a crutch, and the notion of topo-
logically distinct ground states extends also to systems which do not have
a non-interacting description. So we can ask for examples in which we do
not have a free particle description. The Haldane or AKLT chain is a famous
example.

Historically, there was uncertainty about the ground state of the simple
Heisenberg antiferromagnetic quantum spin chain,

(337) HHeisenberg = J ∑
i

Si · Si+1,

where Si is a spin-s operator, i.e. S · S = s(s + 1), with possible values s =
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1/2, 1, 3/2, · · · . It is obvious that in the limit s → ∞, the ground state is clas-
sical, and consists of spins which become rigid vectors of length s pointing
alternately in the +n̂ and −n̂ directions, where the direction n̂ is arbitrary. But
for quantum spins this is not possible, because of the famous Mermin-Wagner
theorem, which requires that there are no broken continuous symmetries even
at T = 0 in one dimension, unless the order parameter itself commutes with
the Hamiltonian. We already saw this in the context of the Bose superfluid,
where we found there is no long range order in one dimension at T = 0 (the
Bose gas has QLRO at T = 0 in this case). One piece of information came from
Bethe’s exact solution of the s = 1/2 case, which he worked out in 1935 – way
ahead of its time! Theorists would spend many decades puzzling out what it
really meant. Bethe found that the s = 1/2 chain was indeed not magnetically
ordered, but was gapless with some mysterious excitations that seemed quite
a lot like fermions. This is not consistent with a trivial (i.e. unentangled) dis-
ordered phase, which we would expect to have a gap. So one could think that
this is like the one dimensional superfluid, with QLRO. It is true that there is
QLRO, but a full description is even richer. We do not have time to discuss
it here, but the Bethe chain is an example of an interesting conformal field
theory.

In any case, since the s = 1/2 case was found to have QLRO, and we expect
that larger s is more classical, it would be very natural to think that all s would
have at least QLRO. Amazingly, this is not the case. It was Duncan Haldane
who first suggested (based on a field theory argument which I will not try to
reproduce here) that there might be a qualitative difference between integer
and half-integer s, and that integer spins would have true disordered ground
states with a spin gap. He turned out to be right. So the s = 1 Heisenberg
antiferromagnetic chain is often called the Haldane chain. However, what he
did not anticipate was that the ground state is not a trivial gapped one, but an
SPT state (that is modern nomenclature). The topological nature of the s = 1
chain was clarified by Affleck, Kennedy, Tasaki, and Lieb, which introduced
a slightly modified version of the Heisenberg Hamiltonian which is exactly
soluble, at least for the ground state:

(338) HAKLT = J ∑
i

[
Si · Si+1 +

1
3
(Si · Si+1)

2
]

.

The AKLT Hamiltonian differs from the Heisenberg model by the addition
“biquadratic” term with a specified coefficient. It is solvable because this par-
ticular combination is proportional (for s = 1 spins) to a spin two projection
operator,

(339) P2(i, i + 1) =
1
2

Si · Si+1 +
1
6
(Si · Si+1)

2 +
1
3

.

This operator annihilates total spin zero or one states, and gives unity on
spin two states, which can be seen by writing P2 = 1

24 S2
i,i+1(S

2
i,i+1 − 2), with

Si,i+1 = Si + Si+1. If we introduce the basis of total spin states |stmt〉, where st
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is the total spin quantum number of Si + Si+1 and mt = −st, . . . , st, then

(340) P2(i, i + 1) =
2

∑
mt=−2

|2, mt〉〈2, mt|.

We see that

(341) HAKLT = J ∑
i

(
2P2(i, i + 1)− 2

3

)
.

Like any projection operator, P2(i, i + 1) has eigenvalues = 1, 0 only. So an
eigenstate which saturates a lower bound on the energy – i.e. a ground state
– is achieved by any state which is annihilated by all P2(i, i + 1). Can we find
such a state?

AKLT showed how to construct it. The trick is to represent each spin-1 spin
as a pair of spin-1/2 spins. Of course, two spin-1/2 spins can be combined into
a spin-0 state and a spin-1 state, so we can always represent a spin-1 this way.
More formally, given a state of two s=1/2 spins, we can project it to a physical
spin-1 state by applying the operator

(342) Pphy = |1〉〈↑↑ |+ |0〉 1√
2
(〈↑↓ |+ 〈↓↑ |) + | − 1〉〈↓↓ |.

We can introduce two spin-1/2 auxiliary spins for each site i, and such an op-
erator for each site i, and then define the full projection Pphys = ∏N

i=1 Pphys(i).
This operator takes a state in the Hilbert space of 2N s = 1/2 spins and maps
it to a state of N s = 1 spins. This allows us to write any state of the s = 1/2
auxiliary spins and from it obtain an s = 1 state. AKLT had the inspired idea
to use this trick for their model. They wrote the auxiliary state,

(343) |ψ〉aux =
N

∏
i=1

(| ↑〉i,R| ↓〉i+1,L − |↓〉i,R| ↑〉i+1,L) ,

where we introduced the labels L, R to denote the two s = 1/2 spins associated
with each site, and took periodic boundary conditions N + 1 = 1. This state
is, up to normalization, a product of spin-0 singlet states combining pairs of
auxiliary spins between neighboring sites. Because of this, the auxiliary state
itself is already manifestly a total spin zero state. This product of singlets can
also be drawn graphically,

(344) |ψ〉aux = L R .

The L, R auxiliary spins of one site are marked.

By applying a projection operator to it, we obtain the physical AKLT state:

(345) |Ψ〉AKLT = Pphys|ψ〉aux.
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This is also manifestly a total spin zero state, since Pphys commutes with the
total spin. We can also draw it graphically, by indicating how the auxiliary
spins are grouped into physical ones,

(346) |Ψ〉AKLT =

Now let us think about the action of the AKLT Hamiltonian on this state. It
is a ground state of HAKLT provide the total physical spin on each bond is less
than two. Now we can write the total spin on bond i, i + 1 in terms of the
auxiliary spins:

(347)

Si,i+1 = Si +Si+1 = Si,L +Si,R +Si+1,L +Si+1,R = (Si,R + Si+1,L)+ (Si,L + Si+1,R) .

The last form shows that it is the sum of two different total spin operators,
which are the combinations grouped in parenthesis. Each of these can be de-
composed into spin-0 and spin-1 channels. In the AKLT state of Eq. (326), the
first of these is, by design, spin-0. The second can be at most spin one, and so
the sum can only have total spin zero or one, and never spin two. This proves
that the state constructed this way indeed has physical spin less than two on
every bond, i.e. it is a ground state of HAKLT! It turns out that it is also unique
– i.e. it is the only ground state – at least for a chain with periodic boundary
conditions, which is what we have written.

If you look at the picture in Eq. (346), you immediate see a similarity to
the diagrammatic representation of MPS’s. Indeed the AKLT is an MPS, i.e.
we can write it as

(348) |ψ〉AKLT = ∑
σ1···σN=−1,0,1

Tr [A(σ1) · · · A(σN)] |σ1 · · · σN〉.

To see this explicitly, we map | ↓〉i,L → | ↑〉i,L and | ↑〉i,L → −| ↓〉i,L, which
maps the singlet

(349) | ↑〉i,R| ↓〉i+1,L − |↓〉i,R| ↑〉i+1,L → ∑
σ=↑,↓

|σ〉i,R|σ〉i+1,L,

which corresponds to the index contraction on bonds of an MPS. Then with
the same transformation, the projector becomes

(350) Pphys(i) = |1〉(−〈↓↑ |) + |0〉
1√
2
(〈↑↑ | − 〈↓↓ |) + | − 1〉〈↑↓ |.

This operator represents the set of three matrices A(σ) with σ = −1, 0, 1 the
three s = 1 states of site i. We read of the matrix A(σ) as the coefficient of the
|σ〉 ket, and just conjugate the first auxiliary bra (corresponding to i, L) to a
ket, i.e.

(351)
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A(1) = −|↓〉〈↑ |, A(0) =
1√
2
(| ↑〉〈↑ | − |↓〉〈↓ |) , A(−1) = | ↑〉〈↓ |.

Up to normalization and overall phase of the wavefunction, this agrees with
“standard” MPS notations for the AKLT state, e.g. on wikipedia.

With periodic boundary conditions the AKLT state is unique. Using the
MPS formulation it is easy to compute correlation functions in the state. One
can see then directly that they are all short-range. The spin-spin correlation
function, and all other connected correlation functions, decay exponentially.
Thus we can view the AKLT state as a realization of Haldane’s proposal that
a spin-1 antiferromagnetic chain is disordered. It also has a spin gap, which
physically means that to excite away from the ground state, some singlets
of the AKLT state must be broken. However, while the excitations have been
computed variationally and numerically, they are not known exactly for the
AKLT state.

What was not appreciated even by AKLT so far as I know was the topo-
logical character of the state. This becomes apparent only when it is written
for a finite open chain rather than a periodic one. Then we can still follow
the auxiliary spin construction, and succeed in find ground states by forcing
total spin < 2 on all the bonds by forming singlets between auxiliary spins.
However, in this case, there are two auxiliary spins left out at the ends of the
chains:

(352) |Ψ〉open
AKLT =

The outermost (first and last) auxiliary spins (solid dots in the diagram) are
completely free. So one can construct 4 linearly independent auxiliary states,
and project each of them to obtain AKLT ground states. These states clearly
have a net spin-1/2 at each end. This is something amazing! We start with a
collection of s = 1 spins, which by the rules of angular momentum addition
can only produce total spin with integer values, and we end up with effec-
tively 2 s = 1/2 spins at the ends! These days it is fashionable to call this
“symmetry fractionalization”. Regardless of the name, it is very cool.

The presence of the s = 1/2 end spins is a robust feature of a phase. It
persists as long as the spin-rotation symmetry of the Hamiltonian is preserved
(in fact other symmetries can protect the boundary spins as well), and the
bulk gap of the spectrum is maintained, i.e. until a quantum phase transition
occurs. One can see this by continuity. It is best to think of a semi-infinite
chain, which has then only one s = 1/2 spin, i.e. a two-fold ground state
degeneracy. To remove the s = 1/2 spin degeneracy of the ground state, some
other level would need to cross the ground state. If this happens in the bulk, it
is a phase transition. Can a level crossing occur at the edge? For some models,
additional bound states can appear at the edge, but these must be built out
of the excitations in the bulk, which have integer spin. So any such state will
have an integer spin plus the original half-integer boundary spin, and so has
a total half-integer spin, and in particular a total spin zero is impossible. Thus
any levels that are below the bulk gap must have a half-integer spin, and
consequently a minimal two-fold degeneracy. Crossing of such a level with
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8. Symmetry protected topological phases

the original one preserves the boundary spin. We see that the boundary spins
are protected properties of the phase. A full discussion of the symmetries
that can protect the topological phase has been given by several authors – for
example it is apparent from the above discussion that time-reversal symmetry
is sufficient, since it allows distinguishing half-integer and integer spin by
Kramer’s degeneracy and Θ2 = −1 versus Θ2 = +1.

So we expect a range of Hamiltonians “near” the AKLT one are in the same
topological phase. Happily, this includes the simple Heisenberg Hamiltonian,
Eq. (319), for the Haldane chain. On moving away from the AKLT point, the
boundary spin spreads out a bit, and no longer resides exactly on the end site
of the lattice, but it is still localized to the end. This means that, if we study
the ground state with Sz = +1/2, the 〈Sz

i 〉 will be non-zero near the end of
the chain, summing to 1/2, but decaying exponentially away from the end of
the chain (in fact it also oscillates, reflecting the underlying antiferromagnetic
interactions, but sums to a positive answer).

One can ask how to detect the emergent s = 1/2 spins. For a finite system,
since there are two of these, if we add the full spin of the whole system it will
be integer. This just means we can recombine the two s = 1/2 spins into a total
spin s = 0 or s = 1. So if we do a numerical experiment and just segregate
states by their total spin, we will find that there are four low energy states, a
singlet and a triplet, separated by a gap from the excited ones. The fact that
the singlet and triplet are degenerate is the indication of the fractionalization
into two spin-1/2 spins. Also, note that separation into the total spin basis
is a highly non-local operation. The minimally entangled basis is that of the
individual s = 1/2 spins.

One can also think experimentally. The individual end spins are readily
detectable! They give the Curie susceptibility of s = 1/2 spins, and a magnetic
entropy of kB ln 2 per end. These are sharp characteristics that distinguish
s = 1/2 spins. Many other experiments can be imagined. A very nice one
is the NMR measurement of Tedoldi et al, who studied Haldane chains of
s = 1 Ni spins doped by a low density of Mg substituting for Ni. Each site
with a substitute Mg is missing its s = 1 spin, which cuts the chain into two.
Consequently, two s = 1/2 impurity spins appear near the impurity, at the
ends of the two chains so created. In an NMR experiment, a magnetic field is
applied which polarizes the end spins. Then nuclei at different positions along
the chain experience different fields due to the spread of the end spin, which
is ∼ 6 lattice sites for the Heisenberg model. This leads to a characteristic
family of NMR resonant frequencies, which were measured by Tedoldi et al,
in excellent agreement with theory.

Finally, let us note that there is a remarkable similarity to the existence
of boundary states in the chiral hopping model we discussed in the previ-
ous subsection. The AKLT chain is part of a family of systems enjoying pro-
tected boundary excitations, and embodying some topological structure. This
includes not only the one dimensional topological insulators, but also two
and three dimensional time-reversal invariant topological insulators, quantum
Hall states, and various topological superconductors. The latter are under-
stood theoretically but a definitive experimental identification is very much
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an active subject today.

9 Toric code

Lecture 19 (1.5h)
December 1st, 2015In the previous section, we saw that states with the same symmetry may still

be distinguished by topology. The non-trivial phases of this type can have in-
teresting boundary degrees of freedom which are anomalous, like the s = 1/2
boundary spins of the AKLT chain. These SPT phases are, however, fragile,
because they rely on a symmetry to distinguish them from the trivial phase.
If we, for example, apply a magnetic field to the AKLT chain, it immediately
becomes indistinguishable from a trivial state. The two states of the end spin
are no longer degenerate.

There are, however, even more exotic things. It is possible for a system
to enter a non-trivial phase which is stable to all perturbations. Even with no
symmetry at all, it remains non-product within some finite domain of stability.
The simplest example of this is the two-dimensional toric code model of Kitaev,
which is actually largely a reinterpretation of the Ising lattice gauge theory
introduced much earlier by Wegner. There is a very nice review article by
Kitaev and Laumann which presents this, and a number of other topics, in
quite readable form. Consider a set of spin-1/2 “spins” on the middle of the
links of a square lattice, with the Hamiltonian

(353) Htc = −K ∑
p

Pp − K′∑
s

Ss,

where the sums are over plaquettes p and sites s, the plaquette operator Pp =

∏i∈p σz
i is a product over the spins on the bonds surrounding the plaquette

p, and the “star” operator Ss = ∏i∈s σx
i is a product over the spins on bonds

neighboring the site s.

9.1 Massive superposition in the ground state

Obviously all the star operators commute as do the plaquette operators, and
one can easily verify that the stars and plaquettes do as well, [Ss, Pp] = 0 for
all p, s. This makes the toric code model especially easy to solve: ground states
are simply those states for which Ss = Pp = +1 for every star and plaquette.

While this looks fairly trivial in these variables, the state itself in any local
basis is highly entangled. Consider for instance the σx

i basis, which is complete
and local. States with Ss = 1 are those in which an even number of spins
composing each star have eigenvalues σx

i = −1. One may represent these
states by coloring the links with negative spins, and according to Ss = 1 the
links form closed loops. Since the operator Pp is off-diagonal in this basis,
it requires superposition of the loop states. One can construct a state with
Pp = +1 everywhere by taking a representative as a “base” state a direct
product state (eigenstate of σx

i ),

(354) |ψ0〉 = ⊗i|σx
i = si〉,
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9. Toric code

Pp

Ss

Figure 12: Toric code. Spins reside on the sites of the gray dots. The blue
shaded region shows the spins involved in a plaquette operator, while the red
shaded regions shows a star operator.

where the si = ±1 are chosen to satisfy the star rule Ss = 1. For example, we
can take si = 1 everywhere. Then, we can act on it with the projectors

(355) Qp =
1 + Pp

2
=

1
2 ∑

qp=0,1
P

qp
p ,

which projects onto states with Pp = 1. Using this,

(356) |0〉 = ∏
p

Qp|ψ0〉.

By writing out the product explicitly,

(357) |0〉 = 2−N ∑
q1···qN=0,1

∏
p

P
qp
p |ψ0〉,

we see that it is the sum of all possible products of plaquette operators act-
ing on the base state. Each plaquette operator flips the si values on the sites
contained in that plaquette. If we choose si = +1, then |ψ0〉 is the “zero loop”
state, and each product of plaquette operators creates loops on the plaquettes
with non-zero qp. Hence |0〉 appears to be a massive superposition of loop
states, in which two loop configurations related to another by a flip of a min-
imal square plaquette appear with equal weight. This looks highly entangled
indeed.

9.2 Ground state degeneracy on the torus

It might seem there are many such states, depending upon the choice of si.
However, using Qp = QpPp, we can see that states in which the si are re-
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9.2. Ground state degeneracy on the torus

Pp Pp

Pp Pp Pp

Pp Pp

Pp

Figure 13: A loop configuration in the toric code. One loop configuration cor-
responds to a product state in the σx

i basis, with σx
i = −1 for the spins con-

tained in the loops. The loop configuration shown is given by the product of
Pp operators on the plaquettes indicated, acting upon |ψ0〉 in Eq. (354) defined
with si = 1 for all i.

lated by flipping spins around a minimal square plaquette are the same (after
projection). That is, |0〉 is invariant under the transformation

(358) |ψ0〉 → Pp|ψ0〉.

This means that any two choices of si related by Eq. (358) will give the same
state |0〉. This leaves very few distinct states.

To see how many, let us do some counting. For concreteness, let us do
this with periodic boundary conditions, i.e. on the torus, with L sites in each
direction and N = l2 total sites. We can choose a priori 22N states |ψ0〉 by arbi-
trary choice of si on every link. However, we require the condition Ss = 1 on
every site. One such condition cuts the number of states by 2. Each condition
is independent except the last one. This is because the product over all sites,

(359) ∏
s

Ss = 1,

since every spin is included in two stars, and (σx
i )

2 = 1. So there are N − 1
constraints, which reduces the number of base states by 1/2N−1. This leaves
2N+1 base states. This is just the number of loop coverings, i.e. graphs like
in Fig. 13, where every site is visiting by an even number of colored bonds.
Now any two such states which differ by the transformation in Eq. (358) yield
the same state |0〉. Graphically, this transformation changes the color of the
links on the plaquette p, i.e. turns uncolored to colored and vice versa. So
most loop coverings yield the same state |0〉. Let us try to count further. We
can start with the trivial |ψ0〉, which is the “no loop” state. Then acting on it
with Pp on each plaquette gives another loop state. In principle by choosing
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9. Toric code

whether or not to apply each Pp we can double the number of states. However,
if we apply all the Pp, then every bond gets its color switched twice, and one
recovers the same loop state. Actually there is an operator identity:

(360) ∏
p

Pp = 1.

Thus by starting with the trivial base state, we can generate 2N−1 loop states
by acting with all but one of the Pp operators. And all of these loop states
obtained in this way lead to the same |0〉. So we need to divide the 2N+1

possible base states by the number, 2N−1, which lead to the same physical state
after projection. This means that the true number of distinct ground states
is 2N+1/2N−1 = 4. Note that in this argument we used periodic boundary
conditions several times, in assuming all sites and plaquettes were equivalent,
for example, and in the identities of Eqs. (359,360).

Figure 14: Four base states which differ by non-trivial loops (representing
spins σx

i = −1 along the loop). Each of these base states generates, via
Eq. (356), a distinct ground state on the torus.

Let us think explicitly about the 4 ground states on the torus. Each of them
can be obtained by starting from a single base state, such that the four base
states cannot be obtained from one another by the action of Pp operators. The
four types of base states (see Fig. 14) can be explicitly constructed using loop
configurations in which there are large loops that wind all the way around
either the x or y axis. The parity of the number of such loops is conserved by
the action of Pp. To see this formally, we can construct an operator to measure
this parity. Consider a non-trivial closed loop ˜̀ defined on the dual lattice (see
Fig. 15):

(361) X ˜̀ = ∏
i∈ ˜̀

σx
i .

The operator X ˜̀ obviously commutes with the star operators but slightly less
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trivially commutes with Pp for any p, since the plaquette operator changes the
sign of an even number of spins on the loop. It is equal to the parity of the
number of loops crossing the dual loop ˜̀. For convenience we can specify two
particular loops ˜̀1 and ˜̀2 as shown in Fig. 15, and denote the corresponding
loop operators by X1, X2. The states |0〉1,2,3,4 constructed from the base states
pictured in Fig. 14 are eigenstates of the loop parity operators with (X1, X2) =
(1, 1), (1,−1), (−1, 1), (−1,−1). In this way the loop parities parametrize the
degenerate ground state subspace.

˜̀1

˜̀2

Figure 15: Non-trivial loops ˜̀1 and ˜̀2 on the dual lattice.

These four ground states constitute the famous topological degeneracy of the
toric code on the torus. The interesting thing about this degeneracy is that the
different degenerate states cannot be distinguished locally. More precisely, if
we take any local operator O (i.e. a product over σ

µ
i operators over some set

of nearby sites which does not span the system), then

(362) 〈m|O|n〉 = Oδmn,

if |m〉 with m = 1, 2, 3, 4 are the orthonormal degenerate ground states. This
can be shown formally, but the physics is simply that the ground states dif-
fer only by the global parity of the loops, and this does not affect the local
configuration space. Essentially because of the above property, one can show
that the the topological degeneracy is very robust: it is maintained even when
the toric code Hamiltonian is perturbed by arbitrary perturbations, provided
these are below some threshold, which defines the stability region for the toric
code phase. Lecture 20 (1.5h)

December 3rd, 2015

9.3 Anyons

Actually we can find not only the ground state but all the levels in the toric
code. Let us again assume a torus geometry. We can refine the thinking of
the previous subsection into a more formal change of variables. The Hilbert
space is that of 2N spins, as there are twice as many links as sites, and so
is 22N-dimensional. Instead of a direct product basis in real space, we can
trade this for a different basis of commuting observables. The natural ones are
the star and plaquette operators, which, like for example σz

i , take two values.
There are N star and N plaquette operators. Due however to the constraints,
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Eq. (359) and Eq. (360), this describes just 2N − 2 independent spins, i.e. a
22N−2-dimensional Hilbert space. This is almost but not quite enough to fully
specify a new basis. The additional operators we need are the loop operators
X1 and X2 defined in Eq. (361) for the two non-trivial cycles of the torus. The
entire new basis is specified by states |X1, X2; {Ss, Pp}〉, with each argument of
the state taking values ±1, subject to the constraints of Eqs. (359,360). In this
basis, the Hamiltonian is diagonal! So we have found all the energy levels.

e and m particles

The X1, X2 variables do not enter the energy. Hence for this model every en-
ergy level has this fourfold degeneracy. These are global degeneracies. Excita-
tions from the ground state correspond to terms in the Hamiltonian which are
not minimized. A priori, the lowest energy excitations consist of changing one
star or one plaquette from +1 to −1. This increases the energy by 2K′ or 2K,
respectively. We can consider such excitations the quasiparticles of the toric
code. There is a concern, however, which is that changing a single star or pla-
quette is not consistent with the constraints of Eqs. (359,360). Physically, this
does not mean that these are the wrong quasiparticles, but rather that they are
non-local objects. Like a domain wall in the 1d Ising ferromagnet, each such
quasiparticle always occurs with a counterpart in a closed periodic system.
The latter requirement is, however, a global constraint, and for a large system
the two quasiparticles may be far away from one another so that neither affects
its “partner” significantly. Also like the 1d Ising soliton, a single quasiparticle
in the toric code cannot be created by any local operator. Indeed, for example
acting with σz

i on a ground state, which has Ss = +1 everywhere, leads to a
state which has Ss = −1 on the two stars sharing the spin i. Similarly, acting
with σx

i creates a state with Pp = −1 on two plaquettes.
For convenience, we will call the quasiparticles consisting of stars with

Ss = −1 “electric” or e particles, and those consisting of plaquettes with Pp =
−1 “magnetic” or m particles. A pair of electric particles is created by acting
with a product, or “string”, or σz

i operators connecting the two sites,

(363) |es; es′〉 = ∏
i∈`(s,s′)

σz
i |0〉,

where `(s, s′) is a chain of bonds on the lattice connecting sites s and s′ (see
Fig. 16). Similarly, a pair of m anyons is created by a string running on the
dual lattice.

We can now explain the names of the e and m anyons. The definition of the
e anyon is that it is a defect where Ss = −1. Away from the anyon, the lines
of negative σx

i form closed loops. The smallest such loop is created by the
plaquette operator Pp. We can think of these loops as field lines, and they are
“divergenceless”. Everywhere, that is, away from the e anyon. A the anyon’s
location, there is a divergence: that is, the e particle is a source of “flux” of
these field lines. The string of σx

i operators in Eq. (363) creates this flux. We
refer to the lines of σx

i = −1 as “electric” field lines, and the e particle carries
“electric” charge. The difference from the usual charge in electromagnetism is
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e e

m m

ε

`

˜̀

Figure 16: Anyons. Two e particles, shown as blue balls, are created by acting
with σz

i operators on the string `. Similarly, two m particles, are created at the
ends of a string of σx

i operators on the dual path ˜̀. A composite ε particle
consists of a neighboring e and m particle.

that this charge is Z2-valued.
Similarly, the m anyon can be considered to carry a “magnetic” charge,

more conventionally called a flux. So sometimes the m particle is called a
Z2 vortex. We can define dual field lines which lie on the dual lattice, and
consider of lines of sites on which σz

i = −1. Again these form loops, away
from any m anyon. The star operator Sp creates the smallest such loop. The m
particle is a source for these dual field lines.

The very existence of the e and m excitations as quasi-particles can be
thought of in terms of these field lines. The defining feature of the particles is
that they are sources of flux. For them to be finite energy excitations, it must
be possible for this flux to “spread” somehow, so that its energy cost remains
finite (this happens in ordinary electromagnetism, where the electric field of a
point charge spreads out like 1/r2, and so the energy density is ∼ 1/r4, whose
integral converges at long distances r from the charge in three dimensions). In
the toric code, the analogous spreading occurs due to massive superposition
of different configurations of the field lines in the wavefunction. It is remark-
able that this Z2 flux can extend infinitely far away from the quasiparticles,
yet they remain of finite energy. The existence of the flux lines implies that
there is some way to “sense” the presence of a quasiparticle far away, without
directly measuring in the immediate vicinity of the quasiparticle. We can see
this directly below.

Statistics of e and m

Let’s focus on the two e anyons. Now we can imagine moving the two anyons
“smoothly”, i.e. one site at a time, so that they are interchanged. This process
consists of changing the endpoints of the string `(s, s′) to move s or s′, which
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9. Toric code

just multiplies the wavefunction in Eq. (363) by a factor of σz
i , which either

extends the product in the string or cancels an existing factor in the product,
since (σz

i )
2 = 1. The net process of interchanging the two e anyons results in

multiplying the initial wavefunction by a factor,

(364) |ψfinal〉 = ∏
i∈L

σz
i |ψinitial〉,

where L is the closed loop describing the path of the two e particles during
the interchange. Now we can use the discrete equivalent of Stoke’s theorem,
to rewrite this loop product as a product over plaquettes,

(365) ∏
i∈L

σz
i = ∏

p∈A
Pp,

where A is the area spanned by the loop L. Acting on the state with two e
particles, which has no m particles, Pp = 1 and so we obtain |ψfinal〉 = |ψinitial〉.
The act of interchanging two e particles returns one to the same state, with no
phase change. We conclude that the e particles are bosons. The same argument
applies to the m particles.

We can represent the bosonic exchange by diagrams:

(366)

e e

e e

=

e e

e e

,

m m

m m

=

m m

m m

.

You should interpret these diagrams as a view of the “world-lines” of the
particles, viewing the 2d plane side-on, so the x axis is the physical x axis, the
physical y axis is into the paper, and the y axis is time. You need to be careful
about when a line goes behind or in front of another. This represents winding.

However, we can consider an interesting variation: what happens if we
move an e particle in a closed loop, containing an m particle? This again must
return to the same state, up to a phase. Since we only move the e particle,
Eq. (364) continues to hold, as does Eq. (365), which is just a mathematical
identity. But the product of plaquette operators is −1 if the area A contains
an m particle. We find the remarkable result that upon moving an e particle
around an m particle, the wavefunction changing sign (sometimes we say it
accumulates a π phase). This type of phase is called mutual statistics. The
effect is independent of the distance between the e and m particles, and so it is
a sign of their non-locality. Very crudely, if you think of how the two particles
must have been created, they each leave behind a “string”, and the e particle
must cross the string of the m particle. In any case, we say that the e and
m particles are “mutual anyons”. The effect is similar to an Aharonov-Bohn
phase in quantum mechanics. It is as if the m particle appears as a magnetic
flux of half a flux quantum to the e particle, and vice-versa.
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Here, the diagram is different

(367)

e m

e m

= −

e m

e m

.

The ε particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an ε particle – behaves as a fermion! Basically if we make an
interchange of two ε’s, we effectively wind a constituent e particle of one ε
half-way around the m of the other ε particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= −

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two ε particles, described by some initial state |ψinit〉, such that, acting on
|ψinit〉, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = −1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = −1. We choose s1 and p1 to be adjacent,
comprising one ε “particle”, and s2 and p2 to be adjacent, making up the
other ε particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two ε particles. We will do this by a sequence
of unitary transformations, so that

(369) |ψfinal〉 = U|ψinit〉,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single σz

i and σx
j operator to
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j

k

`

˜̀

Figure 17: Exchange of two ε “particles”. The anyons are moved along the
indicated paths in the clockwise direction. The two paths intersect at the sites
j and k, marked by white circles. Hence sites j and site k occur in both paths
` and ˜̀, but they occur first in ` and then in ˜̀, i.e. tj(`) < tj( ˜̀) and likewise
tk(`) < tk( ˜̀) .

move an e and m excitation, so

(371) Ut = σx
i ˜̀(t)σ

z
i`(t)

,

where ` and ˜̀ are the paths which the e and m particles sweep out, respec-
tively, and i ˜̀(t) and i`(t) are specific spins (links) along these paths, at the
“time” t of the evolution. We choose the steps such that the e and m con-
stituents of each ε composite stay together during the evolution, and preserve
their orientation (see also the discussion below). We choose to make the ex-
change by a clockwise rotation – see Fig. 17. Then we see that in general the
paths ` and ˜̀ intersect twice, at sites i and j. All other sites involved in the
paths are distinct, and so the operators involved all commute. We need to be
careful about the spin operators at sites j and k. By inspection of Fig. 17, we
observe that both of these sites are visited first by path ` and later by path
˜̀. This implies that for both j and k, the σx operator occurs to the left (i.e.
“later”) of the σz operator. Since all the other spin operators commute, we can
therefore move all the σx

i operators to the left of the σz
i operators, for every

site i. This gives

(372) U = ∏
i∈ ˜̀

σx
i ×∏

i∈`
σz

i .

Now we can rewrite this as

(373) U = ∏
s∈A( ˜̀)

Ss × ∏
p∈A(`)

Pp.
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HereA( ˜̀) andA(`) are the areas enclosed by ˜̀ and `, respectively. This makes
it easy to find the action of U on |ψinit〉, Eq. (369), since these operators just
measure the presence of anyons in the initial state. We see that the path `
contains no anyons, while the path ˜̀ encircles a single e anyon. So we obtain
U|ψinit〉 = −|ψinit〉, hence

(374) |ψfinal〉 = −|ψinit〉.

We have successfully shown that the ε particles are fermions! This is pretty
remarkable as our original model contains only bosonic spins, i.e. all the mi-
croscopic operators commute at different sites.

Relationship of ground state degeneracy and anyons

We found a fourfold ground state degeneracy of the toric code earlier by direct
construction of these states. It turns out that this degeneracy follows from the
existence of the e and m anyons. Because of this, it is most natural to regard the
anyons as the fundamental characteristic of the phase of matter represented by
the toric code. Once we know that they exist, we can understand the ground
state degeneracy of the model with any boundary conditions, i.e. on different
genus surfaces.

The basic idea is to relate the anyonic statistics to an algebra of loop oper-
ators. These operators describe the adiabatic motions of anyons. So imagine a
time evolution as follows: Start from a ground state with no excitations. Create
a pair of e anyons nearby, and then slowly move them apart, taking them in
a non-trivial path around the torus, and then annihilating them (alternatively,
you can keep one fixed and move the second one around the torus, and then
return to annihilate it on the other side). In the toric code, we would do this
explicitly by first acting with σz

i somewhere, which creates the anyon pair,
and then acting with additions σz

i operators along a loop to move one of the e
particles. In the end we arrive at an product of σz

i operators along some loop
` which spans one of the periodic directions of the torus. Let us define these
operators as

(375) Za = ∏
i∈`a

σz
i ,

where `1 and `2 are loops traversing the periodic x and y directions, on the
direct lattice (we use the capital Z symbol because these involve σz

i matrices).
Let’s think a bit more physically about this Za operator. What we are doing

is pulling an e anyon around the torus. As it does so, it pulls along with it an
electric field line. Once the e anyon makes the full circuit around the torus
and annihilates with the other e anyon, it leaves behind a pure loop of electric
field. This is exactly one of the non-trivial loops shown in Fig. 14. So the act of
creating a pair of e anyons, winding one around the cylinder, and annihilating
again, takes the system from one ground state to another. The Za operator
creates the electric field loop.

We can also of course consider the adiabatic evolution of the m anyons,
similarly. Here we would act in the toric code with a series of σx

i operators
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along some dual paths,

(376) Xa = ∏
i∈ ˜̀a

σx
i ,

where ˜̀a give loops on the dual lattice winding in the x and y directions.

The loops winding in orthogonal directions cross, and so X and Z opera-
tors do not commute. We can find directly that

(377) ZxXy = −XyZx, ZyXx = −XxZy.

These two equations actually imply the ground state degeneracy of 4. This is
because, by construction, these operators start from a ground state and end in
a ground state: any quasiparticles created are annihilated at the end of each
operation. In the toric code model, this is obvious because the operators all
commute with H. Once we have Eq. (377), then we know that the ground
state(s) must form a representation of this algebra. And it is easy to show
that the minimum dimension of the algebra is 4-dimensional (I leave it as an
exercise to the reader!).

Note that, while we can obtain this algebra directly from the explicit oper-
ators in the toric code, it is expected to hold anywhere in the toric code phase,
i.e. even once the exactly soluble model is perturbed. The idea is that under
such a perturbation, the e and m anyons still exist, are gapped, and their mu-
tual statistics is robust to perturbations. Then we can consider the adiabatic
evolution, and define operators Xa an Za to carry this out. In a general model,
these operators will not be given by Eqs. (375,376). However, the commuta-
tion relations, Eq. (377), actually directly follows from the mutual statistics,
i.e. Eqs. (366,367). This requires some geometrical thinking, and unfortunately
needs 3d pictures, which I find a bit hard to draw in latex. We anyway, here is
how I understand it. We can rewrite for example the first condition in Eq. (377)
as

(378) Z−1
x X−1

y ZxXy = −1.

So the left hand side can be regarded as a sequence of operations to be per-
formed, after which the wavefunction returns to itself, with an overall minus
sign. It turns out that topologically, this sequence is equivalent to taking an e
anyon around an m anyon, i.e. the non-trivial mutual statistics of Eq. (367). To
see this, we need to visualize the operations of Eq. (378) in 2+1 space-time di-
mensions. We have four “world-lines” of particles which are taken around the
torus. The “endpoints” (intersection with the boundary of the periodic cell) of
the two e lines can be brought together and pinched off to form a single loop.
The same can be done with the two m lines. Having done so, one finds that
the two loops are linked! This linked configuration is, in turn, deformable to
winding one anyone around the other. So, by the mutual statistics of e and m,
it is equal to −1. Thus the non-commutativity of the loop operators follows
from the mutual statistics, and in turn so does the topological degeneracy on
the torus.
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t

(a)

t

(b)

Figure 18: Equivalence of Eq. (378) to braiding an e and m anyon. In (a), one
observes the sequence of e and m particles threading opposite cycles of the
torus in alternating fashion. By contracting the endpoints on the periodic
boundaries, this deforms to the diagram in (b), in which the world-lines of
e and m particles are clearly linked.

9.4 Stability of the toric code

So far we mostly analyzed the exactly soluble toric code model. This would
be a purely formal exercise if it were not for the fact that it represents a stable
phase of (T = 0) matter. The universal properties of this phase – the ground
state degeneracy, the existence and statistics of anyons, etc. – persist under
arbitrary small perturbations of the model. This might be surprising as the
toric code is certainly very finely tuned: it has an infinite number of local
operators which commute with H, so in a sense it has an infinite number of
local symmetries. Global symmetries lead to effects which are usually fragile
to perturbations. For example, the gapless Goldstone mode of a system with
U(1) symmetry becomes gapped upon breaking the U(1) symmetry. The SPT
phases of the previous section become smoothly connected to trivial phases
is the symmetry protecting them is broken. Here we have started with much
more symmetry, which will always be broken explicitly in any realistic model.
Yet amazingly, the key properties of the toric code are robust. Actually they are
more robust than for ordinary phases: no matter what symmetries are broken,
the phase is stable to arbitrary local perturbations. This is not true for any of
the previous examples we considered.

Why is the toric code phase stable? Let us go back to the essential features
of the phase, which is really that it supports gapped anyons. This is possible
only because lines of flux are conserved (i.e. they form loops) in the ground
state, and because they fluctuate wildly, i.e. the ground state is a superposition
of loops up to arbitrarily large size. Let us think how these factors are affected
by a perturbation. Consider the modification of the Hamiltonian by additional
terms

(379) H′ = ∑
i

hiσ
x
i + h̃iσ

z
i .

These terms break all the global and local symmetries of the toric code (except
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time-reversal, which we can also break, but do not bother to do so for sim-
plicity). Consider the action of H′ on a ground state |0〉. Acting once with H′

creates a sum of terms, each of which consists of a pair of anyons on nearby
sites. Equivalently, we can think of these as short open “strings”. So H′ does
induce violations of the flux conservation, but these violations are localized.
In terms of the Z2 charges, the violations are neutral, viewed from outside.
This was of course guaranteed by the non-locality of the anyons. Further ac-
tion of H′, at higher orders in perturbation theory, can induce more widely
separated anyons, or ends of strings, but they are penalized by the denomina-
tor in perturbation theory, so one expects that the probability to find a pair of
anyons separated by a distance ` will decay exponentially with `.

This is a typical behavior for virtual particle/anti-particle excitations in a
theory with a gap. Indeed just the same occurs for the spin flip excitations
in the paramagnetic phase of the Ising model. Because the virtual excitations
only occur locally, they do not cause long-distance effects, and most impor-
tantly, the charges of any real (not virtual) anyons remain well-defined.

Other properties can be analyzed similarly. We can consider for example
the topological degeneracy on the torus. While it is exact for the soluble toric
code mode, in general it is not for a finite lattice with nonzero H′. Clearly
neither Xa nor Za commute with H′. So for a finite lattice the topological de-
generacy will be split. However, it is restored in the thermodynamic limit. In
particular, the four lowest states approach one another with an energy spac-
ing which decreases exponentially with the linear size of the system, ∼ e−L/ξ ,
with some constant ξ. One can see for example that, perturbatively in H′,
the splitting scales as the Lth power of H′, as that many actions are required
to connect states which differ by a global winding. More physically, the ac-
tion Za corresponds to creating a virtual pair of e anyons and winding them
around the torus before annihilating them. This is a quantum tunneling pro-
cess, passing through a high energy state (of twice the gap for the e anyon)
for a tunneling time which is proportional to the length around the torus. So
the amplitude of the process is proportional to the exponential of its action,
which is the product of these two and hence exponential in the length.

Another way to think about the stability of the toric code phase is to ask,
how is it eventually destabilized when the perturbation is not small? In partic-
ular, we should understand how the anyons are removed from the spectrum,
as they must not be present in a topologically trivial, unentangled state. Obvi-
ously for large enough hi and h̃i in Eq. (379), the system reaches such a state. A
good picture for how this happens is that the gap for one of the anyons, either
e or m closes, and since these are bosons, they “condense” (the one whose gap
vanishes depends upon whether h or h̃ is larger). In this condensate, all the
anyons cease to exist as well-defined quasiparticles. For example, suppose the
m particle condenses. Then an individual m particle is no longer well-defined,
because the number of m particles in the ground state is uncertain. In terms
of flux, the magnetic field lines now can end in arbitrary places in the sample,
already in the ground state. We say that the m particle is “Higgsed”, like the
Higgs boson in the standard model. What of the e particle? Well because the
ground state is full of a superposition of different m states, the mutual statis-
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tics of e and m particles means that the e particle can no longer propagate
coherently. Another viewpoint is based on the uncertainty principle: the m
condensation means that the magnetic operators σz

i , i.e. the lines of magnetic
force on the dual lattice with σz

i = −1, become highly fluctuating. Because
they anticommute with σx

i , the latter become very sharply defined and do
not fluctuate. It means that the electric field lines become concentrated and
cannot spread out. Consequently an e particle emits a concentrated field line
which because it cannot spread, costs an energy proportional to its length.
Thus an isolated e particle has an infinite energy. We say that the e particle is
“confined”. The ε particle is also confined because it also carries the electric
charge.

We see that the combination of the Higgs phenomena and confinement
removes all the anyons as quasiparticles. So the transition to a trivial phase
occurs by driving the gap for one of the bosonic anyons to zero. This cannot
happen with a weak perturbation of the toric code, because the gap is non-
zero and large initially, and it is a smooth function of the perturbation for
small perturbations. Thus the stability of the toric code phase is assured by
the gap of the anyons.

If you don’t like any of these physical arguments, there is a rigorous proof
of stability.

9.5 Recap

The toric code provides a very simple and completely soluble model for a
topological phase. We see that there is a robust phase of matter which is en-
tirely characterized by means other than symmetry – topology and entangle-
ment. Actually there are many such phases. In the lab, the fractional quantum
Hall effect is a well-studied example. That is rather an old and mostly solved
problem, but the perspective on it has changed somewhat as people have come
to realize the role of entanglement and topology in it, and the generality of the
phenomena (in theory anyway). The existence of novel non-local excitations
is the key feature of this type of state.

Many other examples are of interest. There is a fairly complete understand-
ing of topological phases in two dimensions, at an universal level anyway.
But three dimensional topological phases are still a subject of much research.
There are intriguing relations between phases with intrinsic topological or-
der and SPT phases. Highly entangled phases which are not topological also
exist, and are arguably more interesting. These can be gapless and there are
many more unsolved mysteries there. The pursuit of highly entangled phases
in experiment (for example in spin systems, or artificial structures) or realistic
theories is another major current challenge. Quantum computing might be the
“killer app” for these phenomena. There are many connections of these ideas
to quantum field theory – topological field theories, gauge theory, etc. But we
are out of time. I hope you found what we were able to cover interesting.
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