

Topological order and interplay with real space textures

Leon Balents, KITP

Collaborators

Jianpeng Liu

Interplay of band topology and topological magnetic textures in an antiferromagnet

Chaoming Jian

Intrinsic topological order and local measurements

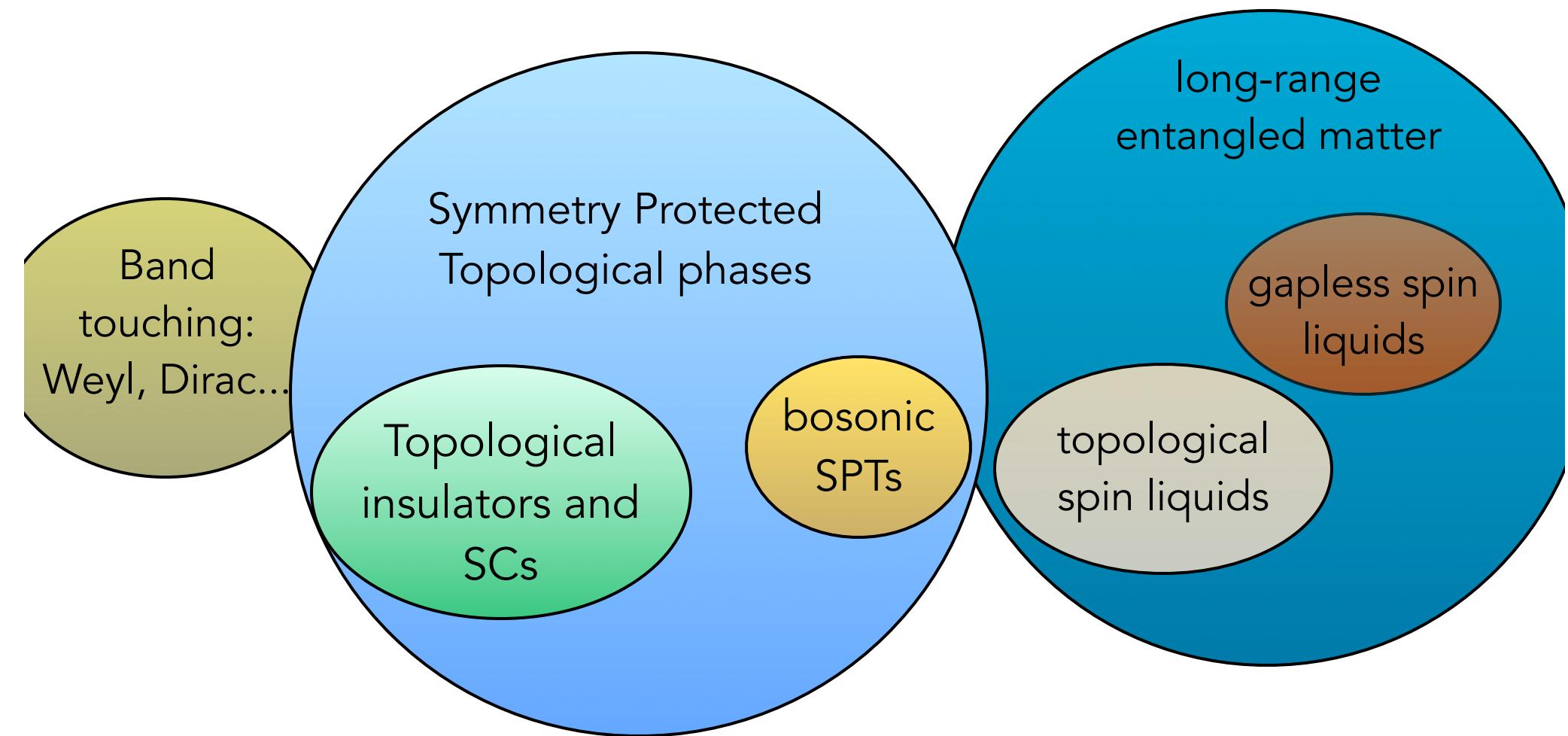
Lucile Savary

RANDY'S

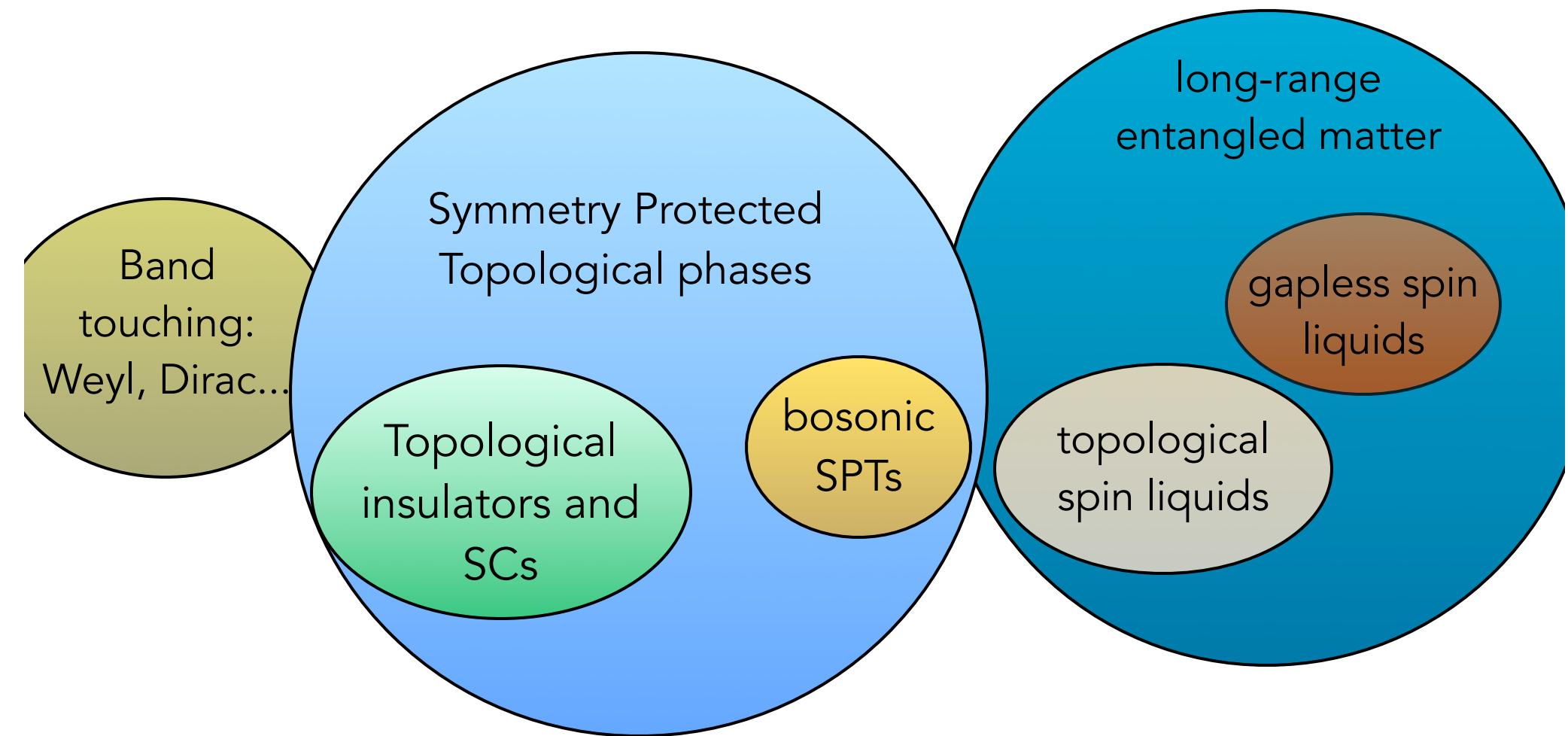
Topology is big

DONUTS

Topology++

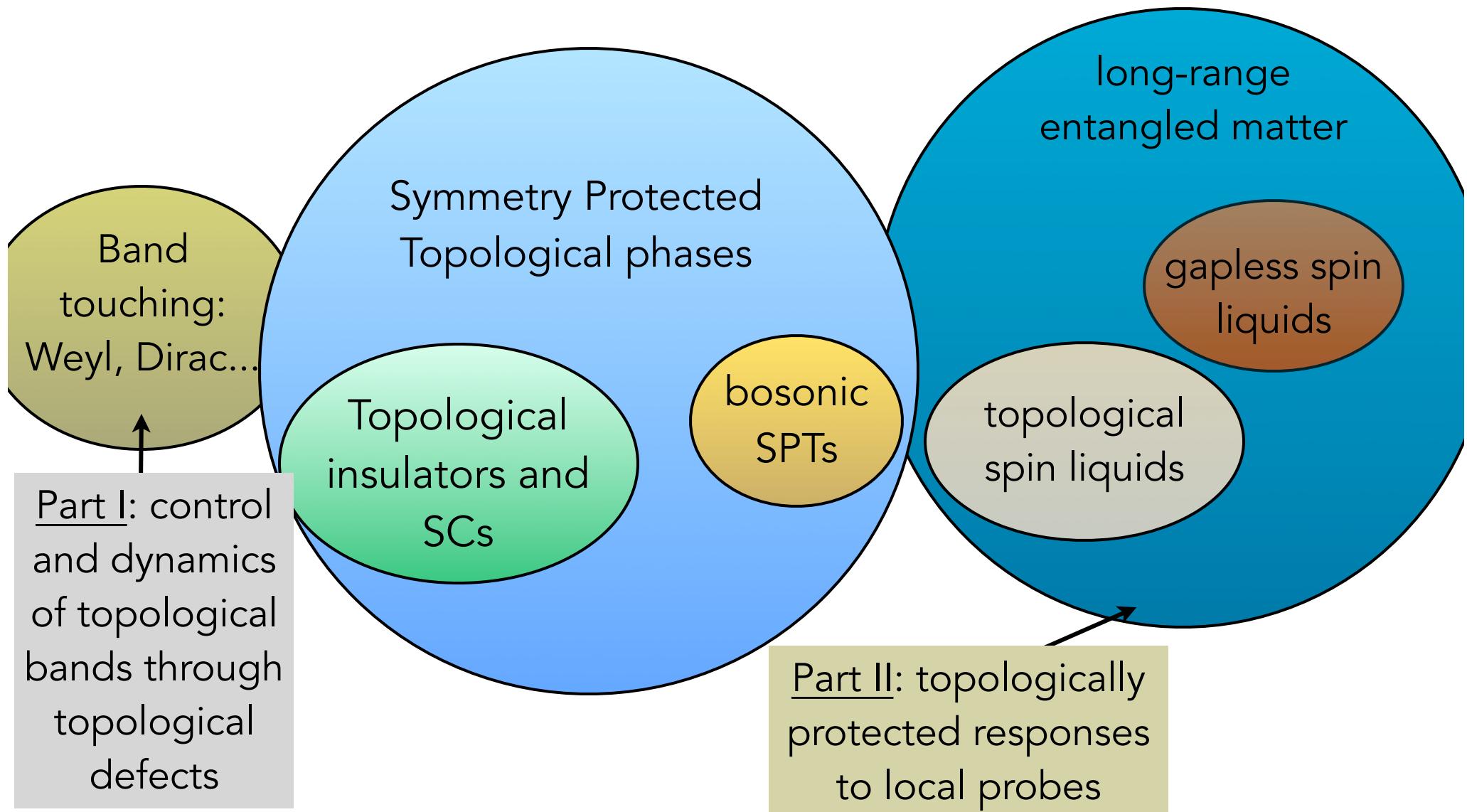


Topology++



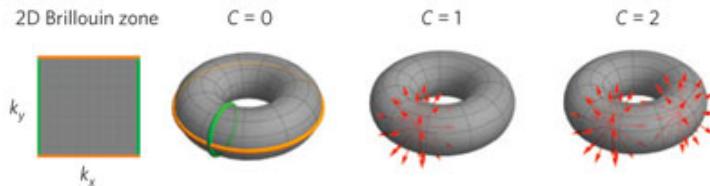
This talk: theoretical speculations on new experimental prospects

Topology++

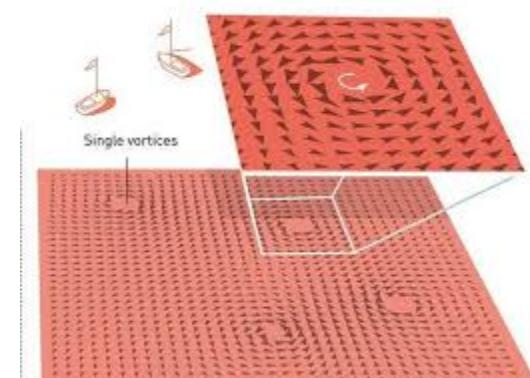


Thouless:
Chern number

$$q_n = \frac{1}{2\pi} \int d^2k \mathcal{B}_n^z$$

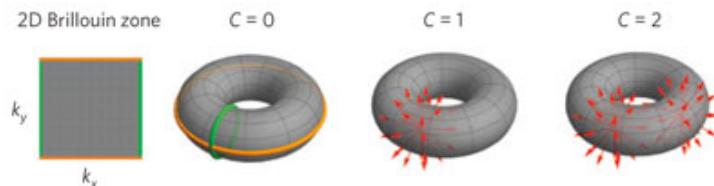


Kosterlitz+ Thouless:
Vortices

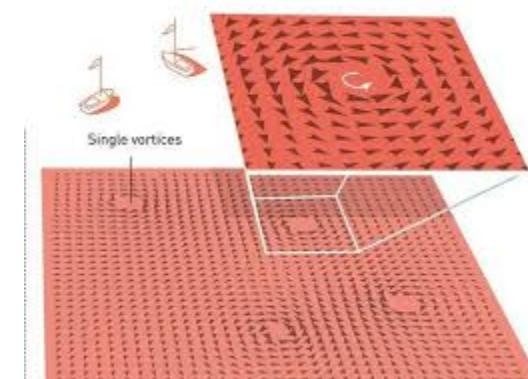


Thouless:
Chern number

$$q_n = \frac{1}{2\pi} \int d^2k \mathcal{B}_n^z$$

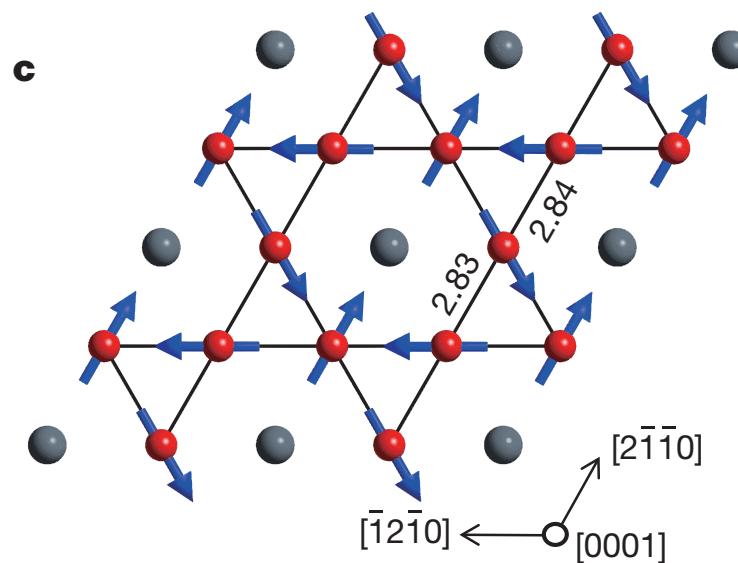


Kosterlitz+ Thouless:
Vortices



To control the interplay, we want a soft magnet

Mn₃Sn family



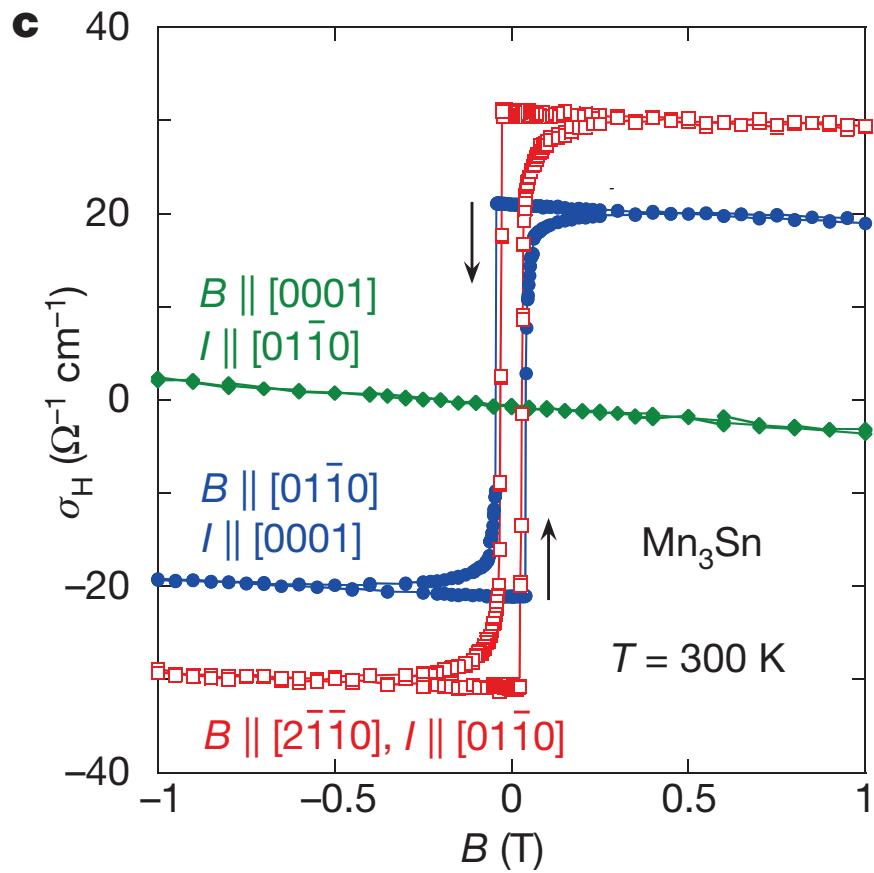
two kagomé layers of
Mn, related by inversion

large ordered
antiferromagnetic
moment
 $\sim 3 \mu_B / \text{Mn}$
tiny canting moment:
 $.002 \mu_B / \text{Mn}$

$T_N \sim 420 \text{K}$

Nagamiya et al, 1982

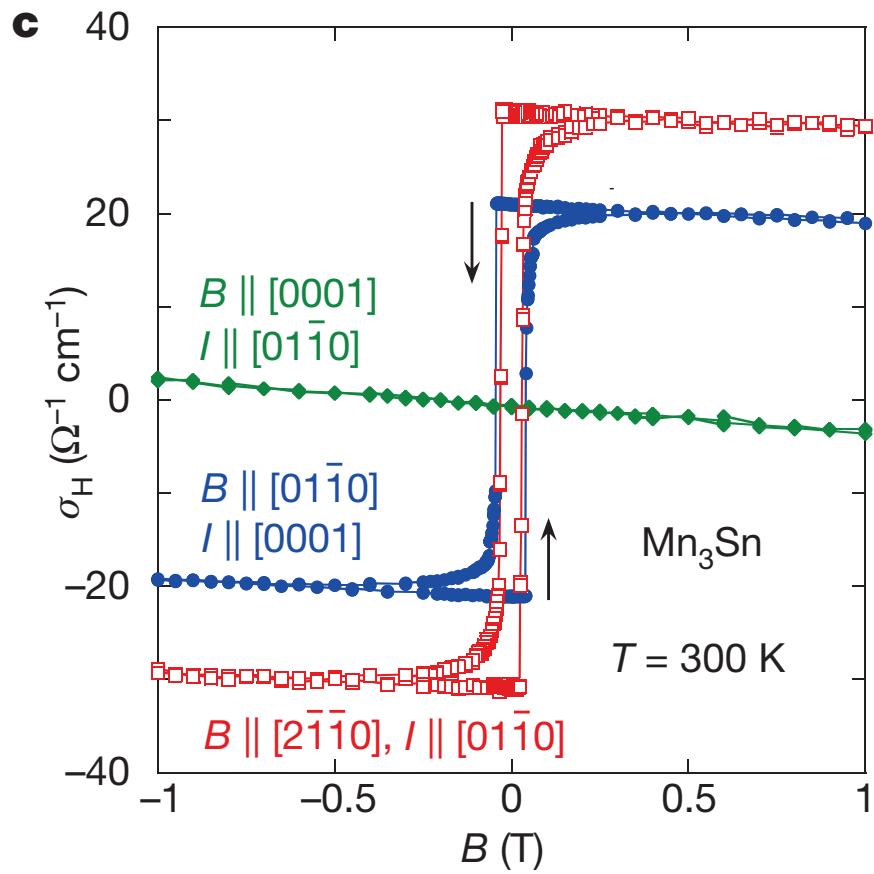
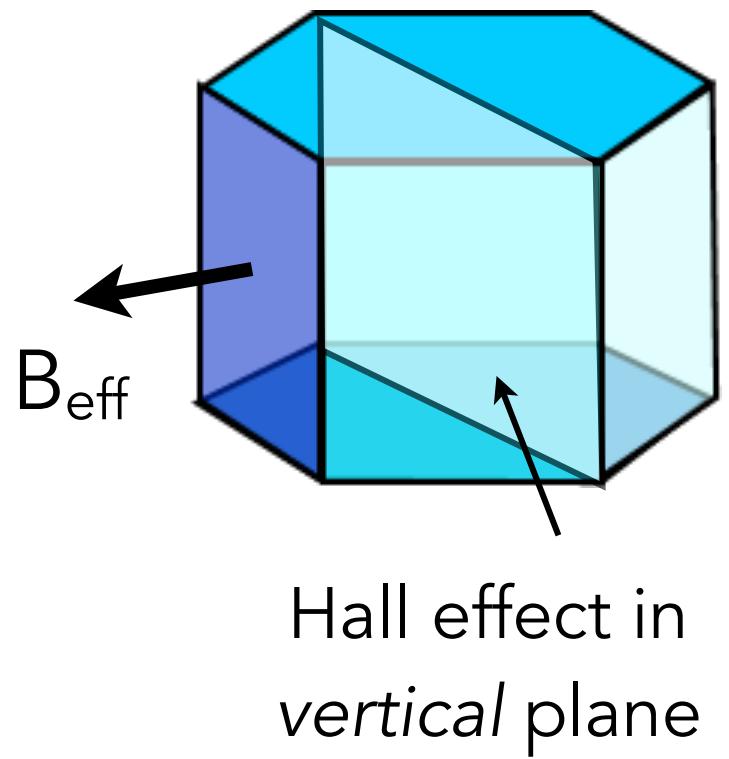
anomalous Hall effect



comparable to
metallic FMs

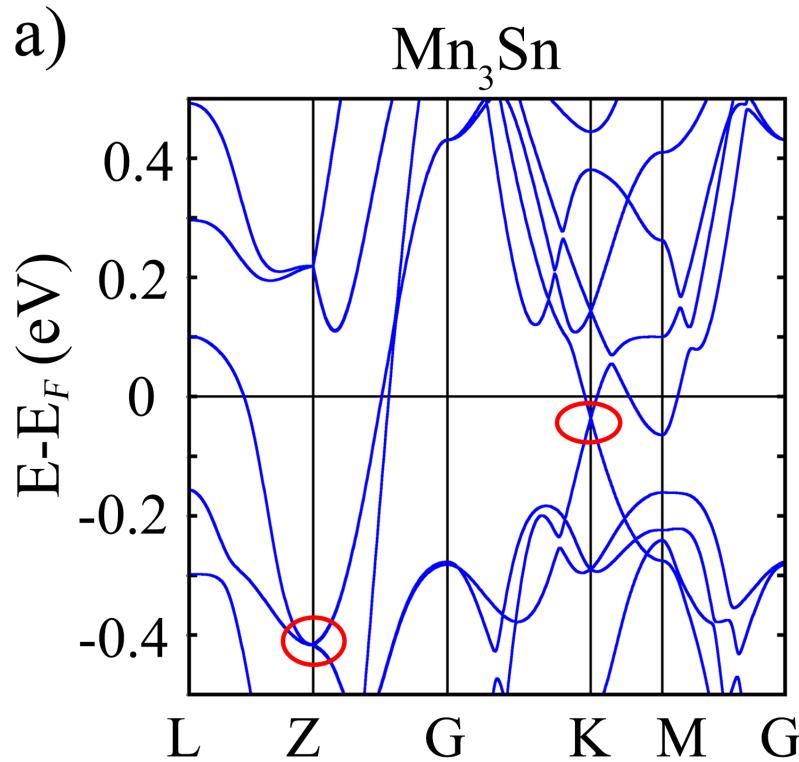
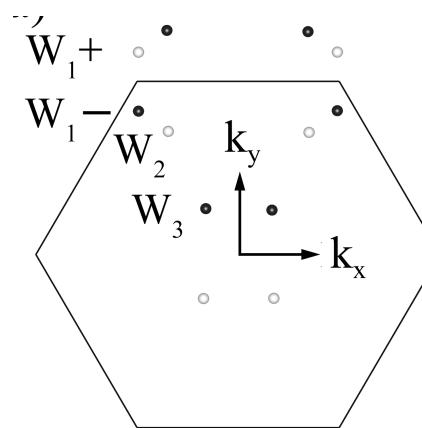
switchable because
of small magnetic
moment and small
anisotropy

anomalous Hall effect



Weyl

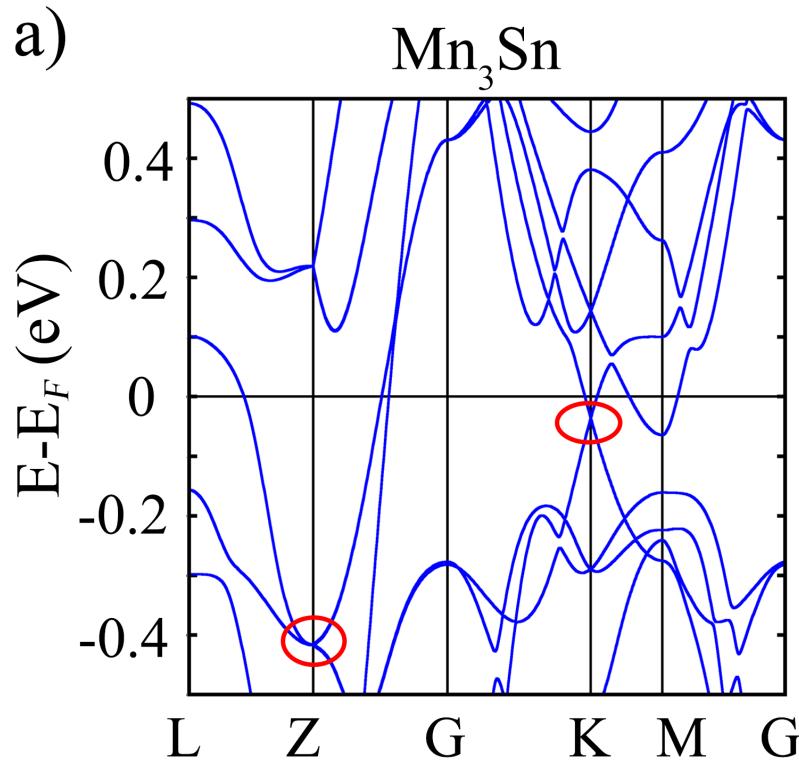
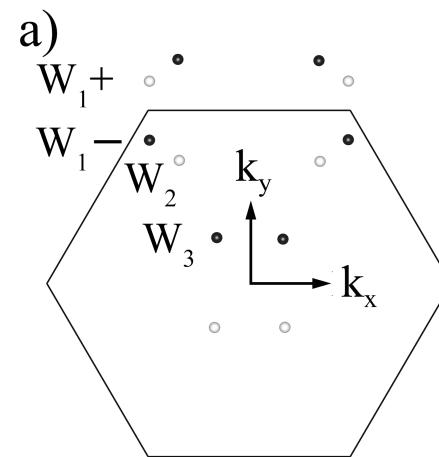
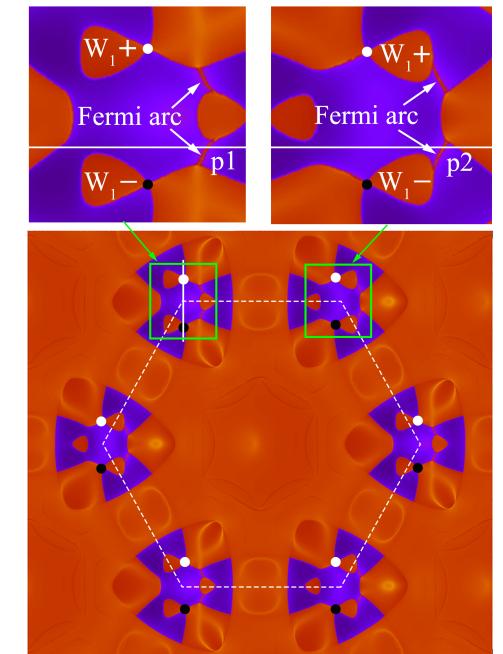
ab initio finds Weyl points and surface Fermi arcs



notice lack of 6-fold symmetry: due to direction of AF order

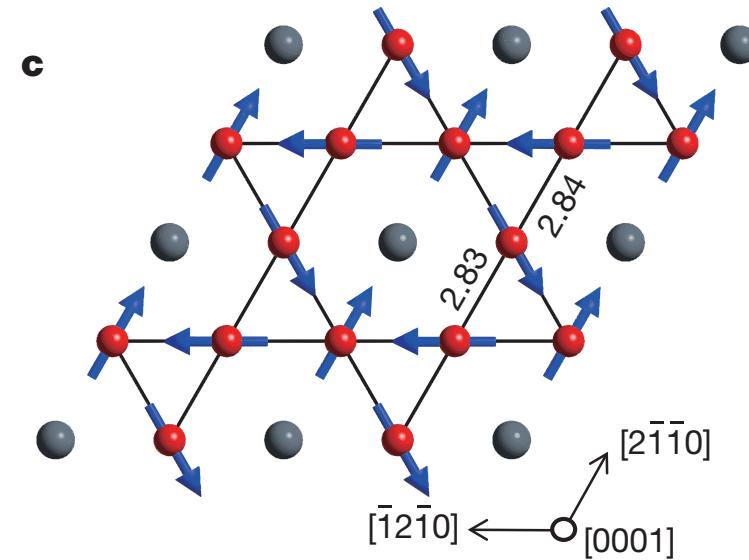
Weyl

ab initio finds Weyl points and surface Fermi arcs

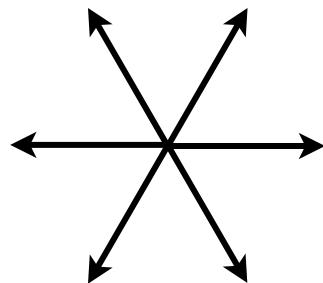


Textures

Magnetic
order has Z_6
structure



direction of
inward-pointing
spin



$$\psi = |\psi| e^{2\pi i n/6}$$

3 pairs of time-
reversed domains

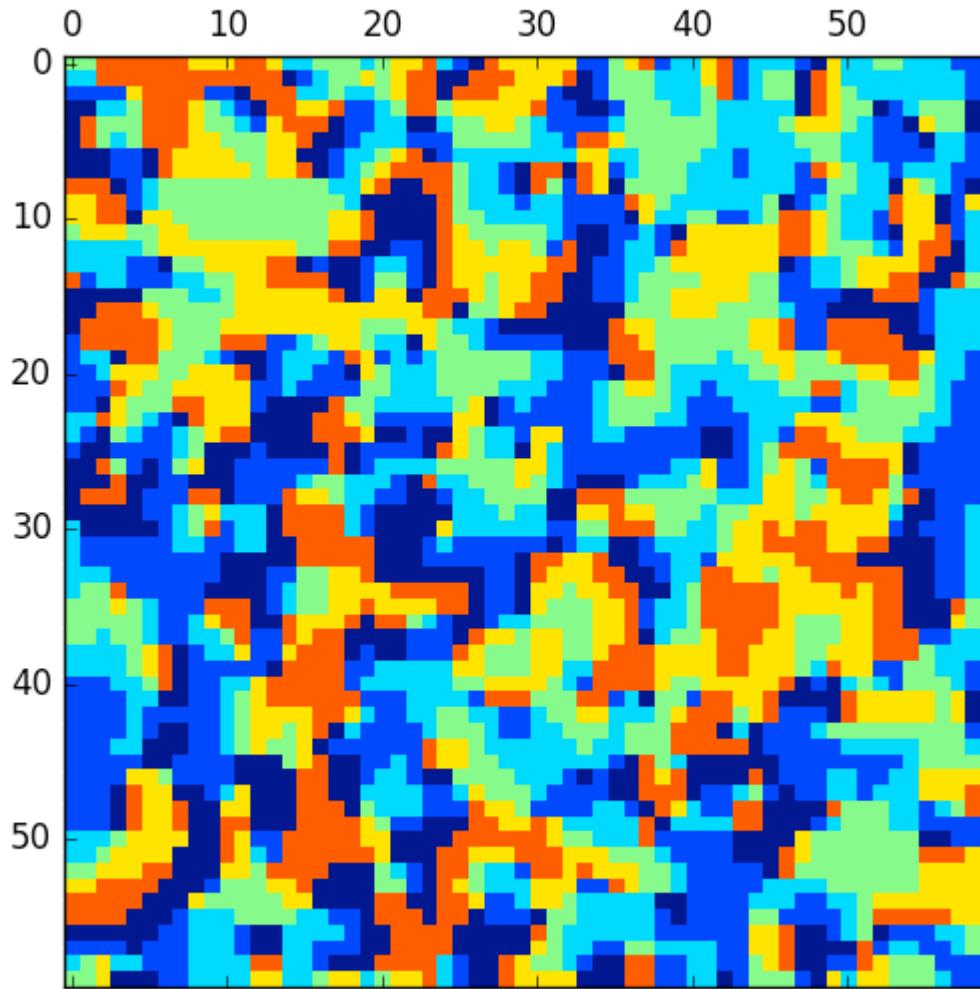
Textures

$$\psi = |\psi| e^{i\theta} \quad F \sim \int d^3x \left\{ \frac{\rho}{2} (\nabla\theta)^2 - \lambda \cos 6\theta \right\}$$

sine-Gordon model with 6-fold anisotropy

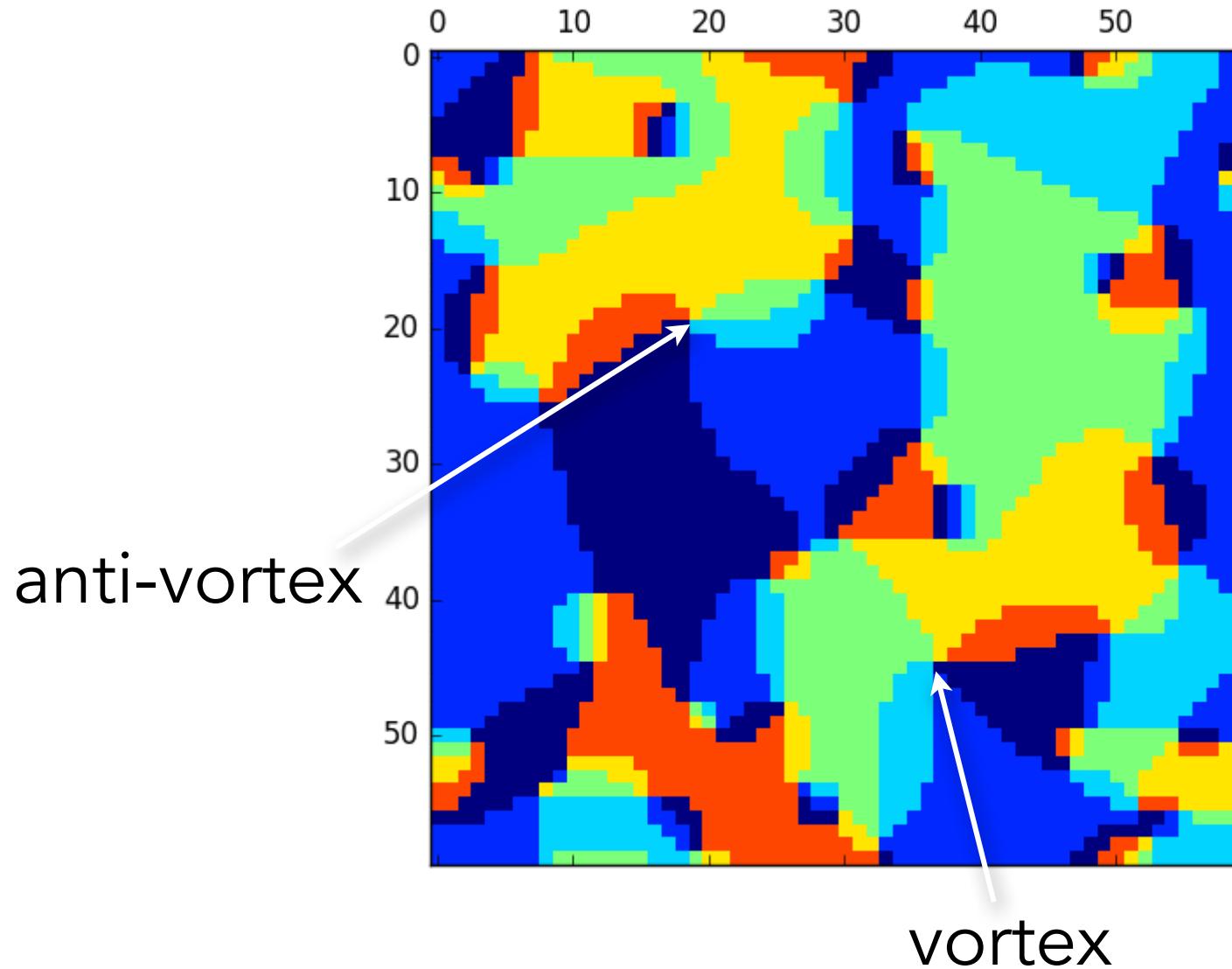
- Minimal energy domain walls are *not* between time-reversed states
- Magnetization, Hall vector, location of Weyl points are all determined by domain choice, not by field in general
- Stable Z_6 vortices exist

Domain formation



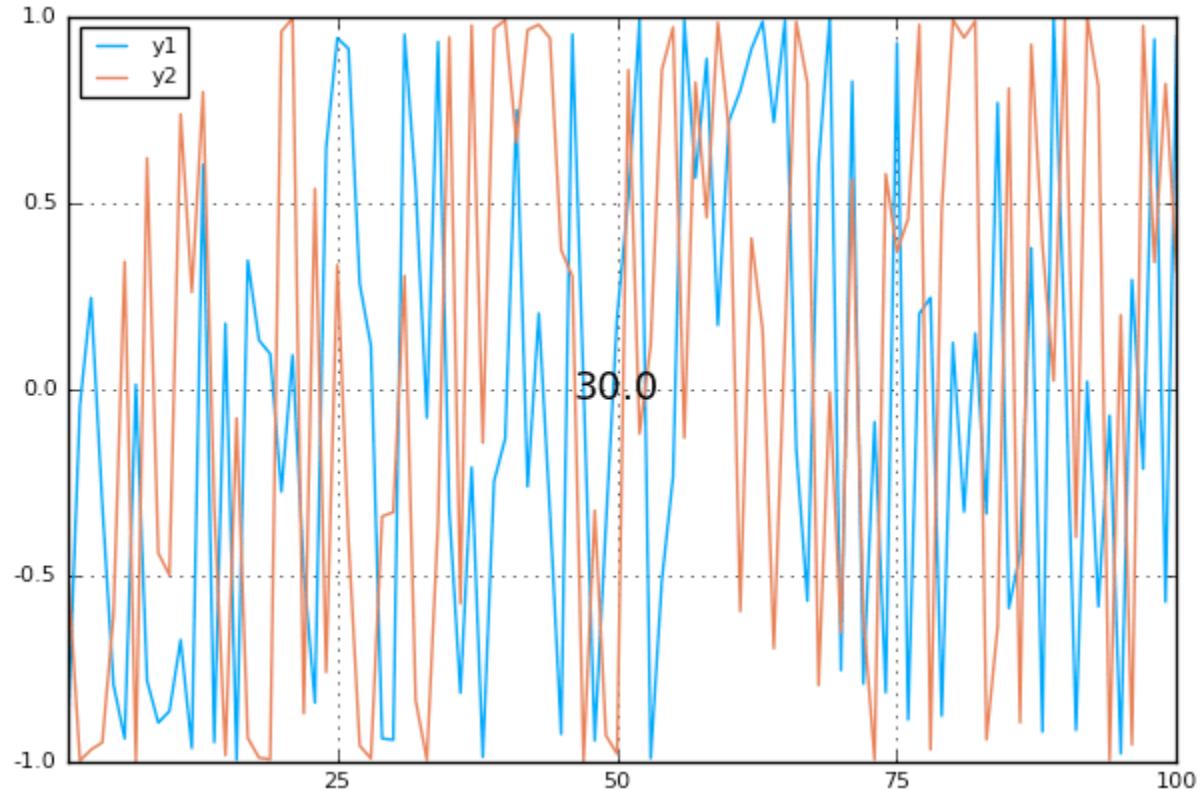
quench
(model A dynamics)

Domain formation

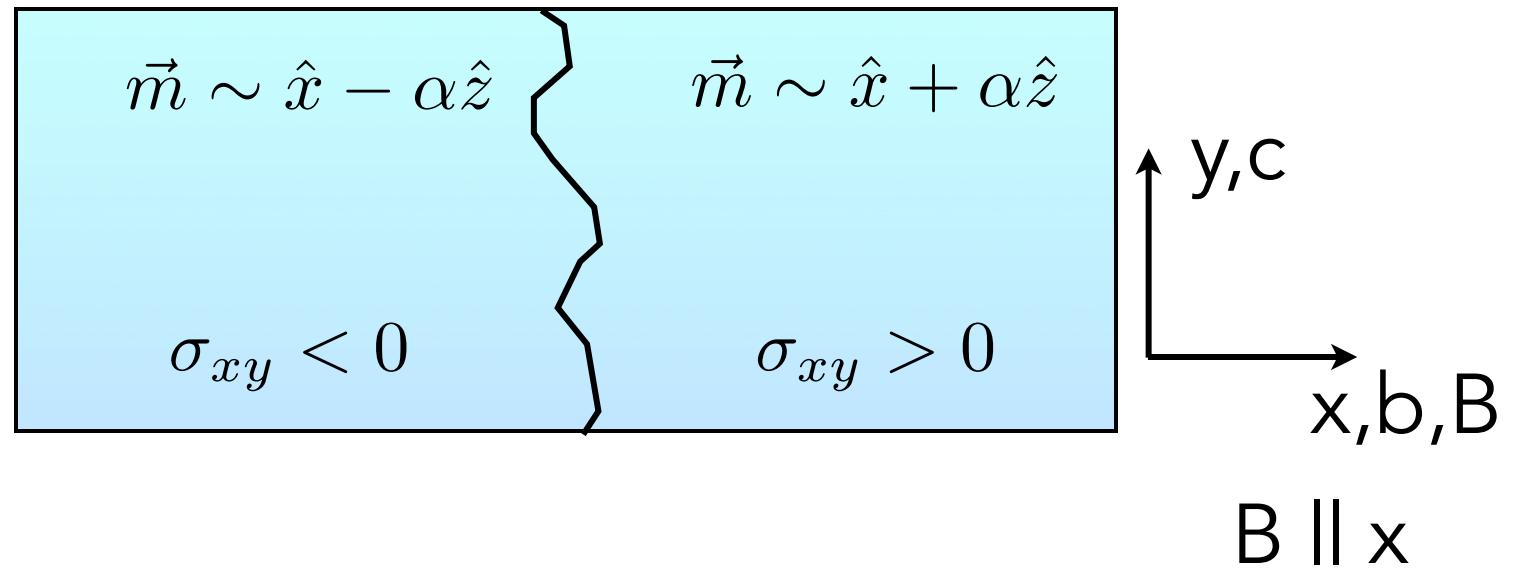


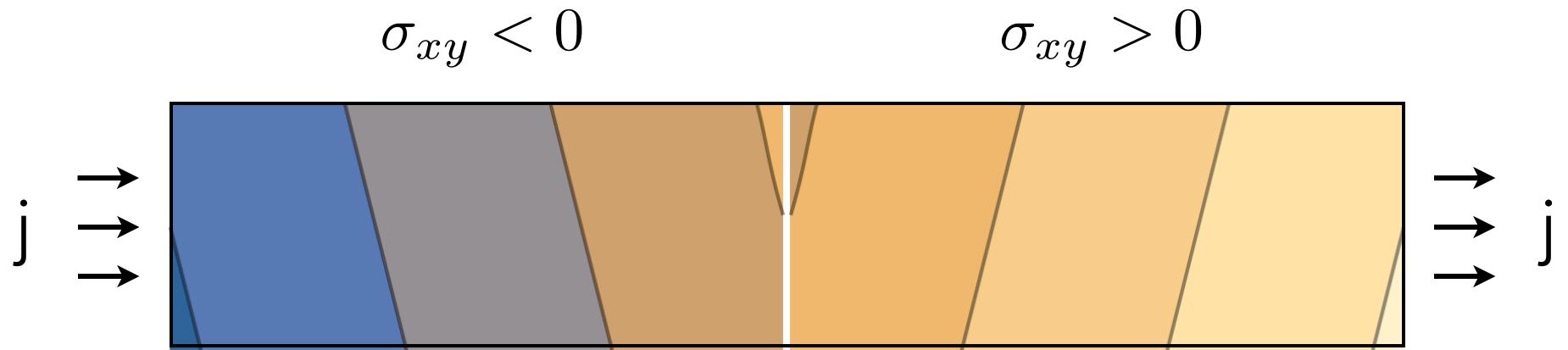
controllable
domain walls
in narrow
Hall bar

(triangle wave of $B_z(t)$)

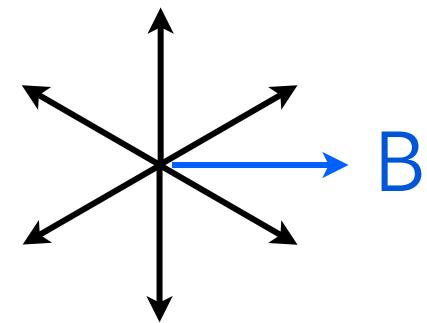


$\cos \theta$
 $\sin \theta$



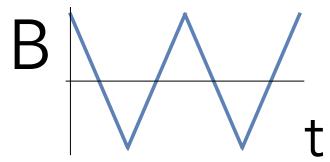
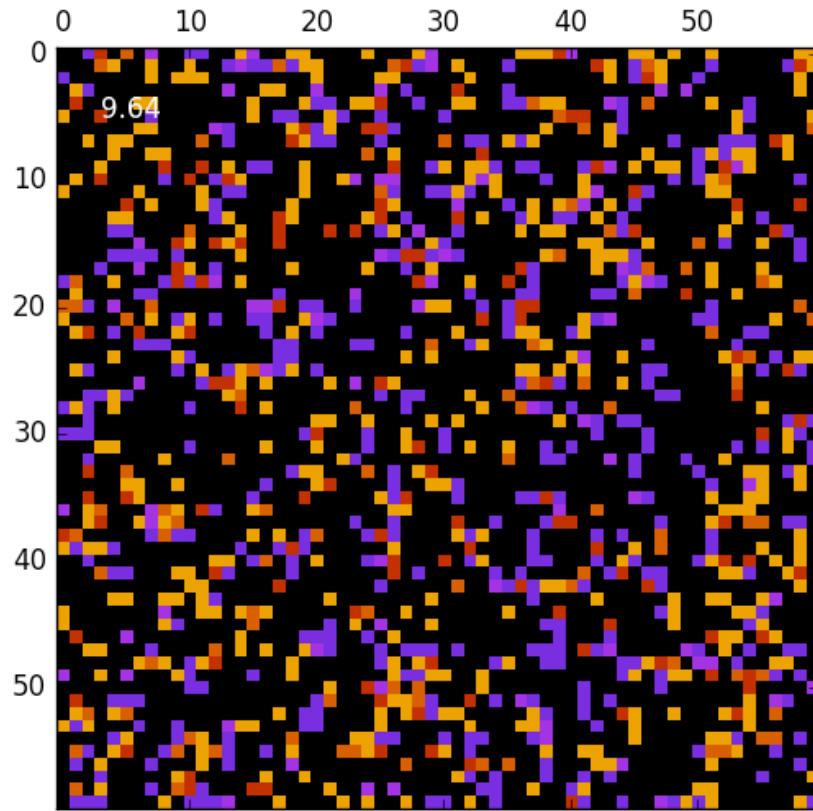


equipotentials from
solution of Laplace's
equation for a Hall bar
with two domains

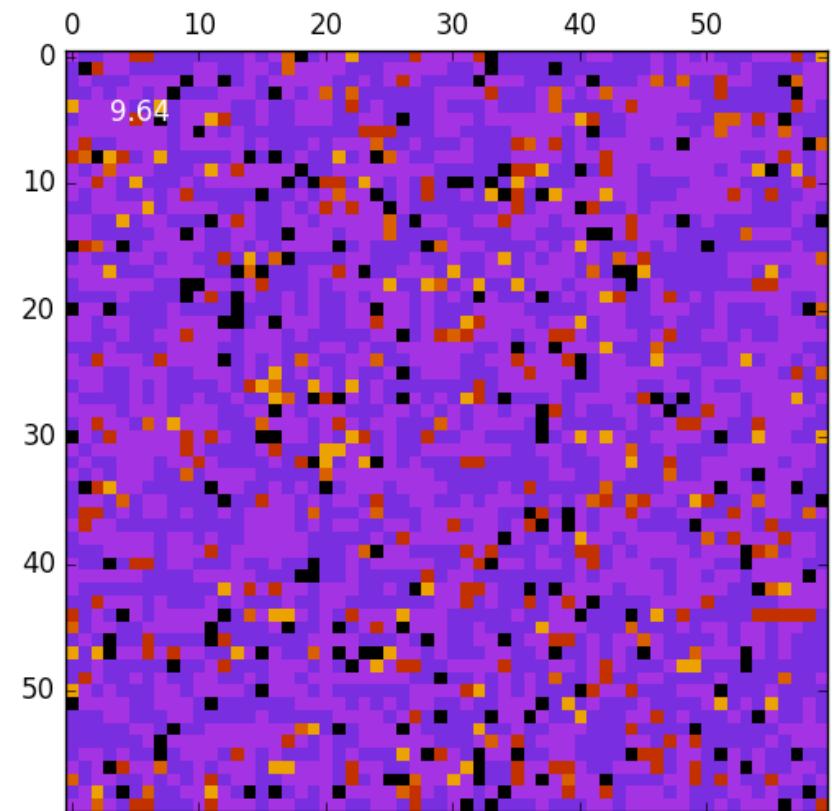


Could use this DW as a switch??

Wider sample



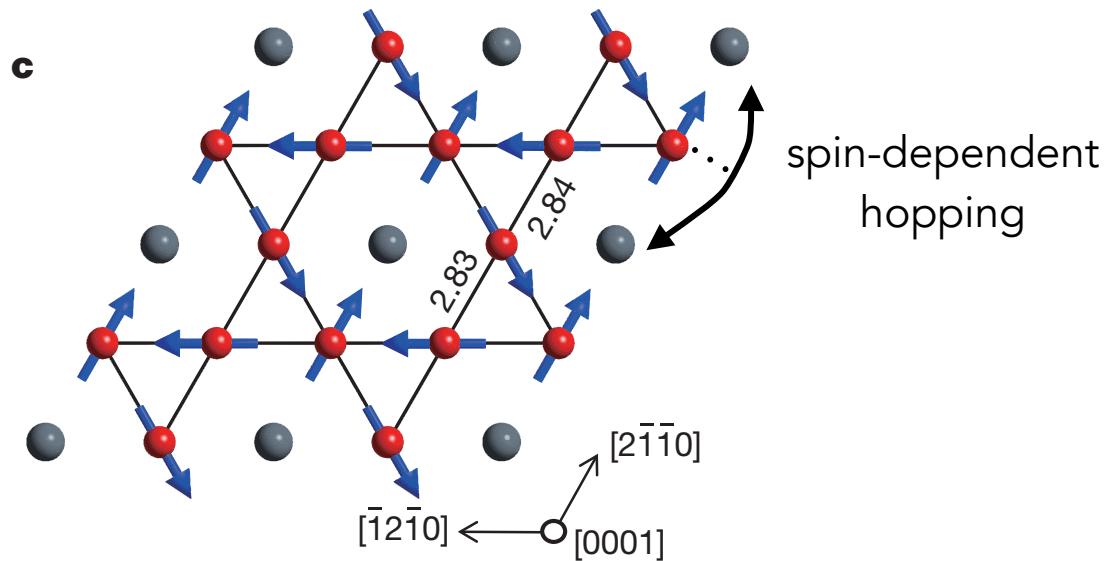
$B \parallel$ easy axis



$B \perp$ easy axis

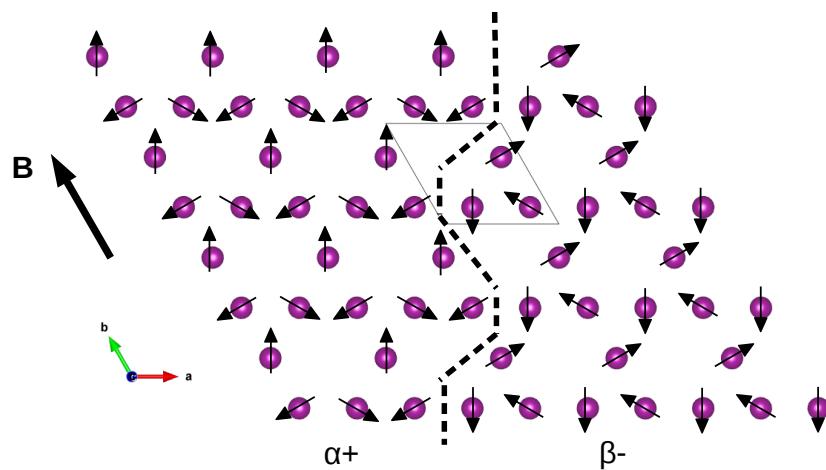
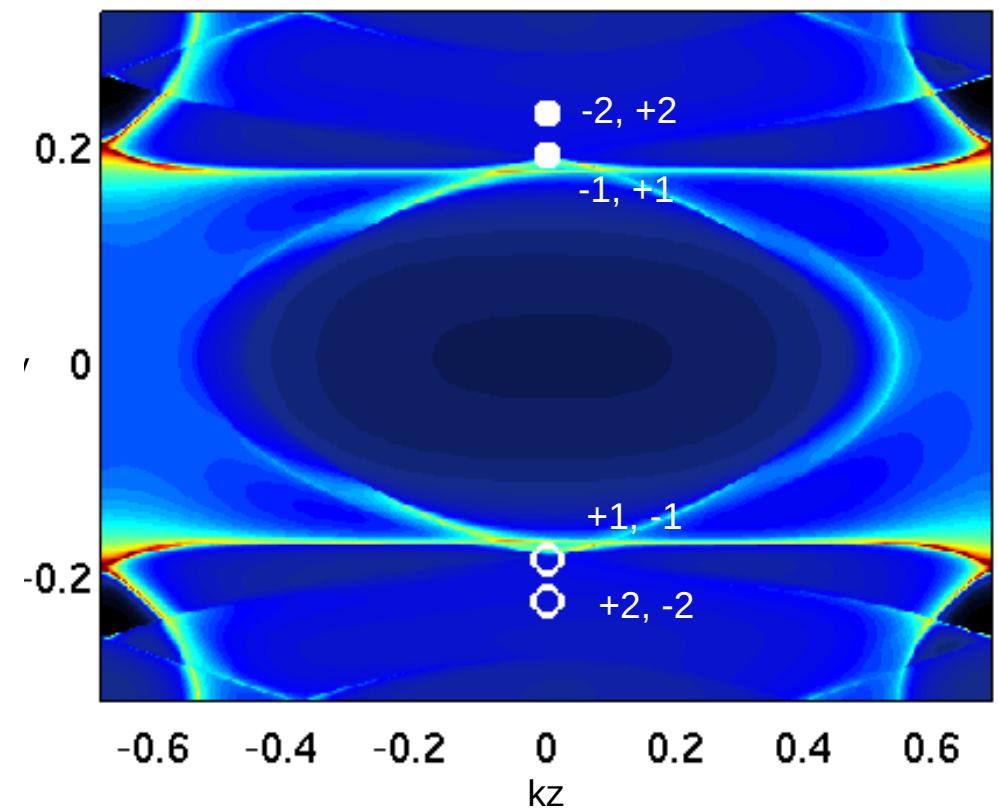
A model

tight-binding
of single
orbital on Sn
sites: a 4 band
model



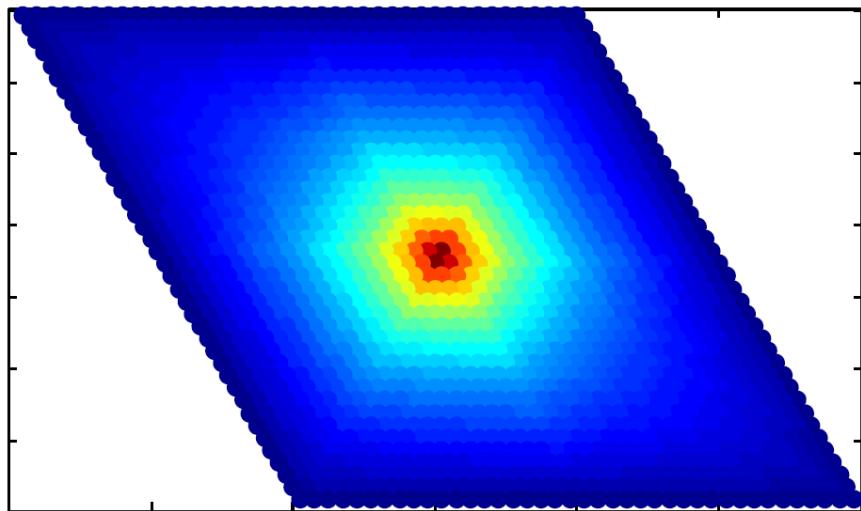
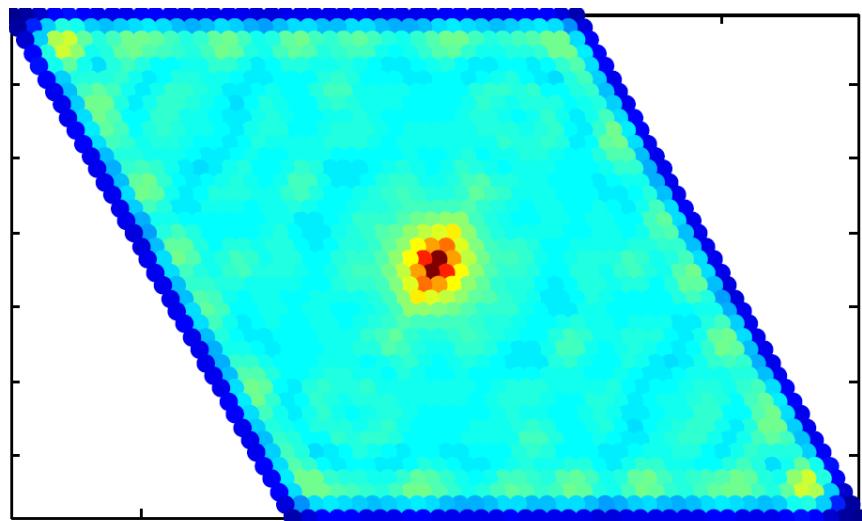
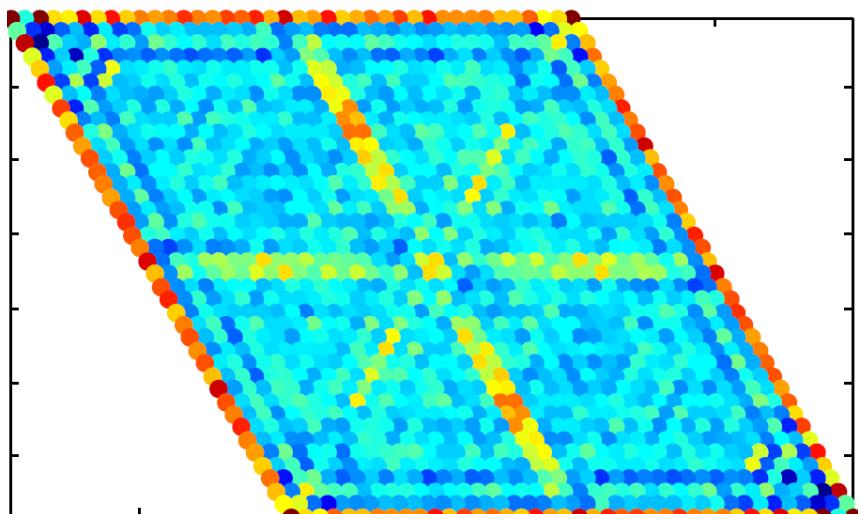
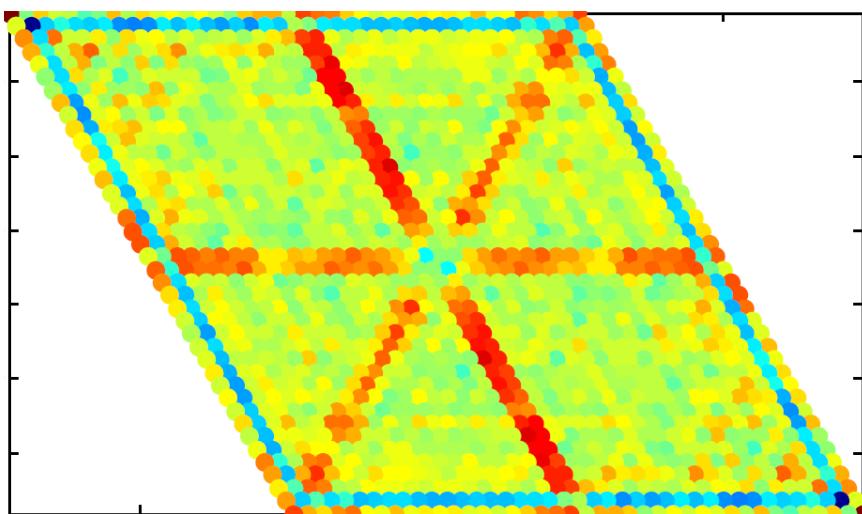
Enables efficient study of domain walls, vortices
etc.

e.g.: Domain wall



twice as many Fermi arcs as a surface

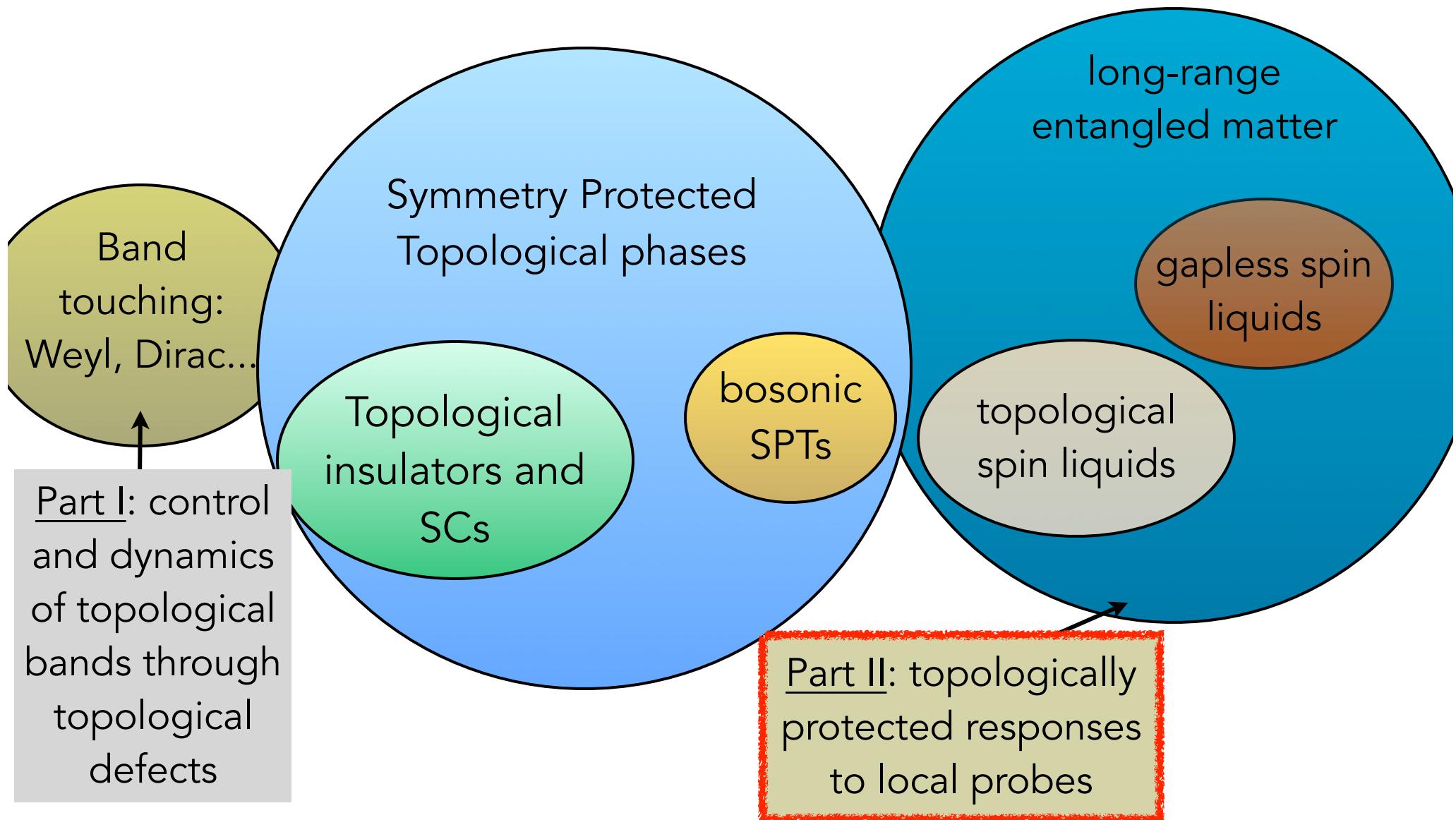
Z_6 vortex



Summary of Part I

- Ingredients are in place for nano-scale transport studies of non-trivial domain walls (conformational modeling and spatially resolved measurements crucial)
- Q: Are there interesting electronic features of Z_6 vortices?
- Q: What is the role of *fluctuations* of magnetic textures?

Topology++

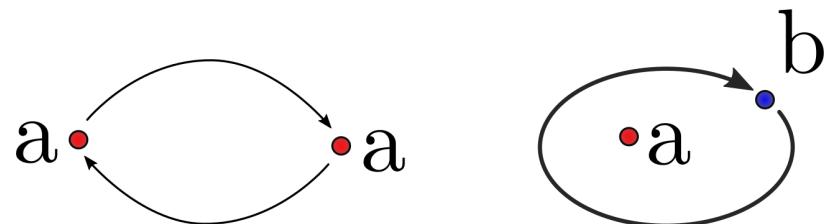


Quantum Spin Liquids



$$|\Psi\rangle = \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins} \end{array} + \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins} \end{array} + \dots$$

Simplest examples: *topological* spin liquids



excitations are
anyons

$$\begin{array}{c} \text{Diagram of two blue lines labeled 'e' and 'm' crossing} \\ \times \end{array} = \begin{array}{c} \text{Diagram of two vertical blue lines labeled 'e' and 'm'} \\ | \quad | \end{array} = - \begin{array}{c} \text{Diagram of two vertical blue lines labeled 'e' and 'm'} \\ | \quad | \end{array}$$

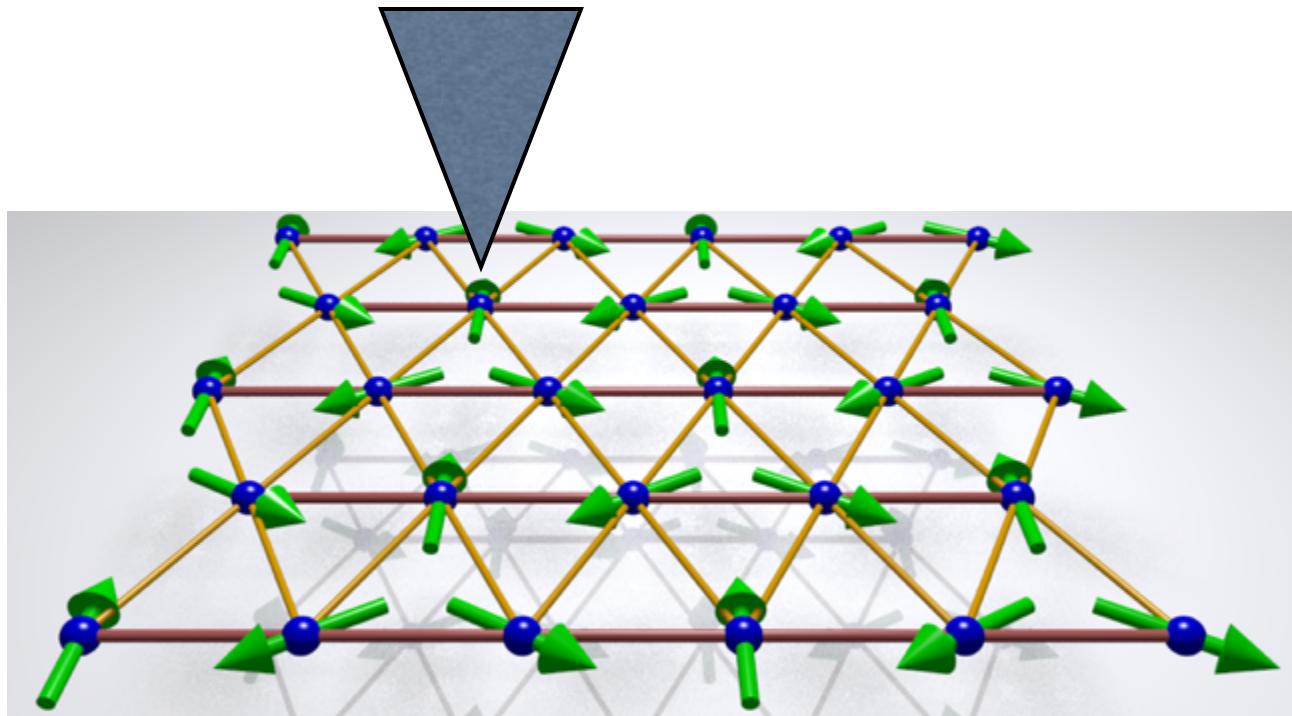
toric code/ Z_2 QSL

How do we probe them?

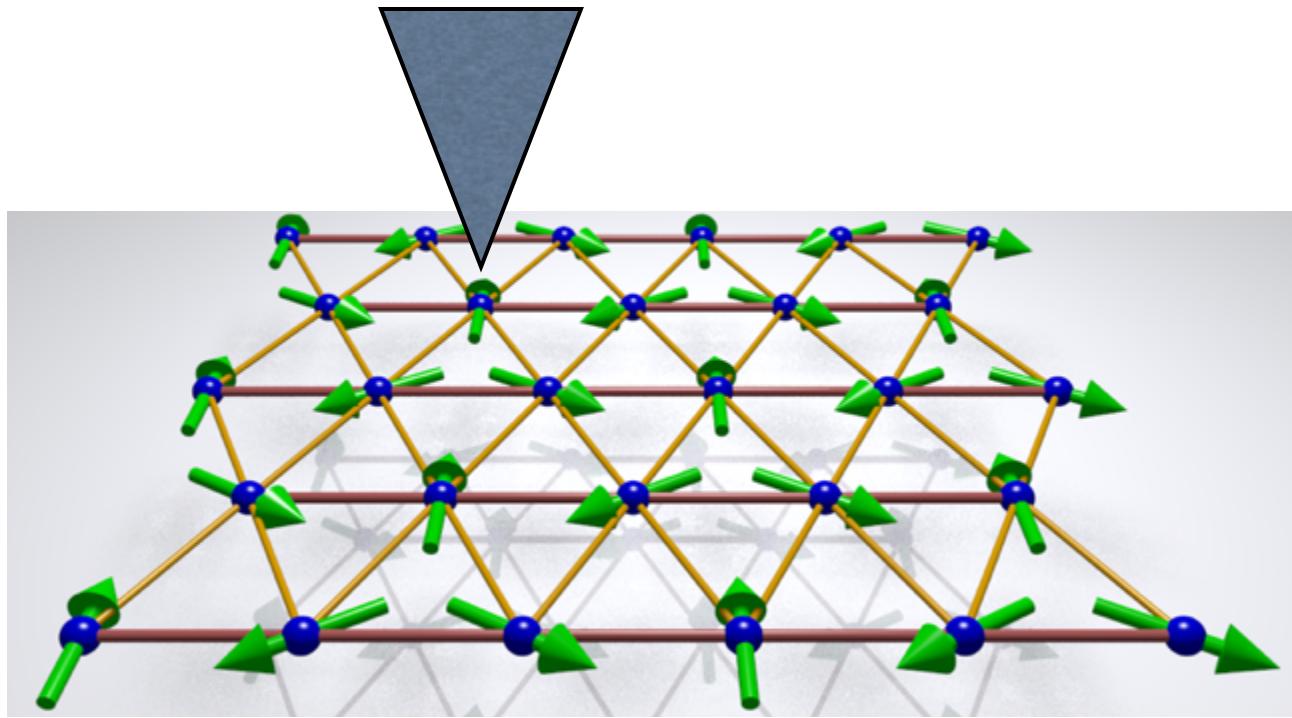
Experimentalist: "I've got this great scanning XXX*"

Theorist: "Pretty picture...but how can a local measurement tell us anything about topology?"

*STM, AFM, SQUID, terahertz STM, SC STM, NV magnetometer, banana, quantum dot, microwave detector,...

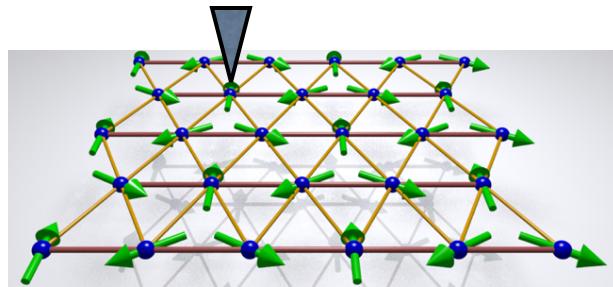


What happens when you apply a local perturbation to a topological system?



Warm-up: non-topological system

Transverse-field Ising model



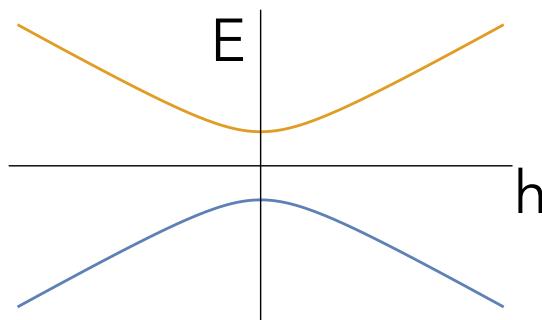
$$H = -J \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - h_{\perp} \sum_i \sigma_i^x$$

Apply local field

$$H' = -h \sigma_n^z$$

$$h_{\perp} \gg J$$

$$H_n \approx -h_{\perp} \sigma_n^x - h \sigma_n^z$$

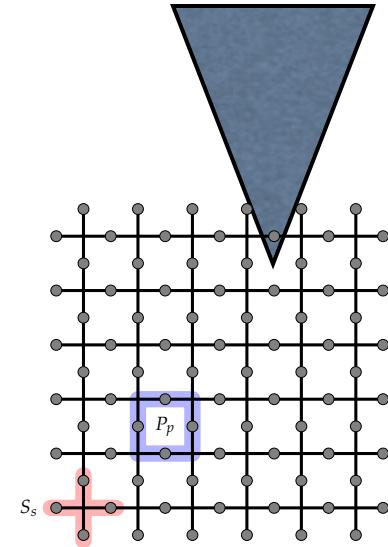


avoided crossing: *smooth response* to applied force.
This is expected for bosonic/spin system whenever local force
breaks all symmetries

$$|\Psi\rangle = \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins, with a shaded cone above it.} \\ + \end{array} \begin{array}{c} \text{Diagram of a triangular lattice with blue ovals representing spins, with a shaded cone above it.} \\ + \cdots \end{array}$$

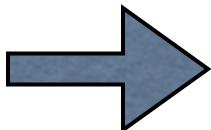
What happens in a spin liquid?

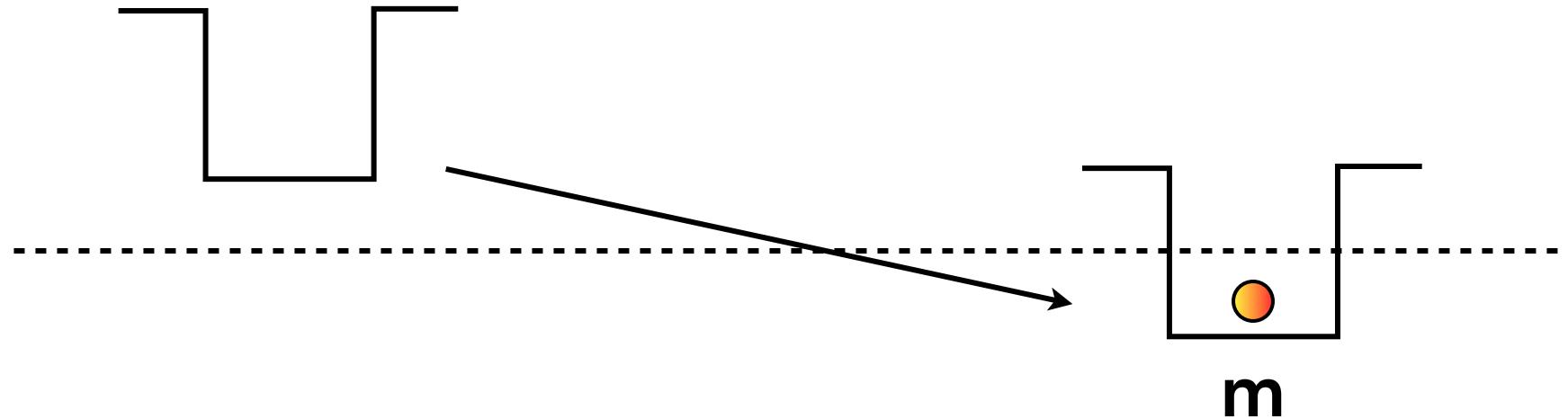
A model topological spin liquid: Kitaev's toric code



$$H_{\text{tc}} = -K \sum_p P_p - K' \sum_s S_s,$$

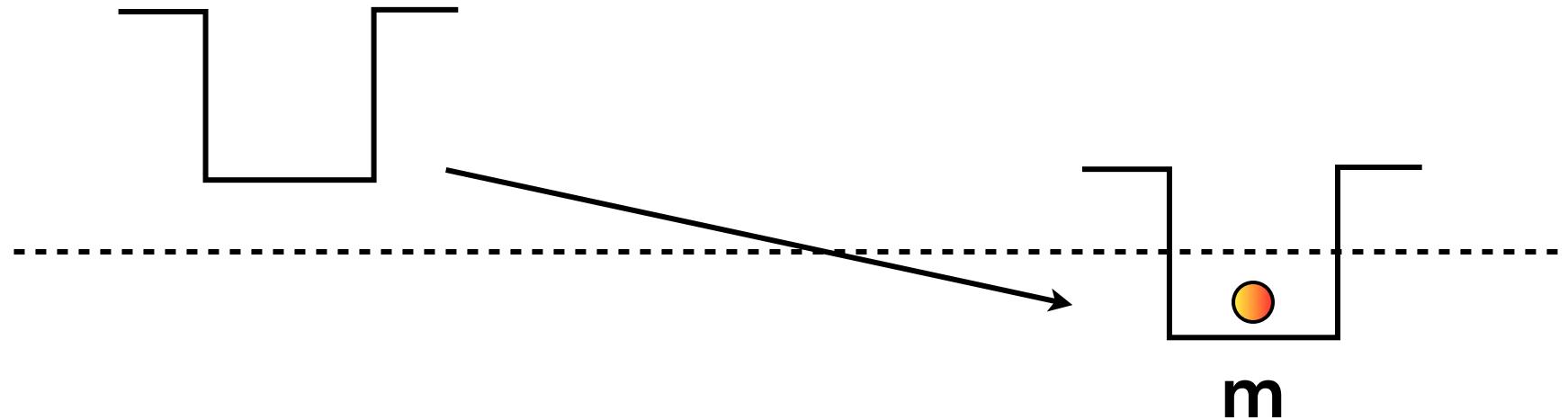


vary one K_n  level crossing



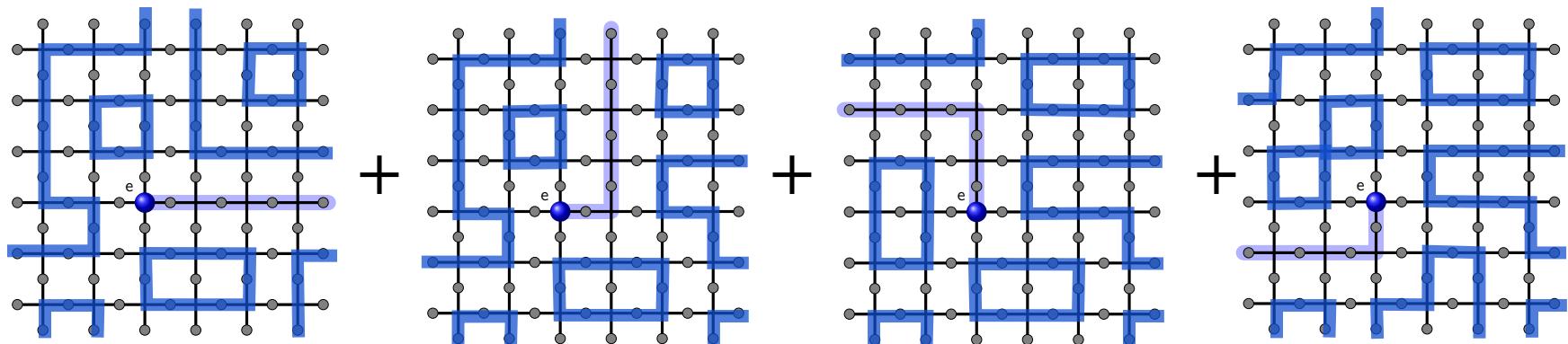
local potential binds an anyon

Level repulsion between state with and without **m** particle is *topologically* forbidden: no local operators can create/annihilate a single anyon. The crossing persists under arbitrary perturbations.

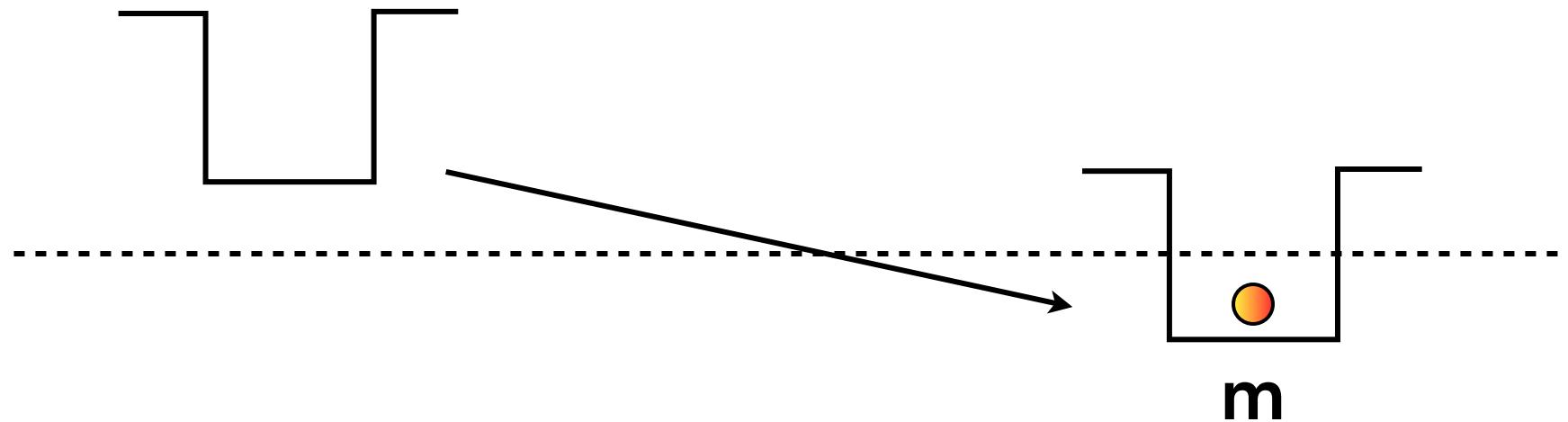


local potential binds an anyon

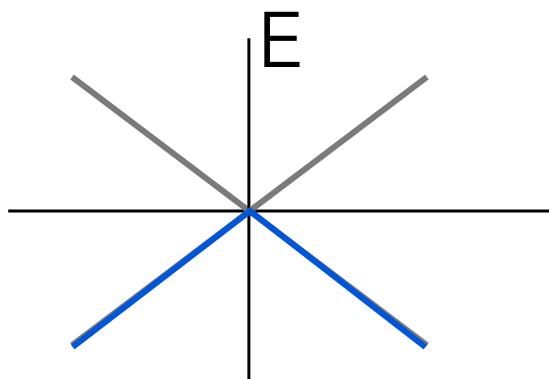
$|e_s\rangle =$



robustness due to "field line" emanating from anyon

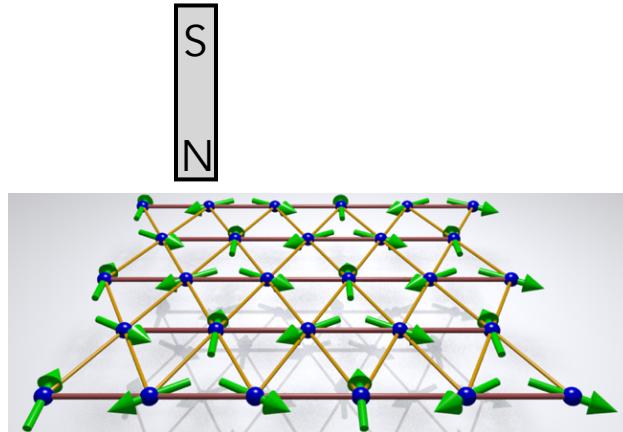


local potential binds an anyon



cusp in ground state energy:
a topologically protected local
quantum phase transition with
a discontinuity in local
susceptibility

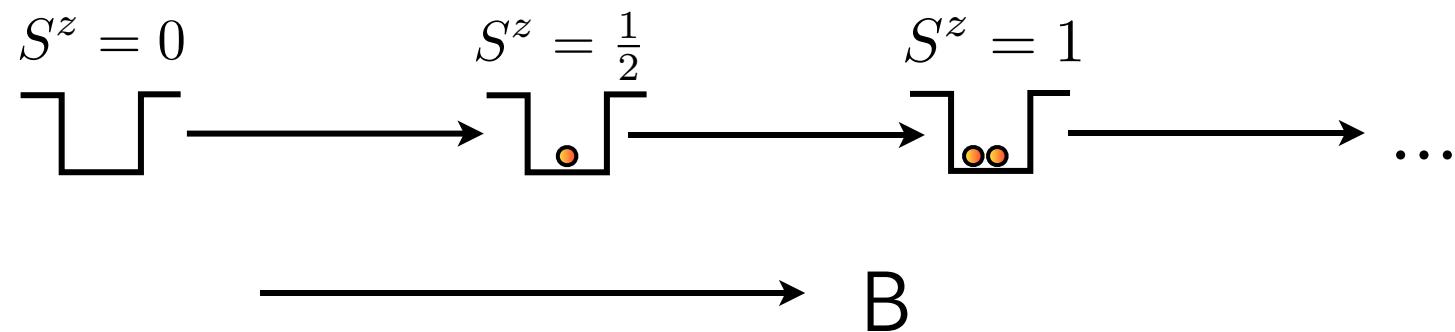
Weak spin-orbit-coupling



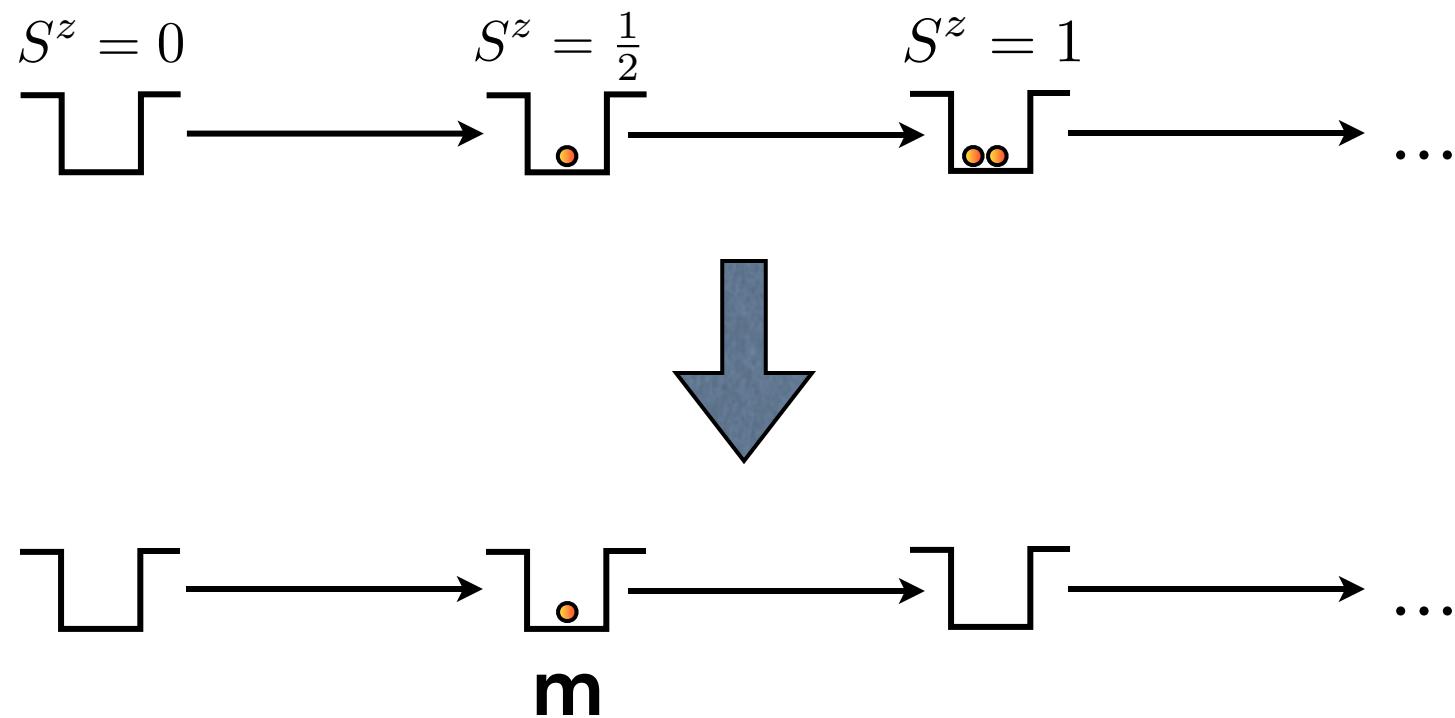
local magnetic field

$$H' = -B \sum_i f_i S_i^z \quad \text{lowers energy of excitations with spin}$$

Spinons: anyons of QSL carry spin-1/2

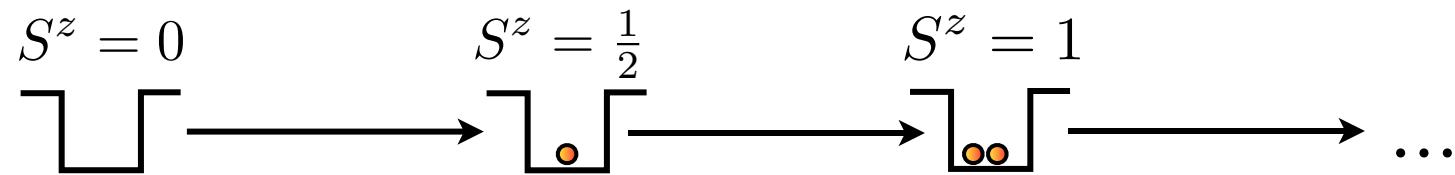
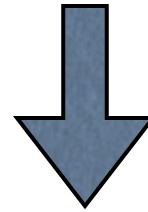
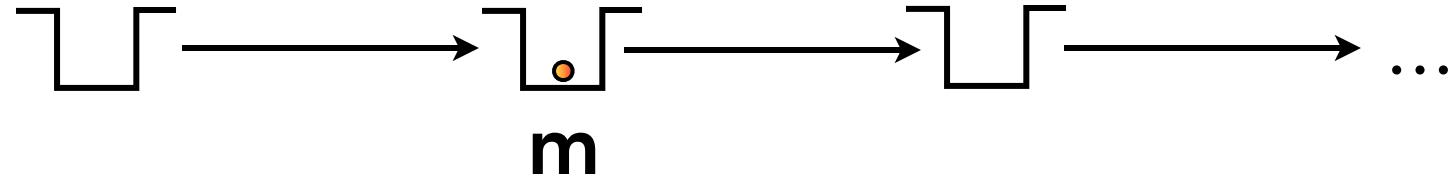


Spin non-conservation



Periodic level crossings remain robust,
and should be expected generically in
gapped spin liquids with weak SOC!

Spin non-conservation



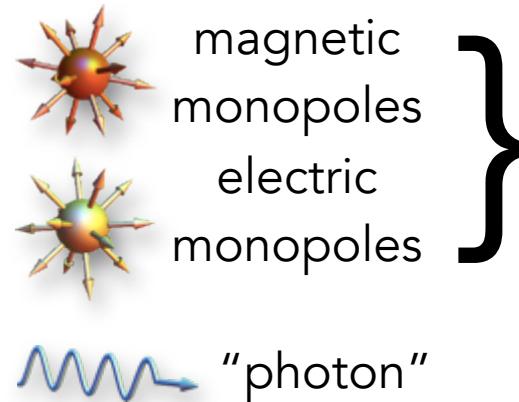
Strong SOC does not affect the protection,
but it makes it less obvious what local
perturbation creates the level crossing

Gapless spin liquids

“non-local” excitations are characteristic of most QSLs: so we expect that the local QPT is very general

e.g. Coulomb 3d QSL (quantum spin ice)

- anyons replaced by non-local quasiparticles



magnetic
monopoles

electric
monopoles

}
cannot be
created/
destroyed
locally

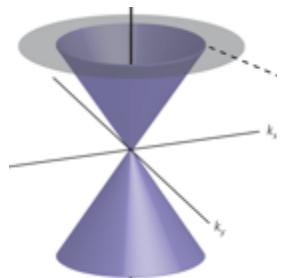
- protected level crossing ✓

Gapless spin liquids

“non-local” excitations are characteristic of most QSLs: so we expect that the local QPT is very general

e.g. Kitaev honeycomb QSL ($\text{Na}_2\text{IrO}_3, \text{RuCl}_3, \dots$)

- “Fluxes” are non-local and can undergo binding
- Binding becomes non-trivial edge singularity due to gapless Majorana fermions
- But a local QPT persists ✓



Summary

- Rich interplay of band topology and AHE with real-space topological defects is possible in real AFs. Propose studies of domain walls and vortices in Mn_3Sn
- Local studies of QSLs can reveal topological anyons or even more exotic excitations through protected local QPTs

