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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
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FIG. 2. Bulk band structures for (a) Mn3Sn and (b) Mn3Ge along
high-symmetry lines with SOC. The bands near the Z and K (indi-
cated by red circles) are expanded to show details in (a). The Fermi
energy is set to zero.

Z and K points, which are below the Fermi energy. Because
of MzT and the nonsymmorphic symmetry {My|⌧ = c/2}, the
bands are supposed to be quadruply degenerate at the Bril-
louin zone boundary Z, forming a Dirac point protected by
the nonsymmorphic space group38–40. Given the slight mirror
symmetry breaking by the residual net magnetic moment, this
Dirac point is gapped at Z (as shown in the enlarged panel) and
splits into four Weyl points, which are very close to each other
in k space. A tiny gap also appears at the K point. Nearby, two
additional Weyl points appear, too. Since the Weyl point sep-
arations are too small near both Z and K points, these Weyl
points may generate little observable consequence in experi-
ments such as those for studying Fermi arcs. Therefore, we
will not focus on them in the following investigation.

Mn3Sn and Mn3Ge are actually metallic, as seen from the
band structures. However, we retain the terminology of Weyl
semimetal for simplicity and consistency. The valence and
conduction bands cross each many times near the Fermi en-
ergy, generating multiple pairs of Weyl points. We first in-
vestigate the Sn compound. Supposing that the total valence
electron number is Nv, we search for the crossing points be-
tween the N th

v and (Nv + 1)th bands.
As shown in Fig. 3a, there are six pairs of Weyl points

in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
These Weyl points lie in the Mz plane (with W2 points be-
ing only slightly o↵ this plane owing to the residual-moment-
induced symmetry breaking) and slightly above the Fermi en-
ergy. Therefore, there are four copies for each of them accord-
ing to the symmetry analysis in Eq. 2. Their representative co-
ordinates and energies are listed in Table I and also indicated
in Fig. 3a. A Weyl point (e.g., W1 in Figs. 3b and 3c) acts as
a source or sink of the Berry curvature⌦, clearly showing the
monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
points. As shown in Fig. 4a and listed in Table II, there are
nine groups of Weyl points. Here W1,2,7,9 lie in the Mz plane
with W9 on the ky axis, W4 appears in the Mx plane, and
the others are in generic positions. Therefore, there are four
copies of W1,2,7,4, two copies of W9, and eight copies of other
Weyl points. Although there are many other Weyl points in
higher energies owing to di↵erent band crossings, we mainly

FIG. 3. Surface states of Mn3Sn. (a) Distribution of Weyl points in
momentum space. Black and white points represent Weyl points with
� and + chirality, respectively. (b) and (c) Monopole-like distribution
of the Berry curvature near a W1 Weyl point. (d) Fermi surface at
EF = 86 meV crossing the W1 Weyl points. The color represents
the surface LDOS. Two pairs of W1 points are shown enlarged in the
upper panels, where clear Fermi arcs exist. (e) Surface band structure
along a line connecting a pair of W1 points with opposite chirality.
(f) Surface band structure along the white horizontal line indicated in
(d). Here p1 and p2 are the chiral states corresponding to the Fermi
arcs.

focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
an example. Without including SOC, we observed a nodal-
ring-like band crossing in the band structures of both Mn3Sn
and Mn3Ge. SOC gaps the nodal rings but leaves isolating
band-touching points, i.e., Weyl points. Since Mn3Sn exhibits
stronger SOC than Mn3Ge, many Weyl points with opposite
chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,

3
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focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
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chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,
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FIG. 2. Bulk band structures for (a) Mn3Sn and (b) Mn3Ge along
high-symmetry lines with SOC. The bands near the Z and K (indi-
cated by red circles) are expanded to show details in (a). The Fermi
energy is set to zero.

Z and K points, which are below the Fermi energy. Because
of MzT and the nonsymmorphic symmetry {My|⌧ = c/2}, the
bands are supposed to be quadruply degenerate at the Bril-
louin zone boundary Z, forming a Dirac point protected by
the nonsymmorphic space group38–40. Given the slight mirror
symmetry breaking by the residual net magnetic moment, this
Dirac point is gapped at Z (as shown in the enlarged panel) and
splits into four Weyl points, which are very close to each other
in k space. A tiny gap also appears at the K point. Nearby, two
additional Weyl points appear, too. Since the Weyl point sep-
arations are too small near both Z and K points, these Weyl
points may generate little observable consequence in experi-
ments such as those for studying Fermi arcs. Therefore, we
will not focus on them in the following investigation.

Mn3Sn and Mn3Ge are actually metallic, as seen from the
band structures. However, we retain the terminology of Weyl
semimetal for simplicity and consistency. The valence and
conduction bands cross each many times near the Fermi en-
ergy, generating multiple pairs of Weyl points. We first in-
vestigate the Sn compound. Supposing that the total valence
electron number is Nv, we search for the crossing points be-
tween the N th

v and (Nv + 1)th bands.
As shown in Fig. 3a, there are six pairs of Weyl points

in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
These Weyl points lie in the Mz plane (with W2 points be-
ing only slightly o↵ this plane owing to the residual-moment-
induced symmetry breaking) and slightly above the Fermi en-
ergy. Therefore, there are four copies for each of them accord-
ing to the symmetry analysis in Eq. 2. Their representative co-
ordinates and energies are listed in Table I and also indicated
in Fig. 3a. A Weyl point (e.g., W1 in Figs. 3b and 3c) acts as
a source or sink of the Berry curvature⌦, clearly showing the
monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
points. As shown in Fig. 4a and listed in Table II, there are
nine groups of Weyl points. Here W1,2,7,9 lie in the Mz plane
with W9 on the ky axis, W4 appears in the Mx plane, and
the others are in generic positions. Therefore, there are four
copies of W1,2,7,4, two copies of W9, and eight copies of other
Weyl points. Although there are many other Weyl points in
higher energies owing to di↵erent band crossings, we mainly
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� and + chirality, respectively. (b) and (c) Monopole-like distribution
of the Berry curvature near a W1 Weyl point. (d) Fermi surface at
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along a line connecting a pair of W1 points with opposite chirality.
(f) Surface band structure along the white horizontal line indicated in
(d). Here p1 and p2 are the chiral states corresponding to the Fermi
arcs.
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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 
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Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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�
xy

> 0�
xy

< 0

j j

equipotentials from 
solution of Laplace’s 

equation for a Hall bar 
with two domains

Could use this DW as a switch??

B



Wider sample
B

t

B || easy axis B ⟂ easy axis



2 1 2  |  N A T U R E  |  V O L  5 2 7  |  1 2  N O V E M B E R  2 0 1 5
© 2015 Macmillan Publishers Limited. All rights reserved

LETTER
doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively

[0001]

[0001]

[0001]

[1210] [1210]

[1210]

[2110]

[2110]

[2110]

a

Mn

2.
83

2.
84 Sn

z = 0

b

c

z = 1/2

A model
tight-binding 

of single 
orbital on Sn 

sites: a 4 band 
model

spin-dependent 
hopping

Enables efficient study of domain walls, vortices 
etc.



e.g.: Domain wall

  

Surface and domain-wall states

-2, +2

-1, +1

+2, -2

+1, -1

kz

ky

Domain-wall Fermi arcs at Ew: sharp domain wall between α+ and β-

twice as many Fermi arcs as a surface

  

Domain wall  between α+ and β- domains, assume a sharp domain wall

These two domains can be selected by applying a magnetic field along the 
direction of the b vector (green vector).

α+ β-

B



Z6 vortex

  

Local DOS at Energy=7

Local DOS at Energy=6.13

Vortex bound states, 
because it is out of 
the bulk continuum

The vortex modes 
start being merged 
into the bulk 
continuum

  

Local DOS at Energy=-0.87

Local DOS at Energy=0.545

The peaks of the vortex 
DOS at E=0.545 are 
from the domain-wall 
states that are extended 
to the vortex

These are simply 
domain-wall states

  

Local DOS at Energy=-0.87

Local DOS at Energy=0.545

The peaks of the vortex 
DOS at E=0.545 are 
from the domain-wall 
states that are extended 
to the vortex

These are simply 
domain-wall states

  

Local DOS at Energy=7

Local DOS at Energy=6.13

Vortex bound states, 
because it is out of 
the bulk continuum

The vortex modes 
start being merged 
into the bulk 
continuum



Summary of Part I
• Ingredients are in place for nano-scale 

transport studies of non-trivial domain walls 
(conformational modeling and spatially 
resolved measurements crucial)

• Q: Are there interesting electronic features of 
Z6 vortices?

• Q: What is the role of fluctuations of 
magnetic textures?



Topology++

Topological 
insulators and 

SCs

Band 
touching: 

Weyl, Dirac...

Symmetry Protected 
Topological phases

bosonic 
SPTs

topological 
spin liquids

gapless spin 
liquids

long-range 
entangled matter

Part I: control 
and dynamics 
of topological 
bands through 

topological 
defects

Part II: topologically 
protected responses 

to local probes
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Quantum Spin Liquids

Simplest examples: topological spin liquids

Quantum Spin Liquids 5

around this closed loop L,

| 
fin

i =
Y

i2L
�z
i | init

i. (5)

Now we can use the discrete equivalent of Stokes’
theorem, to rewrite
Y

i2L
�z
i =

Y

p2A
Pp, (6)

where L = @A, i.e. A is the area bounded by L. Since
the initial state has a magnetic particle inside L, then
exactly one Pp in this product is negative, and we find
that

| 
fin

i = �| 
init

i. (7)

Thus the act of bringing the e particle around them one
has induced a ⇡ phase shift. We say that the e and m
particles have non-trivial mutual statistics (specifically
they are mutual “semions”). In addition to the e and m
particles, one can also consider a composite " particle
which is just an e and m particle sitting next to one
another. Unlike the e and m particles, which have
trivial bosonic self-statistics, the " particle is actually
a fermion under self-exchange. This can be seen by
similar considerations to above.

Figure 3. Statistics and mutual statistics in topological phases.
In (i), two identical quasiparticles of type a are exchanged. This
exchange may be accompanied by an arbitrary phase in two
dimensions, which defines the self-statistics of an anyon. In (ii)
a quasiparticle of type b is moved around a quasiparticle of type
a, and the wavefunction accumulates a phase which defines the
mutual statistics of the two anyons in two dimensions. In three
dimensions, as shown in (iii), the mutual statistics of particles
is replaced by the phase accumulated on moving a pointlike
quasiparticle b around a closed loop which links with a line-
like defect b. The pointlike particles, however, must be bosons
or fermions.

The existence of these emergent anyons can be
considered the defining feature of the toric code
phase. Although we have discussed them based on the
exactly soluble Hamiltonian in Eq. (1), they persist as
excitations in the presence of arbitrary modifications
to the Hamiltonian, provided those changes are no too
large in magnitude. All the other properties of the
phase can be understood based on these quasiparticles
(see e.g. Ref.[1]). For example, the topological
degeneracy can be derived by considering the process of
locally creating a quasiparticle pair, transporting one

of the quasiparticles around a cycle of the torus, and
then annihilating it with its partner.

2.2. Anyons need entanglement

How are these anyons connected to entanglement?
From several perspectives, it is clear that they cannot
exist without massive entanglement. If it were possible
to approximate the ground state by a product form,
then we would expect that excitations can be built from
excitations of a single block. But the excitations of a
finite block must always have quantum numbers that
can be obtained by adding those of the microscopic
components of the system, e.g. electrons or spins.
Such excitations can always be created “locally”,
at least by operators defined within a single block.
These contradict the emergent electric and magnetic
quantum numbers of the toric code anyons, and the
fact that they can be created only in pairs.

Figure 4. Illustration of how entanglement supports anyons in
the toric code. A pair of e anyons at the ends of a line L is
created by the action of a string of �x

i

along L. It is crucial
that this string does not modify the ground state away from
the ends, otherwise the state created would have an energy
proportional to its length. Here we show the action of this
string, shown in red, away from its ends, on the toric code
state, which is a superposition of loops. Each component in
the second line corresponds to the result of the action of the
string operator on the component directly above it, in the first
line. We can see that, while the action of the string modifies each
component of the wavefunction all along the line, the result is
simply another component of the original state, as shown by the
arrows. Consequently, the highly entangled superposition state
is not modified by the string (except at its ends, which are not
shown here).

Another symptom of the key role of entanglement
in the topological phase is the non-trivial mutual
statistics itself. This implies a kind of “action at a
distance”: two anyons sense each other even when
they are arbitrarily far away. There must be some
structure in the background of the wavefunction that
allows them to maintain that information. A more
direct connection to entanglement can be made by
considering the string operators that create pairs of
anyons. Consider a long string operator as in Eq. (6).
When acting on the ground state it creates a pair of
anyons which are well-separated, at an energy cost
which is non-zero but finite (equal to 4K 0 in the ideal
model). It is actually surprising that this operator,

excitations are 
anyons

9.3. Anyons

Here, the diagram is different

(367)

e m

e m

= �

e m

e m

.

The # particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an # particle – behaves as a fermion! Basically if we make an
interchange of two #’s, we effectively wind a constituent e particle of one #

half-way around the m of the other # particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= �

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two e particles, described by some initial state |yiniti, such that, acting on
|yiniti, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = �1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = �1. We choose s1 and p1 to be adjacent,
comprising one # “particle”, and s2 and p2 to be adjacent, making up the
other # particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two # particles. We will do this by a sequence
of unitary transformations, so that

(369) |yfinali = U|yiniti,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single s

z
i and s

x
j operator to
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How do we probe them?

Experimentalist: “I’ve got this great 
scanning XXX*”

Theorist: “Pretty picture...but how can a 
local measurement tell us anything 
about topology?”

*STM, AFM, SQUID, terahertz STM, SC STM, NV 
magnetometer, banana, quantum dot, microwave detector,...



What happens when you apply a local 
perturbation to a topological system?



Warm-up: non-topological system



Transverse-field Ising model

H = �J
X

hiji

�z

i

�z

j

� h?
X

i

�x

i

Apply local field H 0 = �h�z
n

h? � J H
n

⇡ �h?�
x

n

� h�z

n

avoided crossing: smooth response to applied force.
This is expected for bosonic/spin system whenever local force 

breaks all symmetries

E

h
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What happens in a spin liquid?



A model topological spin 
liquid: Kitaev’s toric code

9. Toric code

Pp

Ss

Figure 12: Toric code. Spins reside on the sites of the gray dots. The blue
shaded region shows the spins involved in a plaquette operator, while the red
shaded regions shows a star operator.

where the si = ±1 are chosen to satisfy the star rule Ss = 1. For example, we
can take si = 1 everywhere. Then, we can act on it with the projectors

(355) Qp =
1 + Pp

2
=

1
2 Â

qp=0,1
Pqp

p ,

which projects onto states with Pp = 1. Using this,

(356) |0i = ’
p

Qp|y0i.

By writing out the product explicitly,

(357) |0i = 2�N Â
q1···qN=0,1

’
p

Pqp
p |y0i,

we see that it is the sum of all possible products of plaquette operators act-
ing on the base state. Each plaquette operator flips the si values on the sites
contained in that plaquette. If we choose si = +1, then |y0i is the “zero loop”
state, and each product of plaquette operators creates loops on the plaquettes
with non-zero qp. Hence |0i appears to be a massive superposition of loop
states, in which two loop configurations related to another by a flip of a min-
imal square plaquette appear with equal weight. This looks highly entangled
indeed.

9.2 Ground state degeneracy on the torus

It might seem there are many such states, depending upon the choice of si.
However, using Qp = QpPp, we can see that states in which the si are re-

94

an active subject today.

9 Toric code

Lecture 19 (1.5h)
December 1st, 2015In the previous section, we saw that states with the same symmetry may still

be distinguished by topology. The non-trivial phases of this type can have in-
teresting boundary degrees of freedom which are anomalous, like the s = 1/2
boundary spins of the AKLT chain. These SPT phases are, however, fragile,
because they rely on a symmetry to distinguish them from the trivial phase.
If we, for example, apply a magnetic field to the AKLT chain, it immediately
becomes indistinguishable from a trivial state. The two states of the end spin
are no longer degenerate.

There are, however, even more exotic things. It is possible for a system
to enter a non-trivial phase which is stable to all perturbations. Even with no
symmetry at all, it remains non-product within some finite domain of stability.
The simplest example of this is the two-dimensional toric code model of Kitaev,
which is actually largely a reinterpretation of the Ising lattice gauge theory
introduced much earlier by Wegner. There is a very nice review article by
Kitaev and Laumann which presents this, and a number of other topics, in
quite readable form. Consider a set of spin-1/2 “spins” on the middle of the
links of a square lattice, with the Hamiltonian

(353) Htc = �K Â
p

Pp � K0 Â
s

Ss,

where the sums are over plaquettes p and sites s, the plaquette operator Pp =
’i2p s

z
i is a product over the spins on the bonds surrounding the plaquette

p, and the “star” operator Ss = ’i2s s

x
i is a product over the spins on bonds

neighboring the site s.

9.1 Massive superposition in the ground state

Obviously all the star operators commute as do the plaquette operators, and
one can easily verify that the stars and plaquettes do as well, [Ss, Pp] = 0 for
all p, s. This makes the toric code model especially easy to solve: ground states
are simply those states for which Ss = Pp = +1 for every star and plaquette.

While this looks fairly trivial in these variables, the state itself in any local
basis is highly entangled. Consider for instance the s

x
i basis, which is complete

and local. States with Ss = 1 are those in which an even number of spins
composing each star have eigenvalues s

x
i = �1. One may represent these

states by coloring the links with negative spins, and according to Ss = 1 the
links form closed loops. Since the operator Pp is off-diagonal in this basis,
it requires superposition of the loop states. One can construct a state with
Pp = +1 everywhere by taking a representative as a “base” state a direct
product state (eigenstate of s

x
i ),

(354) |y0i = ⌦i|sx
i = sii,
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vary one Kn

E

Pn=1

Pn=-1

level crossing

K



m

local potential binds an anyon

Level repulsion between state with and 
without m particle is topologically forbidden: 

no local operators can create/annihilate a 
single anyon.  The crossing persists under 

arbitrary perturbations.



m

local potential binds an anyon

e

Figure 2: Anyons. Two e particles, shown as blue balls, are created by acting
with sz
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operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx
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operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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|esi =

+ + +

robustness due to “field line” emanating from anyon



m

local potential binds an anyon

E
cusp in ground state energy:

a topologically protected local 
quantum phase transition with 

a discontinuity in local 
susceptibility



Weak spin-orbit-coupling

 local magnetic field

N

S

H 0 = �B
X

i

fiS
z
i lowers energy of excitations with spin

Spinons: anyons of QSL carry spin-1/2

B

Sz = 0 Sz = 1
2 Sz = 1

...



Spin non-conservation

Sz = 0 Sz = 1
2 Sz = 1

...

...
m

Periodic level crossings remain robust, 
and should be expected generically in 
gapped spin liquids with weak SOC!



Spin non-conservation

Sz = 0 Sz = 1
2 Sz = 1

...

...
m

Strong SOC does not affect the protection, 
but it makes it less obvious what local 
perturbation creates the level crossing



Gapless spin liquids

e.g. Coulomb 3d QSL (quantum spin ice)

“photon”

magnetic 
monopoles

electric 
monopoles

- anyons replaced by non-
local quasiparticles }

cannot be 
created/

destroyed 
locally

- protected level crossing ✔ ︎ 

“non-local” excitations are characteristic of 
most QSLs: so we expect that the local QPT 

is very general



Gapless spin liquids

“non-local” excitations are characteristic of 
most QSLs: so we expect that the local QPT 

is very general

e.g. Kitaev honeycomb QSL (Na2IrO3,RuCl3,...)
- “Fluxes” are non-local and can undergo binding
- Binding becomes non-trivial edge singularity due to 

gapless Majorana fermions
- But a local QPT persists ✔ ︎



Summary

• Rich interplay of band topology and 
AHE with real-space topological defects 
is possible in real AFs.  Propose studies 
of domain walls and vortices in Mn3Sn

• Local studies of QSLs can reveal 
topological anyons or even more exotic 
excitations through protected local QPTs


