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To control the interplay, we want a soft magnet




Mn3Sn family

large ordered

©
C . .
antiferromagnetic
moment
~ 3 Ug /Mn
© R ® R 9 e tiny canting moment:
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two kagomé layers of
Mn, related by inversion

Tn ~ 420K

Nagamiya et al, 1982



anomalous Hall effect
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anomalous Hall effect
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Weyi

ab initio finds Weyl points and surface Fermi arcs

a) Mn,Sn
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Weyl

ab initio finds Weyl points and surface Fermi arcs
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Textures

Magnetic
order has Z4
structure
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Textures

W = |[e’” F ~ /dgm {g(V@)Q — A\ cos 6«9}
sine-Gordon model with 6-fold anisotropy

* Minimal energy domain walls are not between
time-reversed states

e Magnetization,Hall vector, location of Weyl points
are all determined by domain choice, not by field
in general

* Stable Z, vortices exist



Domain formation




Domain formation
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controllable

domain walls
iIN narrow
Hall bar

(triangle wave of B,(t))
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equipotentials from R

solution of Laplace’s
. ><> B
equation for a Hall bar
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with two domains

Could use this DW as a switch??



Wider sample

B Il easy axis B L easy axis



tight-binding

Of Single spin-dependent
. hoppi
orbital on Sn R

sites: a 4 band
(" R © R © [2110]

model
[1210] %001]

Enables efficient study of domain walls, vortices
etc.



e.g.: Domain wall
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Summary of Part |

® |ngredients are in place for nano-scale
transport studies of non-trivial domain walls
(conformational modeling and spatially
resolved measurements crucial)

® Q: Are there interesting electronic features of
/s vortices?

e Q: Whatis the role of fluctuations of
magnetic textures?
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Quantum Spin Liquids
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Simplest examples: topological spin liquids
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How do we probe them?

Experimentalist: “I've got this great
scanning XXX*"

Theorist: “Pretty picture...but how can a
local measurement tell us anything
about topology?”

*STM, AFM, SQUID, terahertz STM, SC STM, NV
magnetometer, banana, quantum dot, microwave detector,...



What happens when you apply a local
perturbation to a topological system?



Warm-up: non-topological system



Transverse-field Ising model
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Apply local field ~ H' = —hoy,
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E

T

avoided crossing: smooth response to applied force.
This is expected for bosonic/spin system whenever local force
breaks all symmetries

h
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What happens in a spin liquid?



A model topological spin

iquid: Kitaev's toric code

Hi = —K) P, —K') _S;,
p S

vary one K, » level crossing



local potential binds an anyon

Level repulsion between state with and
without m particle is topologically torbidden:
no local operators can create/annihilate a
single anyon. The crossing persists under
arbitrary perturbations.



robustness due to “field line” emanating from anyon



local potential binds an anyon

cusp in ground state energy:
a topologically protected local

quantum phase transition with
a discontinuity in local
susceptibility




Weak spin-orbit-coupling

local magnetic field

H =-B Z fiS;  lowers energy of excitations with spin

2

Spinons: anyons of QSL carry spin-1/2
5% =0 S* =3 S* =1

> B




Spin non-conservation

S% =0 S =1

m

Periodic level crossings remain robust,
and should be expected generically in
gapped spin liquids with weak SOC!



Spin non-conservation

S* =0 S*=3 5% =1

Strong SOC does not affect the protection,
but it makes it less obvious what local
perturbation creates the level crossing



Gapless spin liquids

“"non-local” excitations are characteristic of
most QSLs: so we expect that the local QPT
is very general

e.g. Coulomb 3d QSL (quantum spin ice)

| db \%\ magnetic cannot be
- anyonsreplace y non- ., monopoles created/
local quasiparticles \Jf-  electric destroyed
“ % monopoles locally

\

SN/ “photon”
- protected level crossing v/



Gapless spin liquids

“"non-local” excitations are characteristic of
most QSLs: so we expect that the local QPT
is very general

e.g. Kitaev honeycomb QSL (NalrO3,RuCls,...)

- "Fluxes” are non-local and can undergo binding __
- Binding becomes non-trivial edge singularity dueto W

gapless Majorana fermions
- But a local QPT persists ¢/



Summary

= ® Rich interplay of band topology and
AHE with real-space topological defects
is possible in real AFs. Propose studies
4 of domain walls and vortices in Mn3Sn

Nse)
® | ocal studies of QSLs can reveal
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excitations through protected local QPTs



