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Quantum non-locality
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2
(|"#i � |#"i)EPR

??where is the information??



+

Schrödinger’s Cat

UNSTABLE to decoherence - uncontrolled 
entanglement with the environment





Strange Stuff

Phil Anderson, 1973
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Resonating Valence Bond state
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Ordinary (local) Matter
We can consistently 

assign local properties 
(elastic moduli, etc.) 
and obtain all large-

scale properties

•Measurements far away do not affect one 
another

•From local measurements we can deduce the 
global state



Ordinary (local) Matter

| i = ⌦A| iA
Ground state is “essentially” 

a product state

no entanglement 
between blocks

Hamiltonian is local

H =
X

x

H(x) H(x) has local support near x



“Essentially” a product state?

| i = ⌦A| iA

phase space

• Adiabatic continuity

n.b. This is not true for gapless fermi systems



“Essentially” a product state?

• Entanglement scaling

⇢A = TrĀ| ih |

S(A) ⇠ �Ld�1 area law 

A

satisfied with exponentially small corrections

S(A) = �TrA (⇢A ln ⇢A)



Best example: ordered 
magnet

Hamiltonian H =
X

(ij)

JijSi · Sj
exchange is short-

range: local

ordered state | i ⇡
O
i

|Si · n̂i = +Si

block is a single 
spin



Quasiparticles
excited states ~ excited 

levels of one block

•local excitation can be created 
with operators in one block

•localized excitation has 
discrete spectrum with non-
zero gap, and plane wave 
forms sharp band  

•quantum numbers consistent 
with finite system: no 
emergent or fractional 
quantum numbers



Spin wave

!(k) ⇡ �� 2t cos k
x

a� · · ·

neutron

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

|fi = S+
k |ii



Quantum spin liquid


 





 = +...

Entanglement -> non-local excitation

+ · · · = “spinon”

“quasiparticle” above a non-zero gap



Fractional quantum number

excitation with ΔS = 1/2 
not possible for any finite 

cluster of spins

always created in pairs by any 
local operator



No spin waves
• Magnon is not elementary: decays into two 

spinons

• Sharp peaks should be reduced or absent in 
the spin structure factor

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)



c.f. One dimension

A. Tennant et al, 2001

KCuF3



Anyons

spinon
“vison”

 ! � “mutual semions”



Topological phases

9.3. Anyons

Here, the diagram is different

(367)

e m

e m

= �

e m

e m

.

The # particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an # particle – behaves as a fermion! Basically if we make an
interchange of two #’s, we effectively wind a constituent e particle of one #

half-way around the m of the other # particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= �

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two e particles, described by some initial state |yiniti, such that, acting on
|yiniti, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = �1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = �1. We choose s1 and p1 to be adjacent,
comprising one # “particle”, and s2 and p2 to be adjacent, making up the
other # particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two # particles. We will do this by a sequence
of unitary transformations, so that

(369) |yfinali = U|yiniti,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single s

z
i and s

x
j operator to
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A. Kitaev

Anderson’s RVB state is thus an 
example of a “topological phase” - the 

best understood sort of QSL

X.-G. Wen

Understood and 
classified by anyons 
and their braiding 

rules in 2d



 =
X

Robustness arises from topology: a QSL is a 
stable phase of matter (at T=0)

Stability



Quantum spin liquid


 





 = +...

For ~500 spins, there are more amplitudes than 
there are atoms in the visible universe!

Different choices of amplitudes can realize 
different QSL phases of matter.



Gutzwiller Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · ·

| 0i =
Y

k2FS

c†k"c
†
k#|0i

=

“partons”



Gutzwiller Construction

• Project out any components with 
empty or doubly occupied sites

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”



Gutzwiller Construction

• Can build many QSL states by 
choosing different free fermion states

c1 +c2 +c3 + · · ·=

| i = P̂G| 0i
“partons”



• Topological QSLs

• U(1) QSL

• Dirac QSLs

• Spinon Fermi surface

Classes of QSLs
projected 

superconductor

projected 3d band 
insulator

projected 
graphene

projected 
metal



• Topological QSLs

• U(1) QSL

• Dirac QSLs

• Spinon Fermi surface

Classes of QSLs
anyonic 
spinons 

electric+magnetic 
monopoles, photon

strongly 
interacting 

Dirac fermions

non-Fermi 
liquid “spin 

metal”



Strange stuff

where do we find it?



Is there a gap?
•  Specific heat
•  NMR 1/T1

•  Dynamic susceptibility
•  T-dependence of 𝜒

A rough guide to 
experiments on QSLs

Does it order?
•  NMR line splitting
•  muSR oscillation
•  thermodynamic 

transition via specific 
heat, susceptibility

• Bragg peak in neutron/
x-ray

Delocalized 
excitations?

• thermal conductivity
• INS

Structure of 
excitations?

•  E(k) from INS,RIXS
•  optics, Raman

Exotica
• Local measurements
• thermal Hall
• ARPES (on insulator!)
• Proximity effects



the new classics

herbertsmithite

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2 organics

= or

=



Kagomé antiferromagnet

H = J
X

hiji

Si · Sj + ...

V. Elser, 1989 + many many others

likely to be a QSL
Very large classical 

degeneracy



S=1/2 kagomé AF
• Rather definitive evidence for QSL by 

DMRG
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C⟩, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
⟨C|S⃗i|C⟩ = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)

0 0.05 0.1 0.15 0.2
1/c

-0.44

-0.435

-0.43

E/
sit

e

2D (est.)

Torus

DMRG

MERA

Upper Bound

Cylinder

Series (HVBC)
DMRG, Cyl, Odd
DMRG, Cyl, Even
DMRG, Torus (Jiang...)
Lanczos, Torus

FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the

© Steve White

many other studies support 
existence of some QSL phase



Herbertsmithite
kagomé layers of Cu 

S=1/2 spins, separated 
by non-magnetic Zn

ZnCu3(OH)6Cl2

Heisenberg-like 
with J ~ 200K

this system remain important topics for further investiga-
tion. We also observe a small peak in the ac susceptibility
nearH ! 2 T at 50 mK which disappears upon warming to
705 mK. The overall susceptibility data indicate the ab-
sence of magnetic order or a spin gap down to 50 mK.

The specific heat C"T# of ZnCu3"OH#6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of a
few Kelvin and higher, the lattice contribution to the
specific heat (proportional to $T3) is the most significant
contribution, as shown in the inset. However, this contri-
bution diminishes at low temperatures, and below $5 K,
an additional contribution is clearly observed which arises
from the Cu spin system. Magnetic fields of a few Tesla can
significantly affect the low-T behavior, and fields of 10 T
and higher strongly suppress the specific heat below 3 K.
The difficulty in synthesizing an isostructural nonmagnetic
compound makes it hard to subtract the lattice contribution
precisely. However, the magnetic field dependence sug-
gests that the specific heat in zero applied field below 1 K is
predominately magnetic in origin. As a rough measure of
the spin entropy, the field-induced change in specific heat

below 3 K, obtained by subtracting the 14 T data from the
zero field data, accounts for about 5% of the total entropy
of the spin system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific heat
at low temperatures (T < 1 K) appears to be governed by a
power law with an exponent which is less than or equal to
1. In a 2D ordered magnet, magnon excitations would give
C$ T2. The kagomé-like compound SrCr8%xGa4&xO19
(SCGO) [18] and other 2D frustrated magnets [19] are
also observed to have C$ T2 even in the absence of
long-range order [20,21]. The behavior that we observe
in ZnCu3"OH#6Cl2 below 1 K stands in marked contrast.
We can fit our data to the power law C ! !T", though we
note that the exponent " is sensitive to the chosen range of
temperatures that are fit. The blue line in this figure repre-
sents a linear fit with " ! 1 over the temperature range
106 mK< T < 400 mK. The fitted value for ! is 240'
20 mJ=K2 Cu mole. If we include higher temperatures, the
red line represents a fit with " ! 2=3 over the temperature
range 106 mK< T < 600 mK. Extending the fitted range
to even higher temperatures can yield " values as low as
0.5.

Finally, inelastic neutron scattering measurements of the
low energy spin excitations were performed on deuterated
powder samples of ZnCu3"OD#6Cl2. High resolution mea-

 

FIG. 2 (color online). (a) The specific heat C"T# of
ZnCu3"OH#6Cl2 in various applied fields, measured using a
Physical Property Measurement System. Inset: C"T# plotted
over a wider temperature range in applied fields of 0 T (square)
and 14 T (star). (b) C"T# in zero field measured down to 106 mK.
The lines represent power law fits as described in the text.

 

FIG. 1 (color online). (a) The chemical transformation from
the pyrochlorelike lattice of Cu2"OH#3Cl to the kagomé layers of
ZnCu3"OH#6Cl2. (b) Magnetic diffraction scans of the two
systems at T ! 1:4 K (open) and 20 K (filled). The
Cu2"OH#3Cl data show magnetic Bragg peaks at Q ’ 0:70 and
Q ’ 0:92, which are absent for the ZnCu3"OH#6Cl2 data (which
have been shifted by 2300 counts=min for clarity). (c) Magnetic
susceptibility of ZnCu3"OH#6Cl2 measured using a SQUID
magnetometer plotted as 1=#, where mole refers to a formula
unit. The line denotes a Curie-Weiss fit. Inset: ac susceptibility
(at 654 Hz) at low temperatures measured at the NHMFL in
Tallahassee, FL.
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Theory
• What kind of QSL?

We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q$ð ~ri%~rjÞh ~Si $ ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si $ ð ~Sj & ~SkÞ $ ~Sl $ ð ~Sm & ~SnÞi, where the loops consid-
ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as
expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S! ¼
ð1% !Þ%1log2tr"

!, 0 ' !<1, where " is a subsystem
density matrix. Scaling is expected as S! ’ #c% $, where
# is an !-dependent constant. $, the topological entangle-
ment entropy, is independent of! [77–79] and depends only
on the total quantum dimensionD as $ ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S! for cylinders
of fixed c and extrapolate in L%1 to L ! 1; a linear
extrapolation in c ! 0 yields $. Results are 1D mapping
independent. We show intermediate values of ! (Fig. 6),
which all show a clearly finite value of $, with a value very
consistent with $ ¼ 1; large-! results agree. Small-!
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 4 (color online). Log-linear plots of the absolute value of
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
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FIG. 4. The transfer matrix spectrum in the S

z = 1 sec-
tor (roughly the triplet channel) for the kagome Heisenberg
model (a), (c), (e) and free fermion model (b), (d), (f). The
vertical axis is the inverse of correlation length 1/⇠, which
can be considered as the gap � of the excitations, up to a
pre-factor � = v

s

/⇠. The horizontal axis denotes (a), (b) the
twist angle ✓; (c), (d) momentum 2k1; (e), (f) momentum k2.
The cylinder we show here is the YC8-2 cylinder for both case,
and the truncation error of DMRG is around 2⇥ 10�6, which
corresponds to bond dimension m = 6000 for the kagome
Heisenberg model and m = 250 for the free fermion model.
For the kagome Heisenberg model, we also include a small
J2 = 0.05. (g) Three di↵erent types of particle-hole excita-
tions. The arrows represent the direction of the movement of
the discretized momentum under the twist boundary condi-
tions.

function of the twist angle ✓. We consider the Type II
YC8-2 geometry, and included a small J

2

to stabilize the
adiabatic twist up to ✓ = ⇡ (the Appendix shows results
for other geometries). The three di↵erent colors label
three ‘bands:’ we observe that the momenta kS=1,j clus-
ter into three distinct groups, and we plot the largest
several ⇠S=1,j from each momenta group. The momen-
tum can be resolved into its lattice components k

1

, k
2

,
providing an alternative way to plot the data shown in

Figures 4c-f.

1. Interpretation as DSL

The KAH and free fermion spectra are remarkably sim-
ilar. The excitation spectrum can be understood based
on the free fermion ⇡-flux model. Sz = 1 excitations
arise from particle-hole excitations near the Dirac points;
a momentum p� q spin flip takes the form S+(p� q) =
f†
"(p)f#(q). The ⇡-flux state has two Dirac points at
Q = (⇡/2,⇡/2) and �Q = (�⇡/2,�⇡/2). We group the
particle-hole excitations into intra-valley forward (blue);
intra-valley backward (yellow); and inter-valley forward
(red), as illustrated in the cartoon 4(g) (inter-valley back-
ward scattering is higher in energy). The Dirac points are
avoided on the ✓ = 0 YC8-2 cylinder, as shown in Fig.
1(d), but as ✓ increases, the allowed momenta shift and
eventually pass through the Dirac point; the f" and f#
feel opposite flux, hence move oppositely. As can be seen
in the cartoon, this shift a↵ects the three modes in a
qualitatively di↵erent fashion. The dispersion of the red
mode follows a Dirac behavior and becomes gapless at
the twist angle ✓ = ±⇡. In terms of momenta, the gap-
less point occurs at (2k

1

, k
2

) = (0,⇡) as expected from
the displacement between Q and Q0. The yellow mode
has a constant energy under the twist angle ✓. The blue
mode has similar response as the red mode, but remains
gapped when the system hits the Dirac points (✓ = ⇡).
The spectrum of the KAH and the ⇡-flux free fermion

model show surprisingly good agreement: (i) the red
mode has a linear sharp Dirac cone structure; (ii) the
yellow mode is almost flat; (iii) the modes occur with the
predicted momenta. The qualitative di↵erence between
two models is that the yellow and blue modes in the KAH
are lower compared with the free fermion model. It may
that even though the DSL theory should have an emer-
gent SU(4) symmetry in 2D, in the quasi-1D geometry
intra-valley interactions are stronger.
The existence of the renormalized flat yellow band also

explains the ‘kink’ in the ✓-dependence of the triplet gap
�S=1

: for small ✓ it drops below the linear red band,
which then cross. This implies that gaps obtained in
previous DMRG studies, which all worked at ✓ = 0, were
probing the yellow intra-valley excitation. Since the yel-
low band is subject to strong interaction e↵ects, this may
relate to the non-observation of vF /Ly gap scaling on ac-
cessible cylinders.
We want to remark that within our DMRG simula-

tions the correlation spectrum of the KAH still has a
finite “gap” even at the Dirac point. This is a necessary
consequence of DMRG, since the finite bond dimension
m induces a finite correlation length. We find the ⇠ in-
crease with m, as expected for a DMRG simulation of a
critical system. In fact, a similar behavior is found also in
the free fermion model. The correlation length estimated
from DMRG (with m = 250 in Fig. 4) is finite even for
the gapless free fermion model with an infinite correlation

Y.-C. He et al:
evidence for 
Dirac QSL



Herbertsmithite
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FIG. 1: (color online) (a) The in-phase component of the ac
susceptibility, measured at 100 Hz with an oscillating field of
17 Oe. (b) A scaled plot of the ac susceptibility data measured
at nonzero applied field, plotted as χ′

acT
α with α = 0.66 on

the y axis and µBH/kBT on the x axis. Inset: A scaled plot
of the dc magnetization, showing MT−0.34 vs µBH/kBT .

adequate. It should also be pointed out that in herbert-
smithite the entire bulk susceptibility obeys this scaling
relation, while in CeCu5.9Au0.1 it is only the estimated lo-
cal contribution, χL(T ) = [χ(T )−1−χ(T = 0)−1]−1, that
obeys scaling. A susceptibility of this form will imply a
similar scaling in the bulk dc magnetization of the sam-
ple, with MTα−1 expressible as a function of H/T . As
a complementary measurement, such a scaling is shown
in the inset to Fig. 1(b). The dc magnetization was
measured up to µ0H = 14 T at temperatures ranging
from T = 1.8 K to 10 K, and is plotted as MT−0.34 vs
µBH/kBT .
The inelastic neutron scattering spectrum of herbert-

smithite was measured on the time-of-flight Disk Chop-
per Spectrometer (DCS) at the NIST Center for Neu-
tron Research. A deuterated powder sample of mass
7.5 g was measured using a dilution refrigerator with
an incident neutron wavelength of 5 Å. Measurements
were taken at six different temperatures, with roughly
logarithmic spacing, ranging from 77 mK to 42 K. The
scattering data were integrated over a wide range of mo-
mentum transfers, 0.5 ≤ Q ≤ 1.9 Å−1, to give a mea-
sure of the local response. The momentum integrated
dynamic scattering structure factor, S(ω), is shown in
Fig. 2(a). Similar to previous reports on the neutron scat-
tering spectrum of herbertsmithite[11], the data show a

broad inelastic spectrum with no discernable spin gap
and only a weak temperature dependence for positive
energy transfer scattering. The negative energy trans-
fer scattering intensity is suppressed at low temperatures
due to detailed balance. The imaginary part of the dy-
namic susceptibility is related to the scattering struc-
ture factor through the fluctuation-dissipation theorem,
χ′′(ω) = S(ω)(1 − e−h̄ω/kBT ). The dynamic suscepti-
bility can then be determined in a manner similar to
that used previously[11]. For the two lowest tempera-
tures measured, detailed balance considerations will ef-
fectively suppress scattering at negative energy transfer
for values of |h̄ω| ≥ 0.15 meV. Thus these data sets are
averaged together and treated as background. This back-
ground is subtracted from the T = 42 K data, for which
the detailed balance suppression is not pronounced below
|h̄ω| = 2 meV. From this, χ′′(ω; T = 42 K) is calculated
for negative ω, and the values for positive ω are easily de-
termined from the fact that χ′′(ω) is an odd function of
ω. The dynamic susceptibility at the other temperatures
is calculated by determining the difference in scattering
intensity relative to the T = 42 K data set. It is rea-
sonably assumed that the elastic incoherent scattering
and any other background scattering are effectively tem-
perature independent. The calculated values of χ′′(ω)
at all measured temperatures are shown in Fig. 2(b).
The T = 42 K scattering data and χ′′(ω) were fit to
smooth functions for use in calculating the susceptibility
at other temperatures so that statistical errors would not
be propagated throughout the data; the smooth function
of χ′′(ω; T = 42 K) used in the calculation is also shown
in the figure.

The resulting values for χ′′(ω) follow a similar scaling
relation as the ac susceptibility, where the ratio h̄ω/kBT
replaces µBH/kBT . In Fig. 3 we show χ′′(ω)T 0.66 on the
y axis and the unitless ratio h̄ω/kBT on the x axis. The
scaled data collapse fairly well onto a single curve over
almost four decades of h̄ω/kBT . Here we have used the
same exponent α = 0.66 that was observed in the scal-
ing of the ac susceptibility. However, the error bars on
the data allow for a wider range of exponents (α = 0.55
to 0.75) with reasonable scaling behavior. The collapse
of the χ′′(ω) data is again reminiscent of the behav-
ior observed in certain heavy-fermion metals, including
the shape of the functional form of the scaling function.
Let us assume that χ′′(ω)Tα ∝ F (ω/T ). The heavy-
fermion metal CeCu5.9Au0.1 displays a scaling[21, 22]
that could be fit to the functional form F (ω/T ) =
sin[α tan−1(ω/T )]/[(ω/T )2 + 1]α/2. A fit to this func-
tional form is shown as a dashed blue line in Fig. 3. This
simple form does not fit the herbertsmithite data well for
low values of ω/T . Other heavy-fermion metals[23, 24],
display a scaling relation that can be fit to the functional
form F (ω/T ) = (T/ω)αtanh(ω/βT ); this functional form
is similar to that used to fit the dynamic susceptibility in
La1.96Sr0.04CuO4[25]. This functional form fits our data

Lots of early evidence 
for gaplessness

Helton et al, 2010
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FIG. 1: (color online) (a) The chemical transformation from
the pyrochlorelike lattice of Cu2(OH)3Cl to the kagomé lay-
ers of ZnCu3(OH)6Cl2. (b) Magnetic diffraction scans of the
two systems at T = 1.4 K (open) and 20 K (filled). The
Cu2(OH)3Cl data show magnetic Bragg peaks at Q ≃ 0.70
and Q ≃ 0.92 which are absent for the ZnCu3(OH)6Cl2 data
(which have been shifted by 2300 cts/min for clarity). (c)
Magnetic susceptibility of ZnCu3(OH)6Cl2 measured using a
SQUID magnetometer plotted as 1/χ, where mole refers to a
formula unit. The line denotes a Curie-Weiss fit. Inset: ac
susceptibility (at 654 Hz) at low temperatures measured at
the NHMFL in Tallahassee, FL.

investigation. We also observe a small peak in the ac
susceptibility near H = 2 T at 50 mK which disappears
upon warming to 705 mK. The overall susceptibility
data indicate the absence of magnetic order or a spin
gap down to 50 mK.

The specific heat C(T ) of ZnCu3(OH)6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of
a few Kelvin and higher, the lattice contribution to the
specific heat (proportional to ∼ T 3) is the most signif-
icant contribution, as shown in the inset. However this
contribution diminishes at low temperatures, and below
∼ 5 K, an additional contribution is clearly observed
which arises from the Cu spin system. Magnetic fields
of a few Tesla can significantly affect the low-T behavior,
and fields of 10 Tesla and higher strongly suppress the
specific heat below 3 K. The difficulty in synthesizing an
isostructural nonmagnetic compound makes it hard to
subtract the lattice contribution precisely. However, the
magnetic field dependence suggests that the specific heat
in zero applied field below 1 K is predominately magnetic
in origin. As a rough measure of the spin entropy, the

FIG. 2: (color online) (a) The specific heat C(T ) of
ZnCu3(OH)6Cl2 in various applied fields, measured using a
Physical Properties Measurement System. Inset: C(T ) plot-
ted over a wider temperature range in applied fields of 0 T
(square) and 14 T (star). (b) C(T ) in zero field measured
down to 106 mK. The lines represent power law fits as de-
scribed in the text.

field-induced change in specific heat below 3 K, obtained
by subtracting the 14 T data from the zero field data,
accounts for about 5% of the total entropy of the spin
system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific
heat at low temperatures (T < 1 K) appears to be gov-
erned by a power law with an exponent which is less than
or equal to 1. In a 2D ordered magnet, magnon excita-
tions would give C ∼ T 2. The kagomé-like compound
SrCr8−xGa4+xO19 (SCGO)[18] and other 2D frustrated
magnets[19] are also observed to have C ∼ T 2 even in the
absence of long-range order[20, 21]. The behavior that we
observe in ZnCu3(OH)6Cl2 below 1 K stands in marked
contrast. We can fit our data to the power law C = γT α,
though we note that the exponent α is sensitive to the
chosen range of temperatures that are fit. The blue line in
this figure represents a linear fit with α = 1 over the tem-
perature range 106 mK < T < 400 mK. The fitted value
for γ is 240 ± 20 mJ/K2 Cu mole. If we include higher
temperatures, the red line represents a fit with α = 2/3
over the temperature range 106 mK < T < 600 mK. Ex-
tending the fitted range to even higher temperatures can
yield α values as low as 0.5.

Finally, inelastic neutron scattering measurements of
the low energy spin excitations were performed on deuter-

Helton et al, 2007
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FIG. 1: (color online) (a)-(d) Inelastic neutron data on Herbertsmithite in the (HK0) and (HHL) scattering planes at T = 2K
for !ω = 0.4 meV and !ω = 1.3 meV. The bright spots at (110) and (003) arise from structural Bragg peaks. The diffuse spots
at (100), (00 3

2
) and ( 1

2
1
2
0) are magnetic in origin. Note that the (00 3

2
) diffuse spot is particularly pronounced at 0.4 meV,

while the magnetic scattering at 1.3 meV is nearly independent of L. (e)-(f) Plots of the calculated S(Q) in the (HK0) and the
(HHL) planes, representing antiferromagnetically correlated nearest neighbor impurities on the interlayer sites, as described in
the text.

used and subtracted from the corresponding sample mea-
surements.
Prior inelastic neutron scattering measurements on sin-

gle crystals by some of us [13] revealed a continuum of
scattering consistent with fractionalized spinon excita-
tions. That study primarily focused on energy trans-
fers from about 0.75 meV to 11 meV [13]. The response
in the (HK0) plane above 1 meV forms a continuum,
consistent with a singlet form factor involving nearest
neighbor kagome spins. Below this energy, though, the
momentum pattern was found to feature broad spots
with maxima at (100) and equivalent positions. Here, we
have acquired new data in the (HK0) scattering plane
at !ω = 0.4 meV and 1.3 meV, as shown in Fig. 1(a)
and (c). The Q-dependence of the scattering at fixed
energy transfer shows a distinct rotation relative to the
high energy dimer-like pattern with maxima near (23

2
30)

to a low energy pattern with maxima at (100). One can
imagine various ways in which enhanced scattering at
(100) might emerge: for example, kagome spins with dy-
namical q = 0 correlations (as observed in iron jarosite
KFe3(OH)6(SO4)2 [14]) as well as a ferromagnetic ar-
rangement of impurity spins within the interlayers could
give rise to such peaks. However, it may be necessary
to go beyond 2D models, since the interaction pathways
between the interlayer Cu impurities would imply corre-
lations along the c-direction as well.

Therefore, we have performed additional measure-
ments in the (HHL) scattering plane which allow us to
probe both intralayer and interlayer correlations. These
measurements reveal that the lowest energy fluctuations
have short range correlations along all three crystallo-
graphic directions. As shown in Fig. 1(b), diffuse peaks
are seen at the (00 3

2 ) and (12
1
20) positions for !ω =

0.4 meV. This intensity emerges below an energy scale
of ∼0.8 meV where an enhanced dynamic magnetic re-
sponse was previously reported [12, 13]. The diffuse peak
at L = 3

2 has the same position along L as the magnetic
Bragg peaks in iron jarosite [15, 16] where long-range
order yields a magnetic cell that is doubled along the c-
axis [17]. In contrast, the scattering at a higher energy of
!ω = 1.3 meV (Fig. 1d) shows little variation along the
L-direction, consistent with quasi-two-dimensional cor-
relations as expected for intrinsic kagome spins. This
new observation establishes a clear dichotomy between
the low energy 3D excitations (below 0.8 meV) and the
higher energy 2D excitations. The explicit observation
of quasi-2D correlations confirms that the spin excita-
tions measured above 1 meV by Han et al. [13] essen-
tially derive from the two-dimensional physics of a single
kagome lattice. Moreover, the dichotomy implies that
the physics at low energies (such as effects of weakly
coupled impurities) quickly diminishes at the higher mea-
sured energies. Hence, it appears neutron scattering can

T-H Han et al, 2015

claim to separate 
impurity signal 
below 0.7meV

Single 
crystal NMR
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Fig. 4. Intrinsic spin susceptibility χkagome and spin excitation gap Δ .  (A) Temperature 

dependence of χkagome deduced from 17K(a*) observed at Main1 in Bext = 3.2 T || a*.  The red 

dashed curve represents a theoretical prediction based on high temperature series expansion (28) 

with J = 180 K, matched at 295 K, whereas the solid curve is a guide to the eye. (B) Temperature 

and field dependences of 17K(a*) at low temperatures, with a fit to 17K(a*)~ T ⋅exp(−Δ /T )  in the 

temperature range up to 4.2 K (solid curves) and 10 K (dashed curves).  (C) Main1 lineshapes at 

4.2 K in Bext = 3.2, 6.1, and 9 T || a* plotted as a function of the normalized frequency f / fo −1  

(= 17K(a*)).  (D) The spin excitation gap, Δ(Bext), deduced from (B) for the fitting range up to 4.2 

K (filled circles) and 10 K (crosses).  Dashed and doted lines are the best fits under the constraint 

of S =1  and S =1/ 2 , respectively, whereas the solid line represents the best free parameter fit. 
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Organics

• Molecular materials which behave as 
effective triangular lattice S=1/2 
antiferromagnets with J ~ 250K

• significant charge fluctuations

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating

t
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Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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κ-(ET)2X β’-Pd(dmit)2

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating
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Figure 3

Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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Organics

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so

tt

t'

QSL

70

60

50

40

30

20

10

0.6 0.7 0.8 0.9 1.0

FP

T 
(K

)

Me4P

Me4As

EtMe3As

Et2Me2As

Et2Me2P
Me4Sb

EtMe3Sb

Et2Me2Sb

Et2Me2Sb:
EtMe3Sb
= 88 : 12

AFLO

CO

t '/t

Figure 17

Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).
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Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2
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The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)

Crossover

(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max

(1/T1T)max

Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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NMR lineshapes

1H NMR

Evidence for lack of static moments: f > 1000!

Y. Shimizu 
et al, 2003

!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.
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Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.

NATURE PHYSICS | VOL 6 | SEPTEMBER 2010 | www.nature.com/naturephysics 675

a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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Specific Heat
• C ~ γT indicates gapless behavior with 

large density of statesLETTERS
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Figure 2 Low-temperature heat capacities of �-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇥-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of ⇤-(BEDT-TTF)2Cu2(CN)3 and other
⇤-type BEDT-TTF salts. ⇤-(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
⇤-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇥-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the ⇤-type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
⇤-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the ⇥ term),
even in the insulating salt. The magnitude of ⇥ is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite ⇥ term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the ⇥
term in the present insulating state is intrinsic.

The well known Mott insulators ⇤-(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇥-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing ⇥ value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A ⇥ value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

S. Yamashita et al, 2008
is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-

ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind

of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are

separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.

0

100

200

300

T 2 (K2)

C p
T–

1  (m
J K

–2
 m

ol
–1

)

10 2 3 4 5 6

EtMe3Sb

Et2Me2Sb

T 2 (K2)

C p
T–

1  (m
J K

–2
 m

ol
–1

)

0 10 20 30 40

1,000

750

500

250

0

Figure 15

Low-temperature heat capacity (Cp) for EtMe3Sb and Et2Me2Sb salts. The main graph shows Cp T
!1 versus
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M. Yamashita et al, 2010

Thermal conductivity
• Huge linear thermal 

conductivity indicates 
the gapless excitations 
are propagating, at 
least in dmit

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 
μm ≈1000 a !
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Organics - Theory

• RVB/QSL state:

• Motrunich, Lee+Lee: (2005) “uniform 
RVB”

• It is described by a “Fermi sea” of 
spinons coupled to a U(1) gauge field

• The anomalous thermal conductivity 
may be a window into an emergent 
fermi surface in an insulator!
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herbertsmithite

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2 dmit
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New direction: strong 
anisotropy

Kitaev materials YbMgGaO4

9

x

y

Figure 1: Crystal structure and magnetic susceptibility of YbMgGaO4 single crystals. a,b, Schematic of the YbMgGaO4 crystal structure.

The dashed line indicates the unit cell. c, DC magnetic susceptibility measured under zero-field cooling (ZFC) and field cooling (FC) on the

YbMgGaO4 single crystals. Paramagnetic behavior is observed at low temperature with no obvious di↵erences between ZFC and FC data. d,

Inverse susceptibility at low temperature fitted with the Curie-Weiss law (dashed line). The fitting results in Curie temperatures of⇥ W = �4.78

K and -3.2 K for the magnetic fields (H = 1 T) perpendicular and parallel to the c axis, respectively.



Kitaev modelDr. Alexei Kitaev, KITP & Microsoft (KITP Colloquium 11-09-05) Anyons in an Exactly Solved Model and Beyond Page 4
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Non-local excitations

Majorana Flux

In Kitaev’s model:
• Majorana’s dispersion ~ K and Dirac-like
• Fluxes are localized with small gap

" e,m



Fractionalization

�z
i i =

Because fluxes are created
• Spectral weight is zero below the flux gap
• Correlations vanish beyond NNs

Spin flip produces a free Majorana fermion and two immobile fluxes

gap
J. Knolle et al, 2014



Fractionalization
• Another process: fluxes recombine into 

a second Majorana fermion

• This gives rise to an excitation branch 
of power-law Dirac “fans”

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space

S(q ⇠ 0, i!) ⇠
Z

d!1d
2k1Tr[maG(i(! + !1), q + k1)

mbG(i!1,k1)],

S(q = 2q0 + k, i!)⇠
Z

d!1d
2k1Tr{[nµ,a · (2k1 � k)]

G(i(! � !1),k � k1)[n
µ,b · (2k1 � k)]GT

(i!1,k1)}.(10)

Since G(i!,k)

ab ⌘ h a b †i!,k =

⇣
1

�i!+v�·k

⌘ab

, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
! ,!1 ! !1

! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
Sµµ,ab

(q, i!) for q ⇠ 0 below

Sµµ,ab
(q, i!) ⇠

 
6!2

+ 3q2v2

p
q2v2

+ !2

!
(m1 + m2)

2

+

 
6q2v2

p
q2v2
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!
⇥
�ab0(m

2
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2) + �ab2m1m2
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where b0 denotes the complementary sublattice of b.
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz
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xz yz

yz xz
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.

PRL 102, 017205 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

017205-2

Y.-J. Kim...
P.Gegenwart

H. Takagi
...



Kitaev Materials
H (r. l. u.)

Sxx Syy Szz Sxx+ Syy+ Szzc

direct evidence for 
direction-dependent 
anisotropic exchange 
from diffuse magnetic 

x-ray scattering in 
Na2IrO3 (BJ Kim group)

A 

C 

B 

D 

T = 5 K 

T = 15 K 

P 

A B 

C 

E 

F F 

E 

a 

b 

D 

5 K 15 K T = 
A C 
B D 

E : T = 5 K 
F : T = 15 K 

35 
 
 
30 
 
 
 
 
 
20 
 
 
 
 
 
10 

35 
 
 
30 
 
 
 
 
 
20 
 
 
 
 
 
10 

d 

c 

Figure 3 Observation of gapped 
continuum mode persisting 

above TN in α-RuCl3 
consistent with Majoranas 

(A. Banerjee et al) 

there is pretty strong evidence 
of substantial Kitaev exchange 

in quite a few materials



Kitaev Materials
H (r. l. u.)

Sxx Syy Szz Sxx+ Syy+ Szzc

direct evidence for 
direction-dependent 
anisotropic exchange 
from diffuse magnetic 

x-ray scattering in 
Na2IrO3 (BJ Kim group)

single-crystal datain α-RuCl3 
compared to Kitaev’s soluble 

model (A. Banerjee et al) 
there is pretty strong evidence 
of substantial Kitaev exchange 

in quite a few materials

9 

 

Fig. 4: Comparison of the scattering with Kitaev model calculations: (a) The data at Ei=40 
meV, T=10 K integrated over range E= [4.5,7.5] meV and L = [-2.5,2.5] and symmetrized along 
the (H,H) direction. (b) The expected scattering from an isotropic AF Kitaev model at an energy 

E =1.2 KJ, taking into account the neutron polarization and the Ru3+ form factors. (c) Plot of the 
non-symmetrized data (points with error bars) along (H,H,0) at T =10 K, integrated over the 

same L and E intervals as (a) as well as ] = [-√3/10,√3/10].   The solid red line is the calculated 
scattering for an AF Kitaev model with R = 2 as discussed in the text.  The solid violet line 
represents the corresponding unmodified AF Kitaev model, and the green line the FM Kitaev 
model.  Some of the scattering at larger Q near (H,H) = ±(1,1) is due to phonons. 
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

• Na2IrO3,Li2IrO3, α-RuCl3 all order
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27], the largest terms in the spin Hamiltonian of ↵-
RuCl3 are generally expected to include nearest neigh-
bour Heisenberg J1, Kitaev K1, and o↵-diagonal �1 cou-
plings, supplemented by a 3rd neighbour Heisenberg J3
term:
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where the bond-dependent labels {↵,�, �} are, for exam-
ple, equal to {x, y, z} for the Z-bond shown in Fig. 1.
The phase diagram of this model has been discussed pre-
viously [16, 17, 25, 28], and is further detailed in the
supplemental material; here we review the key aspects.

In the limit where J1,�1, and J3 vanish, the ground
state is a gapped Z2 spin-liquid for either positive or neg-
ative K1, as demonstrated in Kitaev’s seminal work [5].
Small deviations from these limits induce various mag-
netically ordered states. The simplest perturbation is the
introduction of a finite J1, which yields the well-studied
(J1,K1) nearest neighbour Heisenberg-Kitaev (nnHK)
model. This model hosts zigzag order consistent with
↵-RuCl3 for K1 > 0, J1 < 0, as shown in Fig. 2(a) [29].
Accordingly, previous analysis of the powder INS exper-
iments within the context of the nnHK model [13], sug-
gested that K1 ⇠ +7 meV, and |J1/K1| ⇠ 0.3 � 0.7 for
↵-RuCl3. On this basis, the broad excitation continua
observed experimentally have been interpreted in terms
of proximity to the K1 > 0 Kitaev spin-liquid [12, 13].
However, the further introduction of �1, J3 > 0 inter-
actions in Eq. (1) significantly expands the experimen-
tally relevant region, as both interactions generally sta-
bilize zigzag order (Fig. 3(a)). Indeed, recent ab-initio

studies [17, 24–27] have suggested that the zigzag order
emerges from J1 ⇠ 0,K1 < 0,�1 > 0, and J3 > 0, with
|�1/K1| ⇠ 0.5� 1.0, and |J3/K1| ⇠ 0.1� 0.5, indicating
significant deviations from both Kitaev’s original model
and the region identified by initial experimental analysis.
Before discussing the origin of the excitation continua, it
is therefore crucial to first pinpoint the relevant interac-
tion parameters for ↵-RuCl3.

In order to address this issue directly, we have com-
puted the neutron scattering intensity I(k,!) for a va-
riety of interactions within the zigzag ordered phase via
both linear spin-wave theory (LSWT) and exact diago-
nalization (ED). For the latter case, we combine results
from various periodic 20- and 24-site clusters compatible
with the zigzag state in order to probe a wider range of
k-points, (see Methods section). Full results for the com-
plete range of models are presented in the supplemental
material; here we highlight the key aspects in the form of
Fig. 2 and 3, which show detailed !- and k-dependence of
I(k,!) for two representative sets of interactions, along
with the evolution of the spectra on moving towards the

FIG. 2. Computed neutron scattering intensity I(k,!)
within the nnHK model. (a) Phase diagram for K1 > 0 as a
function of |J1/K1|, showing positions of interactions shown
in (f). (b-d) Detailed results for Model 1: (b) I(k,!) com-
puted via LSWT; results are averaged over the three zigzag
ordering wavectors, parallel to the X, Y, and Z bonds. (c) ED
results, combining data from several 20- and 24-site periodic
clusters (see Methods). (d) ED k-dependence of I(k,!) inte-
grated over the indicated energies, as obtained from a single
24-site cluster respecting all symmetries of Eq. (1) (see Meth-
ods). (e) Comparison of �-point intensities for the K1 > 0
spin-liquid (exact results [30, 31]), Model 1 (ED), and the
experimental data for ↵-RuCl3 [12]. (f) Evolution of the ED
�-point intensity with decreasing |J1/K1|, showing absence of
low-energy intensity close to the K1 > 0 spin-liquid. For all
spectra, a Gaussian broadening of 0.5 meV has been applied.

K1 > 0 or K1 < 0 spin-liquid. Within the (J1,K1) nnHK
model, we focus on Model 1 (J1 = �2.2,K1 = +7.4
meV; |J1/K1| = 0.3), which lies on the border of the
initially identified region in Ref. [12], close to the spin
liquid. Beyond the nnHK model, we consider Model 2
(J1 = �0.5,K1 = �5.0,�1 = +2.5, J3 = +0.5 meV) for
which parameters have been guided by recent ab-initio
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puted via LSWT; results are averaged over the three zigzag
ordering wavectors, parallel to the X, Y, and Z bonds. (c) ED
results, combining data from several 20- and 24-site periodic
clusters (see Methods). (d) ED k-dependence of I(k,!) inte-
grated over the indicated energies, as obtained from a single
24-site cluster respecting all symmetries of Eq. (1) (see Meth-
ods). (e) Comparison of �-point intensities for the K1 > 0
spin-liquid (exact results [30, 31]), Model 1 (ED), and the
experimental data for ↵-RuCl3 [12]. (f) Evolution of the ED
�-point intensity with decreasing |J1/K1|, showing absence of
low-energy intensity close to the K1 > 0 spin-liquid. For all
spectra, a Gaussian broadening of 0.5 meV has been applied.

K1 > 0 or K1 < 0 spin-liquid. Within the (J1,K1) nnHK
model, we focus on Model 1 (J1 = �2.2,K1 = +7.4
meV; |J1/K1| = 0.3), which lies on the border of the
initially identified region in Ref. [12], close to the spin
liquid. Beyond the nnHK model, we consider Model 2
(J1 = �0.5,K1 = �5.0,�1 = +2.5, J3 = +0.5 meV) for
which parameters have been guided by recent ab-initio
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at lower temperatures and indicates that a possible QSL GS is experimentally achieved in YbMgGaO4, 
since there are no sufficient entropies for spin symmetry breaking any more below 60 mK.

The neighbor exchange energy, |θ w|, is on the order of several Tesla. The magnetization of YbMgGaO4 
under a stable magnetic field at very low temperatures is critical and interesting. Unconventional quan-
tum spin states, such as quantum magnetization plateaus8–10, can be induced by applied fields.

The careful magnetization measurements of YbMgGaO4 at 0.5 K under 0 to 7 T, as well as at higher 
temperatures, are shown in Fig.  4a. The derived susceptibilities (dM/dH) show a clear and anomalous 
plateau under fields of 1.6 to 2.8 T at 0.5 K, and this plateau completely disappears at higher temperatures 
(1.9, 2.5 and 4.2 K), as shown in Fig. 4b. The unconventional magnetization behavior was confirmed by 
repeating the measurements several times. It is unlikely that the anomalous plateau originates from impu-
rity spins. As aforementioned, the ESR measurements have determined a negligible amount (< 0.04%) 
of impurity/isolated spins. This is further confirmed by the fact that no Schottky anomaly from isolated 
spins is observed in magnetic heat capacity of YbMgGaO4 (Fig. 3b) down to 60 mK12. The very low level 
of impurity/isolated spins also can be naturally explained by the large chemical difference between the 
magnetic Yb3+ and the other nonmagnetic ions. The difference prevents the magnetic site-mixing and 
hence guarantees an extremely low level of impurity/isolated spins. This is one of the key advantages of 
the new compound. We have made a linear fit to the magnetization data at 0.5 K in the constant suscep-
tibility range (form 1.6 to 2.8 T) (Supplemental material), supposing it is contributed by easy-saturated 
“impurity” spins and field-independent “intrinsic” susceptibility12. The fitted intercept, ~ 0.173(4) µ B/Yb3+ 
(~11% of the saturation magnetization), would give ~ 11% “impurity” spins, which is an unreasonably 
large amount and clearly contradicts with the ESR and heat capacity measurements. The magnetization 
curve at 0.5 K (Fig. 4a) is very similar to that of the triangular lattice compound C6Eu along the c-axis at 
4.2K36. In the case of C6Eu, this behavior has been attributed to traces of the 1/3 plateau37. It should be 
pointed out that the fitted power exponent γ  also shows an unusual quasi plateau (γ  ~ 1.5) in the similar 
magnetic-field range at extremely low temperatures (inset of Fig.  3c). The unusual χ -plateau must be 
related to a field-induced unconventional quantum state at extremely low temperatures (≤ |θ w|/10).

The one-third quantum magnetization plateau, as well as higher-fraction quantum states, have 
been reported in Néel ordering phases (T <  TN) in spin-1/2 triangular-lattice antiferromagnets such as 
Ba3CoSb2O9 and Cs2CuBr4, and the Néel transitions are caused by the interlayer coupling8–10. To the best 
of our knowledge, YbMgGaO4 is the first example that exhibits the abnormal magnetization behavior in 

Figure 3. (a) Temperature dependences of total heat capacity under different magnetic fields in YbMgGaO4 
and LuMgGaO4. The dashed curve denotes the Debye heat capacity. (b) Temperature dependences of 
magnetic heat capacity under different magnetic fields in YbMgGaO4. The colored dash lines show the 
power law fits to the low-T magnetic heat capacities. (c) Magnetic heat capacity vs. 1/T in YbMgGaO4. 
The red dash line shows the gapped spectral function fit to the low-T magnetic heat capacities under 0 T. 
Inset: fitted power exponent γ . (d) Temperature dependences of integral magnetic entropy under different 
magnetic fields in YbMgGaO4.
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a triangular lattice. Quantum fluctuations play an important role in the calculated ordered GS because of 
the geometrical frustration even in Heisenberg case5. This fact means that some seemingly small pertur-
bations may be critical in the determination of the GS of the frustrated spin system at low temperatures.

The heat capacity is a highly sensitive probe for the low-energy excitations from the GS. The availabil-
ity of a perfect nonmagnetic reference compound LuMgGaO4 enables an accurate exclusion of the lattice 
heat capacities without any fitting. Such advantage is absent in most of the existing QSL candidates. The 
measured heat capacities of LuMgGaO4 well follow the Debye law with a Debye temperature ~ 151 K 
(Fig.  3a). Thus the exact magnetic heat capacities of YbMgGaO4 can be precisely extracted by directly 
subtracting the lattice contributions, i.e., the heat capacities of LuMgGaO4, from those of YbMgGaO4 
(Fig.  3b). The heat capacity measurements were performed up to 30 K, at which the spin-1/2 entropy 
has been fully released as T ≫  |θ w|, and the Yb3+ ions remain in the Kramers doublet GSs with effective 
spin-1/2 as Cm(~30 K, 0 T) ~ 0 (Fig. 3b). As the temperature decreases, the magnetic heat capacities of 
YbMgGaO4 exhibit a broad hump, whose position is almost field-independent (µ 0H ≤  2 T), and shifts 
to a higher temperature with further increasing applied magnetic fields (µ 0H ≥  4 T). The broad hump 
centered at 2.4 K (under 0 T) may suggest a crossover into a QSL state35. At T <  2 K, the magnetic heat 
capacities well follow power-law temperature dependences down to the lowest measurement tempera-
tures (Fig.  3b). The fitted power exponent, γ  ~ 0.7, approaches the theoretical value of 2/3 reported in 
the THAF spin liquid with ring exchanges34. It is another evidence that YbMgGaO4 is a new strongly 
correlated QSL candidate. γ  increases up to 2.7 under 9 T (the inset of Fig. 3c) possibly because of the 
gradually overcoming of the 2D quantum spin correlations. We have also tried to fit the low temperature 
heat capacities (60 to 83 mK, 0 T) with a gapped spectral function, C*exp[− ∆ E/T]. The fitted energy 
gap, ∆ E =  0.0469(1) K, is no more than ~ |θ w|/100 (Fig. 3c). Moreover, the susceptibilities (Fig. 2d) show 
no downward trend to zero down to 0.48 K, which is much lower than the hump temperature. These 
consistently suggest that YbMgGaO4 is a QSL candidate with an excitation gap no more than ~ |θ w|/100.

The released magnetic entropies from the lowest measurement temperature to 30 K are exactly ~ Rln2/
mol Yb3+ in YbMgGaO4 (Fig. 3d). In other words, the residual spin entropy at 60 mK is almost zero. This 
means that the gapless QSL candidate has a disordered but macroscopically non-degenerate GS at low 
temperatures, and thus the third law of thermodynamics remains unviolated. Moreover, the near-zero 
upper limit of residual entropy (~0.6%) at 60 mK almost excludes the possibility of magnetic transitions 

Figure 2. (a) Temperature dependence of magnetization under zero-field-cooling (ZFC) and 1 T in YbxLu1–x 
MgGaO4. Inset: zoomed view of the low-temperature data. (b) Magnetic field dependence of magnetization 
at 2.5 K. The colored dash lines show Van Vleck paramagnetism extracted from the linear-field-dependent 
magnetization data (> 10 T). (c) Curie-Weiss fits of magnetization data at low temperatures (< 20 K). Inset: 
fitted (AF) Weiss temperatures. (d) Susceptibilities measured under ZFC and FC from 0.48 to 30 K. No 
splitting between the ZFC and the FC data was observed at temperatures above 0.48 K. Both the cooling 
field Hc and the measurement field Hm are 100 Oe. Inset: complete magnetic loop measured at 0.5 K. In both 
the first and third quadrants, the data collected under increasing fields are perfectly overlapped by those 
collected during decreasing field.

effective S=1/2 triangular 
lattice

f ⇡ 4K/50mK � 80 C ⇠ T 0.7
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Figure 1: Crystal structure and magnetic susceptibility of YbMgGaO4 single crystals. a,b, Schematic of the YbMgGaO4 crystal structure.

The dashed line indicates the unit cell. c, DC magnetic susceptibility measured under zero-field cooling (ZFC) and field cooling (FC) on the

YbMgGaO4 single crystals. Paramagnetic behavior is observed at low temperature with no obvious di↵erences between ZFC and FC data. d,

Inverse susceptibility at low temperature fitted with the Curie-Weiss law (dashed line). The fitting results in Curie temperatures of⇥ W = �4.78

K and -3.2 K for the magnetic fields (H = 1 T) perpendicular and parallel to the c axis, respectively.
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wave functions. We calculate the correction to the en-
ergy and spin-spin structure factor of the spinon Fermi
surface spin liquid state. We also show how the spin-
orbit interactions may result in an appreciable thermal
Hall conductivity in this system. Finally, in section V we
will summarize our results and discuss the relevance of
our work to the material YbMgGaO4.

II. THE MODEL

In many physical systems, the spin and orbit degrees
of freedom of the localized electrons are highly entangled.
In these cases, when the lattice symmetry is broken by
the surrounding crystal structure, the spin symmetry is
broken as well. Superexchange processes then lead to
the generation of highly anisotropic terms in the e↵ective
spin Hamiltonian. In these strongly spin-orbit coupled
systems, lattice symmetry transformations are accompa-
nied by an equivalent transformation in spin space. We
work with the following Hamiltonian, which was consid-
ered in ref.[6].

H = H± +Hz +H±± +H±z

=
X

hiji

h
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�
S+
i S�

j + S�
i S+
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z
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z
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+iJ±z

�
�⇤
ijS

z
i S

+
j � �ij S

z
i S

�
j + (i $ j)

� i
. (1)

where �ij = 1, ei2⇡/3, e�i2⇡/3 for a1, a2, a3 respectively.
This is the most general nearest-neighbor Hamiltonian
under the following set of symmetries, which act simul-
taneously on the spins and the lattice sites:

T1 : (a1, a2) ! (a1 + 1, a2)

T2 : (a1, a2) ! (a1, a2 + 1)

C2 : (a1, a2) ! (a2, a1)

S6 : (a1, a2) ! (a1 � a2, a1) (2)

plus time reversal symmetry I.
The J± and Jz parts ofH define and XXZ Hamiltonian

which breaks the SU(2) symmetry of the e↵ective spin-
1/2’s down to an in-plane U(1) symmetry. The J±± and
J±z parts are unique to the spin-orbit system, and further
break the U(1) spin and lattice symmetries down to C2
and C3.

It is helpful to write the J±± and J±z components in a
slightly di↵erent form to further expose the symmetries

H±± =
X

hiji

(�ijS
+
i S�

j + h.c.)

=
X

hiji

(~Si · n̂ij)(~Sj · n̂ij)�
1

2
(Sx

i S
x
j + Sy

i S
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j ),(3)

and

H±z =
X
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(i�ijS
+
i Sz

j + h.c.)

=
X

hiji

(~Si ⇥ n̂ij · ẑ)Sz
j . (4)

H±± has a ‘clock’ structure where spins would like to
align along any of the 120� bond directions. Similarly,
H±z also has a bond dependent structure which incorpo-
rates the ẑ direction.
There are several cursory reasons one may expect to

find spin liquid physics in this model. For one, due to
its strong frustration, the triangular lattice has a long
and storied history as a spin liquid candidate [9–13]. Be-
yond that, the form of the anisotropic part of H is highly
reminiscent of the Kitaev honeycomb model interaction
[2], where the direction dependent spin-spin interactions
frustrate the coupling in a way which renders all mag-
netic orders energetically unfavorable.

III. SPIN LIQUID WAVE FUNCTIONS

The ground state wave function in a quantum spin liq-
uid is completely symmetric under all the symmetries of
the Hamiltonian. The projective symmetry group gives a
systematic classification of the allowed spin-liquid phases
under a set of symmetries. In the process, it also gives
a construction of a representative wave function for each
phase. It is a surprising fact that, in many cases, as the
symmetry is reduced the number of allowed spin liquid
phases increases [14, 15]. Spin liquids are fundamentally
defined by their fractionalized quasiparticle excitations,
whose behavior can described phenomenologically by a
mean-field Hamiltonian. The PSG classifies the fraction-
alized symmetry by identifying the allowed form of the
mean-field Hamiltonians. These excitations can realize
the symmetries of the original Hamiltonian in a nontriv-
ial manner.
One starts by writing the physical spin operator ~Si in

terms of fermionic parton operators.

~Si =
1

2
f†
i↵~�↵�fi� . (5)

The partons f†
i� live in a larger Hilbert space than the

spins Si. To remedy this, one must also include the strict
gauge constraint

X

�

f†
i�fi� = 1. (6)

In the spin liquid phases, the partons become decon-
fined. This can be seen at the mean-field level by giving
a dispersion to the spinon operators hf†

i↵fj�i = uij .
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C2 : (a1, a2) ! (a2, a1)

S6 : (a1, a2) ! (a1 � a2, a1) (2)

plus time reversal symmetry I.
The J± and Jz parts ofH define and XXZ Hamiltonian

which breaks the SU(2) symmetry of the e↵ective spin-
1/2’s down to an in-plane U(1) symmetry. The J±± and
J±z parts are unique to the spin-orbit system, and further
break the U(1) spin and lattice symmetries down to C2
and C3.

It is helpful to write the J±± and J±z components in a
slightly di↵erent form to further expose the symmetries
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H±± has a ‘clock’ structure where spins would like to
align along any of the 120� bond directions. Similarly,
H±z also has a bond dependent structure which incorpo-
rates the ẑ direction.
There are several cursory reasons one may expect to

find spin liquid physics in this model. For one, due to
its strong frustration, the triangular lattice has a long
and storied history as a spin liquid candidate [9–13]. Be-
yond that, the form of the anisotropic part of H is highly
reminiscent of the Kitaev honeycomb model interaction
[2], where the direction dependent spin-spin interactions
frustrate the coupling in a way which renders all mag-
netic orders energetically unfavorable.

III. SPIN LIQUID WAVE FUNCTIONS

The ground state wave function in a quantum spin liq-
uid is completely symmetric under all the symmetries of
the Hamiltonian. The projective symmetry group gives a
systematic classification of the allowed spin-liquid phases
under a set of symmetries. In the process, it also gives
a construction of a representative wave function for each
phase. It is a surprising fact that, in many cases, as the
symmetry is reduced the number of allowed spin liquid
phases increases [14, 15]. Spin liquids are fundamentally
defined by their fractionalized quasiparticle excitations,
whose behavior can described phenomenologically by a
mean-field Hamiltonian. The PSG classifies the fraction-
alized symmetry by identifying the allowed form of the
mean-field Hamiltonians. These excitations can realize
the symmetries of the original Hamiltonian in a nontriv-
ial manner.
One starts by writing the physical spin operator ~Si in

terms of fermionic parton operators.

~Si =
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2
f†
i↵~�↵�fi� . (5)

The partons f†
i� live in a larger Hilbert space than the

spins Si. To remedy this, one must also include the strict
gauge constraint

X
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f†
i�fi� = 1. (6)

In the spin liquid phases, the partons become decon-
fined. This can be seen at the mean-field level by giving
a dispersion to the spinon operators hf†

i↵fj�i = uij .
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wave functions. We calculate the correction to the en-
ergy and spin-spin structure factor of the spinon Fermi
surface spin liquid state. We also show how the spin-
orbit interactions may result in an appreciable thermal
Hall conductivity in this system. Finally, in section V we
will summarize our results and discuss the relevance of
our work to the material YbMgGaO4.
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of freedom of the localized electrons are highly entangled.
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This is the most general nearest-neighbor Hamiltonian
under the following set of symmetries, which act simul-
taneously on the spins and the lattice sites:

T1 : (a1, a2) ! (a1 + 1, a2)

T2 : (a1, a2) ! (a1, a2 + 1)

C2 : (a1, a2) ! (a2, a1)

S6 : (a1, a2) ! (a1 � a2, a1) (2)

plus time reversal symmetry I.
The J± and Jz parts ofH define and XXZ Hamiltonian

which breaks the SU(2) symmetry of the e↵ective spin-
1/2’s down to an in-plane U(1) symmetry. The J±± and
J±z parts are unique to the spin-orbit system, and further
break the U(1) spin and lattice symmetries down to C2
and C3.

It is helpful to write the J±± and J±z components in a
slightly di↵erent form to further expose the symmetries
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H±± has a ‘clock’ structure where spins would like to
align along any of the 120� bond directions. Similarly,
H±z also has a bond dependent structure which incorpo-
rates the ẑ direction.
There are several cursory reasons one may expect to

find spin liquid physics in this model. For one, due to
its strong frustration, the triangular lattice has a long
and storied history as a spin liquid candidate [9–13]. Be-
yond that, the form of the anisotropic part of H is highly
reminiscent of the Kitaev honeycomb model interaction
[2], where the direction dependent spin-spin interactions
frustrate the coupling in a way which renders all mag-
netic orders energetically unfavorable.

III. SPIN LIQUID WAVE FUNCTIONS

The ground state wave function in a quantum spin liq-
uid is completely symmetric under all the symmetries of
the Hamiltonian. The projective symmetry group gives a
systematic classification of the allowed spin-liquid phases
under a set of symmetries. In the process, it also gives
a construction of a representative wave function for each
phase. It is a surprising fact that, in many cases, as the
symmetry is reduced the number of allowed spin liquid
phases increases [14, 15]. Spin liquids are fundamentally
defined by their fractionalized quasiparticle excitations,
whose behavior can described phenomenologically by a
mean-field Hamiltonian. The PSG classifies the fraction-
alized symmetry by identifying the allowed form of the
mean-field Hamiltonians. These excitations can realize
the symmetries of the original Hamiltonian in a nontriv-
ial manner.
One starts by writing the physical spin operator ~Si in

terms of fermionic parton operators.

~Si =
1

2
f†
i↵~�↵�fi� . (5)

The partons f†
i� live in a larger Hilbert space than the

spins Si. To remedy this, one must also include the strict
gauge constraint

X

�

f†
i�fi� = 1. (6)

In the spin liquid phases, the partons become decon-
fined. This can be seen at the mean-field level by giving
a dispersion to the spinon operators hf†

i↵fj�i = uij .
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FIG. 1: The phase diagram showing only the lowest energy
spin liquid ground states a) in the J±± � J±z plane with
J2 = 0, and b) in the J±± � J2 plane when J±z = 0. In both
case we fix Jz = 0.5. See the main text for a description of
the next-nearest neighbor term J2.

| i = PG| 0i, (9)

where PG =
Y

i

ni(2� ni). (10)

These projected wave functions contain the full sym-
metry of H, live in the proper Hilbert space and are
highly entangled in real space. Furthermore, with some
minor improvements, such an ansatz can be made to give
variational energies which are competitive with the most
state of the art 2D DMRG calculations [11].

A quantitative variational study looking at the possi-
bility of spin liquid physics should look at the full class
of PSG wave functions. This, however, quickly becomes
cumbersome for Z2 spin liquids where, even restricting to
nearest neighbor couplings, there are at least 18 di↵erent
mean field ansatz. For simplicity, we therefore restrict
our scope to look only at the U(1) states. In several re-
lated triangular lattice spin system, the U(1) spin liquids
have proven to have competitive energies [9, 11] and have
the additional advantage of being possibly relevant to the
experimental realizations of our model.

It is notable that the 6 di↵erent classes of mean-field
wave function are highly constrained by the way the
projective symmetry is implemented in the mean-field
Hamiltonian. In particular, the uniform Fermi surface
and Dirac spin liquid states are completely SU(2) invari-
ant, and the only nearest-neighbor terms which can be
added to Hmf which breaks the SU(2) invariance are of
a di↵erent projective symmetry class. For this reason,
neither of these states gain any energy from the J±±
or Jz± components of the Hamiltonian. Similarly, while
both the ‘clock’ and ‘Rashba’ wave functions have some
spin-orbit components, only the Rashba Hamiltonians in-
clude spin orbit terms both in and perpendicular to the
xy plane. That is, the ‘Clock’ wave functions have no
J±z component.

The only tractable method of working with the wave
function in Eq. 9 is numerically. We performed the varia-
tional Monte Carlo simulation and measured the energies
of each of our trial wave functions on finite size lattices

for systems sizes up to N = 32⇥32 sites. Each mean-field
wave function, when projected, gives a di↵erent pattern
of entangled spins, giving rise to di↵erent spin correla-
tions. When J±z = 0, the wave functions all have no free
parameters, and the energies when scaled to the thermo-
dynamic limit are given by

EDirac = �0.3527(1)[1 + Jz/2]

EFermi = �0.2345(3)[1 + Jz/2]

EClock = �0.0327(4) + 0.309(2)Jz � 0.3589(4)J±±

ERashba = �0.0836(8) + 0.256(1)Jz + 0.3725(6)J±±

ECl⇡ = �0.0309(4)� 0.319(1)Jz � 0.2920(5)J±±

ERsh⇡ = +0.0587(4) + 0.256(2)Jz + 0.2628(5)J±±.

Notice that the (Cl⇡SL) and (R⇡SL) ansatz are never
competitive energetically in our regimes of interest.
The Dirac state is the lowest energy at J±± = 0. For

large positive or negative J±±, the clock and Rashba spin
liquid states become energetically favorable.
When J±z 6= 0, only the energy of the Rashba states

change. The lowest energy states for all J±± and J±z

are shown in Fig. 1a) for Jz = J±. The phase diagram is
qualitatively similar for all values of Jz.
Looking ahead, it has been suggested [4] that next-

nearest neighbor interactions may be important in stabi-
lizing a spin liquid ground state for our model. We there-
fore also looked at the variational energies of our ansatz
when an XXZ like next-nearest neighbor interaction is
added. In Fig. (1b) we plot the lowest energy states,
including n.n.n. J2, along the J±z = 0 plane. Notice
that the Fermi surface state only becomes competitive in
energy for very large next-nearest neighbor coupling.

B. Magnetic Order

It turns out that the true ground state of the
Hamiltonian(1) is dominated by magnetic order. To find
actual spin liquid physics we need to go beyond the sim-
ple nearest-neighbor model and include second and third
neighbor interactions. Keeping the same relative XY
anisotropy, we study the model:

H = Hnn + J2
X

hhijii

✓
S+
i S�

j + S�
i S+

j +
Jz
J±

Sz
i S

z
j

◆

+ J3
X

hhhijiii

✓
S+
i S�

j + S�
i S+

j +
Jz
J±

Sz
i S

z
j

◆
(11)

To avoid complications involving canted and multi-Q
magnetic orders, we look at the case when J±z = 0.
With this in mind, in this section we undertake the

somewhat ambitious goal of describing the entire four
dimensional phase diagram, varying the free parameters
Jz, J±±, J2, and J3 relative to J± = 1.
The PSG wave functions can be used as a starting

point on which magnetic order can be added. This is
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FIG. 2: The full magnetic phase diagram for J3 = 0. Green is stripe order, red is 120� AFM order and blue is the Dirac spin
liquid phase. Stripe order dominates the phase diagram except for small J2 and J±±. The spin liquid regime also depends
strongly on the value of Jz and is greatly reduced when Jz moves away from the isotropic point Jz = 1. The x-axis on each
subplot gives the value of J±±.

done by adding a site dependent magnetic field ~hi to the
mean-field Hamiltonians which define our trial states,

Hmf =
X

hiji

tijf
†
i�fj� +

X

i

~hi · ~Si. (12)

For small values of the order parameter, this corresponds
to adding a small confining potential to the spinons. In
practice, the lowest energies are found by using tij as in
the Dirac spin liquid case.

If |~hi| ! 1, Eq. 12 describes classical magnetic order
with |h~Sii| = 1/2 on each site. If instead a finite field is
used, the value of the magnetic moment can be greatly
reduced. We then optimize |h|/t to give the lowest vari-
ational energy. In the Heisenberg limit, for example, the
optimal magnetic field of our simple ansatz gives a stag-
gered magnetic moment h~Sii ⇡ 0.30. DMRG calcula-
tions find a staggered magnetic moment M ⇠ 0.20 [12].
Including local correlations in our variational state, for
example by including Jastrow factors, will in general re-
duce the value of hSi further. It is interesting that our
PSG analysis provides a general way to construct any
ansatz satisfying the constraint of Eq. 6, even allowing
us to construct energetically competitive magnetic states
in addition to giving a general classification of all spin
liquid states.

In certain limits, the ground state phase diagram of
Eq. (11) is already well understood. In the absence of
second and third neighbor interactions (J2 = J3 = 0),

FIG. 3: a) The classical phase diagram at J±± = 0 found
using the Luttinger-Tizsa method and b) the same quantum
phase diagram found using variational Monte Carlo at Jz =
0.5.

the Luttinger-Titza analysis performed in ref.[6], tells us
the magnetic order when ~S is treated as a classical vec-
tor. In that case, there is a phase transition from the
120� staggered antiferromagnetic state at small |J±±| to
a striped phase for |J±±| >⇠ 0.3. The 120� ansatz uses the
local magnetic field ordered at wave vector ~qi = ( 4⇡3 , 0, 0),

while the stripe state orders along ĥi = (0, 2⇡p
3
, 0).

There is also a great deal of literature on the quantum
J1 � J2 model (J±± = J3 = 0), in the Heisenberg limit
(Jz = 2J±) [12, 13]. In this case, growing evidence sug-
gests that a spin liquid phase interpolates between the
120� phase for small J2 and the stripe phase at large J2.
The advantage of using variational Monte Carlo with

simple trial wave functions is that we are able to explore
a huge phase space of our Hamiltonian. In Fig. 2, we
present our result showing the full quantum Jz�J±±�J2
phase diagram. Notice that our results agree well with
the previously understood limits. When J2 = 0, the
system acts very similar to the classical case with a
transition between the 120� and stripe orders around
J±± ⇡ 0.20 + 0.1Jz. When a second neighbor inter-
action is added, we indeed see that a Dirac spin liquid
appears between the 120� and stripe phases. This phase
is stable for small J±±, however both large J2 and J±±
favor stripe order leading to the triangular shape of the
spin liquid regime which we see. It is also notable that
the extent of the spin liquid phase shrinks dramatically
when Jz is lowered from the Heisenberg point. This is
in agreement with the DMRG results on this model of
White et. al. [8].
We are also able to go beyond this model to look at

the e↵ect of the further third neighbor XXZ interaction
J3. Since both the second and third neighbor sites are
separated by two lattice bonds, a simple superexchange
picture implies that such a term would be present in ma-
terials with J3 ⇠ 0.5J2. We will see that the e↵ect of such
a term is to enhance the size of the spin liquid regime.
First, we present the results in the classical limit.

When J±± = 0, the system has U(1) symmetry and
we can solve for the classical magnetic order using the
Luttinger-Tisza method since any coplanar magnetic or-
der with a single ordering wave vector will satisfy the
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FIG. 1: The phase diagram showing only the lowest energy
spin liquid ground states a) in the J±± � J±z plane with
J2 = 0, and b) in the J±± � J2 plane when J±z = 0. In both
case we fix Jz = 0.5. See the main text for a description of
the next-nearest neighbor term J2.

| i = PG| 0i, (9)

where PG =
Y

i

ni(2� ni). (10)

These projected wave functions contain the full sym-
metry of H, live in the proper Hilbert space and are
highly entangled in real space. Furthermore, with some
minor improvements, such an ansatz can be made to give
variational energies which are competitive with the most
state of the art 2D DMRG calculations [11].

A quantitative variational study looking at the possi-
bility of spin liquid physics should look at the full class
of PSG wave functions. This, however, quickly becomes
cumbersome for Z2 spin liquids where, even restricting to
nearest neighbor couplings, there are at least 18 di↵erent
mean field ansatz. For simplicity, we therefore restrict
our scope to look only at the U(1) states. In several re-
lated triangular lattice spin system, the U(1) spin liquids
have proven to have competitive energies [9, 11] and have
the additional advantage of being possibly relevant to the
experimental realizations of our model.

It is notable that the 6 di↵erent classes of mean-field
wave function are highly constrained by the way the
projective symmetry is implemented in the mean-field
Hamiltonian. In particular, the uniform Fermi surface
and Dirac spin liquid states are completely SU(2) invari-
ant, and the only nearest-neighbor terms which can be
added to Hmf which breaks the SU(2) invariance are of
a di↵erent projective symmetry class. For this reason,
neither of these states gain any energy from the J±±
or Jz± components of the Hamiltonian. Similarly, while
both the ‘clock’ and ‘Rashba’ wave functions have some
spin-orbit components, only the Rashba Hamiltonians in-
clude spin orbit terms both in and perpendicular to the
xy plane. That is, the ‘Clock’ wave functions have no
J±z component.

The only tractable method of working with the wave
function in Eq. 9 is numerically. We performed the varia-
tional Monte Carlo simulation and measured the energies
of each of our trial wave functions on finite size lattices

for systems sizes up to N = 32⇥32 sites. Each mean-field
wave function, when projected, gives a di↵erent pattern
of entangled spins, giving rise to di↵erent spin correla-
tions. When J±z = 0, the wave functions all have no free
parameters, and the energies when scaled to the thermo-
dynamic limit are given by

EDirac = �0.3527(1)[1 + Jz/2]

EFermi = �0.2345(3)[1 + Jz/2]

EClock = �0.0327(4) + 0.309(2)Jz � 0.3589(4)J±±

ERashba = �0.0836(8) + 0.256(1)Jz + 0.3725(6)J±±

ECl⇡ = �0.0309(4)� 0.319(1)Jz � 0.2920(5)J±±

ERsh⇡ = +0.0587(4) + 0.256(2)Jz + 0.2628(5)J±±.

Notice that the (Cl⇡SL) and (R⇡SL) ansatz are never
competitive energetically in our regimes of interest.
The Dirac state is the lowest energy at J±± = 0. For

large positive or negative J±±, the clock and Rashba spin
liquid states become energetically favorable.
When J±z 6= 0, only the energy of the Rashba states

change. The lowest energy states for all J±± and J±z

are shown in Fig. 1a) for Jz = J±. The phase diagram is
qualitatively similar for all values of Jz.
Looking ahead, it has been suggested [4] that next-

nearest neighbor interactions may be important in stabi-
lizing a spin liquid ground state for our model. We there-
fore also looked at the variational energies of our ansatz
when an XXZ like next-nearest neighbor interaction is
added. In Fig. (1b) we plot the lowest energy states,
including n.n.n. J2, along the J±z = 0 plane. Notice
that the Fermi surface state only becomes competitive in
energy for very large next-nearest neighbor coupling.

B. Magnetic Order

It turns out that the true ground state of the
Hamiltonian(1) is dominated by magnetic order. To find
actual spin liquid physics we need to go beyond the sim-
ple nearest-neighbor model and include second and third
neighbor interactions. Keeping the same relative XY
anisotropy, we study the model:

H = Hnn + J2
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To avoid complications involving canted and multi-Q
magnetic orders, we look at the case when J±z = 0.
With this in mind, in this section we undertake the

somewhat ambitious goal of describing the entire four
dimensional phase diagram, varying the free parameters
Jz, J±±, J2, and J3 relative to J± = 1.
The PSG wave functions can be used as a starting

point on which magnetic order can be added. This is
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FIG. 2: The full magnetic phase diagram for J3 = 0. Green is stripe order, red is 120� AFM order and blue is the Dirac spin
liquid phase. Stripe order dominates the phase diagram except for small J2 and J±±. The spin liquid regime also depends
strongly on the value of Jz and is greatly reduced when Jz moves away from the isotropic point Jz = 1. The x-axis on each
subplot gives the value of J±±.

done by adding a site dependent magnetic field ~hi to the
mean-field Hamiltonians which define our trial states,

Hmf =
X

hiji

tijf
†
i�fj� +

X

i

~hi · ~Si. (12)

For small values of the order parameter, this corresponds
to adding a small confining potential to the spinons. In
practice, the lowest energies are found by using tij as in
the Dirac spin liquid case.

If |~hi| ! 1, Eq. 12 describes classical magnetic order
with |h~Sii| = 1/2 on each site. If instead a finite field is
used, the value of the magnetic moment can be greatly
reduced. We then optimize |h|/t to give the lowest vari-
ational energy. In the Heisenberg limit, for example, the
optimal magnetic field of our simple ansatz gives a stag-
gered magnetic moment h~Sii ⇡ 0.30. DMRG calcula-
tions find a staggered magnetic moment M ⇠ 0.20 [12].
Including local correlations in our variational state, for
example by including Jastrow factors, will in general re-
duce the value of hSi further. It is interesting that our
PSG analysis provides a general way to construct any
ansatz satisfying the constraint of Eq. 6, even allowing
us to construct energetically competitive magnetic states
in addition to giving a general classification of all spin
liquid states.

In certain limits, the ground state phase diagram of
Eq. (11) is already well understood. In the absence of
second and third neighbor interactions (J2 = J3 = 0),
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FIG. 3: a) The classical phase diagram at J±± = 0 found
using the Luttinger-Tizsa method and b) the same quantum
phase diagram found using variational Monte Carlo at Jz =
0.5.

the Luttinger-Titza analysis performed in ref.[6], tells us
the magnetic order when ~S is treated as a classical vec-
tor. In that case, there is a phase transition from the
120� staggered antiferromagnetic state at small |J±±| to
a striped phase for |J±±| >⇠ 0.3. The 120� ansatz uses the
local magnetic field ordered at wave vector ~qi = ( 4⇡3 , 0, 0),

while the stripe state orders along ĥi = (0, 2⇡p
3
, 0).

There is also a great deal of literature on the quantum
J1 � J2 model (J±± = J3 = 0), in the Heisenberg limit
(Jz = 2J±) [12, 13]. In this case, growing evidence sug-
gests that a spin liquid phase interpolates between the
120� phase for small J2 and the stripe phase at large J2.
The advantage of using variational Monte Carlo with

simple trial wave functions is that we are able to explore
a huge phase space of our Hamiltonian. In Fig. 2, we
present our result showing the full quantum Jz�J±±�J2
phase diagram. Notice that our results agree well with
the previously understood limits. When J2 = 0, the
system acts very similar to the classical case with a
transition between the 120� and stripe orders around
J±± ⇡ 0.20 + 0.1Jz. When a second neighbor inter-
action is added, we indeed see that a Dirac spin liquid
appears between the 120� and stripe phases. This phase
is stable for small J±±, however both large J2 and J±±
favor stripe order leading to the triangular shape of the
spin liquid regime which we see. It is also notable that
the extent of the spin liquid phase shrinks dramatically
when Jz is lowered from the Heisenberg point. This is
in agreement with the DMRG results on this model of
White et. al. [8].
We are also able to go beyond this model to look at

the e↵ect of the further third neighbor XXZ interaction
J3. Since both the second and third neighbor sites are
separated by two lattice bonds, a simple superexchange
picture implies that such a term would be present in ma-
terials with J3 ⇠ 0.5J2. We will see that the e↵ect of such
a term is to enhance the size of the spin liquid regime.
First, we present the results in the classical limit.

When J±± = 0, the system has U(1) symmetry and
we can solve for the classical magnetic order using the
Luttinger-Tisza method since any coplanar magnetic or-
der with a single ordering wave vector will satisfy the

classical quantum

Ordered states outcompete all but the Dirac 
QSL according to standard Gutzwiller method
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value using | (n)i, “disconnected” powers of the Hamil-
tonian are subtracted o↵ in the numerator, but not in the
denominator. The normalization factor in the denomina-
tor therefore necessarily grows faster than the numerator
with system size. Additional powers of n are then needed
to compensate for this fact, but it is only when taking
n ⇠ N that a fully extensive correction is found.

Instead, we have found that the best way to work with
the wave function in Eq. (19) numerically is to implement
the correction perturbatively in ↵, but to all power in n.
To do this, we realize that the expectation value of any
operator with respect to our improved wave function can
be written as

hOi =
⌦
e�↵HOe�↵H

↵
0

he�2↵Hi0
, (20)

where h· · · i0 is the expectation value taken with respect
to the unperturbed wave function P| 0i.

It is now possible to expand Eq. (20) analogously to
diagrammatic perturbation theory. For any Hermitian
operator O, the correction to order ↵2 reads

hOi =
�
hOi0 � 2↵Re[hOHi0] + ↵2

�
hHOHi0 +Re[hH2Oi0]

��

(1� 2↵hHi0 + 2↵2hH2i0)
.

(21)

The subtle di↵erence is that now, by including all pow-
ers of n, all terms in the denominator exactly cancel
the higher order “disconnected” pieces in the numera-
tor. In the VMC calculation, this is expressed by the
fact that hH

ij

H
k`

i ⇡ hH
ij

ihH
k`

i as |(ij) � (kl)| ! 1.
This way, we are able to measure, in our numerical simu-
lation, many-body corrections to the wave function which
survive in the thermodynamic limit.

In principle, applying the operator exp[�↵H] to our
unperturbed trial wave function could cause a phase tran-
sition, and we would no longer be working with a spin liq-
uid state. For small ↵, however, we expect that the spin
liquid ground state should be stable to such a perturba-
tion. In the spinon metal, in a similar vein to Fermi liquid
theory, we expect that these terms only give a correction
to the self-energy of spinons near the Fermi surface [22].

B. Correction to the Energy

To begin, we measure the correction to the energy of
the Dirac and uniform Fermi surface states, which arises
from including the spin-orbit interaction in our varia-
tional wave function. We can directly measure the first
and second order correction numerically.

For any operator O, we write the nth order correction
to the expectation value hOi from applying exp[�↵H] as

FIG. 6: Finite size scaling of the first order correction to a)
hH±±i and b) hH±i, for both the uFS (yellow) and Dirac
(blue) spin liquid states. The corresponding change in energy
is �E ⇠ ↵J±±hH±±i+ ↵2J±hH±i.

↵nhO(n)i. Expanding Eq. (21) gives

hO(1)i = �2(Re[hHOi0]� hHi0hOi0), (22)

hO(2)i = hHOHi0 +Re[hH2Oi0]� 4Re[hHi0hOHi0]
�2hH2i0hOi0 + 4hHi20hOi0.

In our case, H = H±± and hH±±i0 = hH±±H±i0 = 0.
Therefore, the spin-orbit part of the Hamiltonian is al-
tered at order ↵, while the rotationally invariant part is
corrected at order ↵2:

hH(1)
±±i = �2hH2

±±i0, (23)

hH(2)
± i = Re[

⌦�
H±±,H±

 
H±±

↵
0
]� 2hH2

±±i0hH±i0,
hH(2)

z

i = Re[
⌦�

H±±,Hz

 
H±±

↵
0
]� 2hH2

±±i0hHz

i0.

In Fig. 6, we show the resulting scaling of hH(1)
±±i and

hH(2)
± i to the thermodynamic limit. The result is that

the spinon metal is more susceptible, compared to the
Dirac state, to energetically beneficial corrections to H±±
and less susceptible to detrimental corrections to H± and
H

z

. Putting this together, we find that the optimal value
of the variational parameter is ↵

min

⇠ J±±/(J± + J
z

),
which gives an energy correction �E ⇠ �J2

±±/(J±+J
z

).
More precisely, we find that the lowest-order corrections
to the energy are given by the expressions

E
uFS

= �0.4693(1 + J
z

/4)� 0.39 J2
±±

J± + 1.42J
z

, (24)

E
Dirac

= �0.7054(1 + J
z

/4)� 0.21 J2
±±

J± + 0.87J
z

. (25)

This implies that that the Fermi surface state becomes
energetically superior to the Dirac state between J±± =
1.13 at J

z

= 0 and J±± = 3.61 at J
z

= 2.0. One caveat,
of course, is that these values of J±± may fall outside
the perturbative regime. Also, while smaller J

z

appears
to be more favorable for the spinon Fermi surface, this is
also the parameter regime which is more susceptible to
magnetic order.

FS might 
compete with 

larger anisotropy, 
and if stripy order 

is removed 
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FIG. 7: The rotationally invariant spin structure factor (far
left) and the perturbative corrections to the spin-polarized
structure factor measured with spins pointing along the three
lattice bond directions ~a1,~a2, and ~a3.

C. Correction to the Spin Structure Factor

Studying the improved variational wave function
makes it clear that the spinon metal state in a spin-orbit
coupled environment has several unique properties, de-
spite the fact that the mean-field Hamiltonian retains
its rotational invariance. Taking our analogy to Fermi
liquid theory seriously, the spin-orbit interaction gives
a momentum and spin dependent correction to the self
energy. This appears as a momentum dependent correc-
tion to the structure factor, which we can again measure
directly in our simulation.

We di↵erentiate between the various spin polarized
contributions to the spin-spin correlation function:

S↵�(~q) =
X

i

ei~q·~rihS↵

i

S�

0 i. (26)

The first-order correction to the correlation function is

hS↵

i

S�

j

i1 = �2
h
Re[hS↵

i

S�

j

H±±i0]� hS↵

i

S�

j

i0hH±±i0
i
.

(27)
The results are shown in Fig. 7. The corrections to the
spin-polarized structure factor are direction-dependent
broad peaks at the M points of the Brillouin zone which
appear at order ↵ ⇠ J±±/(J± + J

z

). Therefore, in a
spinon metal with spin-orbit coupling, spin-spin correla-
tions when measured with di↵erent spin polarizations are
direction dependent. This type of measurement could
prove to be an important test to show both the pres-
ence of spin-orbit interactions and the absence of spon-
taneous symmetry breaking. We note that these kinds of
direction-dependent structure factors have already been
measured experimentally by resonant elastic x-ray scat-
tering in the honeycomb lattice iridate Na2IrO3 [23].

D. Thermal Hall Conductivity

1. General considerations

Thermal transport measurements can be a powerful
tool for studying magnetic insulators. The idea is to
set up a thermal gradient rT (which is analogous to
an electric field) and then measure the heat current jth

in response to it (which is analogous to an electric cur-
rent). Any heat current in the insulator must be carried
by the emergent quasiparticles, giving us a probe of the
low energy excitations. The thermal conductivity, , can
defined within linear response as

jth
µ

= �
µ⌫

@
⌫

T. (28)

The spinon Fermi surface QSL is unusual due to the large
number of gapless excitations. This leads to a predicted
linear T term appearing in the diagonal component of
, similar to what one would expect in a metal. The
deconfined spinons carry heat in the same way physi-
cal electrons carry charge in an electrical conductor. A
major di�culty is that many degrees of freedom, most
notably phonons, can contribute to the diagonal thermal
conductivity, making the measurement challenging.
The thermal Hall conductivity, however, given by the

o↵-diagonal component of , should not contain a phonon
term. Furthermore, as explained in Ref. [24], it is very
di�cult to find an e↵ect generated by magnons on the
triangular lattice due to a cancellation of the contribu-
tions from neighboring edge sharing plaquettes. A large
nonzero thermal Hall conductivity could therefore be a
strong indicator of exotic physics. Indeed, in Ref. [24],
the authors also predict that a spinon metal would dis-
play such an e↵ect. However, the reasoning is very sub-
tle, depending on a coupling of the orbital motion of the
spinons to the external electromagnetic field through the
interaction with the internal gauge field.
Here, we argue that there exists a distinct contribu-

tion to the thermal Hall conductivity in the spinon metal
which is unique to spin-orbit coupled systems and relies
only on a Zeeman coupling to the external electromag-
netic field. For itinerant fermions with conserved charge,
the presence of spin-orbit coupling can lead to a non-
trivial Berry curvature which may induce an anomalous
component of the charge Hall conductivity, in the ab-
sence of any Lorenz force. This mechanism of anomalous
Hall conductivity was explored intensely for Rashba two-
dimensional electron gases and in many other models.
In the following, we adapt this idea to the study of the
thermal conductivity of the Fermi surface QSL state.
The U(1) QSL states studied here have an emergent

conserved charge, which is the fermion number associ-
ated with the emergent U(1) gauge symmetry. Conse-
quently, at the parton level, we can define a current asso-
ciated with this charge, and we may consider, formally,
the emergent conductivity tensor �qp

µ⌫

defined with re-
spect to the emergent current and a potential coupling
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C. Correction to the Spin Structure Factor

Studying the improved variational wave function
makes it clear that the spinon metal state in a spin-orbit
coupled environment has several unique properties, de-
spite the fact that the mean-field Hamiltonian retains
its rotational invariance. Taking our analogy to Fermi
liquid theory seriously, the spin-orbit interaction gives
a momentum and spin dependent correction to the self
energy. This appears as a momentum dependent correc-
tion to the structure factor, which we can again measure
directly in our simulation.

We di↵erentiate between the various spin polarized
contributions to the spin-spin correlation function:

S↵�(~q) =
X

i

ei~q·~rihS↵

i

S�

0 i. (26)

The first-order correction to the correlation function is

hS↵

i

S�

j

i1 = �2
h
Re[hS↵

i

S�

j

H±±i0]� hS↵

i

S�

j

i0hH±±i0
i
.

(27)
The results are shown in Fig. 7. The corrections to the
spin-polarized structure factor are direction-dependent
broad peaks at the M points of the Brillouin zone which
appear at order ↵ ⇠ J±±/(J± + J

z

). Therefore, in a
spinon metal with spin-orbit coupling, spin-spin correla-
tions when measured with di↵erent spin polarizations are
direction dependent. This type of measurement could
prove to be an important test to show both the pres-
ence of spin-orbit interactions and the absence of spon-
taneous symmetry breaking. We note that these kinds of
direction-dependent structure factors have already been
measured experimentally by resonant elastic x-ray scat-
tering in the honeycomb lattice iridate Na2IrO3 [23].

D. Thermal Hall Conductivity

1. General considerations

Thermal transport measurements can be a powerful
tool for studying magnetic insulators. The idea is to
set up a thermal gradient rT (which is analogous to
an electric field) and then measure the heat current jth

in response to it (which is analogous to an electric cur-
rent). Any heat current in the insulator must be carried
by the emergent quasiparticles, giving us a probe of the
low energy excitations. The thermal conductivity, , can
defined within linear response as

jth
µ

= �
µ⌫

@
⌫

T. (28)

The spinon Fermi surface QSL is unusual due to the large
number of gapless excitations. This leads to a predicted
linear T term appearing in the diagonal component of
, similar to what one would expect in a metal. The
deconfined spinons carry heat in the same way physi-
cal electrons carry charge in an electrical conductor. A
major di�culty is that many degrees of freedom, most
notably phonons, can contribute to the diagonal thermal
conductivity, making the measurement challenging.
The thermal Hall conductivity, however, given by the

o↵-diagonal component of , should not contain a phonon
term. Furthermore, as explained in Ref. [24], it is very
di�cult to find an e↵ect generated by magnons on the
triangular lattice due to a cancellation of the contribu-
tions from neighboring edge sharing plaquettes. A large
nonzero thermal Hall conductivity could therefore be a
strong indicator of exotic physics. Indeed, in Ref. [24],
the authors also predict that a spinon metal would dis-
play such an e↵ect. However, the reasoning is very sub-
tle, depending on a coupling of the orbital motion of the
spinons to the external electromagnetic field through the
interaction with the internal gauge field.
Here, we argue that there exists a distinct contribu-

tion to the thermal Hall conductivity in the spinon metal
which is unique to spin-orbit coupled systems and relies
only on a Zeeman coupling to the external electromag-
netic field. For itinerant fermions with conserved charge,
the presence of spin-orbit coupling can lead to a non-
trivial Berry curvature which may induce an anomalous
component of the charge Hall conductivity, in the ab-
sence of any Lorenz force. This mechanism of anomalous
Hall conductivity was explored intensely for Rashba two-
dimensional electron gases and in many other models.
In the following, we adapt this idea to the study of the
thermal conductivity of the Fermi surface QSL state.
The U(1) QSL states studied here have an emergent

conserved charge, which is the fermion number associ-
ated with the emergent U(1) gauge symmetry. Conse-
quently, at the parton level, we can define a current asso-
ciated with this charge, and we may consider, formally,
the emergent conductivity tensor �qp

µ⌫

defined with re-
spect to the emergent current and a potential coupling
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Summary
• Strongly SOC magnets are a new arena for QSLs 

• VMC techniques are a systematic way to study 
their complex phases and fairly check the 
competition between QSLs and ordering

• interesting to apply to Kitaev materials

• New physical effects: anisotropic spin 
correlations and thermal Hall effect appear 
through SOC’s influence.
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must be positive. This last condition is required in order that spin
states of high multiplicity, which favor ferromagnetism, have the
lowest energy. It seems certain that for many of the non-ferro-
magnetic substances containing a high concentration of magnetic
atoms the exchange integrals are negative. In such cases the lowest
energy state is the one in which the maximum number of anti-
parallel pairs occur. An. approximate theory of such substances
has been developed by Neel, I Bitter, and Van Vleck3 for one
specific case and the results are briefly described below.
Consider a crystalline structure which can be divided into two

interpenetrating lattices such that atoms on one lattice have
nearest neighbors only on the other lattice. Examples are simple
cubic and body-centered cubic structures. Let the exchange
integral for nearest neighbors be negative and consider only
nearest neighbor interactions. Theory then predicts that the
structure will exhibit a Curie temperature. Below the Curie tem-
perature the spontaneous magnetization vs. temperature curve
for one of the sub-lattices is that for an ordinary ferromagnetic
material. However, the magnetization directions for the two
lattices are antiparallel so that no net spontaneous magnetization
exists. At absolute zero all of the atoms on one lattice have their
electronic magnetic moments aligned in the same direction and
all of the atoms on the other lattice have their moments anti-
parallel to the first. Above the Curie temperature the thermal
energy is sufficient to overcome the tendency of the atoms to
lock antiparallel and the behavior is that of a normal paramagnetic
substance.
Materials exhibiting the characteristics described above have

been designated "antiferromagnetic. "Up to the present time the
only methods of detecting antiferromagnetism experimentally
have been indirect, e.g. , determination of Curie points by suscep-
tibility and specific heat anomalies. It has occurred to one of us
(J.S.S.) that neutron diKraction experiments might provide a
direct means of detecting antiferromagnetism. In an antiferro-
magnetic material below the Curie temperature a rigid lattice of
magnetic ions is formed and the interaction of the neutron mag-
netic moment with this lattice should result in measurable co-
herent scattering. Halpern and Johnson' have shown that the
magnetic and nuclear scattering amplitudes of a paramagnetic
atom should be of the same order of magnitude and this result.
has been qualitatively verified by experimental investigators. s At
the time of the above suggestion, an experimental program on the
determination of the magnetic scattering patterns for various
paramagnetic substances (MnO, MnF2, MnSO4 and Fe203) was
underway at Oak Ridge National Laboratory and room ternpera-
ture examination had shown {1)a form factor type of diffusion
magnetic scattering {no coupling of the atomic moments) to exist
for MnF2 and MnSO4, (2) a liquid type of magnetic scattering
(short-range order coupling of oppositely directed magnetic
moments) to exist for MnO and (3) the presence of strong coherent
magnetic diffraction peaks at forbidden re6ection positions for
the n-Fe203 lattice. The latter two observations are in complete
accord with the antiferromagnetic notion since the Curie points
for MnO and o.-Fe203 are respectively' 122'K and 950'K.
Figure 1 shows the neutron diffraction patterns obtained for

powdered MnO at room temperature and at 80'K. The room
temperature pattern shows coherent nuclear diGraction peaks at
the regular face-centered cubic re6ection positions and the liquid
type of diffuse magnetic scattering in the background. It should
be pointed out that the coherent nuclear scattering amplitudes for
Mn and 0 are of opposite sign so that the diGraction pattern is a
reversed NaCl type of pattern. The low temperature pattern also
shows the same nuclear diffraction peaks, since there is no crystal-
lographic transition in this temperature region, T and in addition
shows the presence of strong magnetic reflections at positions not
allowed on the basis of the chemical unit cell. The magnetic re-
jections can be indexed, however, making use of a magnetic unit
cell twice as large as the chemical unit cell. A complete description
of the magnetic structure will be given at a later date.
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Imprisonment of Resonance Radiation in
Mercury Vapor

D. ALPERT, A. O. McCoUBRFY, AND T. HQLsTEIN
Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania

August 29, 1949

'HE term "imprisonment of resonance radiation" describes
the situation ~herein resonance radiation emitted in the

interior of a gas-filled enclosure is strongly absorbed by normal
gas atoms before it can get out; the eventual escape of a quantum
of radiation then takes place only after a number of successive
atomic absorptions and emissions. The phenomenon was first
observed by Zemansky' who measured the time of decay, T, of
diffuse resonance radiation from an enclosure of optically excited
mercury vapor, after the exciting beam of 2537A light was cut off.
T was found to depend upon gas density and enclosure geometry;
at densities around 10'5/cc, T attained values of the order of 10 4

sec., a thousand times greater than the natural lifetime of an
excited 6'PI atom.
On the theoretical side, a number of treatments' ' have been

presented. The early work' ' is reviewed in reference 6. In the
latter paper (as well as in that of Biebermans), the transport of
resonance quanta is described by a Boltzmann-type integro-
diEerential equation for the density of excited 6'PI atoms; the
solution of this equation by the Ritz variational method gives
accurate values for the decay time, T. It was found that T depends
not only on vapor density and enclosure geometry, but also on
the spectral line shape of the resonance radiation, as pointed out
earlier by Kenty explicit results were obtained for the case of
Doppler broadening and plane-parallel enclosure geometry. Most
recently, unpublished calculations have extended the analysis to
enclosures of the form of infinite circular cylinders and to a variety
of line shapes.

In conclusion it appears that neutron diffraction studies of anti-
ferromagnetic materials should provide a new and important
method of investigating the exchange coupling of magnetic ions.
*This work was supported in part by the ONR.
~ L. Noel, Ann. de physique l7, 5 (1932).
~ F. Bitter, Phys. Rev. 54, ?9 (1938).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
4 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' Whittaker, Beyer, and Dunning, Phys. Rev. 54, 771 (1938); Ruderman,

Havens, Taylor, and Rainwater, Phys. Rev. 75, 895 (1949); and also
unpublished work at Oak Ridge National Laboratory.

II Bizette, Squire, and Tsai, Comptes Rendus 207, 449 (1938).' B. Ruhemann, Physik. Zeits. Sowjetunion 7, 590 (1935).
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must be positive. This last condition is required in order that spin
states of high multiplicity, which favor ferromagnetism, have the
lowest energy. It seems certain that for many of the non-ferro-
magnetic substances containing a high concentration of magnetic
atoms the exchange integrals are negative. In such cases the lowest
energy state is the one in which the maximum number of anti-
parallel pairs occur. An. approximate theory of such substances
has been developed by Neel, I Bitter, and Van Vleck3 for one
specific case and the results are briefly described below.
Consider a crystalline structure which can be divided into two

interpenetrating lattices such that atoms on one lattice have
nearest neighbors only on the other lattice. Examples are simple
cubic and body-centered cubic structures. Let the exchange
integral for nearest neighbors be negative and consider only
nearest neighbor interactions. Theory then predicts that the
structure will exhibit a Curie temperature. Below the Curie tem-
perature the spontaneous magnetization vs. temperature curve
for one of the sub-lattices is that for an ordinary ferromagnetic
material. However, the magnetization directions for the two
lattices are antiparallel so that no net spontaneous magnetization
exists. At absolute zero all of the atoms on one lattice have their
electronic magnetic moments aligned in the same direction and
all of the atoms on the other lattice have their moments anti-
parallel to the first. Above the Curie temperature the thermal
energy is sufficient to overcome the tendency of the atoms to
lock antiparallel and the behavior is that of a normal paramagnetic
substance.
Materials exhibiting the characteristics described above have

been designated "antiferromagnetic. "Up to the present time the
only methods of detecting antiferromagnetism experimentally
have been indirect, e.g. , determination of Curie points by suscep-
tibility and specific heat anomalies. It has occurred to one of us
(J.S.S.) that neutron diKraction experiments might provide a
direct means of detecting antiferromagnetism. In an antiferro-
magnetic material below the Curie temperature a rigid lattice of
magnetic ions is formed and the interaction of the neutron mag-
netic moment with this lattice should result in measurable co-
herent scattering. Halpern and Johnson' have shown that the
magnetic and nuclear scattering amplitudes of a paramagnetic
atom should be of the same order of magnitude and this result.
has been qualitatively verified by experimental investigators. s At
the time of the above suggestion, an experimental program on the
determination of the magnetic scattering patterns for various
paramagnetic substances (MnO, MnF2, MnSO4 and Fe203) was
underway at Oak Ridge National Laboratory and room ternpera-
ture examination had shown {1)a form factor type of diffusion
magnetic scattering {no coupling of the atomic moments) to exist
for MnF2 and MnSO4, (2) a liquid type of magnetic scattering
(short-range order coupling of oppositely directed magnetic
moments) to exist for MnO and (3) the presence of strong coherent
magnetic diffraction peaks at forbidden re6ection positions for
the n-Fe203 lattice. The latter two observations are in complete
accord with the antiferromagnetic notion since the Curie points
for MnO and o.-Fe203 are respectively' 122'K and 950'K.
Figure 1 shows the neutron diffraction patterns obtained for

powdered MnO at room temperature and at 80'K. The room
temperature pattern shows coherent nuclear diGraction peaks at
the regular face-centered cubic re6ection positions and the liquid
type of diffuse magnetic scattering in the background. It should
be pointed out that the coherent nuclear scattering amplitudes for
Mn and 0 are of opposite sign so that the diGraction pattern is a
reversed NaCl type of pattern. The low temperature pattern also
shows the same nuclear diffraction peaks, since there is no crystal-
lographic transition in this temperature region, T and in addition
shows the presence of strong magnetic reflections at positions not
allowed on the basis of the chemical unit cell. The magnetic re-
jections can be indexed, however, making use of a magnetic unit
cell twice as large as the chemical unit cell. A complete description
of the magnetic structure will be given at a later date.
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Imprisonment of Resonance Radiation in
Mercury Vapor

D. ALPERT, A. O. McCoUBRFY, AND T. HQLsTEIN
Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania

August 29, 1949

'HE term "imprisonment of resonance radiation" describes
the situation ~herein resonance radiation emitted in the

interior of a gas-filled enclosure is strongly absorbed by normal
gas atoms before it can get out; the eventual escape of a quantum
of radiation then takes place only after a number of successive
atomic absorptions and emissions. The phenomenon was first
observed by Zemansky' who measured the time of decay, T, of
diffuse resonance radiation from an enclosure of optically excited
mercury vapor, after the exciting beam of 2537A light was cut off.
T was found to depend upon gas density and enclosure geometry;
at densities around 10'5/cc, T attained values of the order of 10 4

sec., a thousand times greater than the natural lifetime of an
excited 6'PI atom.
On the theoretical side, a number of treatments' ' have been

presented. The early work' ' is reviewed in reference 6. In the
latter paper (as well as in that of Biebermans), the transport of
resonance quanta is described by a Boltzmann-type integro-
diEerential equation for the density of excited 6'PI atoms; the
solution of this equation by the Ritz variational method gives
accurate values for the decay time, T. It was found that T depends
not only on vapor density and enclosure geometry, but also on
the spectral line shape of the resonance radiation, as pointed out
earlier by Kenty explicit results were obtained for the case of
Doppler broadening and plane-parallel enclosure geometry. Most
recently, unpublished calculations have extended the analysis to
enclosures of the form of infinite circular cylinders and to a variety
of line shapes.

In conclusion it appears that neutron diffraction studies of anti-
ferromagnetic materials should provide a new and important
method of investigating the exchange coupling of magnetic ions.
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