

Interplay of real space and momentum space topological defects

Leon Balents, KITP

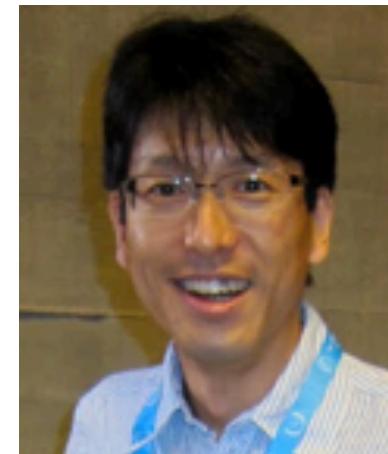
TPFC 2017, Tokyo

Collaborators

Theory

Jianpeng Liu

Inspiration

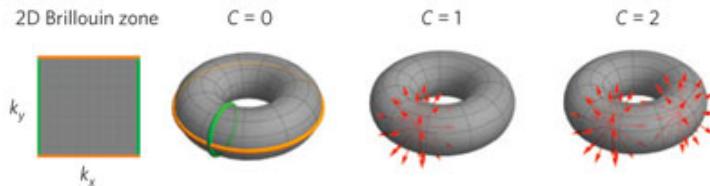


Satoru Nakatsuji

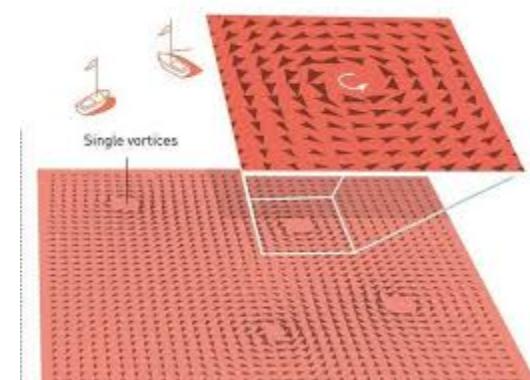
YoshiChika Otani

Thouless:
Chern number

$$q_n = \frac{1}{2\pi} \int d^2k \mathcal{B}_n^z$$



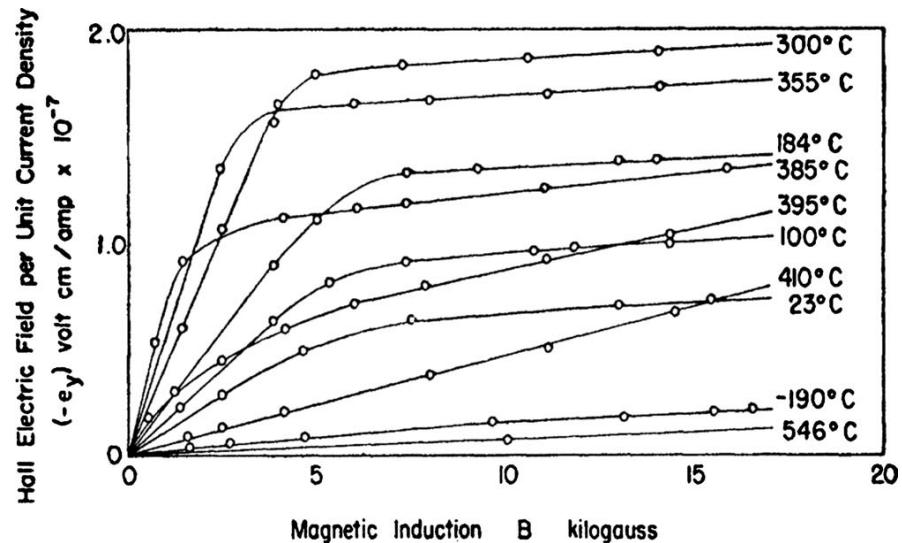
Kosterlitz+ Thouless:
Vortices



Anomalous Hall Effect

A famous effect in
metallic
ferromagnets, c.f. Ni

$$\sigma_{xy} = aB^z + bM^z$$



Karplus + Luttinger (1954!) related this to
anomalous velocity due to Berry curvature

Anomalous velocity

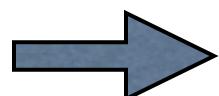
$$\mathcal{A}_k = i \langle n, k | \nabla_k | n, k \rangle$$

Berry curvature

$$\mathcal{B}_k = \nabla_k \times \mathcal{A}_k$$

Anomalous velocity
(Karplus+Luttinger, Niu)

$$\partial_t \mathbf{r} = \nabla_k \epsilon_k - e \mathbf{E} \times \mathcal{B}_k$$



$$\mathbf{j}_A = e^2 \mathbf{E} \times \int_{\mathbf{k}} f(\epsilon_{\mathbf{k}}) \mathcal{B}_{\mathbf{k}}$$

Gives AHE

For a full band, it becomes the
quantized Hall conductivity = $q e^2/h$

Weyl semimetal

937

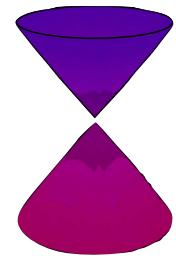
PHYSICAL REVIEW

Accidental Degeneracy in the Energy Bands of Crystals

CONVERS HERRING
Princeton University, Princeton, New Jersey
(Received June 16, 1937)

For a crystal without an inversion center, the energy separation $\delta E(\mathbf{k}+\boldsymbol{\kappa})$ in the neighborhood of a point \mathbf{k} where contact of equivalent manifolds occurs may be expected to be of the order of κ as $\kappa \rightarrow 0$, for all directions of $\boldsymbol{\kappa}$.

$$H = v \vec{\sigma} \cdot \vec{k}$$



A two-component spinor in three dimensions: “half” of a Dirac fermion. Weyl fermions have a chirality and must be massless

(Dirac semimetals also exist)

Weyl semimetal

937

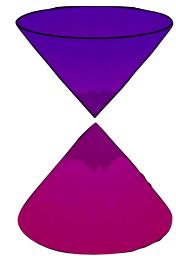
PHYSICAL REVIEW

Accidental Degeneracy in the Energy Bands of Crystals

CONVERS HERRING
Princeton University, Princeton, New Jersey
(Received June 16, 1937)

For a crystal without an inversion center, the energy separation $\delta E(\mathbf{k}+\boldsymbol{\kappa})$ in the neighborhood of a point \mathbf{k} where contact of equivalent manifolds occurs may be expected to be of the order of κ as $\kappa \rightarrow 0$, for all directions of $\boldsymbol{\kappa}$.

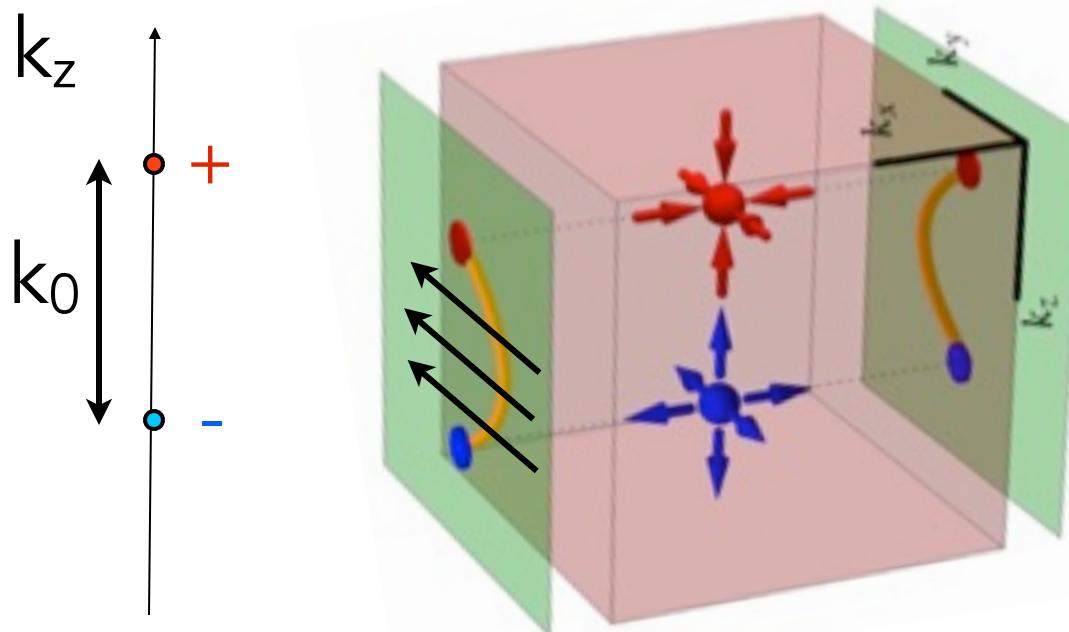
$$H = v \vec{\sigma} \cdot \vec{k}$$



A Weyl point is a “topological defect” in momentum space: a monopole for the Berry curvature

$$\nabla_{\mathbf{k}} \cdot \mathcal{B} = \pm 2\pi q$$

Weyl semimetal

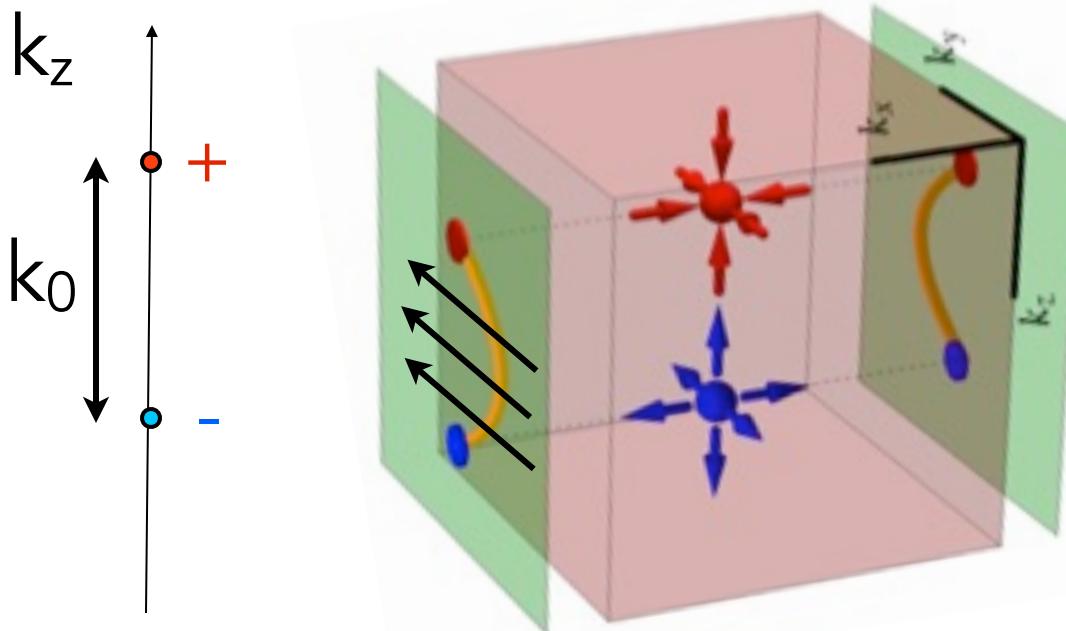


X. Wan *et al*, 2011
A.A. Burkov+LB, 2011

Fermi arc = chiral edge state

Expts: non-centrosymmetric
materials TaAs, Na₃Bi, TaP, WTe₂,...

Weyl semimetal



X. Wan *et al*, 2011
A.A. Burkov+LB, 2011

Fermi arc = chiral edge state

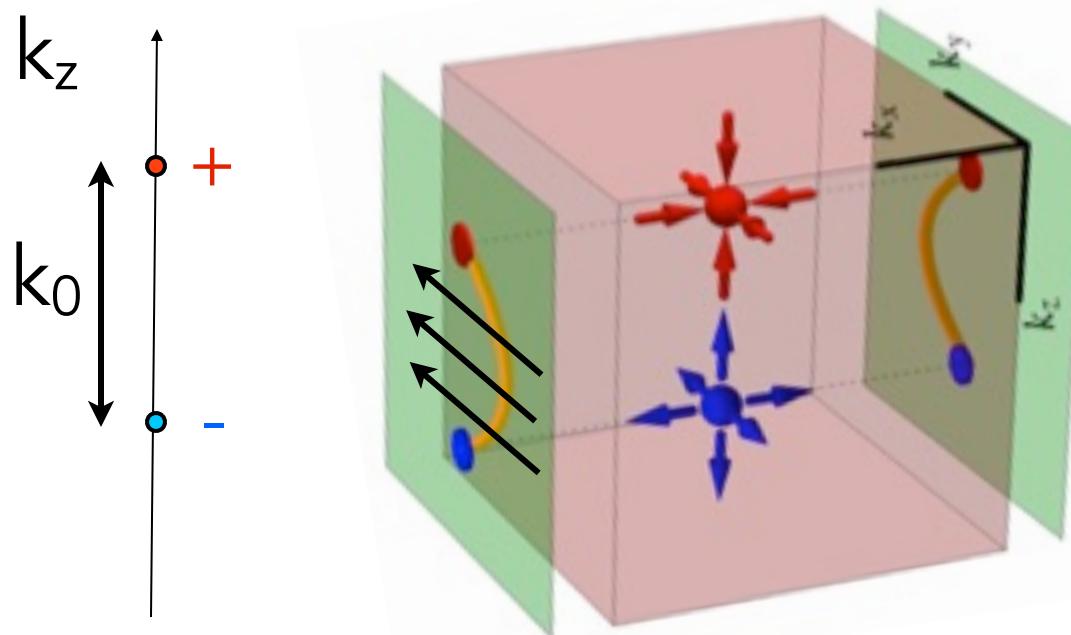
$$\sigma_{\mu\nu} = \frac{e^2}{2\pi h} \epsilon_{\mu\nu\lambda} Q_\lambda$$

$$\vec{Q} = \sum_i \vec{k}_i q_i + \vec{Q}_{RLV}$$

Hall vector $\mathbf{Q} \sim$ "dipole moment" of Weyl points

(when E_F away from Weyl points add FS contributions)

Weyl semimetal



Hall effect obviously breaks time-reversal symmetry
→ need a magnetic material

Anomalous Hall Effect

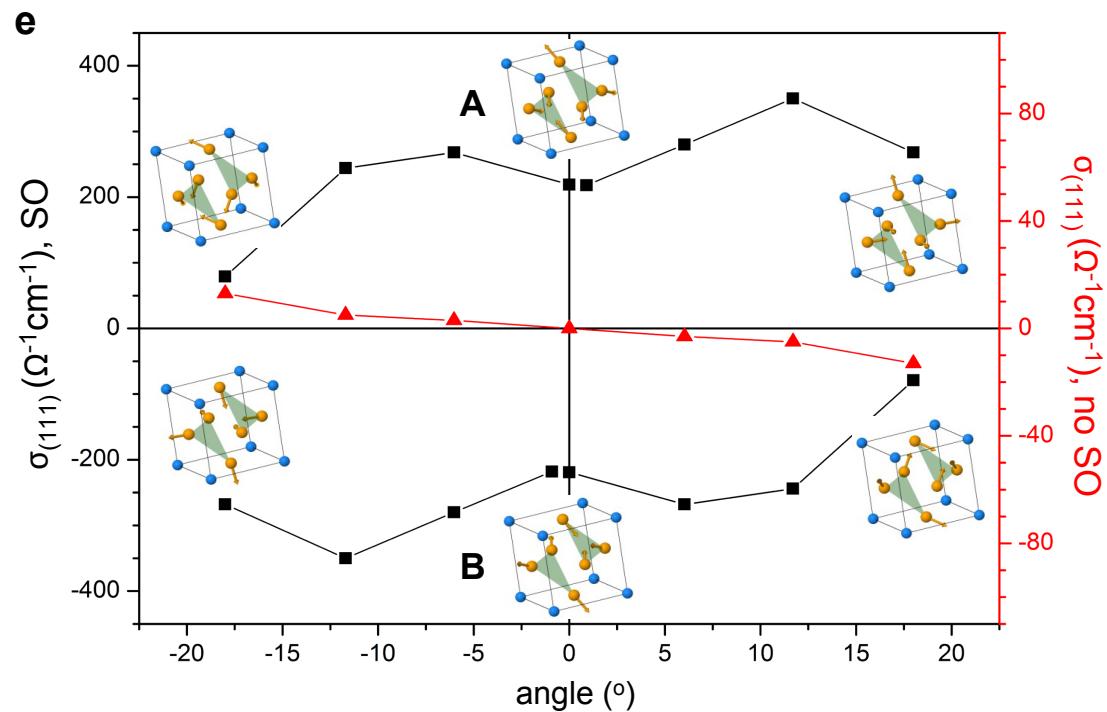
It should be generically present in time-reversal broken *Weyl semimetals*, with sufficiently low symmetry

How about AHE in an
antiferromagnet?

Could be useful to provide switchable Hall effect w/o large stray fields

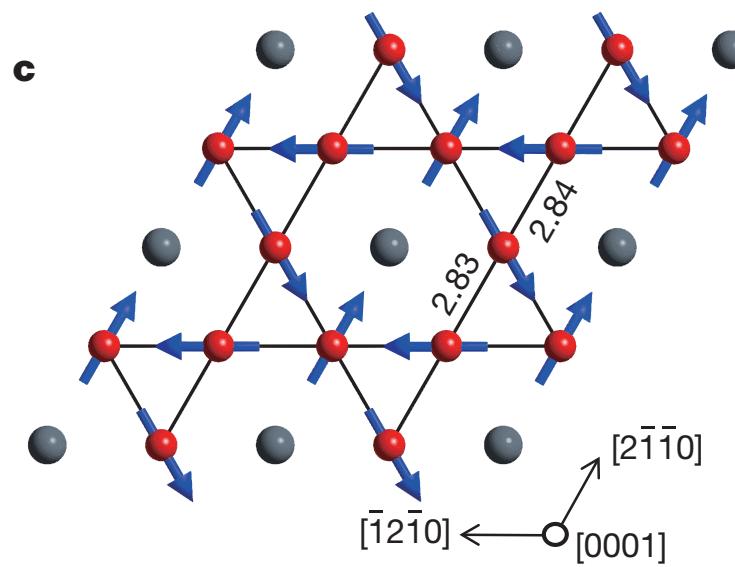
Theoretical proposal

Hua Chen, Q. Niu, A. MacDonald, 2013:
AHE in the non-collinear antiferromagnet Mn_3Ir



I would like to discuss a related material family

Mn₃Sn family



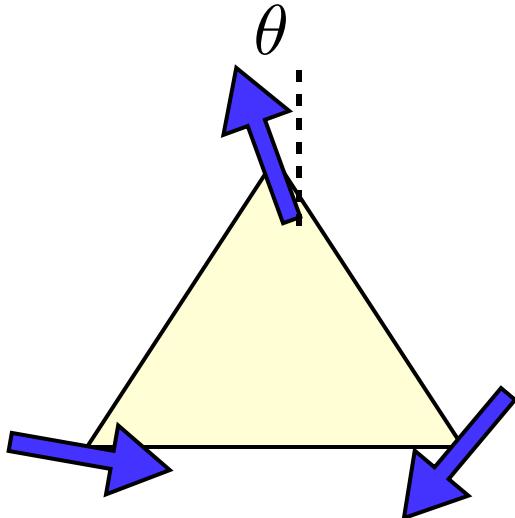
two kagomé layers of
Mn, related by inversion

large ordered
antiferromagnetic
moment
 $\sim 2 \mu_B / \text{Mn}$
tiny FM moment:
 $.002 \mu_B / \text{Mn}$

$$T_N \sim 420 \text{ K}$$

Nagamiya et al, 1982

Energetics: triangle

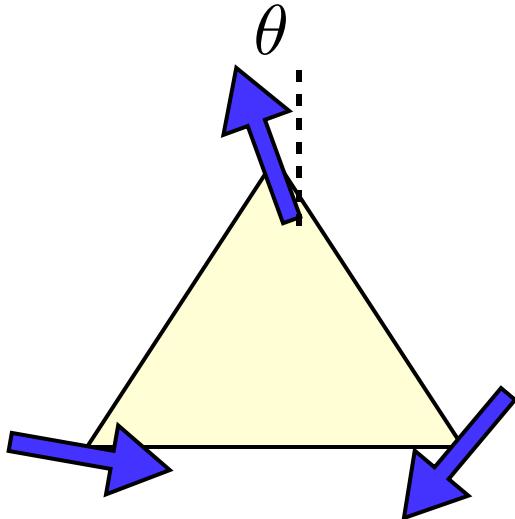


$$\begin{aligned} E = & J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1) \\ & + D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1) \\ & - K \sum_i (\hat{n}_i \cdot S_i)^2 \end{aligned}$$

$J \gg D \gg K$ Hierarchy of interactions

- J: spins at 120° angles and $M=0$
- D: spins are “anti-chiral” in XY plane
- K: weak canting toward easy axes creates tiny moment and fixes in-plane angle

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

$J \gg D \gg K$ Hierarchy of interactions

$$\theta_1 = \theta + \phi_1$$

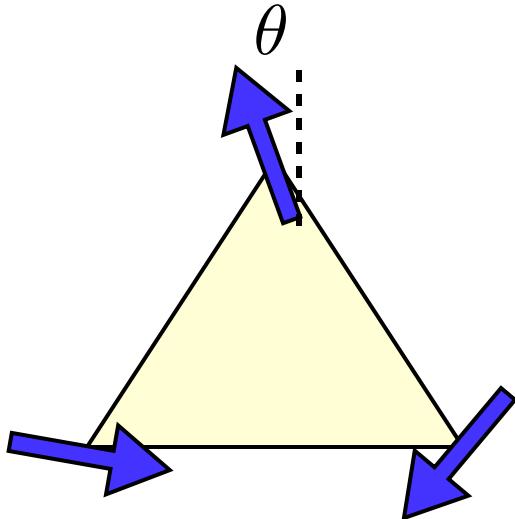
θ is almost free

$$\theta_2 = \frac{4\pi}{3} + \theta + \phi_2$$

$\phi_{1,2}$ are tiny canting
angles

$$\theta_3 = \frac{2\pi}{3} + \theta - \phi_1 - \phi_2$$

Energetics: triangle



$$E = J (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1)$$

$$+ D \hat{z} \cdot (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$$

$$- K \sum_i (\hat{n}_i \cdot S_i)^2$$

$J \gg D \gg K$ Hierarchy of interactions

$$\theta_1 = \theta + \phi_1$$

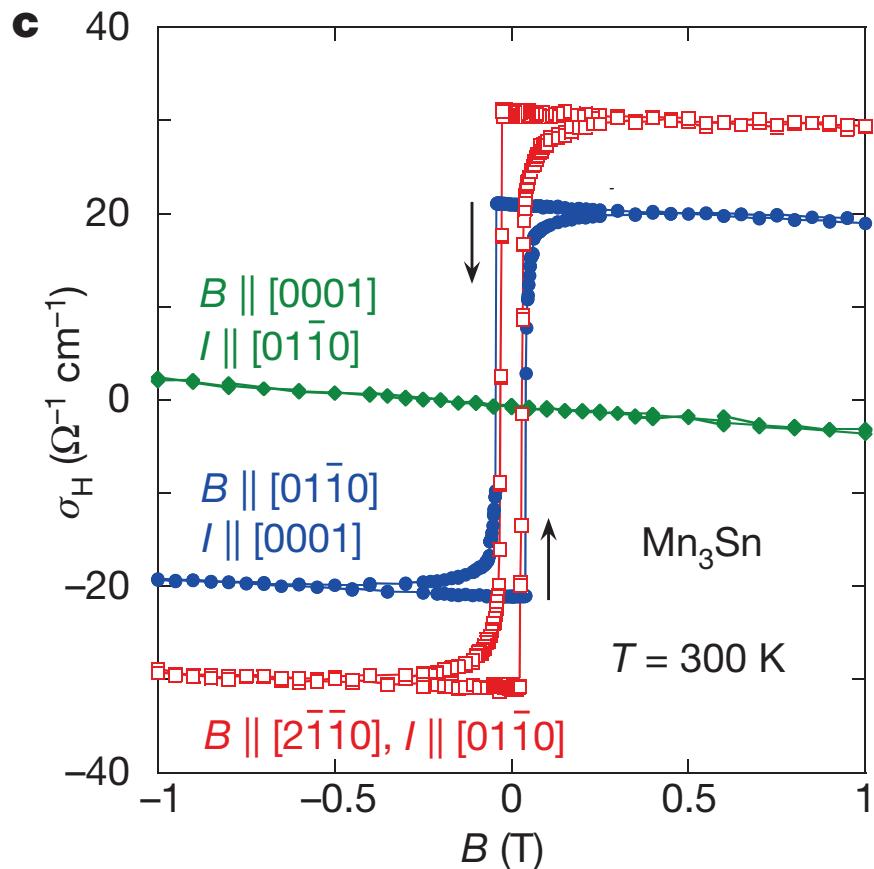
$$\theta_2 = \frac{4\pi}{3} + \theta + \phi_2$$

$$\theta_3 = \frac{2\pi}{3} + \theta - \phi_1 - \phi_2$$

$$\mathbf{m}_\Delta = \frac{K}{J} m_{Mn} (\cos \theta, \sin \theta, 0)$$

$$E_\Delta(\theta) = -\frac{K^3}{6J^2} \cos 6\theta$$

Anomalous Hall effect

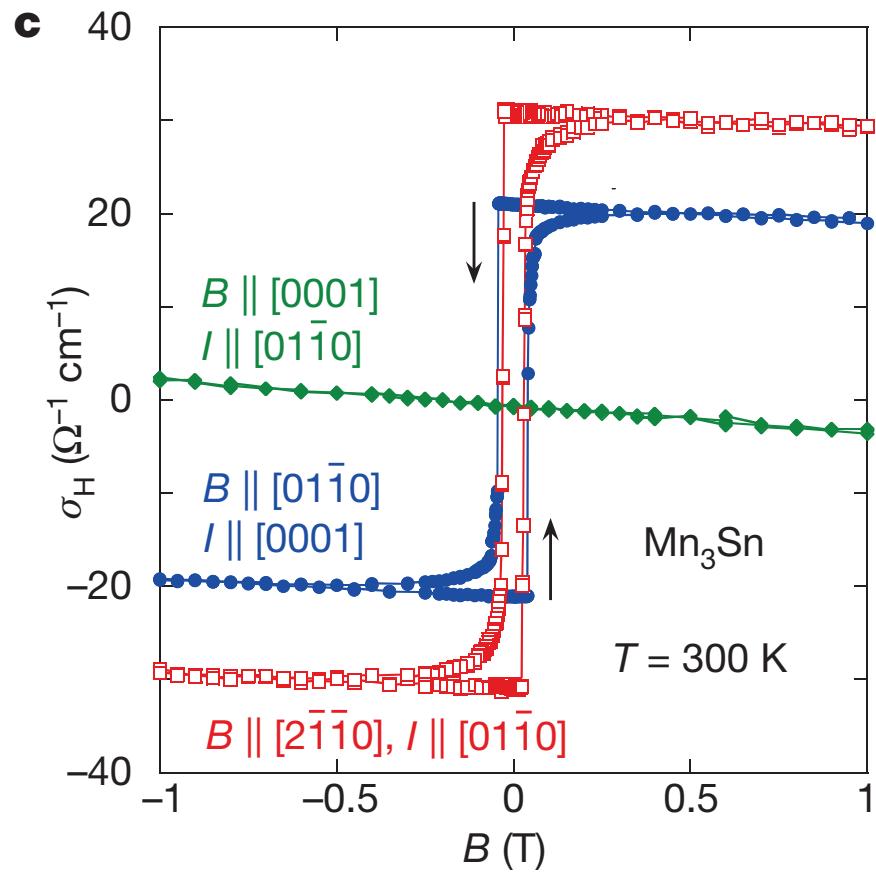
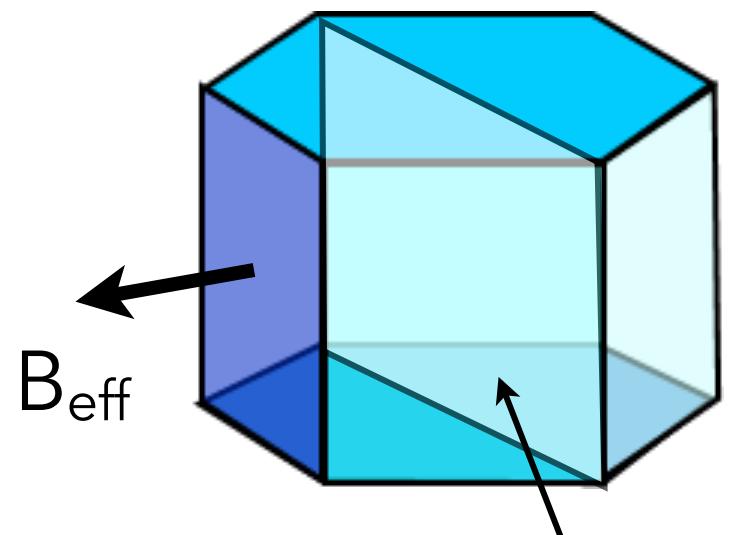


comparable to
metallic FMs

switchable because
of small magnetic
moment and small
anisotropy

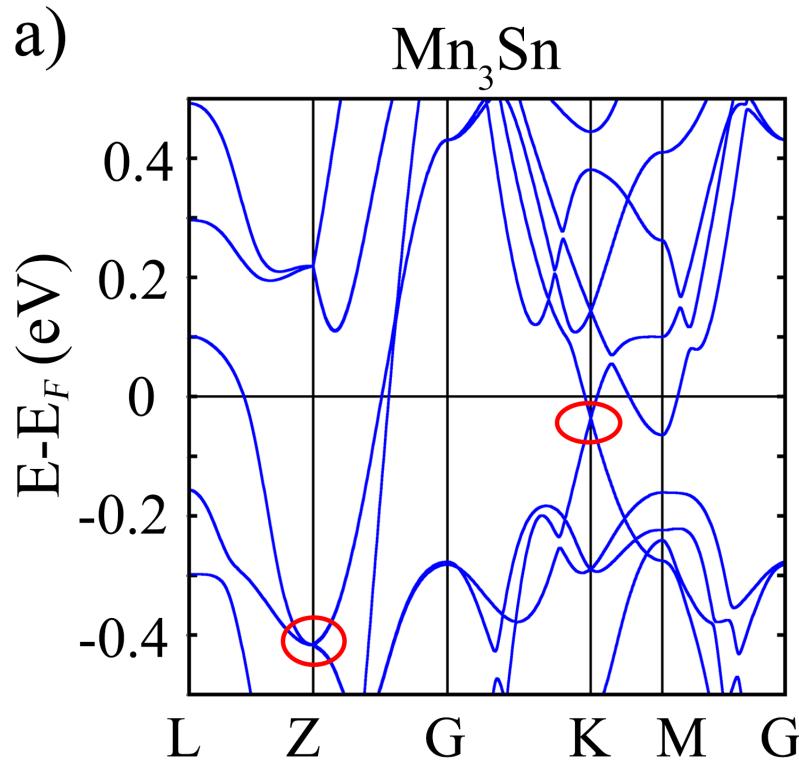
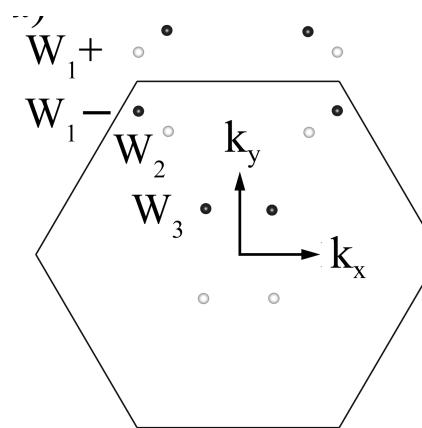
Nakatsuji et al, 2015

Anomalous Hall effect



Weyl

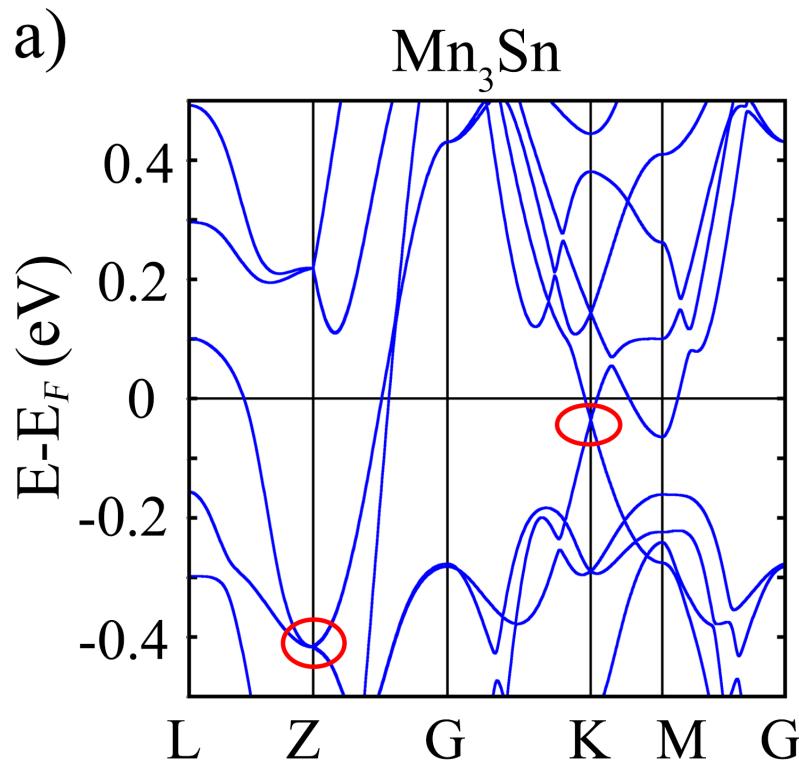
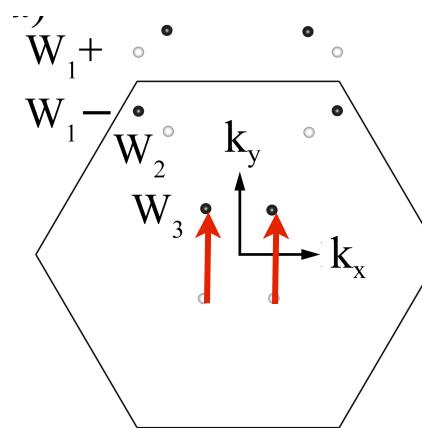
ab initio finds Weyl points and surface Fermi arcs



notice lack of 6-fold symmetry: due to direction of AF order

Weyl

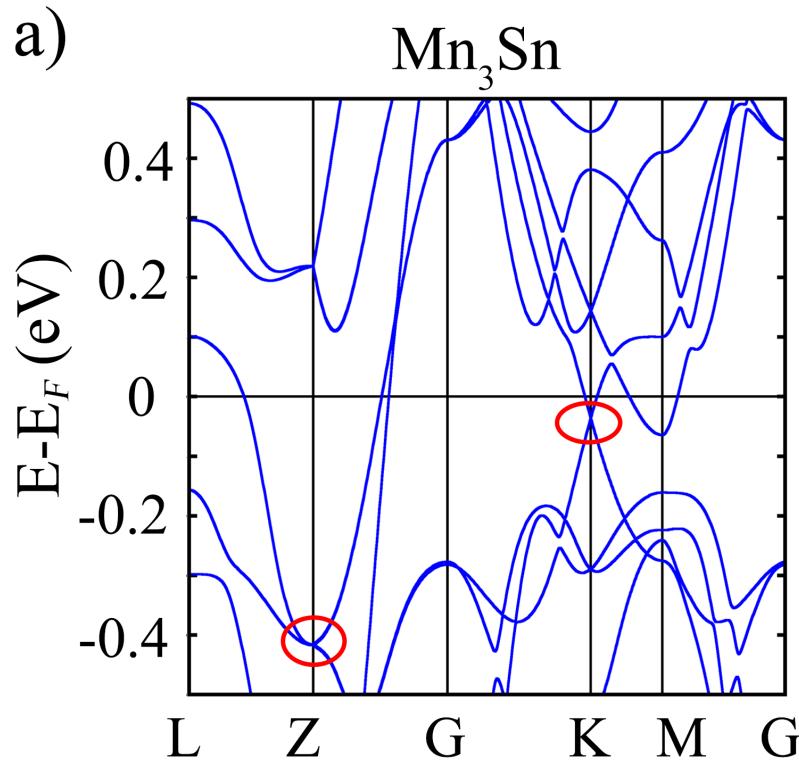
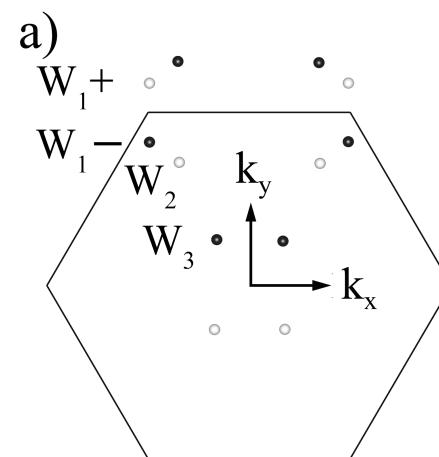
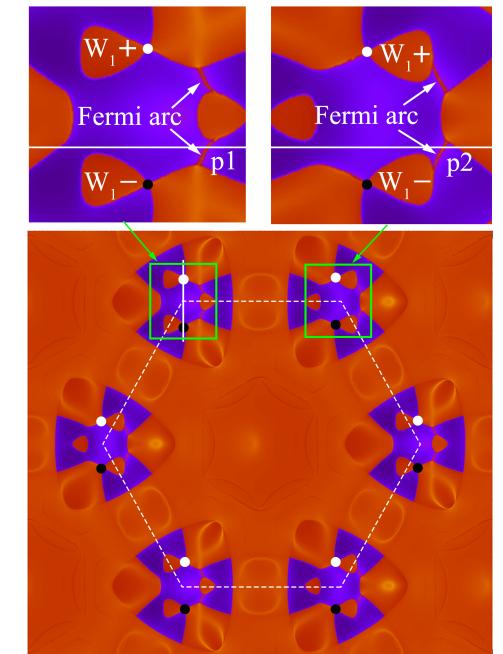
ab initio finds Weyl points and surface Fermi arcs



Hall vector ~
“dipole moment”

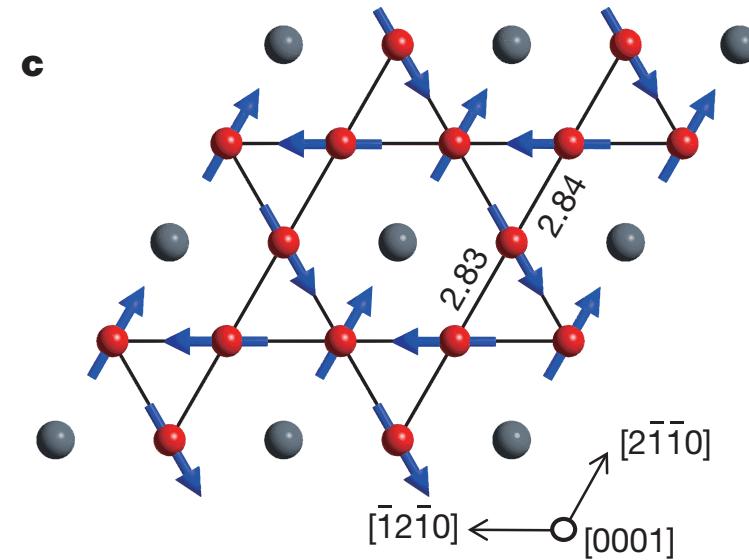
Weyl

ab initio finds Weyl points and surface Fermi arcs

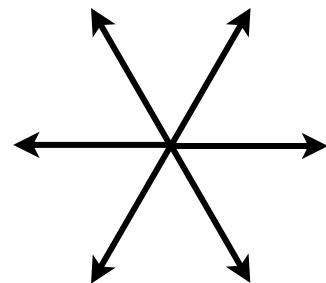


Textures

Magnetic
order has Z_6
structure

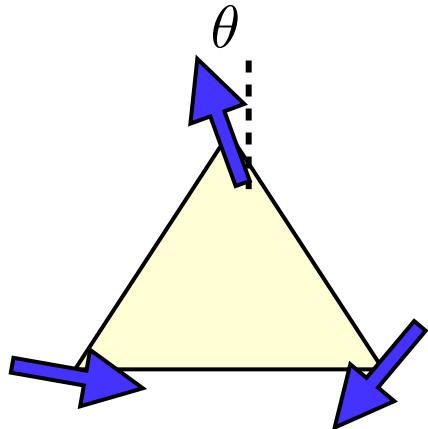


direction of
inward-pointing
spin



$$\psi = |\psi| e^{2\pi i n/6}$$

3 pairs of time-
reversed domains

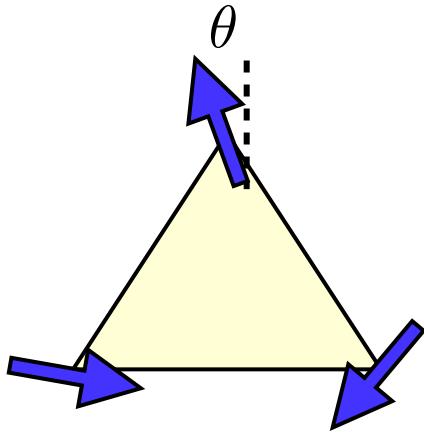


Textures

$$\psi = |\psi| e^{i\theta} \quad F \sim \int d^3x \left\{ \frac{\rho}{2} (\nabla\theta)^2 - \lambda \cos 6\theta \right\}$$

sine-Gordon model with 6-fold anisotropy

$$\rho \sim \frac{J}{a} \quad \lambda \sim \frac{K^3}{J^2 a^3}$$

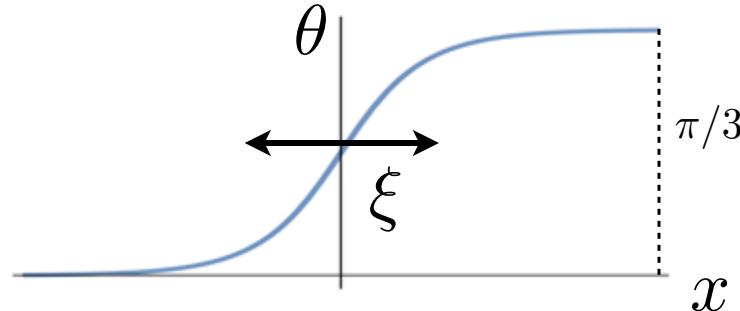


Textures

$$\psi = |\psi| e^{i\theta}$$

$$F \sim \int d^3x \left\{ \frac{\rho}{2} (\nabla\theta)^2 - \lambda \cos 6\theta \right\}$$

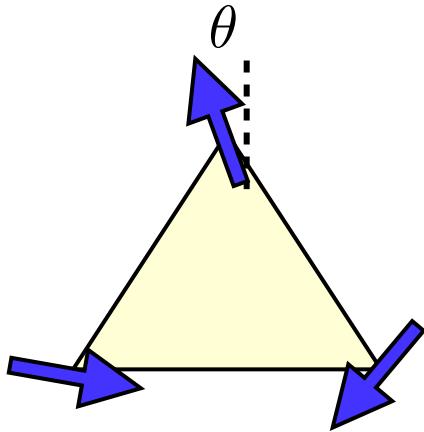
soliton = domain wall connecting
neighboring minima of cosine



$$\theta(x) = \frac{2}{3} \tan^{-1} \exp(x/\xi)$$

$$\xi = \frac{1}{6} \sqrt{\frac{\rho}{\lambda}}$$

wide
DWs



Textures

$$\psi = |\psi| e^{i\theta} \quad F \sim \int d^3x \left\{ \frac{\rho}{2} (\nabla\theta)^2 - \lambda \cos 6\theta \right\}$$

sine-Gordon model with 6-fold anisotropy

- Minimal energy domain walls are *not* between time-reversed states
- Magnetization, Hall vector, location of Weyl points are all determined by domain choice, not by field in general
- Stable Z_6 vortices exist

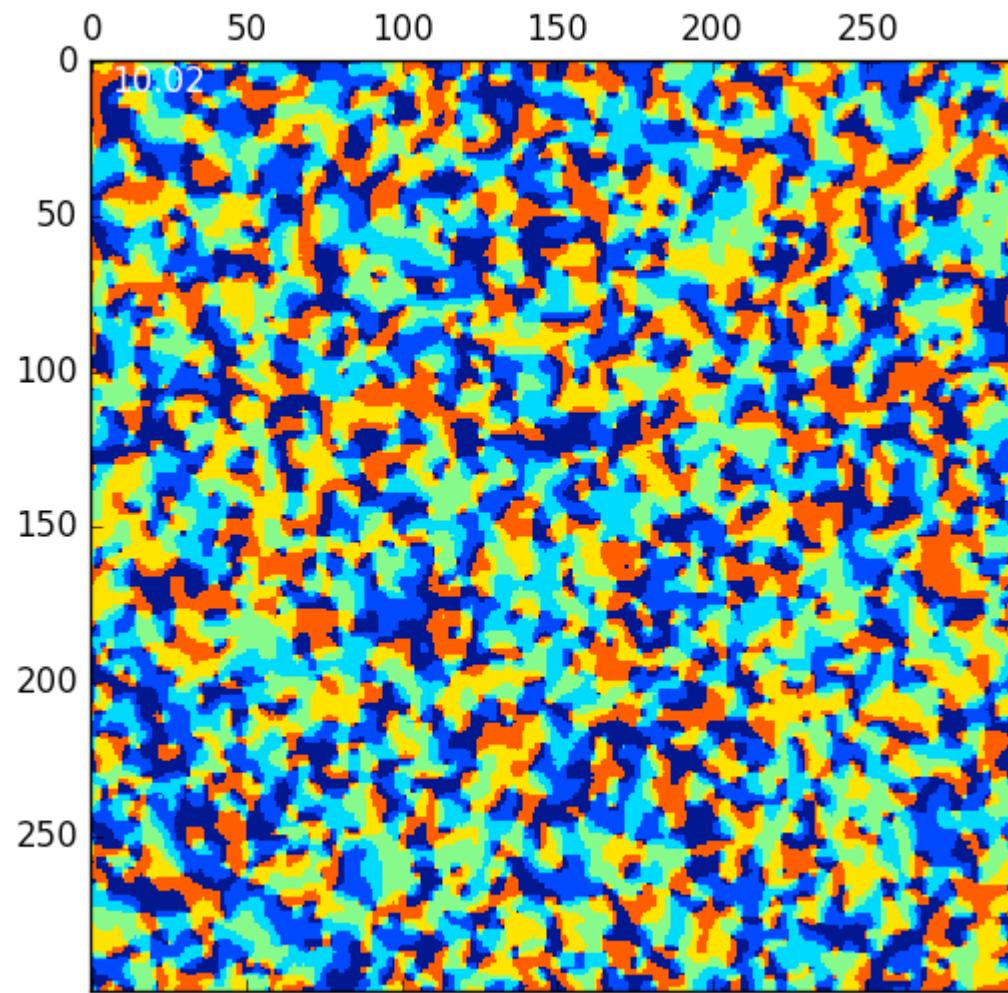
Dynamics

Symmetry-allowed *hydrodynamic*
equation of motion is *overdamped*

$$\gamma \partial_t \theta = \rho \nabla^2 \theta - 6\lambda \sin 6\theta - h\bar{m} \sin \theta + \eta(\mathbf{r}, t)$$

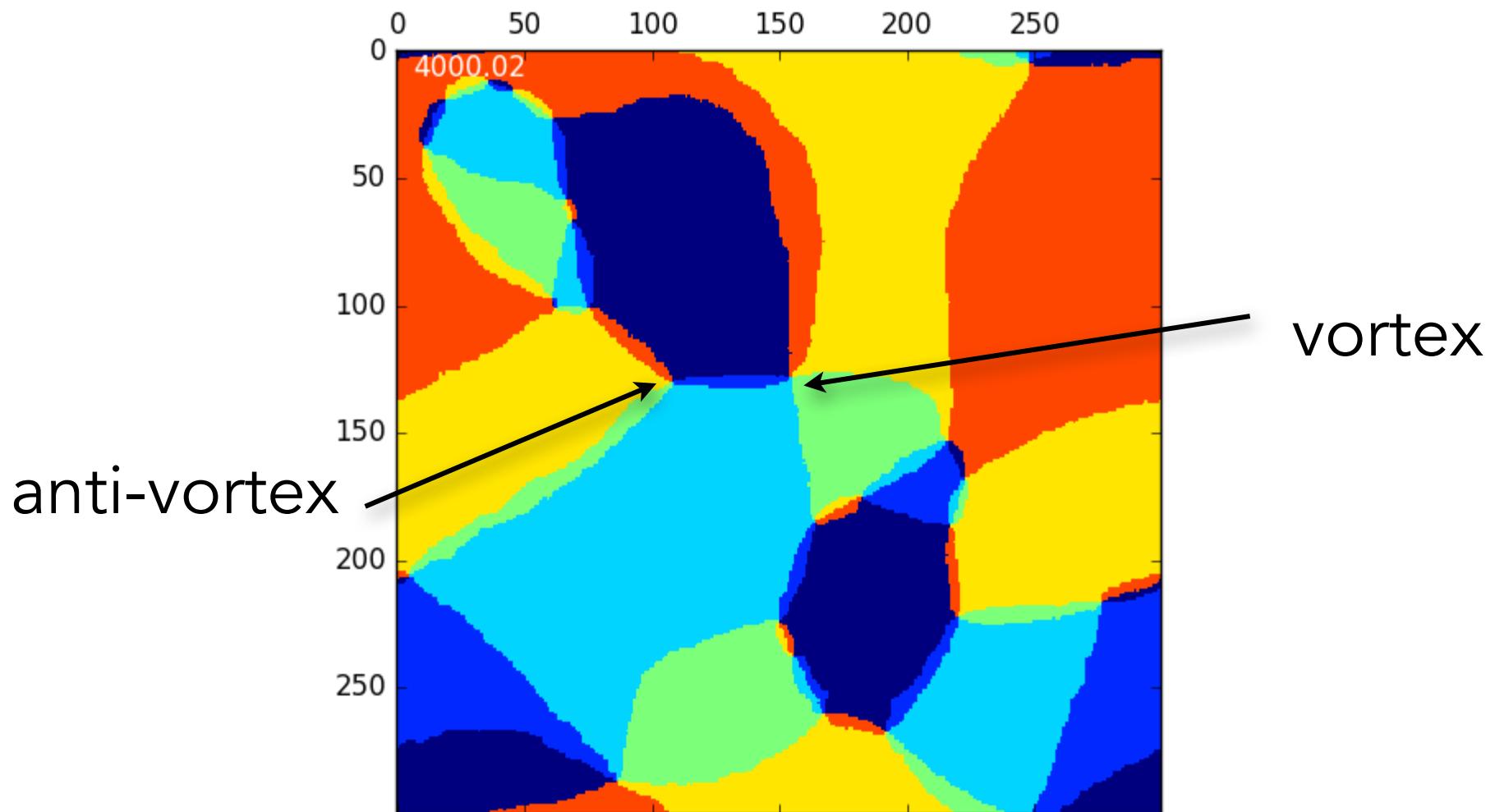
damping
(uniquely determines long-time,
low-frequency dynamics)

Domain formation



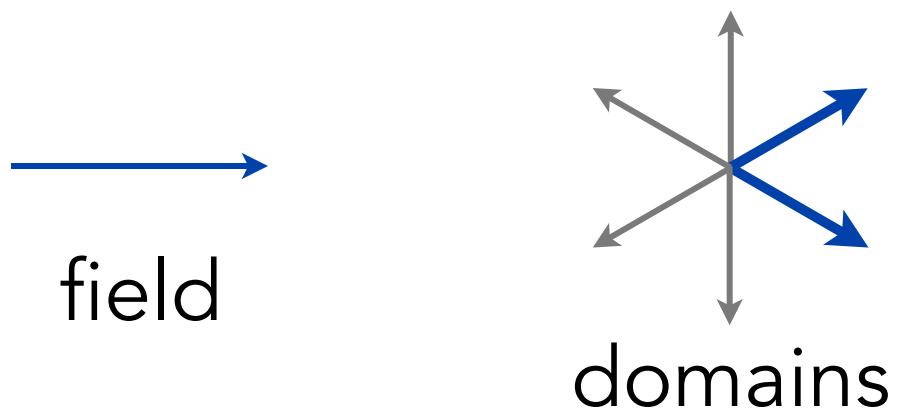
quench

Domain formation



Could one use this?

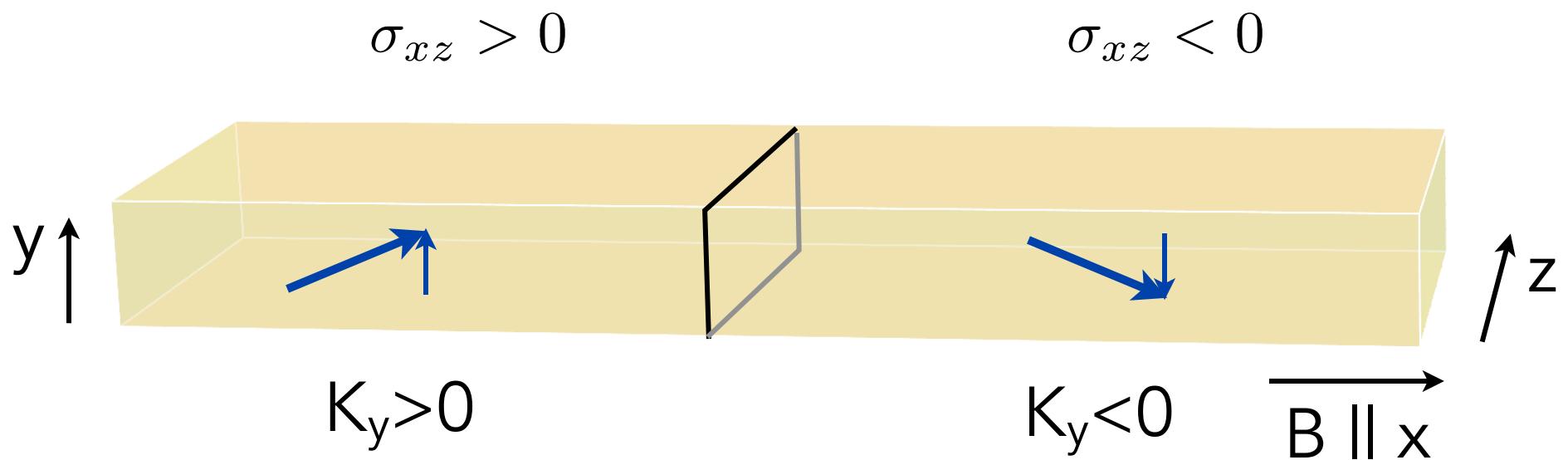
Idea: apply field in “hard direction” below coercive value



two minimum energy domains with opposite component of Hall vector normal to field

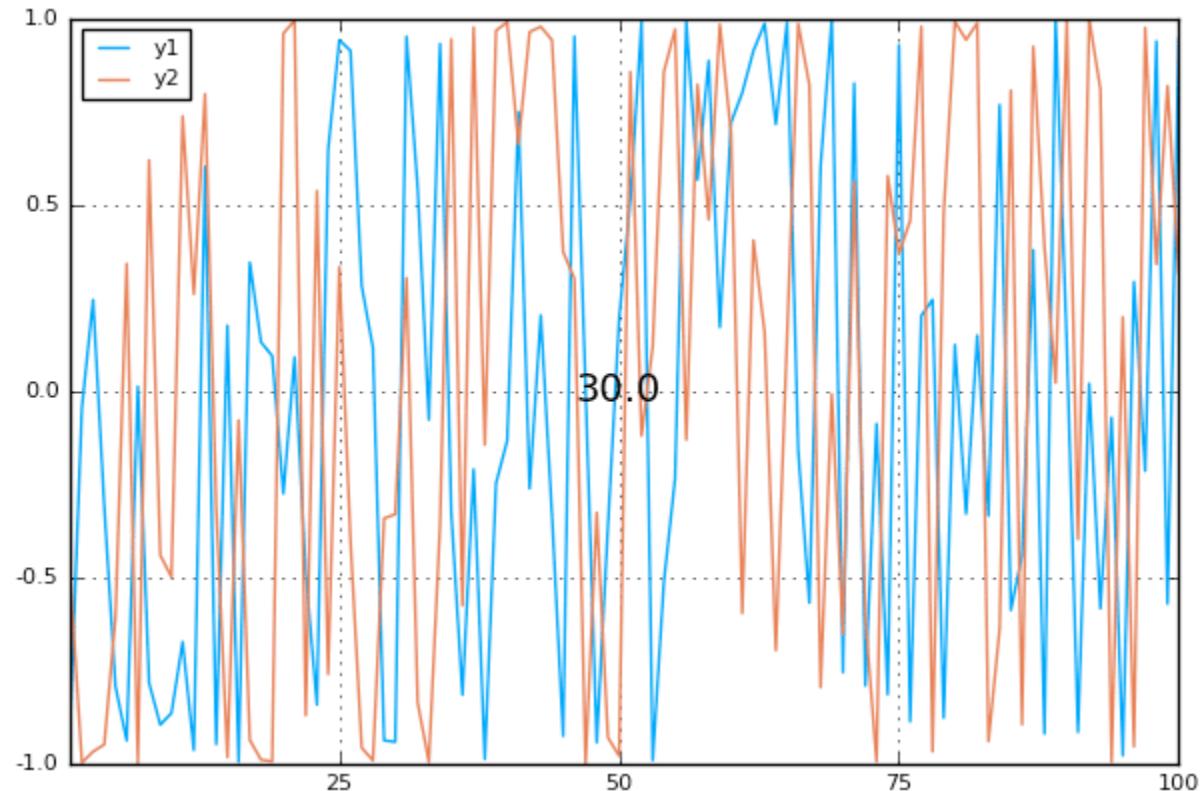
Could one use this?

Idea: apply field in “hard direction” below coercive value



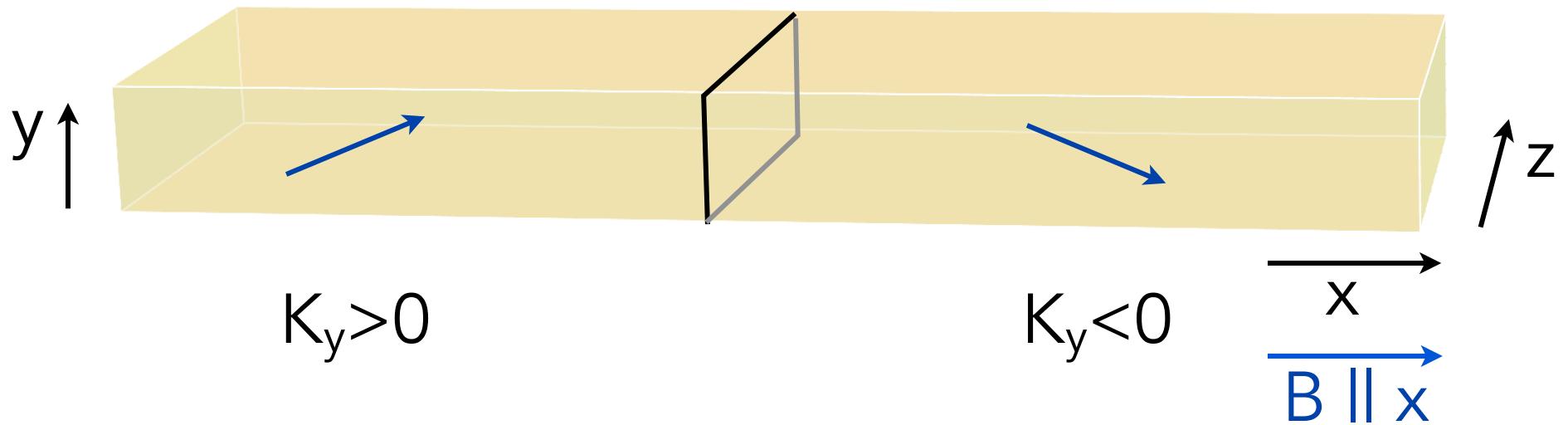
controllable
domain walls
in narrow
Hall bar

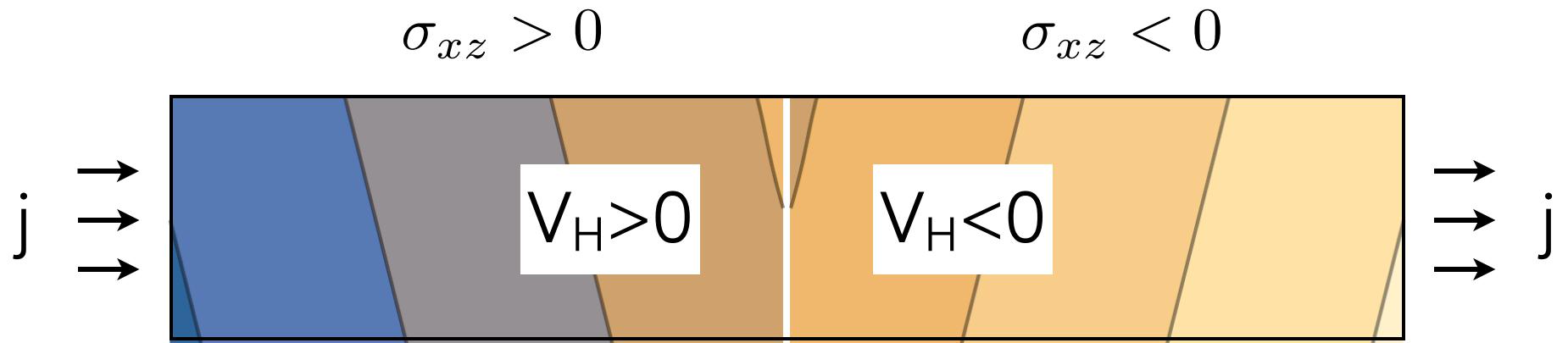
(triangle wave of $B_x(t)$)



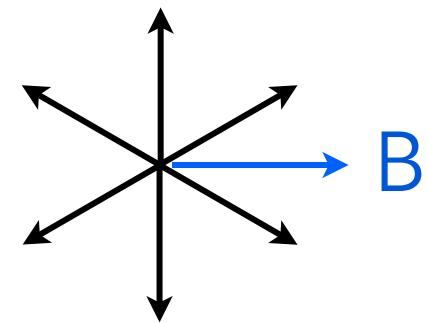
$$\sigma_{xz} > 0$$

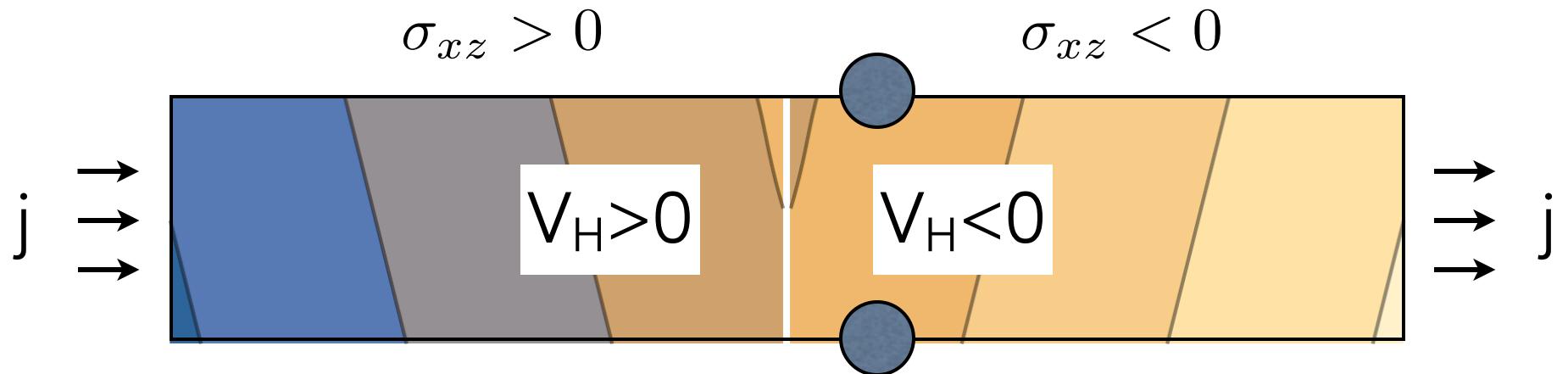
$$\sigma_{xz} < 0$$





equipotentials from
solution of Laplace's
equation for a Hall bar
with two domains





One could imagine fixing the transverse contacts and *switching* Hall voltage by moving domain wall

a device?

Domain wall drive

Recall dynamical equation

$$\begin{aligned}\gamma \partial_t \theta &= \rho \nabla^2 \theta - 6\lambda \sin 6\theta - h\bar{m} \sin \theta + \eta(\mathbf{r}, t) \\ &= -\frac{\delta F}{\delta \theta} + \eta(\mathbf{r}, t)\end{aligned}$$

- This form satisfies FDT and eventually leads to equilibrium
- It describes forces on DWs from applied magnetic fields but not deviations from *electronic* equilibrium

Domain wall drive

electronic disequilibrium \rightarrow additional forces

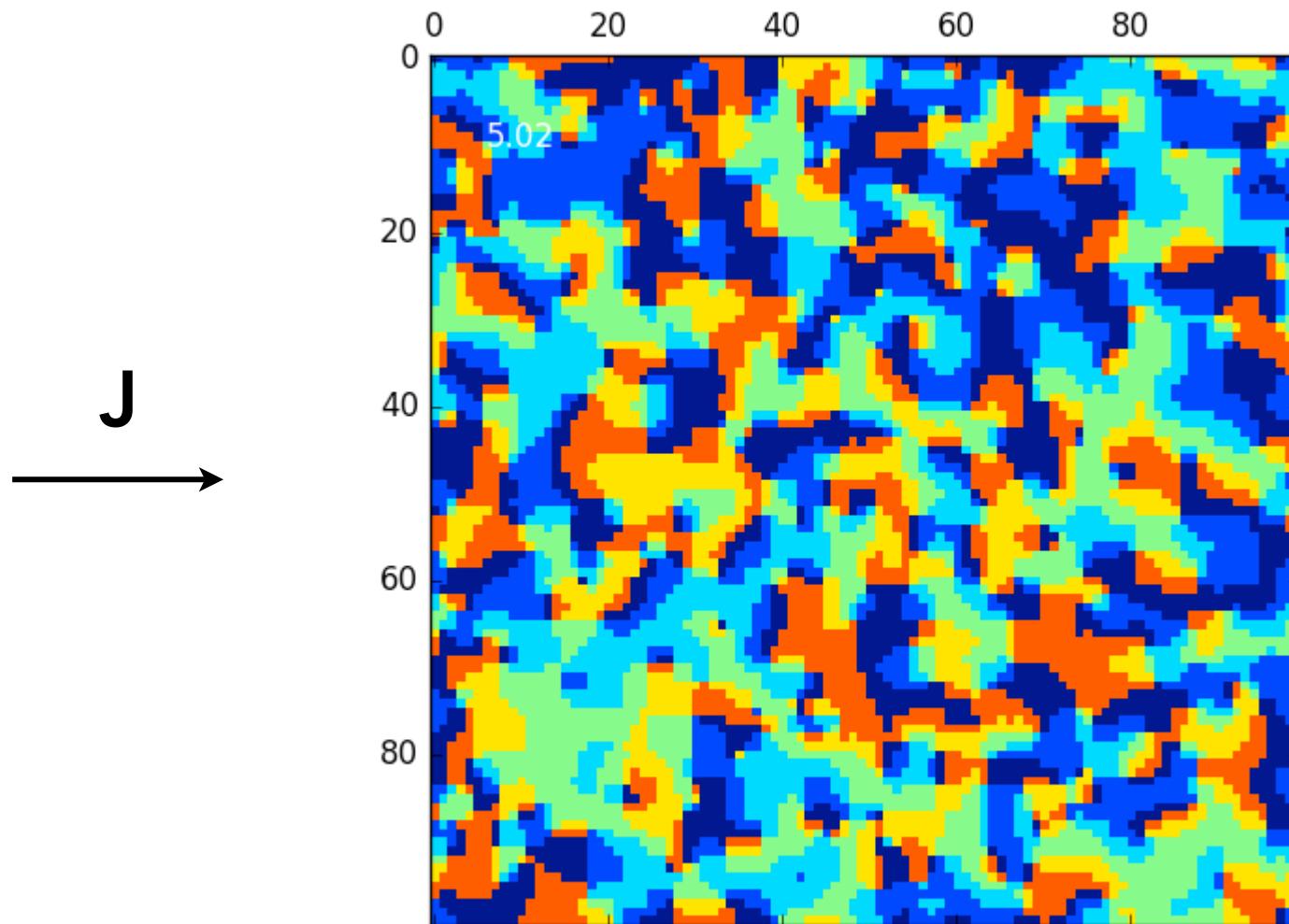
$$\gamma \partial_t \theta = -\frac{\delta F}{\delta \theta} + \eta(\mathbf{r}, t) + f(\mathbf{j})$$

- Though similar to “spin transfer torque”, the *antiferromagnetic* nature of the system makes angular momentum counting suspect
- Instead we rely on symmetry (for now!)

$$f(\mathbf{j}) = \gamma \mathbf{v} \cdot \nabla \theta \quad \mathbf{v} = (c_1 j_x, c_1 j_y, c_2 j_z)$$

spin texture “convection” with velocity \mathbf{v}
proportional to the current

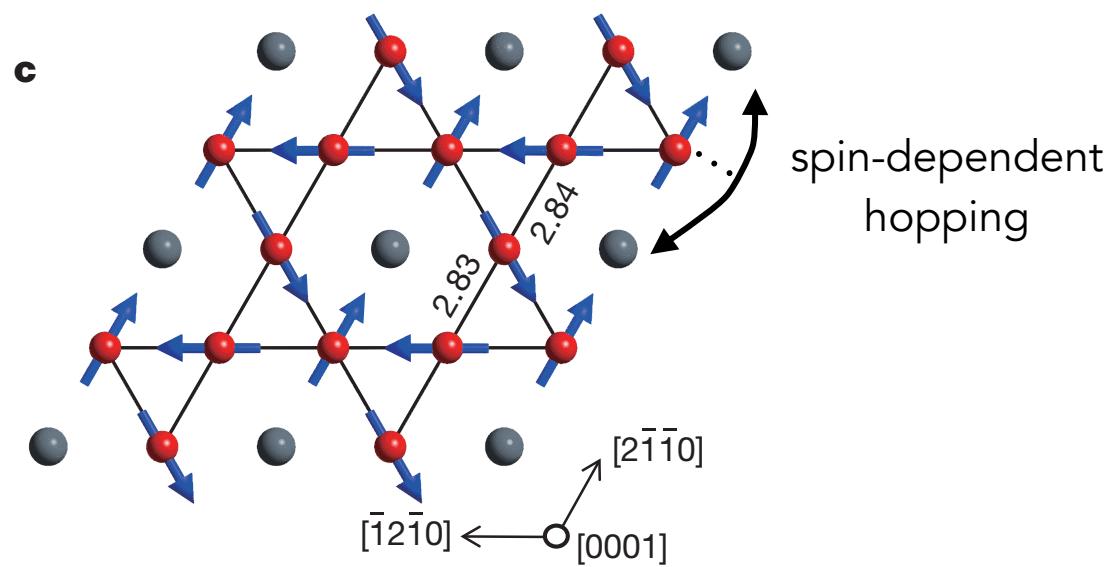
Current drive



possible in
principle.
practice???

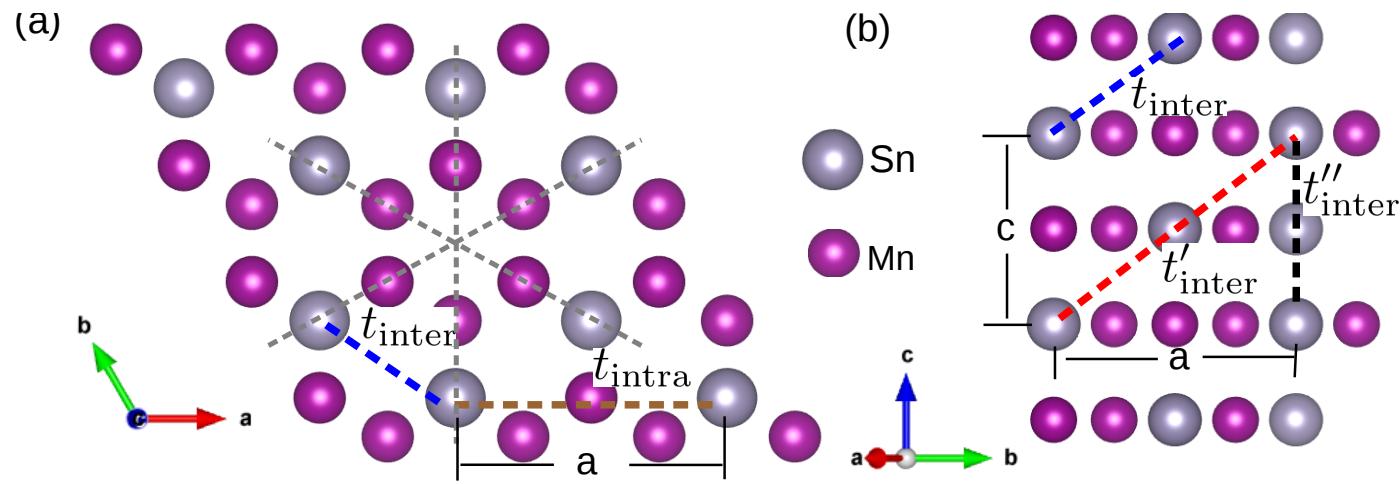
Electronic properties of textures?

tight-binding
of single
orbital on Sn
sites: a 4 band
model



Enables efficient study of domain walls, vortices
etc.

TB Model



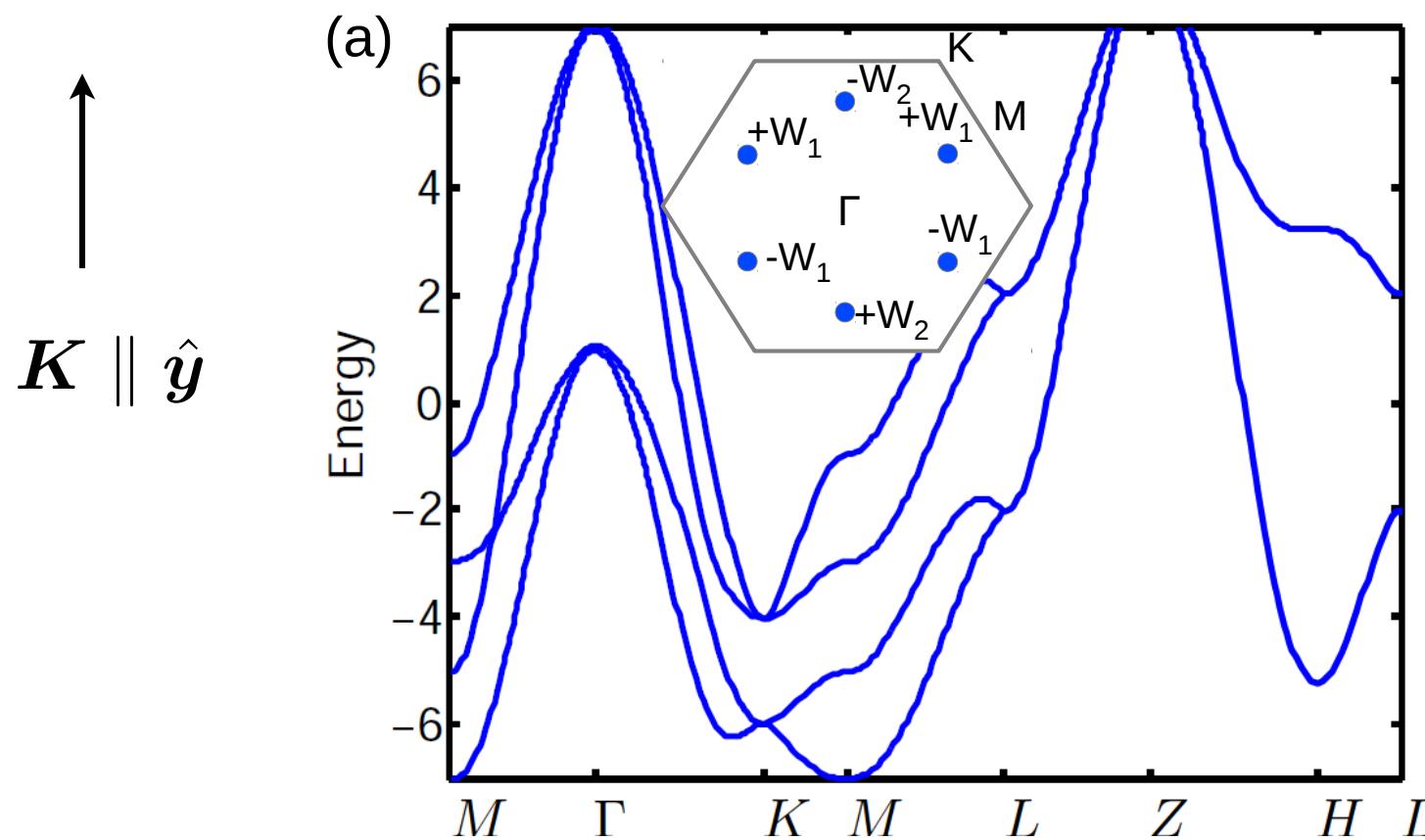
$$t_{\text{intra}}(\mathbf{r}_{nm}) = t_0 \mathbb{I}_{2 \times 2} + t_J \boldsymbol{\sigma} \cdot \mathbf{S}_{nm} + (-1)^{\xi_{mn}} i \lambda_z \sigma_z ,$$

$$t_{\text{inter}}(\mathbf{r}_{nm}) = t_1 \mathbb{I}_{2 \times 2} ,$$

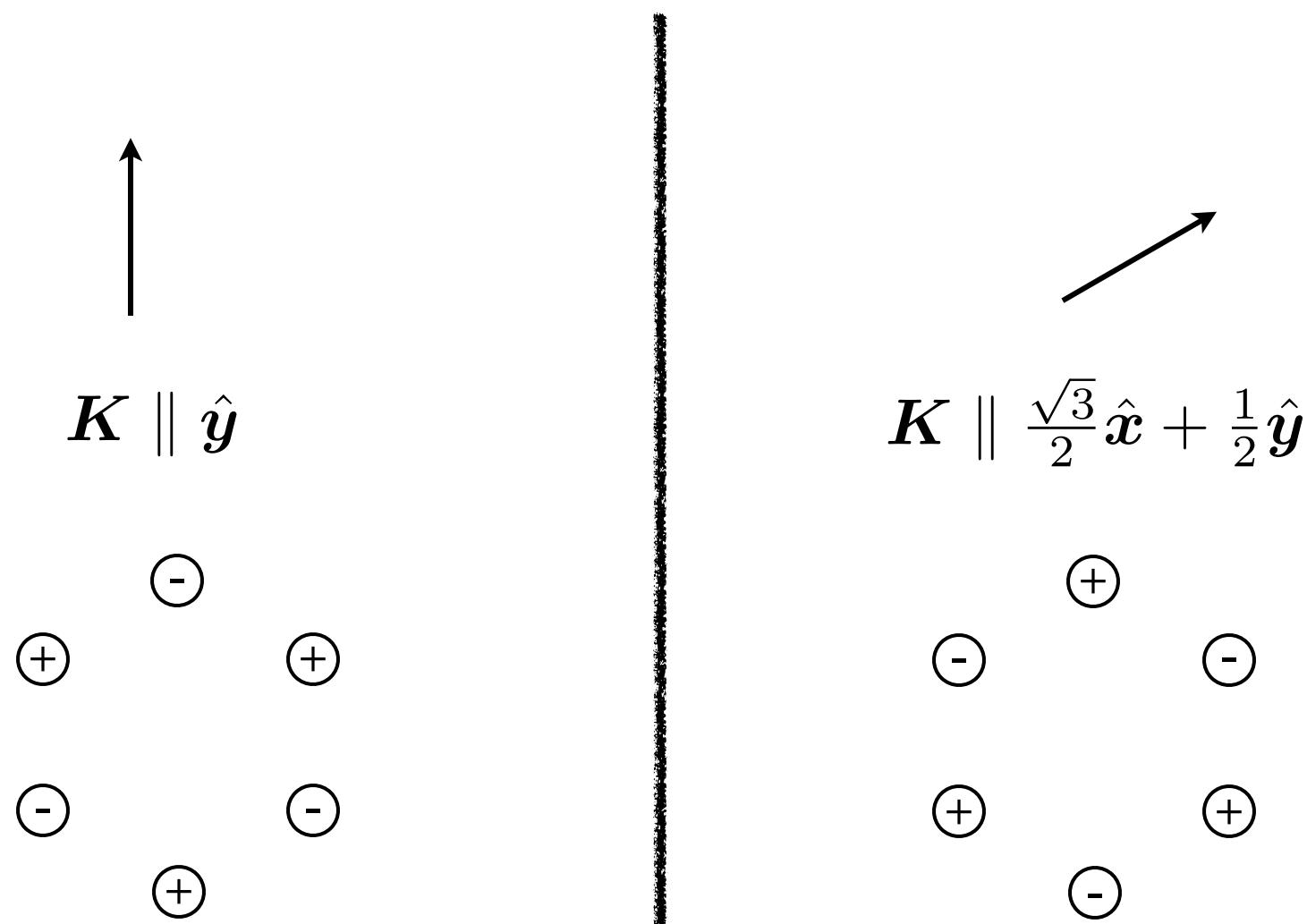
$$t'_{\text{inter}}(\mathbf{r}_{nm}) = i \lambda_R \mathbf{e}_{\text{soc}}^{\mathbf{r}_{nm}} \cdot \boldsymbol{\sigma} ,$$

$$t''_{\text{inter}}(\mathbf{r}_{nm}) = t_2 \mathbb{I}_{2 \times 2} ,$$

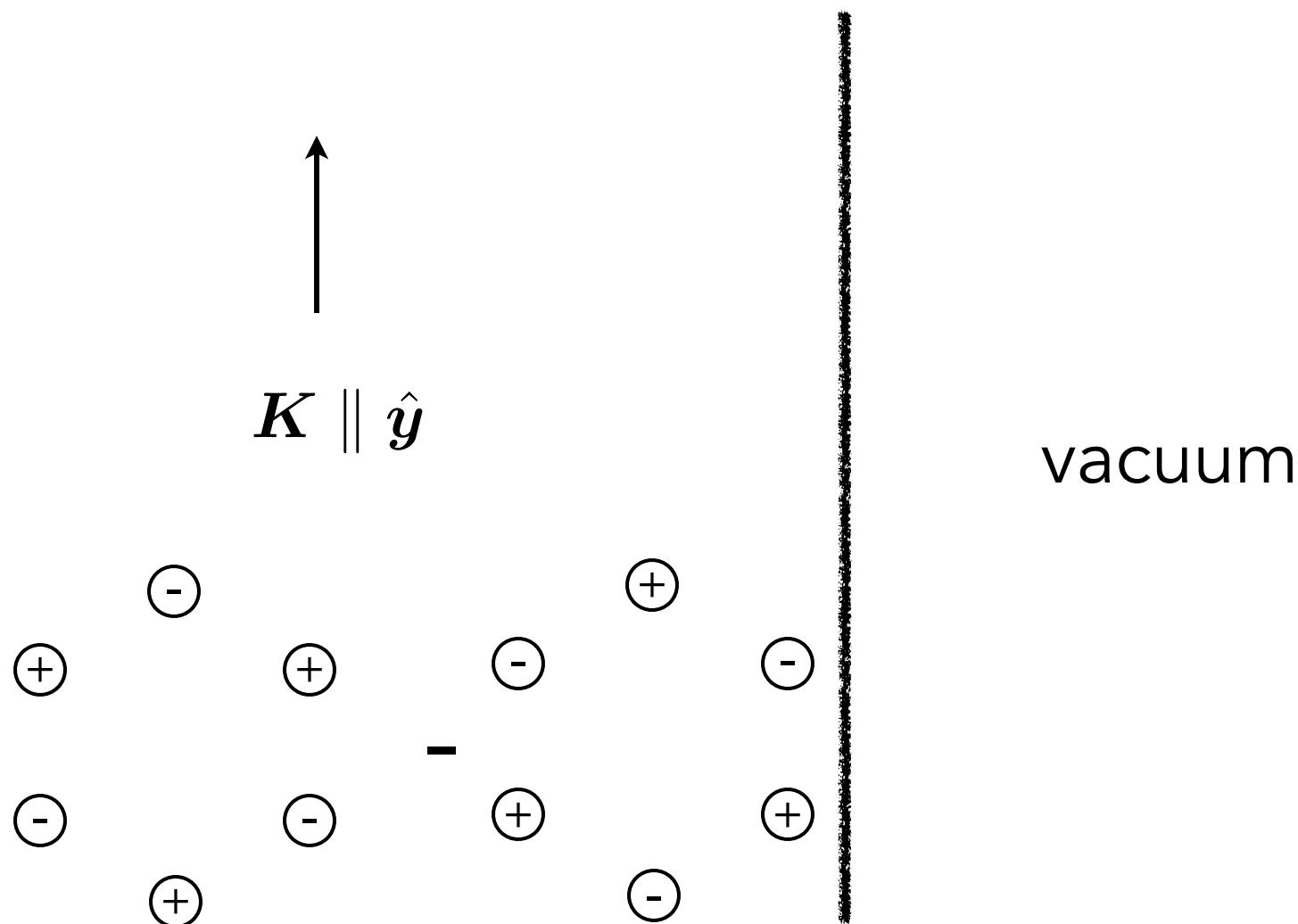
TB bands



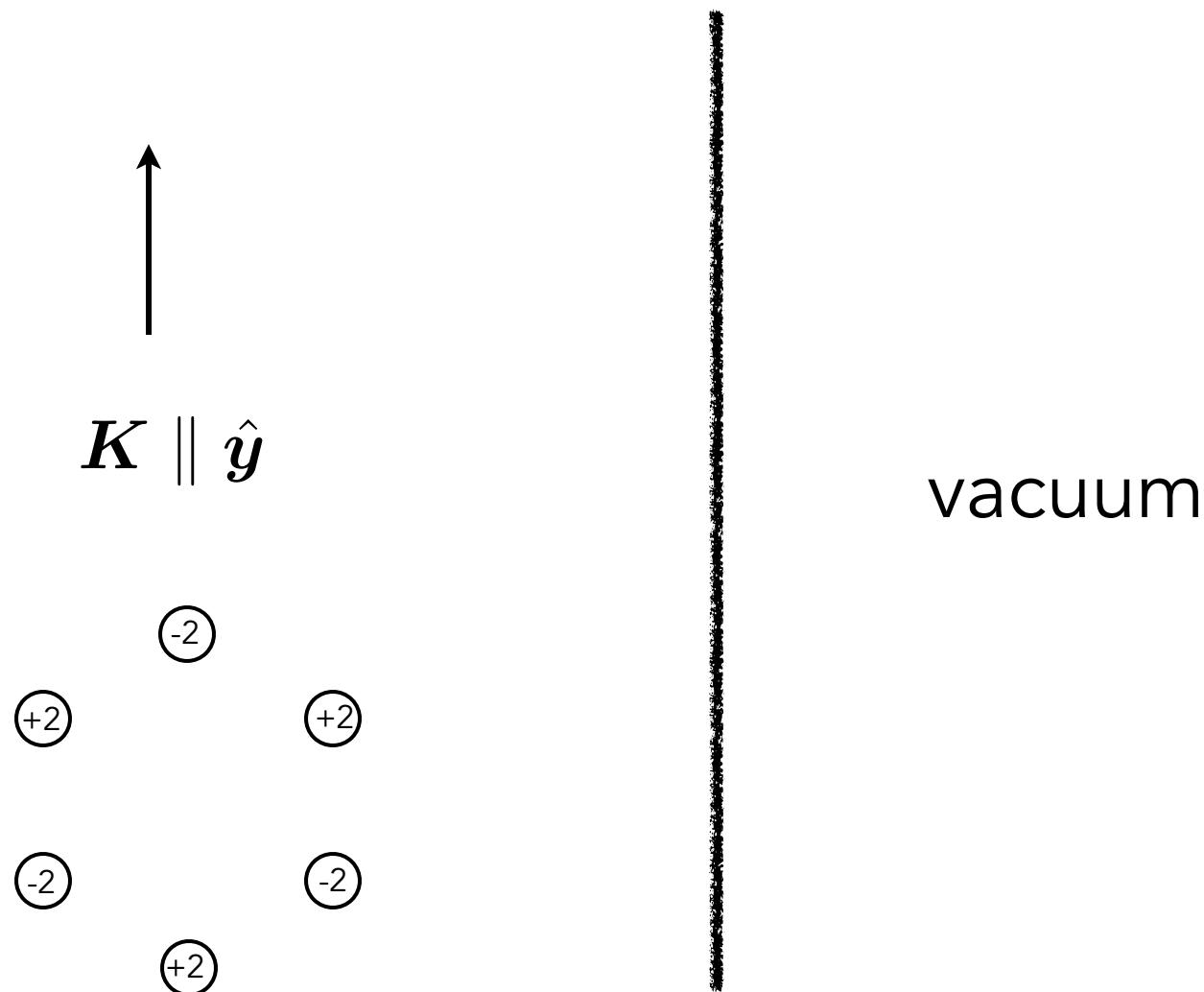
“Weyl math”



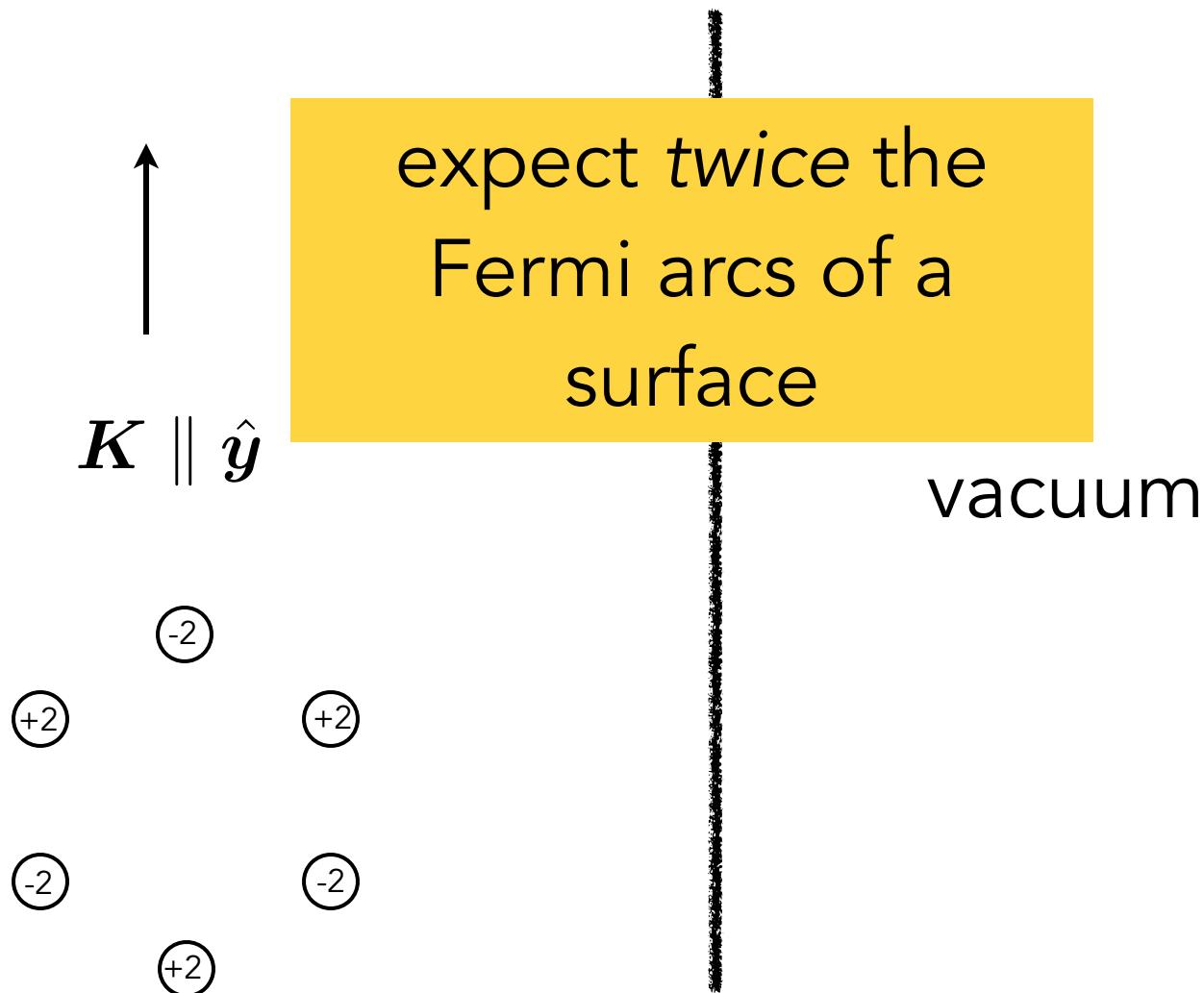
“Weyl math”



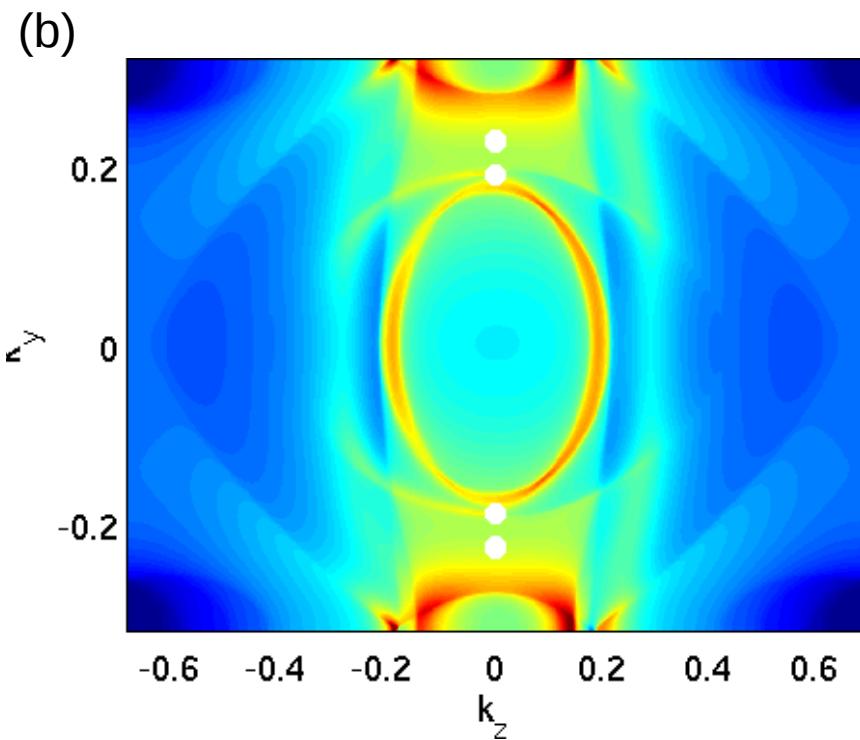
“Weyl math”



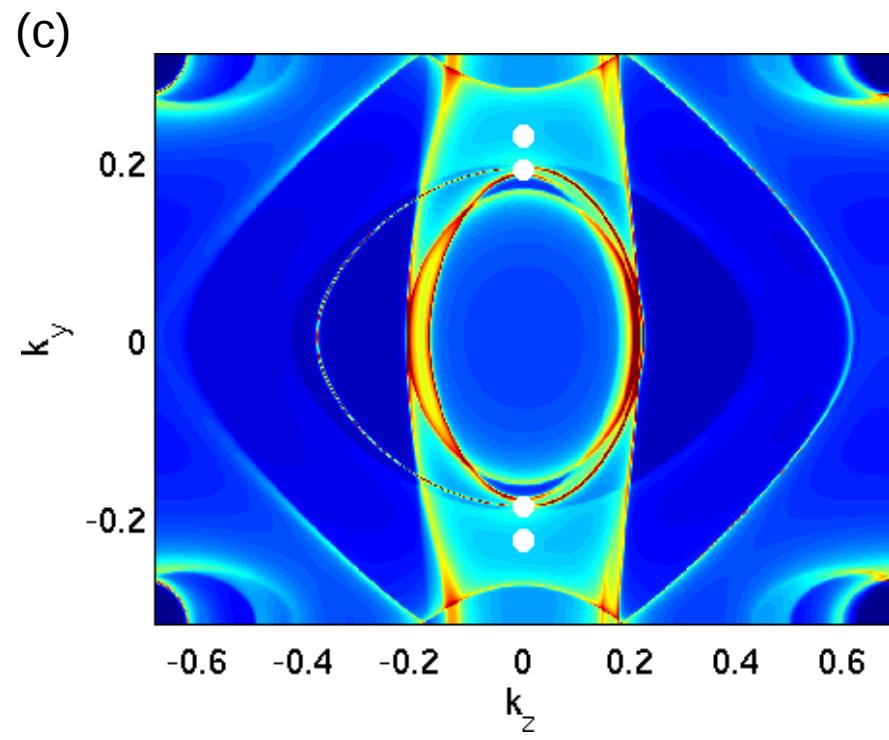
“Weyl math”



Solution



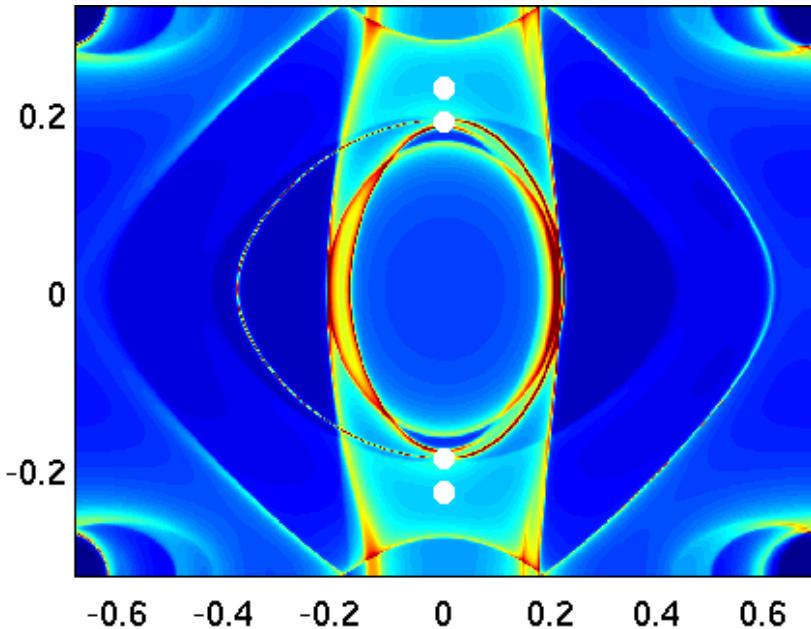
surface



domain wall

twice as many Fermi arcs as a surface

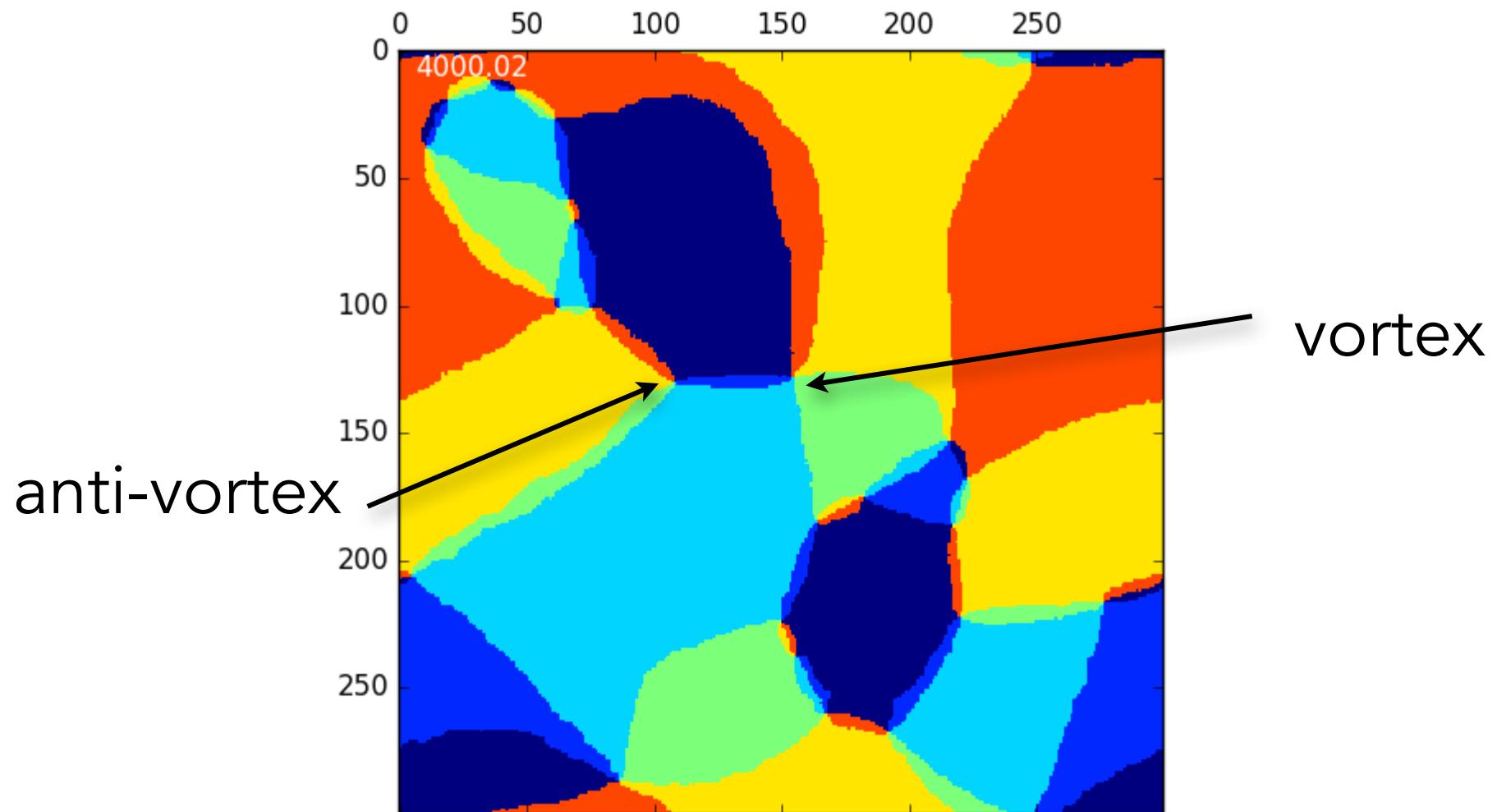
How to detect?



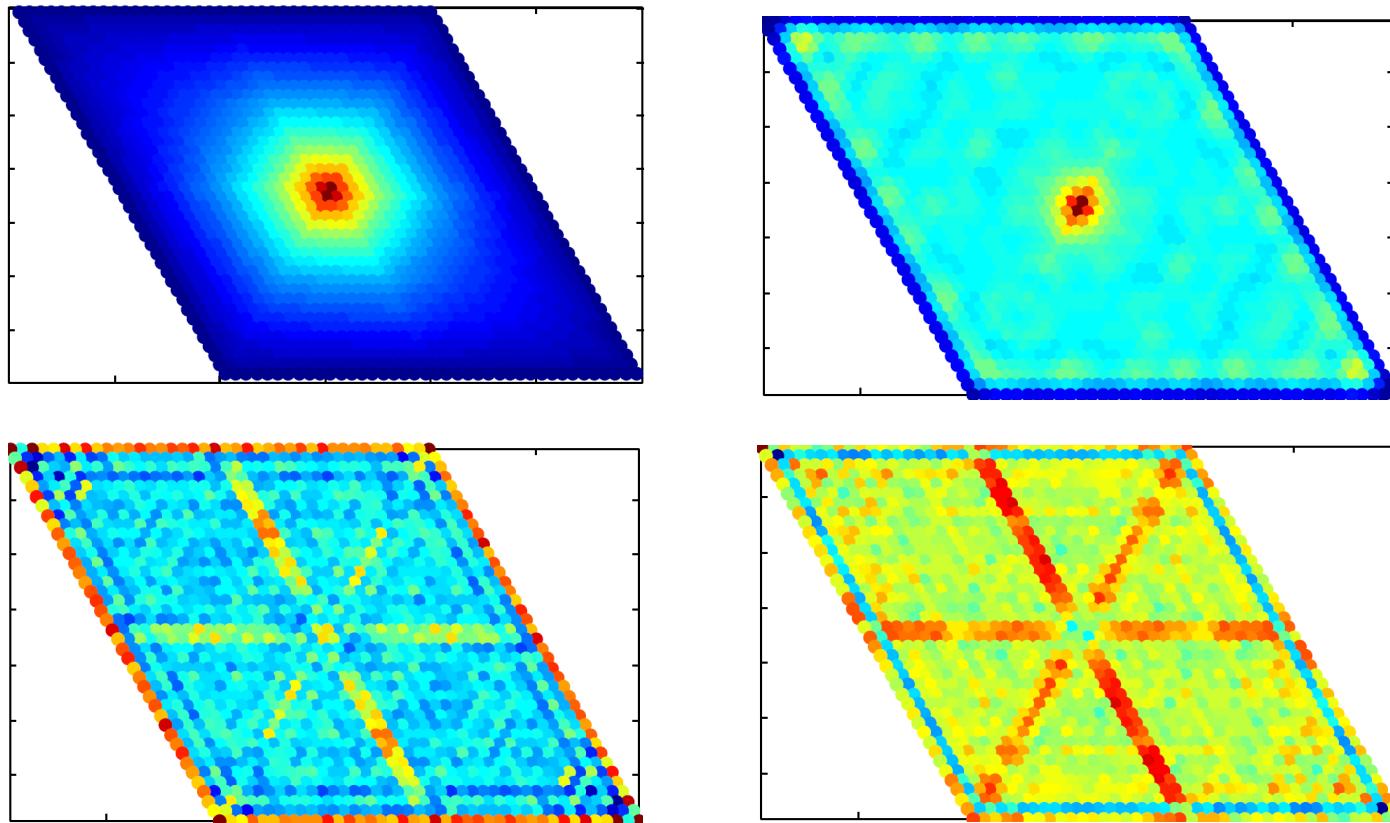
ARPES of domain wall
seems challenging to say
the least!

- Transport: enhanced intrinsic Hall conductivity within a DW?
- STM: signatures of bound states in LDOS?

Vortices?



Z_6 vortex



Quasi-bound states may appear. Origin?

“Chiral gauge field and axial anomaly in a Weyl semimetal”, Lui, Ye, Qi (2013):
suggest a 1d chiral mode at a FM vortex?

Conclusions

- Soft antiferromagnet provides a rich platform to explore electronic physics of topological textures
- I presented an order parameter description and minimal electronic model for Mn_3Sn and related materials
- For the future:
 - Theory of electronic mechanisms of damping, current drive, etc.
 - Strong coupling of order parameter to electrons: does chiral anomaly play a role?
 - Effect of disorder on textures

