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Anomalous Hall Effect
A famous effect in 

metallic 
ferromagnets, c.f. Ni

�
xy

= aBz + bMz

Karplus + Luttinger (1954!) related this to 
anomalous velocity due to Berry curvature  

and Lippert !1932" established that an empirical relation
between !xy, Hz, and Mz,

!xy = R0Hz + RsMz, !1.1"

applies to many materials over a broad range of external
magnetic fields. The second term represents the Hall-
effect contribution due to the spontaneous magnetiza-
tion. This AHE is the subject of this paper. Unlike R0,
which was already understood to depend mainly on the
density of carriers, Rs was found to depend subtly on a
variety of material specific parameters and, in particular,
on the longitudinal resistivity !xx=!.

In 1954, Karplus and Luttinger !KL" !Karplus and
Luttinger, 1954" proposed a theory for the AHE that, in
hindsight, provided a crucial step in unraveling the AHE
problem. KL showed that when an external electric field
is applied to a solid, electrons acquire an additional con-
tribution to their group velocity. KL’s anomalous velocity
was perpendicular to the electric field and therefore
could contribute to the Hall effects. In the case of ferro-
magnetic conductors, the sum of the anomalous velocity
over all occupied band states can be nonzero, implying a
contribution to the Hall conductivity "xy. Because this
contribution depends only on the band structure and is
largely independent of scattering, it has recently been
referred to as the intrinsic contribution to the AHE.
When the conductivity tensor is inverted, the intrinsic
AHE yields a contribution to !xy#"xy /"xx

2 and therefore
it is proportional to !2. The anomalous velocity is depen-
dent only on the perfect crystal Hamiltonian and can be
related to changes in the phase of Bloch state wave
packets when an electric field causes them to evolve in
crystal momentum space !Chang and Niu, 1996;
Sundaram and Niu, 1999; Bohm et al., 2003; Xiao and
Niu, 2009". As mentioned, the KL theory anticipated by
several decades the modern interest in the Berry phase
and the Berry curvature review here effects, particularly
in momentum space.

Early experiments to measure the relationship be-
tween !xy and ! generally assumed to be of the power-
law form, i.e., !xy$!#, mostly involved plotting !xy !or
Rs" vs !, measured in a single sample over a broad inter-
val of T !typically 77–300 K". As we explain below, com-

peting theories in metals suggested that either #=1 or 2.
A compiled set of results was published by Kooi !1954";
see Fig. 2. The subsequent consensus was that such plots
do not settle the debate. At finite T, the carriers are
strongly scattered by phonons and spin waves. These in-
elastic processes, difficult to treat microscopically even
today, lie far outside the purview of the early theories.
Smit suggested that, in the skew-scattering theory !see
below", phonon scattering increases the value # from 1
to values approaching 2. This was also found by other
investigators. A lengthy calculation by Lyo !1973"
showed that skew scattering at T$%D !the Debye tem-
perature" leads to !xy$!!2+a!", with a as a constant. In
an early theory by Kondo considering skew scattering
from spin excitations !Kondo, 1962", it may be seen that
!xy also varies as !2 at finite T.

The proper test of the scaling relation in comparison
with present theories involves measuring !xy and ! in a
set of samples at 4 K or lower !where impurity scattering
dominates". By adjusting the impurity concentration ni,
one may hope to change both quantities sufficiently to
determine accurately the exponent # and use this iden-
tification to tease out the underlying physics.

The main criticism of the KL theory centered on the
complete absence of scattering from disorder in the de-
rived Hall response contribution. The semiclassical
AHE theories by Smit and Berger focused instead on

FIG. 1. The Hall effect in Ni !data from Smith, 1910". From
Pugh and Rostoker, 1953.

FIG. 2. Extraordinary Hall constant as a function of resistivity.
The shown fit has the relation Rs$!1.9. From Kooi, 1954.

1541Nagaosa et al.: Anomalous Hall effect
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Anomalous velocity
Ak = ihn,k|rk|n,ki
Bk = rk ⇥AkBerry curvature

(Karplus+Luttinger, Niu)
Anomalous velocity

Gives AHE

For a full band, it becomes the 
quantized Hall conductivity = q e2/h  

@tr = rk✏k � eE ⇥ Bk

jA = e2E ⇥
Z

k
f(✏k)Bk



Weyl semimetal
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.

AUGUST 15, 1937 PHYSICAL REVIEW VOLUM E 52

Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).

H = v~� · ~k
A two-component spinor in three 

dimensions: “half” of a Dirac fermion.
Weyl fermions have a chirality  and 

must be massless
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B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

(Dirac semimetals also exist)
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A Weyl point is a “topological defect” 
in momentum space: a monopole for 

the Berry curvature
rk · B = ±2⇡q



Weyl semimetal
kz

k0

+

-

Fermi arc = chiral edge state

X. Wan et al, 2011

A.A. Burkov+LB, 2011

Expts: non-centrosymmetric 
materials TaAs, Na3Bi, TaP, WTe2,...



�µ⌫ =
e2

2⇡h
✏µ⌫�Q�

~Q =
X

i

~kiqi + ~QRLV

Weyl semimetal
kz

k0

+

-

Fermi arc = chiral edge state

Hall vector Q ~ “dipole 
moment” of Weyl points 

X. Wan et al, 2011

A.A. Burkov+LB, 2011

(when EF away from Weyl points add FS contributions)



Weyl semimetal
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Hall effect obviously breaks time-reversal symmetry
need a magnetic material

Fermi arc = chiral edge state



Anomalous Hall Effect
It should be generically present in time-
reversal broken Weyl semimetals, with 

sufficiently low symmetry

How about AHE in an 
antiferromagnet?

Could be useful to provide switchable Hall 
effect w/o large stray fields



Theoretical proposal

Figure 3. Chen et al. 
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Hua Chen, Q. Niu, A. 
MacDonald, 2013: 
AHE in the non-

collinear 
antiferromagnet Mn3Ir 

I would like to discuss a related material family 



Mn3Sn family
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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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Energetics: triangle
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• D: spins are “anti-chiral” in XY plane
• K: weak canting toward easy axes creates tiny 

moment and fixes in-plane angle
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 
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in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
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FIG. 2. Bulk band structures for (a) Mn3Sn and (b) Mn3Ge along
high-symmetry lines with SOC. The bands near the Z and K (indi-
cated by red circles) are expanded to show details in (a). The Fermi
energy is set to zero.

Z and K points, which are below the Fermi energy. Because
of MzT and the nonsymmorphic symmetry {My|⌧ = c/2}, the
bands are supposed to be quadruply degenerate at the Bril-
louin zone boundary Z, forming a Dirac point protected by
the nonsymmorphic space group38–40. Given the slight mirror
symmetry breaking by the residual net magnetic moment, this
Dirac point is gapped at Z (as shown in the enlarged panel) and
splits into four Weyl points, which are very close to each other
in k space. A tiny gap also appears at the K point. Nearby, two
additional Weyl points appear, too. Since the Weyl point sep-
arations are too small near both Z and K points, these Weyl
points may generate little observable consequence in experi-
ments such as those for studying Fermi arcs. Therefore, we
will not focus on them in the following investigation.

Mn3Sn and Mn3Ge are actually metallic, as seen from the
band structures. However, we retain the terminology of Weyl
semimetal for simplicity and consistency. The valence and
conduction bands cross each many times near the Fermi en-
ergy, generating multiple pairs of Weyl points. We first in-
vestigate the Sn compound. Supposing that the total valence
electron number is Nv, we search for the crossing points be-
tween the N th

v and (Nv + 1)th bands.
As shown in Fig. 3a, there are six pairs of Weyl points

in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
These Weyl points lie in the Mz plane (with W2 points be-
ing only slightly o↵ this plane owing to the residual-moment-
induced symmetry breaking) and slightly above the Fermi en-
ergy. Therefore, there are four copies for each of them accord-
ing to the symmetry analysis in Eq. 2. Their representative co-
ordinates and energies are listed in Table I and also indicated
in Fig. 3a. A Weyl point (e.g., W1 in Figs. 3b and 3c) acts as
a source or sink of the Berry curvature⌦, clearly showing the
monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
points. As shown in Fig. 4a and listed in Table II, there are
nine groups of Weyl points. Here W1,2,7,9 lie in the Mz plane
with W9 on the ky axis, W4 appears in the Mx plane, and
the others are in generic positions. Therefore, there are four
copies of W1,2,7,4, two copies of W9, and eight copies of other
Weyl points. Although there are many other Weyl points in
higher energies owing to di↵erent band crossings, we mainly

FIG. 3. Surface states of Mn3Sn. (a) Distribution of Weyl points in
momentum space. Black and white points represent Weyl points with
� and + chirality, respectively. (b) and (c) Monopole-like distribution
of the Berry curvature near a W1 Weyl point. (d) Fermi surface at
EF = 86 meV crossing the W1 Weyl points. The color represents
the surface LDOS. Two pairs of W1 points are shown enlarged in the
upper panels, where clear Fermi arcs exist. (e) Surface band structure
along a line connecting a pair of W1 points with opposite chirality.
(f) Surface band structure along the white horizontal line indicated in
(d). Here p1 and p2 are the chiral states corresponding to the Fermi
arcs.

focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
an example. Without including SOC, we observed a nodal-
ring-like band crossing in the band structures of both Mn3Sn
and Mn3Ge. SOC gaps the nodal rings but leaves isolating
band-touching points, i.e., Weyl points. Since Mn3Sn exhibits
stronger SOC than Mn3Ge, many Weyl points with opposite
chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,

3
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high-symmetry lines with SOC. The bands near the Z and K (indi-
cated by red circles) are expanded to show details in (a). The Fermi
energy is set to zero.
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of the Berry curvature near a W1 Weyl point. (d) Fermi surface at
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focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
an example. Without including SOC, we observed a nodal-
ring-like band crossing in the band structures of both Mn3Sn
and Mn3Ge. SOC gaps the nodal rings but leaves isolating
band-touching points, i.e., Weyl points. Since Mn3Sn exhibits
stronger SOC than Mn3Ge, many Weyl points with opposite
chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,
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FIG. 2. Bulk band structures for (a) Mn3Sn and (b) Mn3Ge along
high-symmetry lines with SOC. The bands near the Z and K (indi-
cated by red circles) are expanded to show details in (a). The Fermi
energy is set to zero.

Z and K points, which are below the Fermi energy. Because
of MzT and the nonsymmorphic symmetry {My|⌧ = c/2}, the
bands are supposed to be quadruply degenerate at the Bril-
louin zone boundary Z, forming a Dirac point protected by
the nonsymmorphic space group38–40. Given the slight mirror
symmetry breaking by the residual net magnetic moment, this
Dirac point is gapped at Z (as shown in the enlarged panel) and
splits into four Weyl points, which are very close to each other
in k space. A tiny gap also appears at the K point. Nearby, two
additional Weyl points appear, too. Since the Weyl point sep-
arations are too small near both Z and K points, these Weyl
points may generate little observable consequence in experi-
ments such as those for studying Fermi arcs. Therefore, we
will not focus on them in the following investigation.

Mn3Sn and Mn3Ge are actually metallic, as seen from the
band structures. However, we retain the terminology of Weyl
semimetal for simplicity and consistency. The valence and
conduction bands cross each many times near the Fermi en-
ergy, generating multiple pairs of Weyl points. We first in-
vestigate the Sn compound. Supposing that the total valence
electron number is Nv, we search for the crossing points be-
tween the N th

v and (Nv + 1)th bands.
As shown in Fig. 3a, there are six pairs of Weyl points

in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
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ing only slightly o↵ this plane owing to the residual-moment-
induced symmetry breaking) and slightly above the Fermi en-
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ing to the symmetry analysis in Eq. 2. Their representative co-
ordinates and energies are listed in Table I and also indicated
in Fig. 3a. A Weyl point (e.g., W1 in Figs. 3b and 3c) acts as
a source or sink of the Berry curvature⌦, clearly showing the
monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
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nine groups of Weyl points. Here W1,2,7,9 lie in the Mz plane
with W9 on the ky axis, W4 appears in the Mx plane, and
the others are in generic positions. Therefore, there are four
copies of W1,2,7,4, two copies of W9, and eight copies of other
Weyl points. Although there are many other Weyl points in
higher energies owing to di↵erent band crossings, we mainly
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bands are supposed to be quadruply degenerate at the Bril-
louin zone boundary Z, forming a Dirac point protected by
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in k space. A tiny gap also appears at the K point. Nearby, two
additional Weyl points appear, too. Since the Weyl point sep-
arations are too small near both Z and K points, these Weyl
points may generate little observable consequence in experi-
ments such as those for studying Fermi arcs. Therefore, we
will not focus on them in the following investigation.

Mn3Sn and Mn3Ge are actually metallic, as seen from the
band structures. However, we retain the terminology of Weyl
semimetal for simplicity and consistency. The valence and
conduction bands cross each many times near the Fermi en-
ergy, generating multiple pairs of Weyl points. We first in-
vestigate the Sn compound. Supposing that the total valence
electron number is Nv, we search for the crossing points be-
tween the N th

v and (Nv + 1)th bands.
As shown in Fig. 3a, there are six pairs of Weyl points

in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
These Weyl points lie in the Mz plane (with W2 points be-
ing only slightly o↵ this plane owing to the residual-moment-
induced symmetry breaking) and slightly above the Fermi en-
ergy. Therefore, there are four copies for each of them accord-
ing to the symmetry analysis in Eq. 2. Their representative co-
ordinates and energies are listed in Table I and also indicated
in Fig. 3a. A Weyl point (e.g., W1 in Figs. 3b and 3c) acts as
a source or sink of the Berry curvature⌦, clearly showing the
monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
points. As shown in Fig. 4a and listed in Table II, there are
nine groups of Weyl points. Here W1,2,7,9 lie in the Mz plane
with W9 on the ky axis, W4 appears in the Mx plane, and
the others are in generic positions. Therefore, there are four
copies of W1,2,7,4, two copies of W9, and eight copies of other
Weyl points. Although there are many other Weyl points in
higher energies owing to di↵erent band crossings, we mainly

FIG. 3. Surface states of Mn3Sn. (a) Distribution of Weyl points in
momentum space. Black and white points represent Weyl points with
� and + chirality, respectively. (b) and (c) Monopole-like distribution
of the Berry curvature near a W1 Weyl point. (d) Fermi surface at
EF = 86 meV crossing the W1 Weyl points. The color represents
the surface LDOS. Two pairs of W1 points are shown enlarged in the
upper panels, where clear Fermi arcs exist. (e) Surface band structure
along a line connecting a pair of W1 points with opposite chirality.
(f) Surface band structure along the white horizontal line indicated in
(d). Here p1 and p2 are the chiral states corresponding to the Fermi
arcs.

focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
an example. Without including SOC, we observed a nodal-
ring-like band crossing in the band structures of both Mn3Sn
and Mn3Ge. SOC gaps the nodal rings but leaves isolating
band-touching points, i.e., Weyl points. Since Mn3Sn exhibits
stronger SOC than Mn3Ge, many Weyl points with opposite
chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,
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will not focus on them in the following investigation.
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electron number is Nv, we search for the crossing points be-
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in the first Brillouin zone; these can be classified into three
groups according to their positions, noted as W1, W2, and W3.
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ing only slightly o↵ this plane owing to the residual-moment-
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monopole feature with a definite chirality.

In contrast to Mn3Sn, Mn3Ge displays many more Weyl
points. As shown in Fig. 4a and listed in Table II, there are
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focus on the current Weyl points that are close to the Fermi
energy. The monopole-like distribution of the Berry curva-
ture near these Weyl points is verified; see W1 in Fig. 4 as
an example. Without including SOC, we observed a nodal-
ring-like band crossing in the band structures of both Mn3Sn
and Mn3Ge. SOC gaps the nodal rings but leaves isolating
band-touching points, i.e., Weyl points. Since Mn3Sn exhibits
stronger SOC than Mn3Ge, many Weyl points with opposite
chirality may annihilate each other by being pushed by the
strong SOC in Mn3Sn. This might be why Mn3Sn exhibits
fewer Weyl points than Mn3Ge.

C. Fermi arcs on the surface

The existence of Fermi arcs on the surface is one of the
most significant consequences of Weyl points inside the three-
dimensional (3D) bulk. We first investigate the surface states
of Mn3Sn that have a simple bulk band structure with fewer
Weyl points. When projecting W2,3 Weyl points to the (001)
surface, they overlap with other bulk bands that overwhelm
the surface states. Luckily, W1 Weyl points are visible on
the Fermi surface. When the Fermi energy crosses them,
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Large anomalous Hall effect in a non-collinear 
antiferromagnet at room temperature
Satoru Nakatsuji1,2, Naoki Kiyohara1 & Tomoya Higo1

In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
at 50 K (Methods). As the detailed spin structure is unknown for the 
low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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In ferromagnetic conductors, an electric current may induce 
a transverse voltage drop in zero applied magnetic field: this 
anomalous Hall effect1 is observed to be proportional to 
magnetization, and thus is not usually seen in antiferromagnets in 
zero field2. Recent developments in theory and experiment have 
provided a framework for understanding the anomalous Hall 
effect using Berry-phase concepts3, and this perspective has led to 
predictions that, under certain conditions, a large anomalous Hall 
effect may appear in spin liquids and antiferromagnets without net 
spin magnetization4–8. Although such a spontaneous Hall effect has 
now been observed in a spin liquid state9, a zero-field anomalous 
Hall effect has hitherto not been reported for antiferromagnets. 
Here we report empirical evidence for a large anomalous Hall effect 
in an antiferromagnet that has vanishingly small magnetization. 
In particular, we find that Mn3Sn, an antiferromagnet that has  
a non-collinear 120-degree spin order10,11, exhibits a large ano-
malous Hall conductivity of around 20 per ohm per centimetre at 
room temperature and more than 100 per ohm per centimetre at 
low temperatures, reaching the same order of magnitude as in 
ferromagnetic metals3. Notably, the chiral antiferromagnetic state 
has a very weak and soft ferromagnetic moment of about 0.002 
Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch 
the sign of the Hall effect with a small magnetic field of around a 
few hundred oersted. This soft response of the large anomalous 
Hall effect could be useful for various applications including 
spintronics—for example, to develop a memory device that produces 
almost no perturbing stray fields.

Mn3Sn is a hexagonal antiferromagnet (AFM) that exhibits non- 
collinear ordering of Mn magnetic moments at the Néel temperature 
of TN ≈  420 K (refs 10, 11, 13). The system has a hexagonal Ni3Sn-type 
structure with space group P63/mmc (Fig. 1a). The structure is stable 
only in the presence of excess Mn, which randomly occupies the Sn 
site13. The basal plane projection of the Mn sublattice can be viewed 
as a triangular lattice arrangement of a twisted triangular tube made 
of face-sharing octahedra (Fig. 1a, b). Each a–b plane consists of a 
slightly distorted kagome lattice of Mn moments each of ~3 μB (where 
μ B is the Bohr magneton), and the associated geometrical frustration 
manifests itself as an inverse triangular spin structure that carries 
a very small net ferromagnetic moment of ~0.002 μB per Mn atom  
(Fig. 1c)10,11. All Mn moments lie in the a–b plane and form a chiral 
spin texture with an opposite vector chirality to the usual 120° struc-
ture (Extended Data Fig. 1). This inverse triangular configuration 
has an orthorhombic symmetry, and only one of the three moments 
in each Mn triangle is parallel to the local easy-axis10–12 (Fig. 1c). 
Thus, the canting of the other two spins towards the local easy-axis is 
considered to be the origin of the weak ferromagnetic moment10–12.

It is known that as-grown crystals retain the inverse triangular spin 
state over a wide temperature (T) range between TN and ∼ 50 K (ref. 14). 
At low temperatures, a cluster glass phase appears with a large c-axis 
ferromagnetic component due to spin canting towards the c axis11,15,16.  
In this work, we used as-grown single crystals that have the 

composition Mn3.02Sn0.98 and confirmed no transition except the one 
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low temperature phase, here we focus on the phase stable above 50 K, 
and use ‘Mn3Sn’ to refer to our crystals for clarity.

We first show our main experimental evidence for the large anom-
alous Hall effect (AHE) at room temperature. Figure 2a presents the 
field dependence of the Hall resistivity, ρ H(B), obtained at 300 K for 
the field along [2110] (a axis). ρH(B) exhibits a clear hysteresis loop 
with a sizable jump of |Δ ρH| ≈  6 μ Ω  cm. This is strikingly large for an 
AFM, and is larger than those found in elemental transition metal 
ferromagnets (FMs) such as Fe, Co and Ni (refs 2, 3, 17). Notably, the 
sign change occurs at a small field of ~300 Oe. Furthermore, the hys-
teresis remains sharp and narrow in all the temperature range 
between 100 K and 400 K (Fig. 2b). In this temperature region, a large 
anomaly as a function of field has been seen only in the Hall resistiv-
ity. The longitudinal resistivity ρ(B) remains constant except for 
spikes at the critical fields where the Hall resistivity jumps (Fig. 2a). 

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

Figure 1 | Crystal and magnetic structures of Mn3Sn. a, The 
crystallographic unit cell of Mn3Sn. Although there is only one 
crystallographic site for both Mn and Sn, different colours are used to 
distinguish those in the z =  0 plane and in the z =  1/2 plane. In addition to 
the unit cell frame, Mn atoms are connected by lines to illustrate that the 
face-sharing octahedra of Mn atoms form a twisted triangular tube along the  
c axis. b, Top view along the c axis of the neighbouring four unit cells in the  
a–b plane. c, An individual a–b plane of Mn3Sn. All distances are in Å. Mn 
moments (arrows) form an inverse triangular spin structure10–12. Each Mn 
moment has the local easy-axis parallel to the in-plane direction towards its 
nearest-neighbour Sn sites. Here, [2110], [1210] and [0001] are the a, b and c 
axes, respectively
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FIG. 1. (a) The Lattice structure of Mn3Sn from a top view, and (b)
a side view. The thick dashed lines with brown, red, and blue col-
ors indicate different hopping processes of the tight-binding model
introduced in the text. The gray dashed lines in (a) indicate the easy
axes. (c) The six magnetic domains. (d) Schematic illustration of the
Z6 vortex lines.

axis (marked by gray dashed lines in Fig. 1(a)) as shown in
Fig. 1(c), and we call this spin as the “easy spin”. The other
two spins are canted toward their local easy axes, resulting in
a tiny net magnetization along the direction of the easy spin
[25–27]. Due to the strong inter-layer exchange [28], the spins
in the z=c/2 Kagome plane behave exactly the same as those
in the z = 0 plane. We identify the angle of the easy spin
with respect to the b ([120]) (JPL: use ”y” instead of ”b”? ”b”
sounds like one of the lattice vectors.) axis as ✓, and ✓ = n⇡/3

with n = 0, . . . , 5 denotes six possible domains (hence ˜

� > 0

in Eq. (1)). It is convenient to label them as ↵+,�, �+,�,
and �+,� as shown in Fig. 1(c)., the ± superscript denoting
that domains which are time-reversal conjugates (✓! ✓ + ⇡

under time-reversal). The structure of the order parameter and
the free energy in Eq. (1) implies minimum energy domain
walls connect neighboring values of ✓, i.e. spins rotate by
60

� across the walls, so opposite sides of a wall are not time-
reversal conjugates. Six of these minimal domain walls meet
at curves in three dimensions which define Z6 vortex lines –
see Fig. 1(d), around which ✓ winds by ±2⇡.

The small net moment due to the canting of spins towards
the local easy axes leads to a linear coupling to an external
magnetic field �B ·M, where M= �K, is the net magnetic
moment, � ⇠ 10

�2 [Should check this number. The net mag-
netic moment is s ⇠ 0.018µB per unit cell] , and B is the
external magnetic field. Here K = (Re( ), Im( ), 0) is the
XY order parameter expressed in vector form. Note that the
in-plane components of M and K are proportional. This al-
lows an applied field to select a domain or domains.

Away from TN, we can assume | | is nearly constant, and
obtain a description in terms of ✓ alone. Using only symmetry
constraints and the free energy above, we obtain the semiclas-

FIG. 2. The spin configurations on the coarse-grained lattice at time
t = 2000 obtained from numerical simulations of the Langevin
equation: (a)without any magnetic field, and (b) an external mag-
netic field B = 10T is applied along the x direction.

sical Langevin equation [29],

@✓(r, t)

@t

= �µ

�Fs

�✓(r, t)
+ µ⌘(r, t) + f(j), (2)

where ⌘(r, t) represents a random thermal fluctuation at tem-
perature T obeying the Gaussian distribution of zero mean:
h⌘(r, t)i=0, and h⌘(r, t)⌘(r0, t0)i=2kBT �(r � r0)�(t � t

0
)

(kB is the Boltzmann constant.). µ is the damping factor, and
hereafter is set to 1 [30]. The final term f(j) represents non-
equilibrium forces to be discussed later. We note that the over-
damped Langevin description with a single time derivative is
valid at long times: this is sufficient for most purposes. By fix-
ing | | in Eq. (1) and including the Zeeman energy we obtain
the sine-Gordon-like model

Fs =

Z

d

3r
⇢

2

(r✓(r))2 � � cos 6✓(r)� h cos (✓(r)� ✓B) ,

(3)
where the stiffness ⇢ = ⇢̃/m

2
s, the in-plane anisotropy � =

˜

�/m

6
s, h = �Bms is the Zeeman energy,and ✓B denotes the

angle between the direction of the external magnetic field B
and the y axis. . We estimate ⇢⇡2.58meV/Å and �⇡3.72⇥
10

�10 meV/Å3 by comparing to prior work on Mn3Sn[? ]
(see Supplementary Information). The sin-Gordon solution
with the boundary conditions ✓=0 at x!�1 and ✓= ⇡/3

at x!1 has a kink at x=0: ✓(x)=(2/3) arctan(e

6x
p

�/⇢
)

[31]. Therefore, the domain wall in the clean limit is expected
to be very broad, the thickness of which ⇠

p

⇢/�/6⇡ 1.4⇥
10

3 nm.

3

To observe the microstructure predicted by the Langevin
model, we carried out a numerical simulation of a thin slab,
assuming homogeneity in the z direction and discretizing the
2D continuum model with an effective lattice constant of
acg = 1000Å [32], and the parameters of the sine-Gordon
model are transformed accordingly. Figure 2(a) shows the
spin configuration resulting from a quench from a random ini-
tial state of a 400µm2 sample in zero applied field after a time
t = 6000 in units ⇢cg = µ = 1, where ⇢cg is the stiffness pa-
rameter for the coarse-grained lattice. Clearly there are six
types of domains in the figure, marked by ↵

±, �±, and �

±.
These sixfold domains merge at the vortices and antivortices
marked by white and black dots respectively. To see how the
domains may be controlled by an applied magnetic field, we
show in Fig. 2(b) the spin configuration resulting from the
same preparation except at t = 36000 with an applied mag-
netic field of B=0.001T along the hard-axis [100] (x). As is
clearly shown in the figure, only two pairs of vortices are left
in the presence of the weak magnetic field, and the field pref-
erentially selects just two degenerate �

+ (cos ✓ = �1/2)and
�

� (cos ✓ = 1/2) domains with broad domain walls as is
clearly visible. We will show that the double-domain pattern
leads to a variety of new physics including domain-wall bound
states, novel transport behavior, and domain-wall dynamics.

[ADD DISCUSSIONS ABOUT DISORDER. JPL: I am
not an expert on disorder and statistical physics, and I am
reading literatures. Leon, please feel free to add more pro-
found discussions.]. We have also considered a random
SIA Vdis(r) cos (✓(r)� ↵(r)) from quenched disorder. The
strength of the random SIA Vdis obeys the Gaussian distri-
bution hVdis(r)Vdis(r0)i = VR�(r � r0). The direction of the
anisotropic axis is characterized by the random phase angle
↵(r). In the strong disorder regime, J � vR � �, numerical
simulations suggest that the Z6 vortices still remain robust.
On the other hand, the numerical simulations of the hysteresis
loop indicates that the Z6 anisotropy has negligible effects on
magnetic susceptibilities. We refer the readers to Supplemen-
tary Information for more details.

Minimal electronic model and electronic structure: While
the ab initio electronic structure of Mn3Sn and Mn3Ge have
been studied extensively, to study electronic properties of
magnetic textures with large-scale spatial variations and/or
surface/domain wall states is impractical with density func-
tional theory. Therefore we introduce a minimal four-band
tight-binding (TB) model with a single spinor (pz) orbitals at
each Sn. As indicated by the thick dashed lines in Fig. 1(a)-
(b), we consider the following four hopping processes:

tintra(rnm) = t0 I2⇥2 + tJ � · Snm + (�1)

⇠mn
i�z �z , (4)

tinter(rnm) = t1 I2⇥2 , (5)
t

0
inter(rnm) = i�R ernm

soc · � , (6)
t

00
inter(rnm) = t2 I2⇥2 , (7)

where the hopping from orbital m centered at rm to orbtial n
centered at rn is expressed as a 2 ⇥ 2 matrix due to the spin
degrees freedom of each orbital, and rnm = rn � rm. The
model includes three spin-independent hopping terms (t0 in-
layer and t1 and t2 inter-layer), an spin-dependent hopping

FIG. 3. (a) The bulk bandstructure of the tight-binding model in the
↵

+ domain with 1.7� spin canting. The inset indicates the positions
of two different types of bulk Weyl nodes W1 and W2 in the k

z

=0
plane. (b) The anomalous Hall conductivity �

zx

in the ↵

+ domain.

tJ reflecting exchange coupling to the Mn moment S in the
middle of the bond across which the electrons hop, and two
spin-orbit coupling (SOC) terms �z and �R, which are impor-
tant due to the heavy nature of the Sn ions. Details on the ⇠mn

and ernm
soc parameters which define the SOC are given in the

Supp. mat. Hereafter we fix the parameters of the model as:
t0 =1, t1 =0.5, tJ =�0.5, �z =0.5, t2 =�1, and �R =0.2.
We arrange Snm spins to reflect the spin order under consid-
eration. In the ordered state we take the spin canting angle
⇠ 1.7

�, corresponding to a net moment ⇠ 5% of each Mn
spin for each Kagome cell.

The bulk bandstructure of the TB model introduced above
is shown in Fig. 3(a), where one can clearly see the Weyl
node between � and M . We find that in the ↵

+ domain (see
Fig. 1(c)), there are four Weyl nodes at (±0.3522, 0, 0) and
(⌥0.3522,±0.3522, 0) at energy EW1 = �2.395t0, which
are denoted by ±W1 in the inset of Fig. 3(a), with the sign
corresponding to the chirality of the Weyl nodes. There
are two additional Weyl nodes at (0,±0.3564, 0) at energy
EW2 = �2.47t0 denoted by ±W2 in the inset of Fig. 3(a).
The positions of the W1 and W2 Weyl nodes in the other five
domains can be obtained by applying C3z and/or T operations
to those of the ↵

+ domain. Without the spin canting, the W1

and W2 Weyl nodes would become equal in energy for our
simplified model.

From magnetic structure to electronic properties: The most
interesting feature of Mn3Sn and its relatives is the strong in-
fluence of the magnetism on the electronic structure, and the
ability to control the latter by modifying the former. The most
basic electronic property is the conductivity. In the Mn3Sn
family, a symmetry analysis using crystal symmetries and On-
sager relations tightly constrains the conductivity tensor (see
Supp. Mat.). It is most simply expressed in terms of the order
parameter ˆK=K/|K| in vector form. Up to quadratic order
we obtain the symmetric components

�µ⌫(
ˆK) = �k�µ⌫ + (�? � �k)�µz�⌫z (8)

+q✏µ⌫�
ˆ

K�

+b1
ˆ

Kµ
ˆ

K⌫�µ⌫ .

where �k, �?, b1 and q are parameters determined by specific
details of the system such as the canting angle of the spins,
Fermi levels etc., and will be explicitly calculated using Kubo
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TABLE I. Diagonal conductivities of supercells including the domain
walls

�

xx

�

yy

�

zz

xy-type d.w. 20.70 20.34 7.32
yz-type d.w. 19.24 19.61 7.75
xz-type d.w. 19.87 19.13 7.73

for a yz-oriented wall, for which the Hall vectors of both do-
mains have a large component normal to the wall. We checked
this directly by calculating the AHC of supercells including
the domain walls. The supercell includes 20 primitive cells
stacking along the direction normal to the domain wall. In
particular, uniquely for the yz-oriented domain wall, we find
�yz = �0.0858 for the supercell, four times larger than the
bulk value of �.0217 found for the same cell with a uniform
�

+ and �

� state and no domain wall.
A second consequence of domain wall bound states is an

intrinsic resistance across the wall, expected since the forma-
tion of bound states takes away from the weight of continuum
states which are strongly transmitted and hence contribute
to conductance. We have constructed supercells with peri-
odic boundary conditions including 60 primitive cells stack-
ing along the direction normal to the domain wall. The local
spins evolve smoothly from �

+ domain to �

� domain across
30 primitive cells inside the supercell. In other words, the
thicknewss of the domain wall is about 30 lattice constants.
The results for the diagonal conductivities for each orientation
of domain wall are tabulated in Table I, from which we indeed
see a distinct decrease in conductivity when the current is nor-
mal to the domain wall. A small effect would be expected just
from the local conductivity approximation, but this is insuffi-
cient to explain the data, which shows a weak dependence on
the thickness of the domain wall inconsistent with that model
(see Supplemental Information). This reinforces the notion
that the resistance of a domain wall is intrinsic related to the
topologically-induced bound states.

While we focused on the domain walls, it is worth noting
that the Z6 vortex lines may have their own electronic states.
Calculations in the Supp. Mat. show that these vortex lines
show a pronounced 6-fold pattern in their local density states,
making them detectable by scanning tunnelling microscopy
[33].

Current-driven domain-wall dynamics Let us now con-
sider the feedback of the conduction electrons on the spin tex-
ture. This is important to control of the magnetic microstruc-
ture electronically. In ferromagnets, current-induced forces
on domains and domain walls have been extensively studied,
through the mechanism of spin-transfer torque[34]. Given that
the primary order parameter of the antiferromagnet is not the
magnetization, it is unclear how consideration of torque, i.e.
conservation of angular momentum, applies here.

Instead, we take a symmetry-based approach and ask how
applied currents may appear as forces in the equation of mo-
tion for the easy spin angle ✓, Eq. (2). The result (see Supple-
mentary Information) is that the force f(j) = P (j) + Q(j)

(b) (c)

FIG. 4. (a) A schematic illustration of the Weyl nodes in the �

+

(left) and �

� (right) domains, as well as their projections to the k

y

axis (see text). (b) The surface Fermi arcs of the �+ with the surface
normal vector x̂. (c) The domain-wall Fermi arcs with the “yz” type
domain wall (see text).

with

P (j) = p0 (jx@x✓ + jy@y✓) + p1jz@z✓ , (10)

and

Q(j) =q1 (jx @z✓ cos ✓ + jy @z✓ sin ✓)+

q2 jz (@x ✓ cos ✓ + @y ✓ sin ✓) . (11)

The P (j) term, due to the lack of sine/cosine factors, respects
the approximate continuous U(1) rotation symmetry of ✓. We
understand therefore that it would arise even were single-ion
anisotropy and other symmetry breaking neglected. Since the
U(1)-symmetric forces are dominant in the Mn3Sn family, we
expect that quantitatively P (j) � Q(j), which violates this
symmetry.

Despite the intrinsic antiferromagnetic nature of the system,
the P (j) terms appear formally very similar to spin-transfer
torques. They could be understood in a hydrodynamic fashion
as describing “convection” of the spin texture with or against
the current flow (grouping them with the time-derivative re-
sults in a convective derivative). The Q(j) are less familiar,
but may be motivated by the notion that AHE induces trans-
verse forces, and indeed replacing with currents in the P (j)
forces by transverse ones according to the AHE would pro-
duce just these terms.

Using the equation of motion, we propose a realistic ap-
proach to control the domain-wall motions based on current.
Again we consider applying an external magnetic field along
the hard axis direction, say [100] (x), such that two domains
�

+ (✓=�2⇡/3) and �

� (✓=�⇡/3) are selected forming do-
main walls as shown in Fig. 5(a). The incident current flows
along the �x direction, normal to the domain wall. Accord-
ing to Eq. (10), the p0 jx @x✓ term tends to drive the domain
wall opposite to the direction of the current flow. [It probably

surface domain wall
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conservation of angular momentum, applies here.

Instead, we take a symmetry-based approach and ask how
applied currents may appear as forces in the equation of mo-
tion for the easy spin angle ✓, Eq. (2). The result (see Supple-
mentary Information) is that the force f(j) = P (j) + Q(j)

(c)

FIG. 4. (a) A schematic illustration of the Weyl nodes in the �

+

(left) and �

� (right) domains, as well as their projections to the k

y

axis (see text). (b) The surface Fermi arcs of the �+ with the surface
normal vector x̂. (c) The domain-wall Fermi arcs with the “yz” type
domain wall (see text).

with

P (j) = p0 (jx@x✓ + jy@y✓) + p1jz@z✓ , (10)

and

Q(j) =q1 (jx @z✓ cos ✓ + jy @z✓ sin ✓)+

q2 jz (@x ✓ cos ✓ + @y ✓ sin ✓) . (11)

The P (j) term, due to the lack of sine/cosine factors, respects
the approximate continuous U(1) rotation symmetry of ✓. We
understand therefore that it would arise even were single-ion
anisotropy and other symmetry breaking neglected. Since the
U(1)-symmetric forces are dominant in the Mn3Sn family, we
expect that quantitatively P (j) � Q(j), which violates this
symmetry.

Despite the intrinsic antiferromagnetic nature of the system,
the P (j) terms appear formally very similar to spin-transfer
torques. They could be understood in a hydrodynamic fashion
as describing “convection” of the spin texture with or against
the current flow (grouping them with the time-derivative re-
sults in a convective derivative). The Q(j) are less familiar,
but may be motivated by the notion that AHE induces trans-
verse forces, and indeed replacing with currents in the P (j)
forces by transverse ones according to the AHE would pro-
duce just these terms.

Using the equation of motion, we propose a realistic ap-
proach to control the domain-wall motions based on current.
Again we consider applying an external magnetic field along
the hard axis direction, say [100] (x), such that two domains
�

+ (✓=�2⇡/3) and �

� (✓=�⇡/3) are selected forming do-
main walls as shown in Fig. 5(a). The incident current flows
along the �x direction, normal to the domain wall. Accord-
ing to Eq. (10), the p0 jx @x✓ term tends to drive the domain
wall opposite to the direction of the current flow. [It probably

ARPES of domain wall 
seems challenging to say 

the least!

•Transport: enhanced intrinsic Hall 
conductivity within a DW?

•STM: signatures of bound states in LDOS?
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Local DOS at Energy=7

Local DOS at Energy=6.13

Vortex bound states, 
because it is out of 
the bulk continuum

The vortex modes 
start being merged 
into the bulk 
continuum

Quasi-bound states may appear. Origin?
“Chiral gauge field and axial anomaly in a Weyl semimetal”, Lui, Ye, Qi (2013): 

suggest a 1d chiral mode at a FM vortex?



Conclusions
• Soft antiferromagnet provides a rich platform to explore 

electronic physics of topological textures

• I presented an order parameter description and minimal 
electronic model for Mn3Sn and related materials

• For the future:

• Theory of electronic mechanisms of damping, current 
drive, etc.

• Strong coupling of order parameter to electrons: 
does chiral anomaly play a role?

• Effect of disorder on textures


