Interplay of real space and
momentum space
topological defects
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Anomalous Hall Effect
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Karplus + Luttinger (1954!) related this to
anomalous velocity due to Berry curvature




Anomalous velocity

Berry curvature B = Vi X Ag

Anomalous velocity Oyr = Vier — eE x By

(Karplus+Luttinger, Niu)

ja =e’E X /kf(ek)[)’k

For a full band, it becomes t

Gives AHE
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quantized Hall conductivity = c

e?/h



Weyl semimetal

For a crystal without an inversion center, the

e . energy separation 6E(k-+«x) in the neigborhood
Acetental Degenerscy in the Energy Btz o Cosuls - of 3 point k where contact of equivalent mani-
R folds occurs may be expected to be of the order

of k as k—0, for all directions of x.
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A two-component spinor in three
dimensions: “half” of a Dirac fermion.

Weyl fermions have a chirality and
must be massless

(Dirac semimetals also exist)



Accidental Degeneracy in the Energy Bands of Crystals
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For a crystal without an inversion center, the
energy separation 6E(k-+«x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of k as k—0, for all directions of «.

H=uv3 k x

A Weyl point is a “topological defect”
in momentum space: a monopole for

the Berry curvature
Vi -B=+2nq




Weyl semimetal
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Fermi arc = chiral edge state

Expts: non-centrosymmetric
materials TaAs, NazBi, TaP, WTe,,...



Weyl semimetal
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Fermi arc = chiral edge state
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T gy A Hall vector Q ~ “dipole

=S Figi + Grov moment” of Weyl points

- UN— — (when Er away from Weyl points add FS contributions)



Weyl semimetal
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Fermi arc = chiral edge state

Hall effect obviously breaks time-reversal symmetry

=>» need a magnetic material



Anomalous Hall Effect

It should be generically present in time-
reversal broken Weyl semimetals, with
sufficiently low symmetry

How about AHE in an
antiferromagnet?

Could be useful to provide switchable Hall
effect w/o large stray fields



Theoretical proposal
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| would like to discuss a related material family
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Mn3Sn family

large ordered

C ‘ . .
antiferromagnetic
moment
~ 2 Us /Mn
© R ® R 9 e tiny FM moment:
[1210] [0001]
002 MB/Mn

two kagomé layers of
Mn, related by inversion

Tn ~ 420K

Nagamiya et al, 1982



Energetics: triangle

' E=J(S1 S+ 8y S5+ S35
+D% - (Sy x Sy + Ss x S5+ S5 x Si)
—I(Z(m-&)2

J> D> K Hierarchy of interactions

® J: spins at 120° angles and M=0

® D: spins are “anti-chiral” in XY plane

® K: weak canting toward easy axes creates tiny
moment and fixes in-plane angle



Energetics: triangle

' E=J(S,-Ss+ 8 S3+S5-S1)
+Dz - (87 x So4+ Sy x S35+ 53 x Sq)
—KZ(m-Si)Q

J> D> K Hierarchy of interactions

01 =0+ o1 O is almost free
A

02 = £y + 0 + @2 ¢d1,2 are tiny canting
2T

by = 22 46— 61— 6 ngles



Energetics: triangle

' E=J(S,-Ss+ 8 S3+S5-S1)
+Dz - (87 x So4+ Sy x S35+ 53 x Sq)
—KZ(m-Si)Q

J> D> K Hierarchy of interactions
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Anomalous Hall effect
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Nakatsuji et al, 2015

comparable to
metallic FMs

switchable because

of small magnetic

moment and small
anisotropy



Anomalous Hall effect
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Weyi

ab initio finds Weyl points and surface Fermi arcs

a) Mn,Sn
0.4 .
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§ 0.2 =
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[ ' direction of AF order
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Weyi

ab initio finds Weyl points and surface Fermi arcs
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Weyl

ab initio finds Weyl points and surface Fermi arcs

a) Mn_ Sn
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Textures

Magnetic
order has Z4
structure

« R © . O [2110]
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| d|rect|or.1 o.f W = [ip|e2min/0
inward-pointing < >

spin 3 pairs of time-

reversed domains



Textures

= [1ple’” F ~ /d% {g(ve)Q — A cos 69}

sine-Gordon model with 6-fold anisotropy
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Textures

= [1ple’” F ~ /d% {g(ve)Q — A cos 69}

soliton = domain wall connecting
neighboring minima of cosine

2 - @ 1
o(z) = Stan"texp(a/)  E=oy[0

wide
DW:s



Textures

W = |[e’” F ~ /dgm {g(V@)2 — A\ cos 6(9}
sine-Gordon model with 6-fold anisotropy

* Minimal energy domain walls are not between
time-reversed states

e Magnetization, Hall vector, location of Weyl
points are all determined by domain choice, not
by field in general

e Stable Z, vortices exist



Dynamics

Symmetry-allowed hydrodynamic
equation of motion is overdamped

0.0 = pV?0 — 6Asin 60 — himsin 6 + n(r, t)

T

damping
(uniquely determines long-time,
low-frequency dynamics)



Domain formation
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Domain formation
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Could one use this?
| dea: apply tield in “hard

direction” below coercive value

A . .
two minimum energy

= >< domains with opposite
, component of Hall vector
field !

domains

normal to field



Could one use this?
| dea: apply tield in “hard

direction” below coercive value

Oxz > 0 Orpr <0

Y1 N ( \J_)/‘z

Ky>0 Ky<O0 B x
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Hall bar

(triangle wave of By(t))




Oz >0 Opr <0
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equipotentials from R

solution of Laplace’s
. ><> B
equation for a Hall bar

v

Vi

with two domains



Vi

One could imagine fixing the
transverse contacts and switching Hall

voltage by moving domain wall

a device?



Domain wall drive

Recall dynamical equation

0.0 = pV?0 — 6Asin 60 — him sin 6 + n(r, t)

= ()
T 56 nr7

® This form satisfies FDT and eventually leads
to equilibrium

® [t describes forces on DWs from applied
magnetic fields but not deviations from
electronic equilibrium



Domain wall drive
electronic disequilibrium additional forces

OF

Y00 = Y] +n(r,t) + f(3)

® Though similar to “spin transfer torque”, the
antiferromagnetic nature of the system makes
angular momentum counting suspect

® |nstead we rely on symmetry (for now!)

f(]) — YU - Vi U = (Cljxa Cljy; Csz)

4 Spin texture “convects” with velocity v
proportional to the current



Current drive

possible in
principle.
practice???




Electronic properties of
textures?

tight-binding

Of Siﬂg|e spin-dependent
. hoppi
orbital on Sn e

sites: a 4 band
(W R © . [2110]

model
[1210] %001]

Enables efficient study of domain walls, vortices
etc.
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TB bands
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"Weyl math”
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"Weyl math”

vacuum




"Weyl math”

vacuum




"Weyl math”
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expect twice the
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Solution

(b)
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surface domain wall

twice as many Fermi arcs as a surface



How to detect?

ARPES of domain wall

seems challenging to say
the least!

-06 -04 -0.2 0 02 04 06

® Transport: enhanced intrinsic Hall
conductivity within a DW?
®STM: signatures of bound states in LDOS?



Vortices?

0 50 100 150 200 250
4000.02 ' '
-

100

vortex

150

anti-vortex -

200 |

250




/¢ vortex

Quasi-bound states may appear. Origin?

“Chiral gauge field and axial anomaly in a Weyl semimetal”, Lui, Ye, Qi (2013):
suggest a 1d chiral mode at a FM vortex?



Conclusions

Soft antiferromagnet provides a rich platform to explore
electronic physics of topological textures

| presented an order parameter description and minimal
electronic model for Mn3Sn and related materials

For the future:

® Theory of electronic mechanisms of damping, current
drive, etc.

® Strong coupling of order parameter to electrons:
does chiral anomaly play a role?
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