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I decided to tell you about
Kitaev spin liquids, the Kagomé 
lattice, and Kapellasite
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Non-local excitations
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Kitaev Materials

JacKeli, 
Khaliullin

Showed that Kitaev interaction can be 
large in edge-sharing octahedra with 

large spin-orbit-coupling
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Figure 3 Observation of gapped 
continuum mode persisting 

above TN in α-RuCl3 
consistent with Majoranas 

(A. Banerjee et al) 

there is pretty strong evidence 
of substantial Kitaev exchange 

in quite a few materials
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Fig. 4: Comparison of the scattering with Kitaev model calculations: (a) The data at Ei=40 
meV, T=10 K integrated over range E= [4.5,7.5] meV and L = [-2.5,2.5] and symmetrized along 
the (H,H) direction. (b) The expected scattering from an isotropic AF Kitaev model at an energy 

E =1.2 KJ, taking into account the neutron polarization and the Ru3+ form factors. (c) Plot of the 
non-symmetrized data (points with error bars) along (H,H,0) at T =10 K, integrated over the 

same L and E intervals as (a) as well as ] = [-√3/10,√3/10].   The solid red line is the calculated 
scattering for an AF Kitaev model with R = 2 as discussed in the text.  The solid violet line 
represents the corresponding unmodified AF Kitaev model, and the green line the FM Kitaev 
model.  Some of the scattering at larger Q near (H,H) = ±(1,1) is due to phonons. 

c.f. S. Nagler
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Exact spin correlations

�z
i i =

In the soluble model:
• The spin creates two fluxes 
• Spectral weight is zero below the flux gap
• Correlations vanish beyond NNs

gap

a bit boring

But fortunately it is not generic

J. Knolle et al, 2014



Universality
• We know the gapless QSL is locally stable 

provided time-reversal is maintained, but 
is this the generic behavior?

• NN correlations?  Obviously extended 
by perturbations.

• Gap?  This is less obvious.  Is there a 
selection rule?



Answer

• Generically, there is not a gap in the 
structure factor

• Instead, power-law weight appears 
within two Dirac cones centered around 
k=0 and k=K

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space

S(q ⇠ 0, i!) ⇠
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of dimension 1
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! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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Why?
• Quasiparticles 

• A lattice operator can be expanded in a series of 
quasiparticle operators, which create exact eigenstates

�µ
i = Z icic

µ
i +A i✏µ⌫�ci+⌫̂ci+�̂ + · · ·

Z

A

Ja/K

1

0

above the gap below the gap

� ⇠ "em+ ""+ · · ·



Microscopic origin
• A simple view: perturbations to Kitaev mix virtual 

excitations into ground state, which can cancel the 
flux introduced by naive spin operator

• Surprisingly, this does not occur for the Heisenberg-
Kitaev model due to “dihedral” symmetry

X,Y, Z =
Y

i

�µ
i

every spin is odd under 2 
of these generators



Microscopic origin
• A simple view: perturbations to Kitaev mix virtual 

excitations into ground state, which can cancel the 
flux introduced by naive spin operator

Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit

Jeffrey G. Rau,1 Eric Kin-Ho Lee,1 and Hae-Young Kee1,2,*
1Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

2Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates,
originating from oxygen-mediated exchange through edge-shared octahedra. However, for the jeff ¼ 1=2
Mott insulator in these materials, exchange from direct d-orbital overlap is relevant, and it was proposed
that a Heisenberg term should be added to the Kitaev model. Here, we provide the generic nearest-neighbor
spin Hamiltonian when both oxygen-mediated and direct overlap are present, containing a bond-dependent
off-diagonal exchange in addition to Heisenberg and Kitaev terms. We analyze this complete model using a
combination of classical techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic
phases, 120° and incommensurate spiral order, as well as extended regions of zigzag and stripy order.
Possible applications to Na2IrO3 and Li2IrO3 are discussed.

DOI: 10.1103/PhysRevLett.112.077204 PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

The honeycomb family of iridium oxides [1–11] has
attracted a considerable amount of attention [12–17,17–20]
due to the possibility they lie near a realization of Kitaev’s
exactly solvable spin-1=2 honeycomb model [21]. This
model hosts a number of remarkable features: a Z2 spin
liquid with gapless Majorana fermions and (non-Abelian)
anyonic excitations under an applied magnetic field.
No symmetry principle excludes terms besides the
Kitaev, so additional interactions are generically expected.
From microscopic calculations of exchange mediated
through the edge-shared oxygen octahedra, it has been
proposed that a pure Kitaev model of jeff ¼ 1=2 spins was
the appropriate description [22]. It was further suggested
that direct overlap of the d orbitals generalizes this to a
Heisenberg-Kitaev (HK) model [13], linearly interpolating
between an isotropic Heisenberg model and Kitaev’s bond-
dependent exchange Hamiltonian. Extensive study of the
HK model [23–28] has shown a variety of fascinating
phenomena, including an extended spin liquid phase and
quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase
seen in Na2IrO3 [2,4,6] is difficult to stabilize within the
HK model; one must resort to additional t2g − eg exchange
paths [18] or further neighbor hoppings [14]. In light of
this puzzle, one may question whether the HK model
provides an adequate description of the honeycomb iridates
even at the nearest-neighbor level.
In this Letter, we show that when applied to the

honeycomb iridates the HK model is incomplete, explicitly
deriving the jeff ¼ 1=2 spin model from a multiorbital t2g
Hubbard-Kanamori Hamiltonian. Considering the most
idealized crystal structure, an additional spin-spin inter-
action beyond the HK model must be included: bond-
dependent symmetric off-diagonal exchange. The complete
spin Hamiltonian has the form

H ¼
X

hiji∈αβðγÞ
½JS⃗i · S⃗j þ KSγi S

γ
j þ ΓðSαi S

β
j þ Sβi S

α
j Þ&; (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and Γ denotes the symmetric off-diagonal exchange. On
each bond, we distinguish one spin direction γ, labeling the
bond αβðγÞwhere α and β are the two remaining directions.
Examining the phase diagram using a combination of
classical arguments and exact diagonalization, we find that
with the inclusion of Γ, new magnetic phases are stabilized
near the Kitaev limits: an incommensurate spiral (IS) and
120° order, in addition to extended regions of zigzag and
stripy order.

FIG. 1 (color online). Crystal structure of the honeycomb
iridates A2IrO3 with Ir4þ in black, O2− in white, and
A ¼ Na2þ;Li2þ in gray. For the Kitaev and bond-dependent
exchanges we have denoted the yzðxÞ bonds blue, the zxðyÞ
bonds green, and the xyðzÞ bonds red.
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Field theory
• Highbrow picture: effective field theory

• A lattice operator can be expanded at low energy in a 
series of “primary fields”.  The coefficient are 
constrained by symmetry and depend on microscopics

• Amusing similarity to 1d Heisenberg chain

Mµ
s(i) ⇠  † Nµ

s(i) ⇠  @ 

�µ
i ⇠ Mµ

s(i)(xi) + Re
h
Nµ

s(i)(xi)e
iK·xi

i



Answer

• Generically, there is not a gap in the 
structure factor

• Instead, power-law weight appears 
within two Dirac cones centered around 
k=0 and k=2K

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space

S(q ⇠ 0, i!) ⇠
Z

d!1d
2k1Tr[maG(i(! + !1), q + k1)

mbG(i!1,k1)],

S(q = 2q0 + k, i!)⇠
Z

d!1d
2k1Tr{[nµ,a · (2k1 � k)]

G(i(! � !1),k � k1)[n
µ,b · (2k1 � k)]GT

(i!1,k1)}.(10)

Since G(i!,k)

ab ⌘ h a b †i!,k =

⇣
1

�i!+v�·k

⌘ab

, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
! ,!1 ! !1

! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
Sµµ,ab

(q, i!) for q ⇠ 0 below

Sµµ,ab
(q, i!) ⇠

 
6!2

+ 3q2v2

p
q2v2

+ !2

!
(m1 + m2)

2

+

 
6q2v2

p
q2v2

+ !2

!
⇥
�ab0(m

2
1 + m2

2) + �ab2m1m2

⇤
,

where b0 denotes the complementary sublattice of b.
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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Kagomé

• Probably most-studied problem in frustrated magnetism

• Controversial!  Most agree on non-magnetic ground 
state, but...

• Many gapless singlets?

• Dimer solid state?

• Gapless Dirac QSL?

• Gapped Z2 QSL?

H = J
X

hiji

Si · Sj

2
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FIG. 1: (a) Quantum phase diagram of the spin-1/2 J1-J2-J3

kagomé Heisenberg model for 0.0  J2  0.25 and 0.0  J3 
0.5. The phases shown are: a time-reversal invariant quantum spin
liquid (QSL) phase, a coplanar magnetically ordered q = (0, 0) Néel
phase, a time-reversal broken chiral spin liquid (CSL) phase, a non-
coplanar magnetically and chiral ordered cuboc1 phase, and a va-
lence bond crystal (VBC) phase. The cuboc1 phase remains stable
for larger J3 beyond the range shown here (we have checked up to
J3  1.0). The dashed region indicates the uncertainty in locating
the phase boundary between the QSL and q = (0, 0) Néel phases.
The purple dashed line shows the line of classical degeneracy be-
tween the q = (0, 0) Néel and cuboc1 phases63. (b) The configu-
rations of spins (arrows indicate the direction of static moments) of
the cuboc1 state on the kagomé lattice. On each small triangle, the
spins are coplanar and sum to zero. In each hexagon, sets of three
consecutive spins are non-coplanar, as are the sets obtained by tak-
ing every second spin around the hexagon. This breaks time-reversal
symmetry in the sense that the scalar spin chirality is non-zero and
the wavefunction is intrinsically complex.

features. We indeed find the ordered cuboc1 (see Fig. 1(b) of
the spin configuration of cuboc1 state) and q = (0, 0) states
when J

3

or J
2

are large, roughly correlating with their classi-
cal positions. These classical states surround three more quan-
tum ones: the two aforementioned QSL states and a third state
tentatively identified as a Valence Bond Crystal (VBC) state,
which breaks translational but not spin-rotation or TRS sym-
metry. The relations between the spin liquid states and the
classical ones will be discussed below. We do not focus on the

(a) J2=0.2, J3=0.0, YC8, q=(0,0) state (b) J2=0.2, J3=0.3, YC8, CSL state

(c) J2=0.2, J3=0.5, XC8, cuboc1 state
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(d) J2=0.0, J3=0.1, XC8, VBC state

FIG. 2: (a)-(c) show the spin-spin correlations for different phases
on the YC8 and XC8 cylinders. The green site is the reference spin,
the blue and red colors denote positive and negative correlations, re-
spectively, of the site in question with the reference spin. The area
of circle is proportional to the magnitude of the spin correlation. The
large dashed hexagon in (b) shows the short-range spin correlations
in CSL phase. The arrows in (c) show the reference spin (the red
solid arrow) and the direction of other spins (the blue dashed arrow)
whose correlations are plotted in Fig. 3. Panel (d) plots the nearest-
neighbor bond energy on the XC8 cylinder in the VBC phase.

VBC phase here, but make a few remarks upon it in Sec. VI.
For this study, we use the DMRG with SU(2) spin rota-

tional symmetry64 on cylinders by keeping a number of U(1)-
equivalent states M as large as M

max

= 26000. Two cylinder
geometries, denoted XC and YC, are used, such that for the
XC (YC) cylinder, one of the three bond orientations is along
the x (y) axis, as shown in Fig. 2. We abbreviate specific
cylinders by XC2L

y

-L
x

and YC2L
y

-L
x

, where L
x

(L
y

) is
the number of unit cells in the x (y) direction. In general, we
obtain results with DMRG truncation error less than 1⇥10�6

and 1⇥10�5 for the cylinders with L
y

= 4 and 6, respectively.

II. q = (0, 0) NÉEL PHASE IN THE J1-J2 KHM

We begin by studying the q = (0, 0) Néel order in the small
J

2

region with J
3

= 0, and first investigate the spin correla-
tions on cylinders of varying widths. A gapped magnetically
disordered phase would be expected to show exponentially
decaying correlations. In a long-range magnetically ordered
phase, the correlations should remain non-zero in magnitude
at long distances in two dimensions. On a long cylinder of
even width, exponential decay is still expected even when the
two dimensional limit is ordered, but in that case the decay is
characterized by a correlation length ⇠ which grows linearly
with system width. Thus it is crucial to investigate the scaling
of the correlation length.

Fig. 3(a) shows the correlations between spins on the same
sublattice, hS

0

· S
d

i, on the XC8-24 cylinder. One sees that
the spin correlation length continues to grow with increasing
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FIG. 1. (Color online) (a) Crystal structure of kapellasite, viewed
along the c direction. (b) Kagome lattice formed by the Cu sites in
(a). Note that Jd and J4 exchange paths both correspond to a distance
of 6.3 Å, but while J4 points precisely along a nearest-neighbor bond,
Jd cuts diagonally across a Cu hexagon with nonmagnetic Zn in the
center.

the high-temperature series expansion method was refined
to fit both magnetic susceptibility and specific heat data,
yielding the set of parameters J1 = −12 K, J2 = −4 K,
Jd = 15.6 K.25 Thus we can proceed with some confi-
dence to analyze the Heisenberg Hamiltonian parameters of
herbertsmithite.

We use the structure of ZnCu3(OH)6Cl2 (herbertsmithite)
with the R 3̄m space group determined by Shores et al.,2 which
is shown in Fig. 2(a). A big difference with respect to the
polymorph kapellasite is that Zn is now between kagome layers
rather than in the centers of its hexagons. In Fig. 3 we present
the band structure and density of states. At the Fermi level,
we find Cu 3d states which hybridize with O 2p and Cl 3p
states. As expected, Zn plays no role at EF . Note that the Dirac-
point-like feature at K for an energy of 0.2 eV above the Fermi
level becomes an avoided crossing with a tiny gap in a fully
relativistic calculation. Based on our experience with azurite,
another complex quantum spin system containing Cu2+ ions,19

and the fact that kapellasite, the polymorph of herbertsmithite
briefly analyzed above, was shown to have longer ranged
competing interactions,21 we determine all exchange constants

TABLE I. Exchange coupling constants for ZnCu3(OH)6Cl2

(kapellasite) determined from total energies of five different spin
configurations in a 2 × 2 × 1 supercell (nn = nearest neighbor).

Ji (K)
Name dCu−Cu Type U = 6 eV

J1 3.15 Kagome nn −14.2
J2 5.45596 Kagome 2nd nn −0.7
J4 6.3 Kagome 3rd nn −0.3
Jd 6.3 Kagome 3rd nn 24.0

FIG. 2. (Color online) (a) Crystal structure of herbertsmithite
ZnCu3(OH)6Cl2, viewed along the c direction. (b) Kagome lattice
formed by the Cu sites in (a). Exchange paths between near-
est, next-nearest, and third-nearest neighbors within the kagome
lattice are shown. (c)–(e) Three interkagome layer exchange
pathways.

up to Cu-Cu distances of 8.6 Å. In order to allow for
determination of the diagonal coupling in the kagome lattice
J5, we double the unit cell along a and prepare a structure with
P m space group and 12 inequivalent Cu sites. As appropriate
for Cu, we employ a GGA + U exchange correlation functional
with U = 6 eV, J = 1 eV and atomic-limit double-counting
correction.19 Total energies for nine different spin configu-
rations allow us to calculate the eight exchange coupling
constants listed in Table II. The three couplings within the
kagome layer are shown in Fig. 2(b), and the geometry of
the three most important interlayer couplings is presented in
Figs. 2(c)–2(e). To avoid confusion, we number the coupling
constants Ji strictly according to ascending Cu-Cu distances.
While the absolute values of the exchange constants obtained
from these calculations are dependent on the choice of the U
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FIG. 3. (Color online) Band structure and density of states of
ZnCu3(OH)6Cl2 calculated with GGA exchange correlation func-
tional. High-symmetry points of the P 3̄m space group are M =
( 1

2 ,0,0), K = ( 1
3 , 1

3 ,0), and A = (0,0, 1
2 ) in units of the reciprocal

lattice vectors. DOS is given in states per electronvolt per unit cell
(containing three formula units).
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FIG. 1. (Color online) (a) The kagome magnetic pattern arises
from the regular arrangement of Cu2+ (S = 1

2 ) within a Cu/Zn
triangular lattice (Cu in blue, Zn in yellow). The main exchange
couplings J1, J2, and Jd are presented on the diagram. (b) Scanning
electron microscope image of kapellasite. The width of the image
is 20 µm. The flat shape of the micron scale grains evidences the
bidimensional character of kapellasite. (c) Octahedral coordination
environments of Cu and Zn. (d) The kagome layers are only weakly
coupled through Cl-OH hydrogen bonds. The 35Cl NMR probe is
dominantly coupled to three Cu. Zn atoms are not shown for clarity.

revealed a nondistorted kagome lattice, but showed a sizable
shortage of Cu compared to the ideal stoichiometry [9]. The
observed formula determined by ICP-AES chemical analysis is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2. Importantly, the local
octahedral environment of nominally Cu site is more distorted
than the Zn one, and has an extension along the Cl-Cl direction
[Fig. 1(c)]. The more symmetric bonding environment of the
Zn site, an octahedral site coordinated by six oxygens, leads
to strong preferential occupation by Zn2+, with 95% of the
Jahn-Teller active Cu2+ residing on the more distorted kagome
sites coordinated by four oxygens and two chlorines. The major
consequence of this nonstoichiometry is then the depletion of
the kagome lattice by nonmagnetic Zn2+ ions. The kagome
site occupancy p = 0.73 still remains above the percolation
threshold of the kagome lattice pc ≃ 0.65 [23,24].

In this paper, we investigate the magnetic properties and
the effects of structural disorder in kapellasite by means of
NMR, µSR, ESR, and specific-heat measurements. This paper
is organized as follows. In Sec. II, we evaluate by 35Cl-NMR
the effect of disorder within the kagome planes and report
evidence for local homogeneity of the magnetic properties,
proving the robustness of the underlying physics against
dilution. In Sec. III, we use ESR to estimate the symmetric
exchange anisotropy term in the Hamiltonian and confirm that
the choice of an isotropic Heisenberg Hamiltonian to describe
the magnetic properties of kapellasite is reasonable in a first
approach. While the main exchange interactions J1 and Jd

have already been derived from magnetic susceptibility and
specific-heat fits, we detail in Sec. IV an analysis of the specific
heat under magnetic fields which confirms that its low-T part is

magnetic and intrinsic, and thus provides a pertinent quantity
for extracting the exchange integrals. Finally, in Sec. V, we
investigate with NMR and µSR the spin fluctuations at low en-
ergy in the low-T frustrated antiferromagnetic phase induced
by these competing interactions on the S = 1

2 kagome lattice.

II. NMR DETERMINATION OF LOCAL STRUCTURE AND
SPIN SUSCEPTIBILITY

NMR experiments were performed on the most abundant
Cl isotope 35Cl (abundance of 75.8%) using an oriented
powder aligned along the hexagonal c axis of the kapellasite’s
rhombohedral structure. The high-quality orientation leads to
accurate refinements of the local structure and unambiguous
determination of the local spin susceptibility and the spin
dynamics.

35Cl is a quadrupolar nucleus (I = 3
2 ), hence, one has to

consider two sets of interactions resulting from the coupling
of the nucleus to its magnetic and charge environments. The
nuclear Hamiltonian can be written [25,26]

H = Hmag + Hquad (1)

with

Hquad ≫ Hmag.

As detailed in Appendix, this generally leads for a given
environment to a spectrum consisting of three lines. The central
line, corresponding to the − 1

2 ↔ 1
2 transition, and the satellite

lines, corresponding to − 3
2 ↔ − 1

2 and 1
2 ↔ 3

2 transitions,
which are sensitive to quadrupolar perturbations in second
and first order, respectively. More details about this nuclear
Hamiltonian can be found in the Appendix.

A. Local structure

In this section, we discuss the local structure of kapellasite
as deduced from 35Cl NMR experiments. For a perfect
coverage of the kagome lattice with Cu2+ ions, one would
expect a unique Cl environment, where each Cl nucleus
couples to the three adjacent Cu sites located at the corners of
a given triangle. In disagreement with this simple scheme, we
instead observe multiple lines, which are best resolved for the
central − 1

2 ↔ 1
2 transition line at T = 30 K taken for θ = 0◦,

where θ is the angle between the applied field and the c axis
(see Fig. 2 and Sec. II B). The multiple lines can be associated
with different Cl environments induced by the Cu/Zn mixing
disorder, namely, four different Cu/Zn configurations on a
probed triangle: Cu3 (1), Cu2Zn (2), CuZn2 (3), and Zn3 (4).
This site assignment also agrees with the high-T shifts which
scale with the number of Cu to which each Cl is coupled
[see Fig. 4(b)]. Since the spin-spin (T2) and spin-lattice (T1)
corrections were found to be negligible, the integrated intensity
of each line is directly proportional to the number of triangles
of each configuration which is found to perfectly match with
a random occupation of the Cu sites (Table I), with a filling
ratio p = 0.75(1). This agrees with the value of 0.73 extracted
from neutron diffraction refinements [9].

The impact of dilution on the local structure can be traced
by the satellite lines which positions depend to first order upon
the parameters which govern Hquad, namely, the quadrupolar

205103-2

PHYSICAL REVIEW B 90, 205103 (2014)

Spin dynamics and disorder effects in the S = 1
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We report 35Cl NMR, ESR, µSR, and specific-heat measurements on the S = 1
2 frustrated kagome magnet

kapellasite α-Cu3Zn(OH)6Cl2, where a gapless spin-liquid phase is stabilized by a set of competing exchange
interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbor exchange interaction
J1 and give an energy scale for the competing interactions |J | ∼ 10 K. The study of the temperature-dependent
ESR line shift reveals a moderate symmetric exchange anisotropy term D, with |D/J | ∼ 3%. These findings
validate a posteriori the use of the J1-J2-Jd Heisenberg model to describe the magnetic properties of kapellasite
[Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is
the severe random depletion of the magnetic kagome lattice by 27%, due to Cu/Zn site mixing, and specifically
address the effect of this disorder by 35Cl NMR, performed on an oriented polycrystalline sample. Surprisingly,
while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system
remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic
environments. Unconventional spin dynamics is further revealed by NMR and µSR in the low-T , correlated,
spin-liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the
presence of local low-energy modes.

DOI: 10.1103/PhysRevB.90.205103 PACS number(s): 75.10.Kt, 76.60.−k, 76.30.−v, 76.75.+i

I. INTRODUCTION

The S = 1
2 Heisenberg antiferromagnet model on a kagome

lattice has proven to be a fascinating and enduring problem
for more than 20 years. Currently, there seems to be a
broad consensus on the nature of the ground state, with
recent density matrix renormalization group (DMRG) studies
pointing to a resonating valence bond state that features
a singlet-triplet gap, although the proposed value of " =
0.13J [1,2] is still uncertain [3]. Contrastingly, fermionic
approaches which suggest a gapless ground state remain
debated [4–7]. Meanwhile, on the experimental side, new
spin-liquid candidates have been discovered in recent years
with S = 1

2 spins [8–11]. One of the most puzzling results,
in view of the DMRG results, is the absence of any gap
in the excitations of these experimental realizations. The
reasons for such a discrepancy, and whether it is related
to deviations from the ideal model, remain key open issues
in the field. Several research directions have been proposed
based on both theoretical developments and experiments
such as Dzyaloshinskii-Moriya anisotropic interaction and
next nearest-neighbors (NNN) exchange [12–15], which are
believed to drive the system towards a magnetically ordered
phase [16–18], or lattice distortions.

In this landscape of new spin-liquid candidates and drive
to understand the role of perturbations to the ideal nearest-
neighbor (NN) Heisenberg antiferromagnetic model, kapella-
site [9,19], a polymorph of herbertsmithite γ -Cu3Zn(OH)6Cl2,

has come as a surprise. Instead of being a mere variant of
herbertsmithite, it has been demonstrated to be a kagome
spin-liquid candidate of a new type. µSR and inelastic neutron
scattering (INS) experiments evidenced a gapless spin-liquid
state down to 20 mK, with unusual dynamical short-range
spin correlations. It is an experimental representative of a
previously uninvestigated class of models on the kagome
lattice with frustrated competing interactions, namely, ferro-
magnetic NN exchange J1 and second NN (along the edges)
J2, and antiferromagnetic NNN exchange (across the diagonal
of the hexagons) Jd , with J2 ≪ J1 ∼ Jd [20,21]. The values
of interactions extracted from a high-T series analysis of
macroscopic susceptibility and specific heat lead to an estimate
of J1 = −12 K, J2 = −4 K, and Jd = 15.6 K [20,22], which,
for classical spins, would stabilize a noncoplanar chiral state
of the cuboc2 type. In kapellasite, quantum fluctuations are
argued to destabilize the latter state and to lead to related
dynamical correlations, as detected by INS [20].

The magnetic structure of kapellasite, α-Cu3Zn(OH)6Cl2,
exhibits well-decoupled magnetic planes with a kagome
geometry formed from the depletion of a Cu2+ (S = 1

2 )
triangular lattice by diamagnetic Zn2+ [Fig. 1(a)]. These
planes are only weakly coupled along the third dimension (the
hexagonal c axis) via interlayer Cl. . .OH hydrogen bonding,
which guarantees highly bidimensional characteristics. This
essential feature causes the flat shape of micron scale grains
constituting our powder sample [Fig. 1(b)]. Neutron diffraction
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The recently discovered natural minerals Cu3ZnðOHÞ6Cl2 and Cu3MgðOHÞ6Cl2 are spin 1=2 systems

with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model

which includes couplings across the kagome hexagons beyond the original kagome model that are

intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong

impact of these couplings on the magnetic ground state. Our predictions could be compared to and

supplied with neutron scattering, thermodynamic data, and NMR data.
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For decades, low-dimensional spin systems have at-
tracted broad interest due to their intriguing, unusual
ground states (GS) such as helically ordered, spin Peierls,
spin-liquid, or resonating valence-bond GS’s [1–4]. These
unusual GS’s are typically driven by competing interac-
tions or geometric frustration. Two-dimensional (2D)
quantum spin systems are of particular interest because
the competition between quantum fluctuations and inter-
actions seems to be well balanced, and fine-tuning of this
competition may lead to zero-temperature transitions be-
tween semiclassical and quantum phases [5]. There are
several examples for strongly frustrated 2D quantum spin
materials, e.g., PbVO3 [6] or SrCu2ðBO3Þ2 [7], which can
be well described by a frustrated spin-1=2 Heisenberg
model. Such 2D quantum magnets are at present most
suitable objects for the comparison between theory and
experiment.

A simple but very challenging realization of a geomet-
rically frustrated quantum magnet is the spin-1=2
Heisenberg antiferromagnet (HAFM) on a kagome lattice.
The kagome HAFM attracts much interest due to its un-
usual classical and quantum GS’s and low-temperature
thermodynamics, see, e.g., Refs. [8–13], and also due to
potential applications of a possible quantum spin-liquid
state [14,15]. The recent discovery of a natural spin-1=2
kagome compound Cu3ZnðOHÞ6Cl2 (mineral herbertsmi-
thite [16]) and a subsequent synthesis of good-quality
samples [17] have spurred both experimental [18,19] and
theoretical [11–13] investigations of this frustrated mag-
netic system. The experimental results were quite unex-
pected: Curie-Weiss behavior with a rather large !, an
upturn in magnetic susceptibility at 75 K and no spin gap
down to 100 mK are far from being consistently described
by theory. The main obstacle for theoretical studies is the
structural Cu–Zn disorder within this compound [20],
which hampers the kagome physics, but encourages the
search for new materials. A very recent discovery of two
isostructural spin-1=2 kagome systems—the minerals ka-
pellasite Cu3ZnðOHÞ6Cl2 ([21], a metastable polymorph of

herbertsmithite), and haydeeite Cu3MgðOHÞ6Cl2 [22]—
widens the range of possible investigations. These systems
are of great potential interest because (i) no cations are
located between the planes, thus less coupling between
kagome layers is expected though the interlayer distance
is reduced by about 1 Å; (ii) the presence of two isostruc-
tural compounds should allow a systematic study of addi-
tional exchange couplings beyond the original kagome
model. We have performed a theoretical electronic struc-
ture study within density functional theory (DFT) and
estimated the exchange parameters of a corresponding
Heisenberg model. For this spin model, we have calculated
the classical GS, and for a finite lattice of N ¼ 36 sites, the
quantum spin-1=2 GS.
The DFT calculations were performed using a full-

potential nonorthogonal local-orbital scheme (FPLO ver-
sion 6.00-24) [23] within the local density approximation
(LDA). The Perdew and Wang parameterization of the
exchange-correlation potential was chosen for the scalar
relativistic calculations [24]. The default basis set was
used. The strong on-site correlations of the Cu
d-electrons were taken into account using the LSDAþU
method [25]. Well converged k-meshes of 124 points for
the conventional cell and 75 points for the supercell in the
irreducible wedge were used.
The hexagonal crystal structure of both minerals con-

sists of layers (Fig. 1) perpendicular to the c direction.
These layers are built by a kagome lattice of corner-sharing
CuO4 plaquettes, which are tilted with respect to this plane,
and ZnO6 (kapellasite) or MgO6 (haydeeite) octahedra
bridging the ‘‘ring’’ of six CuO4 plaquettes. The Cu–O–
Cu angle between two neighboring plaquettes is close to
105%, providing considerable ferromagnetic (FM) contri-
butions to the exchange due to the vicinity to 90%. The
kagome layers are separated by Cl atoms, which are
bonded to H atoms that stick out of the layers. The experi-
mentally defined H position for haydeeite [26] yields the
unusually short O–H distance of 0.78 Å; the H position in
kapellasite has not been reported. To account for this
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Inelastic neutron scattering (INS) measurements were
performed at 0:1< T < 300 K on the neutron time-of-
flight spectrometer IN5 at the ILL, using incident neutron
energies of 0.82, 3.27, and 20.45 meV. A 93% deuterated
powder sample of mass 3 g was held in an annular alu-
minium can and thermalized by helium exchange gas.
Standard data reduction [22] gave the neutron scattering
function SðQ;EÞ, shown in Fig. 1. The magnetic scattering,
which dominates the nuclear (phonon) scattering for the
energies and wave vectors studied in this work, is quasi-
elastic and essentially without dispersion.

The inelastic magnetic structure factor Smag
inel ðQÞ, ob-

tained by integrating SðQ;EÞ over the energy range 0:4<
E< 0:8 meV and correcting for the magnetic form factor
of the Cu2þ ions, is shown in Fig. 4(a). The measured
Smag
inel ðQÞ has initially only a weak temperature depen-

dence but appears to shift to slightly lower Q values for
T > 15 K. At even higher temperatures the structure
gradually disappears, but short-range correlations persist
up to at least 100 K. At low temperatures, the broad peak
near Q ¼ 0:5 !A%1 [see Fig. 4(a)] is centered at a much
smaller value than in other kagome systems. The observed
peak position corresponds neither to the " point (k ¼ 0)
in the Brillouin zone nor to the K point k ¼ ð1=3; 1=3Þ
of the

ffiffiffi
3

p
&

ffiffiffi
3

p
structure but is close to the M point,

k ¼ ð1=2; 0Þ. The M point on the kagome lattice corre-
sponds to a unique spin arrangement among all possible
regular spin states [23] of the Hamiltonian (1), called
cuboc2 (see inset of Fig. 1 and Ref. [24]), and is fully
consistent with the analysis of the HT spin susceptibility
and the classical phase diagram of the derived Hamiltonian

[see Fig. 2(b)]. These two independent measurements, in
the high- and low-temperature regimes, give strong support
that the short-range correlations of kapellasite are of non-
coplanar cuboc2 type.
To confirm the relevance of the cuboc2 state for quantum

spins, we have explored the impact of quantum fluctuations
on the classical system by employing a Schwinger-boson
mean-field approach (SBMF) [25] of the Hamiltonian (1),
using the values of J1 and Jd extracted from !dc and a spin
value of S ¼ 0:5. The powder-averaged structure factor
SðQÞ calculated at T ¼ 5 K for the same energy range as
in the experiment is displayed as a line in Fig. 4(a), with
only the overall scale factor adjusted. The position of the
first peak in SðQÞ at Q ¼ 0:5 !A%1 is in good agreement
with experiment, as is the weak intensity near Q ¼ 1 !A%1.
These two features are the main signatures of the cuboc2
phase. Classical simulations show that replacing Cu by Zn
on 27% of the kagome sites broaden the structure factor so
that the peaks at large Qs are partly blurred out while the
first peak in the powder-averaged SðQÞ near Q ¼ 0:5 !A%1

appears at slightly smaller Qs [26]. Adding quantum fluc-
tuations to this dilution effect could lead to even better
agreement with INS data.
The spin dynamics studied by INS displays a smooth

continuum of excitations up to at least 2 meV with no
discernible gap and no sign of damped spin waves, see
Fig. 1. We extract the energy dependence by integrating
SðQ;EÞ over the wave vector range 0:4<Q< 0:8 !A%1,
where the magnetic scattering is strong and the nuclear
scattering negligible, and divide by the temperature
factor 1% expð%E=kBTÞ to obtain the imaginary part of
the magnetic dynamic susceptibility, !00ðEÞ, shown in
Fig. 4(b). At high temperatures, !00ðEÞ is well described
by a quasielastic Lorentzian !00ðEÞ ¼ !0E"=ðE2 þ "2Þ
similar to the classical (S ¼ 5=2) KAFM deuteronium
jarosite [27]. For T > 5 K, the line width (inverse relaxa-
tion rate) increases as "ðTÞ / T1=3 with temperature while
the staggered static susceptibility decreases as !0ðTÞ /
T%2=3. At lower temperatures, below 5 K, the shape of
!00ðEÞ deviates from a single Lorentzian, which signals the
onset of quantum spin-liquid correlations. However, kapel-
lasite does not show the E%" behavior of pyrochlore slabs
[28] nor the E=T scaling of herbertsmithite [4,29]. This
gives further support for kapellasite not being close to a
quantum critical point. A full understanding of the spin-
liquid dynamics of kapellasite is not yet at hand and will be
discussed further below.
Further insight into the low-T state of kapellasite is

provided by our #SR experiments, which were performed
on a nonoriented powder sample in zero field (ZF) and
longitudinal applied field (LF) at the ISIS and PSI facilities
down to 20 mK. The evolution of the muon polarization is
plotted in Fig. 5(a), both in zero field and under H ¼
100 G from 4 K to 20 mK. The relaxation of the muon
polarization can be fitted in the whole T range to the sum of
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FIG. 4 (color online). (a) Wave-vector dependence of the
inelastic magnetic scattering Smag

inel ðQÞ integrated over the energy
range 0:4<E< 0:8 meV. Symbols are experimental data for
different temperatures (statistical errors are smaller than the
symbol size) and the line is the theoretical SBMF calculation
at T ¼ 5 K. (b) Energy dependence of the imaginary part of the
magnetic dynamic susceptibility !00ðEÞ integrated over the Q
range 0:4<Q< 0:8 !A%1 for different temperatures. The energy
resolution is 0.11 meV. The data show deviations from a quasi-
elastic Lorentzian (lines) at low temperatures.
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FIG. 1. (Color online) (a) The kagome magnetic pattern arises
from the regular arrangement of Cu2+ (S = 1

2 ) within a Cu/Zn
triangular lattice (Cu in blue, Zn in yellow). The main exchange
couplings J1, J2, and Jd are presented on the diagram. (b) Scanning
electron microscope image of kapellasite. The width of the image
is 20 µm. The flat shape of the micron scale grains evidences the
bidimensional character of kapellasite. (c) Octahedral coordination
environments of Cu and Zn. (d) The kagome layers are only weakly
coupled through Cl-OH hydrogen bonds. The 35Cl NMR probe is
dominantly coupled to three Cu. Zn atoms are not shown for clarity.

revealed a nondistorted kagome lattice, but showed a sizable
shortage of Cu compared to the ideal stoichiometry [9]. The
observed formula determined by ICP-AES chemical analysis is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2. Importantly, the local
octahedral environment of nominally Cu site is more distorted
than the Zn one, and has an extension along the Cl-Cl direction
[Fig. 1(c)]. The more symmetric bonding environment of the
Zn site, an octahedral site coordinated by six oxygens, leads
to strong preferential occupation by Zn2+, with 95% of the
Jahn-Teller active Cu2+ residing on the more distorted kagome
sites coordinated by four oxygens and two chlorines. The major
consequence of this nonstoichiometry is then the depletion of
the kagome lattice by nonmagnetic Zn2+ ions. The kagome
site occupancy p = 0.73 still remains above the percolation
threshold of the kagome lattice pc ≃ 0.65 [23,24].

In this paper, we investigate the magnetic properties and
the effects of structural disorder in kapellasite by means of
NMR, µSR, ESR, and specific-heat measurements. This paper
is organized as follows. In Sec. II, we evaluate by 35Cl-NMR
the effect of disorder within the kagome planes and report
evidence for local homogeneity of the magnetic properties,
proving the robustness of the underlying physics against
dilution. In Sec. III, we use ESR to estimate the symmetric
exchange anisotropy term in the Hamiltonian and confirm that
the choice of an isotropic Heisenberg Hamiltonian to describe
the magnetic properties of kapellasite is reasonable in a first
approach. While the main exchange interactions J1 and Jd

have already been derived from magnetic susceptibility and
specific-heat fits, we detail in Sec. IV an analysis of the specific
heat under magnetic fields which confirms that its low-T part is

magnetic and intrinsic, and thus provides a pertinent quantity
for extracting the exchange integrals. Finally, in Sec. V, we
investigate with NMR and µSR the spin fluctuations at low en-
ergy in the low-T frustrated antiferromagnetic phase induced
by these competing interactions on the S = 1

2 kagome lattice.

II. NMR DETERMINATION OF LOCAL STRUCTURE AND
SPIN SUSCEPTIBILITY

NMR experiments were performed on the most abundant
Cl isotope 35Cl (abundance of 75.8%) using an oriented
powder aligned along the hexagonal c axis of the kapellasite’s
rhombohedral structure. The high-quality orientation leads to
accurate refinements of the local structure and unambiguous
determination of the local spin susceptibility and the spin
dynamics.

35Cl is a quadrupolar nucleus (I = 3
2 ), hence, one has to

consider two sets of interactions resulting from the coupling
of the nucleus to its magnetic and charge environments. The
nuclear Hamiltonian can be written [25,26]

H = Hmag + Hquad (1)

with

Hquad ≫ Hmag.

As detailed in Appendix, this generally leads for a given
environment to a spectrum consisting of three lines. The central
line, corresponding to the − 1

2 ↔ 1
2 transition, and the satellite

lines, corresponding to − 3
2 ↔ − 1

2 and 1
2 ↔ 3

2 transitions,
which are sensitive to quadrupolar perturbations in second
and first order, respectively. More details about this nuclear
Hamiltonian can be found in the Appendix.

A. Local structure

In this section, we discuss the local structure of kapellasite
as deduced from 35Cl NMR experiments. For a perfect
coverage of the kagome lattice with Cu2+ ions, one would
expect a unique Cl environment, where each Cl nucleus
couples to the three adjacent Cu sites located at the corners of
a given triangle. In disagreement with this simple scheme, we
instead observe multiple lines, which are best resolved for the
central − 1

2 ↔ 1
2 transition line at T = 30 K taken for θ = 0◦,

where θ is the angle between the applied field and the c axis
(see Fig. 2 and Sec. II B). The multiple lines can be associated
with different Cl environments induced by the Cu/Zn mixing
disorder, namely, four different Cu/Zn configurations on a
probed triangle: Cu3 (1), Cu2Zn (2), CuZn2 (3), and Zn3 (4).
This site assignment also agrees with the high-T shifts which
scale with the number of Cu to which each Cl is coupled
[see Fig. 4(b)]. Since the spin-spin (T2) and spin-lattice (T1)
corrections were found to be negligible, the integrated intensity
of each line is directly proportional to the number of triangles
of each configuration which is found to perfectly match with
a random occupation of the Cu sites (Table I), with a filling
ratio p = 0.75(1). This agrees with the value of 0.73 extracted
from neutron diffraction refinements [9].

The impact of dilution on the local structure can be traced
by the satellite lines which positions depend to first order upon
the parameters which govern Hquad, namely, the quadrupolar
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FIG. 1. (Color online) (a) The kagome magnetic pattern arises
from the regular arrangement of Cu2+ (S = 1

2 ) within a Cu/Zn
triangular lattice (Cu in blue, Zn in yellow). The main exchange
couplings J1, J2, and Jd are presented on the diagram. (b) Scanning
electron microscope image of kapellasite. The width of the image
is 20 µm. The flat shape of the micron scale grains evidences the
bidimensional character of kapellasite. (c) Octahedral coordination
environments of Cu and Zn. (d) The kagome layers are only weakly
coupled through Cl-OH hydrogen bonds. The 35Cl NMR probe is
dominantly coupled to three Cu. Zn atoms are not shown for clarity.

revealed a nondistorted kagome lattice, but showed a sizable
shortage of Cu compared to the ideal stoichiometry [9]. The
observed formula determined by ICP-AES chemical analysis is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2. Importantly, the local
octahedral environment of nominally Cu site is more distorted
than the Zn one, and has an extension along the Cl-Cl direction
[Fig. 1(c)]. The more symmetric bonding environment of the
Zn site, an octahedral site coordinated by six oxygens, leads
to strong preferential occupation by Zn2+, with 95% of the
Jahn-Teller active Cu2+ residing on the more distorted kagome
sites coordinated by four oxygens and two chlorines. The major
consequence of this nonstoichiometry is then the depletion of
the kagome lattice by nonmagnetic Zn2+ ions. The kagome
site occupancy p = 0.73 still remains above the percolation
threshold of the kagome lattice pc ≃ 0.65 [23,24].

In this paper, we investigate the magnetic properties and
the effects of structural disorder in kapellasite by means of
NMR, µSR, ESR, and specific-heat measurements. This paper
is organized as follows. In Sec. II, we evaluate by 35Cl-NMR
the effect of disorder within the kagome planes and report
evidence for local homogeneity of the magnetic properties,
proving the robustness of the underlying physics against
dilution. In Sec. III, we use ESR to estimate the symmetric
exchange anisotropy term in the Hamiltonian and confirm that
the choice of an isotropic Heisenberg Hamiltonian to describe
the magnetic properties of kapellasite is reasonable in a first
approach. While the main exchange interactions J1 and Jd

have already been derived from magnetic susceptibility and
specific-heat fits, we detail in Sec. IV an analysis of the specific
heat under magnetic fields which confirms that its low-T part is

magnetic and intrinsic, and thus provides a pertinent quantity
for extracting the exchange integrals. Finally, in Sec. V, we
investigate with NMR and µSR the spin fluctuations at low en-
ergy in the low-T frustrated antiferromagnetic phase induced
by these competing interactions on the S = 1

2 kagome lattice.

II. NMR DETERMINATION OF LOCAL STRUCTURE AND
SPIN SUSCEPTIBILITY

NMR experiments were performed on the most abundant
Cl isotope 35Cl (abundance of 75.8%) using an oriented
powder aligned along the hexagonal c axis of the kapellasite’s
rhombohedral structure. The high-quality orientation leads to
accurate refinements of the local structure and unambiguous
determination of the local spin susceptibility and the spin
dynamics.

35Cl is a quadrupolar nucleus (I = 3
2 ), hence, one has to

consider two sets of interactions resulting from the coupling
of the nucleus to its magnetic and charge environments. The
nuclear Hamiltonian can be written [25,26]

H = Hmag + Hquad (1)

with

Hquad ≫ Hmag.

As detailed in Appendix, this generally leads for a given
environment to a spectrum consisting of three lines. The central
line, corresponding to the − 1

2 ↔ 1
2 transition, and the satellite

lines, corresponding to − 3
2 ↔ − 1

2 and 1
2 ↔ 3

2 transitions,
which are sensitive to quadrupolar perturbations in second
and first order, respectively. More details about this nuclear
Hamiltonian can be found in the Appendix.

A. Local structure

In this section, we discuss the local structure of kapellasite
as deduced from 35Cl NMR experiments. For a perfect
coverage of the kagome lattice with Cu2+ ions, one would
expect a unique Cl environment, where each Cl nucleus
couples to the three adjacent Cu sites located at the corners of
a given triangle. In disagreement with this simple scheme, we
instead observe multiple lines, which are best resolved for the
central − 1

2 ↔ 1
2 transition line at T = 30 K taken for θ = 0◦,

where θ is the angle between the applied field and the c axis
(see Fig. 2 and Sec. II B). The multiple lines can be associated
with different Cl environments induced by the Cu/Zn mixing
disorder, namely, four different Cu/Zn configurations on a
probed triangle: Cu3 (1), Cu2Zn (2), CuZn2 (3), and Zn3 (4).
This site assignment also agrees with the high-T shifts which
scale with the number of Cu to which each Cl is coupled
[see Fig. 4(b)]. Since the spin-spin (T2) and spin-lattice (T1)
corrections were found to be negligible, the integrated intensity
of each line is directly proportional to the number of triangles
of each configuration which is found to perfectly match with
a random occupation of the Cu sites (Table I), with a filling
ratio p = 0.75(1). This agrees with the value of 0.73 extracted
from neutron diffraction refinements [9].

The impact of dilution on the local structure can be traced
by the satellite lines which positions depend to first order upon
the parameters which govern Hquad, namely, the quadrupolar
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FIG. 7. (Color online) Comparison with experiments for J1 =
−12, J2 = −4, and Jd = 15.6 K. (a) Magnetic susceptibility with
A = 1.027, B = −10−4 K−1, and Tmin = 16.5 K [thick vertical line,
see Eq. (3)]. (b) Specific heat with D = 0.863 and e0 = −15.674 K.
The vertical line stands for Tmax [see Eq. (7)].

X and CV are found. This figure shows that two parameters,
say J1 and Jd , are defined with a larger uncertainty than
the rather well-defined ratio (J2 + Jd )/J1. The results are
summarized as

J1 = −12.0(8) in K,

Jd = 15.6(9) + 0.5(J1 + 12) in K, (8)
J2 + Jd

J1
= −0.97(1) − 0.03(J1 + 12).

Figure 7 shows the comparison of both XT and CV /T at
the center of the best domain, i.e., J1 = −12, Jd = 15.6, and
J2 = −4 K. The uncertainties on {J2,Jd} are well represented
by the red part of the cut at J1 = −12 K of Fig. 3(a) or 3(b),
visible by zooming it.

IV. CONCLUSION

We have fitted the spin contribution of the magnetic
susceptibility and specific heat experimental data with a spin-
1/2 J1-J2-Jd Heisenberg model on the kagome lattice (see
Fig. 1). In contradiction to the ab initio calculations of Janson
et al.,10 the analyses presented here and in Ref. 5 indicate
that the nearest-neighbor coupling is ferromagnetic. This is
at variance with herbertsmithite where the nearest-neighbor
interaction is strong and antiferromagnetic: A difference that
can be traced back to the Cu-µ3OH-Cu-bonding angle being
∼13◦ smaller in kapellasite.4,17 The isostructural compound
haydeeite Cu3Mg(OH)6Cl2, also has a ferromagnetic first-
neighbor interaction but is in the ferromagnetic domain.4,18

This is not the case for kapellasite where the J2 and
Jd exchange couplings compete to form a nonmagnetic
compound.

Our analysis show that the spin susceptibility is rela-
tively easy to reproduce and imposes strong correlations
of J1, J2, and Jd . All solutions stay in antiferromag-
netic domains of the classical phase diagram, but differ-
ent phases remain potential candidates.13 The main dis-
tinctive features of the specific heat data are the low-T
downturn in CV /T at about 2 K, characteristic of the
competitive exchange couplings and a clear T 2 depen-
dency excluding a ferromagnetic ground state. The peak
strongly constrains the parameters. The best domain for

both the magnetic susceptibility and the specific heat
is obtained for J1 ∼ −12 K, a small ferromagnetic J2 ∼
−4 K, and a large antiferromagnetic Jd ∼ 15.6 K [Eq. (8)].
These parameters predict the system to have cuboc2
correlations as found independently by neutron-scattering
experiments.5 These competitive exchange energies give a
ferromagnetic behavior of the magnetic susceptibility at
high temperatures and an antiferromagnetic one at low
temperatures.

However, the agreement between experiment and theory is
not yet as good as a quick glance at Fig. 7 would suggest.
There is about 14% of missing entropy in our description
[D = 0.863 in Eq. (7), whereas, the mass uncertainty is of only
about a few percent]. Considering it improbable to find this
missing entropy at ultralow temperatures below our present
measurements, we have to find it at intermediate temperatures
between 5 and 20 K where we have not succeeded to fit the
full specific heat variations with this spin model and phonon
contributions.

Disorder might be invoked to explain this difficulty.
In fact, the actual chemical formula of the synthesized
compound, determined with neutron-powder diffraction,4 is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2 with 27% Zn on the Cu
sites of the kagome lattice and 12% Cu on the hexagonal
Zn site. In the classical model, the concentration of Zn
on the kagome sites is not enough to kill the long-range
cuboc2 correlations, the threshold being at about 40%.19 The
pure quantum model is certainly softer, and the nature of
its ground state is still an open question. Heuristically, the
presence of vacancies or extra spins can induce a priori two
phenomena: either the manifestation of weakly coupled local
spin oscillations (the so-called “free spins”) or the freezing
of singlets. The “free impurity spins” would show up in
spin susceptibility in differences between the bulk SQUID
measurements of the magnetization and the local NMR data.
But no such phenomenon has been observed in this compound
in the range of the present experiments, and it would not
help in understanding the results of the fits. The second
possible (quantum) phenomena is a partial freezing of isolated
singlets along diagonal Jd bonds (recall that Jd is the largest
antiferromagnetic energy in this compound ∼15.6 K). These
singlets would not show up in the specific heat at temperatures
lower than a fraction of Jd , explaining the D constant ∼0.87
needed to fit the specific heat data at temperatures lower than
3 K. At higher temperatures, the liberation of these spins,
through thermal excitations of the local singlets, would explain
that the spin susceptibility measurements and fits above 17 K
give the correct amount of spins in the sample. A better
description of this phenomenon is out of the possibilities of
the present approach but could perhaps be explored with exact
diagonalizations.

In the present paper, DM interactions have been neglected.
In fact, the lack of an inversion center on the magnetic
bounds allows for DM interactions of spin-orbit origin.
In the cuprates, these couplings are usually estimated on
the order of 1/10 of the superexchange couplings, and
in herbertsmithite, they were measured on the order of
a few percent.20 In herbertsmithite, the influence of this
small coupling is emphasized by the presence of a nearby
quantum critical point.6,21,22 The situation in kapellasite is
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We present a method to build magnetic models of insulators based on high-temperature expansions by fitting
both the magnetic susceptibility and the low-temperature specific heat data. It is applied to the frustrated magnet
kapellasite [Cu3Zn(OH)6Cl2] with the J1-J2-Jd -Heisenberg model on the kagome lattice. Experimental data
are reproduced with a set of competing exchange energies centered at J1 = −12, J2 = −4, and Jd = 15.6 K,
where Jd is the third-neighbor exchange energy across the hexagon. Strong constraints between these exchange
energies are established. These values confirm the results of Fåk et al. [Phys. Rev. Lett. 109, 037208 (2012)]
regarding the location of kapellasite in the cuboc2 phase of the Heisenberg model. The quality and limits of this
modeling are discussed.

DOI: 10.1103/PhysRevB.87.155107 PACS number(s): 75.30.Et, 02.60.Ed, 71.70.Gm, 75.10.Kt

I. INTRODUCTION

There are different routes for building magnetic models of
insulators. The simplest and most reliable one is the modeling
of inelastic modes (spin waves) as measured by neutron
scattering, if any are present. In the case of a spin liquid,
the inelastic spectrum is a continuum and may have very few
distinct features when it is gapless. On the other hand, ab
initio calculations are notoriously difficult and strongly depend
on the nature of the approximations. The only tool left is a
modeling through fits of thermodynamic quantities to high-
temperature (HT) series. It is well known that the extraction
of the Curie-Weiss temperature from susceptibility data is
quite delicate and requires a large range of high-temperature
experimental data. In the case of frustrated magnets, this is
insufficient to provide clear insight in the low-temperature
physics.1,2 In fact, as we will show in this paper, the fit of the
susceptibility alone, even in a large range of temperatures,
does not settle the model and should be complemented
by a fit of the magnetic specific heat. This paper aims at
unveiling the different difficulties that can be encountered in
this process and can provide, with a given complex example,
the case of kapellasite, a general method to tackle this
problem.

Kapellasite3,4 is a polymorph of herbertsmithite and shares
its chemical formula Cu3Zn(OH)6Cl2. As herbertsmithite,
kapellasite fails to develop any order down to 20 mK, instead
displaying a continuum of excitations. It is, thus, an interesting
spin-liquid candidate.5 But contrary to herbertsmithite,6–9 the
high-temperature susceptibility of this recently discovered
metastable compound points to a ferromagnetic Curie-Weiss
field of about 10 K, whereas, the low-temperature behavior
does not show dominant ferromagnetic correlations down to
the lowest temperature: This information is the landmark of
competing interactions. This compound is, thus, a delicate
benchmark for any modeling, but it is also a very precious one
as we know, from neutron-scattering data, it has very well
defined and specific low-temperature short-range spin-spin
correlations. Therefore, the results of the high-temperature

modeling can be immediately questioned through the low-
temperature neutron data.5

While kapellasite has the same chemical formula as
herbertsmithite, the two are not isostructural. In kapellasite,
the coupling between the kagome planes occurs only via
very weak O-H-Cl hydrogen bonds.4 Kapellasite is, therefore,
remarkably two dimensional. A first theoretical description of
kapellasite, which is deep in the Mott phase, is the Heisenberg
Hamiltonian on the perfect kagome lattice,

H =
∑

⟨i,j⟩α

JαSi · Sj , (1)

where the exchange integrals Jα are defined in Fig. 1. Due to
the geometry of the exchange paths, J3 and Jd are different, and
Jd is expected to be larger than J3 by an order of magnitude.10

We will, thus, limit our analysis to the pure J1-J2-Jd model. We
further neglect both the effects of disorder and of an eventual
Dzyaloshinskii-Moriya (DM) interaction.

The spin-1/2 HT series of magnetic susceptibility X and
specific heat CV with the J1-J2-Jd parameters have been
computed up to order 9 and are given in the Supplemental
Material.11

The paper is organized as follows. In Sec. II, the magnetic
susceptibility X is fitted to experimental data providing strong
constraints on the coupling constants. In Sec. III, we show
how to use the low-temperature CV data to further refine
these constraints. Sections II and III are organized similarly.
A quality factor is defined to measure the quality of the
fits, whereas, technicalities are reported in the appendices,
and we finish with the physical conclusions to be kept in
mind when considering the properties of the model. In the
Conclusion, we discuss the consequences of neglecting, at
this stage, the chemical disorder in the kagome plane and
Dzyaloshinskii-Moriya interactions.

II. DESCRIBING X (T )

The dc susceptibility was measured in a commercial Quan-
tum Design MPMS-5S superconducting quantum-interference
device (SQUID) magnetometer. It does not diverge at low

155107-11098-0121/2013/87(15)/155107(8) ©2013 American Physical Society
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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FIG. 1: (Color online) Spin configuration in the ordered cuboc
states on kagomé lattice. The arrows indicate the direction of static
moments. (a) Cuboc1 state. In this state, the spins on triangles are
coplanar. In each hexagon, sets of three consecutive spins are non-
coplanar. The J1, J2, Jd bonds denote the Heisenberg interactions
of the Hamiltonian Eq. (1). (b) Cuboc2 state. In this state, the spins
on triangles are non-coplanar and those on hexagons are coplanar.
The insets indicate the static spin structure factors for the cuboc
states in momentum space with the peaks shown by red dots. The
smaller hexagon is the Brillouin zone of the kagomé lattice, and the
larger one is the extended Brillouin zone of the extended triangu-
lar lattice by adding a virtual site in the center of each hexagon on
kagomé lattice.

in the following we treat q as periodic, i.e. q = 3+1 ¥ 1. For
an isotropic system, the total number of sites is N = 3L2,
where L is both the number of sites in a chain (range of x)
and the number of chains of a single orientation (range of
y). In this chain notation, we can rewrite the interchain in-
teractions as

H 0 = J1
X

y,y0

X

q

°
Sq,y(°y0) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0)
¢

+ J2
X

y,y0

X

q

°
Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0) ·Sq+1,y0 (y+y

0)
¢
, (2)

where Sq,y(x) is the spin in chain coordinates.
At low energy, each chain, labeled by q and y, is described

by a Wess-Zumino-Witten (WZW) SU(2)1 theory, which has
primary fields Nq,y and "q,y, describing staggered magne-
tization (Néel) and staggered dimerization, respectively, as
well as chiral SU(2) currents Jq,y,R , Jq,y,L . The lattice spin

FIG. 2: (Color online) Quantum phase diagram of the spin-1/2
J1-J2-Jd kagomé model. The short-dashed (blue) lines denote
the classical phase boundary separating the cuboc1 and cuboc2
phases [37]. For the spin-1/2 Hamiltonian Eq. (1), the direct phase
transition between the two cuboc phases is replaced by the 24-fold
degenerate spontaneously dimerized VBC phase (see Sec. II B 2
for the analysis). The two-dimensional phase boundaries with
the cuboc states are shown by the dot-dashed (red) lines (see
Eq. (28)), which form the wedge-like shape of the 2d VBC phase.
The DMRG calculations on open cylinders with different geome-
tries (see Sec. III) find a wider dimerized region, as indicated by the
cyan-colored stripe centered around the compensated line J1 = J2.
The symmetries of the dimer order found in DMRG are fully con-
sistent with those of the two-dimensional VBC phase. The en-
hancement of the VBC order in the cylinder geometry is caused
by the strong finite size effects due to open boundary conditions.
| The red star represents parameters best describing kapellasite
[38].

operators decompose into

Sq,y(x) = (°1)xNq,y(x)+Mq,y(x), (3)

where M = JR + JL is the uniform magnetization. The fields
Nq,y(x) and Mq,y(x) can be treated as slowly-varying func-
tions of x. The primary fields have scaling dimension ¢ =
1/2, and represent the strongest correlations of Heisenberg
chains. The currents have larger scaling dimension ¢ = 1,
and so are less important within interactions than the pri-
mary fields. Hence the dominant interaction is generically
given by using Eq. (3) and keeping the Néel fields alone:

H 0
dom ª 2(J2 ° J1)

X

q

X

y,y0
(°1)yNq,y(°y0) ·Nq+1,y0 (y+y

0). (4)

We observe that J1 and J2 give identical contributions in this
leading approximation, only of opposite sign. This leads to a
vanishing along the compensated line J1 = J2. In the vicinity
of this line, otherwise sub-dominant terms will play a role.
At the lattice level, the compensation is already evident, as
we can rewrite Eq. (2) in this case as
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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FIG. 1. (Color online) (a) The kagome magnetic pattern arises
from the regular arrangement of Cu2+ (S = 1

2 ) within a Cu/Zn
triangular lattice (Cu in blue, Zn in yellow). The main exchange
couplings J1, J2, and Jd are presented on the diagram. (b) Scanning
electron microscope image of kapellasite. The width of the image
is 20 µm. The flat shape of the micron scale grains evidences the
bidimensional character of kapellasite. (c) Octahedral coordination
environments of Cu and Zn. (d) The kagome layers are only weakly
coupled through Cl-OH hydrogen bonds. The 35Cl NMR probe is
dominantly coupled to three Cu. Zn atoms are not shown for clarity.

revealed a nondistorted kagome lattice, but showed a sizable
shortage of Cu compared to the ideal stoichiometry [9]. The
observed formula determined by ICP-AES chemical analysis is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2. Importantly, the local
octahedral environment of nominally Cu site is more distorted
than the Zn one, and has an extension along the Cl-Cl direction
[Fig. 1(c)]. The more symmetric bonding environment of the
Zn site, an octahedral site coordinated by six oxygens, leads
to strong preferential occupation by Zn2+, with 95% of the
Jahn-Teller active Cu2+ residing on the more distorted kagome
sites coordinated by four oxygens and two chlorines. The major
consequence of this nonstoichiometry is then the depletion of
the kagome lattice by nonmagnetic Zn2+ ions. The kagome
site occupancy p = 0.73 still remains above the percolation
threshold of the kagome lattice pc ≃ 0.65 [23,24].

In this paper, we investigate the magnetic properties and
the effects of structural disorder in kapellasite by means of
NMR, µSR, ESR, and specific-heat measurements. This paper
is organized as follows. In Sec. II, we evaluate by 35Cl-NMR
the effect of disorder within the kagome planes and report
evidence for local homogeneity of the magnetic properties,
proving the robustness of the underlying physics against
dilution. In Sec. III, we use ESR to estimate the symmetric
exchange anisotropy term in the Hamiltonian and confirm that
the choice of an isotropic Heisenberg Hamiltonian to describe
the magnetic properties of kapellasite is reasonable in a first
approach. While the main exchange interactions J1 and Jd

have already been derived from magnetic susceptibility and
specific-heat fits, we detail in Sec. IV an analysis of the specific
heat under magnetic fields which confirms that its low-T part is

magnetic and intrinsic, and thus provides a pertinent quantity
for extracting the exchange integrals. Finally, in Sec. V, we
investigate with NMR and µSR the spin fluctuations at low en-
ergy in the low-T frustrated antiferromagnetic phase induced
by these competing interactions on the S = 1

2 kagome lattice.

II. NMR DETERMINATION OF LOCAL STRUCTURE AND
SPIN SUSCEPTIBILITY

NMR experiments were performed on the most abundant
Cl isotope 35Cl (abundance of 75.8%) using an oriented
powder aligned along the hexagonal c axis of the kapellasite’s
rhombohedral structure. The high-quality orientation leads to
accurate refinements of the local structure and unambiguous
determination of the local spin susceptibility and the spin
dynamics.

35Cl is a quadrupolar nucleus (I = 3
2 ), hence, one has to

consider two sets of interactions resulting from the coupling
of the nucleus to its magnetic and charge environments. The
nuclear Hamiltonian can be written [25,26]

H = Hmag + Hquad (1)

with

Hquad ≫ Hmag.

As detailed in Appendix, this generally leads for a given
environment to a spectrum consisting of three lines. The central
line, corresponding to the − 1

2 ↔ 1
2 transition, and the satellite

lines, corresponding to − 3
2 ↔ − 1

2 and 1
2 ↔ 3

2 transitions,
which are sensitive to quadrupolar perturbations in second
and first order, respectively. More details about this nuclear
Hamiltonian can be found in the Appendix.

A. Local structure

In this section, we discuss the local structure of kapellasite
as deduced from 35Cl NMR experiments. For a perfect
coverage of the kagome lattice with Cu2+ ions, one would
expect a unique Cl environment, where each Cl nucleus
couples to the three adjacent Cu sites located at the corners of
a given triangle. In disagreement with this simple scheme, we
instead observe multiple lines, which are best resolved for the
central − 1

2 ↔ 1
2 transition line at T = 30 K taken for θ = 0◦,

where θ is the angle between the applied field and the c axis
(see Fig. 2 and Sec. II B). The multiple lines can be associated
with different Cl environments induced by the Cu/Zn mixing
disorder, namely, four different Cu/Zn configurations on a
probed triangle: Cu3 (1), Cu2Zn (2), CuZn2 (3), and Zn3 (4).
This site assignment also agrees with the high-T shifts which
scale with the number of Cu to which each Cl is coupled
[see Fig. 4(b)]. Since the spin-spin (T2) and spin-lattice (T1)
corrections were found to be negligible, the integrated intensity
of each line is directly proportional to the number of triangles
of each configuration which is found to perfectly match with
a random occupation of the Cu sites (Table I), with a filling
ratio p = 0.75(1). This agrees with the value of 0.73 extracted
from neutron diffraction refinements [9].

The impact of dilution on the local structure can be traced
by the satellite lines which positions depend to first order upon
the parameters which govern Hquad, namely, the quadrupolar

205103-2
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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FIG. 1. (Color online) (a) The kagome magnetic pattern arises
from the regular arrangement of Cu2+ (S = 1

2 ) within a Cu/Zn
triangular lattice (Cu in blue, Zn in yellow). The main exchange
couplings J1, J2, and Jd are presented on the diagram. (b) Scanning
electron microscope image of kapellasite. The width of the image
is 20 µm. The flat shape of the micron scale grains evidences the
bidimensional character of kapellasite. (c) Octahedral coordination
environments of Cu and Zn. (d) The kagome layers are only weakly
coupled through Cl-OH hydrogen bonds. The 35Cl NMR probe is
dominantly coupled to three Cu. Zn atoms are not shown for clarity.

revealed a nondistorted kagome lattice, but showed a sizable
shortage of Cu compared to the ideal stoichiometry [9]. The
observed formula determined by ICP-AES chemical analysis is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2. Importantly, the local
octahedral environment of nominally Cu site is more distorted
than the Zn one, and has an extension along the Cl-Cl direction
[Fig. 1(c)]. The more symmetric bonding environment of the
Zn site, an octahedral site coordinated by six oxygens, leads
to strong preferential occupation by Zn2+, with 95% of the
Jahn-Teller active Cu2+ residing on the more distorted kagome
sites coordinated by four oxygens and two chlorines. The major
consequence of this nonstoichiometry is then the depletion of
the kagome lattice by nonmagnetic Zn2+ ions. The kagome
site occupancy p = 0.73 still remains above the percolation
threshold of the kagome lattice pc ≃ 0.65 [23,24].

In this paper, we investigate the magnetic properties and
the effects of structural disorder in kapellasite by means of
NMR, µSR, ESR, and specific-heat measurements. This paper
is organized as follows. In Sec. II, we evaluate by 35Cl-NMR
the effect of disorder within the kagome planes and report
evidence for local homogeneity of the magnetic properties,
proving the robustness of the underlying physics against
dilution. In Sec. III, we use ESR to estimate the symmetric
exchange anisotropy term in the Hamiltonian and confirm that
the choice of an isotropic Heisenberg Hamiltonian to describe
the magnetic properties of kapellasite is reasonable in a first
approach. While the main exchange interactions J1 and Jd

have already been derived from magnetic susceptibility and
specific-heat fits, we detail in Sec. IV an analysis of the specific
heat under magnetic fields which confirms that its low-T part is

magnetic and intrinsic, and thus provides a pertinent quantity
for extracting the exchange integrals. Finally, in Sec. V, we
investigate with NMR and µSR the spin fluctuations at low en-
ergy in the low-T frustrated antiferromagnetic phase induced
by these competing interactions on the S = 1

2 kagome lattice.

II. NMR DETERMINATION OF LOCAL STRUCTURE AND
SPIN SUSCEPTIBILITY

NMR experiments were performed on the most abundant
Cl isotope 35Cl (abundance of 75.8%) using an oriented
powder aligned along the hexagonal c axis of the kapellasite’s
rhombohedral structure. The high-quality orientation leads to
accurate refinements of the local structure and unambiguous
determination of the local spin susceptibility and the spin
dynamics.

35Cl is a quadrupolar nucleus (I = 3
2 ), hence, one has to

consider two sets of interactions resulting from the coupling
of the nucleus to its magnetic and charge environments. The
nuclear Hamiltonian can be written [25,26]

H = Hmag + Hquad (1)

with

Hquad ≫ Hmag.

As detailed in Appendix, this generally leads for a given
environment to a spectrum consisting of three lines. The central
line, corresponding to the − 1

2 ↔ 1
2 transition, and the satellite

lines, corresponding to − 3
2 ↔ − 1

2 and 1
2 ↔ 3

2 transitions,
which are sensitive to quadrupolar perturbations in second
and first order, respectively. More details about this nuclear
Hamiltonian can be found in the Appendix.

A. Local structure

In this section, we discuss the local structure of kapellasite
as deduced from 35Cl NMR experiments. For a perfect
coverage of the kagome lattice with Cu2+ ions, one would
expect a unique Cl environment, where each Cl nucleus
couples to the three adjacent Cu sites located at the corners of
a given triangle. In disagreement with this simple scheme, we
instead observe multiple lines, which are best resolved for the
central − 1

2 ↔ 1
2 transition line at T = 30 K taken for θ = 0◦,

where θ is the angle between the applied field and the c axis
(see Fig. 2 and Sec. II B). The multiple lines can be associated
with different Cl environments induced by the Cu/Zn mixing
disorder, namely, four different Cu/Zn configurations on a
probed triangle: Cu3 (1), Cu2Zn (2), CuZn2 (3), and Zn3 (4).
This site assignment also agrees with the high-T shifts which
scale with the number of Cu to which each Cl is coupled
[see Fig. 4(b)]. Since the spin-spin (T2) and spin-lattice (T1)
corrections were found to be negligible, the integrated intensity
of each line is directly proportional to the number of triangles
of each configuration which is found to perfectly match with
a random occupation of the Cu sites (Table I), with a filling
ratio p = 0.75(1). This agrees with the value of 0.73 extracted
from neutron diffraction refinements [9].

The impact of dilution on the local structure can be traced
by the satellite lines which positions depend to first order upon
the parameters which govern Hquad, namely, the quadrupolar
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.

To investigate whether the cuboc states have developed
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.
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sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y
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the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.

To investigate whether the cuboc states have developed

9

selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y
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the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y
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the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.

-4 -2 0 2 4
-4
-2
0
2
4

k 2

k1
0.0

0.50

1.0

1.5

-4
-2

k

(a) J1=0.0, J2=0.0, torus (b) J

FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.
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First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.
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selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.
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FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y
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the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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mean-field approximation[8, 9]. Assuming symmetry
breaking along z-direction,

V = −z(|g1|⟨Nz
m⟩Nz

m + |g4|⟨ϵm⟩ϵm) (16)

where we used ⟨Nz
m+1⟩ = ±⟨Nz

m⟩ for g1 negative (pos-
itive), and z = 2 is the number of neighboring chains.

Using (14) and bosonized form of H(0)
m (with gbs = 0),

rescaling euclidian time τ = y/v and introducing dimen-
sionless euclidian distance r = (x, y)/a, we arrive at the
following single-chain sine-Gordon action

Smf =

∫

d2r
(1

2
(∇rϕ)2−p sin

√
2πϕ−q cos

√
2πϕ

)

(17)

where dimensionless parameters

p ≡
zλ2|g1|

π2v
⟨sin

√
2πϕ⟩, q ≡

zλ2|g4|
π2v

⟨cos
√

2πϕ⟩ (18)

are effective staggered magnetization and dimerization
fields, respectively. These averages are found by differen-
tiating the free energy density F (p, q) = − lnZ/V, Z =
Tr(e−Smf) with respect to p and q, respectively. Clearly
from (17), the mean-field free energy can depend on p, q
only through κ =

√

p2 + q2. One can therefore take
F (p, q) = F (0, κ) and take advantage of exact results
for the standard sine-Gordon action[10]. In particular
dF/dκ = −c1κ1/3, where the numerical constant c1 fol-
lows from equations (10-14) of ref.[10]

c1 =
tan(π/6)

3

( 2Γ(1/6)√
πΓ(2/3)

)2(πΓ(3/4)

2Γ(1/4)

)4/3
. (19)

Thus our self-consistent equations

⟨sin
√

2πϕ⟩ =
c1p

κ1/3
, ⟨cos

√
2πϕ⟩ =

c1q

κ1/3
(20)

become simple algebraic ones. They predict two tran-
sitions, at g1 = ±|g4|, where both order parameters
(Nz

m, ϵm ∼ p, q) are non-zero. This makes them first-
order transitions – the first order nature being likely an
artifact of the mean-field approximation. These two tran-
sitions separate three phases, indicated in Fig. 2. For

|g1| > |g4|, p ̸= 0, q = 0, so the system is AFM or FM,
depending on the sign of g1. For |g1| < |g4|, one finds
the columnar dimer phase (rather than staggered since
g4 < 0). Note that obtained phase diagram (Fig. 2) is
in qualitative agreement with that of the ladder, which
provides a posteriori support of our mean-field treatment.
Moreover, it agrees very well with the phase diagram of
the lattice model (1) obtained in the exact diagonaliza-
tion study [12]. We should add that DC phase was not
observed in DMRG study [11], presumably due to strong
finite-size effects at small J⊥/J . Now, since exactly this
type of dimer ordering is known to take place in the spa-
tially isotropic J1 − J2 model [13], it is natural to con-
clude that the DC phase found here extends all way up
to J⊥ = J .

0.2 0.4 0.6 0.8 1 J!!J

0.1

0.2

0.3

0.4

0.5

0.6

J!!J

FM

AFM

DC

FIG. 2: Phase diagram of the two-dimensional model. Solid
(dashed) lines denote phase boundaries of the quantum (clas-
sical) model.
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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FIG. 1: (Color online) Spin configuration in the ordered cuboc
states on kagomé lattice. The arrows indicate the direction of static
moments. (a) Cuboc1 state. In this state, the spins on triangles are
coplanar. In each hexagon, sets of three consecutive spins are non-
coplanar. The J1, J2, Jd bonds denote the Heisenberg interactions
of the Hamiltonian Eq. (1). (b) Cuboc2 state. In this state, the spins
on triangles are non-coplanar and those on hexagons are coplanar.
The insets indicate the static spin structure factors for the cuboc
states in momentum space with the peaks shown by red dots. The
smaller hexagon is the Brillouin zone of the kagomé lattice, and the
larger one is the extended Brillouin zone of the extended triangu-
lar lattice by adding a virtual site in the center of each hexagon on
kagomé lattice.

in the following we treat q as periodic, i.e. q = 3+1 ¥ 1. For
an isotropic system, the total number of sites is N = 3L2,
where L is both the number of sites in a chain (range of x)
and the number of chains of a single orientation (range of
y). In this chain notation, we can rewrite the interchain in-
teractions as

H 0 = J1
X

y,y0

X

q

°
Sq,y(°y0) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0)
¢

+ J2
X

y,y0

X

q

°
Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0) ·Sq+1,y0 (y+y

0)
¢
, (2)

where Sq,y(x) is the spin in chain coordinates.
At low energy, each chain, labeled by q and y, is described

by a Wess-Zumino-Witten (WZW) SU(2)1 theory, which has
primary fields Nq,y and "q,y, describing staggered magne-
tization (Néel) and staggered dimerization, respectively, as
well as chiral SU(2) currents Jq,y,R , Jq,y,L . The lattice spin

FIG. 2: (Color online) Quantum phase diagram of the spin-1/2
J1-J2-Jd kagomé model. The short-dashed (blue) lines denote
the classical phase boundary separating the cuboc1 and cuboc2
phases [37]. For the spin-1/2 Hamiltonian Eq. (1), the direct phase
transition between the two cuboc phases is replaced by the 24-fold
degenerate spontaneously dimerized VBC phase (see Sec. II B 2
for the analysis). The two-dimensional phase boundaries with
the cuboc states are shown by the dot-dashed (red) lines (see
Eq. (28)), which form the wedge-like shape of the 2d VBC phase.
The DMRG calculations on open cylinders with different geome-
tries (see Sec. III) find a wider dimerized region, as indicated by the
cyan-colored stripe centered around the compensated line J1 = J2.
The symmetries of the dimer order found in DMRG are fully con-
sistent with those of the two-dimensional VBC phase. The en-
hancement of the VBC order in the cylinder geometry is caused
by the strong finite size effects due to open boundary conditions.
| The red star represents parameters best describing kapellasite
[38].

operators decompose into

Sq,y(x) = (°1)xNq,y(x)+Mq,y(x), (3)

where M = JR + JL is the uniform magnetization. The fields
Nq,y(x) and Mq,y(x) can be treated as slowly-varying func-
tions of x. The primary fields have scaling dimension ¢ =
1/2, and represent the strongest correlations of Heisenberg
chains. The currents have larger scaling dimension ¢ = 1,
and so are less important within interactions than the pri-
mary fields. Hence the dominant interaction is generically
given by using Eq. (3) and keeping the Néel fields alone:

H 0
dom ª 2(J2 ° J1)

X

q

X

y,y0
(°1)yNq,y(°y0) ·Nq+1,y0 (y+y

0). (4)

We observe that J1 and J2 give identical contributions in this
leading approximation, only of opposite sign. This leads to a
vanishing along the compensated line J1 = J2. In the vicinity
of this line, otherwise sub-dominant terms will play a role.
At the lattice level, the compensation is already evident, as
we can rewrite Eq. (2) in this case as

Nq,y, "q,y

�c
J2
1

Jd

X

y,y0,q

(�1)y"q,y"q+1,y0
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X
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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FIG. 1: (Color online) Spin configuration in the ordered cuboc
states on kagomé lattice. The arrows indicate the direction of static
moments. (a) Cuboc1 state. In this state, the spins on triangles are
coplanar. In each hexagon, sets of three consecutive spins are non-
coplanar. The J1, J2, Jd bonds denote the Heisenberg interactions
of the Hamiltonian Eq. (1). (b) Cuboc2 state. In this state, the spins
on triangles are non-coplanar and those on hexagons are coplanar.
The insets indicate the static spin structure factors for the cuboc
states in momentum space with the peaks shown by red dots. The
smaller hexagon is the Brillouin zone of the kagomé lattice, and the
larger one is the extended Brillouin zone of the extended triangu-
lar lattice by adding a virtual site in the center of each hexagon on
kagomé lattice.

in the following we treat q as periodic, i.e. q = 3+1 ¥ 1. For
an isotropic system, the total number of sites is N = 3L2,
where L is both the number of sites in a chain (range of x)
and the number of chains of a single orientation (range of
y). In this chain notation, we can rewrite the interchain in-
teractions as

H 0 = J1
X

y,y0

X

q

°
Sq,y(°y0) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0)
¢

+ J2
X

y,y0

X

q

°
Sq,y(°y0 °1) ·Sq+1,y0 (y+y

0 °1)

+ Sq,y(°y0) ·Sq+1,y0 (y+y

0)
¢
, (2)

where Sq,y(x) is the spin in chain coordinates.
At low energy, each chain, labeled by q and y, is described

by a Wess-Zumino-Witten (WZW) SU(2)1 theory, which has
primary fields Nq,y and "q,y, describing staggered magne-
tization (Néel) and staggered dimerization, respectively, as
well as chiral SU(2) currents Jq,y,R , Jq,y,L . The lattice spin

FIG. 2: (Color online) Quantum phase diagram of the spin-1/2
J1-J2-Jd kagomé model. The short-dashed (blue) lines denote
the classical phase boundary separating the cuboc1 and cuboc2
phases [37]. For the spin-1/2 Hamiltonian Eq. (1), the direct phase
transition between the two cuboc phases is replaced by the 24-fold
degenerate spontaneously dimerized VBC phase (see Sec. II B 2
for the analysis). The two-dimensional phase boundaries with
the cuboc states are shown by the dot-dashed (red) lines (see
Eq. (28)), which form the wedge-like shape of the 2d VBC phase.
The DMRG calculations on open cylinders with different geome-
tries (see Sec. III) find a wider dimerized region, as indicated by the
cyan-colored stripe centered around the compensated line J1 = J2.
The symmetries of the dimer order found in DMRG are fully con-
sistent with those of the two-dimensional VBC phase. The en-
hancement of the VBC order in the cylinder geometry is caused
by the strong finite size effects due to open boundary conditions.
| The red star represents parameters best describing kapellasite
[38].

operators decompose into

Sq,y(x) = (°1)xNq,y(x)+Mq,y(x), (3)

where M = JR + JL is the uniform magnetization. The fields
Nq,y(x) and Mq,y(x) can be treated as slowly-varying func-
tions of x. The primary fields have scaling dimension ¢ =
1/2, and represent the strongest correlations of Heisenberg
chains. The currents have larger scaling dimension ¢ = 1,
and so are less important within interactions than the pri-
mary fields. Hence the dominant interaction is generically
given by using Eq. (3) and keeping the Néel fields alone:

H 0
dom ª 2(J2 ° J1)

X

q

X

y,y0
(°1)yNq,y(°y0) ·Nq+1,y0 (y+y

0). (4)

We observe that J1 and J2 give identical contributions in this
leading approximation, only of opposite sign. This leads to a
vanishing along the compensated line J1 = J2. In the vicinity
of this line, otherwise sub-dominant terms will play a role.
At the lattice level, the compensation is already evident, as
we can rewrite Eq. (2) in this case as

2

(a) cuboc1

Jd

J1J2

FIG. 1: (Color online) Spin configuration in the ordered cuboc
states on kagomé lattice. The arrows indicate the direction of static
moments. (a) Cuboc1 state. In this state, the spins on triangles are
coplanar. In each hexagon, sets of three consecutive spins are non-
coplanar. The J1, J2, Jd bonds denote the Heisenberg interactions
of the Hamiltonian Eq. (1). (b) Cuboc2 state. In this state, the spins
on triangles are non-coplanar and those on hexagons are coplanar.
The insets indicate the static spin structure factors for the cuboc
states in momentum space with the peaks shown by red dots. The
smaller hexagon is the Brillouin zone of the kagomé lattice, and the
larger one is the extended Brillouin zone of the extended triangu-
lar lattice by adding a virtual site in the center of each hexagon on
kagomé lattice.

in the following we treat q as periodic, i.e. q = 3+1 ¥ 1. For
an isotropic system, the total number of sites is N = 3L2,
where L is both the number of sites in a chain (range of x)
and the number of chains of a single orientation (range of
y). In this chain notation, we can rewrite the interchain in-
teractions as
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¢
, (2)

where Sq,y(x) is the spin in chain coordinates.
At low energy, each chain, labeled by q and y, is described

by a Wess-Zumino-Witten (WZW) SU(2)1 theory, which has
primary fields Nq,y and "q,y, describing staggered magne-
tization (Néel) and staggered dimerization, respectively, as
well as chiral SU(2) currents Jq,y,R , Jq,y,L . The lattice spin

FIG. 2: (Color online) Quantum phase diagram of the spin-1/2
J1-J2-Jd kagomé model. The short-dashed (blue) lines denote
the classical phase boundary separating the cuboc1 and cuboc2
phases [37]. For the spin-1/2 Hamiltonian Eq. (1), the direct phase
transition between the two cuboc phases is replaced by the 24-fold
degenerate spontaneously dimerized VBC phase (see Sec. II B 2
for the analysis). The two-dimensional phase boundaries with
the cuboc states are shown by the dot-dashed (red) lines (see
Eq. (28)), which form the wedge-like shape of the 2d VBC phase.
The DMRG calculations on open cylinders with different geome-
tries (see Sec. III) find a wider dimerized region, as indicated by the
cyan-colored stripe centered around the compensated line J1 = J2.
The symmetries of the dimer order found in DMRG are fully con-
sistent with those of the two-dimensional VBC phase. The en-
hancement of the VBC order in the cylinder geometry is caused
by the strong finite size effects due to open boundary conditions.
| The red star represents parameters best describing kapellasite
[38].

operators decompose into

Sq,y(x) = (°1)xNq,y(x)+Mq,y(x), (3)

where M = JR + JL is the uniform magnetization. The fields
Nq,y(x) and Mq,y(x) can be treated as slowly-varying func-
tions of x. The primary fields have scaling dimension ¢ =
1/2, and represent the strongest correlations of Heisenberg
chains. The currents have larger scaling dimension ¢ = 1,
and so are less important within interactions than the pri-
mary fields. Hence the dominant interaction is generically
given by using Eq. (3) and keeping the Néel fields alone:

H 0
dom ª 2(J2 ° J1)

X

q

X

y,y0
(°1)yNq,y(°y0) ·Nq+1,y0 (y+y

0). (4)

We observe that J1 and J2 give identical contributions in this
leading approximation, only of opposite sign. This leads to a
vanishing along the compensated line J1 = J2. In the vicinity
of this line, otherwise sub-dominant terms will play a role.
At the lattice level, the compensation is already evident, as
we can rewrite Eq. (2) in this case as

cuboc states fall out naturally from 1d chains
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DMRG

9

selection of the inner and outer points agrees with the cuboc
phases as shown in the insets of Fig. 1. One further observes
in Figs. 8(c,d) that two of the six peaks have larger intensity,
which must be attributed to the rotational symmetry break-
ing induced by the cylindrical geometry. This physics is dis-
cussed in Sec. II C 2, and we return to it in Sec. III A 2. We
now discuss the DMRG results in detail for each phase re-
gion.

FIG. 8: (Color online) Magnetic structure factor S(k) in the ex-
tended Brillouin zone of the extended triangular lattice. The lat-
tice spacing in real space is the length of the J1 bond. (a) S(k) of
the decoupled Jd chains (J1 = J2 = 0.0) on the N = 3£12£12 torus.
(b)-(d) S(k) obtained on XC8-12 cylinder for different phases. The
blue dashed lines denote the momenta of the decoupled Jd chain
system. In the compensated regime (b), S(k) has the peaks at the
same momenta as the decoupled Jd chains as shown in (a), but is
much smoother. In the cuboc2 phase (c), the peak intensity of the
structure factor is at the six inner crossings, while in the cuboc1
phase (d), it is at the outer line crossings. Due to the anisotropy
inherent to the cylinder geometry, the magnitude of the six peaks
of S(k) are different.

A. Magnetically ordered region

First of all, we study the phase regions with the cuboc-like
magnetic structure factors, which are far from the compen-
sated line J1 = J2.

1. XC cylinders

Fig. 7(a) shows the geometry of the XC8-8 cylinder, and
the labeling for three types of chains, indicated by dashed
lines. Chains XC2,3 are seen to wind around the cylinder
while chains XC1 run parallel to the cylinder’s axis. In this

geometry all chains are long, i.e. proportional to the cylin-
der length, which helps to reduce finite-size effects. Fig. 9
shows the real space spin correlations for the XC8-36 cylin-
der. When the reference spin, which is shown by a green cir-
cle, belongs to chain XC1 (Figs. 9(a-b)), its correlations with
the spins from the same XC1 chain are staggered in an an-
tiferromagnetic Néel pattern. The same is true for the next-
nearest XC1 chains. Note, however, that correlations with
the spins from the nearest XC1 chains are essentially absent.
This is in full agreement with the [1+ (°1)y+y

0
] structure of

the correlations discussed below Eq. (16). This in particular
is indicative of the cuboc states, in which spins on succes-
sive chains are orthogonal – see Fig. 1. In addition, correla-
tions between spins on XC1 chain and those on the neigh-
boring sites belonging to XC2 chain and XC3 chain are seen
to change sign in going from the ∏ = 2(J1 ° J2) > 0 phase,
Fig. 9(a), to the ∏< 0 one, Fig. 9(b). This too is in agreement
with Eq. (16). In Figs. 9(c-d), we show the spin correlations
with the reference spins on XC3 chain, which exhibit similar
cuboc-like magnetic correlations.

(a) J1=-0.1, J2=-0.5, XC8-36, cuboc1 phase

(b) J1=-0.6, J2=-0.2, XC8-36, cuboc2 phase

(c) J1=-0.1, J2=-0.5, XC8-36, cuboc1 phase

(d) J1=-0.6, J2=-0.2, XC8-36, cuboc2 phase

FIG. 9: (Color online) Spin correlation functions in real space on
the XC8-36 cylinders. Panels (a) and (b) show the correlations with
a reference sites on the XC1 chain. Panels (c) and (d) show the cor-
relations with a reference site on the XC3 chain. The green site de-
notes the reference site in the middle of cylinder. The blue and red
circles denote the positive and negative correlations, respectively.
The magnitudes of correlation is proportional to the area of the
circle.

To investigate whether the cuboc states have developed

Form of correlations are just what 
is expected for cuboc states

But can see underlying 1d structure

No LRO in 1d, but correlations are 
clearly enhanced beyond chains10

long-range magnetic order, we study the distance depen-
dence of spin and chiral correlations. In Figs. 10(a-b), we
plot the spin correlations along the three Jd chains, as a
function of the distance along the chains, x, for two sys-
tems in the cuboc1 (a) and cuboc2 (b) regimes. For compar-
ison, the correlations for a single isolated Heisenberg chain
is also shown. We see that the spin correlations agree with
those of the Heisenberg chain at short distance x ∑ 2, but
are enhanced significantly above them (note the logarith-
mic scale) for larger x. This is a strong indication that the
system is long-range ordered in the 2d limit. Despite the
enhancement, the spin correlations due continue to decay,
albeit slowly, with distance, rather than saturation. We at-
tribute this to the inevitable 2d to 1d crossover which occurs
for a quasi-one-dimensional system. In fact, for any finite
width cylinder, exponential decay of the spin correlations
is expected at sufficiently large L, due to one-dimensional
fluctuations at low energy – see Sec. II C 1. The fact that the
decay is relatively weak is a strong indicator that the under-
lying two-dimensional state is long-range ordered, rather
than a gapless spin liquid behavior [37].

The cuboc states spontaneously break time-reversal sym-
metry and are characterized by finite scalar chirality h¬4i i 6=
0, where ¬4i = (Si ,1 £Si ,2) ·Si ,3 and Si ,m (m = 1,2,3) are the
three spins forming triangle 4i (i = 1,2,3,4) shown in the
inset of Fig. 10(d). The distance dependence of the chiral-
chiral correlations h¬4i¬4i i for each of the four kinds of
smallest triangles are plotted in Figs. 10(c-d).

For the cuboc1 state, we expect that the three-spin scalar
chiral order of the triangles ¢3,¢4 are non-zero and that for
¢1,¢2 vanish, which for the cuboc2 state, we expect only
¢1 has non-vanishing chirality [20, 35]. The chiral correla-
tions on the XC8 cylinder are presented in Figs. 10(c-d). In-
deed, panel (c) shows that the chiralities which vanish in the
cuboc1 ordered state are extremely small in the |J2| > |J1|
region, vanishing rapidly with distance and taking values
close to the precision of the calculation. The same holds for
the chiralities which are expected to vanish in the cuboc2
state for |J1| > |J2|, as shown in panel (d). In either case, the
chiralities which would be expected to be non-zero in the
ordered system still decay exponentially, but are substan-
tially larger. The relative magnitudes of the various chirali-
ties are indicative of cuboc states. For comparison, we show
the chiral correlations of triangle types 1,3, and 4 for decou-
pled Jd chains. One observes that this lies between than of
the strong and weak chiralities in the cuboc regimes, again
indicative of ordered behavior. However, the apparent ex-
ponential decay of the larger chiralities is not expected in
the fully quasi-2d limit – see Sec. II C 1. This indicates that
there are still finite size effects due to insufficiently large
Ly . We note that the relatively small magnitude of the chi-
rality correlations can be understood simply from the fact
that it is a three-spin operator, residing on three different
chains. Roughly speaking, therefore, the chirality correla-
tions should have a similar magnitude to the short-distance
correlations of the spins cubed. This is generally in accord
with the data.

0 4 8 12 16 20 24
x

XC1
XC2, XC3
spin chain

0 4 8 12 16 20 24
x

10-2

10-1

100

101
(-
1)

x <
S 0
S x
>

XC1
XC2, XC3
spin chain

(a) J1 = -0.1, J2 = -0.5, XC8-36 (b) J1 = -0.6, J2 = -0.2, XC8-36

FIG. 10: (Color online) Log-linear plot of the correlation functions
on the XC8-36 cylinder. Panels (a) and (b) give the spin correla-
tions along the different Jd chain directions as shown in Fig. 7(a).
Note that the spin correlations are enhanced above those of an iso-
lated Heisenberg chain, plotted for comparison. Panels (c) and
(d) give the chiral correlations of different types of triangles, ver-
sus the distance d along the x direction. The definition of the dif-
ferent triangles is shown in the inset of (d). The triangles which
would have non-zero chirality in the appropriate classical cuboc
state show chiral correlations enhanced above those of indepen-
dent Heisenberg chains, while those whose chirality vanishes in
the classical state have chiral correlations suppressed below the
decoupled chain value.

2. YC cylinders

In the YC geometry, two of the chains YC2 and YC3 wind-
ing around the cylinder while the chains of YC1 kind run
along the periodic y direction and are rather short, contain-
ing only 4 or 6 sites for YC8 and YC12 cylinders, respectively.

According to the analytical discussion in Sec. II C 2, the
short YC1 chains are strongly gapped which has the effect
of strongly suppressing chiral spin order and non-coplanar
spin correlations associated with it. In Fig. 11 we present
the spin correlations with a reference spin on a YC3 chain.
The similarity of the data with the predicted collinear spin
pattern in Fig. 5 is striking. The reference spin in Fig. 11 has
strong correlations with the spins on YC2 and YC3 chains,
but very weak correlations with those on the YC1 chains,
consistent with the proposed large gap formation. In addi-
tion, the observed ‘striped’ ordering – ferromagnetic order-
ing along horizontal/vertical directions in cuboc1/cuboc2
phases – is also fully consistent with simple arguments in
Sec. II C 2.
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]

060407-2

cuboc2 cuboc1

VBS
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i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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account for the smaller breadth of relaxation times (β ! 0.7)
observed in µSR. It is therefore necessary to invoke very
local modes that give distinct relaxations characteristics to the
various sites probed by NMR and which have a distribution
that is smoothed out through the long-range character of the
dipolar coupling between the muon probe and the fluctuating
Cu2+ spins.

One of the characteristic features of the low-T phase
of kapellasite is the well-localized intensity present in the
inelastic channel measured by inelastic neutron scattering
(INS) at the M point of the Brillouin zone. Both INS and
NMR relaxation probe the dynamical susceptibility χ ′′(q,ω),
yet NMR has no q resolution (except via the form factor) and
probes the ω → 0 region. In order to extract some information
from their comparison, we convert χ ′′(q,ω) measured by
INS in an equivalent 1/T1 by integrating χ ′′ in the ranges
q = [0.2,0.8] Å and ω = [0.4,0.8] meV. The values obtained
are scaled so as to match the high-T NMR and µSR ones.
The result is plotted on Fig. 8(c). We note that no dramatic
filtering effect is expected when applying the NMR form factor
|A(q)|2 of different sites, in agreement with the nonzero value
of the form factors at the cuboc2 q positions (Fig. 9). The
T evolution of T1 generated from the INS data is in good
agreement with the flat dependence observed by local probes
above 10 K, but fails to reproduce any distribution at lower T .
Therefore, we can conclude that at low T the NMR relaxation
is dominated by extra low-energy modes that are inaccessible
to INS. The low-energy fluctuation spectrum would then have
spectral weight relative not only to the cuboc2 mode, but also at
many different q positions, not filtered out by the form factors.

It is interesting to note that the cuboc2 phase is chiral
and consequently could allow for the observation of a chiral
phase transition at finite temperature, studied theoretically in
details in Refs. [56,57]. This transition is combined with a
proliferation of topological point defects (Z2 vortices), which
preferentially nucleate around the walls separating domains
with opposite chirality. Such excitations were previously sus-
pected to be at the origin of the unconventional spin dynamics
observed in the Heisenberg triangular antiferromagnet NaCrO2
[58]. Further work would be required to confirm that the
peculiar low-energy excitations observed in kapellasite are
indeed a signature of such an exotic transition.

VII. CONCLUSION

We reported the experimental investigation of the S = 1
2

Heisenberg kagome system kapellasite, where the two main
competing interactions J1 and Jd conspire to stabilize a spin-
liquid state at low T with spin correlations of the cuboc2 type.
35Cl NMR data have confirmed the previously established level
of dilution of 27% of the kagome lattice and further evidenced
its random character. Surprisingly, an identical local magnetic
susceptibility is probed at high temperature for each Cu2+ spin,
irrespective of its neighborhood. This is a strong evidence
of the homogeneity of the physics in the system, despite
the substantial level of disorder. Additional improvements
in our understanding of the disorder effect would require a
set of samples with various dilution, which remains at the
moment a real chemical challenge, due to the metastability
of the kapellasite phase. ESR showed that the Heisenberg

model is relevant to kapellasite and established a moderate
magnetic anisotropy of the symmetric anisotropic exchange
type of |D′cc/J1| = 3% while no conclusion can be given
about the Dzyaloshinskii-Moriya anisotropy. The intrinsic
character of the specific heat and of the magnetic susceptibility
are thoroughly assessed which gives a solid experimental
credit to the theoretical procedure applied by Bernu et al.
[22] to extract the exchange couplings of kapellasite from
high-temperature series fits. Unconventional spin dynamics is
consistently revealed by NMR, µSR, and inelastic neutron
scattering [20] upon cooling below T = 5 K, where spin
correlations effectively build up. The concomitant distribution
of relaxation observed in NMR is then due to the emergence
of extra low-energy modes, inaccessible to the neutron time
scale. It could either be a complex signature of the effect of
disorder, or of the specific excitation spectrum of the low-T
cuboc2 chiral phase.

In conclusion, while a ferromagnetic kagome lattice is not
frustrated, the existence of a further nearest-neighbor exchange
along the diagonal Jd in kapellasite, comparable to |J1|, re-
stores magnetic frustration via the competition of interactions.
The effect of frustration through the geometry of interactions
was only relatively recently explored on the kagome lattice
[55]. Up to now, most of the work on kagome magnets has
been dedicated to the pure antiferromagnet Heisenberg model
and the consideration of the effects of additional energy scales
is still in its infancy. Second-neighbor interactions have also
been argued to be necessary to explain the neutron data on
herbertsmithite single crystals [55]. Kapellasite gives an order
of magnitude for such interactions and more broadly opens the
way towards the experimental study of the phase diagram of the
J1-J2-Jd Heisenberg model which displays noncoplanar chiral
ordered phases and nonmagnetic regions. The discovery of its
spin-liquid state certainly deserves further attention in order to
reach a more comprehensive understanding, and provides new
exciting perspectives to explore quantum spin-liquid physics
on the kagome lattice.
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APPENDIX: 35Cl NMR MEASUREMENTS

1. Oriented sample and experiments

NMR experiments were performed on an oriented powder
of kapellasite, aligned along the c axis. This sample was
prepared by mixing together 200 mg of kapellasite powder,
prepared following Ref. [19], with a stycast epoxy. The
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(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space

S(q ⇠ 0, i!) ⇠
Z

d!1d
2k1Tr[maG(i(! + !1), q + k1)

mbG(i!1,k1)],

S(q = 2q0 + k, i!)⇠
Z

d!1d
2k1Tr{[nµ,a · (2k1 � k)]

G(i(! � !1),k � k1)[n
µ,b · (2k1 � k)]GT

(i!1,k1)}.(10)

Since G(i!,k)

ab ⌘ h a b †i!,k =

⇣
1

�i!+v�·k

⌘ab

, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
! ,!1 ! !1

! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
Sµµ,ab

(q, i!) for q ⇠ 0 below

Sµµ,ab
(q, i!) ⇠

 
6!2

+ 3q2v2

p
q2v2

+ !2

!
(m1 + m2)

2

+

 
6q2v2

p
q2v2
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2
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2) + �ab2m1m2
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where b0 denotes the complementary sublattice of b.
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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FIG. 1. (Color online) Quantum phase diagram of model (1) for
Jd ! 0 and J1,J2 " 0, with |J1| + |J2| + Jd = 1. Horizontal lines
are Jd = cst. The blue area represents parameters best describing
kapellasite [17], and the purple dot is the haydeeite kagome
ferromagnet [26]. Left inset: Classical phase diagram.

i.e., nontrivial quantum fluctuation is introduced in product
states of classical spin orders by first-, second-, and diagonal-
neighbor Jastrow factors. This class of wave functions is
known to give excellent variational estimates of the ground-
state energy for ordered quantum spin systems [27,28].
Because of the presence of ferromagnetic interactions on
first- and second-neighbor links, we also checked U(1) liquids
(see below) with spin-triplet fields on these links. However,
these spin-rotation broken phases are never stabilized against
the singlet liquids anywhere in our phase diagram [29].
Nevertheless, further studies of a possible competition of Néel
states with nematic liquids could be interesting [30–33].

QSL wave functions. Since the putative spin liquid in
kapellasite has gapless excitations, we choose to fractionalize
spin into fermionic spinon operators (fα) = (f↑,f↓) as 2Sa =
f †

ασ
αβ
a fβ , where σa are Pauli matrices. This spin representation

introduces a gauge redundancy ψ = (f↑,f
†
↓ )

T
#→ gψ , where

g is any SU(2) matrix. The state is then constructed via a
quadratic spinon Hamiltonian

H0 =
∑

ij

ξij f
†
iαfjα + %ij [fi↑fj↓ − fi↓fj↑] + H.c., (3)

and the microscopic wave function is its Gutzwiller-projected
ground state |QSL⟩ =

∏
j nj (2 − nj )|ψ0⟩ [34–36]. Note that,

for chiral spin liquids, the parameters ξij and %ij are complex
in general. At the level of the effective mean-field theory,
the SU(2) gauge redundancy is generically broken down
to U(1) or Z2. The theoretical challenge is to exhaustively
enumerate all possible liquid phases of the form (3) that follow
certain symmetry requirements. For this we use the projective
symmetry group (PSG) approach introduced by Wen [37], and
subsequently applied to the kagome lattice in Refs. [38,39]. In

this Rapid Communication, we significantly extend previous
results by systematically classifying time-reversal symmetry
broken fermionic QSL phases on the kagome lattice. We
are interested in phases with unbroken translation and spin-
rotation symmetries. The CPT theorem implies that breaking
of time reversal is accompanied by breaking of a reflection
symmetry. The kagome lattice has a π/3 rotation symmetry
R, and reflection symmetries σ and σ ′, related by Rσ = σ ′. We
therefore find three possible ways how TRS can break on this
lattice: (a) R is intact, and all reflection symmetries σ and σ ′ are
broken; (b) R and σ are broken, and σ ′ is intact; and (c) R and
σ ′ are broken, and σ is intact [40]. We label these three types of
chiral symmetry breaking by (τσ ,τR) = (1,0), (1,1), and (0,1),
respectively. The fourth case (τσ ,τR) = (0,0) corresponds to
“symmetric” spin liquids, i.e., unbroken TRS [38]. Classical
spin states with these symmetries are (a) octahedral state, (b)
cuboc-1, and (c) cuboc-2 [20].

The algebraic PSG is a projective representation of the
lattice symmetries in the SU(2) gauge group [37]. We find that
this representation is not affected by the type of TRS breaking
discussed above, and thus there remain 20 gauge inequivalent
classes of algebraic PSGs [38] in the chiral case. However,
at the level of mean fields {ξij ,%ij } compatible with the
symmetries, time reversal plays a crucial role and introduces
strong constraints on their possible values. Here, we focus on
phases where nonzero mean fields are allowed on at least two
out of first, second, and diagonal links of the kagome lattice.
Mean fields on all other links are set to zero. This choice is
motivated by the spin model (1) we want to study. Given these
restrictions, we find in total 25 distinct chiral mean-field phases
(3) with aZ2 gauge structure. We leave a detailed investigation
of these Z2 QSLs for future work. Instead, we focus on phases
where the mean-field gauge group is U(1). We find 15 such
U(1) QSL phases, listed in Table I. The first two columns in
this table specify the type of TRS breaking. Thus, phases No.
1 and No. 2 are symmetric liquids with unbroken TRS. Phases

TABLE I. QSL phases with U(1) gauge structure, including
symmetric (τσ ,τR = 0) and chiral (τσ = 1 or τR = 1) liquids [42].
ϵ2 = −1 indicates doubling of the spinon unit cell. βa = arg(ξa) are
the allowed hopping phases in (3); “×” means ξa = 0. (FS: Fermi
surface).

No. τσ τR ϵ2 gσ gR β1 β2 βd Description

1 0 0 + 12 12 0 0 0 Large FS
2 0 0 − 12 12 0 0 × Dirac spectrum [41]
3 1 1 + 12 12 0 π/2 × Triangular FS
4 1 1 + iσ2 iσ2 0 β2 0 Large FS
5 1 1 − 12 12 0 π/2 0 Dirac spectrum
6 1 1 − iσ2 iσ2 0 β2 × FS/Dirac
7 0 1 + 12 12 π/2 0 π/2 Triangular FS
8 0 1 + 12 iσ2 β1 0 βd Large FS
9 0 1 − 12 12 π/2 0 × Kagome FS
10 0 1 − 12 iσ2 β1 0 × FS/Dirac
11 0 1 − iσ2 12 β1 × 0 Dirac spectrum
12 1 0 + iσ2 12 β1 β2 0 Large FS
13 1 0 − iσ2 iσ2 π/2 β2 π/2 CSL A
14 1 0 − 12 iσ2 β1 π/2 βd CSL B
15 1 0 − iσ2 12 β1 β2 π/2 Fully gapped [74,75]
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