

K-theory: Kitaev, Kagome, and Kapellasite

Leon Balents, **K**ITP

HFM 2016, Taipei

K-theory

From Wikipedia, the free encyclopedia

In [mathematics](#), **K-theory** is, roughly speaking, the study of certain kinds of [invariants](#) of large [matrices](#).^[1] It originated as the study of a [ring](#) generated by [vector bundles](#) over a [topological space](#) or [scheme](#). In [algebraic topology](#), it is an [extraordinary cohomology theory](#) known as [topological K-theory](#). In algebra and [algebraic geometry](#), it is referred to as [algebraic K-theory](#). It is also a fundamental tool in the field of [operator algebras](#).

K-theory involves the construction of families of [K-functors](#) that map from topological spaces or schemes to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to [groups](#) in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include [Bott periodicity](#), the [Atiyah-Singer index theorem](#) and the [Adams operations](#).

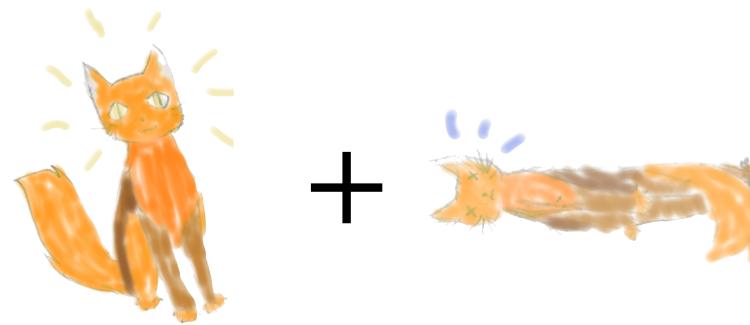
In [high energy physics](#), K-theory and in particular [twisted K-theory](#) have appeared in [Type II string theory](#) where it has been conjectured that they classify [D-branes](#), [Ramond-Ramond field strengths](#) and also certain [spinors](#) on [generalized complex manifolds](#). In [condensed matter physics](#) K-theory has been used to classify [topological insulators](#), [superconductors](#) and stable [Fermi surfaces](#). For more details, see [K-theory \(physics\)](#).

Quantum Spin Liquids

Quantum spin liquids are ground states that possess long-distance entanglement and are robust to perturbations

Quantum Spin Liquids

Quantum spin liquids are ground states that possess long-distance entanglement and are robust to perturbations



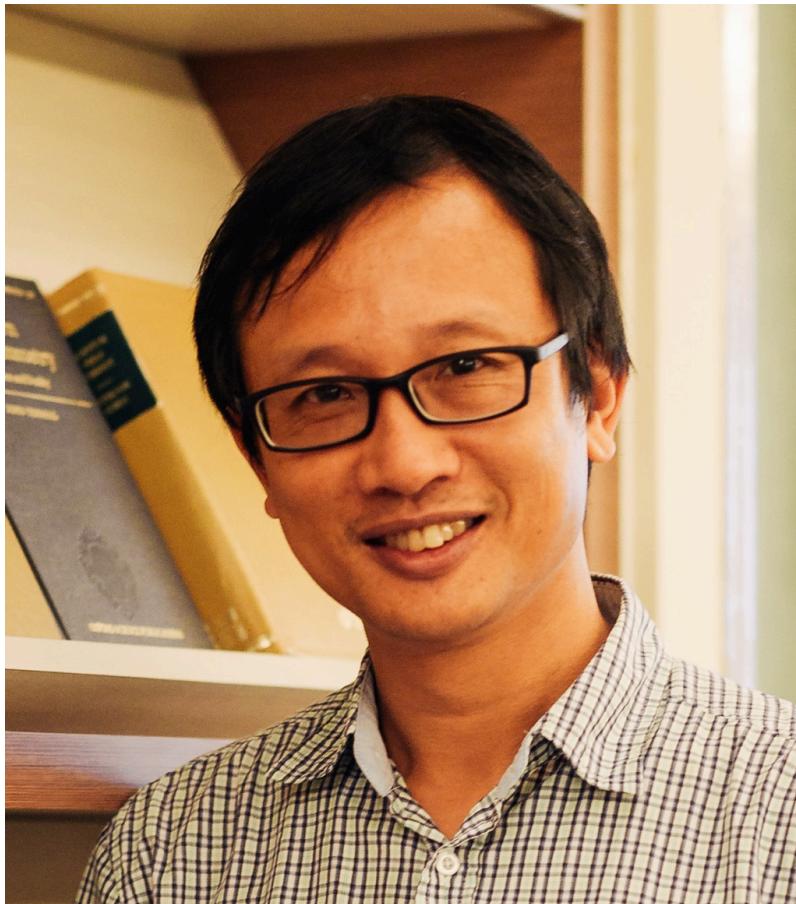
© Megan Balents

Schrödingers Katze

I decided to tell you about
Kitaev spin liquids, the **Kagomé**
lattice, and **Kapellasite**

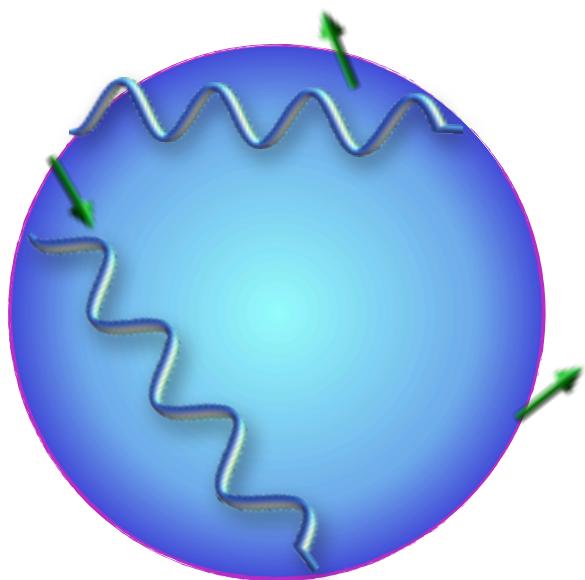
Arrived by Hello Kitty Jet

Arrived by Hello Kitty Jet
Gracious host Ying-Jer Kao



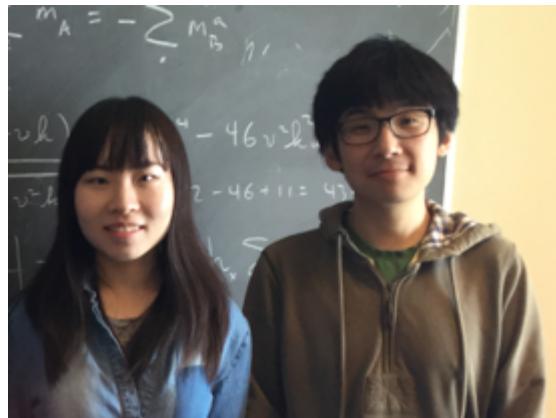
Arrived by Hello Kitty Jet
Gracious host Ying-Jer Kao
To enjoy some Kinmen Kaoliang

Arrived by Hello Kitty Jet
Gracious host Ying-Jer Kao
To enjoy some Kinmen Kaoliang
Discuss **k**quantum spin liquids



Arrived by Hello Kitty Jet
Gracious host Ying-Jer Kao
To enjoy some Kinmen Kaoliang
Discuss kwantum spin liquids
This can't be a koincidence

Kollaboratoren



Xueyang Yi-Zhuang
Song You

Shoushu
Gong

Donna
Sheng

Oleg
StaryKh

c.f. Motome, Nasu, Nagler

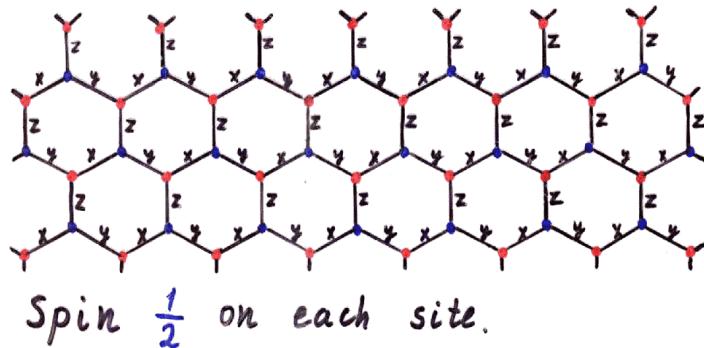
Kitaev model

Kitaev's honeycomb model

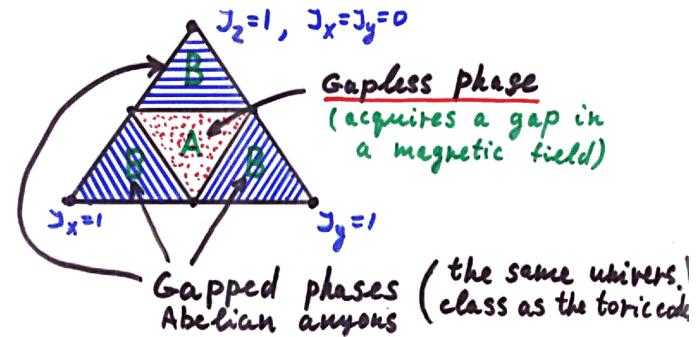
$$H = \sum_{i,\mu} K_\mu \sigma_i^\mu \sigma_{i+\mu}^\mu$$

KITP, 2003

1. The model

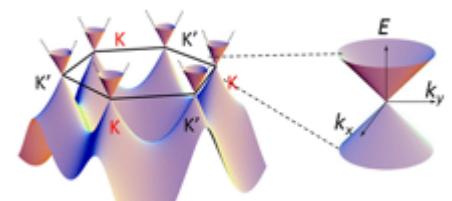


Phase diagram



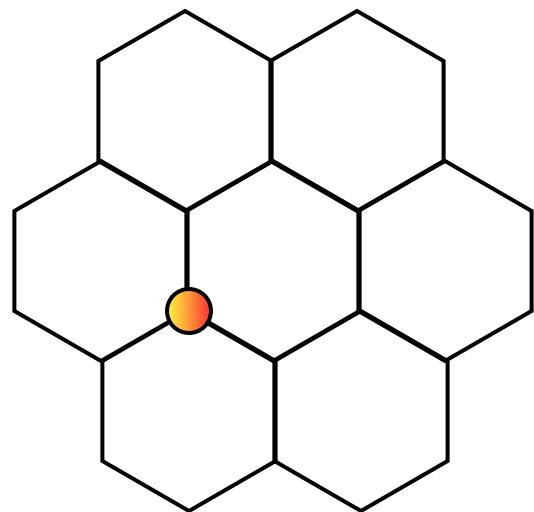
exact parton construction $\sigma_i^\mu = i c_i c_i^\mu$ $c_i c_i^x c_i^y c_i^z = 1$

physical Majoranas $H_m = K \sum_{\langle ij \rangle} i c_i c_j$

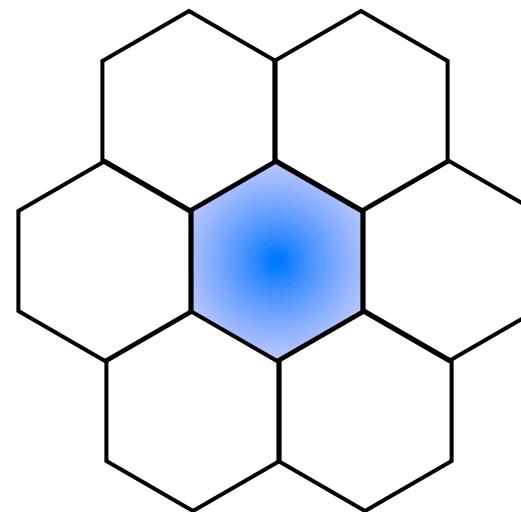


note: \mathbf{K} , \mathbf{K}' points!

Non-local excitations



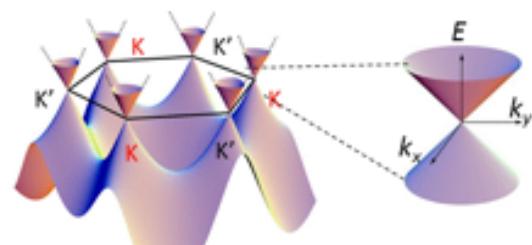
Majorana \mathcal{E}



Flux e, m

flux states

gapped

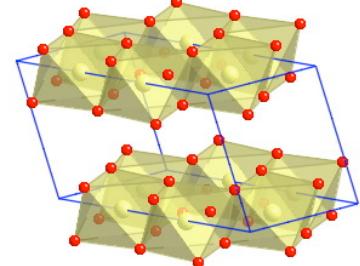


gapless Dirac

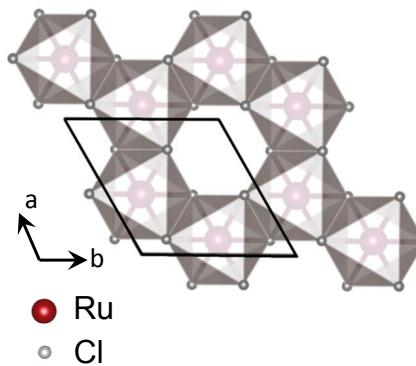
Kitaev Materials

JacKeli,
Khaliullin

Showed that Kitaev interaction can be large in edge-sharing octahedra with large spin-orbit-coupling

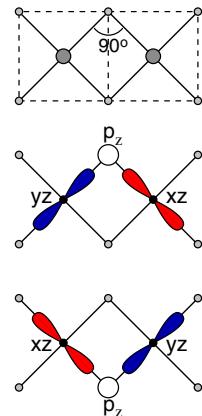


Na_2IrO_3 ,
 (α, β, γ) -
 Li_2IrO_3

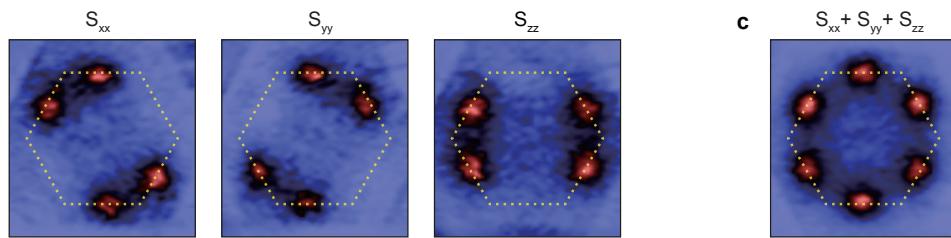


$\alpha\text{-RuCl}_3$

Honeycomb and hyper-honeycomb structures

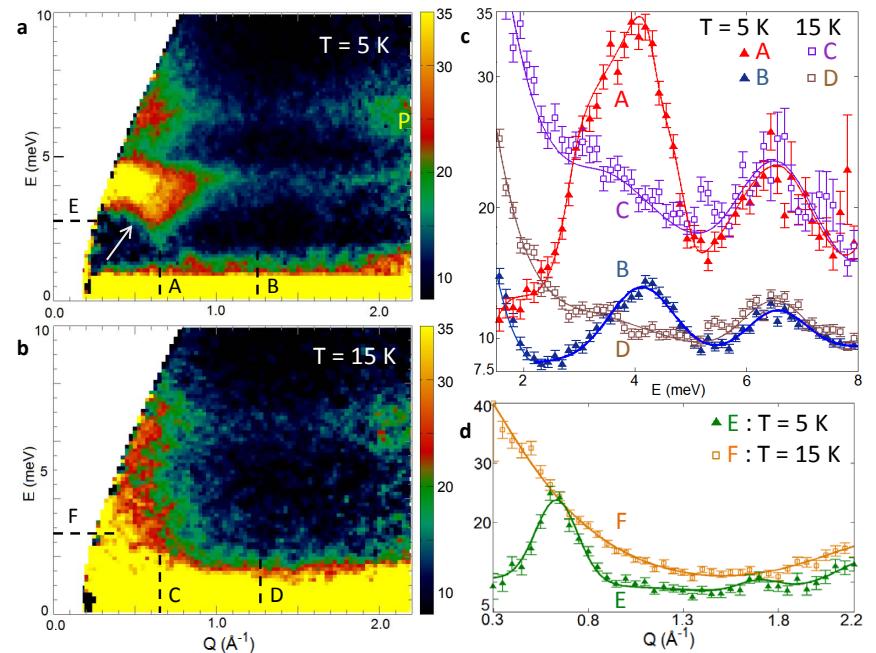


Kitaev Materials



direct evidence for
direction-dependent
anisotropic exchange
from diffuse magnetic
x-ray scattering in
 Na_2IrO_3 (BJ Kim group)

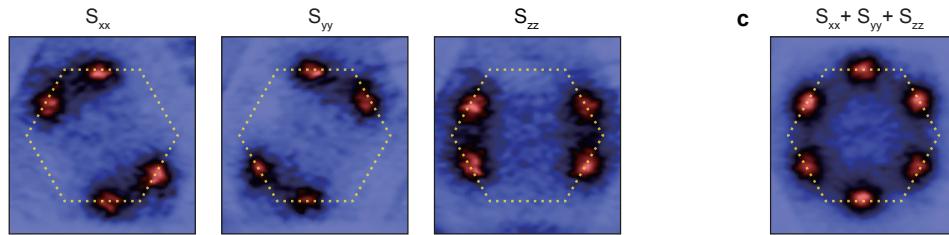
there is pretty strong evidence
of substantial Kitaev exchange
in quite a few materials



Observation of gapped
continuum mode persisting
above T_N in $\alpha\text{-RuCl}_3$
consistent with Majoranas
(A. Banerjee *et al*)

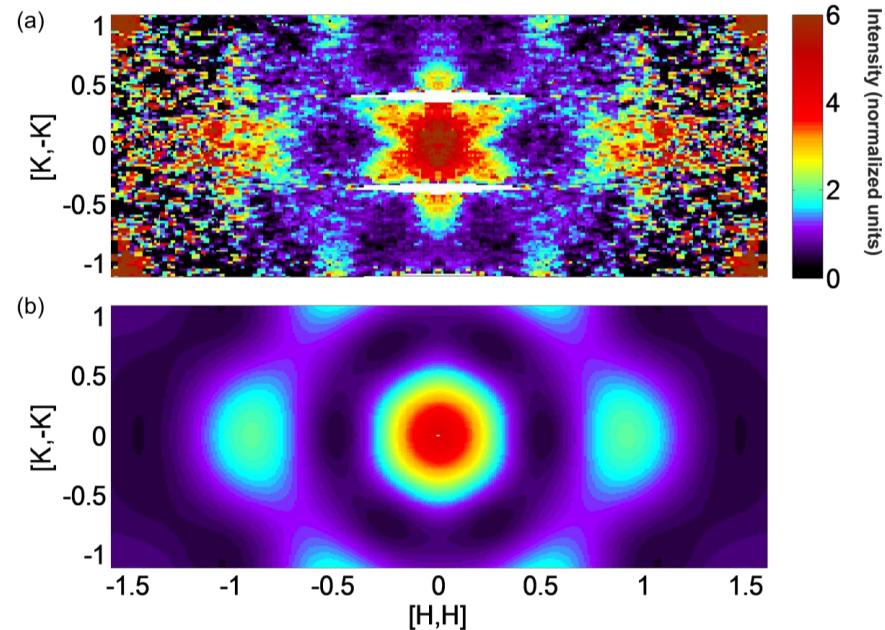
c.f. S. Nagler

Kitaev Materials



direct evidence for
direction-dependent
anisotropic exchange
from diffuse magnetic
x-ray scattering in
 Na_2IrO_3 (BJ Kim group)

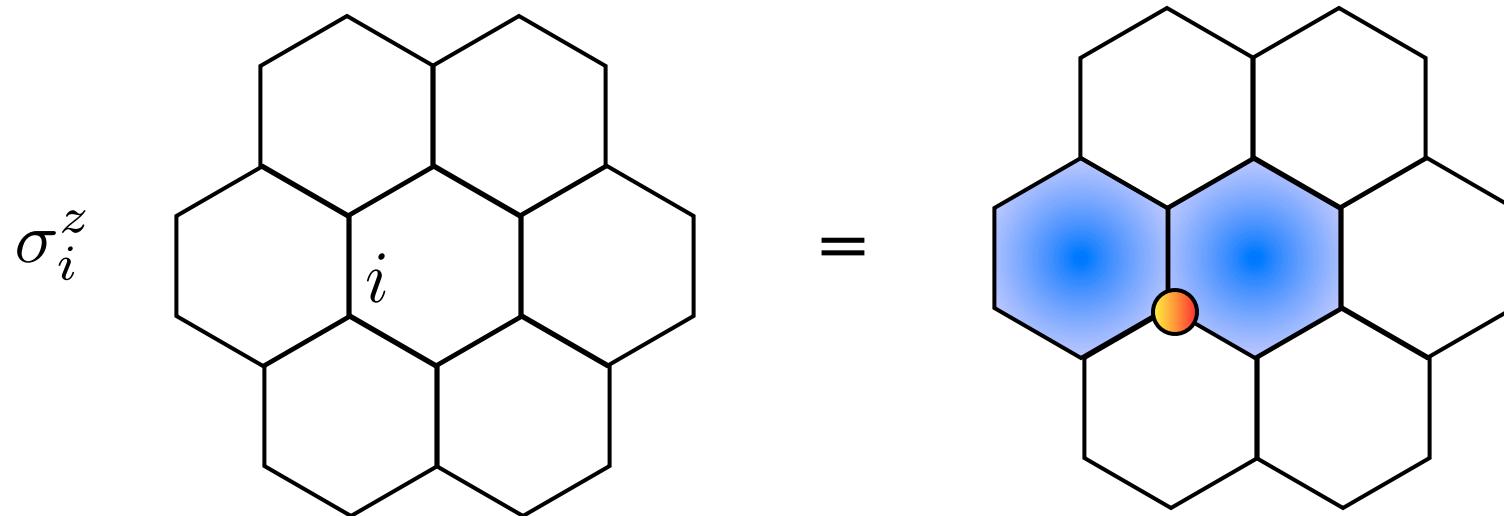
there is pretty strong evidence
of substantial Kitaev exchange
in quite a few materials



single-crystal data in $\alpha\text{-RuCl}_3$
compared to Kitaev's soluble
model (A. Banerjee *et al*)

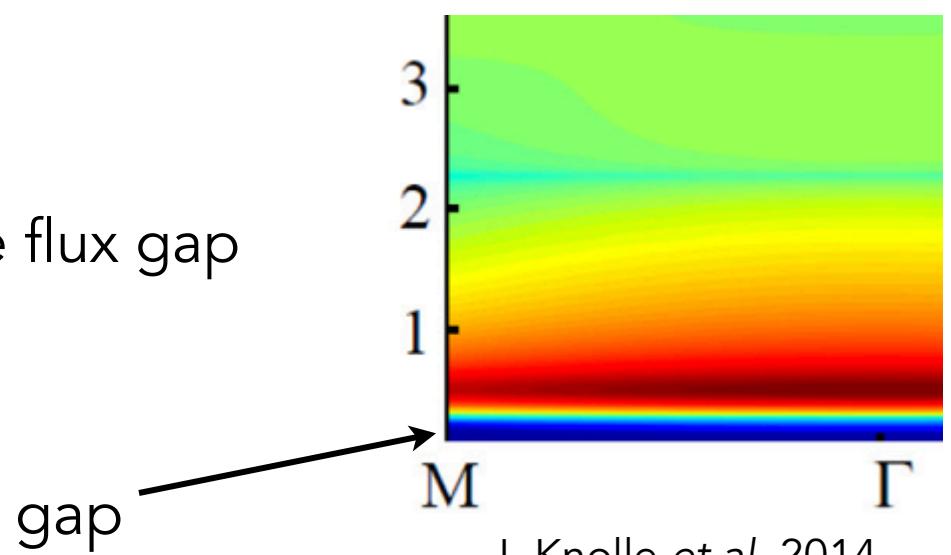
c.f. S. Nagler

Exact spin correlations

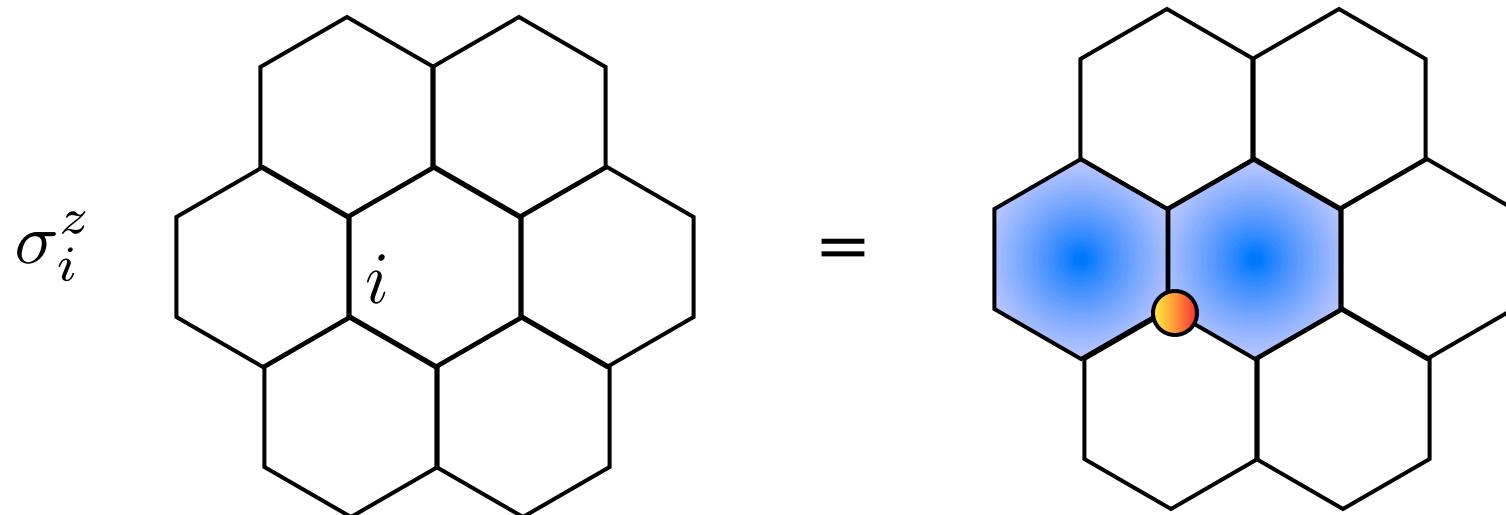


In the soluble model:

- The spin creates two fluxes
- Spectral weight is zero below the flux gap
- Correlations vanish beyond NNs



Exact spin correlations



In the soluble model:

- The spin creates two fluxes
- Spectra
- Correlat

But fortunately it is not generic

a bit boring

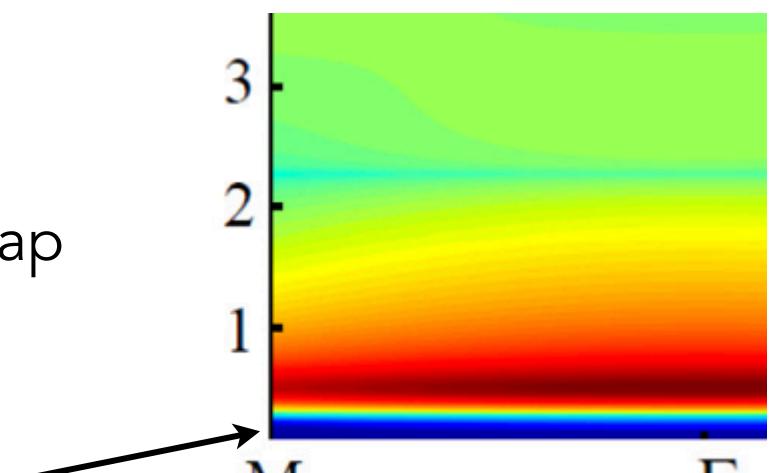
gap

gap

M

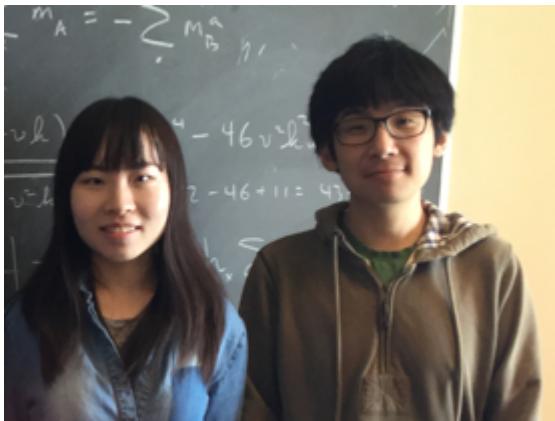
Γ

J. Knolle et al, 2014



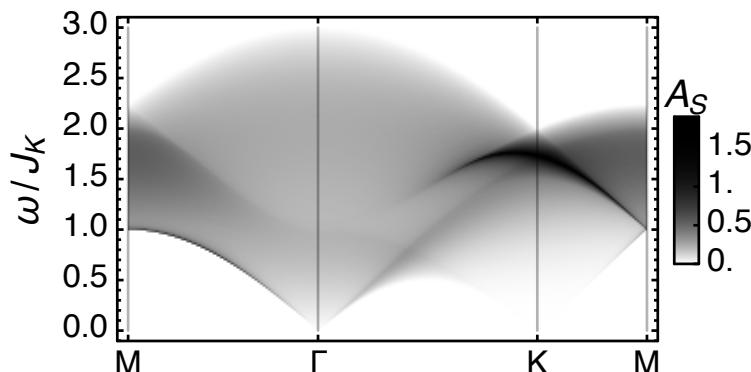
Universality

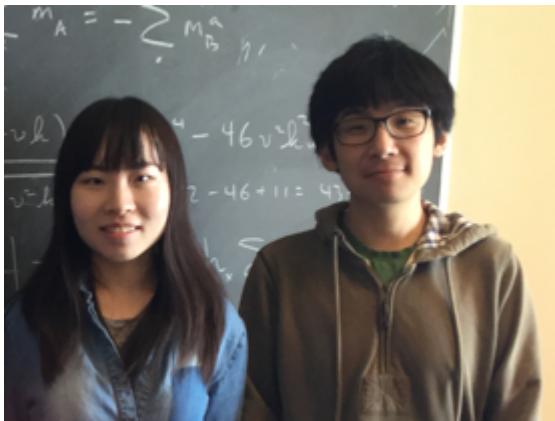
- We know the gapless QSL is locally stable provided time-reversal is maintained, *but* is this the generic behavior?
- NN correlations? Obviously extended by perturbations.
- Gap? This is less obvious. Is there a selection rule?



Answer

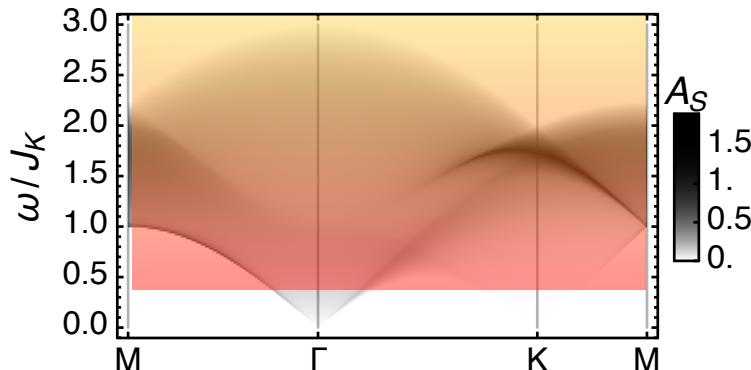
- Generically, there is *not* a gap in the structure factor
- Instead, power-law weight appears within two Dirac cones centered around $k=0$ and $k=K$





Answer

- Generically, there is *not* a gap in the structure factor
- Instead, power-law weight appears within two Dirac cones centered around $k=0$ and $k=K$
this should be added to the gapped intensity



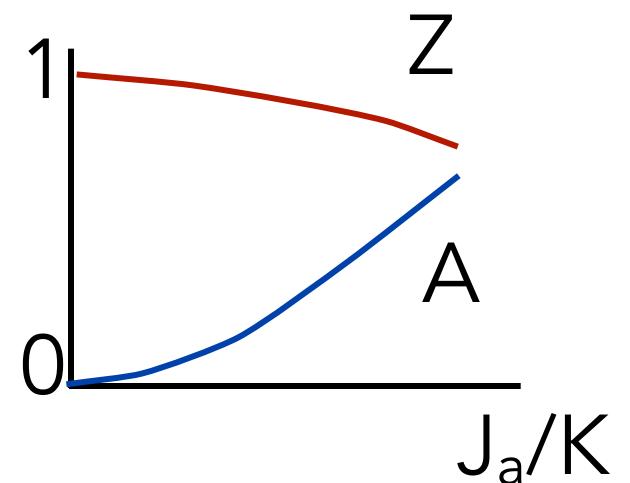
Why?

- Quasiparticles
 - A lattice operator can be expanded in a series of *quasiparticle* operators, which create *exact* eigenstates

$$\sigma_i^\mu = Z i c_i c_i^\mu + A i \epsilon^{\mu\nu\lambda} c_{i+\hat{\nu}} c_{i+\hat{\lambda}} + \dots$$

above the gap below the gap

$$\sigma \sim \varepsilon \mathbf{em} + \varepsilon \mathbf{e} + \dots$$



Microscopic origin

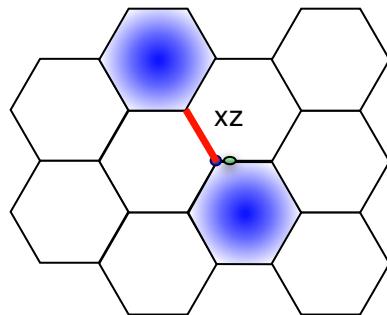
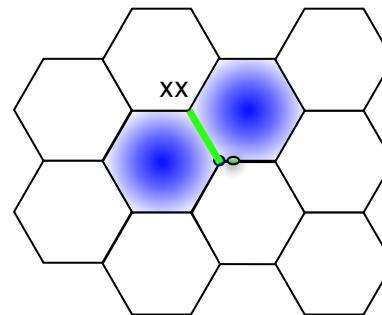
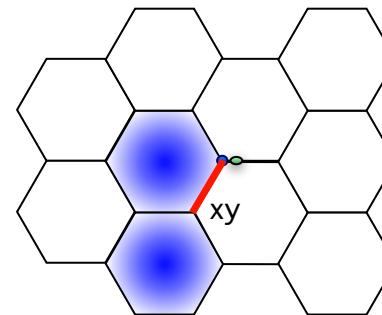
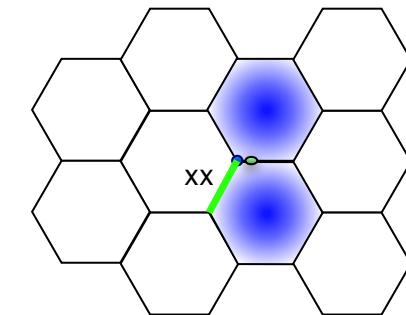
- A simple view: perturbations to Kitaev mix virtual excitations into ground state, which can cancel the flux introduced by naive spin operator
- Surprisingly, this does not occur for the Heisenberg-Kitaev model due to “dihedral” symmetry

$$X, Y, Z = \prod_i \sigma_i^\mu \quad \begin{matrix} \text{every spin is odd under 2} \\ \text{of these generators} \end{matrix}$$

Microscopic origin

- A simple view: perturbations to Kitaev mix virtual excitations into ground state, which can cancel the flux introduced by naive spin operator

$$H = \sum_{\langle ij \rangle \in \alpha\beta(\gamma)} [J\vec{S}_i \cdot \vec{S}_j + KS_i^\gamma S_j^\gamma + \Gamma(S_i^\alpha S_j^\beta + S_i^\beta S_j^\alpha)] \quad \text{Rau, Lee, Kee}$$



$$A \sim J^2 \Gamma^2$$

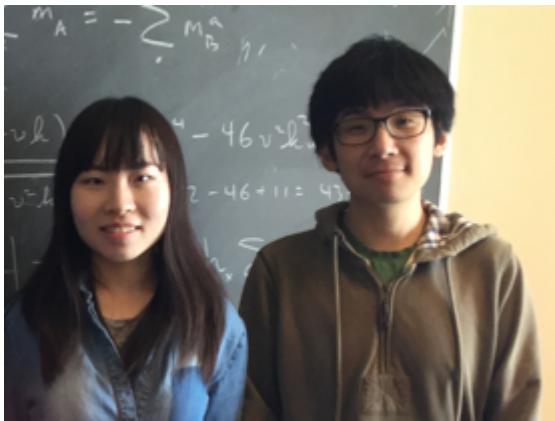
Field theory

- Highbrow picture: effective field theory
 - A lattice operator can be expanded at low energy in a series of “primary fields”. The coefficient are constrained by symmetry and depend on microscopics

$$\sigma_i^\mu \sim M_{s(i)}^\mu(\mathbf{x}_i) + \text{Re} \left[N_{s(i)}^\mu(\mathbf{x}_i) e^{i\mathbf{K} \cdot \mathbf{x}_i} \right]$$

$$M_{s(i)}^\mu \sim \psi^\dagger \psi \qquad \qquad N_{s(i)}^\mu \sim \psi \partial \psi$$

- Amusing similarity to 1d Heisenberg chain

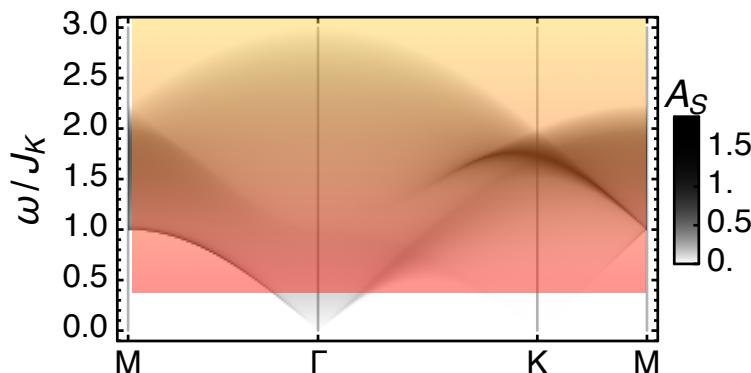


Answer

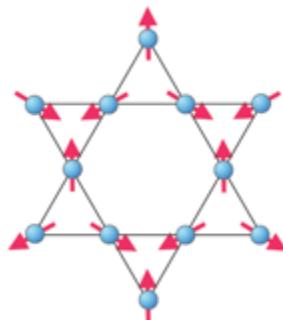
Xueyang Song, Yi-Zhuang You + LB, PRL 2016

- Generically, there is *not* a gap in the structure factor
- Instead, power-law weight appears within two Dirac cones centered around $k=0$ and $k=2K$

This is what we should expect if the Kitaev QSL is ever stabilized



Kagomé



$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

- Probably most-studied problem in frustrated magnetism

- Controversial! Most agree on non-magnetic ground state, but...

Elser V 1989

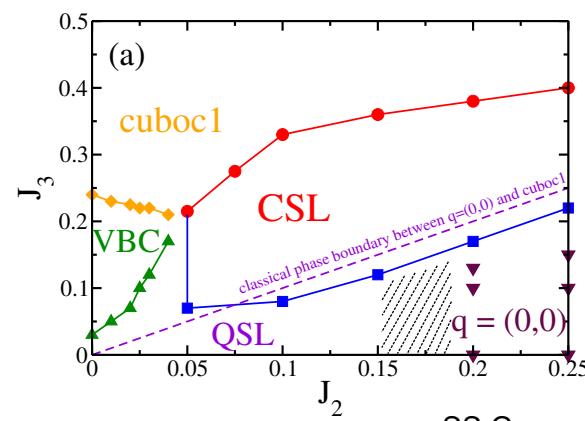
- Many gapless singlets?
- Dimer solid state?
- Gapless Dirac QSL?
- Gapped Z_2 QSL?

Lecheminant *et al*, 1997

Singh and Huse, 2007

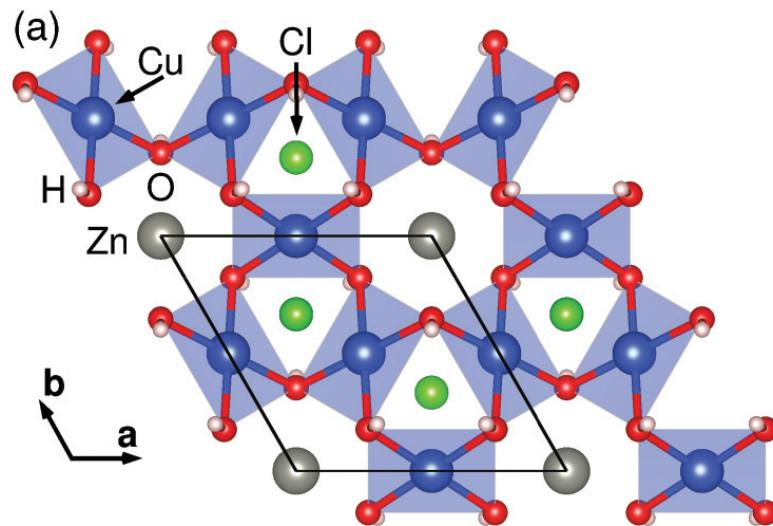
Ran *et al*, 2007

Yan, Huse, White 2011



SS Gong *et al*, 2015

Kapellasite



Modified Kagome Physics in the Natural Spin-1/2 Kagome Lattice Systems: Kapellasite $\text{Cu}_3\text{Zn}(\text{OH})_6\text{Cl}_2$ and Haydeeite $\text{Cu}_3\text{Mg}(\text{OH})_6\text{Cl}_2$

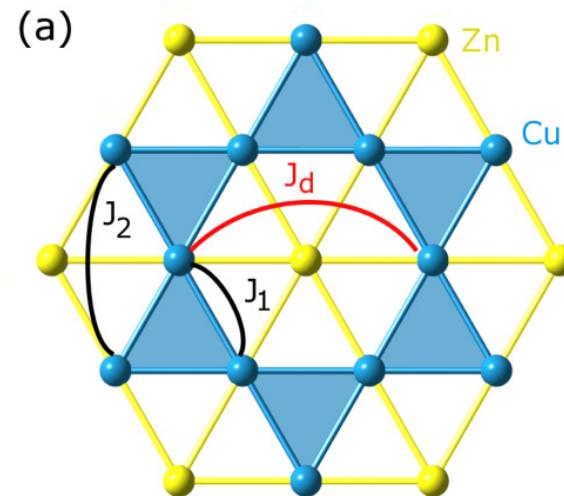
O. Janson,¹ J. Richter,² and H. Rosner^{1,*}

¹Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany

²Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany

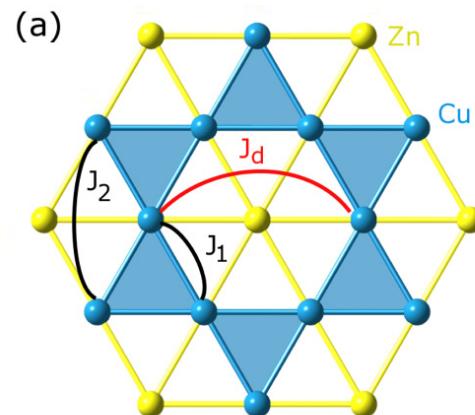
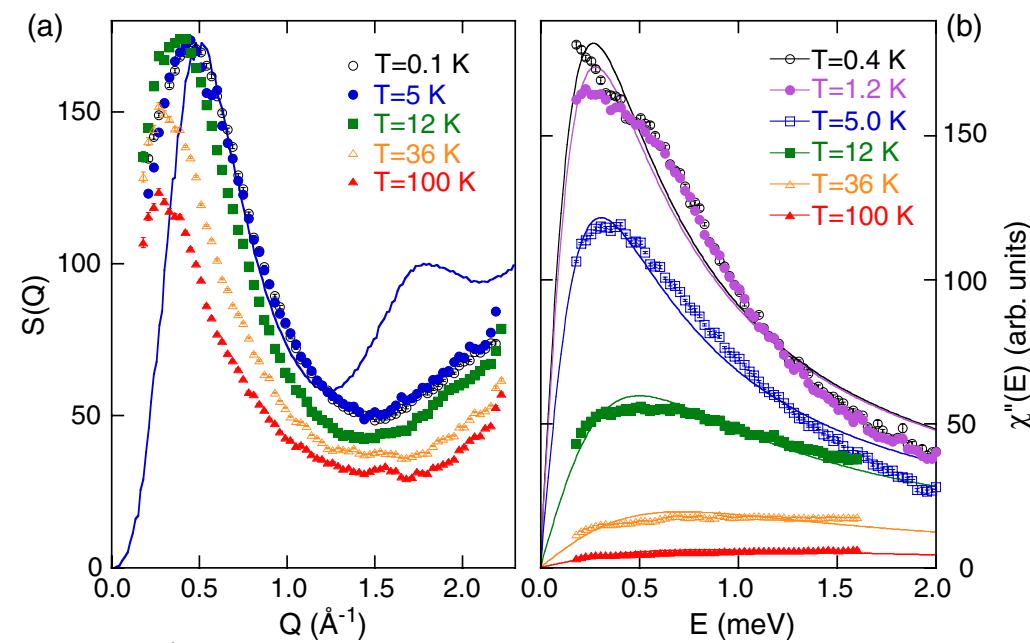
(Received 26 May 2008; published 3 September 2008)

The recently discovered natural minerals $\text{Cu}_3\text{Zn}(\text{OH})_6\text{Cl}_2$ and $\text{Cu}_3\text{Mg}(\text{OH})_6\text{Cl}_2$ are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data.



J_1 FM
 $J_d \sim -J_1$ AFM

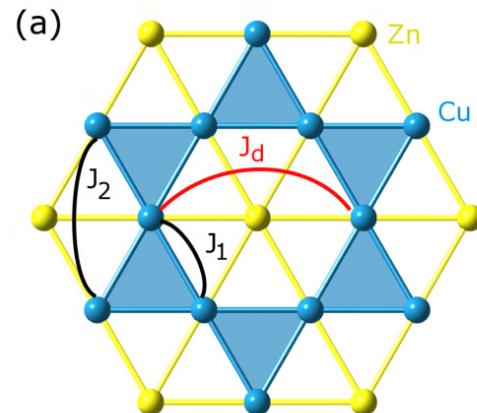
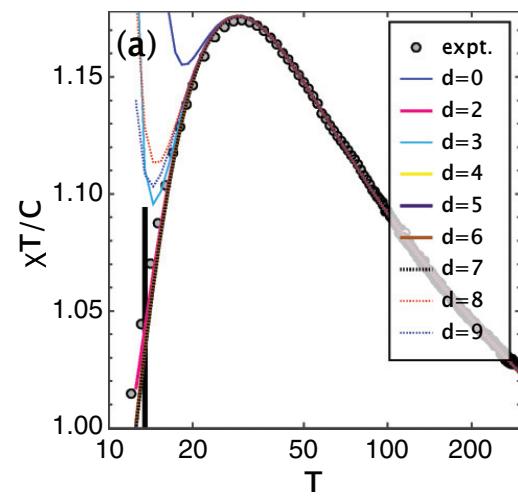
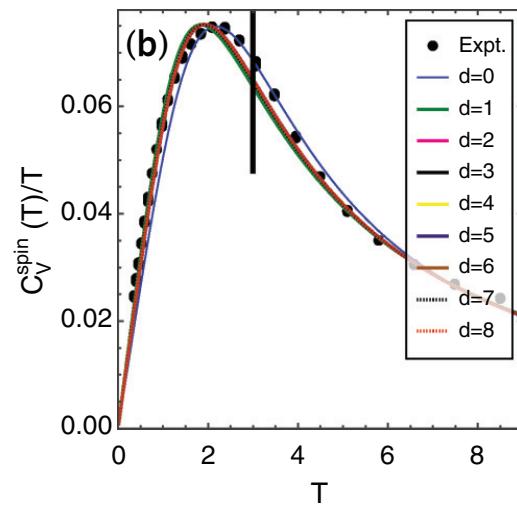
Kapellasite



B. Fåk *et al*, 2012

Wavevector suggests
short-range order with
large unit cell

Kapellasite

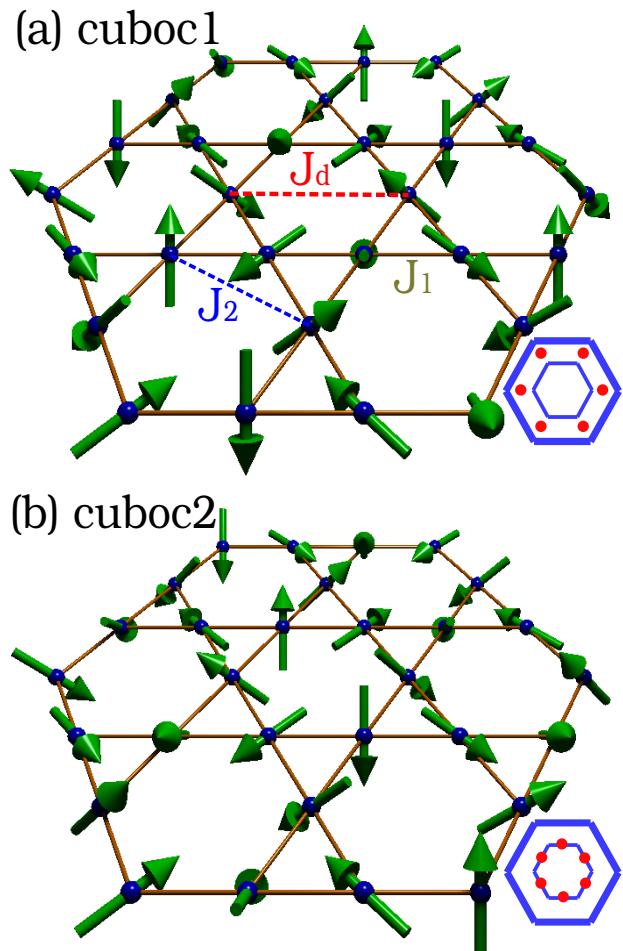
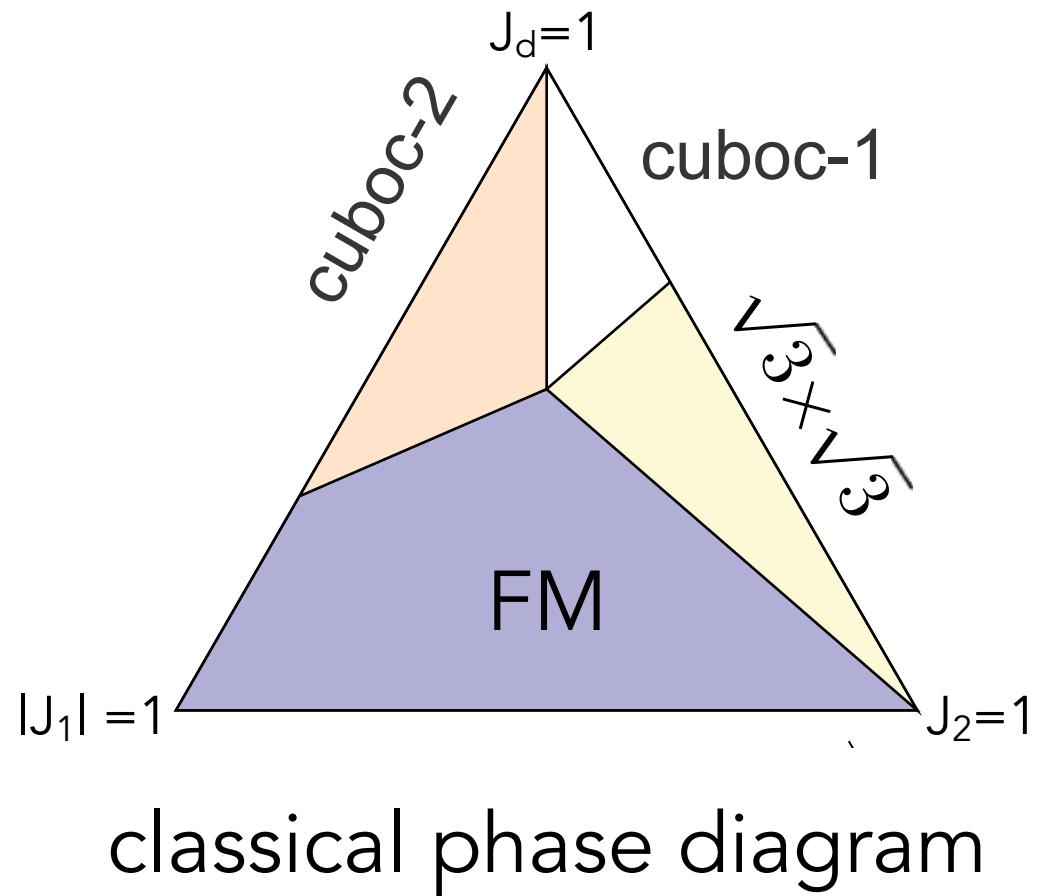


B. Bernu *et al*, 2013

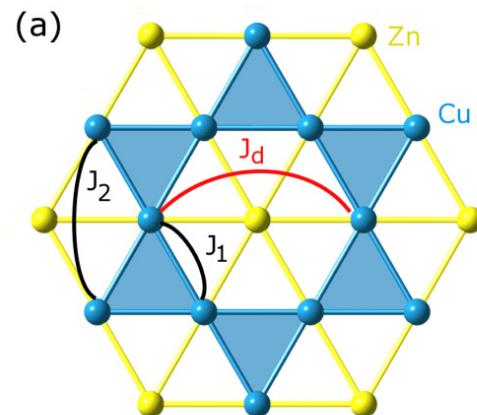
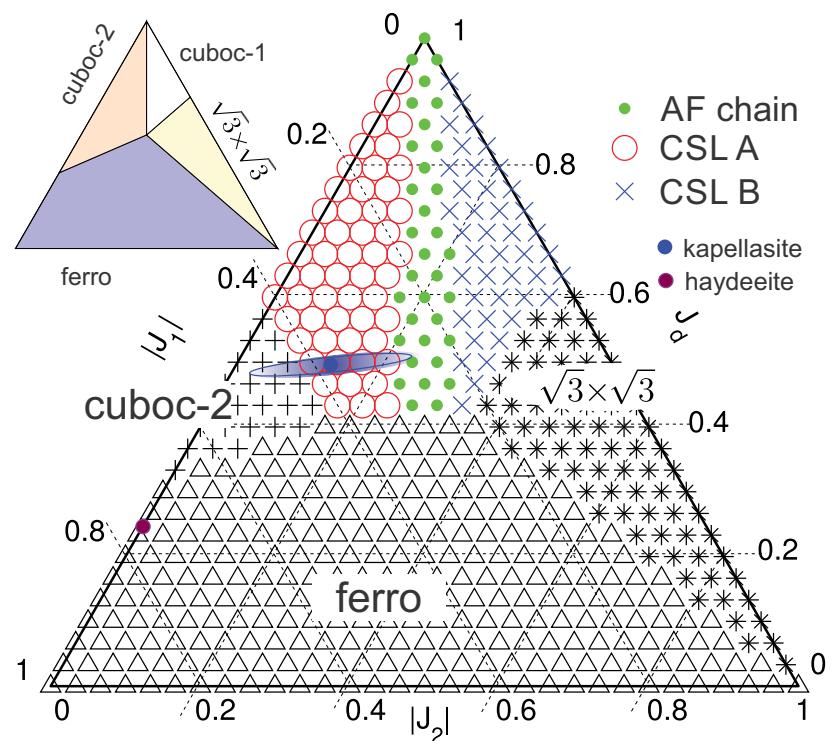
$J_1 = -12$, $J_2 = -4$, and $J_d = 15.6$ K,

What are the ground states for large J_d ?

Kapellasite



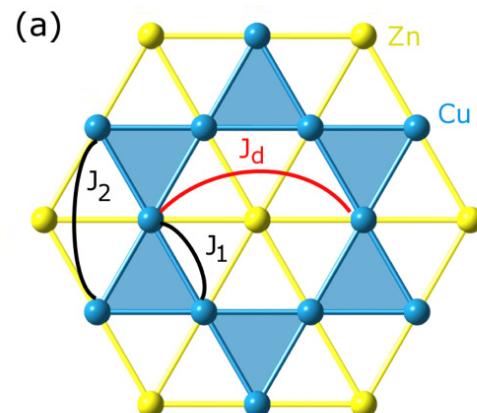
Kapellasite



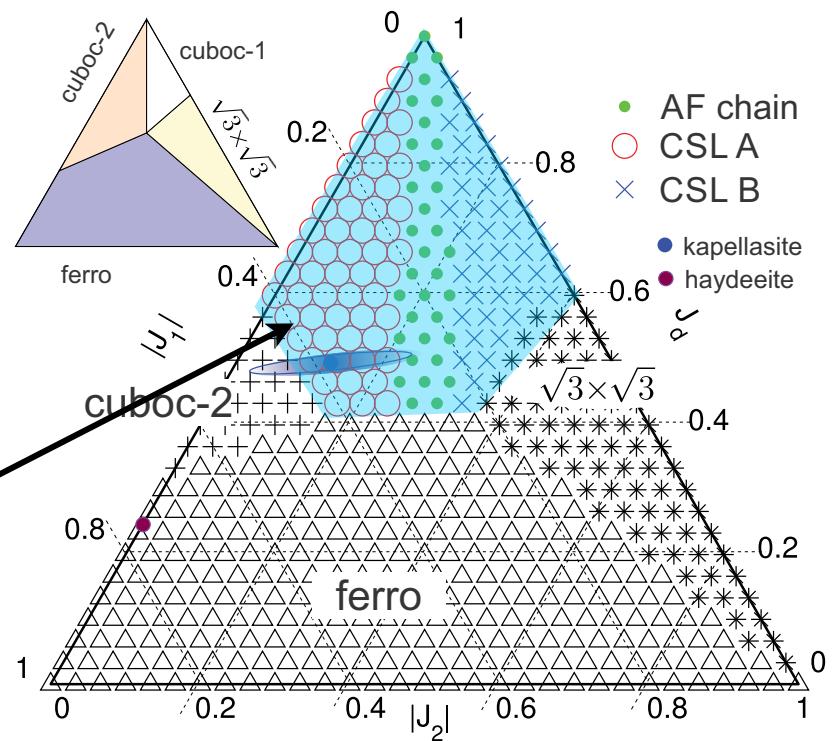
phase diagram from variational wavefunctions

S. Bieri et al, 2015

Kapellasite



spin liquids?

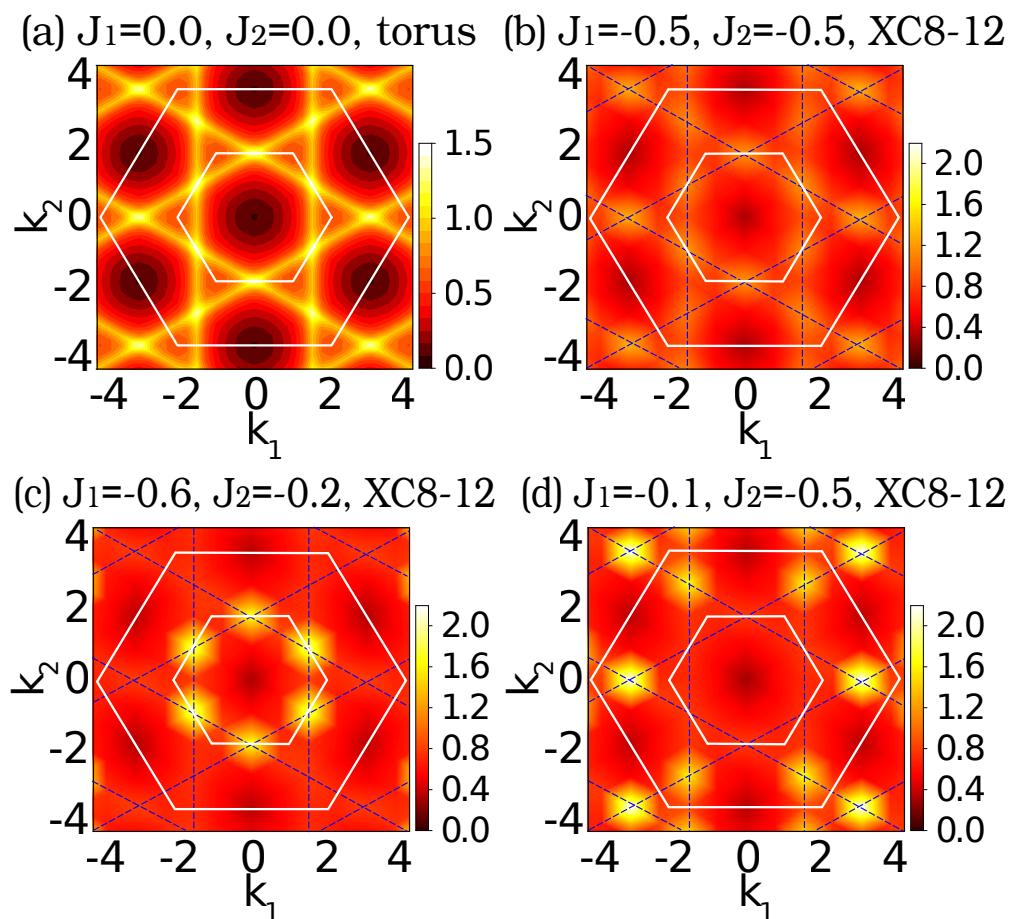


phase diagram from variational wavefunctions

S. Bieri et al, 2015

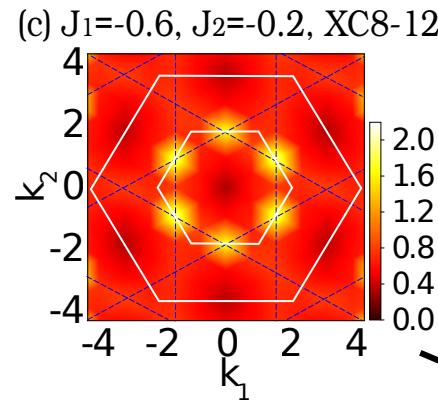
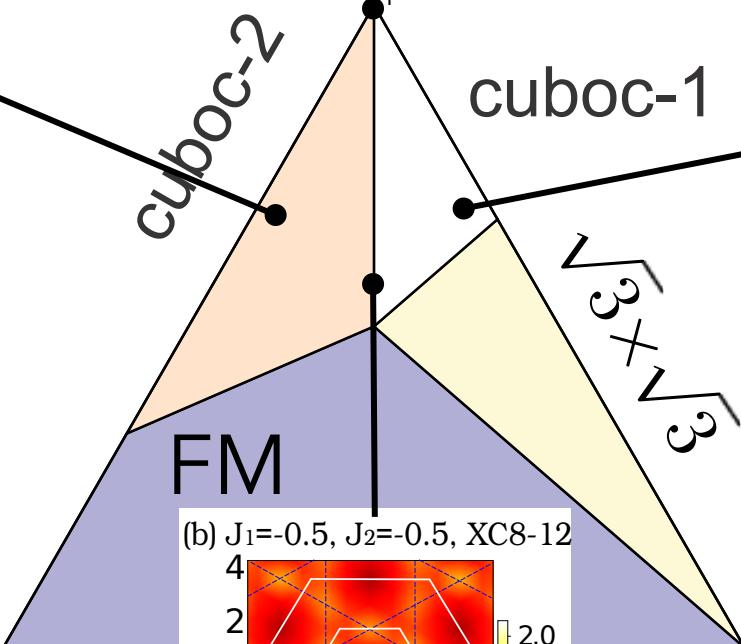
DMRG

numerically exact results
on long cylinders

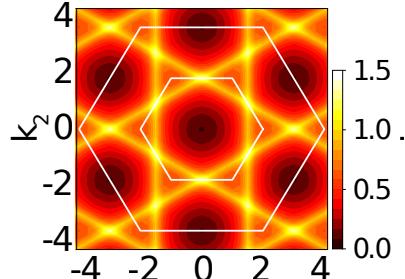


$$S(k, \omega)$$

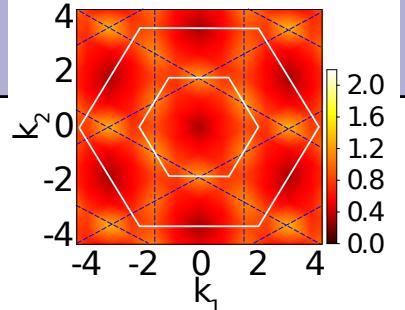
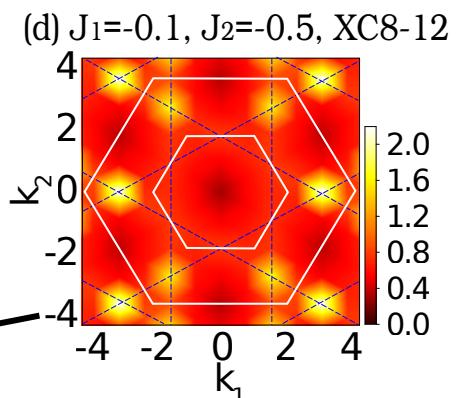
DMRG



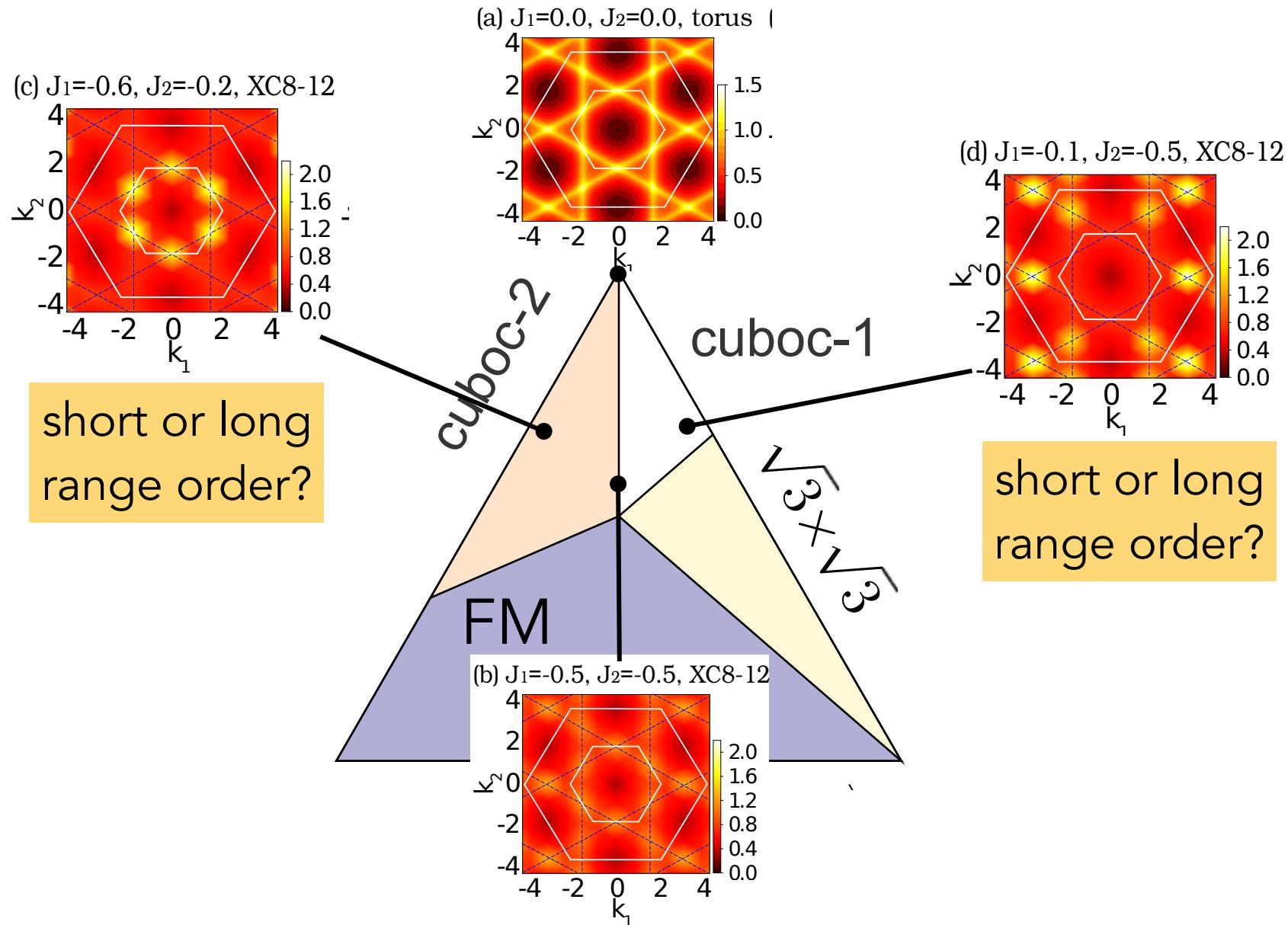
(a) $J_1=0.0, J_2=0.0$, torus 1



(b) $J_1=-0.5, J_2=-0.5$, XC8-12

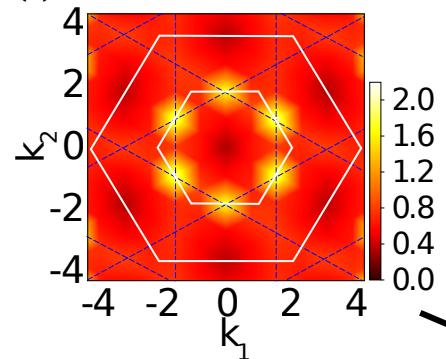


DMRG



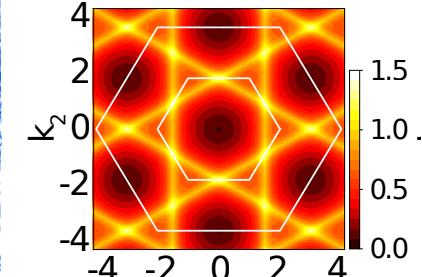
DMRG

(c) $J_1=-0.6, J_2=-0.2$, XC8-12



short or long
range order?

(a) $J_1=0.0, J_2=0.0$, torus 1

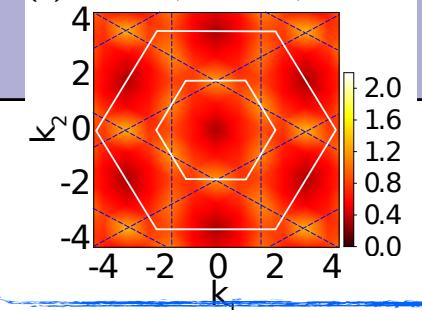


cuboc-2

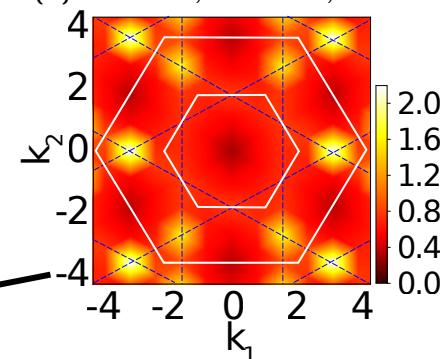
cuboc-1

FM

(b) $J_1=-0.5, J_2=-0.5$, XC8-12



(d) $J_1=-0.1, J_2=-0.5$, XC8-12

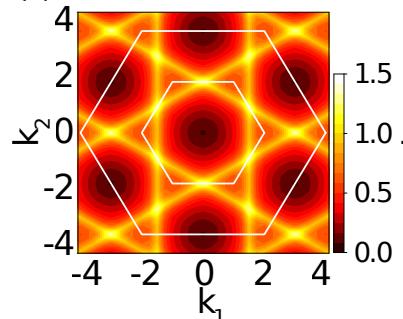


short or long
range order?

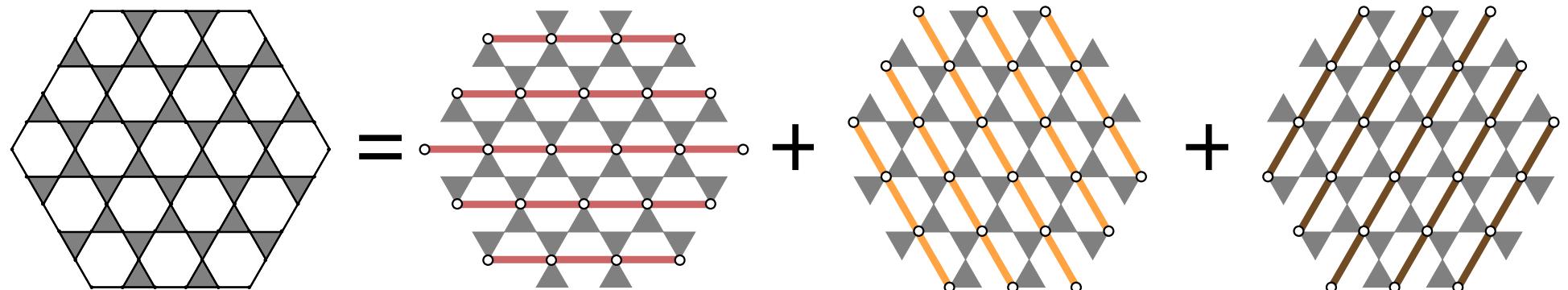
disordered states?

Theory

(a) $J_1=0.0, J_2=0.0$, torus 1

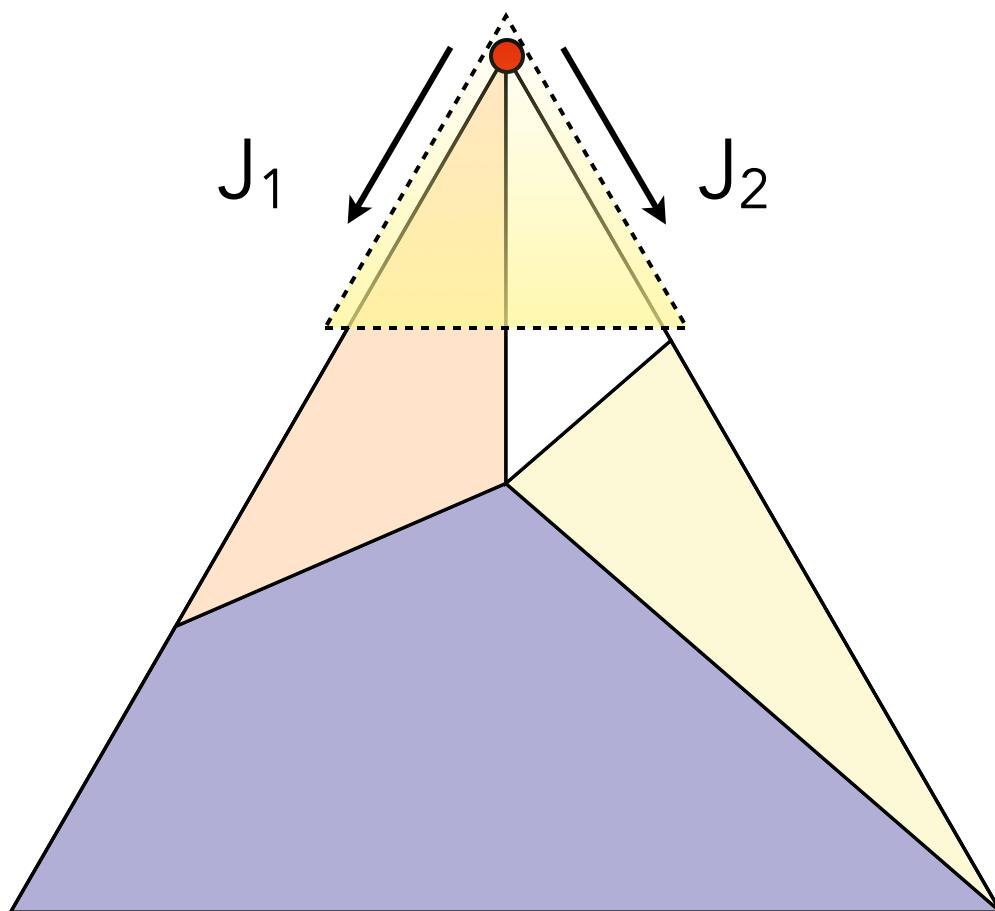


J_d only: one-dimensional chains



$$H = \sum_{a,y} H_{a,y}^{\text{Heis}}$$

Theory



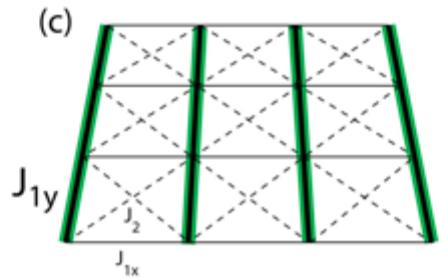
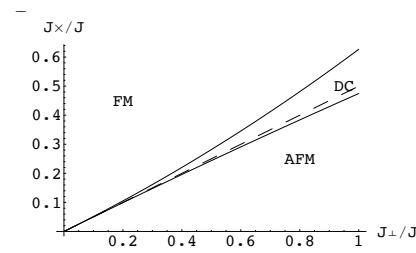
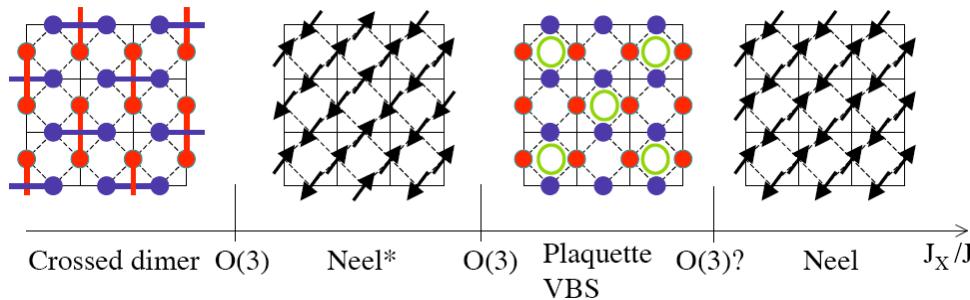
approach from
decoupled
chains

perturbative
renormalization group +
chain mean field theory

Koupled Khains

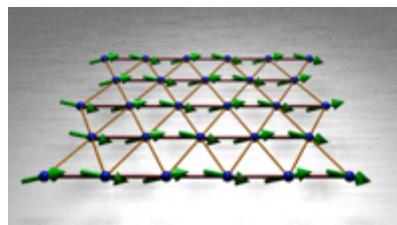
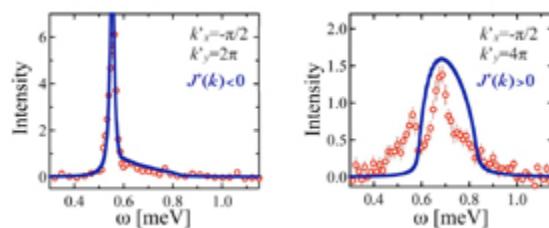
frustrated square lattice

O. Starykh, L.B., 2004



crossed chains/
planar pyrochlore

O. Starykh, A. Furusaki, L.B., 2005



anisotropic triangular lattice

Cs_2CuCl_4

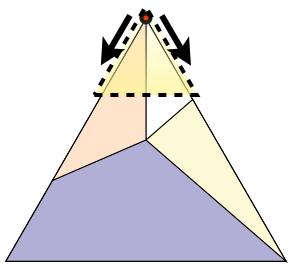
Cs_2CuBr_4

M. Kohno, O. Starykh, L.B., 2007

O. Starykh, L.B., 2007

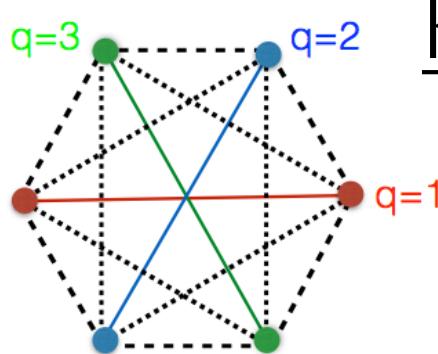
O. Starykh, H. Katsura, L.B., 2010

Theory



Decoupled chains:
low energy $SU(2)_1$ WZW field theory

primary fields = scaling operators $N_{q,y}, \varepsilon_{q,y}$

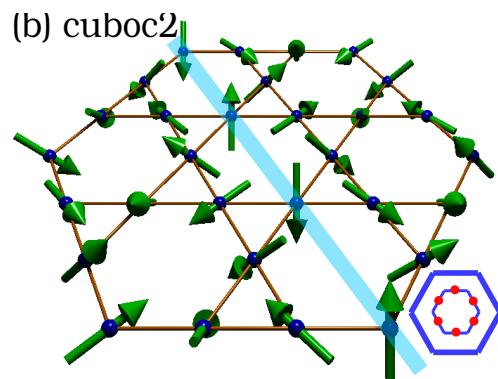
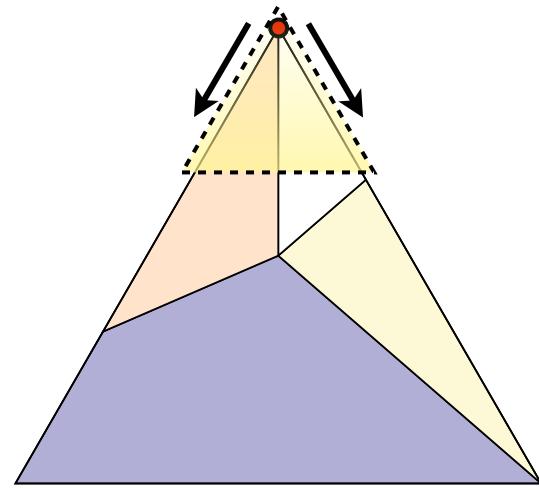
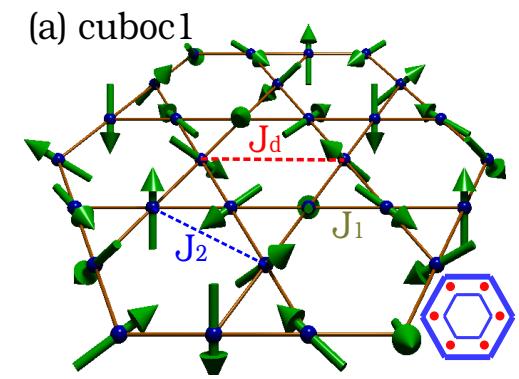


Koupling

$$H'_{\text{dom}} \sim 2(J_2 - J_1) \sum_q \sum_{y,y'} (-1)^y N_{q,y}(-y') \cdot N_{q+1,y'}(y+y') - c \frac{J_1^2}{J_d} \sum_{y,y',q} (-1)^y \varepsilon_{q,y} \varepsilon_{q+1,y'}$$

CMFT

$$H_{CMFT} \sim (J_2 - J_1) \sum_{q,y,y'} (-1)^y \langle \mathbf{N}_{q,y} \rangle \cdot \mathbf{N}_{q+1,y'}$$

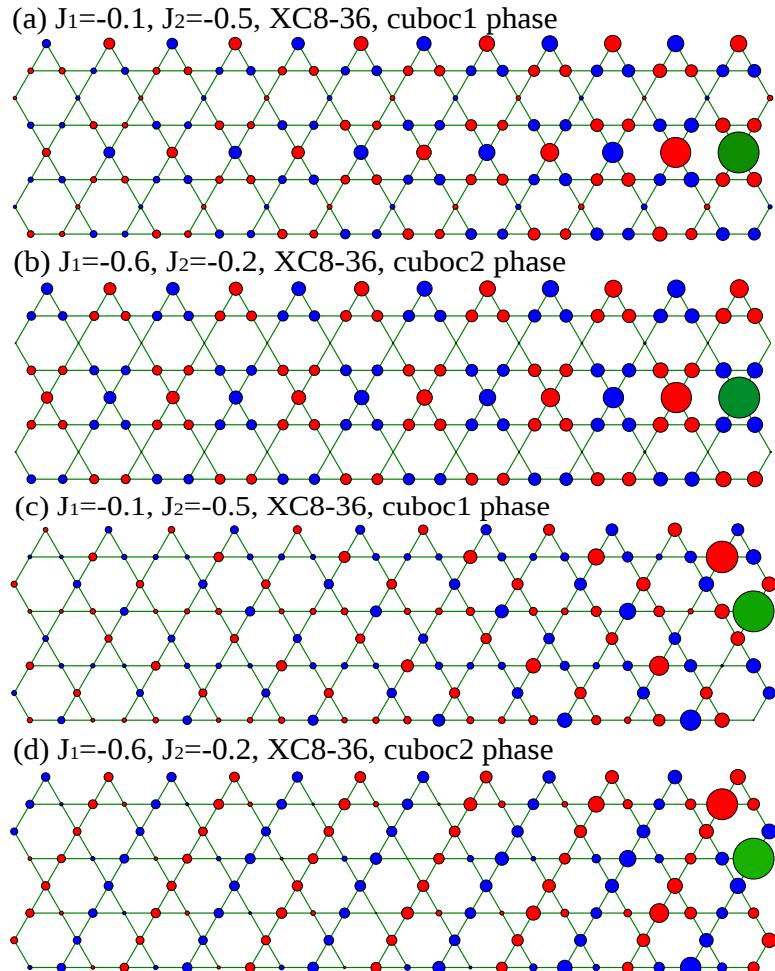


cuboc states fall out naturally from 1d chains

long range order

$$|\langle \mathbf{S}_i \rangle| \propto \sqrt{|J_1 - J_2|/J_d}$$

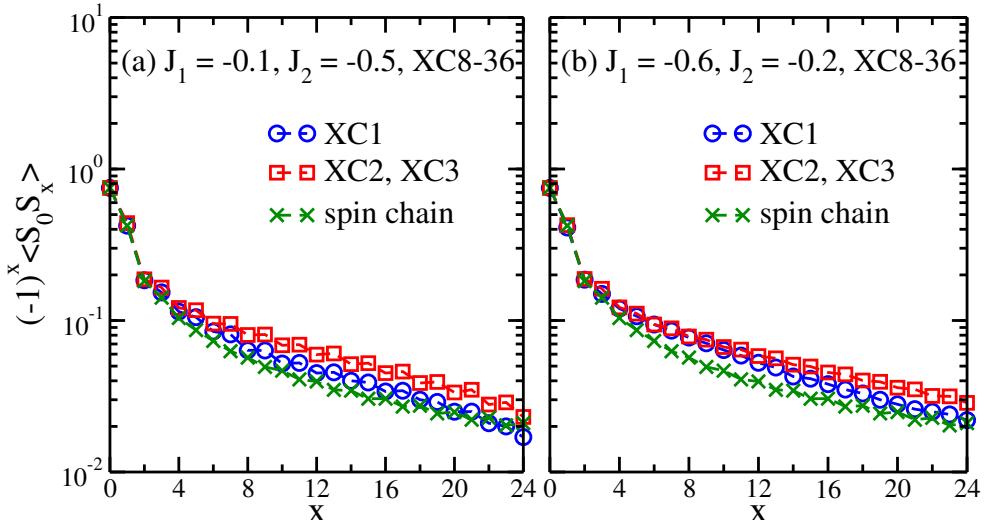
DMRG



Form of correlations are just what is expected for cuboc states

But can see underlying 1d structure

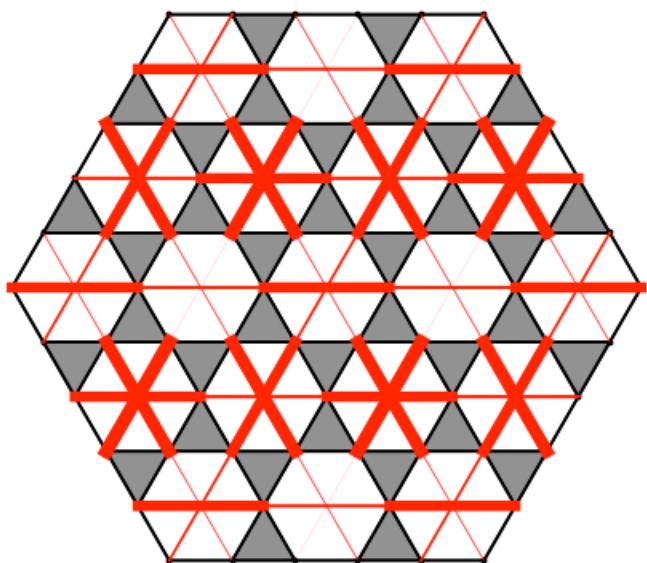
No LRO in 1d, but correlations are clearly enhanced beyond chains



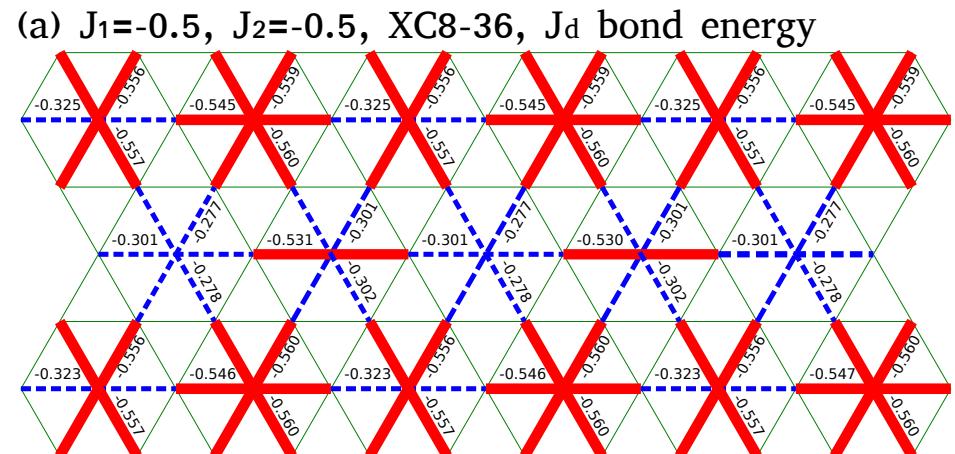
Compensated regime

$J_1=J_2$: leading coupling cancels

$O[(J_1)^2]$ dimerization coupling dominates



theoretical VBS pattern from dimerized chains

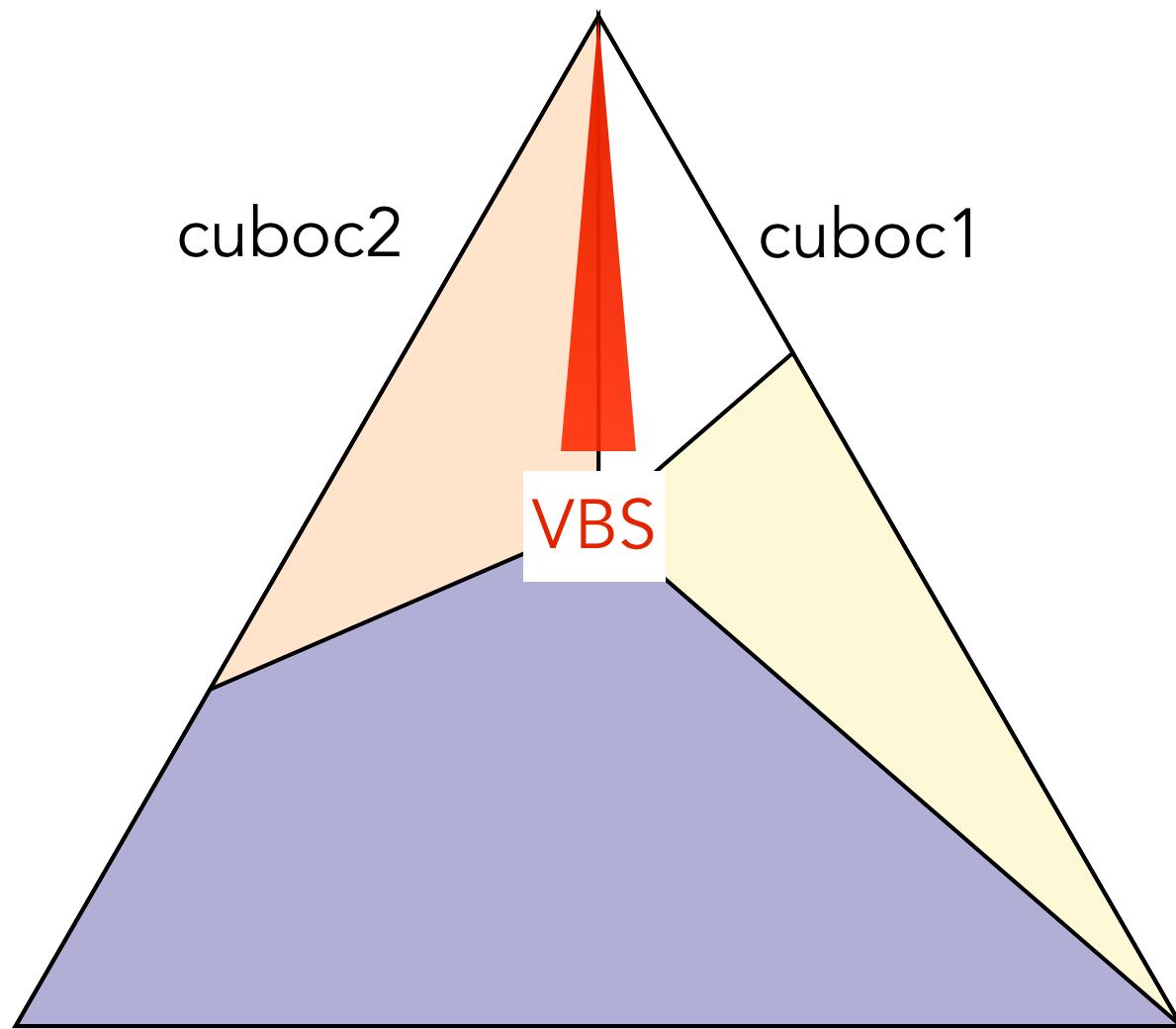


DMRG bond energies

strong confirmation of chain theory

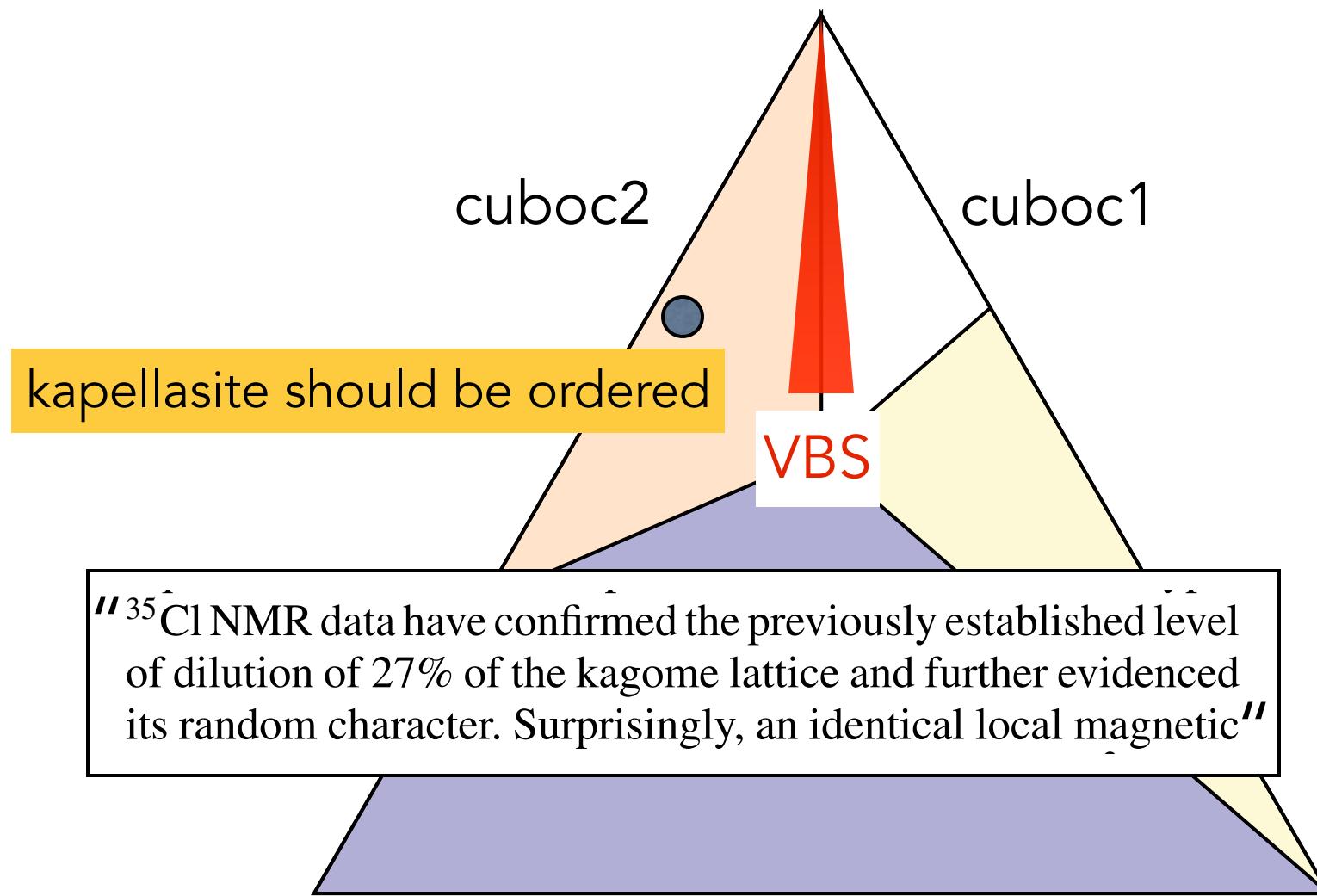
ReKapitulation

S.S. Gong et al, PRB 2016

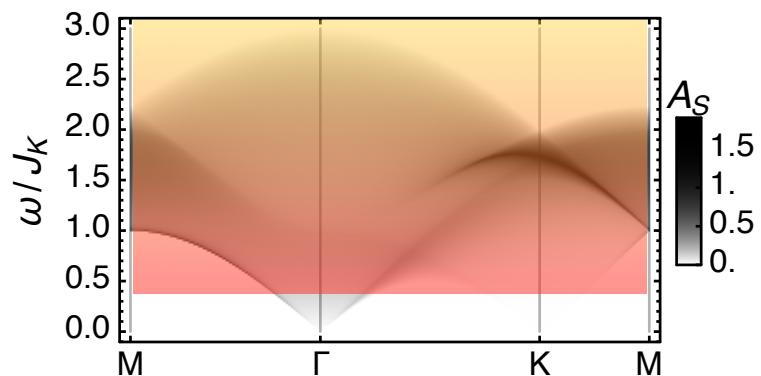


ReKapitulation

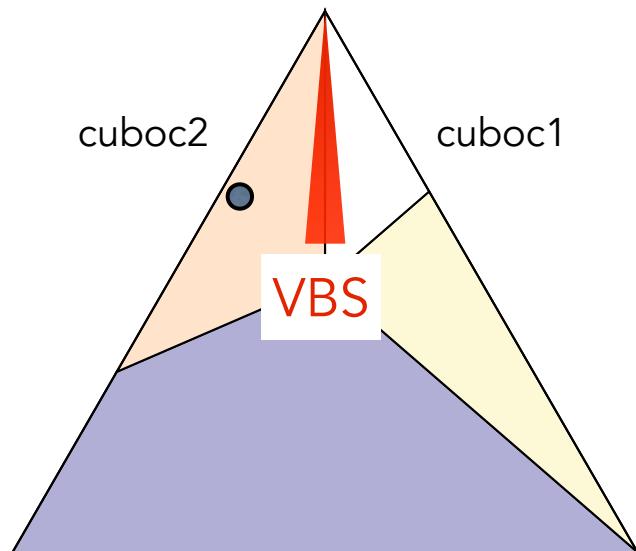
S.S. Gong *et al*, PRB 2016



Konklusion



The Kitaev spin liquid, if we ever find it, will have Dirac-like power-law spectral weight.



The J_d - J_1 - J_2 model for kapellasite may not support any QSLs. Disorder is probably playing a role in the actual material.

\$\$

