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Transport

• Arguably most important aspect of quantum 
materials: electrical and thermal conductivity 
(and crossed coefficients)

• Sensitive, versatile

• Probes extreme long wavelength, low 
frequency

j = �E je = �rT



Theory
• Understanding of transport mainly 

through quasiparticle picture

• Boltzmann equation:

[@t + vn(k) ·rr � eE ·rk] fn =
@fn
@t

����
collision

Linearizing this around equilibrium gives conductivities 
in terms of band velocities and scattering rates



Fermi Liquid Theory
Landau provided justification for 
quasiparticle picture in metals 

when T << EF

Low energy excitations act like 
electrons and holes but with 

wavefunction dressing (Z<1), effective 
mass, and Landau interactions

E =
X

k

✏k�nk +
1

2V

X

k,k0

Uk,k0�nk�nk0
scattering is weak because 
not so many low energy qp 

states to scatter to



This talk

I. SYK model of a strongly correlated 
metal: FL to NFL crossover and a 
disordered strange metal

II. Heat transport in spin systems - 
towards a non-quasiparticle description 
(progress report)



Non-Fermi Liquids
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ystematic Evolution of Temperature-Dependent Resistivit in La2 Sr Cu04

H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr.
AT& TBell Laboratories, Murray Hill, New Jersey 07974

(Received 8 May 1992)

The in-plane resistivit ('
y p,&) of La2—,Sr,Cu04 has been studied over a wide temperature (4-1000 K)

and composition ran e (0&x &0.35). T"g . &. The much discussed T-linear resistivity is observed only in the
narrow composition region associated with optimal superconductivity. In the und d dn e un er ope range

CC

, we o serve rst indications of resistivity saturation and anal th dana yze e resistivity as indicative of
a small Fermi surface. In the overdo ed ran
cr

p ge (x) 0.2), p,b follows a novel power-law dependence,
p~ T, over the entire temperature range up to 1000 K.

PACS numbers: 74.70.Vy, 72. 15.Qm
The unusual charge dynamics in the layered cuprates

has been widely recognized to be a key for the under-
standing of high-temperature superconductivity and has
promoted a number of theoretical models for 2D strongls rong y
correlated electron systems [1,2]. One of the hallmarks
of the charge dynamics is the nearly T-linear in-plane
resistivity (p,b ) over a remarkably wide temperature
range, from just above T, to near 1000 K, which is corn-
monly observed in most cuprates showing the optimum
superconductivity [1-4]. Closely related with this is the
I/ro decay of the free carrier conductivity at optical fre-
quencies, which reAects an anomalous frequency-
dependent scattering rate proportional to co at least up to
0.5 eV, instead of ru as would be expected for a conven-2

tional Fermi liquid [5]. Lacking so far, however, is a reli-
able experimental study of p,b over a wide temperature
range on well characterized materials when the hole con-
centration is varied from far below to far above the op-
timum composition for superconductivity.
Here we report the electrical resistivity up to 1000 K

on high-quality La2—„Sr„Cu04 single-crystal thin films
and polycrystalline materials, not only for the supercon-
ducting phase but also at lower and higher doping level.
We find that the T-linear behavior for the resistivity over
a wide temperature range is confined to a narrow compo-
sition range for optimum superconductivity. A well-
d fiefined decrease of the resistivity slope occurs above room
temperature in the underdoped region, below x-0.1. In
the overdoped region above x-0.2, a novel power-law
dependence, p=po+AT", n-1.5, not T linear or T,
dominates the resistivity over a wide temperature range
up to —1000 K. This is in contrast to earlier suggestions
of conventional behavior in this composition ranrange.
hese results not only indicate a close correlation be-

tween the T-linear scattering and superconductivity, but
also provide a crucial test for theoretical models of the
charge transport in Cu02 sheets.
The c-axis-oriented single-crystal thin films with

thicknesses of 3500-8000 A were grown on SrTi03(100)
substrates [6]. The polycrystalline samples were pre-
pared through solid-state reaction processing [7]. The
resistivity measurements were performed using the con-
ventional four-probe method or the Van der Pauw tech-
nique [8]. The high-temperature measurements above
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FIG. 1. The temperature dependence of the resistivity for
La2 —Sr„Cu04. (a) 0&x(0.15, (b) 0.1(x&0.35. Dotted
lines, the in-plane resistivity (p,b) of single-crystal films with

orientation; solid lines, the resistivity (p) of polycrystal-
line materials. Note, p~ (h/e~)d=1. 7 mQcm.

300 K were conducted in a quartz tube furnace under 02
flow. In order to check for possible 02 desorption effects,
we performed measurements under N2/Oq mixed gas flow—3(Po, -10 atm) for representative compositions. No
difference was observed between the two runs up to 1000
K for 0.05 &x &0.2, and at least up to 800 K for x )0.2,
indicating no oxygen desorption up to these temperatures

2975

LSCO Takagi et al, 1992 BaFe2(As1-xPx)2, Hayes et 
al, 2016

T-linear resistivity is challenging theoretically:
•If even “bad” quasiparticles exist, it is difficult to 
make them scatter strongly on the entire Fermi 
surface 

•If no quasiparticles exist, what is the starting point?



Sachdev-Ye-Kitaev model
A toy exactly soluble model 

of a non-Fermi liquid 

Like a strongly interacting quantum dot 
or atom with complicated Kanamori 

interactions between many “orbitals”

H =
X

i<j,k<l

Uijkl c
†
i c

†
jckcl

|Uijkl|2 =
2U2

N3



SYK Model
Sachdev-Ye, 1993: Model has a soluble large-N limit

⌃ = +O(1/N)

G(i!n) =
1

i!n � ⌃(i!n)

In equations: very similar to DMFT:

⌃(⌧) = �U2G(⌧)2G(�⌧)

Solution:

G(i!) ⇠ 1/
p
! not a pole: non-Fermi liquid



SYK Model

Georges, Parcollet, Sachdev, 2001: ground state entropy!
Why not quasiparticles?

S/N

T

ln(2) = .69...

s0=.46...

U
Many states available for scattering

(at half-filling)

“level spacing” ~ U exp(-Ns0)



Density dependence
H ! H � µN N =

X

i

c†i ci

Entropy

Q =
N
N
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FIG. 5. The entropy S(Q) obtained from the exact results [35] in Section IIC 3 (full line), and by the

numerical solutions (stars).

Fig. 5, they are in excellent agreement with the exact analytic results [35]. In the frequency domain

computation, we used the cuto↵ N = 2 ⇥ 106. The points in Fig. 5 are at moderate values of Q,

and our numerics did not converge for |Q| near 1/2.7
For the compressibility, numerically near µ = 0 and at T = 0, we find that K = 1.04/J =

1.04/(
p
2J ); With q = 4, this is of the same order of the large q result: K = q2/(16J ) = 1/J .

Appendix F: Normal mode analysis of the SYK model

This appendix will generalize the analysis of Maldacena and Stanford [47], and describe the

structure of the e↵ective action for fluctuations directly from the action in Eq. (C14). We will

work here in an angular variable

' = 2⇡T ⌧ (F1)

which takes values on a temporal circle of unit radius. We also use the notation '12 ⌘ '1 � '2.

We begin with the saddle-point solution of Eq. (C14), the Green’s function G
s

('). In the scaling

7 At large µ, we always find the free Green’s function G0 = 1
i!n+µ

to be solution. The reason can be understood

by the self-energy obtained from the free solution

⌃0(i!n

) = �J2

�2

X

!n=!1+!2�!3

G0(i!1)G0(i!2)G0(i!3) = � J2

i!
n

+ µ

1

(2 cosh �µ

2 )2

Notice the exponential suppression at low temperature. This means at any finite µ, at zero temperature, the free

one is always a solution. Numerically we are always at small finite temperature to represent the zero temperature

result, but when µ becomes large, the exponential suppression will make the free Green’s function converge well

within the fixed tolerance. 40

Davison et al, arXiv:1612.00849

Energy

schematic
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0 1
2Q

•Compressibility is constant at T=0

K =
@Q
@µ

����
µ=0

=
1.04

U



SYK Summary
• Compressible

• Ground state entropy

• Non-Fermi liquid

K(T = 0) =
1.04

U

S(T = 0)/N = .46 . . .

G(i!) ⇠ 1/
p
!



SYK Summary
• Compressible

• Ground state entropy

• Non-Fermi liquid

K(T = 0) =
1.04

U

S(T = 0)/N = .46 . . .

G(i!) ⇠ 1/
p
!

Chaos

�L =
2⇡kBT

~

HolographyThe SYK model is a strongly interacting quantum system that is
solvable at large N.

black	holes	

AdS2	

chaos	and	the	
Regge	limit	

strange	metals	

slide from D. Stanford, IAS, 2017
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Building a metal
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut



Building a metal
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Other work: 2-electron hopping

H =
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x
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+
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X
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t
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0c†
i,x
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c
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0c
l,x

0 + h.c.

Omitting relevant 1-electron hopping leaves system NFL even at T=0

Y.Gu et al, arXiv:1609.07832
R. Davison et al, arXiv:1612.00849
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competition!
t/U≪1 interesting

Ut



Self-consistent equations

2

t0 = 0, the U2
0 term is invariant under ⌧! b⌧ and c! b�1/4c,

c̄ ! b�1/4c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 ! bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. We expect the renormalization flow is to the
SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U2
0 ! b�1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N
P

i cix⌧c̄ix⌧0 and a La-
grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
(@⌧ � µ)�(⌧1 � ⌧2) + ⌃x(⌧1, ⌧2)

⇤
+

Z �

0
d⌧1d⌧2

⇣
�
X

x

2
66664
U2

0

4
Gx(⌧1, ⌧2)2Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)

3
77775

+t2
0

X

hxx0i
Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)

⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the

......

...
...

Ḡ(i!̄) = t̃G(i!)

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with 
double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999

Ut



Coherence scale

2

t0 = 0, the U2
0 term is invariant under ⌧! b⌧ and c! b�1/4c,

c̄ ! b�1/4c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 ! bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. We expect the renormalization flow is to the
SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U2
0 ! b�1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N
P

i cix⌧c̄ix⌧0 and a La-
grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
(@⌧ � µ)�(⌧1 � ⌧2) + ⌃x(⌧1, ⌧2)

⇤
+

Z �

0
d⌧1d⌧2

⇣
�
X

x

2
66664
U2

0

4
Gx(⌧1, ⌧2)2Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)

3
77775

+t2
0

X

hxx0i
Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)

⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C
T
=
S0(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T ⌧ U0(z = 2). C ! S0(0)T/Ec as

T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
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we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2 � 1, so that the

......

...
...
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where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n
, and adding back �T ln(1+eµ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N
@N
@µ or K = �1/( @

2F
@2 N

N
). The plot in Fig. 1 shows the results using the first derivative

method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).

VI. HEAVY FERMI LIQUID PHENOMENOLOGY

A. Quasi-particle residue and “Bad” Fermi liquid

The saddle point condition for imaginary-time Green’s function is (assuming zero chemical potential,t̃0 ⌘
p

zp
2
t0, Ẽc ⌘ t̃2

0
U0

)

G(i!)�1 = i! � ⌃(i!), ⌃(⌧) = �U2
0G(⌧)2G(�⌧) + 2t̃2

0G(⌧). (6.1)

Rescaling functions as

!̄ =
!

Ẽc
, ⌧̄ = ⌧Ẽc, Ḡ(i!̄) = t̃0G(i!), ⌃̄(i!̄) =

⌃(i!)
t̃0
. (6.2)

The saddle point equation is formatted as

Ḡ(i!̄)�1 =
Ẽc

t̃0
(i!̄ � t̃0

Ẽc
⌃̄(i!̄)) ⇡ ⌃̄(i!̄),

⌃̄(⌧̄) = �Ḡ(⌧̄)2Ḡ(�⌧̄) + 2Ḡ(⌧̄), (6.3)

that, given Ẽc
t̃0
⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
it contains no parameters, must have a residue of O(1). From the scaling in (6.2), it follows that the width of the “coherence
region” attributed to quasiparticle formation in Ā(!̄) is multiplied by Ẽc in A(!) (i.e. in physical units) and the quasiparticle
residue of our model (i.e., the integral of A(!) within the “coherence region”) is Z ⇠ Ẽc

t̃0
= t̃0

U0
⌧ 1 which is characteristic of a

“bad” Fermi liquid.

B. Grand canonical potential in Fermi liquid theory, compressibility and Sommerfeld coe�cient

In Landau’s Fermi liquid theory, the energy is a functional of a series of “quasi-particle” states labeled by a, b, we have

E � µN =
X

a

"ana +
1
2

X

a,b

fab(na � n0
a)(nb � n0

b) � µ
X

a

na = const +
X

a

("a � f̄
X

b

n0
b � µ)na +

1
2

f̄ (
X

a

na)2 (6.4)

where na, n0
a denotes the occupation number of the quasiparticle state and superscript 0 denotes the occupation number of the

“reference” state one starts with to define "a, fab, and we take it here to be the state with µ = 0,i.e., hnaiµ=0 = n0
a. In the second

identity we use f̄ to replace fab for simplicity.
Define Ea = "a� f̄

P
b n0

b, we have for the partition function in grand canonical ensemble as (introduce a hubbard-stratonovich
variable �)

Z =
X

e��(E�µN) =
X

na=0,1

Y

a

e��(Ea�µ)na e�
� f̄
2 (
P

a na)2

=
X
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Z s
�

2 f̄
d�e�i��
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2Y
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e��(Ea�µ)na =

Z s
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2 f̄
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2Y

a

[1 + e��(Ea�µ+i�)]. (6.5)

The saddle point condition for � reads

i�s

f̄
=
X

a

1
1 + e�(Ea�µ+i�s)

(6.6)
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Ḡ(i!̄)�1 =
Ẽc

t̃0
(i!̄ � t̃0

Ẽc
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The saddle point condition for � reads
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For t≪U, a single universal coherence scale appears

Ḡ(i!̄) = t̃G(i!)

Ḡ(i!̄) = t̃G(i!) ⌃̄(i!̄) = ⌃(i!)/t̃

Ḡ(i!̄) =
t̃

U
i!̄ � ⌃̄(i!̄)

t̃ =
�
z
2

� 1
2 t

Ẽc =
t̃2

U



Coherence scale
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Fermi liquid is extremely strongly interacting. Comparing to
the e↵ective mass, one has F ⇠ (m⇤/m)2.

Real time formulation- While imaginary time formula-
tion is adequate for thermodynamics, it encounters di�-
culties in addressing transport due to di�culty of analytic
continuation to zero real frequency in the presence of the
emergent low energy scale Ec. Instead we reformulate the
problem in real time using Keldysh path integral. The
Keldysh formalism calculates the partition function Z = Tr[⇢U]

Tr[⇢]

with ⇢ = e��(H�µN) and U the identity evolution operator
U = e�i(H�µN)(t0�t f )e�i(H�µN)(t f�t0) describing evolving for-
ward from t0 ! t f (with Keldysh label +) and backward
(Keldysh label �) identically. Paralleling the imaginary-time
development, we introduce collective variables Gx,ss0 (t, t0) =
�i
N
P

i cs
ixtc̄

s0
ixt0 and ⌃x,ss0 with s, s0 = ± labeling Keldysh con-

tour, and integrate out the fermionic fields to obtain Z̄ =R
[dG][d⌃]eiNS K [32], with the Keldysh action

iS K =
X

x

ln det[�z(i@t + µ)�(t � t0) � ⌃x(t, t0)] �
X

ss0

Z t f

t0
dtdt0
hX

x

U2
0

4
ss0Gx,ss0 (t, t0)2Gx,s0 s(t0, t)2 �

X

x

⌃x,ss0 (t, t0)Gx,s0 s(t0, t)

+
X

hx0xi
t2
0 ss0Gx,ss0 (t, t0)Gx0,s0 s(t0, t)

i
(6)

where ⌃x in the determinant is to be understood as the ma-
trix [⌃x,ss0 ] and �z acts in Keldysh space. We obtain the nu-
merical solution to the Green’s functions[32] by solving for
the saddle point of S K . We plot in Fig. 2 the spectral weight
A(!) ⌘ �1

⇡ Im GR(!) (GR is retarded Green function) at fixed
U0/T = 104 for Ec/T = 0, 0.09, 1, 9, which illustrates the
crossover between the SYK4 and Fermi liquid regimes. For
! � Ec, we observe the quantum critical form of the SYK4
model, which displays !/T scaling, evident in the figure from
the collapse onto a single curve at large !/T . At low fre-
quency, the SYK4 model has A(! ⌧ T ) ⇠ 1/

p
U0T , whose

divergence as T ! 0 is cut-o↵ when T . Ec. This is seen
in the reduction of the peak height in Fig. 2,

p
U0T A(! = 0),

with increasing Ec/T . On a larger frequency scale (inset), the
narrow “coherence peak”, associated with the small spectral
weight of heavy quasiparticles, is clearly visible.

We now turn to transport, and for simplicity focus on
particle-hole symmetric case hereafter. The strategy is to ob-
tain electrical and heat conductivities from the fluctuations of
charge and energy, respectively, using the Einstein relations.
We first consider charge, and study the low-energy U(1) phase
fluctuation '(x, t), which is the conjugate variable to particle
number density N(x, t), around the saddle point of the action
S K . Allowing for phase fluctuations around the saddle point
solution amounts to taking

Gx,ss0 (t, t0)! Gx,ss0 (t � t0)e�i('s(x,t)�'s0 (x,t0))

⌃x,ss0 (t, t0)! ⌃x,ss0 (t � t0)e�i('s(x,t)�'s0 (x,t0)), (7)

where Gx,ss0 (t � t0) and ⌃x,ss0 (t � t0) are the saddle point solu-
tions. Expanding (6) to quadratic order in 's, S K = S sp

K + S ',
yields the lowest order e↵ective action for the U(1) fluctu-
ations. This is most conveniently expressed in terms of the
“classical” and “quantum” components of the phase fluctua-

tions, defined as 'c/q = ('+ ± '�)/2 and in Fourier space:

iS ' =
X

p

Z t f

t0
dtdt0
⇥
⇤1(t � t0)@t'c,p(t)@t'q,�p

(t0)

��(p)⇤2(t � t0)'c,p(t)'q,�p

(t0)
⇤
+ · · · . (8)

Here the first term arises from the ln det[·] and the second from
the hopping (t2

0) term in (6). The function �(p) encodes the
band structure for the two-fermion hopping term, dependent
on lattice details, and the ellipses represent O('2

q) terms which
do not contribute to the density correlations (and are omitted
hereafter –see [32] for reasons). The coe�cients ⇤1(t) and
⇤2(t) are expressed in terms of saddle point Green’s functions
in [32]. We remark here that any further approximations, e.g.,
conformal invariance, are not assumed to arrive at action (8),
and hence this derivation applies in all regimes.

FIG. 2. The spectral weight A(!) at fixed U0/T = 104, µ = 0, z = 2
for Ec/T = 0, 0.09, 1, 9, corresponding a crossover from SYK4 limit
to the “heavy Fermi liquid” regime. Inset shows the comparison of
green’s function for T/Ec = 9 with free fermion limit result.

In the low frequency limit, the Fourier transforms of
⇤1(t),⇤2(t) behave as ⇤1(!) ⇡ �2iK and ⇤2(!) ⇡ 2KD'!,
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In the low frequency limit, the Fourier transforms of
⇤1(t),⇤2(t) behave as ⇤1(!) ⇡ �2iK and ⇤2(!) ⇡ 2KD'!,

Narrow “coherence peak” appears in 
spectral function: heavy quasiparticles 

form for T≪Ec

! = Ec
Quasiparticle weight  Z ~ t/U

We solve these equations in a real time Keldysh formulation 
numerically and determine asymptotics analytically.



Entropy
Level repulsion: entropy is released for T<Ec!

2

t0 = 0, the U2
0 term is invariant under ⌧! b⌧ and c! b�1/4c,

c̄ ! b�1/4c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 ! bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. We expect the renormalization flow is to the
SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U2
0 ! b�1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N
P

i cix⌧c̄ix⌧0 and a La-
grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
(@⌧ � µ)�(⌧1 � ⌧2) + ⌃x(⌧1, ⌧2)

⇤
+

Z �

0
d⌧1d⌧2

⇣
�
X

x

2
66664
U2

0

4
Gx(⌧1, ⌧2)2Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)

3
77775

+t2
0

X

hxx0i
Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)

⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),

⌃4(⌧) = �U2
0G(⌧)2G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient
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enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
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by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
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(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =
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b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
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free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
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enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.
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⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt2

0G(⌧ � ⌧0) (z is the coordination
number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt2
0G(i!n),
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where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient
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t0 � U0, which is of order t�1

0 , there is an “e↵ective mass
enhancement” of m⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|T . Be-
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in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =
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b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
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fermion model supports quasi-particles and defines a Fermi
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where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient
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t0 � U0, which is of order t�1
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perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
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in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =
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b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
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Compressibility
For t≪U, compressibility is almost unaffected by hopping

K =
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??How to reconcile with Sommerfeld enhancement??

• Fermi liquid theory: compressibility is renormalized 
by Fermi liquid parameter F = g(EF) UFL
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by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
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one introduces the interaction fab via �"a =
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Transport
Quasiparticle picture applies only for T≪Ec

More generally, we use hydrodynamics

� = lim
!!0

lim
p!0

�i!

p2
DRn(p,!)

✦ Calculate density response 
using Keldysh method. 

N.B. Because of randomness, momentum is not a hydrodynamic variable

✦ Do analogously for thermal 
conductivity



Transport
Generalized 

resistivity
⇢c = 1/� ⇢e = T/

4

which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
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, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]
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i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]
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where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
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2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N
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T reaches two constants ⇡2
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where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. Thescaling
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SYK metal

•Small coherence scale Ec=t2/U
•Heavy mass 𝛾~m*/m ~ U/t
•Small QP weight Z ~ t/U
•Kadowaki-Woods A/𝛾2 = constant
•Linear in T resistivity and T/κ
•Lorenz ratio crosses over from FL to NFL value



Where is this going?
Similarity with DMFT is encouraging: can we bootstrap 
this to a more realistic treatment of incoherent metals?

the low temperature Fermi liquid regime means that it is approximately integrable and chaos is
suppressed. Thus we expect a rich crossover of dynamics. We propose to study this through the
OTO correlators and extending the Keldysh treatment of Ref.[50] to a doubled Keldysh contour
as introduced in Ref.[1]. We will also examine fully non-equilibrium behavior for the system by
seeking solutions of the Keldysh saddle point conditions which violate the fluctuation-dissipation
theorem.

One weakness of the model of Eq. (8) is that it is strongly random. In particular, the quenched
disorder breaks translational symmetry, so that momentum is not a good quantum number. Con-
sequently, there is no Fermi surface, and we cannot study momentum di↵erentiation which is of
great interest in experimental correlated metals. The second proposed project is to overcome this
weakness, by formulating and solving a translationally-invariant version of the SYK lattice model.
A natural generalization of Eq. (8) is

H =
X

x

X

i<j,k<l

Uijklc
†
ixc

†
jxckxclx � t

X

hxx0i

X

i

c†i,xci,x0 . (10)

Here we have taken identical interactions Uijkl at every site x, and non-random diagonal hopping t
between sites. We still treat the Uijkl as random, but the randomness is translationally invariant:
e↵ectively we consider an ensemble of systems with very complicated Kanamori interactions on each
atom. For t = 0, it reduces to a set of decoupled SYK models, and hence is a strongly interacing
non-Fermi liquid, while for t � U , it is obviously a conventional weakly interacting Fermi gas.
Designed in this way, the Hamiltonian retains a soluble large N limit. The saddle point conditions
are modified to

G(k, i!n)
�1 = i!n � ✏(k)� ⌃(k, i!n),

⌃(x, ⌧) = �U2
0G(x, ⌧)2G(�x,�⌧), (11)

where ✏(k) is the bare band dispersion (e.g. �2t cos k � µ in one dimension). In comparison with
the disordered problem, these equations are non-local in both frequency and momentum. Given
a solution of these equations, we will, following methods developed in our prior work, obtain the
electrical and thermal conductivity, thermodynamics, and more.

Broader implications of these results will be explored. One can compare with the de facto
standard for computational studies of strongly correlated metals, DMFT. While the properties and
mathematics of the disordered model have strong similarities with DMFT, the self-energy of the
clean system in Eq. (11) is no longer local, and it will be interesting to make a comparison of our re-
sults to DMFT and its cluster variants. The one-electron part of Hamiltonian in Eq. (10) can be gen-
eralized to arbitrary band structures, so we will apply the methodology to some realistic multi-band
systems. In particular, we will study the rare earth nickelates, RNiO3, and the pyrochlore iridates.
Our group has long-term collaborations with experimentalists in these systems, which both display
substantial correlation-induced band renormalization and even metal to insulator transitions.

5.2 Thermal transport in frustrated magnets

While for electron transport, non-quasiparticle transport is “special” and its observation limited
to exceptional correlated materials, the situation is di↵erent for spin transport in insulators with
well-formed local moments. There, the quasiparticle description breaks down for kT ⇠ J , where
J is the exchange energy, and unlike for metals there is no underlying free particle description.
Quasiparticle transport holds, at best, at low temperatures, where the typical ordered phase hosts
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substantial correlation-induced band renormalization and even metal to insulator transitions.

5.2 Thermal transport in frustrated magnets

While for electron transport, non-quasiparticle transport is “special” and its observation limited
to exceptional correlated materials, the situation is di↵erent for spin transport in insulators with
well-formed local moments. There, the quasiparticle description breaks down for kT ⇠ J , where
J is the exchange energy, and unlike for metals there is no underlying free particle description.
Quasiparticle transport holds, at best, at low temperatures, where the typical ordered phase hosts
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describes NFL to FL 
crossover.  

Similarities to DCA?

•Apply to realistic band structures



This talk

I. SYK model of a strongly correlated 
metal: FL to NFL crossover and a 
disordered strange metal

II. Heat transport in spin systems - 
towards a non-quasiparticle 
description (progress report)



What’s in there?
a QSL...or a chicken?



Heat transport in magnets
Insulating magnet: typically heat is the 
only possible transport measurement

• Probes extended nature of excitations at ultra-
low frequency

• Automatically removes contributions from 
localized nuclei and isolated defects, which may 
carry large entropy



Heat transport in magnets
Insulating magnet: typically heat is the 
only possible transport measurement

Ong’s group 2015
Tb2Ti2O7

Tokiwa, Matsuda et al. (2017?)
Pr2Zr2O7Figure 6. a) In “spin ice” the ground-state of each tetrahedron satisfies the ice rules (two spins in, two

spins out)[32]. “Monopole” excitations correspond to three out/in, one in/out. b) Classical monopoles are
localized and have an excitation energy of 2Jk. Quantum monopoles are itinerant, and theory also predicts the
development of emergent “photon” excitations. c) Field dependence of thermal conductivity in Yb2Ti2O7 from
[33] at various temperatures. d) Temperature dependence of thermal conductivity /T in spin ice compound
Pr2Zr2O7 reported by Tokiwa et al., showing marked upturn below 0.2K which is interpreted as a signal of
the spin-photon.

applied field, which the authors interpret as a result of Monopole thermal conduc-
tivity (6 c ). This is a very interesting result, and it will be interesting to examine
whether at still lower temperatures, a thermal conductivity from the spin-photons can
be observed.

In the sister comound Pr2Zr2O7[35], Tokiwa reports that he system displays no
discernable long range order, and that the measured inelastic neutron scattering dom-
inates 90% of the scattered intensity, consistent with a quantum spin ice compound.
Perhaps most excitedly, the thermal conductivity /T displays a marked upturn at
low temperatures (Fig. 6d) that may be the first signs of the fabled spin-photon exci-
tation. There is a hope that future neutron measurements will be able to resolve and
confirm the presence of this excitation. This is a developing story to keep your eyes
on.

6. Iron Based Superconductors

Unlike the cuprate superconductors, where we have unambiguous evidence for the
symmetry and structure of the pair wavefunction, in the iron based superconductors,
this issue is still a matter of continuing discussion and fascination[36]. Of particular
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difference κ − κph is the estimated thermal conductivity of
magnons κs in zero B.
Given that Cu(1,3-bdc) is a transparent insulator, it

exhibits a surprisingly large thermal Hall conductivity
(Fig. 2). Above TC, the field profile of κxy is nonmonotonic,
showing a positive peak at low B, followed by a zero
crossing at higher B [see curve at 2.78 K in Fig. 2(a)]. We
refer to a positive κxy as “p type.” Below TC, an interesting
change of sign is observed (curves at 1.74 and 0.82 K). The
weak hysteresis, implying a coercive field < 1500 Oe at
the lowest temperatures, is discussed in the Supplemental

Material [16]. This sign change is investigated in greater
detail in sample 3 [we plot κxy=T in Figs. 2(b) and 2(c)].
The curves of κxy=T above TC are similar to those in sample
2. As we cool towards TC, the peak field Hp decreases
rapidly, but remains resolvable below TC down to 1 K
[Fig. 2(c)]. However, as T → 0.6 K, the p-type response is
eventually dominated by an n-type contribution. The
thermal Hall response in the limit B → 0, measured by
the quantity ½κxy=BT"0 plotted in Fig. 2(d), closely corre-
lates with the growth of κs below TC.
To relate the thermal Hall results to magnons, we next

examine the effect of B on the longitudinal thermal
conductivity κxx. As shown in Fig. 3(a), κxx is initially B
independent for T > 10 K, suggesting negligible interac-
tion between phonons and the spins. The increasingly
strong B dependence observed below 4 K is highlighted
in Fig. 3(b). Despite the complicated evolution of
the profiles, all the curves share the feature that the
B-dependent part is exponentially suppressed at large B,
leaving a B-independent “floor” which we identify with
κphðTÞ [plotted as open symbols in Fig. 1(b)]. Subtracting
the floor allows the thermal conductivity due to spins to be
defined as κsxxðT;HÞ≡ κxyðT;HÞ − κphðTÞ. The exponen-
tial suppression becomes apparent in the scaled plot of
κsxx=T vs B=T [Fig. 3(c)]. The asymptotic form at large B in
all curves depends only on B=T.
In the interval 0.9 K → TC, κsxx displays a V-shaped

minimum at B ¼ 0 followed by a peak at the field HpðTÞ.
Since κs (at B ¼ 0) falls rapidly within this interval due to
softening of the magnon bands [see Fig. 1(b)], we associate
the V-shaped profile with stiffening of the magnon bands
by the applied B. At low enough T (<0.8 K), this stiffening
is unimportant and the curves are strictly monotonic.
We find that they follow the same universal form. To show
this, we multiply each curve by a T-dependent scale factor
sðTÞ and plot them on a semilog scale in Fig. 3(d). In
the limit of large B, the universal curve follows the
activated form

κsxx → Te−βΔ; ð1Þ

with the Zeeman gap Δ ¼ gμBB where β ¼ 1=kBT, μB is
the Bohr magneton, and g the g factor. The inferred value of
g (∼1.6) is consistent with the Zeeman gap measured in a
recent neutron scattering experiment.
For comparison, we have also plotted −κxy=T (at 0.47 K)

in Fig. 3(d). Within the uncertainty, it also decreases
exponentially at large B with a slope close to Δ. Hence,
the exponential suppression of the magnon population
resulting from Δ is evident in both κsxx and κxy.
LHL [13] have calculated κxyðT; BÞ applying the

Holstein-Primakoff (HP) representation below and above
TC, and Schwinger bosons (SBs) above TC. In the ordered
phase, the HP curves capture the sign changes observed in
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FIG. 1 (color online). The in-plane thermal conductivity
κ (in zero B) measured in the kagome magnet Cu(1,3-bdc). At
40–50 K, κ displays a broad peak followed by a steep decrease
reflecting the freezing out of phonons [panel (a)]. The spin
excitation contribution becomes apparent below 2 K. The inset is
a schematic of the kagome lattice with the LRO chiral state [1].
The arrows on the bonds indicate the direction of advancing
phase ϕ ¼ tan−1D=J. Panel (b) plots κ (black symbols) and
κ=T (red) for T < 4.5 K. Below the ordering temperature
TC ¼ 1.8 K, the magnon contribution to κ appears as a prominent
peak that is very B dependent. Values of κ and κ=T at large B
(identified with the phonon background) are shown as open
symbols.
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Hirschberger et al. 2015
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Heat transport in magnets

Two types of heat current
j = jspins + jlattice

Two important effects of spins

rTH

jth = �th ·rT

hot
col

d

1.Spin heat current jspins induced by thermal gradient
2.Scattering of heat-carrying phonons off of spins
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Quasiparticles?
Spin Hamiltonian

H =
1

2

X

hiji

X

µ⌫

Jµ⌫
ij Sµ

i S
⌫
j

• no obvious free particle starting point
• EF → J much smaller

Many (most?) measurements have T>J 
and are not in the QP regime

J

e.g. Tb2Ti2O7



Luttinger theory
Luttinger (1964) formulated thermal conductivity 
as response to a fictional “gravitational field”

µ⌫(!) =
�1

Nuc ! T

Z +1

0
dt ei!th[jµ(t), j⌫(0)]i

Challenging: even when equal-time 
correlations are fully short-range, e.g. βJ≪1,  

the long-time dynamics enters, and this is still 
hard because Ht>>1



Spectral representation
1

2
(µ⌫ + ⌫µ) =

⇡

ZNuc kBT 2

X

m,n

hm|jµ|nihn|j⌫ |mie��En�(En � Em)

1

2
(µ⌫ � ⌫µ) =

�i

ZNuc T

X

m,n

hm|jµ|nihn|j⌫ |mie
��En � e��Em

(En � Em)2

longitudinal

Hall

• Useful for ED calculations

• Can prove thermal Hall vanishes unless 
TRS is broken and SOC present

• Can derive scaling relations



Definition of energy current
see also:

energy density defined on a bond

Ĥ =
X

r

⇢̂r

Noether current 
(energy conservation):

Heisenberg equation 
of motion:

@µĵ
µ = 0 divĵ+ @t⇢̂ = 0i.e.

in the Kubo formulas, j=jtot

similar setup based on Luttinger

@t⇢̂r = �i[Ĥ, ⇢̂r] = �i
X

r0

[⇢̂r0 , ⇢̂r] ⌘
X

r0

jr0r

H. Lee, J.H. Han, P.A. Lee 2015

r

r’jr’r

Break Hamiltonian into sum of local terms

Continuity equation defines the current



Definition of energy current
jr0!r = �i [⇢̂r0 , ⇢̂r]

What does this look like?

⇢̂ ⇠ JSS +BS

j ⇠ JS ⇥ (JSS +BS)

“velocity”

“energy”

explicit forms depend heavily on lattice structure and interactions



Scaling

• Knowing form of current and Luttinger 
response formulae, we find

Cjj(t) = hj(t)j(0)i ⇠ J4/Tf(Jt, T/J,B/T ) = BJ3/T f̃(Jt, T/J)

H ⇠ BJ2/T 2

Z
dt f(t, T/J)


long

⇠ J3/T 2

Z
dt f(t, T/J)



Scaling

• Knowing form of current and Luttinger 
response formulae, we find

Cjj(t) = hj(t)j(0)i ⇠ J4/Tf(Jt, T/J,B/T ) = BJ3/T f̃(Jt, T/J)

H ⇠ BJ2/T 2

Z
dt f(t, T/J)


long

⇠ J3/T 2

Z
dt f(t, T/J)

expect 
constant at 

high T
≈ J T

ϰ 
≈ J
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Calculations

• First ED calculations for the kagomé 
lattice

• 2x2 system (12 spins) set J = 1, Dz = 0.6, D⊥ = 0.5

longitudinal H=0
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Features 
promising 
but finite 

size effects??



Typical states method

• Based on ETH, we expect that the thermodynamic average 
can be replaced by an average over a small number of 
“typical states”within some energy window

• Time evolve these states directly

• This method does not require full diagonalization.

µ⌫(!) =
�1

Nuc ! T

Z +1

0
dt ei!th[jµ(t), j⌫(0)]i

--1 -0.5 0 0.5 1

5
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ED
ETH
Lucile

Kagome, 2# 2, h=0 Benchmark: reproduces 
ED results for upper 
temperature range

will allow up to 18-21 spins
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Two types of heat current
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1.Spin heat current jspins induced by thermal gradient
2.Scattering of heat-carrying phonons off of spins



Phonon heat transport
Can use Boltzmann eqation for phonons

@tNn,k + vn,k ·rrNn,k = ��n,k

 
Nn,k

Neq
n,k

� 1

!
@N̄n,k

@t

����
coll.

scattering from spins

Spin-lattice interactions

Hint ⇠ a† (Sµ + SµS⌫ + · · · ) + a†a (Sµ + SµS⌫ + · · · ) + a†a† (Sµ + SµS⌫ + · · · ) + h.c.+ · · ·

Jahn-Teller coupling: non-Kramers ions



Phonon heat transport
Can use Boltzmann equation for phonons

@tNn,k + vn,k ·rrNn,k = ��n,k

 
Nn,k

Neq
n,k

� 1

!
@N̄n,k

@t

����
coll.

scattering from spins

Spin-lattice interactions

Hint ⇠ a† (Sµ + SµS⌫ + · · · ) + a†a (Sµ + SµS⌫ + · · · ) + a†a† (Sµ + SµS⌫ + · · · ) + h.c.+ · · ·

Hint =
X

k,n

X

r,↵

�n↵(k, r)a
†
k,nOr,↵ + h.c.



Born approximation

transition 
amplitude

first Born 
approximation

second Born 
approximation

�if =
2⇡

~ |Tif|2�(Ef � Ei)pi
transition 

probability

spin-phonon 
product states

transition 
amplitude

does not lead to a Hall 
effect

Tif = hf|Hint|ii
X

n

hf|Hint|nihn|Hint|ii
En � Ei

+

trace over spins �ip,fp =
X

is,fs

p(Eis)�ip,is;fp,fs



First Born Approximation
@N̄n,k

@t

����
coll.

= ��n,k

 
N̄n,k

N eq

n,k

� 1

!

�n,k = 2⇡
X

↵↵0

�n↵(k)�
⇤
n↵0(k)G↵↵0(k,!n,k)

G↵↵0(k,!) =
1

2⇡

X

rr0

eik·(r�r0)

Z 1

�1
dt e�i!t

D
O†

r0,↵0(t)Or,↵(0)
E

�

Single-phonon emission/absorption rate measures dynamical structure 
factor of spin-lattice operator along the phonon dispersion relation

symmetric: no 
Hall effect

ph
µ⌫ =

1

V

X

n,k

��1
n,kv

µ
nkv

⌫
nk

✏2nk
4T 2

1

sinh2(�✏nk/2)



2nd Born Approximation

Second order scattering violates detailed balance: allows 
“skew-scattering” processes that induce Hall effect.

c.f. Mori, Spencer-Smith, Sushkov, Maekawa 2014

General expression is complicated, but

�nk,n0k0 ⇠ FT
⇥⌦Or4(t4)O†

r3(t3)Or2(t2)O†
r1(t1)

↵⇤

intriguing “out of time ordered” correlator of spin 
system controls phonon skew scattering 

challenging to calculate but in progress...



Summary
I. SYK model of a strongly correlated 

metal: FL to NFL crossover and a 
disordered strange metal

II. Heat transport in spin systems - 
towards a non-quasiparticle description 
(progress report)
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which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
X

p

Z +1

�1
d!'c,!(i!2 � D'p2!)'q,�!. (9)

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. The


