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Transport

1 =0k Je = —KVT

® Arguably most important aspect of quantum
materials: electrical and thermal conductivity
(and crossed coefficients)

® Sensitive, versatile

® Probes extreme long wavelength, low
frequency



Theory

® Understanding ot transport mainly
through quasiparticle picture

® Boltzmann equation:

[at+vn(k)'vr_€E'Vk] fn — %

collision

Linearizing this around equilibrium gives conductivities
in terms of band velocities and scattering rates



Fermi Liquid Theory

Landau provided justitfication for
quasiparticle picture in metals
when T << Ef

. | .
scattering is weak because

E = E ekénk _|_ — E Uk L’ 5nk5nk/ not so many low energy gp

k k’ states to scatter to

Low energy excitations act like
electrons and holes but with
wavefunction dressing (Z<1), effective
mass, and Landau interactions




This talk

o,

l. SYK model of a strongly correlated “
metal: FL to NFL crossover and a

disordered strange metal

II. Heat transport in spin systems -

towards a non-quasiparticle description
(progress report)



Non-Fermi Liquids
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T-linear resistivity is challenging theoretically:

|f even "bad"” quasiparticles exist, it is difficult to

make them scatter strongly on the entire Fermi
surface

*|f no quasiparticles exist, what is the starting point?



Sachdev-Ye-Kitaev model

A toy exactly soluble model
of a non-Fermi liquid

_ E AT T
i<j, k<l

202

Uiiki]|? = N3

Like a strongly interacting quantum dot
or atom with complicated Kanamori
interactions between many “orbitals”



SYK Model

Sachdev-Ye, 1993: Model has a soluble large-N limit

Y — N +O(1/N)
K_(/

In equations: very similar to DMFT:

G(iwy) = - ! N(1) = —U?G(1)*G(-T)

Wy, — (1w,

Solution:

{ G(iw) ~ 1/y/w ] not a pole: non-Fermi liquid




SYK Model

Why not quasiparticles?

Georges, Parcollet, Sachdev, 2001: ground state entropy!

S/N

(at half-filling)

U T
Many states available for scattering

“level spacing” ~ U exp(-Nso)



Density dependence

N 1
H— H—uN N = e O—1__=
2. v
Entropy .| ' | Energy
: Q
Davison et al, arXiv:1612.00849 schematic

e Compressibility is constant at T=0
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SYK Summary

e Compressible

* Non-Fermi liquid

* Ground state entropy | S(T =




SYK Summary

e Compressible =f)=""

* Ground state entropy | S(T'=0)/N = .46...

* Non-Fermi liquid \ Gliw) ~ 1/
Chaos Holography
(00,01 (1)) ~ e
\; — QWI;BT

slide from D. Stanford, IAS, 2017



Building a metal

t U

=3 Y Uijuacl,c NS tiawe]
H — p D U’L]kl,il?czxcja’;ckxclx _I_ Ly Ly t’bjaxm’ci,atcj,:c’

r 1<j,k<l (xx’) 7

|tij,x,x’|2 = t%/N



Building a metal

Other work: 2-electron hopping

Y.Gu et al, arXiv:1609.07832
R. Davison et al, arXiv:1612.00849

— S | S ‘ y T Z Z N T
H — y -, Uljkl,xczxcjxckxclx —|_ t,l’]kl7x$/C’I;,xcj,xck,xlcl,x/ —|_ h.C.

x i<j,k<l (xzx') 7

Omitting relevant 1-electron hopping leaves system NFL even at T=0



Building a metal

t U

=3 Y Uijuacl,c NS tiawe]
H — p D U’L]k‘l,wczgjc]ajckgjclq; _I_ Ly Ly t’bjawfc’ci,atcj,x’

r 1<7,k<l <:Ijaj’> 1,7

?-.5 S com petition! %)

‘l‘ t/U«1 interesting Q




Selt-consistent equations

U

‘ G(iw,)™" = iw, + u — Zy(iw,) — 2t5G(iw,),
24(1) = —U2G(1)*G(-7),
) i) =ta

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with

double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999



Coherence scale

* ‘ G(iwy) ™! = iw, + 1t — Zaliw,) — ZI(Z)G(iwn),
o 24(1) = ~UG(t)*G(~71),
‘ 9 G (iw) = tG(iw)

- 1
Resca ||ng W = %, T=1E G(iw) = iG(iw) B(iw) = B(iw)/t t = (%) 2 ¢
Gliw) = gri — X(iw) $(7) = —G()G(-7) + 2G(D),

. . _
For t«U, a single universal coherence scale appears [Ec =— ]




Coherence scale

We solve these equations in a real time Keldysh formulation
numerically and determine asymptotics analytically.

x10™%

Narrow “coherence peak” appears in
spectral function: heavy quasiparticles
form for TKE,

wl(27 T) Quasiparticle weight [Z ~t/ U]




Entropy
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Universal scaling forms

S/N = S(T/E.)
C/N =T/E.S'(T/E,)

Level repulsion: entropy is released for T<E.!
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Compressibpility

For t«U, compressibility is almost unaffected by hopping

_ 99
- 5

1.04 U

" —T <7~

p=0

??How to reconcile with Sommerfeld enhancement??

* Fermi liquid theory: compressibility is renormalized
by Fermi liquid parameter F = g(Ef) Ur

4 )

> F~(%>2>>1

/K ~ (U/t)’ \ )

y/K = (1 + F)




Transport

Quasiparticle picture applies only for T<E.

More generally, we use hydrodynamics
| -l

%
o = Jim iy — 5= Drn(p, @)

4 Calculate density response
using Keldysh method.

- 4+ Do analogously for thermal
e conductivity

N.B. Because of randomness, momentum is not a hydrodynamic variable



Generalized

resistivity
scaling
Fermi liquid “l
R=R0+AT2 .
for T<E-

10}

Transport

pe =T/K

pc=1/c

1
p(to, T < Up) = NRK(ELC)
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Linearin T for
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Crossover from heavy FL to strange metal



Transport ratios

Kadowaki-Woods pi(T < E.) = pr(0) + AT?

A~ 1/(NE?)
recall v~ 1/E.

) 5| independent of
»[KW = A/(N7)? ~ 1/N] "

|l orenz
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¢ Small coherence scale E.=t4/U

e Heavy mass y~m*/m ~ U/t
e Small QP weight Z ~ t/U

Kadowaki-Woods A/y? = constant
_inear in T resistivity and T/k

| orenz ratio crosses over from FL to NFL value



Where is this going?

Similarity with DMFT is encouraging: can we bootstrap
this to a more realistic treatment of incoherent metals?

® Translational invariant SYK lattice model

H = ;1 Y Uzgklcm ]xckxclg; —1 Z Zczx zx

T i<j k<l

®| arge N equations
Gk, iwn) ™t = dwn, — (k) — Sk, iwy), describes NFL to FL

S(w,7) = ~URG(w,7)2G(~w,—7), crossover.
Similarities to DCA?

® Apply to realistic band structures



This talk

. SYK model of a strongly correlated
metal: FL to NFL crossover and a
disordered strange metal

ll. Heat transport in spin systems -
towards a non-quasiparticle
description (progress report)




?.
C
?.Ln_m
%c
C
= O
c @©
T
W O
._ﬂ.a“
c
=3
O




Heat transport in magnets

Insulating magnet: typically heat is the
only possible transport measurement

* Probes extended nature of excitations at ultra-
low frequency

e Automatically removes contributions from
localized nuclei and isolated defects, which may
carry large entropy



Heat transport in magnets

Insulating magnet: typically heat is the
only possible transport measurement
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Heat transport in magnets

~N

T
[ —

¢

jth = —Kyp, - VI
\_ J

Two types of heat current
j — jspins + jlattice

Two important effects of spins

1.Spin heat current jsins induced by thermal gradient
2.Scattering of heat-carrying phonons off of spins



Heat transport in magnets

~
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jth = —Kyp, - VI
J

Two types of heat current
j — jspins + jlattice

Two important effects of spins

1.Spin heat current jsoins induced by thermal gradient

2.Scattering of heat-carrying phonons off of spins



Quasiparticles?

Spin Hamiltonian

H = S‘ > JEStsy

(ig) mv
* no obvious free particle starting point
® Er = J much smaller
50 s 100 150
Many (most?) measurements have T>J ¢ campie |
and are not in the QP regime | //.‘\ o A
. T
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Luttinger theory

Luttinger (1964) formulated thermal conductivity
as response to a fictional “gravitational field”

[W(m o em<[j“<t>,j”<o>]>]

Challenging: even when equal-time

correlations are fully short-range, e.g. BJ«1,

the long-time dynamics enters, and this is still
hard because Ht>>1



Spectral representation

Ve

) ) 1
longitudinal Z(kMY 4 gVH) = 1 v —BEn, _
g 2("6 + kF) N hnT? ;(mb In)(n|j”|m)e (B, — Ep)

\_
4

1 v 1% _i : -V e_BEn _ 6_ﬁEm
Ha” 5(/{“ — K N) = ZNUCT Z<m‘ju‘n><n‘] ‘m> (En . Em)Z

m,n

-

o Useful for ED calculations

e Can prove thermal Hall vanishes unless
TRS is broken and SOC present

e Can derive scaling relations



Definition of energy current

seealso: H. Lee, J.H. Han, PA. Lee 2015 similar setup based on Luttinger
energy density defined on a bond

Break Hamiltonian into sum of local terms
H=Y pr
Continuity equation defines the current

Noether current 8}1“/]\"“ — ie. lej —|— atﬁ — O

(energy conservation):

I'/

Heisegf:gﬁiitfation 875,61' — —’L[H, ﬁr] _[—'L Z[ﬁr/, ﬁr] — Z jr/r J

in the Kubo formulas, j=jtot



Definition of energy current

[ jr’—w = [ﬁr’;ﬁr] J

What does this look like?
5~ JSS + BS

j o~ JS x (JSS + BS)

4
~
0 e
;s =
< S,

-
- -

explicit forms depend heavily on lattice structure and interactions



Scaling

® Knowing form of current and Luttinger
response formulae, we find

CH(t) = (j(t)j(0)) ~ J*/T f(Jt,T/J,B/T) = BJ* /T f(Jt,T/J)

ki ~ BJ?/T? /dt f(t,T/J)

Rlong ™ JB/T2 /dtf(taT/‘])



Scaling

® Knowing form of current and Luttinger
response formulae, we find

CH(t) = (j(1)j(0)) ~ J*/Tf(Jt,T/J, B/T) = BJ*/Tf(Jt,T/J)

kg ~ BJ?/T?

expect

constant at
Ii]ong ~J JS/T2

high T

o ¢
o7
Vie e

not quasiparticle
&g 58 behavior
)
Ne)

Sf(y

g

H\V



Calculations

set]=1,D,=0.6,D,=0.5

e 2x2system (12 spins)

® First ED calculations for the kagomé

lattice

J=1,D,=06,D,=0.5h=0, ED

0.05¢

~

longitudinal H=0

h,

/
B=045J=1,D,=06, D, = 0.5, time-ED
(Kyy—Kyx)/2
0.00005f
02 0.2 0.4
-0.00005} slope = -0.00025
-0.00010}
-0.00015f
Hall
-

linear in H at small H

Features

promising

but finite
size effects??



Typical states methoo

—1

R (w) = N,.wT

+0oo ,
/O dt ™! ([j* (), 7 (0)])

® Based on ETH, we expect that the thermodynamic average
can be replaced by an average over a small number of
“typical states”within some energy window

® Time evolve these states directly

® This method does not require full diagonalization.

03

025+

02F

0.15+

Benchmark: reproduces
ED results for upper
temperature range

0.1r

“005f
ol
005}
0.1}

-0.15

-0.2

will allow up to 18-21 spins



Heat transport in magnets
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Two types of heat current
j — jspins + jlattice

Two important effects of spins

1.Spin heat current jsins induced by thermal gradient

2.Scattering of heat-carrying phonons off of spins



Phonon heat transport

Can use Boltzmann eqgation for phonons

6th,k + Vn k- Vr]\[n,k — \

scattering from spins

Spin-lattice interactions

Hine ~a' (S* 4+ S#SY +---) +a'a (S* +S"S” +---)+a'a (S +S*SY +---) + hc. + - -

\

Jahn-Teller coupling: non-Kramers ions



Phonon heat transport

Can use Boltzmann equation for phonons

6th,k + Vn k- Vr]\[n,k — \

Spin-lattice interactions

Hine ~at (S* + 5#8Y + .. )

\
\

Hi = Z Z Ana (K, r)aL,n(’)r,@ + h.c.

k,n r,a



Born approximation

transition
probability
transition
amplitude Tif —

trace over spins

spin-phonon transition
product states amplitude

\,& 2T l 5
if — —’Tif’ 5(Ef — Ei)pi

(f|Hint|n) (n|Hiy
<f’Hint‘ 4+ Z | t| | t|>

first Born second Born
approximation approximation
\7&399’ e 1 0°1°
| d a Hall

Fip,fp Z p zp is;fp,f



First Born Approximation

a]\_]'n,k — T X Nn,k 1
coll. Nn,k

ot

Single-phonon emission/absorption rate measures dynamical structure
factor of spin-lattice operator along the phonon dispersion relation

€2, 1 symmetric: no
h v
Z Fn kvnk nk 4T2 h2 2
sinh”(fenk/2) Hall effect



2nd Born Approximation

Second order scattering violates detailed balance: allows
"skew-scattering” processes that induce Hall effect.

c.f. Mori, Spencer-Smith, Sushkov, Maekawa 2014

General expression is complicated, but
Fnk,n’k’ ~ FT [<O7’4 (t4)0i3 (t3)07“2 (tQ)Oil (tl)ﬂ

intriguing “out of time ordered” correlator of spin
system controls phonon skew scattering

challenging to calculate but in progress...



Summary

. SYK model of a strongly correlated
metal: FL to NFL crossover and a
disordered strange metal

I. Heat transport in spin systems -
towards a non-quasiparticle description
(progress report)
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