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Topics

® | ow energy structure factor of Kitaev's
gapless QSL

® A bosonic SPT phase in experiment
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Part 1

Kitaev QSL

Kimchi, Jackeli, Lemmens, Nagler, Hermanns, Manna, Valenti

We heard a lot about this
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Gapless Majoranas
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All the excitations

Majorana € Flux e, m

In Kitaev’s model:
* Majorana’s dispersion ~ K and gapless
* Fluxes are localized and gapped



Spin correlations

S

Because fluxes are created
® Spectral weight is zero below the flux gap E s
® Correlations vanish beyond NNs




Universality

® \We know the gapless QSL is locally stable
provided time-reversal is maintained, but
is this the generic behavior?

® NN correlations? Obviously extended
by perturbations.

® Gap? This is less obvious. Is there a
selection rule?



® Generically, there is not a gap in the
structure factor

® |nstead, power-law weight appears

within two Dirac cones centered around
k=0 and k=K 3.0
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® Generically, there is not a gap in the
structure factor

® |nstead, power-law weight appears
within two Dirac cones centered around

k=0 and k=K




Why?

e Quasiparticles

® A |attice operator can be expanded in a series of
quasiparticle operators, which create exact eigenstates
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I\/Iicroscopic origin

® A simple view: perturbations to Kitaev mix virtual
excitations into ground state, which can cancel the
flux introduced by naive spin operator

® Surprisingly, this does not occur for the Heisenberg-
Kitaev model due to “dihedral” symmetry

every spin is odd under 2
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A Y, 4= H Vi of these generators



I\/Iic:rosc:opic: origin

® A simple view: perturbations to Kitaev mix virtual
excitations into ground state, which can cancel the
flux introduced by naive spin operator

JS S; + KSIS" +T(s¢87 + 875%)] Rau, Lee, Kee
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Field theory

® Highbrow picture: effective field theory

® A lattice operator can be expanded at low energy in a
series of “primary fields”. The coefficient are
constrained by symmetry and depend on microscopics
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® Amusing similarity to 1d Heisenberg chain



® Generically, there is not a gap in the
structure factor

® |nstead, power-law weight appears
within two Dirac cones centered around

k=0 and k=2K




Part 2

SPT phases

Symmetry protected topological order

From Wikipedia, the free encyclopedia

Symmetry Protected Topological order (SPT order)['] is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a

finite energy gap.

To derive the results in a most-invariant way, renormalization group methods are used (leading to equivalence classes corresponding to certain fixed points).[']

The SPT order has the following defining properties:

(a) distinct SPT states with a given symmetry cannot be smoothly deformed into each other without a phase transition, if the deformation preserves the symmetry.
(b) however, they all can be smoothly deformed into the same trivial product state without a phase transition, if the symmetry is broken during the deformation.

Using the notion of quantum entanglement, we can say that SPT states are short-range entangled states with a symmetry (by contrast: for long-range
entanglement see topological order, which is not related to the famous EPR paradox). Since short-range entangled states have only trivial topological orders we

may also refer the SPT order as Symmetry Protected "Trivial" order.

Contents [hide] A list of bosonic SPT states from group cohomology [ **! [G, U(1 )] %B‘Ai:l H* [G, z'TOdH_"'] (Z; = time-reversal-symmetry group)
1 Characteristic properties of SPT order symm.group | 1+1D 2+1D 3+1D 4+1D comment
2 Relation between SPT order and (intrinsic) topological order 0 0 |z |0 2y iTO phases with no symmetry: ; 7O*+1
3 Examples of SPT order U(1) ZQT Zy | Zy |27y + Zy Z @ Zy + Z | bosonic topological insulator

Z; Zy |0 Zo+2Zy |0 bosonic topological superconductor

4 Group cohomology theory for SPT phases Z, AR 7.+ 7,
5 A complete classification of 1D gapped quantum phases (with interactions) U(1) 0o |z o Z+Z 241D quantum Hall effect
6 See also SO(3) Z, |Z |0 Zy 1+1D:Haldane phase; 2+1D: spin Hall effect
7 References SOB)x Zy 22y |Z, 3Zy+Zy 22,

Zo X Zo X Z3 |42 |62 |92 + 25 |122Z5 + 22>

A big subject for theorists



SPT phases

® An SPT phase is:

® A gapped state which can be deformed to a
product state it and only if a symmetry broken
during the deformation

® A state with usually gapless but always
anomalous states at its boundary

® A generalization of topological band insulators
to interacting systems, spins, bosons etc.



The examples

Topological insulator
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Bosonic SPTs in d>17

28 xtm

SU(2)

'- YM Liu + Vishwanath - K-matrix theory in 2d

(C) Time reversal & U(1),y...e SYmmetry: ? 2 v\ T J
Z , classes. Non—chira?l édge. S = E d”xdt [(IJEIu CLM 81/00\

all these states have a c=1 Luttinger liquid edge



Any models?

® Tensor network constructions

® [evin-Gu model

H =-) B,
P

® Coupled wires




Graphene

® Kane+Mele: QSHE at zero field in graphene
from SOC - but tiny effect

® Abanin, Lee, Levitov: “take” QSHE in
graphene due in gquantum Hall regime

"helical” edge
/
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Graphene “QSHE"

edge is spin-momentum locked
H =1 /da; :w};&ﬁwR — wzﬁme]
—iv [z [10.0, ~v[0.)]

This is a “Fermionic SPT"

*Backscattering is prohibited by spin-conservation
symmetry (excellent approximation since SOC
weak)




Bilayer graphene
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Maher et al, 2013

If spin is conserved, this is characterized by
spin Chern number 2

Edge has two helical fermionic edge states



Interactions
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backscattering Hps = g/dx [wIRwlegL%R + h.c.]
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a single bosonic helical edge



How to get this

Bosonization iy L/Ra% 1/r — Ya: Pa
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1 II

Interaction induces gap for “-" sector

Hyg ~ g/cos 20 _

Only symmetric sector remains
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SPT?

é—) v 5 U 9
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® How is it different from just a spin-
oolarized quantum wire (which has the

same bosonized Hamiltonian)?

® Symmetry: U(l). x U(1),
® Charge conservation: 0 — 0+«

® Spin conservation: b — ¢+ a




Bosonic?
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® All fermionic excitations are gapped

® Excitations of even number of fermions
are gapless. Primarily:

+ Singlet pairs €apPiatza ~ €

+ Neutral spins Yl — Yhaty, ~ €



Bosonic?
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c.f. Senthil-Levin, 2012
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® |detKl=1:noanyons

e diag (K) = (0,0): bosonic quasiparticles



Potential experiments
Y

3 Can one identity it?
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® [Existing:
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® New?

® Tunnel into edge: single-e gap

® Shot noise: charge 2e



Summary

Generic structure Bosonic SPT probably
factor of Kitaev QSL already exists in graphene

Thanks for a great conference!
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