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• A bosonic SPT phase in experiment
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Kitaev QSL

We heard a lot about this

Kimchi, Jackeli, Lemmens, Nagler, Hermanns, Manna, Valenti
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Low energy



All the excitations

Majorana Flux

In Kitaev’s model:
• Majorana’s dispersion ~ K and gapless
• Fluxes are localized and gapped

" e,m



Spin correlations

�z
i i =

Because fluxes are created
• Spectral weight is zero below the flux gap
• Correlations vanish beyond NNs



Universality
• We know the gapless QSL is locally stable 

provided time-reversal is maintained, but 
is this the generic behavior?

• NN correlations?  Obviously extended 
by perturbations.

• Gap?  This is less obvious.  Is there a 
selection rule?



Answer

• Generically, there is not a gap in the 
structure factor

• Instead, power-law weight appears 
within two Dirac cones centered around 
k=0 and k=K

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space

S(q ⇠ 0, i!) ⇠
Z
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Since G(i!,k)
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1
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, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
! ,!1 ! !1

! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
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where b0 denotes the complementary sublattice of b.
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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benefitted from the facility of the KITP, supported by NSF
grant PHY11-25915.
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Answer

• Generically, there is not a gap in the 
structure factor

• Instead, power-law weight appears 
within two Dirac cones centered around 
k=0 and k=K
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required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
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zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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Why?
• Quasiparticles 

• A lattice operator can be expanded in a series of 
quasiparticle operators, which create exact eigenstates
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Microscopic origin
• A simple view: perturbations to Kitaev mix virtual 

excitations into ground state, which can cancel the 
flux introduced by naive spin operator

• Surprisingly, this does not occur for the Heisenberg-
Kitaev model due to “dihedral” symmetry

X,Y, Z =
Y

i

�µ
i

every spin is odd under 2 
of these generators



Microscopic origin
• A simple view: perturbations to Kitaev mix virtual 

excitations into ground state, which can cancel the 
flux introduced by naive spin operator

Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit

Jeffrey G. Rau,1 Eric Kin-Ho Lee,1 and Hae-Young Kee1,2,*
1Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

2Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada
(Received 5 November 2013; published 20 February 2014)

Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates,
originating from oxygen-mediated exchange through edge-shared octahedra. However, for the jeff ¼ 1=2
Mott insulator in these materials, exchange from direct d-orbital overlap is relevant, and it was proposed
that a Heisenberg term should be added to the Kitaev model. Here, we provide the generic nearest-neighbor
spin Hamiltonian when both oxygen-mediated and direct overlap are present, containing a bond-dependent
off-diagonal exchange in addition to Heisenberg and Kitaev terms. We analyze this complete model using a
combination of classical techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic
phases, 120° and incommensurate spiral order, as well as extended regions of zigzag and stripy order.
Possible applications to Na2IrO3 and Li2IrO3 are discussed.

DOI: 10.1103/PhysRevLett.112.077204 PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

The honeycomb family of iridium oxides [1–11] has
attracted a considerable amount of attention [12–17,17–20]
due to the possibility they lie near a realization of Kitaev’s
exactly solvable spin-1=2 honeycomb model [21]. This
model hosts a number of remarkable features: a Z2 spin
liquid with gapless Majorana fermions and (non-Abelian)
anyonic excitations under an applied magnetic field.
No symmetry principle excludes terms besides the
Kitaev, so additional interactions are generically expected.
From microscopic calculations of exchange mediated
through the edge-shared oxygen octahedra, it has been
proposed that a pure Kitaev model of jeff ¼ 1=2 spins was
the appropriate description [22]. It was further suggested
that direct overlap of the d orbitals generalizes this to a
Heisenberg-Kitaev (HK) model [13], linearly interpolating
between an isotropic Heisenberg model and Kitaev’s bond-
dependent exchange Hamiltonian. Extensive study of the
HK model [23–28] has shown a variety of fascinating
phenomena, including an extended spin liquid phase and
quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase
seen in Na2IrO3 [2,4,6] is difficult to stabilize within the
HK model; one must resort to additional t2g − eg exchange
paths [18] or further neighbor hoppings [14]. In light of
this puzzle, one may question whether the HK model
provides an adequate description of the honeycomb iridates
even at the nearest-neighbor level.
In this Letter, we show that when applied to the

honeycomb iridates the HK model is incomplete, explicitly
deriving the jeff ¼ 1=2 spin model from a multiorbital t2g
Hubbard-Kanamori Hamiltonian. Considering the most
idealized crystal structure, an additional spin-spin inter-
action beyond the HK model must be included: bond-
dependent symmetric off-diagonal exchange. The complete
spin Hamiltonian has the form

H ¼
X

hiji∈αβðγÞ
½JS⃗i · S⃗j þ KSγi S

γ
j þ ΓðSαi S

β
j þ Sβi S

α
j Þ&; (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and Γ denotes the symmetric off-diagonal exchange. On
each bond, we distinguish one spin direction γ, labeling the
bond αβðγÞwhere α and β are the two remaining directions.
Examining the phase diagram using a combination of
classical arguments and exact diagonalization, we find that
with the inclusion of Γ, new magnetic phases are stabilized
near the Kitaev limits: an incommensurate spiral (IS) and
120° order, in addition to extended regions of zigzag and
stripy order.

FIG. 1 (color online). Crystal structure of the honeycomb
iridates A2IrO3 with Ir4þ in black, O2− in white, and
A ¼ Na2þ;Li2þ in gray. For the Kitaev and bond-dependent
exchanges we have denoted the yzðxÞ bonds blue, the zxðyÞ
bonds green, and the xyðzÞ bonds red.
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Field theory
• Highbrow picture: effective field theory

• A lattice operator can be expanded at low energy in a 
series of “primary fields”.  The coefficient are 
constrained by symmetry and depend on microscopics

• Amusing similarity to 1d Heisenberg chain

Mµ
s(i) ⇠  † Nµ

s(i) ⇠  @ 

�µ
i ⇠ Mµ

s(i)(xi) + Re
h
Nµ

s(i)(xi)e
iK·xi

i



Answer

• Generically, there is not a gap in the 
structure factor

• Instead, power-law weight appears 
within two Dirac cones centered around 
k=0 and k=2K

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space
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(i!1,k1)}.(10)
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, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
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! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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SPT phases

A big subject for theorists

Part 2



SPT phases
• An SPT phase is:

• A gapped state which can be deformed to a 
product state if and only if a symmetry broken 
during the deformation

• A state with usually gapless but always 
anomalous states at its boundary

• A generalization of topological band insulators 
to interacting systems, spins, bosons etc.



The examples
Topological insulator

TR-breaking

Haldane/AKLT chain - a bosonic SPT

8.2. AKLT/Haldane chain

A(1) = �|#ih" |, A(0) =
1p
2
(|"ih" |� |#ih# |) , A(�1) = |"ih# |.

Up to normalization and overall phase of the wavefunction, this agrees with
“standard” MPS notations for the AKLT state, e.g. on wikipedia.

With periodic boundary conditions the AKLT state is unique. Using the
MPS formulation it is easy to compute correlation functions in the state. One
can see then directly that they are all short-range. The spin-spin correlation
function, and all other connected correlation functions, decay exponentially.
Thus we can view the AKLT state as a realization of Haldane’s proposal that
a spin-1 antiferromagnetic chain is disordered. It also has a spin gap, which
physically means that to excite away from the ground state, some singlets
of the AKLT state must be broken. However, while the excitations have been
computed variationally and numerically, they are not known exactly for the
AKLT state.

What was not appreciated even by AKLT so far as I know was the topo-
logical character of the state. This becomes apparent only when it is written
for a finite open chain rather than a periodic one. Then we can still follow
the auxiliary spin construction, and succeed in find ground states by forcing
total spin < 2 on all the bonds by forming singlets between auxiliary spins.
However, in this case, there are two auxiliary spins left out at the ends of the
chains:

(352) |Yiopen
AKLT =

The outermost (first and last) auxiliary spins (solid dots in the diagram) are
completely free. So one can construct 4 linearly independent auxiliary states,
and project each of them to obtain AKLT ground states. These states clearly
have a net spin-1/2 at each end. This is something amazing! We start with a
collection of s = 1 spins, which by the rules of angular momentum addition
can only produce total spin with integer values, and we end up with effec-
tively 2 s = 1/2 spins at the ends! These days it is fashionable to call this
“symmetry fractionalization”. Regardless of the name, it is very cool.

The presence of the s = 1/2 end spins is a robust feature of a phase. It
persists as long as the spin-rotation symmetry of the Hamiltonian is preserved
(in fact other symmetries can protect the boundary spins as well), and the
bulk gap of the spectrum is maintained, i.e. until a quantum phase transition
occurs. One can see this by continuity. It is best to think of a semi-infinite
chain, which has then only one s = 1/2 spin, i.e. a two-fold ground state
degeneracy. To remove the s = 1/2 spin degeneracy of the ground state, some
other level would need to cross the ground state. If this happens in the bulk, it
is a phase transition. Can a level crossing occur at the edge? For some models,
additional bound states can appear at the edge, but these must be built out
of the excitations in the bulk, which have integer spin. So any such state will
have an integer spin plus the original half-integer boundary spin, and so has
a total half-integer spin, and in particular a total spin zero is impossible. Thus
any levels that are below the bulk gap must have a half-integer spin, and
consequently a minimal two-fold degeneracy. Crossing of such a level with
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have a net spin-1/2 at each end. This is something amazing! We start with a
collection of s = 1 spins, which by the rules of angular momentum addition
can only produce total spin with integer values, and we end up with effec-
tively 2 s = 1/2 spins at the ends! These days it is fashionable to call this
“symmetry fractionalization”. Regardless of the name, it is very cool.

The presence of the s = 1/2 end spins is a robust feature of a phase. It
persists as long as the spin-rotation symmetry of the Hamiltonian is preserved
(in fact other symmetries can protect the boundary spins as well), and the
bulk gap of the spectrum is maintained, i.e. until a quantum phase transition
occurs. One can see this by continuity. It is best to think of a semi-infinite
chain, which has then only one s = 1/2 spin, i.e. a two-fold ground state
degeneracy. To remove the s = 1/2 spin degeneracy of the ground state, some
other level would need to cross the ground state. If this happens in the bulk, it
is a phase transition. Can a level crossing occur at the edge? For some models,
additional bound states can appear at the edge, but these must be built out
of the excitations in the bulk, which have integer spin. So any such state will
have an integer spin plus the original half-integer boundary spin, and so has
a total half-integer spin, and in particular a total spin zero is impossible. Thus
any levels that are below the bulk gap must have a half-integer spin, and
consequently a minimal two-fold degeneracy. Crossing of such a level with
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(a) (b)

FIG. 4. (Color online) Transforming a SRE state to a tensor-
network state which takes simple canonical form. (a) A SRE state.
(b) Using the unitary transformations that act within each block, we
can transform the SRE state to a tensor-network state. Entanglements
exist only between the degrees of freedom on the connected tensors.

below, to the right, and to the lower right of the middle square.
We can use the LU transformation inside the middle square to
move all those degrees of freedom to the lower-right corner of
the middle square. Similarly, we can use the LU transformation
to move all the degrees of freedom that are entangled with the
three squares below, to the left, and to the lower-left of the
middle square to the lower-left corner of the middle square, etc.
Repeat such operation with every square and we obtain a state
described by Fig. 4(b). For stabilizer states, such reduction
procedure has been established explicitly.83

Figure 4(b) is a graphic representation of a tensor-network
description of the state.84–90 In the graphic representation, a
dot with n legs represents a rank n tensor (see Fig. 5). If
two legs are connected, the indexes on those legs will take
the same value and are summed over. In the tensor-network
representation of states, we can see the entanglement structure.
The disconnected parts of the tensor network are not entangled.
In particular, the tensor-network state Fig. 4(b) is a direct
product state.

If there is no symmetry, we can transform any direct product
state to any other direct product state via LU transformations.
So all SRE states belong to one phase.

B. Cases with an on-site symmetry

However, when we study phases of systems with certain
symmetry, we can only use the LU transformations that respect
the symmetry to connect states within the same phase. In this
case, even SRE states with the same symmetry can belong to
different phases.

Let us consider d-dimensional systems of N sites that
have only an on-site symmetry group G. We also assume
that the states |m⟩ on each site form a linear representation
Umm′ (g), g ∈ G of the group G.

To understand the structure of quantum phases of the
symmetric states that do not break the symmetry G, we can

(a)

α
(b)

β
m

β

(d)(c)

m
α αm

β

λ
γ α

FIG. 5. (Color online) Graphic representations of tensors: (a) Am
α ,

(b) Am
αβ , and (c) Am

αβγλ. (d) A corner represents a special rank-2 tensor
Aαβ = δαβ .

FIG. 6. (Color online) A tensor network representation of a SRE
state with on-site symmetry G. All the dots in each shaded circle form
a site. The degrees of freedom on each site (i.e., in each shaded circle)
form a linear representation of G. However, the degrees of freedom
on each dot may not form a linear representation of G.

only use symmetric LU transformation that respects the on-site
symmetry G to define phases. Two gapped symmetric states
are in the same phase if and only if they can be connected by
a symmetric LU transformation.18

We have argued that generic LU transformations can change
a SRE state in Fig. 4(a) to a tensor-network state in Fig. 4(b).
The LU transformations rearrange the spatial distributions of
the entanglements which should not be affected by the on-site
symmetry G. So, in the following, we would like to argue that
symmetric LU transformations can still change a SPT state
in Fig. 4(a) to a symmetric tensor-network state in Fig. 4(b)
(although a generic proof is missing).

We first assume that symmetric SRE states have tensor
network representation as shown in Fig. 6. The linked dots
represent the entangled degrees of freedom. The dots in
each shaded circle represent a site, which forms a linear
representation of the on-site symmetry group G. We then
divide the systems into large squares (see Fig. 6). The size
of the square is large enough that entanglement only appears
between squares that share an edge or a vertex. Now we view
the degrees of freedom in each square as a large effective site.
The degrees of freedom on each effective site form a linear
representation of G. Now, we can use an unitary transformation
in each square to rearrange the degrees of freedom in that
square (which corresponds to change basis in the large effective
site). This way, we can transform the SPT state in Fig. 6 into
the canonical form in Fig. 4(b), where the degrees of freedom
on each shaded square form a linear representation of G. So
Fig. 4(b) is a symmetric tensor-network state. We would like
to point out that although in Fig. 4(b), we only present a 2D
tensor-network state in canonical form, the similar reduction
can be done in any dimension.

V. CLASSIFICATION OF SYMMETRY
TRANSFORMATIONS OF SPT STATES

After the symmetric state is reduced to the canonical form in
Fig. 4(b), the on-site symmetry transformation is generated by
the following matrix on the effective site i : U i

α1α2α3α4,α
′
1α

′
2α

′
3α

′
4
,

which forms a linear representation of the on-site symmetry
group G. The symmetry transformation U i

α1α2α3α4,α
′
1α

′
2α

′
3α

′
4

keeps
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TABLE I. (Color online) SPT phases of interacting bosonic systems in d-spatial dimensions protected by on-site symmetry G. In absence
of translation symmetry, the above table lists H1+d [G,UT (1)] whose elements label the SPT phases. Here Z1 means that our construction only
gives rise to the trivial phase. Zn means that the constructed nontrivial SPT phases plus the trivial phase are labeled by the elements in Zn. ZT

2
represents time-reversal symmetry, “trn” represents translation symmetry, U (1) represents U (1) symmetry, Zn represents cyclic symmetry, etc.
Also, (m,n) is the greatest common divisor of m and n. The red rows are for bosonic topological insulators and the blue rows bosonic topological
superconductors. The red/blue rows without translation symmetry correspond to strong bosonic topological insulators/superconductors and the
red/blue rows with translation symmetry also contain weak bosonic topological insulators/superconductors.

nontrivial SU (2) SPT phases in (2 + 4n) spatial dimension.
Those SU (2) SPT phases labeled by k ∈ Z. There is no
nontrivial SU (2) SPT phase in other dimensions. Similarly,
those SU (2) SPT phases in 2D can be described by continuous
nonlinear σ model with 2π -quantized topological θ term:

S =
∫

dτd2x

(
1

2ρ
Tr(∂µg†∂µg)

+ i
θ

2π2

ϵµνλ

6
1
2

Tr[(g−1∂µg)(g−1∂νg)(g−1∂λg)]
)

, (3)

where g(x,t) is a 2 × 2 matrix in SU (2) and θ = 2πk, k ∈ Z.

C. U(1) SPT states

From H1+d [U (1),U (1)] = Z for even d and
H1+d [U (1),U (1)] = Z1 for odd d, we find that spin/boson
systems with U (1) on-site symmetry have infinite nontrivial
SPT phases labeled by nonzero integer in d = even dimensions.
This generalizes a result obtained by Levin for d = 2.62 We
note that H3[SU (2),U (1)] = H3[U (1),U (1)] = Z. The SPT
states with SU (2) symmetry can also be viewed as SPT states
with U (1) symmetry. We know that an SU (2) SPT state
labeled by k ∈ Z is described by Eq. (3) with θ = 2πk. Such

an SU (2) SPT state is also a nontrivial U (1) SPT state labeled
by k ∈ Z.

We like to point out that it is believed that all 2D
gapped phases with Abelian statistics are classified by K
matrix and the related U (1) Chern-Simons theory.68–70 All the
quasiparticles in the 2D SPT phases are bosons. So the SPT
phases are also described by K matrices. We just need to find
a way to include symmetry in the K-matrix approach, which
is done in Ref. 49. In particular, Michael Levin71 pointed out
that a 2D U (1) SPT phase can be described by a U (1) × U (1)
Chern-Simons theory (or a double-layer quantum Hall state)
(see also Refs. 72 and 73),

L= 1
4π

KIJ aIµ∂νaJλϵ
µνλ + 1

2π
qIAµ∂νaIλϵ

µνλ + · · · , (4)

with the K matrix and the charge vector q:68–70

K =
(

0 1
1 2k

)
, q =

(
1
1

)
. (5)

We note that such a K matrix has two null vectors n1 =
( 1

k ),n2 = ( 0
1 ) that satisfy nT

i K−1ni = 0. The null vectors
correspond to quasiparticles with Bose statistics. Such null
vectors would destabilize the state if we did not have the U (1)
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FIG. 1. (Color online) Summary of some simple integer bosonic
topological phases. (a) A chiral phase of bosons (no symmetry
required). An integer multiple of eight chiral bosons at the edge is
needed to evade topological order, leading to a quantized thermal
Hall conductance κxy/T = 8nL0 in units of the the universal

thermal conductance L0 = π2k2
B

3h
. These are bosonic analogs of chiral

superconductors. (b) A nonchiral phase of bosons protected by
U (1) symmetry (e.g., charge conservation). Distinct phases can be
labeled by the quantized Hall conductance σxy = 2nσ0, which are
even integer multiples of the universal conductance σ0 = q2/h for
particles with charge q. These are bosonic analogs of the integer
quantum Hall phases. (c) A nonchiral phase stabilized in the presence
of time reversal and U (1) charge conservation symmetries, the same
symmetries used to define quantum spin Hall (topological) insulators.
A Z2 topological classification is obtained, although bosonic time
reversal that squares to +1 is involved.

the usual relation between charge and time reversal], the analog
of fermionic quantized spin Hall insulators, despite the fact
that the time reversal operation is “bosonic” and squares to
+1. An advantage of the present formulation is that the edge
states of these phases are explicit—typically being nonchiral
c = 1 conformal field theory (CFT) when gapless. Moreover,
being cast in the familiar Abelian Chern-Simons form, it is
amenable to further investigation using standard field theory
methods. We focus on symmetries (such as time reversal) that
are realized locally. Spatial symmetries such as translation
invariance, inversion, etc., will be left for future work. Since
we do not make any assumption about spatial uniformity, the
topological phases we find are well defined in the presence of
disorder.

A disadvantage of our method is that it is less suited
to discuss non-Abelian Lie group symmetries, and we are
currently restricted to two spatial dimensions, neither of which
is a restriction for group cohomology theory.47 Also, our
method does not automatically produce a group structure
for the set of topological states. On general grounds, one
expects the set of topological phases protected by a particular
symmetry to form an Abelian group, which is automatically
satisfied in the group cohomology classification and in the
classification of free fermion topological phases. We handle
this by defining an Abelian group structure, addition and
subtraction, on pairs of phases described within the K matrix
formulation. With this refinement the group structure of the
resulting sets of phases is readily determined. For phases with
topological order (|det K| > 1) and exotic bulk exceptions,
it is less apparent whether such an Abelian group structure
of topological phases will emerge. Nevertheless, a similar K

matrix approach could be used to discuss topologically ordered
phases in the presence of global symmetries, which is left for
future work.

(c) Topological phases of interacting fermions. We extend
our discussion to classifying topological phases of interacting
fermion, in the absence of topological order. A key difference
from the bosonic case is that since fermion insertion is a
nonlocal operation, symmetries may be realized projectively
on the fermion fields. We compare our results to a recent super-
cohomology classification of interacting fermion phases.25 In
addition to the relative simplicity of our method, an advantage
over supercohomology classification is that we are able to
handle Kramers time reversal symmetry T 2 = (−1)N̂f (N̂f is
the total fermion number operator). A disadvantage, shared
by the super-cohomology classification, is that we are not
able to capture chiral or nonchiral states with odd numbers
of Majorana edge modes. As expected, we recover the Z2
classification of time reversal symmetric quantum spin Hall
insulators, from this interacting formalism as well. We also
compare our results with the recent work21–23 on topological
phases of interacting fermions with Z2 × ZT

2 symmetry. We
also discuss topological phases of the symmetry group Z4 !
ZT

2 , corresponding to time reversal symmetric superconductors
with four particle (charge 4e) condensates. For the cases we
considered, the topological phases of interacting fermions
either descend from noninteracting phases, or correspond to a
bosonic topological phases, where the bosons are bound states
of fermions. Whether this is a general property of fermion
topological phases is an open question. Our classifications of
SPT phases of interacting fermions with various symmetries
are summarized in Table II.

(d) Microscopic quasi-1D realization. Finally, to give
a deeper insight into the obtained topological phases we
utilize a quasi-one-dimensional (coupled wire52,53) approach
to construct a candidate state consistent with the edge content
that emerges from the classification. The K matrix approach
naturally suggests such a construction. This sheds light on
various paradoxical results such as the fact that there is a
bosonic analog of the quantum spin Hall state although time
reversal acts only on bosons with T 2 = 1.

Some aspects of this work are similar in spirit to a number of
previous works that have discussed the role of symmetry and
stability of edge states in various specific contexts.28,50,54–60

For example, Refs. 28 and 60 discussed the stability of edge
states in fractional topological insulators. However, the general
machinery presented here to generate symmetry protected
topological states has not previously been discussed.

II. K MATRIX FORMULATION OF 2 + 1-D
TOPOLOGICAL PHASES

It is believed61–63 that K matrix provides a complete
classification of all Abelian fraction quantum Hall (FQH)
states in 2 + 1 dimensions. In this section, we briefly review the
K matrix formulation of Abelian FQH states. We then discuss
how it can be applied to study states without topological order.
In particular, we point out that in the absence of symmetry,
fields that have trivial (or bosonic) self and mutual statistics
will be “Higgsed,” and the stability of the edge is examined in
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symmetry, since we could include one of the corresponding
quasiparticle operators in the Hamiltonian which would gap
the edge excitations.74 In the presence of U (1) symmetry,
the quasiparticles carry U (1) charges qT K−1n1 = 1 − k and
qT K−1n2 = 1. We see that when k ̸= 1, both quasiparticles
that correspond to the null vectors carry nonzero U (1) charges.
Thus, the quasiparticle operators cannot be included in the
Hamiltonian, and they do not gap the gapless edge excitations.
The corresponding state will have U (1) protected gapless
excitation and correspond to a nontrivial U (1) SPT state.
We see that the K matrix and the charge vector q describe a
nontrivial U (1) SPT state when k ̸= 1 and a trivial state when
k = 1. The 2D U (1) SPT states are labeled by an integer.

D. Bosonic topological insulators/superconductors

The U (1) ! ZT
2 line in Table I describes the SPT phases

for interacting bosons with time-reversal symmetry ZT
2 and

boson number conservation [symmetry group = U (1) ! ZT
2 ,

where time-reversal T and U (1) transformations Uθ satisfy
T Uθ = U−θT ]. Those phases are bosonic analogs of free
fermion topological insulators protected by the same sym-
metry. From H1+d [U (1) ! ZT

2 ,U (1)], we find one kind of
nontrivial bosonic topological insulators in 1D or 2D and three
kinds in 3D. The only nontrivial topological insulator in 1D is
the same as the Haldane phase.

The ZT
2 line in Table I describes interacting bosonic analogs

of free fermion topological superconductors75–79 with only
time-reversal symmetry, ZT

2 . Since H1+d [ZT
2 ,U (1)] = Z2 for

odd d and H1+d [ZT
2 ,U (1)] = Z1 for even d, we find one kind

of “bosonic topological superconductors” or nontrivial SPT
phases in every odd dimension (for the spin/boson systems
with only time-reversal symmetry).

E. Other SPT states

The U (1) × ZT
2 line describes the SPT phases for integer

spin systems with time-reversal and U (1) spin rotation sym-
metries (symmetry group = U (1) × ZT

2 , where time-reversal
T and U (1) transformations Uθ satisfy T Uθ = UθT ). From
H1+d [U (1) × ZT

2 ,U (1)], we find three nontrivial SPT phases
in 1D, none in 2D, and seven in 3D.

We also find that H1+d [Zn,U (1)] = Zn for even d and
H1+d [Zn,U (1)] = Z1 for odd d. So spin/boson systems with
Zn on-site symmetry have n − 1 kinds of nontrivial SPT phases
in d = even dimensions.

For integer spin systems with D2h symmetry but no trans-
lation symmetry, we discover 15 new SPT phases in 1D,53,80

63 new SPT phases in 2D, and 511 new SPT phases in 3D.

F. Ideal ground-state wave functions and exactly soluble
Hamiltonians for SPT phases

We can construct the ideal ground-state wave functions and
exactly soluble Hamiltonians for all the SPT phases described
by H1+d [G,UT (1)]. The elements in H1+d [G,UT (1)] are
complex functions of d + 2 variables νd+1(g0, . . . ,gd+1), gi ∈
G. νd+1(g0, . . . ,gd+1) is a pure phase |νd+1(g0, . . . ,gd+1)| = 1
that satisfies certain cocycle conditions [Eqs. (16) and (17)].
From each element νd+1(g0, . . . ,gd+1) we can construct the d-
dimensional ground-state wave function for the corresponding
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FIG. 2. (Color online) (a) A triangular lattice. The Hamiltonian
term (6) acts on the seven sites in the shaded area. (b) A geometric
representation of the the phase factors in Eq. (6).

SPT phase. In 2D, we can start with a triangle lattice model
where the physical states on site i are given by |gi⟩, gi ∈ G [see
Fig. 2(a)]. The ideal ground-state wave function is then given
by #({gi}) =

∏
△ ν3(1,gi,gj ,gk)

∏
▽ ν−1

3 (1,gi,gj ,gk), where∏
△ and

∏
▽ multiply over all up- and down-triangles, and the

order of ijk is clockwise for up-triangles and counterclockwise
for down-triangles [see Fig. 2(a)].

To construct exactly soluble Hamiltonian H that
realizes the above wave function as the ground state, we
start with an exactly soluble Hamiltonian H0 = −

∑
i |φi⟩⟨φi |,

|φi⟩ =
∑

gi∈G |gi⟩, whose ground state is #0({gi}) = 1.
Then, using the LU transformation U =

∏
△ ν3(1,gi,gj ,gk)∏

▽ ν−1
3 (1,gi,gj ,gk), we find that the above ideal ground-state

wave function is given by # = U#0 and the corresponding
exactly soluble Hamiltonian is given by H =

∑
i Hi , where

Hi = U |φi⟩⟨φi |U †. Hi acts on a seven-spin cluster labeled by
i, 1–6 in shaded area in Fig. 2(a),

Hi |gi,g1g2g3g4g5g6⟩
=

∑

g′
i

|g′
i ,g1g2g3g4g5g6⟩

× ν3(g4,g5,gi,g
′
i)ν3(g5,gi,g

′
i ,g6)ν3(gi,g

′
i ,g6,g1)

ν3(gi,g
′
i ,g2,g1)ν3(g3,gi,g

′
i ,g2)ν3(g4,g3,gi,g

′
i)

. (6)

The above phase factor has a graphic representation as in
Fig. 2(b). (For a detailed explanation of the graphic represen-
tation, see Fig. 10.) H has a short-ranged interaction and has
the symmetry G: |{gi}⟩ → |{ggi}⟩, g ∈ G, if ν3(g0, . . . ,g3)
satisfies the 3-cocycle conditions Eqs. (16) and (20).

For symmetry G = Z2 and using the 3-cocycle calculated
in Appendix J 2, we find that the Hamiltonian that realizes the
nontrivial Z2 SPT state in 2D is given by

Hi = σ+
i η+

21η
+
32η

+
43η

+
45η

+
56η

+
61 + σ−

i η−
21η

−
32η

−
43η

−
45η

−
56η

−
61, (7)

where

σ+
i =

(
0 0
1 0

)
, σ−

i =
(

0 1
0 0

)
, (8)

which act on site i. Also, η±
ij are operators acting on sites i

and j :

η+
ij |0⟩i ⊗ |1⟩j = −|0⟩i ⊗ |1⟩j ,

η+
ij |α⟩i ⊗ |β⟩j = |α⟩i ⊗ |β⟩j , (α,β) ̸= (0,1),

η−
ij |1⟩i ⊗ |0⟩j = −|1⟩i ⊗ |0⟩j , (9)

η−
ij |α⟩i ⊗ |β⟩j = |α⟩i ⊗ |β⟩j , (α,β) ̸= (1,0).
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two paramagnets cannot be continuously connected without
breaking the Z2 symmetry or closing the energy gap. Closely
related to this observation, we show that the two spin models
are “dual” to two previously studied lattice models—each of
which realizes a different type of Z2 gauge theory. This duality
establishes a connection between SPT phases and previous
work23 on the classification of topological gauge theories.

Our second result is a proof that the new paramagnet has
gapless edge modes protected by Ising symmetry. Interest-
ingly, our argument reveals that the protected edge states are
deeply connected to the braiding statistics of the π fluxes.
This approach to proving edge state protection is somewhat
different from the original argument of Ref. 10 and may be
more amenable to higher dimensional generalizations. In the
final part of the paper we analyze the protected edge modes
at a more concrete level, focusing on a particular microscopic
model of the edge. We derive a field theoretic description of the
low energy modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases, braiding
statistics can be used to uniquely characterize the bulk and to
derive the existence of protected boundary modes. We discuss
these potential generalizations in the conclusion.

This paper is organized as follows. In Sec. II we describe
spin models that realize both the conventional and the new
kind of Ising paramagnet. In Sec. III we show that the two
spin models can be distinguished by the braiding statistics of
the π -flux excitations. In Sec. IV we show that the two spin
models are dual to two previously studied lattice models. In
Sec. V we show that the π -flux braiding statistics are directly
connected to the existence of protected edge modes. Finally,
in Sec. VI we analyze a particular microscopic model for the
edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice [Fig. 1(a)]:

H0 = −
∑

p

σ x
p . (1)

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two properties.
First, the Hamiltonian is invariant under the Ising symmetry

)b()a(

pp

q q′

FIG. 1. (Color online) The Hamiltonians H0,H1 [Eqs. (1) and
(2)] for the two spin models. (a) The Hamiltonian H0 is a sum of
single spin terms σ x

p . (b) The Hamiltonian H1 is a sum of seven spin

terms Bp = −σ x
p

∏
⟨pqq ′⟩ i

1−σz
q σz

q′
2 , where the product runs over the six

triangles ⟨pqq ′⟩ containing p.

S =
∏

p σ x
p . Second, the ground state |#0⟩ ≡ |σ x

p = 1⟩ is
gapped and unique—implying that the symmetry is not broken
spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this new
type of paramagnet was first constructed in Ref. 10. Here
we describe another model which is more convenient for our
purposes. The model we consider is a spin-1/2 system on the
triangular lattice. The Hamiltonian is given by [Fig. 1(b)]

H1 = −
∑

p

Bp, Bp = −σ x
p

∏

⟨pqq ′⟩
i

1−σz
q σz

q′
2 , (2)

where the product runs over the six triangles ⟨pqq ′⟩ containing
the site p. We note that this Hamiltonian is Hermitian despite
the factors of i. To see this, notice that the product includes
a factor of i for each pair of neighboring spins q,q ′ that have
opposite values of σ z. In particular, since the number of such
pairs is necessarily even, the product always reduces to a factor
of ±1. It is then clear that H

†
1 = H1. (For readers who are

curious as to how this model was constructed, see Sec. IV).
First we show that H1 describes a paramagnetic phase—

that is, the Ising symmetry is not spontaneously broken. To
establish this fact, we solve H1 explicitly. The key point is that

[Bp,Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result
we can simultaneously diagonalize {Bp}. We will label the
simultaneous eigenstates by |{bp}⟩, where bp = ±1 denotes
the eigenvalues of Bp. It is not hard to show that there is
an unique state for each choice of {bp}, assuming a periodic
geometry (i.e., a torus). In other words, the {bp} are a complete
set of quantum numbers. We therefore have the full energy
spectrum: Each state |bp⟩ is an energy eigenstate with energy

E = −
∑

p

bp. (4)

In particular, the ground state |#1⟩ ≡ |bp = 1⟩ is unique and
gapped—implying that the Ising symmetry is not sponta-
neously broken.

It is illuminating to compare the ground state wave
functions of H0,H1. The ground state of H0 is the state where
σ x

p = 1 everywhere. Working in the σ z basis, the wave function
is given by

#0({αp}) = 1 (5)

for all spin configurations {αp = ↑, ↓} [Fig. 2(a)]. As for
H1, we note that the ground state is the unique state with
Bp = 1 everywhere. It is straightforward to check that the
corresponding wave function is given by

#1({αp}) = (−1)Ndw , (6)

where Ndw is the total number of domain walls in the spin
configuration {αp = ↑, ↓} [Fig. 2(b)]. We can see that the two
ground states are nearly identical, differing only by some phase
factors. Nevertheless, these two states belong to two different
quantum phases, as we now show.
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two paramagnets cannot be continuously connected without
breaking the Z2 symmetry or closing the energy gap. Closely
related to this observation, we show that the two spin models
are “dual” to two previously studied lattice models—each of
which realizes a different type of Z2 gauge theory. This duality
establishes a connection between SPT phases and previous
work23 on the classification of topological gauge theories.

Our second result is a proof that the new paramagnet has
gapless edge modes protected by Ising symmetry. Interest-
ingly, our argument reveals that the protected edge states are
deeply connected to the braiding statistics of the π fluxes.
This approach to proving edge state protection is somewhat
different from the original argument of Ref. 10 and may be
more amenable to higher dimensional generalizations. In the
final part of the paper we analyze the protected edge modes
at a more concrete level, focusing on a particular microscopic
model of the edge. We derive a field theoretic description of the
low energy modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases, braiding
statistics can be used to uniquely characterize the bulk and to
derive the existence of protected boundary modes. We discuss
these potential generalizations in the conclusion.

This paper is organized as follows. In Sec. II we describe
spin models that realize both the conventional and the new
kind of Ising paramagnet. In Sec. III we show that the two
spin models can be distinguished by the braiding statistics of
the π -flux excitations. In Sec. IV we show that the two spin
models are dual to two previously studied lattice models. In
Sec. V we show that the π -flux braiding statistics are directly
connected to the existence of protected edge modes. Finally,
in Sec. VI we analyze a particular microscopic model for the
edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice [Fig. 1(a)]:

H0 = −
∑

p

σ x
p . (1)

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two properties.
First, the Hamiltonian is invariant under the Ising symmetry

)b()a(

pp

q q′

FIG. 1. (Color online) The Hamiltonians H0,H1 [Eqs. (1) and
(2)] for the two spin models. (a) The Hamiltonian H0 is a sum of
single spin terms σ x

p . (b) The Hamiltonian H1 is a sum of seven spin

terms Bp = −σ x
p

∏
⟨pqq ′⟩ i

1−σz
q σz

q′
2 , where the product runs over the six

triangles ⟨pqq ′⟩ containing p.

S =
∏

p σ x
p . Second, the ground state |#0⟩ ≡ |σ x

p = 1⟩ is
gapped and unique—implying that the symmetry is not broken
spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this new
type of paramagnet was first constructed in Ref. 10. Here
we describe another model which is more convenient for our
purposes. The model we consider is a spin-1/2 system on the
triangular lattice. The Hamiltonian is given by [Fig. 1(b)]

H1 = −
∑

p

Bp, Bp = −σ x
p

∏

⟨pqq ′⟩
i

1−σz
q σz

q′
2 , (2)

where the product runs over the six triangles ⟨pqq ′⟩ containing
the site p. We note that this Hamiltonian is Hermitian despite
the factors of i. To see this, notice that the product includes
a factor of i for each pair of neighboring spins q,q ′ that have
opposite values of σ z. In particular, since the number of such
pairs is necessarily even, the product always reduces to a factor
of ±1. It is then clear that H

†
1 = H1. (For readers who are

curious as to how this model was constructed, see Sec. IV).
First we show that H1 describes a paramagnetic phase—

that is, the Ising symmetry is not spontaneously broken. To
establish this fact, we solve H1 explicitly. The key point is that

[Bp,Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result
we can simultaneously diagonalize {Bp}. We will label the
simultaneous eigenstates by |{bp}⟩, where bp = ±1 denotes
the eigenvalues of Bp. It is not hard to show that there is
an unique state for each choice of {bp}, assuming a periodic
geometry (i.e., a torus). In other words, the {bp} are a complete
set of quantum numbers. We therefore have the full energy
spectrum: Each state |bp⟩ is an energy eigenstate with energy

E = −
∑

p

bp. (4)

In particular, the ground state |#1⟩ ≡ |bp = 1⟩ is unique and
gapped—implying that the Ising symmetry is not sponta-
neously broken.

It is illuminating to compare the ground state wave
functions of H0,H1. The ground state of H0 is the state where
σ x

p = 1 everywhere. Working in the σ z basis, the wave function
is given by

#0({αp}) = 1 (5)

for all spin configurations {αp = ↑, ↓} [Fig. 2(a)]. As for
H1, we note that the ground state is the unique state with
Bp = 1 everywhere. It is straightforward to check that the
corresponding wave function is given by

#1({αp}) = (−1)Ndw , (6)

where Ndw is the total number of domain walls in the spin
configuration {αp = ↑, ↓} [Fig. 2(b)]. We can see that the two
ground states are nearly identical, differing only by some phase
factors. Nevertheless, these two states belong to two different
quantum phases, as we now show.
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satisfies Kac-Moody algebra (35). Under group element U!φ

of symmetry group U (1) they transform as

U!φ :
(

φ1
φ2

)
→

(
φ1
φ2

)
+ !φ

(
1
q

)
, !φ ∈ [0,2π ). (125)

The nontrivial SPT phases correspond to different integers
q ̸= 0, whose edge cannot be gapped out without breaking the
U (1) symmetry. Here, we present an explicit construction of
these SPT phases with U (1) symmetry in the coupled wire
approach.

We start from an array of quantum wires (1 ! l ! Nw)
where each wire is composed of two chains: a chain of
charged bosons [each boson carries a unit of U (1) electric
charge] and a spin chain. Each chain forms a c = 1 Luttinger
liquid described by bosonic fields: {ϕs

l (x),θ s
l (x)} for the spin

chain and {ϕc
l (x),θ c

l (x)} for the chain of charged bosons in
the lth wire. These bosonic fields satisfy the commutation
relation (115):

[
θα
m(x),ϕβ

l (y)
]

= i
π

2
Sign(x − y)δm,lδα,β , (126)

where α,β = c/s denotes charge/spin degree of freedom
and 1 ! m,l ! Nw are the wire index. ϕc

l are phase fields
of charged bosons, while 2∂xθ

c
l describes charged boson

density fluctuations. For the spin chain, ∂xθ
s
l (x) ∼ Sz

l (x) and
exp[iϕs

l (x)] ∼ S+
l (x). Without interwire scattering terms, the

bare Hamiltonian density of the system takes the form (117)
of Luttinger liquids:

HLL =
Nw∑

l=1

∑

α=c/s

vα
l

2π

[
1
gα

l

(
∂xθ

α
l

)2 + gα
l

(
∂ϕα

l

)2
]
. (127)

The U (1) symmetry associated with {ϕc
l (x),θ c

l (x)} boson
charge conservation leads to the following symmetry trans-
formations for the bosonic fields:

ϕc
l (x) → Û!φϕc

l (x)Û−1
!φ = ϕc

l (x) + !φ,
(128)

Û!φ ≡ e i!φ
∫

dx
∑

l 2∂xθ
c
l (x), 0 ! !φ < 2π.

The other fields θ c
l ,ϕ

s
l ,θ

s
l are invariant under the above U (1)

charge rotation Û!φ .
In the presence of the above U (1) symmetry associated

with boson charge conservation, the different phases labeled
by charge vector t = (1,q)T are stabilized by the following
interwire coupling terms:

H1
(1,q) =

Nw−1∑

l=1

[
Cl cos

(
ϕc

l − ϕc
l+1 − 2θ s

l + λl

)

+Dl cos
(
ϕs

l − ϕs
l+1 + q

(
ϕc

l − ϕc
l+1

)

− 2
(
θ c
l+1 − qθ s

l+1

)
+ λ′

l

)]
, (129)

where Cl,Dl,λl ,λ
′
l are real constants. A pictorial illustration of

the above interwire scattering terms is given in Fig. 2. Clearly,
the above interwire scattering terms all satisfy constraint (120)
for bosonic systems, and they are also invariant under U (1)
rotation (128).

As argued in Refs. 52 and 53, one can always choose proper
forward scattering terms (118) to make the above interwire
coupling terms become relevant and drive the system into their
strong-coupling phase. Notice that the arguments of the above

FIG. 2. (Color online) Schematic illustration of interwire cou-
pling terms which stabilize the bosonic SPT phases protected by
U (1) symmetry, with Hall conductance σxy = 2q. Solid horizontal
lines stand for quantum wires of charged bosons [each carries unit
U (1) charge], while dashed horizontal lines represent quantum wires
composed of neutral (say spin) degrees of freedom. Dashed and solid
arrows illustrate the two interwire coupling terms in Eq. (130) that
gap the bulk, but leave behind nontrivial edge states.

cosine terms commute with each other, so they can be localized
at certain classical values simultaneously. It is straightforward
to show that all bosonic fields in the bulk with 2 ! l ! Nw − 1
are gapped, while the gapless edge states on the left edge l = 1
are described by variables {φ1

1(x),φ2
1(x)} defined as

φ1
l ≡ ϕc

l , φ2
l ≡ ϕs

l + qϕc
l + 2

(
θ c
l − qθ s

l

)
. (130)

They transform exactly like {φ1,φ2} in Eq. (125) under
charge U (1) symmetry (128). Besides, they also obtain the
Kac-Moody algebra (35) for a bosonic nonchiral SRE system.
As a result, the strong-coupling phase of interwire couplings
(130) is nothing but the bosonic SPT phases labeled by charge
vector t = (1,q)T with charge U (1) symmetry.

Now let us elaborate on why the interwire coupling (130)
can gap out everything in the bulk and leave variables (130) on
the edge. In addition to variables {φ1

l (x),φ2
l (x)} in Eq. (130),

one can define another pair of variables {φ̃1
l (x),φ̃2

l (x)} as

φ̃1
l ≡ ϕc

l − 2θ s
l , φ̃2

l ≡ ϕs
l + qϕc

l . (131)

They also satisfy Kac-Moody algebra (35) except for an extra
minus sign for all commutators. Notice that the two pairs of
variables {φ̃1

l (x),φ̃2
l (x)} and {φ̃1

l (x),φ̃2
l (x)} commute with each

other. They are just a linear combination of the original charge
and spin variables {ϕc

l ,θ
c
l ,ϕs

l ,θ
s
l }. The interwire scattering

terms (130) can be written as

H1
(1,q) =

Nw−1∑

l=1

[
Cl cos

(
φ̃1

l − φ1
l+1 + λl

)

+Dl cos
(
φ̃2

l − φ2
l+1 + λ′

l

)]
.
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Electron edge states in graphene in the quantum Hall effect regime can carry both charge and spin. We
show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes with opposite
spin polarization. These chiral spin modes lead to a rich variety of spin current states, depending on the
spin-flip rate. A method to control the latter locally is proposed. We estimate Zeeman spin splitting
enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.
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A new electron system with low carrier density and high
mobility was recently realized in two-dimensional gra-
phene [1]. By varying the carrier density with a gate one
can explore a range of interesting states, in particular, the
anomalous quantum Hall effect [2,3] (QHE). In contrast to
the well-known integer QHE in silicon MOSFETs [4], the
QHE in graphene occurs at half-integer multiples of 4, the
degeneracy due to spin and orbit. This has been called the
half-integer QHE. The unusually large Landau level spac-
ing makes QHE in graphene observable at temperatures of
100 K and higher.

Here we explore the spin effects in graphene QHE. In the
presence of Zeeman splitting, transport in graphene is
described by an unusual set of edge states which we shall
call chiral spin edge states. These states are reminiscent of
the ordinary QHE edge states [5], but can propagate in
opposite directions for opposite spin polarizations. (As
shown in [6], similar states can arise due to spin-orbit
coupling in the absence of magnetic field. However, the
weakness of spin-orbital effects makes the corresponding
spin gap quite small.) The chiral spin edge modes can be
used to realize an interesting spin transport regime, in
which spin and charge currents can be controlled indepen-
dently. Observation of these phenomena is facilitated by
the fairly large magnitude of the spin gap. The gap is
enhanced due to electron exchange, and can reach a few
hundred kelvin for a realistic magnetic field.

The half-integer QHE in graphene was interpreted in
terms of a quantum anomaly of the zeroth Landau level [7].
Alternatively, these properties are easily understood from
the edge states viewpoint, similar to the usual QHE. This
was done in Ref. [8] using numerical treatment of the zig-
zag edge. Here we present a continuum description of
the edge states, using the massless Dirac model [9], which
provides a good approximation for a carbon !-electron
band near its center. We reduce the problem to a one-
dimensional Schrödinger equation with a potential which
depends on the boundary type. By comparing the behavior
for armchair and zigzag boundary, we show that the energy
spectrum properties near the edge are universal and imply
the half-integer QHE.

To interpret the half-integer QHE, let us inspect the
energies of the first few Landau levels (LL) obtained for
an armchair boundary [Fig. 1(a)]. First we ignore electron
spin. In the bulk the LL’s are doubly degenerate, due to two
species of Dirac particles located near K and K0, the in-
equivalent corners of the first Brillouin zone. We note that
the zeroth LL splits into two levels with positive and nega-
tive energies. In contrast, the behavior of the edge states
associated with higher LL’s is more conventional [5]: the
energies of positive (negative) LL’s increase (decrease) as
one approaches the boundary. Hence in the spinless case
the number of edge states can take only odd integer values
and the Hall conductivity is an odd integer in units of e2=h.
For example, when the chemical potential is between the
n " !1 and n " !2 LL’s, there are three branches of
active edge states: two of them derived from the LL with
n " !1 and one from the LL with n " 0. As a result,
although each LL filling factor is an integer, the conduc-
tance at QHE plateaus is half-integer in units of 4e2=h,
which accounts for both the K, K0, and spin degeneracy.

This behavior is modified in an interesting way by the
spin splitting of LL’s [Fig. 1(b)]. When the chemical
potential " lies in the interval ! 1

2 !s <"< 1
2 !s, the
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FIG. 1 (color online). (a) Graphene energy spectrum near the
armchair boundary obtained from Dirac model, Eq. (1). The
boundary condition, Eq. (5), lifts the K, K0 degeneracy. The odd
integer numbers of edge modes lead to the half-integer QHE.
(b) Spin-split graphene edge states: the blue (red) curves repre-
sent the spin up (spin down) states. These states propagate in
opposite directions at zero energy.
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

H0 =

Z
dx

2X

l=1

 
l,L

iv@
x

 
l,L

�  
l,R

iv@
x

 
l,R

, (3)

where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:

H0 =

Z
dx

2X
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)2, (4)

where [✓
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l
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0 , and  
l,L/R

⇠
ei✓l±i⇡�l . For free 1d fermions without interaction, the
Luttinger parameter K = ⇡.
Coulomb interactions H

int

are conveniently handled in
the bosonization framework. Using the representation of
the fermion density n

l
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, one obtains:
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(5)
where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H
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Figure 4 | Phase transitions. a, Different phases of the ⌫ = 0 state mapped as a function of D and Btot at B? = 1.75 T. At low Btot, the phase boundary
between layer-polarized and CAF is determined by the conductance spike separating the two insulating phases. At large Btot, the phase boundary between
layer-polarized and ferromagnetic is determined by the point where conductance begins to exponentially decrease with displacement field. The gradual
transition between CAF and ferromagnetic with increasing Btot is marked by the gradual colour change, with ferromagnetic stabilizing at high Btot. Error
bars are due to the spacing between adjacent points in D. b, Four-terminal conductance at the CNP with D= 0, plotted against Btot for three different values
of B?. Dashed lines indicate regions of exponential increase of conductance and the dotted line marks saturated conductance. The critical magnetic field
B

c
tot for the phase transition is marked by arrows. The inset shows Bc

tot as a function of B? separating the CAF and ferromagnetic phases in a Btot versus B?
parameter space. Error bars are due to uncertainties in fitting guide lines.

bulk remains incompressible. An analogous scenario is expected for
BLG in the ferromagnetic quantum Hall state4–6, except that BLG
carries an additional orbital degeneracy. The ferromagnetic state in
BLG is therefore expected to exhibit a four-terminal conductance
of 4e2/h, compared with 2e2/h for HgTe. Consistent with reported
measurements of HgTe (refs 3,30), our devices show imperfect
quantization with measured conductance values less than 4e2/h
in the ferromagnetic phase. The reduced conductance may be
due to backscattering in the edge state or through remaining
impurity states in the bulk. Unambiguous experimental support
for the existence of spin-polarized counter-propagating edge states
should be provided by well-quantized nonlocal measurements30
(see Supplementary Information).

We have measured dual-gated graphene bilayers at the ⌫ = 0
state. In a perpendicular magnetic field, we observe a transition
between two incompressible states at a finite displacement field,
indicating that theD=0 state is not layer polarized. At low displace-
ment fields, we observe the four-terminal conductance increase and
then saturate as the in-plane magnetic field increases, showing that
theD=0, Btot =B? state is also not spin polarized. This is consistent
with a quantum phase transition driven by in-plane magnetic field
between the CAF quantum Hall state and the ferromagnet. The
near quantization of the four-terminal conductance to 4e2/h agrees
with predictions that the ferromagnetic quantumHall ground state
carries spin-polarized counter-propagating edge states.

Methods
The device we report data from was fabricated with mechanically exfoliated
graphene and hBN using a polymer membrane transfer process described in pre-
vious work31. The graphene was etched into a Hall bar pattern before deposition of
the top hBN layer. The bottom gate is a global silicon gate, and both the contacts and
the top gate are Cr/Pd/Au stacks of thickness 1/10/50 nm. Three devices fabricated
in a similar way exhibited similar data trends, although the phase boundariesmay be
quantitatively sample- and disorder-dependent (see Supplementary Information).
We present data sets obtained from the highest quality device.

These devices were measured either in a sample-in-4He-vapour variable
temperature cryostat with a 14 T magnet in-house or in a sample-in-3He-vapour
cryostat, mounted in the bore of a 31 T resistive magnet at the National High
Magnetic Field Laboratory in Tallahassee, Florida. Measurements were performed
using a 1mV voltage bias. The numerous features present in a gate voltage
trace allowed precise angle calibration, with B? determined to better than 1%
accuracy. The longitudinal resistance R

xx

and Hall resistance R

xy

are measured in a

four-terminal geometry, so that contact resistances can be excluded. Four-terminal
conductance at the CNP is obtained by takingG=1/R

xx

.
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If spin is conserved, this is characterized by 
spin Chern number 2

Edge has two helical fermionic edge states 



Interactions

backscattering Hbs = g

Z
dx

h
 †
1R 1L 

†
2L 2R + h.c.

i

a single bosonic helical edge



How to get this
• Bosonization

• Rotate

• Interaction induces gap for “-” sector

• Only symmetric sector remains
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SPT?

• How is it different from just a spin-
polarized quantum wire (which has the 
same bosonized Hamiltonian)?

• Symmetry:

• Charge conservation:

• Spin conservation:
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Bosonic?

• All fermionic excitations are gapped

• Excitations of even number of fermions 
are gapless.  Primarily:
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Bosonic?

• |det K| = 1 : no anyons

• diag (K) = (0,0): bosonic quasiparticles
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Potential experiments

• Existing:

• Zero Hall conductivity

• Gapless edge 

• New?

• Tunnel into edge: single-e gap

• Shot noise: charge 2e
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian
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where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:
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Coulomb interactions H
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where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H

v

is

Can one identify it?
Differentiate from fermionic state?

II. NONLOCAL TRANSPORT

Because spin-polarized counter-propagating edge states can equilibrate at metal contacts,1

the measured conductance of such a system will generally depend on the geometry of the

contacts. In particular, by altering the configuration of source/drain and voltage probe

contacts, the expected observed conductance can changed to a different rational multiple

of e2/h. Figure S2 shows normal and nonlocal conductance measurements of our device at

B⊥ = 5 T, Btot = 23.25 T. This field configuration corresponds to the saturated metallic

regime, where counter-propagating edge states are predicted to exist. The conductance

expected in the normal configuration (G14,23) is 4e2/h, and in the nonlocal configurations

(G64,23, G64,12) the expected conductance is 6e2/h. While none of the measured curves

show exact quantization, the results show a clear conductance increase for the nonlocal

measurements, which is expected if dissipation is occurring predominantly at the contacts.

We also note that G64,12, which represents the shortest physical distance between voltage

probes, is closest to the expected quantization value. This is consistent with quantization

for edge lengths below the mean free path of the edge states and lowered conductance for

edge lengths larger than the mean free path, as has been observed in HgTe.
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FIG. S2. Nonlocal conductance. Conductance measurements at the CNP plotted against

displacement field for the saturated metallic regime. Conductance Gab,cd denotes the current

sourced between contacts a and b divided by the voltage measured between c and d. All data is

taken at B⊥ = 5 T, Btot = 23.25 T, 350 mK. Inset shows device diagram with contacts labeled.
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Figure 4 | Phase transitions. a, Different phases of the ⌫ = 0 state mapped as a function of D and Btot at B? = 1.75 T. At low Btot, the phase boundary
between layer-polarized and CAF is determined by the conductance spike separating the two insulating phases. At large Btot, the phase boundary between
layer-polarized and ferromagnetic is determined by the point where conductance begins to exponentially decrease with displacement field. The gradual
transition between CAF and ferromagnetic with increasing Btot is marked by the gradual colour change, with ferromagnetic stabilizing at high Btot. Error
bars are due to the spacing between adjacent points in D. b, Four-terminal conductance at the CNP with D= 0, plotted against Btot for three different values
of B?. Dashed lines indicate regions of exponential increase of conductance and the dotted line marks saturated conductance. The critical magnetic field
B

c
tot for the phase transition is marked by arrows. The inset shows Bc

tot as a function of B? separating the CAF and ferromagnetic phases in a Btot versus B?
parameter space. Error bars are due to uncertainties in fitting guide lines.

bulk remains incompressible. An analogous scenario is expected for
BLG in the ferromagnetic quantum Hall state4–6, except that BLG
carries an additional orbital degeneracy. The ferromagnetic state in
BLG is therefore expected to exhibit a four-terminal conductance
of 4e2/h, compared with 2e2/h for HgTe. Consistent with reported
measurements of HgTe (refs 3,30), our devices show imperfect
quantization with measured conductance values less than 4e2/h
in the ferromagnetic phase. The reduced conductance may be
due to backscattering in the edge state or through remaining
impurity states in the bulk. Unambiguous experimental support
for the existence of spin-polarized counter-propagating edge states
should be provided by well-quantized nonlocal measurements30
(see Supplementary Information).

We have measured dual-gated graphene bilayers at the ⌫ = 0
state. In a perpendicular magnetic field, we observe a transition
between two incompressible states at a finite displacement field,
indicating that theD=0 state is not layer polarized. At low displace-
ment fields, we observe the four-terminal conductance increase and
then saturate as the in-plane magnetic field increases, showing that
theD=0, Btot =B? state is also not spin polarized. This is consistent
with a quantum phase transition driven by in-plane magnetic field
between the CAF quantum Hall state and the ferromagnet. The
near quantization of the four-terminal conductance to 4e2/h agrees
with predictions that the ferromagnetic quantumHall ground state
carries spin-polarized counter-propagating edge states.

Methods
The device we report data from was fabricated with mechanically exfoliated
graphene and hBN using a polymer membrane transfer process described in pre-
vious work31. The graphene was etched into a Hall bar pattern before deposition of
the top hBN layer. The bottom gate is a global silicon gate, and both the contacts and
the top gate are Cr/Pd/Au stacks of thickness 1/10/50 nm. Three devices fabricated
in a similar way exhibited similar data trends, although the phase boundariesmay be
quantitatively sample- and disorder-dependent (see Supplementary Information).
We present data sets obtained from the highest quality device.

These devices were measured either in a sample-in-4He-vapour variable
temperature cryostat with a 14 T magnet in-house or in a sample-in-3He-vapour
cryostat, mounted in the bore of a 31 T resistive magnet at the National High
Magnetic Field Laboratory in Tallahassee, Florida. Measurements were performed
using a 1mV voltage bias. The numerous features present in a gate voltage
trace allowed precise angle calibration, with B? determined to better than 1%
accuracy. The longitudinal resistance R

xx

and Hall resistance R

xy

are measured in a

four-terminal geometry, so that contact resistances can be excluded. Four-terminal
conductance at the CNP is obtained by takingG=1/R

xx

.
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Summary

6

(where i, j = x, y, nµ,a
i denotes taking the ith component of

its matrix elements and Einstein summation rule is implied)
which has the dimension 1

L3 . This difference in power behav-
ior originates from the fact that the two majorana fermions
in each low-energy product belong to the same sublattice as
required by time-reversal symmetry, so the component that
fluctuates in space with 2q0 wavevector (see Eq. (??)) consist-
ing of  a(r � li1) a(r � li2) doesn’t possess non-vanishing
zero-order field product term after series expansion of the field
around r, while the slowly-varying component consisting of
 a(r � l2) †

a(r � l2) does have zero-order term. This cru-
cial fact still holds in anisotropic scenarios and the power-law
behaviors are the same.

One can discern the power-law behavior more clearly if we
write down the expression for the dynamical structure factor
in terms of single-particle green function in reciprocal space
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, which is

of dimension 1
! , the power law relation can be deduced im-

mediately by rescaling k1 ! k1
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! . This expres-
sion can also be acquired analytically at this isotropic point,
we provide for example the low-frequency spin correlations
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FIG. 4. The spectral function along high symmetry line in the Bril-
louin zone at the isotropic point. The simplest form included in the
spin operator as listed in eq (??) is used to calculate the result in the
lattice model.

Fig ?? shows the numerical results of spectral functionP
µ=x,y,z Aµµ

S (q,!) =

P
µ=x,y,z 2Im[Sµµ

(q,!)] calculated

based on the original lattice model at the isotropic point. It’s
clear at small ! the spectral function vanishes for ! < v|q|
and Fig ?? shows that the dependence of the spectral function
at q = 0 and q = 2q0 conform well to the expected ! and !3

behaviors at small !, respectively. It’s also clear that product
containing more than two matter fermion operators will con-
tribute higher powers of frequency to the low-energy weight,
since every two more majorana operators resulting in the term
h  †  †i or with gradients in between will contribute !4 or
higher powers from previous dimensional analysis.

FIG. 5. The spectral function versus frequency at q = 0 (left) and
q = 2q0 (right) point. It’s clear that the power law relation holds at
low frequency regime.

Conclusion: This work illustrates that the generic low-
energy weight of the spin correlators in gapless spin liquid
phase of the Kitaev honeycomb model is non-vanishing. Our
finding suggests that spins can be generically expanded into
nonvanishing constituents of low-energy effective fields pro-
vided that interactions break the symmetries protecting the
spin gap. The observations for legitimate spin operator form
based on symmetry and gauge constraint arguments apply to
any perturbation that doesn’t induce phase transition.General
perturbations can transform the spin operators to contain some
two same-sublattice matter fermion operator products that ex-
cite gapless modes within the zero-flux subspace. The domi-
nant terms for small frequency therefore are linear/cubic in !
for q⇠ 0/q ⇠ 2q0, respectively.
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

H0 =

Z
dx
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where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:
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0 , and  
l,L/R

⇠
ei✓l±i⇡�l . For free 1d fermions without interaction, the
Luttinger parameter K = ⇡.
Coulomb interactions H

int

are conveniently handled in
the bosonization framework. Using the representation of
the fermion density n
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, one obtains:
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(5)
where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H

v

is

Bosonic SPT probably 
already exists in graphene

Thanks for a great conference!


