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• What is different from ordinary stuff?

• Review experimental status and recent 
developments
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Quantum non-locality
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Schrödinger Cat

Cat states - superposition of a small number of 
macroscopically distinct components - are 

exponentially unstable: any local measurement 
collapses the superposition.  They also require 
an exponentially long time to assemble with 

local unitary operators



How quantum can dense 
matter stably be?

Quantum spin liquids are 
ground states that retain long-
distance entanglement and are 

robust to perturbations

“Ultra-quantum matter”: stable phases of matter 
that retain some degree of quantum non-locality



Ordinary (local) Matter
We can consistently 

assign local properties 
(elastic moduli, etc.) 
and obtain all large-

scale properties

•Measurements far away do not affect one 
another

•From local measurements we can deduce the 
global state



Ordinary (local) Matter

| i = ⌦A| iA
Ground state is “essentially” 

a product state

no entanglement 
between blocks

Hamiltonian is local

H =
X

x

H(x) H(x) has local support near x



“Essentially” a product state?

| i = ⌦A| iA

phase space

• Adiabatic continuity



“Essentially” a product state?

• Entanglement scaling

⇢A = TrĀ| ih |

S(A) ⇠ �Ld�1 area law 

A

satisfied with exponentially small corrections

S(A) = �TrA (⇢A ln ⇢A)



Best example: ordered 
magnet

Hamiltonian H =
X

(ij)

JijSi · Sj
exchange is short-

range: local

ordered state | i ⇡
O
i

|Si · n̂i = +Si

block is a single 
spin



Quasiparticles
excited states ~ excited 

levels of one block

•local excitation can be created 
with operators in one block

•localized excitation has 
discrete spectrum with non-
zero gap, and plane wave 
forms sharp band  

•quantum numbers consistent 
with finite system: no 
emergent or fractional 
quantum numbers



Spin wave
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How quantum can dense 
matter stably be?

Quantum spin liquids are 
ground states that retain long-
distance entanglement and are 

robust to perturbations

“Ultra-quantum matter”: stable phases of matter 
that retain some degree of quantum non-locality
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Example: toric code

an active subject today.

9 Toric code

Lecture 19 (1.5h)
December 1st, 2015In the previous section, we saw that states with the same symmetry may still

be distinguished by topology. The non-trivial phases of this type can have in-
teresting boundary degrees of freedom which are anomalous, like the s = 1/2
boundary spins of the AKLT chain. These SPT phases are, however, fragile,
because they rely on a symmetry to distinguish them from the trivial phase.
If we, for example, apply a magnetic field to the AKLT chain, it immediately
becomes indistinguishable from a trivial state. The two states of the end spin
are no longer degenerate.

There are, however, even more exotic things. It is possible for a system
to enter a non-trivial phase which is stable to all perturbations. Even with no
symmetry at all, it remains non-product within some finite domain of stability.
The simplest example of this is the two-dimensional toric code model of Kitaev,
which is actually largely a reinterpretation of the Ising lattice gauge theory
introduced much earlier by Wegner. There is a very nice review article by
Kitaev and Laumann which presents this, and a number of other topics, in
quite readable form. Consider a set of spin-1/2 “spins” on the middle of the
links of a square lattice, with the Hamiltonian

(353) Htc = �K Â
p

Pp � K0 Â
s

Ss,

where the sums are over plaquettes p and sites s, the plaquette operator Pp =
’i2p s

z
i is a product over the spins on the bonds surrounding the plaquette

p, and the “star” operator Ss = ’i2s s

x
i is a product over the spins on bonds

neighboring the site s.

9.1 Massive superposition in the ground state

Obviously all the star operators commute as do the plaquette operators, and
one can easily verify that the stars and plaquettes do as well, [Ss, Pp] = 0 for
all p, s. This makes the toric code model especially easy to solve: ground states
are simply those states for which Ss = Pp = +1 for every star and plaquette.

While this looks fairly trivial in these variables, the state itself in any local
basis is highly entangled. Consider for instance the s

x
i basis, which is complete

and local. States with Ss = 1 are those in which an even number of spins
composing each star have eigenvalues s

x
i = �1. One may represent these

states by coloring the links with negative spins, and according to Ss = 1 the
links form closed loops. Since the operator Pp is off-diagonal in this basis,
it requires superposition of the loop states. One can construct a state with
Pp = +1 everywhere by taking a representative as a “base” state a direct
product state (eigenstate of s

x
i ),

(354) |y0i = ⌦i|sx
i = sii,
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9. Toric code

Pp

Ss

Figure 12: Toric code. Spins reside on the sites of the gray dots. The blue
shaded region shows the spins involved in a plaquette operator, while the red
shaded regions shows a star operator.

where the si = ±1 are chosen to satisfy the star rule Ss = 1. For example, we
can take si = 1 everywhere. Then, we can act on it with the projectors

(355) Qp =
1 + Pp

2
=

1
2 Â

qp=0,1
Pqp

p ,

which projects onto states with Pp = 1. Using this,

(356) |0i = ’
p

Qp|y0i.

By writing out the product explicitly,

(357) |0i = 2�N Â
q1···qN=0,1

’
p

Pqp
p |y0i,

we see that it is the sum of all possible products of plaquette operators act-
ing on the base state. Each plaquette operator flips the si values on the sites
contained in that plaquette. If we choose si = +1, then |y0i is the “zero loop”
state, and each product of plaquette operators creates loops on the plaquettes
with non-zero qp. Hence |0i appears to be a massive superposition of loop
states, in which two loop configurations related to another by a flip of a min-
imal square plaquette appear with equal weight. This looks highly entangled
indeed.

9.2 Ground state degeneracy on the torus

It might seem there are many such states, depending upon the choice of si.
However, using Qp = QpPp, we can see that states in which the si are re-
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Pp =
Y

i2p

�z
i S

s

=
Y

i2S

�x

i

Everything commutes!

In ground state simply Pp = Ss = +1

But what is the state?

A. Kitaev
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Figure 1: A loop configuration in the toric code. One loop configuration corre-
sponds to a product state in the sx
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basis, with sx
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= �1 for the spins contained
in the loops. The loop configuration shown is given by the product of P
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op-
erators on the plaquettes indicated, acting upon |y0i in Eq. (??) defined with
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= 1 for all i.
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si=-1Solve Ss=+1:

Now project to Pp=+1:
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loops

9.2. Ground state degeneracy on the torus

Pp Pp

Pp Pp Pp

Pp Pp

Pp

Figure 13: A loop configuration in the toric code. One loop configuration cor-
responds to a product state in the s

x
i basis, with s

x
i = �1 for the spins con-

tained in the loops. The loop configuration shown is given by the product of
Pp operators on the plaquettes indicated, acting upon |y0i in Eq. (354) defined
with si = 1 for all i.

lated by flipping spins around a minimal square plaquette are the same (after
projection). That is, |0i is invariant under the transformation

(358) |y0i ! Pp|y0i.

This means that any two choices of si related by Eq. (358) will give the same
state |0i. This leaves very few distinct states.

To see how many, let us do some counting. For concreteness, let us do
this with periodic boundary conditions, i.e. on the torus, with L sites in each
direction and N = l2 total sites. We can choose a priori 22N states |y0i by arbi-
trary choice of si on every link. However, we require the condition Ss = 1 on
every site. One such condition cuts the number of states by 2. Each condition
is independent except the last one. This is because the product over all sites,

(359) ’
s

Ss = 1,

since every spin is included in two stars, and (sx
i )

2 = 1. So there are N � 1
constraints, which reduces the number of base states by 1/2N�1. This leaves
2N+1 base states. This is just the number of loop coverings, i.e. graphs like
in Fig. 13, where every site is visiting by an even number of colored bonds.
Now any two such states which differ by the transformation in Eq. (358) yield
the same state |0i. Graphically, this transformation changes the color of the
links on the plaquette p, i.e. turns uncolored to colored and vice versa. So
most loop coverings yield the same state |0i. Let us try to count further. We
can start with the trivial |y0i, which is the “no loop” state. Then acting on it
with Pp on each plaquette gives another loop state. In principle by choosing
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massive 
superposition 

state

(similar form in Z variables)

All spins are 
uncertain h0|�z

i |0i = h0|Ps�
z
i Pp|0i = �h0|�z

i |0i = 0

h0|�x

i

|0i = h0|S
s

�x

i

S
s

|0i = �h0|�x

i

|0i = 0

And yet there is some structure...



Excitations

e

Figure 2: Anyons. Two e particles, shown as blue balls, are created by acting
with sz

i

operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx

i

operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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an active subject today.
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teresting boundary degrees of freedom which are anomalous, like the s = 1/2
boundary spins of the AKLT chain. These SPT phases are, however, fragile,
because they rely on a symmetry to distinguish them from the trivial phase.
If we, for example, apply a magnetic field to the AKLT chain, it immediately
becomes indistinguishable from a trivial state. The two states of the end spin
are no longer degenerate.

There are, however, even more exotic things. It is possible for a system
to enter a non-trivial phase which is stable to all perturbations. Even with no
symmetry at all, it remains non-product within some finite domain of stability.
The simplest example of this is the two-dimensional toric code model of Kitaev,
which is actually largely a reinterpretation of the Ising lattice gauge theory
introduced much earlier by Wegner. There is a very nice review article by
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are simply those states for which Ss = Pp = +1 for every star and plaquette.
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Consider state with 
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Figure 2: Anyons. Two e particles, shown as blue balls, are created by acting
with sz

i

operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx

i

operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.

3

non-local excitation!

local operators, like finite 
product of Z operators, 

create e particles in pairs



Non-local excitations and 
entanglement

Why does this have finite energy?
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Figure 2: Anyons. Two e particles, shown as blue balls, are created by acting
with sz

i

operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx

i

operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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around this closed loop L,

| 
fin

i =
Y

i2L
�z
i | init

i. (5)

Now we can use the discrete equivalent of Stokes’
theorem, to rewrite
Y

i2L
�z
i =

Y

p2A
Pp, (6)

where L = @A, i.e. A is the area bounded by L. Since
the initial state has a magnetic particle inside L, then
exactly one Pp in this product is negative, and we find
that

| 
fin

i = �| 
init

i. (7)

Thus the act of bringing the e particle around them one
has induced a ⇡ phase shift. We say that the e and m
particles have non-trivial mutual statistics (specifically
they are mutual “semions”). In addition to the e and m
particles, one can also consider a composite " particle
which is just an e and m particle sitting next to one
another. Unlike the e and m particles, which have
trivial bosonic self-statistics, the " particle is actually
a fermion under self-exchange. This can be seen by
similar considerations to above.

Figure 3. Statistics and mutual statistics in topological phases.
In (i), two identical quasiparticles of type a are exchanged. This
exchange may be accompanied by an arbitrary phase in two
dimensions, which defines the self-statistics of an anyon. In (ii)
a quasiparticle of type b is moved around a quasiparticle of type
a, and the wavefunction accumulates a phase which defines the
mutual statistics of the two anyons in two dimensions. In three
dimensions, as shown in (iii), the mutual statistics of particles
is replaced by the phase accumulated on moving a pointlike
quasiparticle b around a closed loop which links with a line-
like defect b. The pointlike particles, however, must be bosons
or fermions.

The existence of these emergent anyons can be
considered the defining feature of the toric code
phase. Although we have discussed them based on the
exactly soluble Hamiltonian in Eq. (1), they persist as
excitations in the presence of arbitrary modifications
to the Hamiltonian, provided those changes are no too
large in magnitude. All the other properties of the
phase can be understood based on these quasiparticles
(see e.g. Ref.[1]). For example, the topological
degeneracy can be derived by considering the process of
locally creating a quasiparticle pair, transporting one

of the quasiparticles around a cycle of the torus, and
then annihilating it with its partner.

2.2. Anyons need entanglement

How are these anyons connected to entanglement?
From several perspectives, it is clear that they cannot
exist without massive entanglement. If it were possible
to approximate the ground state by a product form,
then we would expect that excitations can be built from
excitations of a single block. But the excitations of a
finite block must always have quantum numbers that
can be obtained by adding those of the microscopic
components of the system, e.g. electrons or spins.
Such excitations can always be created “locally”,
at least by operators defined within a single block.
These contradict the emergent electric and magnetic
quantum numbers of the toric code anyons, and the
fact that they can be created only in pairs.

( ++ + + + ... (
= ( + + + + ... (

Figure 4. Illustration of how entanglement supports anyons in
the toric code. A pair of e anyons at the ends of a line L is
created by the action of a string of �x

i

along L. It is crucial
that this string does not modify the ground state away from
the ends, otherwise the state created would have an energy
proportional to its length. Here we show the action of this
string, shown in red, away from its ends, on the toric code
state, which is a superposition of loops. Each component in
the second line corresponds to the result of the action of the
string operator on the component directly above it, in the first
line. We can see that, while the action of the string modifies each
component of the wavefunction all along the line, the result is
simply another component of the original state, as shown by the
arrows. Consequently, the highly entangled superposition state
is not modified by the string (except at its ends, which are not
shown here).

Another symptom of the key role of entanglement
in the topological phase is the non-trivial mutual
statistics itself. This implies a kind of “action at a
distance”: two anyons sense each other even when
they are arbitrarily far away. There must be some
structure in the background of the wavefunction that
allows them to maintain that information. A more
direct connection to entanglement can be made by
considering the string operators that create pairs of
anyons. Consider a long string operator as in Eq. (6).
When acting on the ground state it creates a pair of
anyons which are well-separated, at an energy cost
which is non-zero but finite (equal to 4K 0 in the ideal
model). It is actually surprising that this operator,

away from the ends, the 
string just reshuffles 

elements of the 
superposition



Excitations
9.3. Anyons

e e

m m

#

`

˜̀

Figure 16: Anyons. Two e particles, shown as blue balls, are created by acting
with s

z
i operators on the string `. Similarly, two m particles, are created at the

ends of a string of s

x
i operators on the dual path ˜̀. A composite # particle

consists of a neighboring e and m particle.

that this charge is Z2-valued.
Similarly, the m anyon can be considered to carry a “magnetic” charge,

more conventionally called a flux. So sometimes the m particle is called a
Z2 vortex. We can define dual field lines which lie on the dual lattice, and
consider of lines of sites on which s

z
i = �1. Again these form loops, away

from any m anyon. The star operator Sp creates the smallest such loop. The m
particle is a source for these dual field lines.

The very existence of the e and m excitations as quasi-particles can be
thought of in terms of these field lines. The defining feature of the particles is
that they are sources of flux. For them to be finite energy excitations, it must
be possible for this flux to “spread” somehow, so that its energy cost remains
finite (this happens in ordinary electromagnetism, where the electric field of a
point charge spreads out like 1/r2, and so the energy density is ⇠ 1/r4, whose
integral converges at long distances r from the charge in three dimensions). In
the toric code, the analogous spreading occurs due to massive superposition
of different configurations of the field lines in the wavefunction. It is remark-
able that this Z2 flux can extend infinitely far away from the quasiparticles,
yet they remain of finite energy. The existence of the flux lines implies that
there is some way to “sense” the presence of a quasiparticle far away, without
directly measuring in the immediate vicinity of the quasiparticle. We can see
this directly below.

Statistics of e and m

Let’s focus on the two e anyons. Now we can imagine moving the two anyons
“smoothly”, i.e. one site at a time, so that they are interchanged. This process
consists of changing the endpoints of the string `(s, s0) to move s or s0, which
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There is also an m 
excitation

Pp = �1

And we can consider two 
of these together

" = e⇥m

e,m,ε are the emergent non-local 
quasiparticles of the toric code



Non-locality
For the toric code, and in general for 

topological phases (i.e. gapped QSLs), the 
non-locality of excitations manifests as statistics
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which is just an e and m particle sitting next to one
another. Unlike the e and m particles, which have
trivial bosonic self-statistics, the " particle is actually
a fermion under self-exchange. This can be seen by
similar considerations to above.

Figure 3. Statistics and mutual statistics in topological phases.
In (i), two identical quasiparticles of type a are exchanged. This
exchange may be accompanied by an arbitrary phase in two
dimensions, which defines the self-statistics of an anyon. In (ii)
a quasiparticle of type b is moved around a quasiparticle of type
a, and the wavefunction accumulates a phase which defines the
mutual statistics of the two anyons in two dimensions. In three
dimensions, as shown in (iii), the mutual statistics of particles
is replaced by the phase accumulated on moving a pointlike
quasiparticle b around a closed loop which links with a line-
like defect b. The pointlike particles, however, must be bosons
or fermions.

The existence of these emergent anyons can be
considered the defining feature of the toric code
phase. Although we have discussed them based on the
exactly soluble Hamiltonian in Eq. (1), they persist as
excitations in the presence of arbitrary modifications
to the Hamiltonian, provided those changes are no too
large in magnitude. All the other properties of the
phase can be understood based on these quasiparticles
(see e.g. Ref.[1]). For example, the topological
degeneracy can be derived by considering the process of
locally creating a quasiparticle pair, transporting one

of the quasiparticles around a cycle of the torus, and
then annihilating it with its partner.

2.2. Anyons need entanglement

How are these anyons connected to entanglement?
From several perspectives, it is clear that they cannot
exist without massive entanglement. If it were possible
to approximate the ground state by a product form,
then we would expect that excitations can be built from
excitations of a single block. But the excitations of a
finite block must always have quantum numbers that
can be obtained by adding those of the microscopic
components of the system, e.g. electrons or spins.
Such excitations can always be created “locally”,
at least by operators defined within a single block.
These contradict the emergent electric and magnetic
quantum numbers of the toric code anyons, and the
fact that they can be created only in pairs.

Figure 4. Illustration of how entanglement supports anyons in
the toric code. A pair of e anyons at the ends of a line L is
created by the action of a string of �x

i

along L. It is crucial
that this string does not modify the ground state away from
the ends, otherwise the state created would have an energy
proportional to its length. Here we show the action of this
string, shown in red, away from its ends, on the toric code
state, which is a superposition of loops. Each component in
the second line corresponds to the result of the action of the
string operator on the component directly above it, in the first
line. We can see that, while the action of the string modifies each
component of the wavefunction all along the line, the result is
simply another component of the original state, as shown by the
arrows. Consequently, the highly entangled superposition state
is not modified by the string (except at its ends, which are not
shown here).

Another symptom of the key role of entanglement
in the topological phase is the non-trivial mutual
statistics itself. This implies a kind of “action at a
distance”: two anyons sense each other even when
they are arbitrarily far away. There must be some
structure in the background of the wavefunction that
allows them to maintain that information. A more
direct connection to entanglement can be made by
considering the string operators that create pairs of
anyons. Consider a long string operator as in Eq. (6).
When acting on the ground state it creates a pair of
anyons which are well-separated, at an energy cost
which is non-zero but finite (equal to 4K 0 in the ideal
model). It is actually surprising that this operator,

the excitations are anyons, i.e. the 
state acquires a unitary rotation 

(e.g. phase) when one excitation is 
taken around another

9.3. Anyons

Here, the diagram is different

(367)

e m

e m

= �

e m

e m

.

The # particle (dyon) is a fermion

A consequence of this statistical interaction between e and m particles is that
a composite – a pair of nearby e and m particles, which is sometimes called
a “dyon” or an # particle – behaves as a fermion! Basically if we make an
interchange of two #’s, we effectively wind a constituent e particle of one #

half-way around the m of the other # particle, and vice-versa, and the net
effect is to change the overall sign of the wavefunction.

There is a formal demonstration using these diagrams. It goes like this:

(368)

e m

e m

e m

e m

=

e m

e m

e m

e m

= �

e m

e m

e m

e m

.

Seems like magic. Personally I like to see what this means explicitly. Consider
two e particles, described by some initial state |yiniti, such that, acting on
|yiniti, the star operators Ss give +1 except for two sites s1 and s2, where
Ss = �1, and likewise the plaquette operators Pp give +1 except for two
plaquettes p1 and p2, where Pp = �1. We choose s1 and p1 to be adjacent,
comprising one # “particle”, and s2 and p2 to be adjacent, making up the
other # particle, but the s1, p1 will be far from s2, p2. For concreteness we
take the configuration shown in Fig. 17. Note that some delicacy is required
here because in the toric code model, there is no real interaction (only the
statistical one) at all between the e and m particles – so there is no actual
bound state of the two. This means that different configurations of dyons are
actually degenerate (for example, we can place the m particle on any of the
neighboring plaquettes of the e site s). Due to degeneracy of levels, it is not so
easy to define the adiabatic phase. To do it, we must follow the path of a dyon
which we hold together “by hand” in the process of evolution.

Now we wish to exchange the two # particles. We will do this by a sequence
of unitary transformations, so that

(369) |yfinali = U|yiniti,

where the total unitary transformation is made in n steps:

(370) U = Utn · · ·Ut2Ut1 ,

and Ut gives a “small” transformation which is local and moves anyons by a
short distance. At each step, we can act with a single s

z
i and s

x
j operator to
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e and m see each 
other as “pi flux”
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Stability
One can show that the toric code phase is 
absolutely stable to arbitrary (small) local 
perturbations, even those which break all 

symmetries.

This is because the “order” of the toric code is purely 
a type of entanglement, not any symmetry breaking. 

Only by bringing the gap of a quasiparticle to zero can 
one “unwind” the entangled ground state.

rigorous proofs by Hastings, Bravyi



RVB states
Historically the first proposal of a QSL by 
Anderson in 1973 



 





H = J
X

hiji

Si · Sj | i = 1p
2
(|"#i � |#"i)

| i =

superposition of singlets is quite similar to sum of loops in toric 
code, and indeed when made precise such a nearest-neighbor 

RVB state is typically in the same phase as the toric code

+ · · ·



Spinon
+ · · ·| i =

create a spinon by rearranging valence 
bonds to expose a single free spin

New feature: SU(2) spin symmetry

•spinon excitation has S=1/2, a fractional 
quantum number (spin flips are S=1)

•this“enriches” the topological label e,m,ε  
many efforts to understand Symmetry Enriched Topological order



Quantum spin ice
Minimal XXZ model on pyrochlore lattice 

H =
X

hiji

JzzS
z
i S

z
j � J±(S

+
i S�

j + h.c.)

J± ⌧ Jzz is the spin ice limit

n

Jzz
2

X

t

 
X

i2t

Sz
i

!2

X

i2t

Sz
i = 0 in the classical ground state: “2in-2out”

With a lot more work one can 
show that J± selects a massive 
superposition of these states

M. Hermele, MPA Fisher, L.B., 2004; 
A. Banerjee et al, 2008 



Quantum spin ice
like the toric code, the 

QSL state can be viewed 
as a sum of loops - follow 

the arrows!

There are also non-
local excitations

X

i2t

Sz
i = ±1

X

loops

“spinons”
“monopoles”



Gauge theory
These QSL states are all conveniently 
described mathematically by gauge theory

•Local constraints: 
•Generate local unitaries

X

i2t

Sz
i = 0Ss = +1

�z
ss0 ! U†�z

ss0U = qsqs0�
z
ss0

9. Toric code

Pp

Ss

Figure 12: Toric code. Spins reside on the sites of the gray dots. The blue
shaded region shows the spins involved in a plaquette operator, while the red
shaded regions shows a star operator.

where the si = ±1 are chosen to satisfy the star rule Ss = 1. For example, we
can take si = 1 everywhere. Then, we can act on it with the projectors

(355) Qp =
1 + Pp

2
=

1
2 Â

qp=0,1
Pqp

p ,

which projects onto states with Pp = 1. Using this,

(356) |0i = ’
p

Qp|y0i.

By writing out the product explicitly,

(357) |0i = 2�N Â
q1···qN=0,1

’
p

Pqp
p |y0i,

we see that it is the sum of all possible products of plaquette operators act-
ing on the base state. Each plaquette operator flips the si values on the sites
contained in that plaquette. If we choose si = +1, then |y0i is the “zero loop”
state, and each product of plaquette operators creates loops on the plaquettes
with non-zero qp. Hence |0i appears to be a massive superposition of loop
states, in which two loop configurations related to another by a flip of a min-
imal square plaquette appear with equal weight. This looks highly entangled
indeed.

9.2 Ground state degeneracy on the torus

It might seem there are many such states, depending upon the choice of si.
However, using Qp = QpPp, we can see that states in which the si are re-

94

qs = ±1

toric code = “Z2 QSL”

U = U† =
Y

s

S(1�qs)/2
s

are Z2 gauge fields�z
ss0



Gauge theory
These QSL states are all conveniently 
described mathematically by gauge theory

•Local constraints: 
•Generate local unitaries

X

i2t

Sz
i = 0Ss = +1

U =
Y

t

ei�tS
z
t

S±
tt0 ! U†S±

tt0U = ei(�t��t0 )S±
tt0

�t 2 U(1) i
t

t’

S±
tt0 ⇠ e±iAtt0 is a U(1) gauge connection

QSI hosts a U(1) QSL



Gauge theory
•Loops ~ field lines describing 
“vacuum fluctuations”

Contents

t

(a)

t

(b)

Figure 1: A loop configuration in the toric code. One loop configuration corre-
sponds to a product state in the sx

i

basis, with sx

i

= �1 for the spins contained
in the loops. The loop configuration shown is given by the product of P

p

op-
erators on the plaquettes indicated, acting upon |y0i in Eq. (??) defined with
s

i

= 1 for all i.

2

toric code: Z2 QSI: U(1)



Deconfinement

e

Figure 2: Anyons. Two e particles, shown as blue balls, are created by acting
with sz

i

operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx

i

operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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operators on the string `. Similarly, two m particles, are created at the
ends of a string of sx

i

operators on the dual path ˜̀. A composite # particle
consists of a neighboring e and m particle.
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|esi =

+ + +

The superposition of different string configurations “smears out” 
the flux emanating from e, so that it cannot be detected by any 
local measurement away from the quasiparticle

•consequently the string tension is zero = deconfinement
•the complete local undetectability of the flux is characteristic of a 

topological QSL



Deconfinement

X

flux lines

|spinoni =

U(1) QSL

Here the flux is a number, not a parity, and can be added.
The superposition of many field lines smears the flux into a 
“uniform” dispersed magnetic/electric field

~

B ⇠ r̂

r2
This leads to the usual 1/r Coulomb interaction 

between charges. It decays with distance so charges 
are “deconfined”, but the flux is locally detectable

Z

S3⇤
B · dA = q



Photon
Since there is a detectable average field, there 
is energy density associated with the field lines 

Consequently, there are “pure gauge” 
excitations.  These are not non-local particles but 
emergent collective excitations.  They are exactly 
analogous to the photons of electromagnetism.

! ⇠ ck U(1) QSL is a gapless, not topological 
example of ultra-quantum matter



Variational method
• Up to now I described results out of 

soluble or otherwise tractable models

• Variational wavefunctions are an 
attractive way to approach models 
when no other handle is available

+ + … � = c2c1RVB:

but how to keep track of so many coefficients??



Free Fermions
• One useful construction uses a Fermi gas: 

a product in momentum space rather than 
real space

c1 +c2 +c3 + · · ·

 =
Y

k<kF

c†k|0i

=



Entanglement Entropy

• Free fermions

• Very large entanglement is generic.  A 
metal is in this sense “ultraquantum”

S ⇠ �Ld�1
logL

D. Gioev+I. Klich, 2006
M.M. Wolf, 2006A

however, it has local quasiparticles



Gutzwiller Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · · 0 =



Gutzwiller Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

• Projection removes empty and doubly 
occupied sites

� = c1 +c2 +c3 + · · ·

 = PG 0

“like” a gauge constraint ni = 1



Gutzwiller Construction

� = c1 +c2 +c3 + · · ·

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

• Such wavefunctions can be efficiently 
simulated using Monte Carlo methods



Partons
• Gutzwiller-type variational wavefunction uses a 

reference Hamiltonian

• Project

• The fermions are “partons”

• Standard (MIT) belief: each such projected wavefunction 
represents a true QSL phase, in which the partons 
become the non-local quasiparticles - “spinons” - and 
they are coupled to an effective gauge field

Href =
�

ij

⇥
tijc

†
i�cj� + h.c. + �ijc

†
i�c

†
j⇥ + h.c.

⇤

|�var� =
�

i

P̂ni=1|�ref �

~Si = c†i↵
~�↵�

2 ci�



Classes of QSLs
• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL



 





TQFT

compact 
U(1) 

gauge 
theory

QED3

QED3 
w/ μ>0

fe
rm

io
ni

c 
pa

rt
on

s



Summary so far
• QSLs are examples of “ultra-quantum matter” whose 

ground states are massive superpositions and exhibit 
long-range entanglement

• Characteristically they support non-local excitations, 
which might be anyons or other exotic particles

• The natural theoretical description of many QSLs is 
gauge theory

• Many QSLs are absolutely stable to all small 
perturbations, irrespective of symmetry.  “Highly 
gapless” QSLs are less stable.



Spin liquid candidates



Top experimental 
platforms

Na2IrO3, 
(α,β,ɣ)-
Li2IrO3

α-RuCl3

Kitaev materials

Quantum spin iceHerbertsmithite

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 

2

Yb2Ti2O7

...

organics



A rough guide to 
experiments on QSLs

Does it order?
•  NMR line splitting
•  muSR oscillation
•  thermodynamic 

transition via specific 
heat, susceptibility

• Bragg peak in neutron/
x-ray

Is there a gap?
•  Specific heat
•  NMR 1/T1

•  Dynamic susceptibility
•  T-dependence of 𝜒

Delocalized 
excitations?

• thermal conductivity
• INS

Structure of 
excitations?

•  E(k) from INS,RIXS
•  optics, Raman

Exotica
•  Local measurements
•  thermal Hall
• ARPES (on insulator!)
• Proximity effects



Herbertsmithite
kagomé layers of Cu 

S=1/2 spins, separated 
by non-magnetic Zn

Hamiltonian
H = J

X

hiji

Si · Sj + ...

Long efforts by Nocera, Young Lee 
groups produced crystals

ZnCu3(OH)6Cl2

J ~ 200K

beautiful material, but complicated by Cu/Zn site defects



S=1/2 kagomé AF
• Long history - but definitive evidence 

for QSL by DMRG
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C⟩, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
⟨C|S⃗i|C⟩ = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)
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FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the
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DMRG

We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q$ð ~ri%~rjÞh ~Si $ ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si $ ð ~Sj & ~SkÞ $ ~Sl $ ð ~Sm & ~SnÞi, where the loops consid-
ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as
expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S! ¼
ð1% !Þ%1log2tr"

!, 0 ' !<1, where " is a subsystem
density matrix. Scaling is expected as S! ’ #c% $, where
# is an !-dependent constant. $, the topological entangle-
ment entropy, is independent of! [77–79] and depends only
on the total quantum dimensionD as $ ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S! for cylinders
of fixed c and extrapolate in L%1 to L ! 1; a linear
extrapolation in c ! 0 yields $. Results are 1D mapping
independent. We show intermediate values of ! (Fig. 6),
which all show a clearly finite value of $, with a value very
consistent with $ ¼ 1; large-! results agree. Small-!
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 4 (color online). Log-linear plots of the absolute value of
the Fig. 4(a) spin-spin and Fig. 4(b) dimer-dimer correlation
functions versus the distance x ¼ ji% jj for a XC12 [Fig. 4(a)]
and a YC8 [Fig. 4(b)] sample along one lattice axis with
exponential and power law fits. An x%4 line is shown as a guide
to the eye.
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
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cylinders, leading to a spin gap estimate of 0.13(1).
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FIG. 1: (color online) (a) The in-phase component of the ac
susceptibility, measured at 100 Hz with an oscillating field of
17 Oe. (b) A scaled plot of the ac susceptibility data measured
at nonzero applied field, plotted as χ′

acT
α with α = 0.66 on

the y axis and µBH/kBT on the x axis. Inset: A scaled plot
of the dc magnetization, showing MT−0.34 vs µBH/kBT .

adequate. It should also be pointed out that in herbert-
smithite the entire bulk susceptibility obeys this scaling
relation, while in CeCu5.9Au0.1 it is only the estimated lo-
cal contribution, χL(T ) = [χ(T )−1−χ(T = 0)−1]−1, that
obeys scaling. A susceptibility of this form will imply a
similar scaling in the bulk dc magnetization of the sam-
ple, with MTα−1 expressible as a function of H/T . As
a complementary measurement, such a scaling is shown
in the inset to Fig. 1(b). The dc magnetization was
measured up to µ0H = 14 T at temperatures ranging
from T = 1.8 K to 10 K, and is plotted as MT−0.34 vs
µBH/kBT .
The inelastic neutron scattering spectrum of herbert-

smithite was measured on the time-of-flight Disk Chop-
per Spectrometer (DCS) at the NIST Center for Neu-
tron Research. A deuterated powder sample of mass
7.5 g was measured using a dilution refrigerator with
an incident neutron wavelength of 5 Å. Measurements
were taken at six different temperatures, with roughly
logarithmic spacing, ranging from 77 mK to 42 K. The
scattering data were integrated over a wide range of mo-
mentum transfers, 0.5 ≤ Q ≤ 1.9 Å−1, to give a mea-
sure of the local response. The momentum integrated
dynamic scattering structure factor, S(ω), is shown in
Fig. 2(a). Similar to previous reports on the neutron scat-
tering spectrum of herbertsmithite[11], the data show a

broad inelastic spectrum with no discernable spin gap
and only a weak temperature dependence for positive
energy transfer scattering. The negative energy trans-
fer scattering intensity is suppressed at low temperatures
due to detailed balance. The imaginary part of the dy-
namic susceptibility is related to the scattering struc-
ture factor through the fluctuation-dissipation theorem,
χ′′(ω) = S(ω)(1 − e−h̄ω/kBT ). The dynamic suscepti-
bility can then be determined in a manner similar to
that used previously[11]. For the two lowest tempera-
tures measured, detailed balance considerations will ef-
fectively suppress scattering at negative energy transfer
for values of |h̄ω| ≥ 0.15 meV. Thus these data sets are
averaged together and treated as background. This back-
ground is subtracted from the T = 42 K data, for which
the detailed balance suppression is not pronounced below
|h̄ω| = 2 meV. From this, χ′′(ω; T = 42 K) is calculated
for negative ω, and the values for positive ω are easily de-
termined from the fact that χ′′(ω) is an odd function of
ω. The dynamic susceptibility at the other temperatures
is calculated by determining the difference in scattering
intensity relative to the T = 42 K data set. It is rea-
sonably assumed that the elastic incoherent scattering
and any other background scattering are effectively tem-
perature independent. The calculated values of χ′′(ω)
at all measured temperatures are shown in Fig. 2(b).
The T = 42 K scattering data and χ′′(ω) were fit to
smooth functions for use in calculating the susceptibility
at other temperatures so that statistical errors would not
be propagated throughout the data; the smooth function
of χ′′(ω; T = 42 K) used in the calculation is also shown
in the figure.

The resulting values for χ′′(ω) follow a similar scaling
relation as the ac susceptibility, where the ratio h̄ω/kBT
replaces µBH/kBT . In Fig. 3 we show χ′′(ω)T 0.66 on the
y axis and the unitless ratio h̄ω/kBT on the x axis. The
scaled data collapse fairly well onto a single curve over
almost four decades of h̄ω/kBT . Here we have used the
same exponent α = 0.66 that was observed in the scal-
ing of the ac susceptibility. However, the error bars on
the data allow for a wider range of exponents (α = 0.55
to 0.75) with reasonable scaling behavior. The collapse
of the χ′′(ω) data is again reminiscent of the behav-
ior observed in certain heavy-fermion metals, including
the shape of the functional form of the scaling function.
Let us assume that χ′′(ω)Tα ∝ F (ω/T ). The heavy-
fermion metal CeCu5.9Au0.1 displays a scaling[21, 22]
that could be fit to the functional form F (ω/T ) =
sin[α tan−1(ω/T )]/[(ω/T )2 + 1]α/2. A fit to this func-
tional form is shown as a dashed blue line in Fig. 3. This
simple form does not fit the herbertsmithite data well for
low values of ω/T . Other heavy-fermion metals[23, 24],
display a scaling relation that can be fit to the functional
form F (ω/T ) = (T/ω)αtanh(ω/βT ); this functional form
is similar to that used to fit the dynamic susceptibility in
La1.96Sr0.04CuO4[25]. This functional form fits our data

Lots of early evidence 
for gaplessness

Helton et al, 2010
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FIG. 1: (color online) (a) The chemical transformation from
the pyrochlorelike lattice of Cu2(OH)3Cl to the kagomé lay-
ers of ZnCu3(OH)6Cl2. (b) Magnetic diffraction scans of the
two systems at T = 1.4 K (open) and 20 K (filled). The
Cu2(OH)3Cl data show magnetic Bragg peaks at Q ≃ 0.70
and Q ≃ 0.92 which are absent for the ZnCu3(OH)6Cl2 data
(which have been shifted by 2300 cts/min for clarity). (c)
Magnetic susceptibility of ZnCu3(OH)6Cl2 measured using a
SQUID magnetometer plotted as 1/χ, where mole refers to a
formula unit. The line denotes a Curie-Weiss fit. Inset: ac
susceptibility (at 654 Hz) at low temperatures measured at
the NHMFL in Tallahassee, FL.

investigation. We also observe a small peak in the ac
susceptibility near H = 2 T at 50 mK which disappears
upon warming to 705 mK. The overall susceptibility
data indicate the absence of magnetic order or a spin
gap down to 50 mK.

The specific heat C(T ) of ZnCu3(OH)6Cl2 is shown in
Fig. 2(a) in various applied fields. For temperatures of
a few Kelvin and higher, the lattice contribution to the
specific heat (proportional to ∼ T 3) is the most signif-
icant contribution, as shown in the inset. However this
contribution diminishes at low temperatures, and below
∼ 5 K, an additional contribution is clearly observed
which arises from the Cu spin system. Magnetic fields
of a few Tesla can significantly affect the low-T behavior,
and fields of 10 Tesla and higher strongly suppress the
specific heat below 3 K. The difficulty in synthesizing an
isostructural nonmagnetic compound makes it hard to
subtract the lattice contribution precisely. However, the
magnetic field dependence suggests that the specific heat
in zero applied field below 1 K is predominately magnetic
in origin. As a rough measure of the spin entropy, the

FIG. 2: (color online) (a) The specific heat C(T ) of
ZnCu3(OH)6Cl2 in various applied fields, measured using a
Physical Properties Measurement System. Inset: C(T ) plot-
ted over a wider temperature range in applied fields of 0 T
(square) and 14 T (star). (b) C(T ) in zero field measured
down to 106 mK. The lines represent power law fits as de-
scribed in the text.

field-induced change in specific heat below 3 K, obtained
by subtracting the 14 T data from the zero field data,
accounts for about 5% of the total entropy of the spin
system.

Additional specific heat measurements at zero field at
temperatures down to 106 mK were performed at the
National High Magnetic Field Laboratory (NHMFL) and
the combined data are shown in Fig. 2(b). The specific
heat at low temperatures (T < 1 K) appears to be gov-
erned by a power law with an exponent which is less than
or equal to 1. In a 2D ordered magnet, magnon excita-
tions would give C ∼ T 2. The kagomé-like compound
SrCr8−xGa4+xO19 (SCGO)[18] and other 2D frustrated
magnets[19] are also observed to have C ∼ T 2 even in the
absence of long-range order[20, 21]. The behavior that we
observe in ZnCu3(OH)6Cl2 below 1 K stands in marked
contrast. We can fit our data to the power law C = γT α,
though we note that the exponent α is sensitive to the
chosen range of temperatures that are fit. The blue line in
this figure represents a linear fit with α = 1 over the tem-
perature range 106 mK < T < 400 mK. The fitted value
for γ is 240 ± 20 mJ/K2 Cu mole. If we include higher
temperatures, the red line represents a fit with α = 2/3
over the temperature range 106 mK < T < 600 mK. Ex-
tending the fitted range to even higher temperatures can
yield α values as low as 0.5.

Finally, inelastic neutron scattering measurements of
the low energy spin excitations were performed on deuter-

Helton et al, 2007
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FIG. 1: (color online) (a)-(d) Inelastic neutron data on Herbertsmithite in the (HK0) and (HHL) scattering planes at T = 2K
for !ω = 0.4 meV and !ω = 1.3 meV. The bright spots at (110) and (003) arise from structural Bragg peaks. The diffuse spots
at (100), (00 3

2
) and ( 1

2
1
2
0) are magnetic in origin. Note that the (00 3

2
) diffuse spot is particularly pronounced at 0.4 meV,

while the magnetic scattering at 1.3 meV is nearly independent of L. (e)-(f) Plots of the calculated S(Q) in the (HK0) and the
(HHL) planes, representing antiferromagnetically correlated nearest neighbor impurities on the interlayer sites, as described in
the text.

used and subtracted from the corresponding sample mea-
surements.
Prior inelastic neutron scattering measurements on sin-

gle crystals by some of us [13] revealed a continuum of
scattering consistent with fractionalized spinon excita-
tions. That study primarily focused on energy trans-
fers from about 0.75 meV to 11 meV [13]. The response
in the (HK0) plane above 1 meV forms a continuum,
consistent with a singlet form factor involving nearest
neighbor kagome spins. Below this energy, though, the
momentum pattern was found to feature broad spots
with maxima at (100) and equivalent positions. Here, we
have acquired new data in the (HK0) scattering plane
at !ω = 0.4 meV and 1.3 meV, as shown in Fig. 1(a)
and (c). The Q-dependence of the scattering at fixed
energy transfer shows a distinct rotation relative to the
high energy dimer-like pattern with maxima near (23

2
30)

to a low energy pattern with maxima at (100). One can
imagine various ways in which enhanced scattering at
(100) might emerge: for example, kagome spins with dy-
namical q = 0 correlations (as observed in iron jarosite
KFe3(OH)6(SO4)2 [14]) as well as a ferromagnetic ar-
rangement of impurity spins within the interlayers could
give rise to such peaks. However, it may be necessary
to go beyond 2D models, since the interaction pathways
between the interlayer Cu impurities would imply corre-
lations along the c-direction as well.

Therefore, we have performed additional measure-
ments in the (HHL) scattering plane which allow us to
probe both intralayer and interlayer correlations. These
measurements reveal that the lowest energy fluctuations
have short range correlations along all three crystallo-
graphic directions. As shown in Fig. 1(b), diffuse peaks
are seen at the (00 3

2 ) and (12
1
20) positions for !ω =

0.4 meV. This intensity emerges below an energy scale
of ∼0.8 meV where an enhanced dynamic magnetic re-
sponse was previously reported [12, 13]. The diffuse peak
at L = 3

2 has the same position along L as the magnetic
Bragg peaks in iron jarosite [15, 16] where long-range
order yields a magnetic cell that is doubled along the c-
axis [17]. In contrast, the scattering at a higher energy of
!ω = 1.3 meV (Fig. 1d) shows little variation along the
L-direction, consistent with quasi-two-dimensional cor-
relations as expected for intrinsic kagome spins. This
new observation establishes a clear dichotomy between
the low energy 3D excitations (below 0.8 meV) and the
higher energy 2D excitations. The explicit observation
of quasi-2D correlations confirms that the spin excita-
tions measured above 1 meV by Han et al. [13] essen-
tially derive from the two-dimensional physics of a single
kagome lattice. Moreover, the dichotomy implies that
the physics at low energies (such as effects of weakly
coupled impurities) quickly diminishes at the higher mea-
sured energies. Hence, it appears neutron scattering can

T-H Han et al, 2015
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Fig. 4. Intrinsic spin susceptibility χkagome and spin excitation gap Δ .  (A) Temperature 

dependence of χkagome deduced from 17K(a*) observed at Main1 in Bext = 3.2 T || a*.  The red 

dashed curve represents a theoretical prediction based on high temperature series expansion (28) 

with J = 180 K, matched at 295 K, whereas the solid curve is a guide to the eye. (B) Temperature 

and field dependences of 17K(a*) at low temperatures, with a fit to 17K(a*)~ T ⋅exp(−Δ /T )  in the 

temperature range up to 4.2 K (solid curves) and 10 K (dashed curves).  (C) Main1 lineshapes at 

4.2 K in Bext = 3.2, 6.1, and 9 T || a* plotted as a function of the normalized frequency f / fo −1  

(= 17K(a*)).  (D) The spin excitation gap, Δ(Bext), deduced from (B) for the fitting range up to 4.2 

K (filled circles) and 10 K (crosses).  Dashed and doted lines are the best fits under the constraint 

of S =1  and S =1/ 2 , respectively, whereas the solid line represents the best free parameter fit. 
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Non-local excitations

Majorana Flux

In Kitaev’s model:
• Majorana’s dispersion ~ K and gapless
• Fluxes are localized and gapped
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Kitaev Materials
Jackeli, Khaliullin Showed that Kitaev interaction can be 

large in edge-sharing octahedra with 
large spin-orbit-coupling
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz

180o

(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Kitaev Materials
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direct evidence for 
direction-dependent 
anisotropic exchange 
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x-ray scattering in 
Na2IrO3 (BJ Kim group) Unpublished single-crystal 
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

• But...they all order so far

H =
X

i,↵

KS↵
i S

↵
i+↵ + J

X

hiji

~Si · ~Sj

zigzag ordered state 
has been observed in 

Na2IrO3 and 
incommensurate order 

in Li2IrO3 

due to additional interactions, 
e.g. Heisenberg
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Real quantum spin ice
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Hamiltonian
• Symmetry constrains form of 

generic Hamiltonian for 
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Sharp spin waves at all wavevectors indicate that the system has entered 

a long range ordered phase induced by modest [110] magnetic fields 
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Organics

• Molecular materials which behave as 
effective triangular lattice S=1/2 
antiferromagnets with J ~ 250K

• significant charge fluctuations

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating
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Structure of k-(ET)2X. (a) Side and (b) top view of the layer and (c) modeling the in-plane structure into an isosceles-triangular lattice
with two kinds of transfer integrals.
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κ-(ET)2X β’-Pd(dmit)2

as shown in Figure 3a. The monovalent anion, X!1, has no contribution to electronic conduc-

tion or magnetism. In the conducting layer, the ET molecules form dimers, which are arranged

in a checkerboard-like pattern (Figure 3b). From the band structure point of view, two ET

highest occupied molecular orbitals (HOMOs) in a dimer are energetically split into bonding

and antibonding orbitals, each of which forms a conduction band due to the interdimer transfer

integrals (12). The two bands are well separated so that the relevant band to the hole filling is

the antibonding band, which is half-filled with one hole accommodated by one antibonding

orbital. The dimer arrangement is modeled to an isosceles-triangular lattice characterized by

two interdimer transfer integrals, t and t0 (Figure 3c) of the order of 50 meV, whose anisotropy,

t0/t, depends on the anion X.

2.2. Criticality of Mott Transition in ET Compounds

The competition of kinetic energy and correlation energy, which are characterized by band-

width W and on-site Coulomb energy U, gives rise to Mott transition between wave-like

itinerant electrons and particle-like localized electrons. Because the Mott transition is a metal-

insulator transition without symmetry breaking, the first-order transition expected at low tem-

peratures can have a critical endpoint at a finite temperature, as in the gas-liquid transition

(Figure 1a). This feature of the Mott phase diagram was first deduced by the reduction of

Hubbard Hamiltonian to the so-called Blume-Emery-Griffiths model (13) and then extensively

discussed in terms of dynamical mean field theory (DMFT) (14), which showed that the Mott

transition belongs to the Ising universality class (15). It is well established that the k-(ET)2X
family is situated in the vicinity of Mott transition (9, 16–24). To explore the phase diagram

beyond the conceptual one, and to uncover the critical behavior of Mott transition, experiments

on a single material under precisely controlled pressure and temperature are required.

The compound studied is k-(ET)2Cu[N(CN)2]Cl, which is a Mott insulator (25) with a

sizable anisotropy of triangular lattices; the t0/t value is 0.75 or 0.44, according to the tight-

binding calculation of molecular orbital or first-principles calculation (26), respectively. The

resistivity measurements of k-(ET)2Cu[N(CN)2]Cl under continuously controllable He-gas

pressure unveiled the Mott phase diagram (27–30), where the first-order transition line dividing

the insulating and metallic phases has an endpoint around 40 K (Figure 4). The presence of

the critical endpoint was proved in spin and lattice degrees of freedom as well; namely,

nuclear magnetic resonance (NMR) (31), ultrasonic velocity (32, 33), and expansivity (34).

The bending shape of the phase boundary reflects the entropy difference between the insulating
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Organics

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so
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Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).

www.annualreviews.org ! Mott Physics in Organic Conductors 185

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

11
.2

:1
67

-1
88

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

Sa
nt

a 
B

ar
ba

ra
 o

n 
09

/0
7/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2
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The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)

Crossover

(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max

(1/T1T)max

Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.

ITOU et al. PHYSICAL REVIEW B 77, 104413 "2008#

104413-4

NATURE PHYSICS DOI: 10.1038/NPHYS1715 LETTERS

t (s) t (s)t (×104 s)

76 mK 1.03 K 148.3 K

300

1

0.1

0.01

0.01 0.1 1 10 100

Temperature (K)

0

0.2

0.4

0.6

0.8

1

β

0 0 40 80 1201 2 3 0 5 10 15

1 ¬
 M

(t
) 

/M
( 

  )

Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.
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a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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Specific Heat
• C ~ γT indicates gapless behavior with 

large density of statesLETTERS
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Figure 2 Low-temperature heat capacities of �-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇥-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of ⇤-(BEDT-TTF)2Cu2(CN)3 and other
⇤-type BEDT-TTF salts. ⇤-(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
⇤-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇥-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the ⇤-type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
⇤-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the ⇥ term),
even in the insulating salt. The magnitude of ⇥ is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite ⇥ term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the ⇥
term in the present insulating state is intrinsic.

The well known Mott insulators ⇤-(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇥-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing ⇥ value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
⇤-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A ⇥ value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

S. Yamashita et al, 2008
is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-

ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind

of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are

separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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T2 plots of the heat capacity. The inset shows a Cp T
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M. Yamashita et al, 2010

Thermal conductivity
• Huge linear thermal 

conductivity indicates 
the gapless excitations 
are propagating, at 
least in dmit

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 
μm ≈1000 a !



Organics - Theory
• RVB/QSL state:

• Motrunich, Lee+Lee: (2005) “uniform RVB”

• this is a kind of RVB state with very many 
(maybe a maximal number of?) long-range 
VBs

• It is described by a “Fermi sea” of spinons 
coupled to a U(1) gauge field

• Good variational energy for triangular lattice 
Hubbard model



Organics: issues
• Why these very small set of materials?

• Spatial homogeneity?

• Indications of phase transitions.  Gaps opening? 
Charge ordering?

• Quantitative inconsistencies with expected scaling 
behavior from theory (c.f. C ~ T2/3 etc.)

• Large isotope effects.  Role of molecular rotations?

• Almost all experimental checks of QSL are limited to 
T<5K, and many are not directly tied to spins, while 
J~200-300K.  Hampered by nature of materials.
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and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 
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The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
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Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
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Like in politics, even the 
leading candidates may 
leave something to be 
desired

CIFAR is uniquely positioned



Theory: Frontiers
New phases

• Fractal spin liquids 
(Haah++) in 3d

• SPT phases 
• Quenched disorder

Fundamental problems
• QSLs with strongly coupled 

matter-gauge theory
• QCPs to/from QSL phases
• Out of equilibrium
• Doping

Reality
• Devise experimental protocols to 

reveal quantum non-locality of QSLs
• Computational methods: less bias, 

reliability of variational methods, 
beyond ground states



Thanks for your attention

References here: https://spinsandelectrons.com/pedagogy/


