Interplay of magnetic and
electronic states in the

pyrochlore iridates
Leon Balents, KITP, UCSB

- Or -
correlations versus
topology

APS meeting, Baltimore, March 2016



R
u
C
h
e
n
L
u
C
ile
S
ava
ry
E
u
n
45
o)
o)
k
M
o)
o)
n

k.

S
. N
a
k
a
s
u
ji
T
. K
o)
ndo
Z
.9
ia
n
H
s
h
1Z
u

k
a



General questions about

pyrochlore iridates

® How correlated are these materials?

® | ots of theory uses mean-field. Does this

work?

® \Whatist
mean-fie

® \Whatist

It so why?

ne role of interactions beyond
d? Slater versus Mott.

he nature of the MIT?

® Any real signatures of topology?
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Topological everything

® Chern insulator

® 7/, topological insulator

® topological crystalline insulators
® topological superconductors

® Dirac semi-metals

® Weyl semi-metals

® Line node semi-metals

® Fermi surface



Why correlations?

w/0 Iinteractions

We like correlations

because we dream of a
more colorful world
| Chern 2,
insulator
Chiral
Z> TSC

+ Weyl, Dirac...




Why correlations?

e Distinct surface states

o>

<
,2)0

Chern
insulator

Chiral
& Z>, TSC

surface iTO

Zy Tl

S
k /}0
S \‘\\OC) 2
Qe




Why correlations?

e Distinct surface states
e Control of bulk

topology by
a@oo Chern
SpontaﬂeOUS o insulator

symmetry breaking @

surface iTO




Why correlations?

e Distinct surface states
e Control of bulk

topology by

spontaneous i

symmetry breaking @
e Entirely new phases

requiring strong
Interactions
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This talk: how does this play out in a real example?



A (B) sublattice

A=Y,Ln «<—— f-electron moments, except
B=Ir when A =Y, Eu
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Pyrochlore iridates

e Continuous magnetic/metal-insulator
transitions (compatible with Ising)
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Pyrochlore iridates

e Continuous magnetic/metal-insulator
transitions (compatible with Ising)
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How correlated are
these materials? Is

there physics beyond

mean-field? [f yes,
what is its role?




Ingredients ot a theory

e Unusual electronic structure
® |r e-e Hubbard interactions

e Rare earth moments?
probably not?

2000 Non—Metal Metal
Y

150 Ho D
y Tb
L“Yb Gd gy Sm
100
Magnetic Ins.
50 Nd
Pr
0 : ‘ : o
100 105 110 115

R** ionic radius (pm)

T (K)




T. Kondo et al, Nat. Comm., 2015

Paramagnetic electronic

structure
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Energy (eV)

T. Kondo et al, Nat. Comm., 2015

Paramagnetic electronic
structure

Yolr207 PralroO7
05 GGA e d TB-mBJ — b TB-mBJ
o.if/ = 4 0. | :73:——-/ 0.Es x;ﬁ—;<
L — % — E—
~0.5b— /_/-\ 0.5/—\/7£ s o.5z/\//-—
= e T~ B P
—1.§< —1.\ T~ 1 LICJ —1.&
15 // 1.5} ;/ 15 [/
2% § L w W T " v W T L w

L semi-metal is “easy” to convert to
) ///\ insulator: Mott transition can

occur with weak order



Proximate phases
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ARPES
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ARPES
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v Bandwidth reduced by 3-5 from DFT




ARPES

T. Kondo et al, Nat. Comm., 2015 R\
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vBandwidth reduced by 3-5 from DFT Energy (V)
v Quasiparticle weight strongly
suppressed with temperature




Correlated quasiparticles

(\a((O‘N 7 energy-dependent
quasiparticle peak
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articl renormalized ~ 100K
quasiparticle

“Fermi liquid”
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Ordering: theory
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I quasiparticle picture applies at low energy, a weakly
ordered AIAO state must be a Weyl semimetal
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Weyl?

e \Weyl semimetal?
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Weyl not?

K. Ueda et al, 2012
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Weyl not?

K. Ueda et al, 2012
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v Bandwidth reduced by 3-5 from DFT
v Quasiparticle weight strongly

suppressed with temperature
vGap ~ 45meV ~ 18 T¢




Weyl not?

K. Ueda et al, 2012
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If quasiparticle picture applies at low energy, a weakly
ordered AIAO state must be a Weyl semimetal

+ Not weakly ordered?
+ No quasiparticles?
+ Weyl with very small DOS?



Weak or not?
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Could this have happened already for Nd?



Zhaoming Tian et al, Nature Physics, 2015

Transport

To explore this in more
detail, let’s look at

transport
® Seems to b with hard gap
® thermal tra continuous
7
10" F I | | | | E
S sl 1 e However, abrupt first order transition
0T E LUl appears at low T in a field
2 | \ | ®lnsulator-metal transition only occurs for
’ i I fields along (100)
10° ' ' P—

L L L | L
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B (T)

c.f. K. Ueda et al, 2015



Zhaoming Tian et al, Nature Physics, 2015

Transport

To explore this in more
detail, let’s look at
transport

® Seems to b with hard gap

® thermal tral continuous
4

v Bandwidth reduced by 3-5 from DFT
‘v Quasiparticle weight strongly

10" P o suppressed with temperature
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Zhaoming Tian et al, Nature Physics, 2015

Metal-Insulator Transition

PM Metal
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® First order transition at low temperature: mechanism of
MIT is vanishing of condensation energy, not gap closing.

® Anisotropy: clear indication that Nd plays a direct role in
the MIT - probably this is a unique feature for R=Nd



*Much of gap (45meV) is due to Nd-Ir
exchange

e|ntrinsic g-tensor anisotropy of Nd
explains anisotropy of MIT

(100) field achieves maximum Nd polarization of 2in-2out type, “opposite” to AIAO Ising order



Anisotropy

® Nd sensitivity to direction is transferred to Ir

Hy = Z Si  Jia - Ta  acts like hot ~10meV local field on Ir
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Hartree-Fock on Hubbard  ® heff is significant for Nd case

+Kondo lattice model e can explain the anisotropy



Zhaoming Tian et al, Nature Physics, 2015

Metal-Insulator Transition

PM Metal
(dprdT > 0) B //[001]

L B/[001] T 10

PM Semimetal
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2120
Semimetal

(dp/dT ~ 0)

Nd moments are 2in-2out here, but no
evidence that Ir is 2in-2out, or even
has substantial local moments here




M. Nakayama et al, unpublished-- coming soon!
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Quasiparticles?

® Already observed bandwidth reduction
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in PralroO7 - what happens for Nd?

T>T.: like Pr
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MI36K :
T=Tc: no precursor - Slater

T < T gap developing

.02 00
Energy (eV)

Slater to Mott
crossover?

} loss of quasiparticle peak

T << Tc: remarkably flat

In strong Mott localized regime non-trivial band topology is unlikely



M. Nakayama et al, unpublished-- coming soon!

Quasiparticles?

® Already observed bandwidth reduction

in Prolr-0)- - what hannens for Nd?
v Bandwidth reduced by 3-5 from DFT

v Quasiparticle weight strongly

suppressed with temperature
vGap ~ 45meV ~ 18 T¢
v MIT driven by (tiny) 12T field
v Extreme band flattening and

T
. Energy (eV)
reduction of QP peak at low T

oss of quasiparticle peak

e i A v

ol . T << T remarkably flat
s e

04 -02 00,02 04 In strong Mott localized regime non-trivial band topology is unlikely
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Energy regimes

highly

renormalized

./?“‘/“‘?q}‘r *

K~ /

bare (DFT)
quasiparticle

"Fermi liquid”

mean-field onset

I _ Mott-like low T limit?



Domains

® | arge magnetic moment of Nd allows
manipulation of domains

C
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c.f. K. Ueda et al (2014)

conducting domain walls! c.f. previous talks



Domains

® | arge magnetic moment of Nd allows
manipulation of domains

C
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B(T) local conductivity
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c.f. K. Ueda et al (2014)
may be evidence for correctness of Slater picture? '

estimate d ~ ,Umetal,Sd/,UD ~ (Im - em) /(1K) ~ 10nm




Summary

Pyrochlore iridates show a rich
phenomenology with nodal
and gapped states, metal-
insulator transitions, and
strong anisotropic response

Correlations induce
antiferromagnetism but also
Mott localization, which,
helped by Nd f-moments,
seems to subdue the Weyl|
fermions expected from the
former alone. Challenge: can
we recover them? (c.f. K. Ueda
talk?)

Quite a bit still to explore!
Correlated materials prove
surprising and challenging

insulator
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