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Outline 
• Where can correlations enrich topology?

• Three types of topology: band topology, Berry phase 
topology, intrinsic topological order 

• Correlations in these:

• Bosonic SPT phases

• Correlated Weyl fermions

• Drumhead surface states

• If there’s time, intrinsic topological order
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+ Correlations:
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Three types of topology
Topological Insulator

topology of filled bands

“symmetry protected 
topological order”

+ Correlations:
✦Topological Kondo Insulator SmB6?
✦Surface states may be more correlated 

than bulk
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SPT phases
• An SPT phase is:

• A gapped state which can be deformed to a 
product state if and only if a symmetry broken 
during the deformation

• A state with usually gapless but always 
anomalous states at its boundary

• A generalization of topological band insulators 
to interacting systems, spins, bosons etc.



The examples
Topological insulator

TR-breaking

Haldane/AKLT chain - a bosonic SPT

8.2. AKLT/Haldane chain

A(1) = �|#ih" |, A(0) =
1p
2
(|"ih" |� |#ih# |) , A(�1) = |"ih# |.

Up to normalization and overall phase of the wavefunction, this agrees with
“standard” MPS notations for the AKLT state, e.g. on wikipedia.

With periodic boundary conditions the AKLT state is unique. Using the
MPS formulation it is easy to compute correlation functions in the state. One
can see then directly that they are all short-range. The spin-spin correlation
function, and all other connected correlation functions, decay exponentially.
Thus we can view the AKLT state as a realization of Haldane’s proposal that
a spin-1 antiferromagnetic chain is disordered. It also has a spin gap, which
physically means that to excite away from the ground state, some singlets
of the AKLT state must be broken. However, while the excitations have been
computed variationally and numerically, they are not known exactly for the
AKLT state.

What was not appreciated even by AKLT so far as I know was the topo-
logical character of the state. This becomes apparent only when it is written
for a finite open chain rather than a periodic one. Then we can still follow
the auxiliary spin construction, and succeed in find ground states by forcing
total spin < 2 on all the bonds by forming singlets between auxiliary spins.
However, in this case, there are two auxiliary spins left out at the ends of the
chains:

(352) |Yiopen
AKLT =

The outermost (first and last) auxiliary spins (solid dots in the diagram) are
completely free. So one can construct 4 linearly independent auxiliary states,
and project each of them to obtain AKLT ground states. These states clearly
have a net spin-1/2 at each end. This is something amazing! We start with a
collection of s = 1 spins, which by the rules of angular momentum addition
can only produce total spin with integer values, and we end up with effec-
tively 2 s = 1/2 spins at the ends! These days it is fashionable to call this
“symmetry fractionalization”. Regardless of the name, it is very cool.

The presence of the s = 1/2 end spins is a robust feature of a phase. It
persists as long as the spin-rotation symmetry of the Hamiltonian is preserved
(in fact other symmetries can protect the boundary spins as well), and the
bulk gap of the spectrum is maintained, i.e. until a quantum phase transition
occurs. One can see this by continuity. It is best to think of a semi-infinite
chain, which has then only one s = 1/2 spin, i.e. a two-fold ground state
degeneracy. To remove the s = 1/2 spin degeneracy of the ground state, some
other level would need to cross the ground state. If this happens in the bulk, it
is a phase transition. Can a level crossing occur at the edge? For some models,
additional bound states can appear at the edge, but these must be built out
of the excitations in the bulk, which have integer spin. So any such state will
have an integer spin plus the original half-integer boundary spin, and so has
a total half-integer spin, and in particular a total spin zero is impossible. Thus
any levels that are below the bulk gap must have a half-integer spin, and
consequently a minimal two-fold degeneracy. Crossing of such a level with
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Bosonic SPTs in d>1?
SYMMETRY PROTECTED TOPOLOGICAL ORDERS AND THE . . . PHYSICAL REVIEW B 87, 155114 (2013)

(a) (b)

FIG. 4. (Color online) Transforming a SRE state to a tensor-
network state which takes simple canonical form. (a) A SRE state.
(b) Using the unitary transformations that act within each block, we
can transform the SRE state to a tensor-network state. Entanglements
exist only between the degrees of freedom on the connected tensors.

below, to the right, and to the lower right of the middle square.
We can use the LU transformation inside the middle square to
move all those degrees of freedom to the lower-right corner of
the middle square. Similarly, we can use the LU transformation
to move all the degrees of freedom that are entangled with the
three squares below, to the left, and to the lower-left of the
middle square to the lower-left corner of the middle square, etc.
Repeat such operation with every square and we obtain a state
described by Fig. 4(b). For stabilizer states, such reduction
procedure has been established explicitly.83

Figure 4(b) is a graphic representation of a tensor-network
description of the state.84–90 In the graphic representation, a
dot with n legs represents a rank n tensor (see Fig. 5). If
two legs are connected, the indexes on those legs will take
the same value and are summed over. In the tensor-network
representation of states, we can see the entanglement structure.
The disconnected parts of the tensor network are not entangled.
In particular, the tensor-network state Fig. 4(b) is a direct
product state.

If there is no symmetry, we can transform any direct product
state to any other direct product state via LU transformations.
So all SRE states belong to one phase.

B. Cases with an on-site symmetry

However, when we study phases of systems with certain
symmetry, we can only use the LU transformations that respect
the symmetry to connect states within the same phase. In this
case, even SRE states with the same symmetry can belong to
different phases.

Let us consider d-dimensional systems of N sites that
have only an on-site symmetry group G. We also assume
that the states |m⟩ on each site form a linear representation
Umm′ (g), g ∈ G of the group G.

To understand the structure of quantum phases of the
symmetric states that do not break the symmetry G, we can

(a)

α
(b)

β
m

β

(d)(c)

m
α αm

β

λ
γ α

FIG. 5. (Color online) Graphic representations of tensors: (a) Am
α ,

(b) Am
αβ , and (c) Am

αβγλ. (d) A corner represents a special rank-2 tensor
Aαβ = δαβ .

FIG. 6. (Color online) A tensor network representation of a SRE
state with on-site symmetry G. All the dots in each shaded circle form
a site. The degrees of freedom on each site (i.e., in each shaded circle)
form a linear representation of G. However, the degrees of freedom
on each dot may not form a linear representation of G.

only use symmetric LU transformation that respects the on-site
symmetry G to define phases. Two gapped symmetric states
are in the same phase if and only if they can be connected by
a symmetric LU transformation.18

We have argued that generic LU transformations can change
a SRE state in Fig. 4(a) to a tensor-network state in Fig. 4(b).
The LU transformations rearrange the spatial distributions of
the entanglements which should not be affected by the on-site
symmetry G. So, in the following, we would like to argue that
symmetric LU transformations can still change a SPT state
in Fig. 4(a) to a symmetric tensor-network state in Fig. 4(b)
(although a generic proof is missing).

We first assume that symmetric SRE states have tensor
network representation as shown in Fig. 6. The linked dots
represent the entangled degrees of freedom. The dots in
each shaded circle represent a site, which forms a linear
representation of the on-site symmetry group G. We then
divide the systems into large squares (see Fig. 6). The size
of the square is large enough that entanglement only appears
between squares that share an edge or a vertex. Now we view
the degrees of freedom in each square as a large effective site.
The degrees of freedom on each effective site form a linear
representation of G. Now, we can use an unitary transformation
in each square to rearrange the degrees of freedom in that
square (which corresponds to change basis in the large effective
site). This way, we can transform the SPT state in Fig. 6 into
the canonical form in Fig. 4(b), where the degrees of freedom
on each shaded square form a linear representation of G. So
Fig. 4(b) is a symmetric tensor-network state. We would like
to point out that although in Fig. 4(b), we only present a 2D
tensor-network state in canonical form, the similar reduction
can be done in any dimension.

V. CLASSIFICATION OF SYMMETRY
TRANSFORMATIONS OF SPT STATES

After the symmetric state is reduced to the canonical form in
Fig. 4(b), the on-site symmetry transformation is generated by
the following matrix on the effective site i : U i

α1α2α3α4,α
′
1α

′
2α

′
3α

′
4
,

which forms a linear representation of the on-site symmetry
group G. The symmetry transformation U i

α1α2α3α4,α
′
1α

′
2α

′
3α

′
4

keeps
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Chen, Gu, Liu, Wen - many tensor network states

H1+d[G,UT (1)]classified by 

CHEN, GU, LIU, AND WEN PHYSICAL REVIEW B 87, 155114 (2013)

TABLE I. (Color online) SPT phases of interacting bosonic systems in d-spatial dimensions protected by on-site symmetry G. In absence
of translation symmetry, the above table lists H1+d [G,UT (1)] whose elements label the SPT phases. Here Z1 means that our construction only
gives rise to the trivial phase. Zn means that the constructed nontrivial SPT phases plus the trivial phase are labeled by the elements in Zn. ZT

2
represents time-reversal symmetry, “trn” represents translation symmetry, U (1) represents U (1) symmetry, Zn represents cyclic symmetry, etc.
Also, (m,n) is the greatest common divisor of m and n. The red rows are for bosonic topological insulators and the blue rows bosonic topological
superconductors. The red/blue rows without translation symmetry correspond to strong bosonic topological insulators/superconductors and the
red/blue rows with translation symmetry also contain weak bosonic topological insulators/superconductors.

nontrivial SU (2) SPT phases in (2 + 4n) spatial dimension.
Those SU (2) SPT phases labeled by k ∈ Z. There is no
nontrivial SU (2) SPT phase in other dimensions. Similarly,
those SU (2) SPT phases in 2D can be described by continuous
nonlinear σ model with 2π -quantized topological θ term:

S =
∫

dτd2x

(
1

2ρ
Tr(∂µg†∂µg)

+ i
θ

2π2

ϵµνλ

6
1
2

Tr[(g−1∂µg)(g−1∂νg)(g−1∂λg)]
)

, (3)

where g(x,t) is a 2 × 2 matrix in SU (2) and θ = 2πk, k ∈ Z.

C. U(1) SPT states

From H1+d [U (1),U (1)] = Z for even d and
H1+d [U (1),U (1)] = Z1 for odd d, we find that spin/boson
systems with U (1) on-site symmetry have infinite nontrivial
SPT phases labeled by nonzero integer in d = even dimensions.
This generalizes a result obtained by Levin for d = 2.62 We
note that H3[SU (2),U (1)] = H3[U (1),U (1)] = Z. The SPT
states with SU (2) symmetry can also be viewed as SPT states
with U (1) symmetry. We know that an SU (2) SPT state
labeled by k ∈ Z is described by Eq. (3) with θ = 2πk. Such

an SU (2) SPT state is also a nontrivial U (1) SPT state labeled
by k ∈ Z.

We like to point out that it is believed that all 2D
gapped phases with Abelian statistics are classified by K
matrix and the related U (1) Chern-Simons theory.68–70 All the
quasiparticles in the 2D SPT phases are bosons. So the SPT
phases are also described by K matrices. We just need to find
a way to include symmetry in the K-matrix approach, which
is done in Ref. 49. In particular, Michael Levin71 pointed out
that a 2D U (1) SPT phase can be described by a U (1) × U (1)
Chern-Simons theory (or a double-layer quantum Hall state)
(see also Refs. 72 and 73),

L= 1
4π

KIJ aIµ∂νaJλϵ
µνλ + 1

2π
qIAµ∂νaIλϵ

µνλ + · · · , (4)

with the K matrix and the charge vector q:68–70

K =
(

0 1
1 2k

)
, q =

(
1
1

)
. (5)

We note that such a K matrix has two null vectors n1 =
( 1

k ),n2 = ( 0
1 ) that satisfy nT

i K−1ni = 0. The null vectors
correspond to quasiparticles with Bose statistics. Such null
vectors would destabilize the state if we did not have the U (1)
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FIG. 1. (Color online) Summary of some simple integer bosonic
topological phases. (a) A chiral phase of bosons (no symmetry
required). An integer multiple of eight chiral bosons at the edge is
needed to evade topological order, leading to a quantized thermal
Hall conductance κxy/T = 8nL0 in units of the the universal

thermal conductance L0 = π2k2
B

3h
. These are bosonic analogs of chiral

superconductors. (b) A nonchiral phase of bosons protected by
U (1) symmetry (e.g., charge conservation). Distinct phases can be
labeled by the quantized Hall conductance σxy = 2nσ0, which are
even integer multiples of the universal conductance σ0 = q2/h for
particles with charge q. These are bosonic analogs of the integer
quantum Hall phases. (c) A nonchiral phase stabilized in the presence
of time reversal and U (1) charge conservation symmetries, the same
symmetries used to define quantum spin Hall (topological) insulators.
A Z2 topological classification is obtained, although bosonic time
reversal that squares to +1 is involved.

the usual relation between charge and time reversal], the analog
of fermionic quantized spin Hall insulators, despite the fact
that the time reversal operation is “bosonic” and squares to
+1. An advantage of the present formulation is that the edge
states of these phases are explicit—typically being nonchiral
c = 1 conformal field theory (CFT) when gapless. Moreover,
being cast in the familiar Abelian Chern-Simons form, it is
amenable to further investigation using standard field theory
methods. We focus on symmetries (such as time reversal) that
are realized locally. Spatial symmetries such as translation
invariance, inversion, etc., will be left for future work. Since
we do not make any assumption about spatial uniformity, the
topological phases we find are well defined in the presence of
disorder.

A disadvantage of our method is that it is less suited
to discuss non-Abelian Lie group symmetries, and we are
currently restricted to two spatial dimensions, neither of which
is a restriction for group cohomology theory.47 Also, our
method does not automatically produce a group structure
for the set of topological states. On general grounds, one
expects the set of topological phases protected by a particular
symmetry to form an Abelian group, which is automatically
satisfied in the group cohomology classification and in the
classification of free fermion topological phases. We handle
this by defining an Abelian group structure, addition and
subtraction, on pairs of phases described within the K matrix
formulation. With this refinement the group structure of the
resulting sets of phases is readily determined. For phases with
topological order (|det K| > 1) and exotic bulk exceptions,
it is less apparent whether such an Abelian group structure
of topological phases will emerge. Nevertheless, a similar K

matrix approach could be used to discuss topologically ordered
phases in the presence of global symmetries, which is left for
future work.

(c) Topological phases of interacting fermions. We extend
our discussion to classifying topological phases of interacting
fermion, in the absence of topological order. A key difference
from the bosonic case is that since fermion insertion is a
nonlocal operation, symmetries may be realized projectively
on the fermion fields. We compare our results to a recent super-
cohomology classification of interacting fermion phases.25 In
addition to the relative simplicity of our method, an advantage
over supercohomology classification is that we are able to
handle Kramers time reversal symmetry T 2 = (−1)N̂f (N̂f is
the total fermion number operator). A disadvantage, shared
by the super-cohomology classification, is that we are not
able to capture chiral or nonchiral states with odd numbers
of Majorana edge modes. As expected, we recover the Z2
classification of time reversal symmetric quantum spin Hall
insulators, from this interacting formalism as well. We also
compare our results with the recent work21–23 on topological
phases of interacting fermions with Z2 × ZT

2 symmetry. We
also discuss topological phases of the symmetry group Z4 !
ZT

2 , corresponding to time reversal symmetric superconductors
with four particle (charge 4e) condensates. For the cases we
considered, the topological phases of interacting fermions
either descend from noninteracting phases, or correspond to a
bosonic topological phases, where the bosons are bound states
of fermions. Whether this is a general property of fermion
topological phases is an open question. Our classifications of
SPT phases of interacting fermions with various symmetries
are summarized in Table II.

(d) Microscopic quasi-1D realization. Finally, to give
a deeper insight into the obtained topological phases we
utilize a quasi-one-dimensional (coupled wire52,53) approach
to construct a candidate state consistent with the edge content
that emerges from the classification. The K matrix approach
naturally suggests such a construction. This sheds light on
various paradoxical results such as the fact that there is a
bosonic analog of the quantum spin Hall state although time
reversal acts only on bosons with T 2 = 1.

Some aspects of this work are similar in spirit to a number of
previous works that have discussed the role of symmetry and
stability of edge states in various specific contexts.28,50,54–60

For example, Refs. 28 and 60 discussed the stability of edge
states in fractional topological insulators. However, the general
machinery presented here to generate symmetry protected
topological states has not previously been discussed.

II. K MATRIX FORMULATION OF 2 + 1-D
TOPOLOGICAL PHASES

It is believed61–63 that K matrix provides a complete
classification of all Abelian fraction quantum Hall (FQH)
states in 2 + 1 dimensions. In this section, we briefly review the
K matrix formulation of Abelian FQH states. We then discuss
how it can be applied to study states without topological order.
In particular, we point out that in the absence of symmetry,
fields that have trivial (or bosonic) self and mutual statistics
will be “Higgsed,” and the stability of the edge is examined in

125119-3
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all these states have a c=1 Luttinger liquid edge
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• Tensor network constructions

• Levin-Gu model

• Coupled wires

Any models?
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symmetry, since we could include one of the corresponding
quasiparticle operators in the Hamiltonian which would gap
the edge excitations.74 In the presence of U (1) symmetry,
the quasiparticles carry U (1) charges qT K−1n1 = 1 − k and
qT K−1n2 = 1. We see that when k ̸= 1, both quasiparticles
that correspond to the null vectors carry nonzero U (1) charges.
Thus, the quasiparticle operators cannot be included in the
Hamiltonian, and they do not gap the gapless edge excitations.
The corresponding state will have U (1) protected gapless
excitation and correspond to a nontrivial U (1) SPT state.
We see that the K matrix and the charge vector q describe a
nontrivial U (1) SPT state when k ̸= 1 and a trivial state when
k = 1. The 2D U (1) SPT states are labeled by an integer.

D. Bosonic topological insulators/superconductors

The U (1) ! ZT
2 line in Table I describes the SPT phases

for interacting bosons with time-reversal symmetry ZT
2 and

boson number conservation [symmetry group = U (1) ! ZT
2 ,

where time-reversal T and U (1) transformations Uθ satisfy
T Uθ = U−θT ]. Those phases are bosonic analogs of free
fermion topological insulators protected by the same sym-
metry. From H1+d [U (1) ! ZT

2 ,U (1)], we find one kind of
nontrivial bosonic topological insulators in 1D or 2D and three
kinds in 3D. The only nontrivial topological insulator in 1D is
the same as the Haldane phase.

The ZT
2 line in Table I describes interacting bosonic analogs

of free fermion topological superconductors75–79 with only
time-reversal symmetry, ZT

2 . Since H1+d [ZT
2 ,U (1)] = Z2 for

odd d and H1+d [ZT
2 ,U (1)] = Z1 for even d, we find one kind

of “bosonic topological superconductors” or nontrivial SPT
phases in every odd dimension (for the spin/boson systems
with only time-reversal symmetry).

E. Other SPT states

The U (1) × ZT
2 line describes the SPT phases for integer

spin systems with time-reversal and U (1) spin rotation sym-
metries (symmetry group = U (1) × ZT

2 , where time-reversal
T and U (1) transformations Uθ satisfy T Uθ = UθT ). From
H1+d [U (1) × ZT

2 ,U (1)], we find three nontrivial SPT phases
in 1D, none in 2D, and seven in 3D.

We also find that H1+d [Zn,U (1)] = Zn for even d and
H1+d [Zn,U (1)] = Z1 for odd d. So spin/boson systems with
Zn on-site symmetry have n − 1 kinds of nontrivial SPT phases
in d = even dimensions.

For integer spin systems with D2h symmetry but no trans-
lation symmetry, we discover 15 new SPT phases in 1D,53,80

63 new SPT phases in 2D, and 511 new SPT phases in 3D.

F. Ideal ground-state wave functions and exactly soluble
Hamiltonians for SPT phases

We can construct the ideal ground-state wave functions and
exactly soluble Hamiltonians for all the SPT phases described
by H1+d [G,UT (1)]. The elements in H1+d [G,UT (1)] are
complex functions of d + 2 variables νd+1(g0, . . . ,gd+1), gi ∈
G. νd+1(g0, . . . ,gd+1) is a pure phase |νd+1(g0, . . . ,gd+1)| = 1
that satisfies certain cocycle conditions [Eqs. (16) and (17)].
From each element νd+1(g0, . . . ,gd+1) we can construct the d-
dimensional ground-state wave function for the corresponding
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FIG. 2. (Color online) (a) A triangular lattice. The Hamiltonian
term (6) acts on the seven sites in the shaded area. (b) A geometric
representation of the the phase factors in Eq. (6).

SPT phase. In 2D, we can start with a triangle lattice model
where the physical states on site i are given by |gi⟩, gi ∈ G [see
Fig. 2(a)]. The ideal ground-state wave function is then given
by #({gi}) =

∏
△ ν3(1,gi,gj ,gk)

∏
▽ ν−1

3 (1,gi,gj ,gk), where∏
△ and

∏
▽ multiply over all up- and down-triangles, and the

order of ijk is clockwise for up-triangles and counterclockwise
for down-triangles [see Fig. 2(a)].

To construct exactly soluble Hamiltonian H that
realizes the above wave function as the ground state, we
start with an exactly soluble Hamiltonian H0 = −

∑
i |φi⟩⟨φi |,

|φi⟩ =
∑

gi∈G |gi⟩, whose ground state is #0({gi}) = 1.
Then, using the LU transformation U =

∏
△ ν3(1,gi,gj ,gk)∏

▽ ν−1
3 (1,gi,gj ,gk), we find that the above ideal ground-state

wave function is given by # = U#0 and the corresponding
exactly soluble Hamiltonian is given by H =

∑
i Hi , where

Hi = U |φi⟩⟨φi |U †. Hi acts on a seven-spin cluster labeled by
i, 1–6 in shaded area in Fig. 2(a),

Hi |gi,g1g2g3g4g5g6⟩
=

∑

g′
i

|g′
i ,g1g2g3g4g5g6⟩

× ν3(g4,g5,gi,g
′
i)ν3(g5,gi,g

′
i ,g6)ν3(gi,g

′
i ,g6,g1)

ν3(gi,g
′
i ,g2,g1)ν3(g3,gi,g

′
i ,g2)ν3(g4,g3,gi,g

′
i)

. (6)

The above phase factor has a graphic representation as in
Fig. 2(b). (For a detailed explanation of the graphic represen-
tation, see Fig. 10.) H has a short-ranged interaction and has
the symmetry G: |{gi}⟩ → |{ggi}⟩, g ∈ G, if ν3(g0, . . . ,g3)
satisfies the 3-cocycle conditions Eqs. (16) and (20).

For symmetry G = Z2 and using the 3-cocycle calculated
in Appendix J 2, we find that the Hamiltonian that realizes the
nontrivial Z2 SPT state in 2D is given by

Hi = σ+
i η+

21η
+
32η

+
43η

+
45η

+
56η

+
61 + σ−

i η−
21η

−
32η

−
43η

−
45η

−
56η

−
61, (7)

where

σ+
i =

(
0 0
1 0

)
, σ−

i =
(

0 1
0 0

)
, (8)

which act on site i. Also, η±
ij are operators acting on sites i

and j :

η+
ij |0⟩i ⊗ |1⟩j = −|0⟩i ⊗ |1⟩j ,

η+
ij |α⟩i ⊗ |β⟩j = |α⟩i ⊗ |β⟩j , (α,β) ̸= (0,1),

η−
ij |1⟩i ⊗ |0⟩j = −|1⟩i ⊗ |0⟩j , (9)

η−
ij |α⟩i ⊗ |β⟩j = |α⟩i ⊗ |β⟩j , (α,β) ̸= (1,0).
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two paramagnets cannot be continuously connected without
breaking the Z2 symmetry or closing the energy gap. Closely
related to this observation, we show that the two spin models
are “dual” to two previously studied lattice models—each of
which realizes a different type of Z2 gauge theory. This duality
establishes a connection between SPT phases and previous
work23 on the classification of topological gauge theories.

Our second result is a proof that the new paramagnet has
gapless edge modes protected by Ising symmetry. Interest-
ingly, our argument reveals that the protected edge states are
deeply connected to the braiding statistics of the π fluxes.
This approach to proving edge state protection is somewhat
different from the original argument of Ref. 10 and may be
more amenable to higher dimensional generalizations. In the
final part of the paper we analyze the protected edge modes
at a more concrete level, focusing on a particular microscopic
model of the edge. We derive a field theoretic description of the
low energy modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases, braiding
statistics can be used to uniquely characterize the bulk and to
derive the existence of protected boundary modes. We discuss
these potential generalizations in the conclusion.

This paper is organized as follows. In Sec. II we describe
spin models that realize both the conventional and the new
kind of Ising paramagnet. In Sec. III we show that the two
spin models can be distinguished by the braiding statistics of
the π -flux excitations. In Sec. IV we show that the two spin
models are dual to two previously studied lattice models. In
Sec. V we show that the π -flux braiding statistics are directly
connected to the existence of protected edge modes. Finally,
in Sec. VI we analyze a particular microscopic model for the
edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice [Fig. 1(a)]:

H0 = −
∑

p

σ x
p . (1)

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two properties.
First, the Hamiltonian is invariant under the Ising symmetry

)b()a(

pp

q q′

FIG. 1. (Color online) The Hamiltonians H0,H1 [Eqs. (1) and
(2)] for the two spin models. (a) The Hamiltonian H0 is a sum of
single spin terms σ x

p . (b) The Hamiltonian H1 is a sum of seven spin

terms Bp = −σ x
p

∏
⟨pqq ′⟩ i

1−σz
q σz

q′
2 , where the product runs over the six

triangles ⟨pqq ′⟩ containing p.

S =
∏

p σ x
p . Second, the ground state |#0⟩ ≡ |σ x

p = 1⟩ is
gapped and unique—implying that the symmetry is not broken
spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this new
type of paramagnet was first constructed in Ref. 10. Here
we describe another model which is more convenient for our
purposes. The model we consider is a spin-1/2 system on the
triangular lattice. The Hamiltonian is given by [Fig. 1(b)]

H1 = −
∑

p

Bp, Bp = −σ x
p

∏

⟨pqq ′⟩
i

1−σz
q σz

q′
2 , (2)

where the product runs over the six triangles ⟨pqq ′⟩ containing
the site p. We note that this Hamiltonian is Hermitian despite
the factors of i. To see this, notice that the product includes
a factor of i for each pair of neighboring spins q,q ′ that have
opposite values of σ z. In particular, since the number of such
pairs is necessarily even, the product always reduces to a factor
of ±1. It is then clear that H

†
1 = H1. (For readers who are

curious as to how this model was constructed, see Sec. IV).
First we show that H1 describes a paramagnetic phase—

that is, the Ising symmetry is not spontaneously broken. To
establish this fact, we solve H1 explicitly. The key point is that

[Bp,Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result
we can simultaneously diagonalize {Bp}. We will label the
simultaneous eigenstates by |{bp}⟩, where bp = ±1 denotes
the eigenvalues of Bp. It is not hard to show that there is
an unique state for each choice of {bp}, assuming a periodic
geometry (i.e., a torus). In other words, the {bp} are a complete
set of quantum numbers. We therefore have the full energy
spectrum: Each state |bp⟩ is an energy eigenstate with energy

E = −
∑

p

bp. (4)

In particular, the ground state |#1⟩ ≡ |bp = 1⟩ is unique and
gapped—implying that the Ising symmetry is not sponta-
neously broken.

It is illuminating to compare the ground state wave
functions of H0,H1. The ground state of H0 is the state where
σ x

p = 1 everywhere. Working in the σ z basis, the wave function
is given by

#0({αp}) = 1 (5)

for all spin configurations {αp = ↑, ↓} [Fig. 2(a)]. As for
H1, we note that the ground state is the unique state with
Bp = 1 everywhere. It is straightforward to check that the
corresponding wave function is given by

#1({αp}) = (−1)Ndw , (6)

where Ndw is the total number of domain walls in the spin
configuration {αp = ↑, ↓} [Fig. 2(b)]. We can see that the two
ground states are nearly identical, differing only by some phase
factors. Nevertheless, these two states belong to two different
quantum phases, as we now show.
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two paramagnets cannot be continuously connected without
breaking the Z2 symmetry or closing the energy gap. Closely
related to this observation, we show that the two spin models
are “dual” to two previously studied lattice models—each of
which realizes a different type of Z2 gauge theory. This duality
establishes a connection between SPT phases and previous
work23 on the classification of topological gauge theories.

Our second result is a proof that the new paramagnet has
gapless edge modes protected by Ising symmetry. Interest-
ingly, our argument reveals that the protected edge states are
deeply connected to the braiding statistics of the π fluxes.
This approach to proving edge state protection is somewhat
different from the original argument of Ref. 10 and may be
more amenable to higher dimensional generalizations. In the
final part of the paper we analyze the protected edge modes
at a more concrete level, focusing on a particular microscopic
model of the edge. We derive a field theoretic description of the
low energy modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases, braiding
statistics can be used to uniquely characterize the bulk and to
derive the existence of protected boundary modes. We discuss
these potential generalizations in the conclusion.

This paper is organized as follows. In Sec. II we describe
spin models that realize both the conventional and the new
kind of Ising paramagnet. In Sec. III we show that the two
spin models can be distinguished by the braiding statistics of
the π -flux excitations. In Sec. IV we show that the two spin
models are dual to two previously studied lattice models. In
Sec. V we show that the π -flux braiding statistics are directly
connected to the existence of protected edge modes. Finally,
in Sec. VI we analyze a particular microscopic model for the
edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice [Fig. 1(a)]:

H0 = −
∑

p

σ x
p . (1)

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two properties.
First, the Hamiltonian is invariant under the Ising symmetry
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FIG. 1. (Color online) The Hamiltonians H0,H1 [Eqs. (1) and
(2)] for the two spin models. (a) The Hamiltonian H0 is a sum of
single spin terms σ x

p . (b) The Hamiltonian H1 is a sum of seven spin

terms Bp = −σ x
p

∏
⟨pqq ′⟩ i

1−σz
q σz

q′
2 , where the product runs over the six

triangles ⟨pqq ′⟩ containing p.

S =
∏

p σ x
p . Second, the ground state |#0⟩ ≡ |σ x

p = 1⟩ is
gapped and unique—implying that the symmetry is not broken
spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this new
type of paramagnet was first constructed in Ref. 10. Here
we describe another model which is more convenient for our
purposes. The model we consider is a spin-1/2 system on the
triangular lattice. The Hamiltonian is given by [Fig. 1(b)]

H1 = −
∑

p

Bp, Bp = −σ x
p

∏

⟨pqq ′⟩
i

1−σz
q σz

q′
2 , (2)

where the product runs over the six triangles ⟨pqq ′⟩ containing
the site p. We note that this Hamiltonian is Hermitian despite
the factors of i. To see this, notice that the product includes
a factor of i for each pair of neighboring spins q,q ′ that have
opposite values of σ z. In particular, since the number of such
pairs is necessarily even, the product always reduces to a factor
of ±1. It is then clear that H

†
1 = H1. (For readers who are

curious as to how this model was constructed, see Sec. IV).
First we show that H1 describes a paramagnetic phase—

that is, the Ising symmetry is not spontaneously broken. To
establish this fact, we solve H1 explicitly. The key point is that

[Bp,Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result
we can simultaneously diagonalize {Bp}. We will label the
simultaneous eigenstates by |{bp}⟩, where bp = ±1 denotes
the eigenvalues of Bp. It is not hard to show that there is
an unique state for each choice of {bp}, assuming a periodic
geometry (i.e., a torus). In other words, the {bp} are a complete
set of quantum numbers. We therefore have the full energy
spectrum: Each state |bp⟩ is an energy eigenstate with energy

E = −
∑

p

bp. (4)

In particular, the ground state |#1⟩ ≡ |bp = 1⟩ is unique and
gapped—implying that the Ising symmetry is not sponta-
neously broken.

It is illuminating to compare the ground state wave
functions of H0,H1. The ground state of H0 is the state where
σ x

p = 1 everywhere. Working in the σ z basis, the wave function
is given by

#0({αp}) = 1 (5)

for all spin configurations {αp = ↑, ↓} [Fig. 2(a)]. As for
H1, we note that the ground state is the unique state with
Bp = 1 everywhere. It is straightforward to check that the
corresponding wave function is given by

#1({αp}) = (−1)Ndw , (6)

where Ndw is the total number of domain walls in the spin
configuration {αp = ↑, ↓} [Fig. 2(b)]. We can see that the two
ground states are nearly identical, differing only by some phase
factors. Nevertheless, these two states belong to two different
quantum phases, as we now show.
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satisfies Kac-Moody algebra (35). Under group element U!φ

of symmetry group U (1) they transform as

U!φ :
(

φ1
φ2

)
→

(
φ1
φ2

)
+ !φ

(
1
q

)
, !φ ∈ [0,2π ). (125)

The nontrivial SPT phases correspond to different integers
q ̸= 0, whose edge cannot be gapped out without breaking the
U (1) symmetry. Here, we present an explicit construction of
these SPT phases with U (1) symmetry in the coupled wire
approach.

We start from an array of quantum wires (1 ! l ! Nw)
where each wire is composed of two chains: a chain of
charged bosons [each boson carries a unit of U (1) electric
charge] and a spin chain. Each chain forms a c = 1 Luttinger
liquid described by bosonic fields: {ϕs

l (x),θ s
l (x)} for the spin

chain and {ϕc
l (x),θ c

l (x)} for the chain of charged bosons in
the lth wire. These bosonic fields satisfy the commutation
relation (115):

[
θα
m(x),ϕβ

l (y)
]

= i
π

2
Sign(x − y)δm,lδα,β , (126)

where α,β = c/s denotes charge/spin degree of freedom
and 1 ! m,l ! Nw are the wire index. ϕc

l are phase fields
of charged bosons, while 2∂xθ

c
l describes charged boson

density fluctuations. For the spin chain, ∂xθ
s
l (x) ∼ Sz

l (x) and
exp[iϕs

l (x)] ∼ S+
l (x). Without interwire scattering terms, the

bare Hamiltonian density of the system takes the form (117)
of Luttinger liquids:

HLL =
Nw∑

l=1

∑

α=c/s

vα
l

2π

[
1
gα

l

(
∂xθ

α
l

)2 + gα
l

(
∂ϕα

l

)2
]
. (127)

The U (1) symmetry associated with {ϕc
l (x),θ c

l (x)} boson
charge conservation leads to the following symmetry trans-
formations for the bosonic fields:

ϕc
l (x) → Û!φϕc

l (x)Û−1
!φ = ϕc

l (x) + !φ,
(128)

Û!φ ≡ e i!φ
∫

dx
∑

l 2∂xθ
c
l (x), 0 ! !φ < 2π.

The other fields θ c
l ,ϕ

s
l ,θ

s
l are invariant under the above U (1)

charge rotation Û!φ .
In the presence of the above U (1) symmetry associated

with boson charge conservation, the different phases labeled
by charge vector t = (1,q)T are stabilized by the following
interwire coupling terms:

H1
(1,q) =

Nw−1∑

l=1

[
Cl cos

(
ϕc

l − ϕc
l+1 − 2θ s

l + λl

)

+Dl cos
(
ϕs

l − ϕs
l+1 + q

(
ϕc

l − ϕc
l+1

)

− 2
(
θ c
l+1 − qθ s

l+1

)
+ λ′

l

)]
, (129)

where Cl,Dl,λl ,λ
′
l are real constants. A pictorial illustration of

the above interwire scattering terms is given in Fig. 2. Clearly,
the above interwire scattering terms all satisfy constraint (120)
for bosonic systems, and they are also invariant under U (1)
rotation (128).

As argued in Refs. 52 and 53, one can always choose proper
forward scattering terms (118) to make the above interwire
coupling terms become relevant and drive the system into their
strong-coupling phase. Notice that the arguments of the above

FIG. 2. (Color online) Schematic illustration of interwire cou-
pling terms which stabilize the bosonic SPT phases protected by
U (1) symmetry, with Hall conductance σxy = 2q. Solid horizontal
lines stand for quantum wires of charged bosons [each carries unit
U (1) charge], while dashed horizontal lines represent quantum wires
composed of neutral (say spin) degrees of freedom. Dashed and solid
arrows illustrate the two interwire coupling terms in Eq. (130) that
gap the bulk, but leave behind nontrivial edge states.

cosine terms commute with each other, so they can be localized
at certain classical values simultaneously. It is straightforward
to show that all bosonic fields in the bulk with 2 ! l ! Nw − 1
are gapped, while the gapless edge states on the left edge l = 1
are described by variables {φ1

1(x),φ2
1(x)} defined as

φ1
l ≡ ϕc

l , φ2
l ≡ ϕs

l + qϕc
l + 2

(
θ c
l − qθ s

l

)
. (130)

They transform exactly like {φ1,φ2} in Eq. (125) under
charge U (1) symmetry (128). Besides, they also obtain the
Kac-Moody algebra (35) for a bosonic nonchiral SRE system.
As a result, the strong-coupling phase of interwire couplings
(130) is nothing but the bosonic SPT phases labeled by charge
vector t = (1,q)T with charge U (1) symmetry.

Now let us elaborate on why the interwire coupling (130)
can gap out everything in the bulk and leave variables (130) on
the edge. In addition to variables {φ1

l (x),φ2
l (x)} in Eq. (130),

one can define another pair of variables {φ̃1
l (x),φ̃2

l (x)} as

φ̃1
l ≡ ϕc

l − 2θ s
l , φ̃2

l ≡ ϕs
l + qϕc

l . (131)

They also satisfy Kac-Moody algebra (35) except for an extra
minus sign for all commutators. Notice that the two pairs of
variables {φ̃1

l (x),φ̃2
l (x)} and {φ̃1

l (x),φ̃2
l (x)} commute with each

other. They are just a linear combination of the original charge
and spin variables {ϕc

l ,θ
c
l ,ϕs

l ,θ
s
l }. The interwire scattering

terms (130) can be written as

H1
(1,q) =

Nw−1∑

l=1

[
Cl cos

(
φ̃1

l − φ1
l+1 + λl

)

+Dl cos
(
φ̃2

l − φ2
l+1 + λ′

l

)]
.
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Electron edge states in graphene in the quantum Hall effect regime can carry both charge and spin. We
show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes with opposite
spin polarization. These chiral spin modes lead to a rich variety of spin current states, depending on the
spin-flip rate. A method to control the latter locally is proposed. We estimate Zeeman spin splitting
enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.
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A new electron system with low carrier density and high
mobility was recently realized in two-dimensional gra-
phene [1]. By varying the carrier density with a gate one
can explore a range of interesting states, in particular, the
anomalous quantum Hall effect [2,3] (QHE). In contrast to
the well-known integer QHE in silicon MOSFETs [4], the
QHE in graphene occurs at half-integer multiples of 4, the
degeneracy due to spin and orbit. This has been called the
half-integer QHE. The unusually large Landau level spac-
ing makes QHE in graphene observable at temperatures of
100 K and higher.

Here we explore the spin effects in graphene QHE. In the
presence of Zeeman splitting, transport in graphene is
described by an unusual set of edge states which we shall
call chiral spin edge states. These states are reminiscent of
the ordinary QHE edge states [5], but can propagate in
opposite directions for opposite spin polarizations. (As
shown in [6], similar states can arise due to spin-orbit
coupling in the absence of magnetic field. However, the
weakness of spin-orbital effects makes the corresponding
spin gap quite small.) The chiral spin edge modes can be
used to realize an interesting spin transport regime, in
which spin and charge currents can be controlled indepen-
dently. Observation of these phenomena is facilitated by
the fairly large magnitude of the spin gap. The gap is
enhanced due to electron exchange, and can reach a few
hundred kelvin for a realistic magnetic field.

The half-integer QHE in graphene was interpreted in
terms of a quantum anomaly of the zeroth Landau level [7].
Alternatively, these properties are easily understood from
the edge states viewpoint, similar to the usual QHE. This
was done in Ref. [8] using numerical treatment of the zig-
zag edge. Here we present a continuum description of
the edge states, using the massless Dirac model [9], which
provides a good approximation for a carbon !-electron
band near its center. We reduce the problem to a one-
dimensional Schrödinger equation with a potential which
depends on the boundary type. By comparing the behavior
for armchair and zigzag boundary, we show that the energy
spectrum properties near the edge are universal and imply
the half-integer QHE.

To interpret the half-integer QHE, let us inspect the
energies of the first few Landau levels (LL) obtained for
an armchair boundary [Fig. 1(a)]. First we ignore electron
spin. In the bulk the LL’s are doubly degenerate, due to two
species of Dirac particles located near K and K0, the in-
equivalent corners of the first Brillouin zone. We note that
the zeroth LL splits into two levels with positive and nega-
tive energies. In contrast, the behavior of the edge states
associated with higher LL’s is more conventional [5]: the
energies of positive (negative) LL’s increase (decrease) as
one approaches the boundary. Hence in the spinless case
the number of edge states can take only odd integer values
and the Hall conductivity is an odd integer in units of e2=h.
For example, when the chemical potential is between the
n " !1 and n " !2 LL’s, there are three branches of
active edge states: two of them derived from the LL with
n " !1 and one from the LL with n " 0. As a result,
although each LL filling factor is an integer, the conduc-
tance at QHE plateaus is half-integer in units of 4e2=h,
which accounts for both the K, K0, and spin degeneracy.

This behavior is modified in an interesting way by the
spin splitting of LL’s [Fig. 1(b)]. When the chemical
potential " lies in the interval ! 1

2 !s <"< 1
2 !s, the
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FIG. 1 (color online). (a) Graphene energy spectrum near the
armchair boundary obtained from Dirac model, Eq. (1). The
boundary condition, Eq. (5), lifts the K, K0 degeneracy. The odd
integer numbers of edge modes lead to the half-integer QHE.
(b) Spin-split graphene edge states: the blue (red) curves repre-
sent the spin up (spin down) states. These states propagate in
opposite directions at zero energy.
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

H0 =

Z
dx

2X

l=1

 
l,L

iv@
x

 
l,L
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where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:
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where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H

v
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Figure 4 | Phase transitions. a, Different phases of the ⌫ = 0 state mapped as a function of D and Btot at B? = 1.75 T. At low Btot, the phase boundary
between layer-polarized and CAF is determined by the conductance spike separating the two insulating phases. At large Btot, the phase boundary between
layer-polarized and ferromagnetic is determined by the point where conductance begins to exponentially decrease with displacement field. The gradual
transition between CAF and ferromagnetic with increasing Btot is marked by the gradual colour change, with ferromagnetic stabilizing at high Btot. Error
bars are due to the spacing between adjacent points in D. b, Four-terminal conductance at the CNP with D= 0, plotted against Btot for three different values
of B?. Dashed lines indicate regions of exponential increase of conductance and the dotted line marks saturated conductance. The critical magnetic field
B

c
tot for the phase transition is marked by arrows. The inset shows Bc

tot as a function of B? separating the CAF and ferromagnetic phases in a Btot versus B?
parameter space. Error bars are due to uncertainties in fitting guide lines.

bulk remains incompressible. An analogous scenario is expected for
BLG in the ferromagnetic quantum Hall state4–6, except that BLG
carries an additional orbital degeneracy. The ferromagnetic state in
BLG is therefore expected to exhibit a four-terminal conductance
of 4e2/h, compared with 2e2/h for HgTe. Consistent with reported
measurements of HgTe (refs 3,30), our devices show imperfect
quantization with measured conductance values less than 4e2/h
in the ferromagnetic phase. The reduced conductance may be
due to backscattering in the edge state or through remaining
impurity states in the bulk. Unambiguous experimental support
for the existence of spin-polarized counter-propagating edge states
should be provided by well-quantized nonlocal measurements30
(see Supplementary Information).

We have measured dual-gated graphene bilayers at the ⌫ = 0
state. In a perpendicular magnetic field, we observe a transition
between two incompressible states at a finite displacement field,
indicating that theD=0 state is not layer polarized. At low displace-
ment fields, we observe the four-terminal conductance increase and
then saturate as the in-plane magnetic field increases, showing that
theD=0, Btot =B? state is also not spin polarized. This is consistent
with a quantum phase transition driven by in-plane magnetic field
between the CAF quantum Hall state and the ferromagnet. The
near quantization of the four-terminal conductance to 4e2/h agrees
with predictions that the ferromagnetic quantumHall ground state
carries spin-polarized counter-propagating edge states.

Methods
The device we report data from was fabricated with mechanically exfoliated
graphene and hBN using a polymer membrane transfer process described in pre-
vious work31. The graphene was etched into a Hall bar pattern before deposition of
the top hBN layer. The bottom gate is a global silicon gate, and both the contacts and
the top gate are Cr/Pd/Au stacks of thickness 1/10/50 nm. Three devices fabricated
in a similar way exhibited similar data trends, although the phase boundariesmay be
quantitatively sample- and disorder-dependent (see Supplementary Information).
We present data sets obtained from the highest quality device.

These devices were measured either in a sample-in-4He-vapour variable
temperature cryostat with a 14 T magnet in-house or in a sample-in-3He-vapour
cryostat, mounted in the bore of a 31 T resistive magnet at the National High
Magnetic Field Laboratory in Tallahassee, Florida. Measurements were performed
using a 1mV voltage bias. The numerous features present in a gate voltage
trace allowed precise angle calibration, with B? determined to better than 1%
accuracy. The longitudinal resistance R

xx

and Hall resistance R

xy

are measured in a

four-terminal geometry, so that contact resistances can be excluded. Four-terminal
conductance at the CNP is obtained by takingG=1/R

xx

.
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If spin is conserved, this is characterized by 
spin Chern number 2

Edge has two helical fermionic edge states 
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How to get this
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SPT?

• How is it different from just a spin-
polarized quantum wire (which has the 
same bosonized Hamiltonian)?

• Symmetry:

• Charge conservation:

• Spin conservation:
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Bosonic?

• All fermionic excitations are gapped

• Excitations of even number of fermions 
are gapless.  Primarily:
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Bosonic?
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Potential experiments

• Existing:

• Zero Hall conductivity

• Gapless edge 

• New?

• Tunnel into edge: single-e gap

• But  gapless charge 2e may be visible with SC tip 
or by shot noise
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FIG. 1: Schematic of bilayer graphene in the presence of an
out-of-plane magnetic field. (a) Without interactions, the
boundary hosts two channels of fermionic edge states with
total central charge c = 2. (b) Including the Coulomb in-
teractions, there is only one gapless channel of bosonic edge
state with c = 1.

at ⇥ = (2k + 1)⇡. A similar phase diagram and renor-
malization group flow for NLSMs in one lower dimension
was studied thoroughly in Ref. 21, 22.

Let us elaborate on our claim. It is well-known that
a strong enough out-of-plane magnetic field drives un-
doped graphene into a “quantum spin Hall insulator”
(it is also called the ferromagnetic quantum Hall state,
since the bulk is fully spin polarized)[23]. In a bilayer,
this possesses at the Hartree-Fock level two channels of
counter-propagating spin-filtered helical fermionic edge
states [24, 25]. However, when interactions are included
properly, we will demonstrate that (as illustrated in
Fig. 1), the behavior is qualitatively modified to corre-
spond precisely to that of the BSPT theories, Eqs. (1,2)
with k = 1, so that, although it is built from electrons,
it is a proper BSPT state in the following senses:

1. the Coulomb interaction, which is expected to
play an important role in this system, induces a gap for
all fermionic excitations at the boundary, while bosonic
charge and spin excitations remain gapless and protected
by the two U(1) symmetries (Fig. 1b);

2. Using the Chalker-Coddington picture [26], the bulk
quantum phase transition between phases with trivial

FIG. 2: Illustration of the Chalker-Coddington network. The
darker (lighter) regions correspond to the topological (trivial)
phase. The topological to trivial transition occurs when a
statistical symmetry occurs between the two regions, and can
be considered an example of “quantum percolation”. At the
critical point, the bosonic boundary modes proliferate in the
bulk along the network of interfaces.

(k = 0) and non-trivial (k = 1) phases can be described
by percolation of domains and the corresponding network
of interface/boundary states (see Fig. 2). Because the
boundary only has gapless bosonic modes, such a topo-
logical quantum phase transition can occur while preserv-
ing the bulk gap for fermionic quasiparticles. The BSPT
to trivial transition can be driven by varying competing
out-of-plane magnetic and electric fields, and we propose
that the bosonic scenario for this quantum phase tran-
sition occurs with su�ciently strong interactions. This
is a qualitatively di↵erent situation from the well-known
topological to trivial transitions in weakly correlated sys-
tems, such as the plateau transition between integer
quantum Hall states, or the transition between normal
and topological band insulators – these transitions have
a free fermion description which involves the fermion gap
closing in the bulk. The above statement is supported by
recent numerical studies of a similar model on the bilayer
honeycomb lattice [27, 28].
We now proceed to an exposition of these results. For

non-interacting bilayer graphene, there are two channels
of helical edge states, described by the Hamiltonian

H0 =
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where l = 1, 2 labels the channels, L,R denote the
left and right moving fermions respectively, which also
correspond to electrons with spin-up and down, and
v is the Fermi velocity [57]. The presence of some
counter-propagating edge states was deduced experimen-
tally from non-local transport signatures [25]. When the
Coulomb interaction is ignored, the boundary is a free
fermion conformal field theory (CFT) with central charge
c = 2. The edge state wave function is localized at the
boundary, but it extends into the bulk with a localization
length at the order of the magnetic length l

B

, which is
tunable by changing the magnetic field.
The free fermion edge states can be bosonized into two

flavors of free bosons:
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the bosonization framework. Using the representation of
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where Uintra and Uinter represent intralayer and inter-
layer forward-scattering interactions, respectively. H
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Can one identify it?
Differentiate from fermionic state?

II. NONLOCAL TRANSPORT

Because spin-polarized counter-propagating edge states can equilibrate at metal contacts,1

the measured conductance of such a system will generally depend on the geometry of the

contacts. In particular, by altering the configuration of source/drain and voltage probe

contacts, the expected observed conductance can changed to a different rational multiple

of e2/h. Figure S2 shows normal and nonlocal conductance measurements of our device at

B⊥ = 5 T, Btot = 23.25 T. This field configuration corresponds to the saturated metallic

regime, where counter-propagating edge states are predicted to exist. The conductance

expected in the normal configuration (G14,23) is 4e2/h, and in the nonlocal configurations

(G64,23, G64,12) the expected conductance is 6e2/h. While none of the measured curves

show exact quantization, the results show a clear conductance increase for the nonlocal

measurements, which is expected if dissipation is occurring predominantly at the contacts.

We also note that G64,12, which represents the shortest physical distance between voltage

probes, is closest to the expected quantization value. This is consistent with quantization

for edge lengths below the mean free path of the edge states and lowered conductance for

edge lengths larger than the mean free path, as has been observed in HgTe.
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FIG. S2. Nonlocal conductance. Conductance measurements at the CNP plotted against

displacement field for the saturated metallic regime. Conductance Gab,cd denotes the current

sourced between contacts a and b divided by the voltage measured between c and d. All data is

taken at B⊥ = 5 T, Btot = 23.25 T, 350 mK. Inset shows device diagram with contacts labeled.
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Figure 4 | Phase transitions. a, Different phases of the ⌫ = 0 state mapped as a function of D and Btot at B? = 1.75 T. At low Btot, the phase boundary
between layer-polarized and CAF is determined by the conductance spike separating the two insulating phases. At large Btot, the phase boundary between
layer-polarized and ferromagnetic is determined by the point where conductance begins to exponentially decrease with displacement field. The gradual
transition between CAF and ferromagnetic with increasing Btot is marked by the gradual colour change, with ferromagnetic stabilizing at high Btot. Error
bars are due to the spacing between adjacent points in D. b, Four-terminal conductance at the CNP with D= 0, plotted against Btot for three different values
of B?. Dashed lines indicate regions of exponential increase of conductance and the dotted line marks saturated conductance. The critical magnetic field
B

c
tot for the phase transition is marked by arrows. The inset shows Bc

tot as a function of B? separating the CAF and ferromagnetic phases in a Btot versus B?
parameter space. Error bars are due to uncertainties in fitting guide lines.

bulk remains incompressible. An analogous scenario is expected for
BLG in the ferromagnetic quantum Hall state4–6, except that BLG
carries an additional orbital degeneracy. The ferromagnetic state in
BLG is therefore expected to exhibit a four-terminal conductance
of 4e2/h, compared with 2e2/h for HgTe. Consistent with reported
measurements of HgTe (refs 3,30), our devices show imperfect
quantization with measured conductance values less than 4e2/h
in the ferromagnetic phase. The reduced conductance may be
due to backscattering in the edge state or through remaining
impurity states in the bulk. Unambiguous experimental support
for the existence of spin-polarized counter-propagating edge states
should be provided by well-quantized nonlocal measurements30
(see Supplementary Information).

We have measured dual-gated graphene bilayers at the ⌫ = 0
state. In a perpendicular magnetic field, we observe a transition
between two incompressible states at a finite displacement field,
indicating that theD=0 state is not layer polarized. At low displace-
ment fields, we observe the four-terminal conductance increase and
then saturate as the in-plane magnetic field increases, showing that
theD=0, Btot =B? state is also not spin polarized. This is consistent
with a quantum phase transition driven by in-plane magnetic field
between the CAF quantum Hall state and the ferromagnet. The
near quantization of the four-terminal conductance to 4e2/h agrees
with predictions that the ferromagnetic quantumHall ground state
carries spin-polarized counter-propagating edge states.

Methods
The device we report data from was fabricated with mechanically exfoliated
graphene and hBN using a polymer membrane transfer process described in pre-
vious work31. The graphene was etched into a Hall bar pattern before deposition of
the top hBN layer. The bottom gate is a global silicon gate, and both the contacts and
the top gate are Cr/Pd/Au stacks of thickness 1/10/50 nm. Three devices fabricated
in a similar way exhibited similar data trends, although the phase boundariesmay be
quantitatively sample- and disorder-dependent (see Supplementary Information).
We present data sets obtained from the highest quality device.

These devices were measured either in a sample-in-4He-vapour variable
temperature cryostat with a 14 T magnet in-house or in a sample-in-3He-vapour
cryostat, mounted in the bore of a 31 T resistive magnet at the National High
Magnetic Field Laboratory in Tallahassee, Florida. Measurements were performed
using a 1mV voltage bias. The numerous features present in a gate voltage
trace allowed precise angle calibration, with B? determined to better than 1%
accuracy. The longitudinal resistance R

xx

and Hall resistance R

xy

are measured in a

four-terminal geometry, so that contact resistances can be excluded. Four-terminal
conductance at the CNP is obtained by takingG=1/R

xx

.
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.
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Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING

Princeton University, Princeton, Net Jersey
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The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).
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TaAs

generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.
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The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k-point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise
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FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror planes. (a) 3D view of the nodal rings (in the
absence of SOC) and Weyl points (with SOC) in the BZ. (b) Side view from [100] and (c) top view from [001] directions for the nodal
rings and Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points off the mirror planes (see
movie in Supplemental Material [36]). (d) Top panel: Flow chart of the average position of the Wannier centers obtained by Wilson-loop
calculation for bands with mirror eigenvalue i in the mirror plane ZNΓ. (d) Bottom panel: The flow chart of the Wannier centers obtained
by Wilson-loop calculation for bands in the glide mirror plane ZXΓ. There is no crossing along the reference line (the dashed line),
indicating the Z2 index is even.
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• Striking properties:
• Surface Fermi arcs
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Experiment
• Striking properties:

• Surface Fermi arcs
• ABJ “anomaly”: strong negative MR for I ∥ B

is weak, positive, and usually not very sensitive to the
magnetic field direction. Therefore, the negative and highly
anisotropic MR has been regarded as the most prominent
signature in transport for the chiral anomaly, and it
indicates the existence of 3D Weyl points. In addition,
the chiral anomaly can also generate other fascinating
phenomena, i.e., the anomalous Hall effect and the nonlocal
transport properties [5,12].
Using first-principle calculations, Weng et al. [23]

predicted that a family of binary compounds represented
by TaAs are time-reversal-invariant 3DWSMs with a dozen
pairs of Weyl nodes that are generated by the absence of an
inversion center. The exotic Fermi arch on the surface and
Weyl nodes in the bulk have been identified by angle-
resolved photoemission spectroscopy and microwave
transmission measurements [27–30]. Materials in the
TaAs family are completely stoichiometric and nonmag-
netic, providing an almost ideal platform for the study of
the chiral anomaly in WSM. In this work, we perform
transport studies of the TaAs single crystal down to 1.8 K,
with a magnetic field up to 9 T. Ultrahigh mobility
(μe ≈ 1.8 × 105 cm2V−1 s−1 at 10 K) has been found with
a multiband character. Extremely large positive MR
(≈80000% at 1.8 K in a field of 9 T) is discovered for a
magnetic field perpendicular to the current (or the external
electric field). Ultrahigh mobility and large MR in the same
material have also been detected by Zhang et al. [31].
Unfortunately, in the configuration of B==I, their MR data
remain positive in the whole magnetic field up to 9 T. In our
work, when the magnetic field is rotated to be parallel to the
current, notable negative MR has been observed, demon-
strating the chiral anomaly effects in this particular
material. Strong SdH oscillations have been found from
a very low magnetic field, from which two sets of
oscillation frequencies can be extracted, indicating two
types of carriers, in good consistency with our first-
principles calculations.

II. CRYSTAL STRUCTURE
AND MEASURING METHOD

TaAs crystallizes in a body-centered-tetragonal NbAs-
type structure with a nonsymmorphic space group of
I41md, in which the c axis is perpendicular to the ab
plane [see Fig. 1(a)]. The lattice parameters are a ¼ b ¼
3.4348 Å and c ¼ 11.641 Å [32]. Because of the lack of
inversion symmetry, first-principles calculations predicted
a dozen pairs of Weyl points in the Brillouin zone (BZ)
[23]. A schematic diagram of theoretically predicted Weyl
nodes projected on the (001) facet can be seen in Fig. 1(b).
In this study, the single crystals of TaAs were grown by
chemical vapor transport. A polycrystalline TaAs that
previously reacted was filled in the quartz ampoule using
2 mg=cm3 of iodine as the transporting agent. After
evacuating and sealing, the ampoule was kept at the growth

temperature for three weeks. Large polyhedral crystals with
dimensions up to 1.5 mm are obtained in a temperature
field of ΔT ¼ 1150 °C − 1000 °C. Figure 1(c) shows the
x-ray diffraction (XRD) from a TaAs crystal oriented with
the scattering vector perpendicular to the (001) plane. The
inset is the morphology of a representative crystal looking
down the [001] direction. The crystal was polished into a
rectangular sample (1 × 0.3 × 0.08 mm3) for magneto-
resistance and Hall resistivity measurements using four-
point probe and alternating current transport methods in the
Quantum Design PPMS. The electric current is always
applied parallel to the (001) plane along the a or b axis in
our studies. For MR (or Hall resistivity) measurements, any
additional Hall (or resistive) voltage signals due to the
misalignment of the voltage leads have been corrected by
reversing the direction of the magnetic field. First-
principles calculations are performed by using the
OpenMX [33] software package. The choice of a
pseudo-atomic orbital basis set with Ta9.0-s2p2d2f1 and
As9.0-s2p2d1, the pseudopotential and the sampling of BZ
(10 × 10 × 10k grid) have been checked. The exchange-
correlation functional within a generalized gradient
approximation parametrized by Perdew, Burke, and
Ernzerhof has been used [34]. The optimized lattice

FIG. 1. Structure and symmetry of a TaAs single crystal.
(a) The crystal structure of TaAs with a nonsymmorphic space
group of I41md. Blue and violet balls represent a Ta atom and an
As atom, respectively. (b) Schematic diagram of a dozen pairs of
Weyl points projected on the (001) facet. “þ” and “−” denote
Weyl points with positive and negative chiralities, respectively.
The circles show that there are two Weyl points with the same
chirality projected on the same point in the (001) facet. Γ, X, and
M are the high symmetry points in the Brillouin zone. (c) X-ray
diffraction pattern of a TaAs single crystal. The inset shows an
optical image of a typical sample at the millimeter scale.
(d) Schematic diagram of bulk Landau levels of a pair of Weyl
nodes. The dotted lines represent the zeroth quantum Landau
Level with “þ” (blue) and “−” (red) chiralities in a magnetic field
parallel to the electric current.
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Weyl points

constants a ¼ b ¼ 3.4824 Å, c ¼ 11.8038 Å, and atomic
sites are in agreement with the experimental values.

III. RESULTS AND DISCUSSION

A. Magnetoresistance measurements

Figure 2 presents the MRmeasured at 1.8 K by tilting the
magnetic field (B) at an angle (θ) with respect to the electric
current (I). The Hall signal has been removed by averaging
the ρxx data over positive and negative field directions. As
shown in Fig. 2(a), when the magnetic field is applied
perpendicular to the current (B⊥I, θ ¼ 0 °), a surprising
positive MR of up to 80000% is observed. Near zero field,
MR exhibits quadratic field dependence, which soon
changes to almost linear dependence at a very low field
without any trend towards saturation up to 9 T. This giant
conventional MR strongly relies on θ and decreases
considerably with increasing θ. When the magnetic field
is rotated parallel to the electric current (θ ¼ 90 °), we
observe negative MR, strong evidence of Weyl fermions in
TaAs. Elaborate measurements at different angles around
θ ¼ 90 ° are implemented and presented in Fig. 2(b). As
shown in the main panel, by rotating θ from 87 ° to 91.8 °,
negative MR arises in the cases of θ between 88 ° and

91.5 °, and it reaches a maximum (−30%) at θ ¼ 90 °
(B==I). This can also be intuitively viewed as a conse-
quence of the steep downturn of MR in the magnetic field
range 1 T < B < 6 T (and −1 T < B < −6 T). In this
range, for clarity, the minima of MR curves at different
angles are listed in the inset of Fig. 2(b). The largest value,
as expected, occurs at θ ¼ 90 °. We note that the negative
MR in Fig. 2(b) disappeared as we rotated the field about
2 ° away from the current. This seems hard to believe.
However, it makes sense when we recall that the conven-
tional positive MR (B⊥I) of TaAs is very large (≈80000%
at 1.8 K in a field of 9 T) and increases remarkably with an
increasing magnetic field. So, a slightly imperfect align-
ment of the magnetic field and the current in the sample will
arouse a large perpendicular component and obscure the
negative MR, especially in a large field. Thus, the negative
MR is confined to about "2 ° of B==E. In other words, in a
system with smaller positive MR (at θ ¼ 0 °), we may
observe larger negative MR (at θ ¼ 90 °) in a wide
magnetic field range. Indeed, larger negative MR has been
observed in Na3Bi [35] and TaP [36], which have much
smaller positive MR than that of TaAs at θ ¼ 0 °.
The origin of the negative MR in TaAs can be

explained by the chiral anomaly in the semiclassical

FIG. 2. Angular and field dependence of MR in a TaAs single crystal at 1.8 K. (a) Magnetoresistance with respect to the magnetic field
(B) at different angles between B and the electric current (I) (θ ¼ 0 °–90 °). The inset zooms in on the lower MR part, showing negative
MR at θ ¼ 90 ° (longitudinal negative MR), and it depicts the corresponding measurement configurations. (b) Magnetoresistance
measured in different rotating angles around θ ¼ 90 ° with the interval of every 0.2 °. The negative MR appeared at a narrow region
around θ ¼ 90 °, and most obviously when B==I. Either positive or negative deviations from 90 ° would degenerate and ultimately kill
the negative MR in the whole range of the magnetic field. Inset: The minima of MR curves at different angles (88 °–92.2 °) in a magnetic
field from 1 to 6 T. (c) The negative MR at θ ¼ 90 ° (open circles) and fitting curves (red dashed lines) at various temperatures. T ¼ 1.8,
10, 25, 50, 75, and 100 K. (d) Magnetoresistance in the perpendicular magnetic field component, B × cos θ. The misalignment indicates
the 3D nature of the electronic states.
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Magnetic Weyl semimetals
Movable Weyl points have their own interest

2

focus on the “minimal Weyl semi-metal” which break TR
but preserves P, with two Weyl fermions of opposite chi-
ralities at wavevectors K⃗0 and −K⃗0, related to each other
by spatial inversion. K⃗0 is a generic point in BZ away
from TR invariant momenta.
We consider an arbitrary perturbation to the system

of two Weyl fermions. As long as the perturbation is
so smooth that the momentum transfer is much smaller
than 2|K⃗0|, the two Weyl fermions remains decoupled.
The effective Hamiltonian of the lefthanded Weyl fermion
under perturbation is HL = !vf σ⃗ · k⃗ + δHL, with δHL

a generic 2 × 2 Hermitian matrix. To the leading order
one can ignore the k dependence and consider δHL as
a constant term. Then δHL can always be expanded
to the form δHL = !vf σ⃗ · a⃗L + a0L with the last term
proportional to identity. Adding this to the Weyl fermion
Hamiltonian we find HL = !vf (k⃗ + a⃗L) · σ⃗ + a0L with
aµL = (a0L, a⃗L) behaving as a gauge field. Similarly
one can define the gauge field aµR minimally coupled
to the righthanded Weyl fermions with the Hamiltonian
HR = −!vf (k⃗ + a⃗R) · σ⃗ + a0R. The two Weyl fermions
can be described together by a 4× 4 Hamiltonian:

H = !vf
(

(k⃗ + A⃗) · σ⃗τz + a⃗ · σ⃗
)

+ a0τz +A0 (1)

with Aµ = (aµL + aµR)/2 behaving like the electromag-
netic gauge field, and aµ = (aµL − aµR)/2 the chiral
gauge field. Aµ and aµ have different properties under P
and TR. For example if the perturbation we consider is
a fluctuation of a ferromagnetic moment, only a⃗ will be
induced which is TR odd and P even.
As known from the quantum field theory, when a Weyl

fermion is coupled to a gauge field, the charge conser-
vation is broken at the quantum field level, leading to
the axial anomaly[1, 24], which can be described by the

anomaly equation ∂µjµL(R) = (−) 1
32π2 ϵλρµνf

L(R)
λρ fL(R)

µν

where fL(R)
µν = ∂µaνL(R)−∂νaµL(R). Since the gauge field

aµL(R) of lefthanded (righthanded) Weyl fermion is re-
lated to the gauge field Aµ and aµ, the anomaly equation
can also be rewritten as ∂µjµL(R) = (−) 1

32π2 ϵλρµν (Fλρ +
(−)fλρ)(Fµν+(−)fµν), where Fµν = ∂µAν−∂νAµ is elec-
tromagnetic field strength and fµν = ∂µaν−∂νaµ is chiral
gauge field strength. Let’s define the charge current as
jµ = jµL+ jµR and the axial current as jµ5 = jµR− jµL.
When A⃗ and a⃗ coexist, we find both the axial current
and charge current are nonconserved with the anomaly
equations

∂µj
µ5 = −

1

16π2
ϵλρµν(FαβFµν + fλρfµν), (2)

∂µj
µ =

1

8π2
ϵλρµνfλρFµν . (3)

The equation (2) is the axial current anomaly[4, 21]
but with the additional term induced by chiral gauge
field, while the equation (3) indicates the conservation of
charge current is also broken due to the combination ef-
fect of chiral gauge field and electromagnetic field, which

(a)

kz kz

E E

(b) (c)R

FIG. 1: (a) “Chiral magnetic field” can be generated by
the magnetic vortex configuration in a topological insulator
cylinder. Here the vector b⃗ indicates the direction of the “chi-
ral magentic field”. The Landau level spectrum of a massless
Dirac fermion is plotted (b) for a uniform magnetic field B⃗

and (c) for a uniform “chiral magentic field” b⃗.

is the main focus of this paper. At the first glance, the
breaking of the charge conservation seems something un-
physical. Here we emphasize that the Weyl fermion de-
scription is only a low energy effective theory and the
high energy part is not taken into account. Let’s de-
fine jµb = − 1

2π2 ϵµνλρaν∂λAρ, and the right-hand side of
equation (3) can be written as a total derivative of jµb ,
and the charge conservation law ∂µ (jµ + jµb ) = 0 is re-
covered if jµb is regarded as a current from the high en-
ergy part which is neglected in our description. Actu-
ally we notice that the spatial component of jµb is given

by j⃗b = − 1
2π2 a⃗ × E⃗ with the electric field E⃗, exactly

corresponding to the anomalous Hall response of Weyl
fermion, as first derived in Ref [20]. To make our dis-
cussion concrete, we first propose a realization of Weyl
fermions and chiral gauge field in magnetically doped
topological insulators, before discussing the physical con-
sequence of this anomaly equation.

Material realization - It is first suggested that Weyl
fermions can be realized in pyrochlore iridates[12], and
later another material HgCr2Se4 is also proposed[13].
However both the materials include multiple Weyl
fermions with the number larger than 2, making the sys-
tem complicated, therefore it is desired to have a system
with the minimal number of Weyl fermions, which actu-
ally can be achieved by magentically doped topological
insulators[14, 16]. By substituting the atoms, it is pos-
sible to tune the band gap of topological insulators, and
even induce the phase transition between trivial and non-
trivial phases, which has been realized in TlBi(S1−δSeδ)2
recently[25–27]. Near the transition point, the bulk gap
is minimized and can be overcomed by the exchange cou-
pling from magnetic doping. The ferromagnetism in the
Cr or Fe doped Bi2Te3 and Sb2Te3 has been observed
in experiment[28–30], therefore the magnetically doped
Bi2Se3 and TlBiSe2 family of materials are the suitable
platform for the realization of minimal number of Weyl
fermions. Here we adopt the four band model[31, 32]
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Magnetic Weyl semimetals

generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.
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Result: Weyl points move < 1/50th of the zone
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method which has the following advantages. First, compared
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emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
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(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.

Ta

As

a

c
b

-0.02

0

0.02

0.04

E
ne

rg
y(

eV
) EF

ΓXZΓNZSΣΓΓXZΓNZSΣΓ

(a) (b)

(c) (d)
1

0.8

0.6

0.4

0.2

E
ne

rg
y 

(e
V

)

0

-0.2

-0.4

-0.6

-0.8

-1

11

2

3

4

2

3

FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.

WENG et al. PHYS. REV. X 5, 011029 (2015)

011029-2

Suppose you modify, e.g. magnetically dope, TaAs

�k ⇡ EZ/(~vF )
EZ < 1000K~vF ⇡ 2eV Å
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those

Yanagashima+Maeno, JPSJ 2001
K. Matsuhira et al, JPSJ 2011

W. Witczak-Krempa et al, ARCMP 2013

Ising AF
D. Pesin + LB, 2010
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.
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structure. More generally, if trigonal splitting is included, the J
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= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
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= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those

probably not important?
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FIG. 2. (Color online) Mean-field phase diagram (toxy = 1) as
a function of U , the Hubbard coupling, and the direct hopping
parameters. The magnetic transitions from the TIs (metal) are first
(second) order.

bulk gap in the former. Second, the magnetic phase transition
resulting from increasing U in the metal (TI) is second (first)
order. Also, the magnetic order emerging from the TIs differs
from the one found upon increasing U in the metal. In the
latter case, we find an all-in/all-out configuration, while in
the former, the ground state is threefold degenerate (modulo
the trivial degeneracy j → − j ): all three states result from the
all-in/all-out state by performing π/2 rotations on the moments
in the unit cell. These rotations occur within either one of the
planes bisecting the three triangles meeting at each corner
of the tetrahedron. The order emergent in both TI states is the
same. In Sec. IV, we discuss how the different magnetic orders
and the position of the transitions are actually connected to the
corresponding ordering in the spin model obtained at large
U : as tσ is tuned, the induced Dzyaloshinskii-Moriya (DM)
interaction alternates between the only two symmetry-allowed
possibilities on the pyrochlore lattice, leading to different
ordering.

C. Topological semimetal

By examining the spectra of the ordered phases, we discover
that the so-called topological semimetal (TSM) is realized23

in the range tσ ! −1.67 and for a finite window of U .
This semimetallic phase has a Fermi “surface” composed of
points, each with a linearly dispersive spectrum of Weyl or
two-component fermions, and may be considered as a three-
dimensional (3D) version of the Dirac points of graphene. The
Hamiltonian near one such Weyl point takes the form

H = v0 · q +
3∑

i=1

vi · qσi , (4)

where q = k − k0 is the deviation from the Weyl point at k0.
The Pauli matrices σi represent the two bands involved in the
touching, not (pseudo)spin. One can assign a chiral “charge” to
these fermions via the triple product of the three velocities: c =
sgn(v1 · v2 × v3). The massless nature of the two-component
Weyl fermions is robust against local perturbations, which is
not the case in two dimensions (2D). As explained in Ref. 11,

FIG. 3. (Color online) Evolution of the spectrum as a function of
U . At intermediate U , in (a), we can see a Weyl point along the # − L

line, while in (b), the spectrum naively seems insulating because the
Weyl points lie away from high-symmetry k points. The dashed line
is the Fermi level.

the only way to introduce a gap is to make two Weyl fermions
with opposite chirality meet at some point in the Brillouin zone
(BZ). For this reason, they are topological objects (see also the
discussion below regarding the surface states). Further details
relating to the TSM can be found in Refs. 11,12,19,24, and 25.

The TSM appears in for both AF orders. In both cases, we
find a total of eight Weyl points coming necessarily in four
inversion-symmetry related pairs. The location and migration
of these Weyl points depends on the magnetic order. Let us
first examine the TSM phase present in the all-in/all-out state.
In this case, the eight Weyl points are born out of the quadratic
touching at the # point as the local moments spontaneously and
continuously acquire a finite value with increasing U > Uc.
Each pair of Weyl points lies on one of the four high-symmetry
lines joining # to the four L points, as can be seen in Fig. 3.
For this reason, we only get 8 touchings, in contrast to Ref. 11,
where 24 Weyl points are obtained. In their case, they live off
the high-symmetry lines so that each point is tripled by the
threefold rotational symmetries about the # − L lines. Weyl
points of opposite chirality annihilate at the four L points as U
is increased. As they annihilate and create a gap, the parities
of the highest occupied states at these TRIMs change sign.

Let us now consider the TSM arising from the TI, where
we again have eight Weyl points. The major difference is that
they do not occur along high-symmetry lines, as can be seen
in Fig. 3. We do not get 24 Weyl points because the magnetic
order breaks the threefold rotational symmetries, which are
preserved by the all-in/all-out state. We have explicitly located
the Weyl points by looking at both the spectrum and density
of states, which shows a characteristic (E − EF )2 scaling.

The Weyl points do not annihilate at TRIMs, in contrast
to the noncollinear TSM. As a result, there is no parity flip
associated with the termination of the TSM phase when, upon
increasing U , the system becomes insulating.
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FIG. 1. (color online). (a) Pyrochlore lattice formed by Ir
atoms with arrows representing spin moments in the all-in/all-
out magnetic structure. (b) fcc unit cell with the local coor-
dinate axes and the energy diagram under SOC (⇣) and the
trigonal crystal field (�tri). (c) LDA band structure together
with the density of states projected on the je↵ basis. The
broken line shows the total density of states.

tional [29, 30]. We use the code QMAS (Quantum MA-
terials Simulator) [31], which is based on the projector
augmented wave method [32], and the two-component
formalism [33, 34]. The experimental crystal structure
at 290 K is taken from Ref. 35. In our DMFT calcula-
tions, electron correlation e↵ects are taken into account
by introducing the Slater-Kanamori interaction
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in the standard parameterization U
↵↵↵↵

= U , U
↵�↵�

=
U � 2JH, U

↵��↵

= U
↵↵��

= JH (↵ 6= �), with ↵ (�)
and � (�0) being orbital and spin indices, respectively.
U and JH are the on-site repulsion and the Hund’s cou-
pling, respectively. We choose J/U = 0.1, which is moti-
vated by a first-principles estimate for the related com-
pound Na2IrO3 (U=2.72 eV, JH = 0.23 eV) [27]. Within
DMFT, one has to solve a three-orbital quantum impu-
rity problem with o↵-diagonal and complex hybridization
functions. We employ a numerically exact continuous-
time quantum Monte Carlo impurity solver based on the
hybridization expansion [36, 37]. In previous studies, the
quantum impurity models for 5d electrons have been sim-
plified to avoid a severe sign problem, e.g., by omitting
o↵-diagonal hybridization functions and some interaction
terms in the je↵ basis [38]. Since pyrochlore iridates have
large inter-band hybridizations, we solve our impurity
problem without such approximations. The sign prob-
lem is reduced by rotating the single-particle basis of the
hybridization function [39].

Figure 1(c) shows the computed LDA band structure.
The upper half-filled manifold, which is usually identified
as the je↵=1/2 manifold, has an overlap with the lower
manifold in energy space, although the bands are sepa-
rated at each k point. The je↵=1/2 manifold has four
Kramers degenerate bands since a unit cell contains four
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FIG. 2. (color online). (a) U -T phase diagram. There is a
first-order transition between the magnetic insulator and the
paramagnetic metal at low T and small U . The blue shaded
region denotes the hysteresis region associated with this tran-
sition. The metal-insulator crossover in the high-T param-
agnetic phase is shown by a broken line. The hashed region
represents the first-order Mott transition and its hysteresis
region in paramagnetic DMFT calculations. (b) temperature
dependence of the angular and magnetic moment along the
local [111] axis and the spectral weight at ! = 0. The moment
values of the je↵=1/2 and �1 doublets are shown by dotted
and broken lines, respectively (see the text).

Ir atoms. We constructed a tight-binding model based on
t2g-orbital-like maximally localized Wannier functions.
The SOC ⇣ and the trigonal crystal field �tri are es-
timated to be ⇣ = 0.40 eV and �tri = 0.23 eV [40].
These values are consistent with an estimate by a quan-
tum chemistry calculation [24]. As shown in Fig. 1(b),
the t2g manifold splits into three doublets under ⇣ and
�tri. The wavefunction of the highest doublet �1 is given
by �1± = �0.977|1/2,±1/2i�0.212|3/2,±1/2i in the je↵
basis |je↵ , j111e↵ i. We denote by ĵ111e↵ the e↵ective angu-
lar momentum along the local [111] axis [see Fig. 1(a)].
The |1/2,±1/2i have about 50% reduced spin and or-
bital moments compared to the ideal atomic values 1/3µB

and 2/3µB, because the Wannier functions have substan-
tial weights on neighboring oxygen atoms. On the other
hand, the magnetic moments are enhanced by the hy-
bridization between the je↵=1/2 and je↵=3/2 manifolds
by �tri. As a result, the doublet �1 has spin and orbital
moments of 0.346µB and 0.422µB. To illustrate the ef-
fects of itinerancy, we plot the density of states projected
on the je↵ basis. The contributions of |1/2,±1/2i and
|3/2,±3/2i, which are not mixed by �tri, have compara-
ble weight near the Fermi level, which indicates that the
inter-atomic hybridization also plays a substantial role.

Next, we discuss the U -T phase diagram obtained by
the DMFT calculations [Fig. 2(a)]. There is a dome-
shaped all-in/all-out magnetically ordered phase at large

H. Shinaoka et al, 2015
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[10,12–14], while Pr2Ir2O7 is metallic down to 0.3 K and
shows no long-range magnetic ordering except for the
freezing of Pr-4f or Ir-5d moments at 0.12 K [15].
Despite these experimental investigations on the electronic
or magnetic properties for these systems, the origin of MIT
has been left elusive.

In this study, we have systematically investigated the
evolution of the charge dynamics as well as the transport,
magnetic, and thermal properties in the course of MIT for
the pyrochlore-type Nd2Ir2O7 and its Rh-doped analogs
Nd2ðIr1"xRhxÞ2O7. Rh doping is done to finely tune the
interplay between the SOI and the electron correlation, and
hence to drive the insulator-metal transition at the ground
state. The observed features suggest that the MITs for the
present system can be viewed as the phase changes among
the correlated metal, the Weyl semimetal, and the narrow
gap Mott insulator, as characterized by the strong SOI and
electron correlation.

The high-quality polycrystalline samples of
Nd2ðIr1"xRhxÞ2O7 with x ¼ 0, 0.02, 0.05, and 0.10 were
prepared by a solid-state reaction under high pressure
(3 GPa and 1200 %C). The dense and hard samples with
least grain-boundary effect as prepared by the high-
pressure method are particularly suitable for the optical
reflectance and transport measurements. We have con-
firmed by powder x-ray diffraction that all the samples
imply no detectable impurity phase, and the lattice con-
stant of the Rh-doped compounds satisfies Vegard’s law, as
shown in Fig. 1(f). The resistivity, specific heat, and mag-
netization were measured with the physical property mea-
surement system (Quantum Design). Reflectivity spectra in
the temperature range from 5 to 290 K were measured
between 0.005 and 5 eV by Fourier transform- and grating-
type spectrometers. The spectra above 5 eV were measured
at room temperature with the use of synchrotron radiation
at UV-SOR, Institute for Molecular Science. The optical
conductivity spectra were obtained by Kramers-Kronig
(KK) analysis with suitable extrapolation procedures.
The optical conductivity spectra below 10 meV were ob-
tained by terahertz (THz) time-domain spectroscopy
(TDS) in a transmission configuration [16] without resort-
ing to KK analysis (for details of the experimental setup for
the present THz TDS, see Sec. II Ref. [16]).

The temperature dependence of resistivity for Nd2Ir2O7

(x ¼ 0) is shown in Fig. 1(a), along with those for x¼0:02,
0.05, and 0.10. First, we focus on the MIT in Nd2Ir2O7

(x ¼ 0). With lowering temperature, the resistivity for
x ¼ 0 monotonically decreases down to 50 K and then
shows a divergent behavior below 30 K. In Fig. 1(b), we
show the temperature dependence of magnetization mea-
sured by field-cooling (FC) and zero-field-cooling (ZFC)
processes. The magnetization curve measured in the FC
process shows an upturn at TN, while that measured in the
ZFC process shows no clear anomaly with previous reports
[10]. As shown in Fig. 1(g), the ordering of the Ir-5d

moment manifests itself as a !-type peak at TN in the
specific heat curve for x ¼ 0. A recent neutron scattering
study indicates that the Nd-4f moment starts to order
below 15 K [11]. Since the energy of the crystal field
(CF) splitting between the ground state and the first excited
state is estimated to be 26 meV (& 300 K) [11], a broad
hump-like structure around 10 K may be attributed not to
CF excitation but to the magnetic ordering of Nd-4f mo-
ments. We note that the entropy change except the contri-
bution from phonon below 20 K is larger than R ln2, the
value corresponding to the entropy released by the mag-
netic ordering of Nd-4f moments as observed in spin-ice
systems [17]. The excess entropy change may originate
from the coupled Ir-5d moments, reflecting the exchange
interaction between Nd-4f and Ir-5d moments.
Figure 2(a) displays the optical conductivity spectra for

Nd2Ir2O7 (x ¼ 0) at various temperatures above 50 K as
well as at 10 K. At 290 K, a broad absorption band is
observed around 1 eV, as shown in the inset to Fig. 2(a).
Since the optical conductivity spectra above 1 eV show
minimal temperature dependence, we henceforth focus on
the low energy range below 1 eV. At room temperature, the
spectral shape below 0.5 eV is fairly flat except for the
sharp peaks due to the optical phonons below 0.08 eV,

FIG. 2 (color online). (a) Optical conductivity spectra at vari-
ous temperatures for Nd2Ir2O7. The filled circles denote dc
conductivities. The inset shows the spectra at 290 K and 50 K
up to 2 eV. The triangle indicates the absorption band around
1 eV. (b) Optical conductivity spectra below 50 K. The inset
show the magnified view of the spectra in the far-infrared region
as deduced by time-domain terahertz spectroscopy.
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those



Moving Weyl Points

Weyl points move to zone boundary and annihilate with increasing order?

WAN, TURNER, VISHWANATH, AND SAVRASOV PHYSICAL REVIEW B 83, 205101 (2011)

it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2
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FIG. 2. (Color online) Mean-field phase diagram (toxy = 1) as
a function of U , the Hubbard coupling, and the direct hopping
parameters. The magnetic transitions from the TIs (metal) are first
(second) order.

bulk gap in the former. Second, the magnetic phase transition
resulting from increasing U in the metal (TI) is second (first)
order. Also, the magnetic order emerging from the TIs differs
from the one found upon increasing U in the metal. In the
latter case, we find an all-in/all-out configuration, while in
the former, the ground state is threefold degenerate (modulo
the trivial degeneracy j → − j ): all three states result from the
all-in/all-out state by performing π/2 rotations on the moments
in the unit cell. These rotations occur within either one of the
planes bisecting the three triangles meeting at each corner
of the tetrahedron. The order emergent in both TI states is the
same. In Sec. IV, we discuss how the different magnetic orders
and the position of the transitions are actually connected to the
corresponding ordering in the spin model obtained at large
U : as tσ is tuned, the induced Dzyaloshinskii-Moriya (DM)
interaction alternates between the only two symmetry-allowed
possibilities on the pyrochlore lattice, leading to different
ordering.

C. Topological semimetal

By examining the spectra of the ordered phases, we discover
that the so-called topological semimetal (TSM) is realized23

in the range tσ ! −1.67 and for a finite window of U .
This semimetallic phase has a Fermi “surface” composed of
points, each with a linearly dispersive spectrum of Weyl or
two-component fermions, and may be considered as a three-
dimensional (3D) version of the Dirac points of graphene. The
Hamiltonian near one such Weyl point takes the form

H = v0 · q +
3∑

i=1

vi · qσi , (4)

where q = k − k0 is the deviation from the Weyl point at k0.
The Pauli matrices σi represent the two bands involved in the
touching, not (pseudo)spin. One can assign a chiral “charge” to
these fermions via the triple product of the three velocities: c =
sgn(v1 · v2 × v3). The massless nature of the two-component
Weyl fermions is robust against local perturbations, which is
not the case in two dimensions (2D). As explained in Ref. 11,

FIG. 3. (Color online) Evolution of the spectrum as a function of
U . At intermediate U , in (a), we can see a Weyl point along the # − L

line, while in (b), the spectrum naively seems insulating because the
Weyl points lie away from high-symmetry k points. The dashed line
is the Fermi level.

the only way to introduce a gap is to make two Weyl fermions
with opposite chirality meet at some point in the Brillouin zone
(BZ). For this reason, they are topological objects (see also the
discussion below regarding the surface states). Further details
relating to the TSM can be found in Refs. 11,12,19,24, and 25.

The TSM appears in for both AF orders. In both cases, we
find a total of eight Weyl points coming necessarily in four
inversion-symmetry related pairs. The location and migration
of these Weyl points depends on the magnetic order. Let us
first examine the TSM phase present in the all-in/all-out state.
In this case, the eight Weyl points are born out of the quadratic
touching at the # point as the local moments spontaneously and
continuously acquire a finite value with increasing U > Uc.
Each pair of Weyl points lies on one of the four high-symmetry
lines joining # to the four L points, as can be seen in Fig. 3.
For this reason, we only get 8 touchings, in contrast to Ref. 11,
where 24 Weyl points are obtained. In their case, they live off
the high-symmetry lines so that each point is tripled by the
threefold rotational symmetries about the # − L lines. Weyl
points of opposite chirality annihilate at the four L points as U
is increased. As they annihilate and create a gap, the parities
of the highest occupied states at these TRIMs change sign.

Let us now consider the TSM arising from the TI, where
we again have eight Weyl points. The major difference is that
they do not occur along high-symmetry lines, as can be seen
in Fig. 3. We do not get 24 Weyl points because the magnetic
order breaks the threefold rotational symmetries, which are
preserved by the all-in/all-out state. We have explicitly located
the Weyl points by looking at both the spectrum and density
of states, which shows a characteristic (E − EF )2 scaling.

The Weyl points do not annihilate at TRIMs, in contrast
to the noncollinear TSM. As a result, there is no parity flip
associated with the termination of the TSM phase when, upon
increasing U , the system becomes insulating.

045124-3
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Nd physics
Ir

Nd

Nd spins provide anisotropic 
“exchange enhancement”

• Large moment couples 
strongly to field

• Polarized Nd act back on Ir 
via JIr-Nd ~ 10 meV

• Maximum effect: B || (100) 
- aligns all Nd moments



Nd physics
Ir

Nd

Nd spins provide anisotropic 
“exchange enhancement”

• Large moment couples 
strongly to field

• Polarized Nd act back on Ir 
via JIr-Nd ~ 10 meV

• Maximum effect: B || (100) 
- aligns all Nd moments

0 10 20 30 40 50
10-3

10-2

10-1

100

15o

 90o

35o

 0o

55o

B//[112]

B//[001]

B//[111]

B//[110]

 

 

ρ 
(Ω

 c
m

)

B (T)

Result: MIT

Zhaoming Tian et al, Nature Physics, 2015

al
so

 K
. U

ed
a 

et
 a

l, 
20

15



0 10 20 30
10-3

10-2

10-1

100

30 K
15K

12 K

10K

8K

4.2K 2K
B//[001]

!

!

ρ 
(Ω

 c
m

)

B (T)

10 10010-3

10-2

10-1

100
B//[001]

14T
12T
10T

8T

0T

!

!
T (K)

ρ 
(Ω

 c
m

)

!

!

Metal-Insulator Transition

• Seems that the antiferromagnetic phase forms a 
closed region at small B and T.
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semimetal? Maybe a magnetic Weyl state?

Zhaoming Tian et al, Nature Physics, 2015



Prospects
It may be possible to weaken the order 

sufficiently to expose the Weyl points, and 
perhaps also explore quantum criticality3
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FIG. 2: (color online). (a) Temperature dependence of resis-
tivity for (SmyNd1−y)2Ir2O7, and (b) its enlarged view in the
temperature range from 0 K to 200 K. (c) Temperature de-
pendence of resistivity for (Nd1−xPrx)2Ir2O7. The solid lines
are resistivity of trained state measured at 0 T on warming
run after 14 T-field cooling and the broken ones are that of
untrained state measured after zero-field cooling. The inset
shows the magnetic field dependence of resistivity for several
compositions. Starting from the zero field-cooled (untrained)
state, these curves were measured for increasing and decreas-
ing magnetic field scans as shown by arrows.

order nature accompanying T hysteresis is not discerned
apart from the sharp change of resistivity in the present
system. Since the similar reduction of resistivity in an
intermediate T region was also observed in the study on
pressure effect for R=Eu[40], the observed paramagnetic
insulator-metal transition can be attributed neither to
the increased disorder nor to the phase separation.
Figure 2 (c) displays the T dependence of resistivity for

(Nd1−xPrx)2Ir2O7. The resistivity for x=0-0.7 conspicu-
ously increases below respective TN. Importantly, all the
AIAO insulators of (Nd1−xPrx)2Ir2O7 show the differ-
ence of resistivity between the trained (14 T-magnetic-
field cooled) and untrained (zero-field cooled) states at-
tributable to the existence of metallic state on the AIAO
DWs[33, 34]. The realization of metallic DWs is mani-
fested also by the magnetic field dependence of resistiv-
ity shown in the inset of Fig. 2 (c); irreversible behav-
iors of resistivity between field increasing and decreasing
scans starting from the untrained states are due to the
field alignment of the AIAO-type magnetic domain. The
critical field for such elimination of DWs decreases as
x increases, indicating the gradual decline of magnetic
anisotropic energy.
The r vs. T phase diagram for (SmyNd1−y)2Ir2O7

and (Nd1−xPrx)2Ir2O7 based on the transport results
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FIG. 3: (color online). (a) Contour map in the plane
of R ionic radius (r) and temperature for resistivity in
(SmyNd1−y)2Ir2O7 and (Nd1−xPrx)2Ir2O7 by the interpola-
tion of the experimental data shown in Fig. 2. Dots denote
the transition temperature. PM, PI, and AFI stand for the
paramagnetic metal, paramagnetic insulator, and antiferro-
magnetic insulator phase, respectively. The broken line as
the border of PI and PM is the guide to the eyes. (b) The
ratio of resistivity between trained (ρt) and untrained (ρut)
state as a function of R ionic radius.

(Figs. 1 and 2) is shown in Fig. 3 (a). Metallic state
with no magnetic order is apparent down to 2 K for
large r (Pr-rich regime; x > 0.8), whereas others ex-
hibit thermal transitions from paramagnetic metal (PM,
dρ/dT > 0) or paramagnetic insulator (PI, dρ/dT < 0)
to antiferrromagnetic insulator (AFI) below TN. In par-
ticular, for (SmyNd1−y)2Ir2O7 (0.6 < y < 0.8) the reen-
trant insulator-metal-insulator transition is observed as
argued above. TN increases rapidly with the decline of
r in the range from 1.121 Å(x=0.7) to 1.079 Å(y=1).
This indicates that the TN is intimately linked to the
U which changes almost linearly with varying r in the
pyrochlore oxides, being consistent with the theoretical
prediction[19].

We have also plotted the ratio of resistivity of trained
to untrained state (ρt/ρut) as a function of r in Fig. 3 (b).
The ρt/ρut can be regarded as the ratio of conductance
between DWs and bulk on the basis of a simple picture of
parallel circuit[33]. The ρt/ρut markedly increases with
decreasing r and reaches maximum at Nd2Ir2O7 likely
due to the smaller value of bulk conductivity. Subse-
quently, it decreases significantly as r decreases, implying
that the conductance of DWs decreases with increasing

K. Ueda et al, 2015
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• QBT leads to extremely non-classical QCP

Quantum criticality

PM metal

L. Savary, EG Moon, LB, PRX, 2014
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FIG. 1: Schematic phase diagram showing the onset of incom-
mensurate spin density wave (ISDW) order that preempts the
quantum phase transition to a ferromagnetic (FM) phase at
r < 0. The nature of the phase transition between the ISDW
and FM phases (not shown) is not specified by our theory.

I. THE MODEL

The following action describes a theory of fermions
coupled to a fluctuating FM order parameter ~� at tem-
perature T = 0:

S =

Z
d⌧ d3x

⇢
 †[@

⌧

+ H0(�ir)] + ~� · [Ĝ(0)
�

]�1 · ~�

+
up
N
 †( ~M1 cos↵+ ~M2 sin↵) · ~�]

�
.

(1)

The fermion fields  have 4N components, where N = 1
in the physical case. The action (1) is similar to the one
studied in the Ising antiferromagnetic case7, but with
some important di↵erences. Most obviously, the FM or-
der parameter ~� is a vector, rather than a scalar as in

the AF case. The mass r0 ⌘ [G(0)
�

(0, 0)]�1
ii

of this field
is tuned to zero at the FM quantum critical point, as
shown in Figure 1. Finally, as pointed out previously1,5,
there are two symmetry-allowed terms through which FM
order can couple to the fermions. Hence u describes the
overall strength of the coupling between the fermions and
the field ~�, while ↵ parametrizes the relative strength of
the two allowed couplings. The 4 ⇥ 4 matrices appearing
in (1) are related to the S = 3/2 spin matrices1,15 by
~M1 = (S

x

, S
y

, S
z

) and ~M2 = (S3
x

, S3
y

, S3
z

).
The noninteracting part of the fermion Hamiltonian

appearing in (1) is the same as that appearing in Refs. 5,
15:

H0(k) = c0k
2 + c1

3X

n=1

d
n

(k)�
n

+ c2

5X

n=4

d
n

(k)�
n

(2)

where

d1(k) =
p

3k
y

k
z

, d2(k) =
p

3k
x

k
z

, d3(k) =
p

3k
x

k
y

,

d4(k) =

p
3

2
(k2

x

� k2
y

), d5(k) =
1

2
(2k2

z

� k2
x

� k2
y

).
(3)

The five � matrices satisfy {�
i

, �
j

} = 2�
ij

, and one can
build ten additional matrices using �

ij

= 1
2i

[�
i

, �
j

]. To-
gether with the unit matrix these make a complete ba-
sis of 4 ⇥ 4 matrices. We use the �-matrix representa-
tion, spin matrices S

i

, and basis functions d
i

(k) given
in Ref. 15. For simplicity we assume particle-hole sym-
metry (c0 = 0), which was found to emerge in the low-
energy theory from the renormalization group calcula-
tions of Refs. 5,7.

The bare fermion Green function is

Ĝ0(i!,k) =
�i!14 � H0(k)

(i!)2 � "2
k

, (4)

where

"
k

=
q

c2
1[d

2
1(k) + d2

2(k) + d2
3(k)] + c2

2[d
2
4(k) + d2

5(k)].(5)

The two-fold degenerate energy bands thus have disper-
sion ±"

k

, with a quadratic band touching point at k = 0.
In the isotropic case in which c1 = c2, it is straightfor-
ward to show that [L + S, H0(k)] = 0, where L = r ⇥ k,
[r

i

, k
j

] = i�
ij

, and L + S is the generator of rotations.
In this case the fermionic theory has complete rotational
invariance, and the dispersion from (5) becomes simply
"
k

= c1k
2.

II. FERROMAGNETIC POLARIZATION
TENSOR AND SDW INSTABILITY

In this section we calculate the bosonic polarization
tensor, which describes the self-energy of the bosonic field
due to damping of spin fluctuations by fermionic excita-
tions. We begin with the isotropic case and then consider
the anisotropic case in the following subsections.

A. Polarization tensor: isotropic case

Let us evaluate the polarization function, first in the
relatively simple case where c1 = c2. Subtracting o↵
the UV-divergent contribution ⇧ij

�

(0, 0) = �
ij

u2⇤/8⇡2,
which can be absorbed into a redefinition of the bosonic
mass term by letting r ⌘ r0 + ⇧ij

�

(0, 0), one obtains the
following:

Theory of analogous FM QCP:
an incommensurate SDW is 

induced
J. Murray, O. Vafek

+LB, PRL 2016
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FIG. 2. (Color online) Nodal rings (a) and (111) surface states
(c),(d) for the point group O with (g2,!s) = (0.3,0.5). This parameter
choice corresponds to the red dotted region in Fig. 1(a). (b) Topo-
logical invariant N(111), Eq. (7), as a function of surface momentum
k∥. Gray and dark blue indicate N(111) = ±1, while light blue is
N(111) = 0. (c) Band structure for a slab with (111) face as a function
of surface momentum k

∥
2 with k

∥
1 = 0.75π . (d) Energy dispersion of

the lowest-lying state with positive energy. The color scale is such that
black corresponds to zero energy. The states at zero energy in (c) and
(d) are localized at the surface. The flat bands in (c) and (d) are singly
degenerate (i.e., one branch per surface), whereas the linearly dispers-
ing zero mode at the center of the BZ in (d) is doubly degenerate.

gapped phases with topologically nontrivial character there
appear linearly dispersing Majorana surface modes.3,15–17 In
order to understand the appearance of zero-energy Andreev
surface states in the gapless phases, we now make use of the
topological invariant NL with a cleverly chosen loop L. Let
us consider Eq. (1) in a slab configuration with (lmn) face.

FIG. 3. (Color online) Same as Fig. 2 but for the point group
C4v , for a slab with (012) face, and with (g2,!s) = (0.0,0.5). This
parameter choice corresponds to the white dotted area in Fig. 1(b).

In this geometry the Hamiltonian H(lmn) retains translational
invariance along the two independent directions parallel to the
(lmn) surface. Hence, H(lmn)(k∥) can be viewed as a family of
1D systems parametrized by the two surface momenta k∥ =
(k∥

1,k
∥
2). Since H(lmn)(k∥) obeys chiral symmetry (but breaks in

general TRS and PHS), its topological properties are given by
the 1D winding number of class AIII

N(lmn)(k∥) = 1
2π i

∫
dk⊥ Tr[q−1(k)∂⊥q(k)], (7)

where k⊥ is the bulk momentum perpendicular to the surface,
and ∂⊥ = ∂/∂k⊥. Note that N(lmn) is the same as NL, Eq. (5),
with L chosen along k⊥, following a noncontractible cycle of
the BZ torus T 3.

Now, the key observation is that the above line integral
is closely related the loop integral NL, with L = Ci , that de-
termines the topological charge of the superconducting nodal
lines. That is, for those surface momenta k∥ for which the loop
along k⊥ in Eq. (5) passes through just one nontrivial nodal
ring, N(lmn)(k∥) is equal to the topological charge of this given
nodal ring. Hence, if we plot N(lmn)(k∥) as a function of surface
momenta [see Figs. 2(b) and 3(b)], we find that the boundaries
separating regions with different winding number are identical
to the projection of the nodal lines onto the (lmn) plane.
Furthermore, since a nonzero quantized value of N(lmn) implies
the existence of zero-energy states at the end points of the 1D
Hamiltonian H(lmn)(k∥),3,18 we find that there are zero-energy
Andreev bound states on the (lmn) surface located within
the projected nodal rings. This conclusion is corroborated by
numerical computations of the zero-energy surface states both
for the point group O and C4v (see Figs. 2 and 3). When
two nodal rings overlap in the (lmn) projection of the BZ,
then the quantized value of N(lmn) in the overlapping region
is determined by the additive contribution of the topological
charges of the two rings. In particular, one can have a situation
where the two contributions cancel, in which case there is no
zero-energy surface state within the overlapping region.

Finally, using an analogous argument as in the previous
paragraph, we can also employ the Z2 number (6) to deduce
the presence of zero energy modes at TRI momenta of the
surface BZ.12 One example of this is the Kramers pair of
surface zero modes located at the center of the surface BZ in
Fig. 2 (d) (cf. Refs. 16 and 17). Remarkably, this is a surface
Majorana mode in a gapless (nodal) superconducting phase.19

Experimental signatures. One of the most direct signatures
of the topological aspects of noncentrosymmetric SCs are
the surface Andreev bound states. These can be probed by
angle-resolved photoemission measurements, or by STS of
the surface density of states (SDOS). STS has proved to be an
effective tool to explore surface states of two-dimensional un-
conventional superconductors, see, e.g., Refs. 20–24. The bulk
density of states of 3D gapless SCs with nodal lines vanishes
linearly at zero energy. In contrast, the surface flat bands lead
to a diverging zero-energy peak in the SDOS (see Fig. 4).

The zero-bias peak in the SDOS is strongly dependent on
the surface orientation. From this dependence it is in principle
possible to (partially) map out the location of the topologically
stable nodal lines in the bulk BZ. In addition, one can take
advantage of the fact that an applied magnetic field leads to
a splitting of the zero-energy peak. Again, this splitting is

060504-3
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FIG. 3. Drumhead surface states and Berry phase. (a) Surface
band structure of Ca3P2 as obtained from the tight-binding model (2.2)
for the (001) surface in slab geometry with 60 unit cells. The surface
state is highlighted in green. (b) Momentum-resolved surface density
of states of Hamiltonian (2.2) for the (001) surface. White and dark red
correspond to high and low density, respectively. (c) Energy-resolved
surface density of states. The dispersion minimum of the drumhead
state gives rise to a Van Hove singularity, i.e., a kink at E = −0.06 eV.
The inset shows the variation of the Berry phase (2.9) of Hamiltonian
(2.2) along high-symmetry lines of the (001) surface Brillouin zone
[see Fig. 1(d)]. (d) Surface spectrum of the low-energy effective
model (3.1) for the (001) face as a function of surface momenta kx

and ky . The bulk states at kz = 0 with reflection eigenvalues R = +1
and R = −1 are colored in blue and red, respectively. The drumhead
surface state is indicated by the green area.

surface Brillouin zone of Fig. 1(d). Using an iterative Green’s
function method [69] we compute the momentum-resolved
surface density of states for a semi-infinite (001) slab, which
is shown in Fig. 3(b). As indicated by the green area in Fig. 3(d)
and by the green and yellow lines in Figs. 3(a) and 3(b),
respectively, the surface state is nearly dispersionless, taking
the shape of a drumhead that is bounded by the projected
Dirac ring. The dispersion minimum of this drumhead state
gives rise to a Van Hove singularity at E = −0.06 eV, which
leads to kink in the surface density of states. This is visible in
Fig. 3(c) as a jump in the surface density of states as the Fermi
energy is approached from below. The existence of a drumhead
surface state with a Van Hove singularity is not limited to
Ca3P2, but is valid more generally, for any topological nodal
line semimetal with reflection symmetry or inversion plus
time-reversal symmetry. We note that nearly or completely
flat surface states have recently also been studied in pho-
tonic crystals [70], in noncentrosymmetric superconductors
[71–74], in bernal graphite [75], and in topological crystalline
insulator heterostructures [47].

In contrast to crystalline topological insulators the surface
states of the semimetal (2.2) are not directly related to
the mirror invariant (2.7), but are connected to a nonzero
Berry phase. To make this connection explicit, we decompose
the (001) slab considered in Fig. 3 into a family of one-
dimensional systems parametrized by the in-plane momentum

k∥ = (kx,ky). For fixed k∥, the Berry phase is defined as

P(k∥) = −i
∑

Ej <EF

∫ π

−π

⟨uj (k)|∂kz
|uj (k)⟩dkz, (2.9)

where the sum is over filled Bloch eigenstates |uj (k)⟩ of
Hamiltonian (2.2). As was shown by King-Smith and Van-
derbilt [76], the Berry phase P(k∥) is related to the charge qend
at the end of the one-dimensional system with fixed in-plane
momentum k∥, i.e.,

qend = e

2π
P(k∥) mod e. (2.10)

Hence, when P(k∥) ̸= 0 an in-gap state appears at k∥ in the
surface Brillouin zone. For the tight-binding Hamiltonian (2.2)
we find that there are two different symmetries which each
quantize the Berry phase (2.9) to 0 or π , namely, the reflection
symmetry (2.5) and the product of time-reversal and inversion
symmetry IT ; see Appendix B. In the inset of Fig. 3(c)
we numerically compute P(k∥) using the tight-binding wave
functions of Hamiltonian (2.2). We obtain that the Berry phase
equals π for k∥ inside the projected Dirac ring, while it is zero
for k∥ outside the ring. This indicates that surface states occur
within the projected Dirac ring, which is in agreement with
the surface spectrum of Figs. 3(a) and 3(b). The Berry phase is
defined modulo 2π , since large gauge transformations of the
wave functions change it by 2π . As a result, P protects only
single, but not multiple, surface states at a given k∥.

Remarkably due to the IT symmetry, the Berry phase P
along any closed loop in the three-dimensional Brillouin zone
is quantized (see Appendix B). This allows us to interpret the
Berry phase as a topological invariant which guarantees the
stability of the Dirac line in the presence of the IT symmetry.
That is, for a loop interlinking with the Dirac ring, we find that
P = ±π which shows that the Dirac band crossing is protected
by the product of inversion with time-reversal symmetry. The
Berry phase represents a Z2-type invariant, since it is defined
only up to multiples of 2π . In contrast, the mirror number (2.7)
is a Z-type invariant, which can take on any integer number.
Therefore, only the mirror invariant NMZ can give rise to the
stability of multiple Dirac lines at the same location in the
Brillouin zone.

D. Relation between Berry phase and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related to the
appearance of surface states. In order to put this connection on
a firmer footing, we present here a relation between the mirror
invariant and the Berry phase P(k∥). Namely, we find that

(−1)n
+,0
occ (k∥)+n+,π

occ (k∥)ei∂R = eiP(k∥) (2.11a)

for all in-plane momenta k∥ = (kx,ky), where

∂R = i
∑

Ej <EF

∫ π

0
⟨uj (k)|R†(kz)[∂kz

R(kz)]|uj (k)⟩dkz (2.11b)

denotes the change in phase of the reflection operator R(kz)
along the reflection direction kz. The invariants n+,0

occ (k∥) and
n+,π

occ (k∥) correspond to the number of occupied states at (k∥,0)
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FIG. 3. Drumhead surface states and Berry phase. (a) Surface
band structure of Ca3P2 as obtained from the tight-binding model (2.2)
for the (001) surface in slab geometry with 60 unit cells. The surface
state is highlighted in green. (b) Momentum-resolved surface density
of states of Hamiltonian (2.2) for the (001) surface. White and dark red
correspond to high and low density, respectively. (c) Energy-resolved
surface density of states. The dispersion minimum of the drumhead
state gives rise to a Van Hove singularity, i.e., a kink at E = −0.06 eV.
The inset shows the variation of the Berry phase (2.9) of Hamiltonian
(2.2) along high-symmetry lines of the (001) surface Brillouin zone
[see Fig. 1(d)]. (d) Surface spectrum of the low-energy effective
model (3.1) for the (001) face as a function of surface momenta kx

and ky . The bulk states at kz = 0 with reflection eigenvalues R = +1
and R = −1 are colored in blue and red, respectively. The drumhead
surface state is indicated by the green area.
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states of the semimetal (2.2) are not directly related to
the mirror invariant (2.7), but are connected to a nonzero
Berry phase. To make this connection explicit, we decompose
the (001) slab considered in Fig. 3 into a family of one-
dimensional systems parametrized by the in-plane momentum

k∥ = (kx,ky). For fixed k∥, the Berry phase is defined as

P(k∥) = −i
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where the sum is over filled Bloch eigenstates |uj (k)⟩ of
Hamiltonian (2.2). As was shown by King-Smith and Van-
derbilt [76], the Berry phase P(k∥) is related to the charge qend
at the end of the one-dimensional system with fixed in-plane
momentum k∥, i.e.,

qend = e
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P(k∥) mod e. (2.10)

Hence, when P(k∥) ̸= 0 an in-gap state appears at k∥ in the
surface Brillouin zone. For the tight-binding Hamiltonian (2.2)
we find that there are two different symmetries which each
quantize the Berry phase (2.9) to 0 or π , namely, the reflection
symmetry (2.5) and the product of time-reversal and inversion
symmetry IT ; see Appendix B. In the inset of Fig. 3(c)
we numerically compute P(k∥) using the tight-binding wave
functions of Hamiltonian (2.2). We obtain that the Berry phase
equals π for k∥ inside the projected Dirac ring, while it is zero
for k∥ outside the ring. This indicates that surface states occur
within the projected Dirac ring, which is in agreement with
the surface spectrum of Figs. 3(a) and 3(b). The Berry phase is
defined modulo 2π , since large gauge transformations of the
wave functions change it by 2π . As a result, P protects only
single, but not multiple, surface states at a given k∥.

Remarkably due to the IT symmetry, the Berry phase P
along any closed loop in the three-dimensional Brillouin zone
is quantized (see Appendix B). This allows us to interpret the
Berry phase as a topological invariant which guarantees the
stability of the Dirac line in the presence of the IT symmetry.
That is, for a loop interlinking with the Dirac ring, we find that
P = ±π which shows that the Dirac band crossing is protected
by the product of inversion with time-reversal symmetry. The
Berry phase represents a Z2-type invariant, since it is defined
only up to multiples of 2π . In contrast, the mirror number (2.7)
is a Z-type invariant, which can take on any integer number.
Therefore, only the mirror invariant NMZ can give rise to the
stability of multiple Dirac lines at the same location in the
Brillouin zone.

D. Relation between Berry phase and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related to the
appearance of surface states. In order to put this connection on
a firmer footing, we present here a relation between the mirror
invariant and the Berry phase P(k∥). Namely, we find that

(−1)n
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is further increased, a surface charge-ordered phase becomes
energetically favored over the surface FM phase. The system
enters enter in to surface CDW phase trough a first-order tran-
sition. The inset in Fig. 3(a) shows the local charge density
along the z direction for U = 0.5t

1

and t
2

= 1.25t
1

. Clearly
the charges are strongly localized at the surface, which oscil-
lates and decays exponentially into the bulk.

To study the nature of the surface FM transition, we have
calculated the spin susceptibility of a 30-unitcell slab in the
random phase approximation (RPA) [53] (see Appendix for
details). Fig. 4(a) shows the eigenvalues of static RPA spin
susceptibility at different wavevectors at U = 0.25t

1

and
t
2

= t
1

. As clearly shown in the figure, there is a large number
of quasi-degenerate bands with small amplitudes; moreover,
there are two degenerate bands with much larger amplitudes
which tend to diverge at �. The eigenvectors of the RPA spin
susceptibility indicate that those quasi-degenerate bands with
small amplitudes are from the bulk spin fluctuations, while
the two bands with much larger amplitudes are dominated by
acoustic and optical surface fluctuation modes. This is consis-
tent with the expectation that the drumhead surface states are
much more sensitive to Coulomb interactions than the bulk
states due to the much smaller bandwidth. From Fig. 4(a) it
is also evident that the surface spin-fluctuation modes tend to
diverge at �= (0, 0), indicating a continuous quantum phase
transition at the surface driven by Hubbard interactions. We
refer the readers to Appendix B for technical details of the im-
plementation of RPA on the slab as well as the properties of
the eigenvalues and the eigenvectors of the spin susceptibility.

In Fig. 4(b) we show the parameter dependence of the RPA
surface spin susceptibility at �=(0, 0) (denoted by �surf

zz

(�)).
As is clearly seen from the figure, for a given t

2

, the surface
fluctuation modes at � increase with U , and diverge at some
critical U , indicating the transition from a nonordered phase
to a surface FM phase. The gray dotted line in Fig. 3(b) marks
the numeric threshold above which �surf

zz

(�) is considered as
diverging. It is interesting to note that as t

2

increases from
0.75t

1

(denoted by blue crosses) to 1.5t
1

(denoted by cyan
diamonds), the critical U value is reduced by ⇠50%. This is
because the surface DOS becomes larger for greater t

2

val-
ues (Fig. 1(b)-(d)), thus the system becomes more sensitive to
Coulomb interactions.

B. Hubbard interactions with surface Rashba SOC

We continue to study the effects of Hubbard interactions
on NLSMs including surface Rashba splittings with �R =

0.0625t
1

. Since the surface electric field decays exponen-
tially into the bulk, it is assumed that the Rashba SOC �R
applies only to the topmost and bottommost layers of the slab.
The system with such surface SOC expects to be more robust
against Coulomb interactions due to the lifted spin degener-
acy of the drumhead surface states as shown in Fig. 2(c)-(d).
Moreover, as the surface states at the Fermi level acquire non-
trivial spin textures due to Rashba SOC, it is unlikely that a
charge-ordered phase would be favored.

Both of the above two conjectures are numerically verified

FIG. 4. (a) Dispersion of the spin susceptibility (�zz(q)) for a 60-
layer slab of nodal-loop metal with t2 = t1 and U = 0.25t1. (b)
The U dependence of the surface spin fluctuations at � (denoted by
�surf
zz ) for different t2 values.

as shown in Fig. 3(b). When surface SOC is turned on, our
noncollinear self-consistent HF calculations (see Appendix A
for technical details) suggest that the system tends to enter
into a surface canted FM phase around some moderate U val-
ues (Uc ⇠ 35%�65% t

1

). The surface canted FM phase is
characterized by ferromagnetically coupled z components of
spins (m

z

) which are exponentially localized at the surface,
and possibly with small spin cantings toward the in-plane di-
rections.

We have also checked the U dependence of m
z

at the sur-
face layer, and find that |m

z

| increases continuously with U
when U � U

c

, indicating a continuous quantum phase tran-
sition. The critical value U

c

decreases with the increase of
t
2

due to the larger surface DOS for greater t
2

values. The
continuous quantum phase transition is further verified by the
divergence of surface spin susceptibility (data not shown).
Moreover, it turns out that |m

z

| is likely to have a square root
dependence on U �U

c

(|m
z

|⇠p
U � U

c

), which is in agree-
ment with the behavior of Stoner ferromagnetism. [54].

When t
2

> t
1

the system tends to go to a surface stripe
charge-ordered phase (indicated by “stripe CDW” in Fig. 3(a))
at large U values, in which there are alternating positive and
negative charge stripes along either the x or the y direction.
There is a transition from such stripe CDW phase to a surface
CDW with homogeneous in-plane charge density as U further
increases. Both of these transitions (from canted FM to stripe
CDW phase, and from stripe CDW to in-plane homogeneous
CDW phase) turn out to be first-order transitions whose phase
boundaries are marked by solid lines as shown in Fig. 3(b).
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as shown in Fig. 3(b). When surface SOC is turned on, our
noncollinear self-consistent HF calculations (see Appendix A
for technical details) suggest that the system tends to enter
into a surface canted FM phase around some moderate U val-
ues (Uc ⇠ 35%�65% t
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). The surface canted FM phase is
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rections.
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the system tends to go to a surface stripe
charge-ordered phase (indicated by “stripe CDW” in Fig. 3(a))
at large U values, in which there are alternating positive and
negative charge stripes along either the x or the y direction.
There is a transition from such stripe CDW phase to a surface
CDW with homogeneous in-plane charge density as U further
increases. Both of these transitions (from canted FM to stripe
CDW phase, and from stripe CDW to in-plane homogeneous
CDW phase) turn out to be first-order transitions whose phase
boundaries are marked by solid lines as shown in Fig. 3(b).
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sions to both the bulk nodal energy along the loop and the oth-
erwise flat drumhead surface states. Hereafter we fix t

1

=0.8,
t
3

= 0.2, t
0

= 0.01, and t
2

> 0 is the only variable in the
noninteracting situation. In particular, when t

2

<t
1

, there is a
circular nodal loop centered at the X ((⇡,⇡,⇡)) point. If the
surface is truncated at the A sublattice, one obtains drumhead
surface states inside the projected nodal loop centered at X as
shown in Fig. 1(b) and Fig. 2(a). If t

2

= t
1

, the nodal loop
is diamond-like and connects the TRIM X and M ((⇡, 0,⇡)).
The corresponding surface states fill the region inside the dia-
mond as shown in Fig. 1(c) [48]. When t

2

>t
1

, the nodal loop
is centered at Z ((0, 0,⇡)) and the surface states fill the region
outside the projected nodal loop (Fig. 1(d) and Fig. 2(b)). It
worth to note that for fixed bulk hopping parameters the drum-
head surface states can be either inside or outside the projected
nodal loop depending on surface terminations (see Appendix),
which is essentially due to the properties of 1D SSH chains.
Therefore, the surface states covering a large portion of the
surface BZ as shown in Fig. 1(d) can also be realized when
t
1

<t
2

if the system is terminated at the other sublattice.

FIG. 2. Surface bandstructures of the non-interacting tight-binding
model without surface SOC (a)-(b), and with surface SOC (c)-(d). (a)
t2=0.75t1, and (b) t2=1.25t1; (c) t2=0.75t1, �R=0.0625t1, and
(d) t2=1.25t1, �R=0.0625t1. The energy bands are plotted along
the high-symmetry path marked by the thick black lines in Fig. 1(b).

Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable
Rashba spin-orbit splittings in the surface states. Such surface
Rashba splittings have been observed in the surfaces of non-
magnetic and magnetic metals [49–51], as well as semicon-
ductor heterostructures [52]. Thus we also take the surface
Rashba effects into account by adding a Rashba-type first-
neighbor spin-dependent hopping within the surface atomic
layer, of which the amplitude is denoted by �

R

. The spin-
degenerate drumhead surface states are splitted by such sur-
face SOC (see Fig. 2(c)-(d)); moreover, the surface states ac-
quire nontrivial spin textures. We thus expect that the ef-
fects of Coulomb interactions in these two situations (with and
without surface SOC) would be different.

(a)

(b)

FIG. 3. Phase digram of the NLSMs with Hubbard interactions in the
t2 � U parameter space: (a)Without surface Rashba SOC, with the
inset shows the local charge density distribution in the surface CDW
phase when t2=1.25t1 and U=0.5t1; and (b) With surface Rashba
SOC.

II. EFFECTS OF HUBBARD INTERACTIONS

A. Without surface Rashba spin-orbit coupling

We first consider the situation without surface Rashba split-
tings, and apply Hubbard interactions, H

U

=U
P

i

n̂
i"n̂i#, to

the above noninteracting tight-binding model in a slab geom-
etry. As the Coulomb interaction at the surface is expected to
be strongly screened due to the large surface density of states
(DOS), a Hubbard-type local interaction is a good description
if we are mainly interested in the effects on the surface states.
On the other hand, unlike the surface states of topological in-
sulators, there is no simple low-energy effective Hamiltonian
describing the drumhead surface states of NLSMs. Thus we
have to construct a slab and apply Hubbard interactions to all
the electrons in the slab. Hereafter we will only consider half-
filled systems, and we say the system is charge homogeneous
with zero charge density if each site is exactly half filled, i.e.,
there is one electron at each site.

The Hubbard interactions are treated by self-consistent
Hartree-Fock (HF) approximation (see Appendix for details).
The HF ground states for a slab of 50 primitive cells are shown
in Fig. 3(a). When U =0, the system is in the NLSM phase.
When U ⇠ 10%� 20% t

1

, the system enters into a surface
FM (denoted by “surf FM” in the figure) phase with the fer-
romagnetic order exponentially localized at the surface. As U
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FIG. 2. Surface bandstructures of the non-interacting tight-binding
model without surface SOC (a)-(b), and with surface SOC (c)-(d). (a)
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(d) t2=1.25t1, �R=0.0625t1. The energy bands are plotted along
the high-symmetry path marked by the thick black lines in Fig. 1(b).

Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable
Rashba spin-orbit splittings in the surface states. Such surface
Rashba splittings have been observed in the surfaces of non-
magnetic and magnetic metals [49–51], as well as semicon-
ductor heterostructures [52]. Thus we also take the surface
Rashba effects into account by adding a Rashba-type first-
neighbor spin-dependent hopping within the surface atomic
layer, of which the amplitude is denoted by �

R

. The spin-
degenerate drumhead surface states are splitted by such sur-
face SOC (see Fig. 2(c)-(d)); moreover, the surface states ac-
quire nontrivial spin textures. We thus expect that the ef-
fects of Coulomb interactions in these two situations (with and
without surface SOC) would be different.
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FIG. 3. Phase digram of the NLSMs with Hubbard interactions in the
t2 � U parameter space: (a)Without surface Rashba SOC, with the
inset shows the local charge density distribution in the surface CDW
phase when t2=1.25t1 and U=0.5t1; and (b) With surface Rashba
SOC.
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A. Without surface Rashba spin-orbit coupling

We first consider the situation without surface Rashba split-
tings, and apply Hubbard interactions, H

U
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the above noninteracting tight-binding model in a slab geom-
etry. As the Coulomb interaction at the surface is expected to
be strongly screened due to the large surface density of states
(DOS), a Hubbard-type local interaction is a good description
if we are mainly interested in the effects on the surface states.
On the other hand, unlike the surface states of topological in-
sulators, there is no simple low-energy effective Hamiltonian
describing the drumhead surface states of NLSMs. Thus we
have to construct a slab and apply Hubbard interactions to all
the electrons in the slab. Hereafter we will only consider half-
filled systems, and we say the system is charge homogeneous
with zero charge density if each site is exactly half filled, i.e.,
there is one electron at each site.

The Hubbard interactions are treated by self-consistent
Hartree-Fock (HF) approximation (see Appendix for details).
The HF ground states for a slab of 50 primitive cells are shown
in Fig. 3(a). When U =0, the system is in the NLSM phase.
When U ⇠ 10%� 20% t
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, the system enters into a surface
FM (denoted by “surf FM” in the figure) phase with the fer-
romagnetic order exponentially localized at the surface. As U
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= 0.2, t
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= 0.01, and t
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> 0 is the only variable in the
noninteracting situation. In particular, when t

2
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, there is a
circular nodal loop centered at the X ((⇡,⇡,⇡)) point. If the
surface is truncated at the A sublattice, one obtains drumhead
surface states inside the projected nodal loop centered at X as
shown in Fig. 1(b) and Fig. 2(a). If t

2

= t
1

, the nodal loop
is diamond-like and connects the TRIM X and M ((⇡, 0,⇡)).
The corresponding surface states fill the region inside the dia-
mond as shown in Fig. 1(c) [48]. When t

2

>t
1

, the nodal loop
is centered at Z ((0, 0,⇡)) and the surface states fill the region
outside the projected nodal loop (Fig. 1(d) and Fig. 2(b)). It
worth to note that for fixed bulk hopping parameters the drum-
head surface states can be either inside or outside the projected
nodal loop depending on surface terminations (see Appendix),
which is essentially due to the properties of 1D SSH chains.
Therefore, the surface states covering a large portion of the
surface BZ as shown in Fig. 1(d) can also be realized when
t
1
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2

if the system is terminated at the other sublattice.

FIG. 2. Surface bandstructures of the non-interacting tight-binding
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t2=0.75t1, and (b) t2=1.25t1; (c) t2=0.75t1, �R=0.0625t1, and
(d) t2=1.25t1, �R=0.0625t1. The energy bands are plotted along
the high-symmetry path marked by the thick black lines in Fig. 1(b).

Given that inversion symmetry is always broken at a sur-
face, the surface electric field may lead to considerable
Rashba spin-orbit splittings in the surface states. Such surface
Rashba splittings have been observed in the surfaces of non-
magnetic and magnetic metals [49–51], as well as semicon-
ductor heterostructures [52]. Thus we also take the surface
Rashba effects into account by adding a Rashba-type first-
neighbor spin-dependent hopping within the surface atomic
layer, of which the amplitude is denoted by �

R

. The spin-
degenerate drumhead surface states are splitted by such sur-
face SOC (see Fig. 2(c)-(d)); moreover, the surface states ac-
quire nontrivial spin textures. We thus expect that the ef-
fects of Coulomb interactions in these two situations (with and
without surface SOC) would be different.
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FIG. 3. Phase digram of the NLSMs with Hubbard interactions in the
t2 � U parameter space: (a)Without surface Rashba SOC, with the
inset shows the local charge density distribution in the surface CDW
phase when t2=1.25t1 and U=0.5t1; and (b) With surface Rashba
SOC.
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describing the drumhead surface states of NLSMs. Thus we
have to construct a slab and apply Hubbard interactions to all
the electrons in the slab. Hereafter we will only consider half-
filled systems, and we say the system is charge homogeneous
with zero charge density if each site is exactly half filled, i.e.,
there is one electron at each site.

The Hubbard interactions are treated by self-consistent
Hartree-Fock (HF) approximation (see Appendix for details).
The HF ground states for a slab of 50 primitive cells are shown
in Fig. 3(a). When U =0, the system is in the NLSM phase.
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Hertz-Millis-Moriya

+

Landau theory

L0 = |r'|2 + r'2 + u'4

Landau damping

L! = c
|!|
q
|'|2 etc.

n.b. We are going to neglect all the “strong coupling” subtleties 
that may be important in 2d at low enough energies
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Chubukov, 
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Landau theory

L0 = |r'|2 + r'2 + u'4

Landau damping

is it 2d or 3d? 
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FIG. 5. Schematic illustration of different types of electron-hole ex-
citations that couple to surface spins. (a) When the surface bands are
partially filled. (b) When the surface bands are (nearly) completely
filled. The electron-hole excitations purely from the surface (bulk)
states are denoted by “s � s” (“b�b””); while the process of creat-
ing a hole in the surface states and an electron in the bulk states is
denoted by “s�b”.

III. FERROMAGNETIC QUANTUM CRITICALITY AT
THE SURFACE

In this section we discuss the quantum critical (QC) behav-
ior near the ferromagnetic transition at the surface of a nodal-
loop semimetal neglecting effects of surface SOC. The quan-
tum phase transition in itinerant ferromagnetism is typically
described by Hertz-Millis theory [44, 45], in which the spin
fluctuations near a FM transition are damped due to the cou-
pling with Fermi-surface excitations [55]. The coupling be-
tween the Fermi surface and spin order parameter gives rise
to a dynamical coefficient ⇠ |⌫

m

|/q in the effective action
of the spins. Hertz has shown that the dynamical critical ex-
ponent z = 3 for FM transitions in 2D and 3D Fermi-liquid
systems [44]. The dynamical critical exponent determines the
quantum critical phenomenology such as the crossover behav-
ior from quantum to classical regime at finite temperatures
[44, 45].

In NLSMs, we have shown in Sec. II that the FM transition
occurs only at the surface with the bulk states unaffected, so
that one may naively expects it is basically a two-dimensional
FM transition of the Hertz-Millis type with z = 3. However,
in reality the situation is more complicated due to the gapless
bulk states. The electron-hole excitations which couple to the
surface spin order parameters are contributed by both the sur-
face bound states and the bulk states projected at the surface.
Thus it is expected that the quantum critical behavior would
be different for such surface FM transition with gapless bulk
excitations.

It is convenient to decompose the electron-hole excitations
into different types. The first type is from the process that
both the electron and the hole are created in the surface bound
states as denoted by “s�s” in Fig. 5(a); the second type is the
one that both the electron and the hole are created in the bulk
continuum which is denoted “b�b” in Fig. 5; and finally the
last type is the process of creating a hole in the surface states
while an electron in the bulk states as denoted by “s�b” in
Fig. 5.

We consider two different situations. The first situation
is that the system is hole-doped with partially filled surface
bands as schematically shown in Fig. 5(a). The second situ-
ation is that the Fermi level is very close to the nodal energy

and the drumhead surface states are almost completely filled
as sketched in Fig. 5(b). In the first situation we only consider
the s�s and b�b type excitations, since the s�b process require
a large momentum transfer, and we are only interested in low-
frequency long-wave-length excitations; while in the second
case we only consider the s�b and b�b excitations since the
surface bands are fully occupied.

We start by calculating the surface Green’s function (SGF)
of NLSMs using the method reported in Ref. 56. For the tight-
binding model given in sec. I, the surface Green’s function
(G�

s

(kk,!)) can be calculated analytically at low energies. To
be specific, one can show that when �|et
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is the bulk energy at k with � = ± referring to the bulk band
indices, and µ is the Fermi level. �k in Eq. (1) is infinitesimal,
which is greater than (less than) zero if ✏
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(k) is greater than
(less than) zero. Considering the case that the nodal loop is
centered at (⇡,⇡,⇡) whose radius is much smaller than the
size of the Brillouin zone, then one may expand the expression
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On the other hand, when e! � |et
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|,
! is in the bulk gap. If a surface of the NLSM is prepared by
truncating the bulk crystal at sublattice A, one would obtain
surface bound state within the projected nodal loop. The size
of the bulk nodal loop is determined by et

1

= t
2

, and kk is
inside the projected nodal loop when et

1

< t
2

(without loss of
generality, we assume et

1

>0 and t
2

>0.). The corresponding
bound-state SGF for et
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is then expressed as
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Clearly the bound-state SGF has a pole at e!⇡ ! � (t
0

(k2
x
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)�4t
0

)=0. Moreover, from Eq. (4) one may notice that the
spectral weight of the bound-state SGF decreases with the in-
crease of et

1

, and eventually vanishes when et
1

= t
2

, i.e., when
kk equals to the radius of the bulk nodal loop. In the remain-
der of this section, we will continue calculating the surface
dynamical susceptibility using the Green’s functions defined
in Eq. (1) and Eq. (4). We refer the readers to Appendix B for
details in calculating the surface Green’s function.

particles and holes can be drawn from either bulk or surface

Tricky: 
✦ Extended states behave non-trivially near the surface
✦ Surface states become “dilute” near the nodes

safe approach: calculate full Green’s functions near real-space surface, 
and from that the surface susceptibility
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FIG. 5. Schematic illustration of different types of electron-hole ex-
citations that couple to surface spins. (a) When the surface bands are
partially filled. (b) When the surface bands are (nearly) completely
filled. The electron-hole excitations purely from the surface (bulk)
states are denoted by “s � s” (“b�b””); while the process of creat-
ing a hole in the surface states and an electron in the bulk states is
denoted by “s�b”.
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In this section we discuss the quantum critical (QC) behav-
ior near the ferromagnetic transition at the surface of a nodal-
loop semimetal neglecting effects of surface SOC. The quan-
tum phase transition in itinerant ferromagnetism is typically
described by Hertz-Millis theory [44, 45], in which the spin
fluctuations near a FM transition are damped due to the cou-
pling with Fermi-surface excitations [55]. The coupling be-
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to a dynamical coefficient ⇠ |⌫

m
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Three types of topology
Topological Spin Liquid

topology of entanglement

“intrinsic topological 
order”

This type of topological phase can 
only exist with strong correlations. It 
reflects extreme entanglement of the 

many-body states

• Wen (1989): some many-body systems exhibit an “order” which 
is sensitive to the topology of the spatial manifold

• This type of order is completely robust: does not need any 
symmetry

Topological orders through experiments (1990)

Topological order can be defined “experimentally” through two
unusual topological probes (at least in 2D)

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : | ↵i ! | 0
↵i = T↵� | �i

- 90� rotation S : | ↵i ! | 00
↵i = S↵� | �i

• T , S , define topological order “experimentally”.

• T , S is a universal probe for any 2D topological orders, just like
X-ray is a universal probe for any crystal orders.

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement



TI versus iTO
Topological invariants: a non-local 

integral over an extended manifold

Chern number: integral over 
2d k space whose value 

differentiates phases

Wilson loop: integral over a 
1d real space curve whose 
value differentiates states in 

the same phase



 





(�1)Nvb



TI versus iTO
Topological invariants: a non-local 

integral over an extended manifold

Chern number: integral over 
2d k space whose value 

differentiates phases

Wilson loop: integral over a 
1d real space curve whose 
value differentiates states in 

the same phase


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(�1)Nvb

break the 2d space: forms a 
gapless edge 

break the 1d curve: forms a 
gapped exotic quasiparticle 



Where is iTO?
• Fractional quantum Hall effect is both 

an iTO state and a TI (Chern insulator)

• Other main candidates are quantum 
spin liquids

 





| i =
ZnCu3(OH)6Cl2

“RVB” state on 
kagomé lattice?

still seeking definitive id
Young Lee, Takashi Imai,...



Quantum Spin Liquids
|RVBi =

+ + + + · · ·

+ +

Quantum Spin Liquids: a Review

Lucile Savary1, Leon Balents2

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA
02139, U.S.A.
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara,
CA 93106-4030, U.S.A.

Abstract. Quantum spin liquids may be considered “quantum disordered”
ground states of spin systems, in which zero point fluctuations are so strong
that they prevent conventional magnetic long range order. More interestingly,
quantum spin liquids are prototypical examples of ground states with massive
many-body entanglement, of a degree su�cient to render these states distinct
phases of matter. Their highly entangled nature imbues quantum spin liquids with
unique physical aspects, such as non-local excitations, topological properties, and
more. In this review, we discuss the nature of such phases and their properties
based on paradigmatic models and general arguments, and introduce theoretical
technology such as gauge theory and partons that are conveniently used in the
study of quantum spin liquids. An overview is given of the di↵erent types of
quantum spin liquids and the models and theories used to describe them. We
also provide a guide to the current status of experiments to study quantum spin
liquids, and to the diverse probes used therein.

Keywords: Quantum spin liquid, frustration, entanglement, topological order, gauge
theory

PACS numbers: 71.10.-w, 75.10.Kt
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Spin liquid candidates?



Top experimental 
platforms

Herbertsmithite

 
 
 
 
 
 

and 2.937 Å  (Cu2-Cu2).  The Cu2 ion is located in an octahedron made of 4 O and 2 OH ions that is 
elongated horizontally in Fig. 1(a), while the octahedron of the Cu1 ion is deformed in the opposite 
way. Thus, it is reasonable to assume that an unpaired electron is in the dz2 orbital at Cu1, while in the 
dx2-y2 orbital at Cu2, as schematically drawn in the inset of Fig. 1(a).  As a result, moderately strong 
antiferromagnetic superexchange couplings are expected through bridging oxide ions with large Cu-O-
Cu angles; 105.6° and 82.7° for J1 between Cu1 and Cu2 spins, and 101.1° and 91.5° for J2 between 
two Cu2 spins [6].  Although it is difficult to predict the magnitude of the magnetic couplings, the 
anisotropy may not be so large, because of this orbital arrangement.  In fact, recent theoretical 
calculations on the magnetic susceptibility and specific heat of volborthite suggested that the lattice 
remains a great deal of frustration [10] and that the anisotropy can be less than 20% [11].  The average 
coupling Jav = (2J1 + J2) / 3 was estimated to be 84 K in our previous study [7].  On the one hand, an  
anisotropic kagome model has been studied theoretically, which found a rich phase diagram with a 
ferrimagnetic, incommensurate and decoupled chain phases [12].   
 

Figure 1. Kagome lattices of volborthite (a) and herbertsmithite (b).  The two drawings are in the 
same scale.  The inset on each drawing expands a triangle of Cu ions to show a possible arrangement 
of 3d orbitals carrying unpaired electrons.  
 

The other compound is herbertsmithite ZnCu3(OH)6Cl2 that was claimed to be a structurally perfect 
KAFM [13].  In fact, it crystallizes a hexagonal structure as depicted in Fig. 1(b) comprising an 
equilateral triangle made of Cu2+ ions [14].  The Cu-Cu distance is 3.414 Å, more than 10% larger 
than those of volborthite.  Magnetic couplings should be isotropic through a nearest-neighbour 
superexchange J via a Cu-O-Cu path based on the dx2-y2 orbitals arranged symmetrically along the 
threefold axis.  The magnitude of J was estimated to be 170 ~ 190 K [15-17], more than double of the 
Jav of volborthite, which is due to the larger bond angle of 119° [18].  Although the compound looks 
like perfect, its Achilles heel is a mutual exchange between Cu2+ and nonmagnetic Zn2+ ions [19-21].  
It was reported that 6 - 10% of the Cu site in the kagome plane is replaced by Zn, which means that 18 
- 30% of the Zn site is occupied by the kicked out Cu ions.  This may be caused by the similarity in the 
ionic radius between Cu2+ and Zn2+ and also the same valence state of the two ions.  The associated 
disorder effects in the kagome plane must disturb the GS seriously.  Moreover, the almost free Cu 
spins at the Zn site mask the intrinsic properties in bulk measurements: a superexchange between two 
neighboring Cu spins at the Cu and Zn sites is expected to be relatively much smaller because of the 
particular Cu-O-Zn bond angle of 96.9° [18].  Such a chemical substitution is not the case for 
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α-RuCl3

Honeycomb and hyper-
honeycomb structures

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Prediction: quantum dynamics can be induced in diverse 
classical Ising systems by controlled disorder
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